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How do hydraulic simulators work ?
How to use them in hydraulic network optimization ?

2



DRINKING WATER DISTRIBUTION NETWORK

• simple directed graph 𝐺 = (𝐽, 𝐴)
• 𝑎 ∈ 𝐴 = { pipes, pumps, valves }
• 𝑗 ∈ 𝐽 = 𝑆ervice ∪ 𝑅eservoirs
• incidence matrix 𝐸 ∈ {0, 1, −1}𝐴×𝐽 :𝑎 = (𝑖, 𝑗) ∶ 𝐸𝑎𝑖 = −1, 𝐸𝑎𝑗 = 1, 𝐸𝑎𝑛 = 0

Hypothesis (for this exposé):

• no pressure-induced leakage, no aging
• fixed speed pumps (on/off), controlled gate valves (close/open)
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DRINKING WATER DISTRIBUTION NETWORK

• flow 𝑞𝑎 on arcs 𝑎 ∈ 𝐴
• head ℎ𝑗 at nodes 𝑗 ∈ 𝐽
• demand 𝐷𝑠 at service nodes 𝑠 ∈ 𝑆
• level/height 𝐻𝑟 of reservoirs 𝑟 ∈ 𝑅
• resistance 𝜙𝑎 on arcs 𝑎 ∈ 𝐴

Network Analysis Problem: find (𝑞𝐴, ℎ𝐽) meeting (𝐷𝑆,𝐻𝑅, 𝜙𝐴) ?
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HYDRAULIC NETWORK ANALYSIS PROBLEM𝑁𝐴𝑃(𝐷𝑆,𝐻𝑅, 𝜙𝐴) =
{(𝑞𝐴, ℎ𝐽) ∈ ℝ𝐴 × ℝ𝐽, (flow, head)𝑞𝑠 = 𝐷𝑠 ∀𝑠 ∈ 𝑆, demandℎ𝑟 = 𝐻𝑟 ∀𝑟 ∈ 𝑅, level𝑣𝑎 = 𝜙𝑎(𝑞𝑎) ∀𝑎 ∈ 𝐴} resistance

where 𝑞𝑗 ∶= 𝑎 𝐸𝑎𝑗𝑞𝑎 residual flow at node 𝑗 ∈ 𝐽
𝑣𝑎 ∶= 𝑗 −𝐸𝑎𝑗ℎ𝑗 head loss on arc 𝑎 ∈ 𝐴.

⟹𝑎 𝑣𝑎𝑞𝑎 = −𝑗 ℎ𝑗𝑞𝑗 5



HYDRAULIC SIMULATOR

compute an element of NAP and check the bounds:𝑁𝐴𝑃(𝐷𝑆,𝐻𝑅, 𝜙𝐴) =
{(𝑞𝐴, ℎ𝑆) ∈ ℝ𝐴 × ℝ𝑆,𝑞𝑠 = 𝐷𝑠 ∀𝑠 ∈ 𝑆,𝑣𝑎 = 𝜙𝑎(𝑞𝑎) ∀𝑎 ∈ 𝐴}.

System of equations solved by the Newton-Raphson algorithm [TODINI&PILATI 88,

SALGADO 89] example: EPANET

6



DECOMPOSITION OF NAP

𝐺 = ∪𝑏∈𝐵(𝐽𝑏, 𝐴𝑏)
graph partition along nodes in 𝑅
𝑁𝐴𝑃(𝐷𝑆,𝐻𝑅, 𝜙𝐴) =

𝑏∈𝐵 𝑁𝐴𝑃(𝐷𝑆𝑏 , 𝐻𝑅𝑏 , 𝜙𝐴𝑏)
= 𝑏∈𝐵{(𝑞𝐴𝑏 , ℎ𝑆𝑏 ) ∶𝑞𝑠 = 𝐷𝑠 ∀𝑠 ∈ 𝑆𝑏𝑣𝑎 = 𝜙𝑎(𝑞𝑎) ∀𝑎 ∈ 𝐴𝑏}
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RESISTANCE

pipes: frictions
(Darcy-Weisbach/Swamee-Jain)

pumps: discharge pressure
(quadratic fit)

• quadratic approximation 𝜙𝑎(𝑞) = 𝛼𝑎𝑞|𝑞| + 𝛽𝑎𝑞 + 𝛾𝑎 with 𝛼𝑎 > 0:
continuous, strictly increasing, bijective on ℝ

• integral 𝑓𝑎(𝑞) = ∫𝑞0 𝜙𝑎(𝑥)𝑑𝑥 is smooth, strictly convex, and coercive
• inverse 𝜙−1𝑎 has the same property

8



second option for solving NAP:
primal/dual reformulation
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PRIMAL REFORMULATION OF NAP(𝑞𝐴, ℎ𝑆) in 𝑁𝐴𝑃 ∶ 𝑞𝑠 = 𝐷𝑠∀𝑠 ∈ 𝑆, 𝑣𝑎 = 𝜙𝑎(𝑞𝑎)∀𝑎 ∈ 𝐴
if and only if𝑞𝐴 solves 𝑃𝑁𝐴𝑃 ∶ min𝑞𝐴 𝑎∈𝐴 𝑓𝑎(𝑞𝑎) + 𝐻⊤𝑅 𝑞𝑅 ∶ 𝑞𝑠 = 𝐷𝑠 ∀𝑠 ∈ 𝑆
with 𝑓𝑎 = ∫𝜙𝑎 strictly convex, then solution is unique

Proof: NAP are the stationary points ∇𝐿 = 0 of the lagrangian function:𝐿(𝑞𝐴, ℎ𝑆) = ∑𝑎∈𝐴(𝑓𝑎(𝑞𝑎) − 𝑣𝑎𝑞𝑎) − ℎ⊤𝑆 𝐷𝑆.
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DUAL REFORMULATION OF NAP𝐿(𝑞𝐴, ℎ𝑆) = ∑𝑎∈𝐴 𝑓𝑎(𝑞𝑎) − 𝑣𝑎𝑞𝑎 − ℎ⊤𝑆 𝐷𝑆
Strong duality holds: 𝑃 ≡ 𝐷 ∶ maxℎ𝑆 min𝑞𝐴 𝐿(𝑞𝐴, ℎ𝑆) = maxℎ𝑆 𝐿((𝜙−1𝑎 (𝑣𝑎))𝑎∈𝐴, ℎ𝑆).
(𝑞𝐴, ℎ𝑆) in 𝑁𝐴𝑃 ∶ 𝑞𝑠 = 𝐷𝑠∀𝑠 ∈ 𝑆, 𝑣𝑎 = 𝜙𝑎(𝑞𝑎)∀𝑎 ∈ 𝐴
if and only ifℎ𝑆 solves 𝐷𝑁𝐴𝑃 ∶ minℎ𝑆 𝑎∈𝐴 𝑓∗𝑎(𝑣𝑎) + 𝐷⊤𝑆 ℎ𝑆
with 𝑓∗𝑎(𝑣) = max𝑞 (𝑣𝑞 − 𝑓𝑎(𝑞)) = −𝑓𝑎(𝜙−1𝑎 (𝑣)) + 𝑣𝜙−1𝑎 (𝑣) convex conjugate of 𝑓𝑎. 10



STRONG DUALITY REFORMULATION OF NAP

𝑞𝐴 minimizes 𝐹 in 𝑃𝑁𝐴𝑃 and ℎ𝑆 maximizes 𝐹∗ in 𝐷𝑁𝐴𝑃 then 𝐹(𝑞𝐴) ≤ 𝐹∗(ℎ𝑆)𝑁𝐴𝑃 = 𝑆𝐷𝑁𝐴𝑃
𝑆𝐷𝑁𝐴𝑃 = {(𝑞𝐴, ℎ𝑆) ∈ ℝ𝐴 × ℝ𝑆, 𝑞𝑠 = 𝐷𝑠∀𝑠 ∈ 𝑆,𝑎∈𝐴 𝑓𝑎(𝑞𝑎) + 𝑓∗𝑎(𝑣𝑎) + 𝐻⊤𝑅 𝑞𝑅 + 𝐷⊤𝑆 ℎ𝑆 ≤ 0} (𝑆𝐷)

with 𝑓𝑎 ∈ ∫𝜙𝑎, 𝑓𝑎(0) = 0 and 𝑓∗𝑎 ∈ ∫𝜙−1𝑎 , 𝑓∗𝑎(0) = −𝑓𝑎(𝜙−1𝑎 (0)).

• (𝑆𝐷) integrates and aggregates the flow-potential equations:
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STRONG DUALITY REFORMULATION OF NAP𝑁𝐴𝑃 = 𝑆𝐷𝑁𝐴𝑃
𝑆𝐷𝑁𝐴𝑃 = {(𝑞𝐴, ℎ𝑆) ∈ ℝ𝐴 × ℝ𝑆, 𝑞𝑠 = 𝐷𝑠∀𝑠 ∈ 𝑆,𝑎∈𝐴 𝑓𝑎(𝑞𝑎) + 𝑓∗𝑎(𝑣𝑎) + 𝐻⊤𝑅 𝑞𝑅 + 𝐷⊤𝑆 ℎ𝑆 ≤ 0} (𝑆𝐷)

with 𝑓𝑎 ∈ ∫𝜙𝑎, 𝑓𝑎(0) = 0 and 𝑓∗𝑎 ∈ ∫𝜙−1𝑎 , 𝑓∗𝑎(0) = −𝑓𝑎(𝜙−1𝑎 (0)).
• (𝑆𝐷) integrates and aggregates the flow-potential equations:(𝑆𝐷) ⟺ 𝑎 𝑓𝑎(𝑞𝑎) + 𝑓∗𝑎(𝑣𝑎) − 𝑞𝑎𝑣𝑎 = 0⟺ 𝑓𝑎(𝑞𝑎) = 𝑓𝑎(𝜙−1𝑎 (𝑣𝑎)) + 𝑓′𝑎(𝜙−1𝑎 (𝑣𝑎))(𝑞𝑎 − 𝜙−1𝑎 (𝑣𝑎)) ∀𝑎⟺ 𝜙−1𝑎 (𝑣𝑎) = 𝑞𝑎 ∀𝑎. 11



• 𝑆𝐷𝑁𝐴𝑃 is an exact aggregate reformulation of 𝑁𝐴𝑃
• 𝑃𝑁𝐴𝑃 and 𝐷𝑁𝐴𝑃 are conjugate convex nonlinear programs
• called content and co-content models in [COLLINS 1978]

• or distribution and differential problems in [ROCKAFELLAR 1988]

• generalization: nonlinear flow networks and monotropic
programs [ROCKAFELLAR 1988]
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MONOTROPIC PROGRAMMING [ROCKAFELLAR, 1988]

additive convex objective
over linear constraints𝑃 ∶ min𝑥∈ℝ𝐽 𝑗∈𝐽 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 𝑗∈𝐽 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ 𝐼

𝑓𝑗 closed proper convex on ℝ = lower
semi-continuous (poss. nonsmooth)

• monotropic = “one-dimension convexity” (extended to finite-dimension in
[BERTSEKAS 2008])

• a class of convex programs behaving like linear programs:
• combinatorial properties: finite set of descent directions (elementary vectors)
• duality properties: strong duality, explicit symmetric dual
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MONOTROPIC PROGRAMMING: (FENCHEL) DUALITY

𝑓∗ ∶ 𝑣 ∈ ℝ ↦ sup𝑥(𝑥𝑣 − 𝑓(𝑥)) convex conjugate of 𝑓 (Legendre-Fenchel
transformation)

(𝑃) ∶ min𝑥∈ℝ𝐽 𝑗∈𝐽 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 𝑗∈𝐽 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ 𝐼
(𝐷) ∶ min𝑢∈ℝ𝐼 𝑖∈𝐼 𝑑𝑖𝑢𝑖 +𝑗∈𝐽 𝑓∗𝑗 (𝑣𝑗)𝑠.𝑡. 𝑣𝑗 ∶= 𝑖∈𝐼 −𝐸𝑖𝑗𝑢𝑖 ∀ 𝑗 ∈ 𝐽

• conjugate 𝑓∗𝑗 is convex lower semi-continuous: 𝐷 is monotropic
• biconjugate 𝑓𝑗 = 𝑓∗∗𝑗 (as 𝑓𝑗 convex l.s.c.): dual(dual)=primal
• Fenchel inequality: 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) ≥ 𝑥𝑗𝑣𝑗 and equality holds iff 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)
• strong duality and KKT conditions for (𝑥; 𝑢, 𝑣) a feasible primal-dual pair:0 = ∑𝑗 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) + ∑𝑖 𝑑𝑖𝑢𝑖 = ∑𝑗 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) − 𝑥𝑗𝑣𝑗 ⟺ 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)∀ 𝑗
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MONOTROPIC PROGRAMMING: (FENCHEL) DUALITY

𝑓∗ ∶ 𝑣 ∈ ℝ ↦ sup𝑥(𝑥𝑣 − 𝑓(𝑥)) convex conjugate of 𝑓 (Legendre-Fenchel
transformation)

(𝑃) ∶ min𝑥∈ℝ𝐽 𝑗∈𝐽 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 𝑗∈𝐽 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ 𝐼
(𝐷) ∶ min𝑢∈ℝ𝐼 𝑖∈𝐼 𝑑𝑖𝑢𝑖 +𝑗∈𝐽 𝑓∗𝑗 (𝑣𝑗)𝑠.𝑡. 𝑣𝑗 ∶= 𝑖∈𝐼 −𝐸𝑖𝑗𝑢𝑖 ∀ 𝑗 ∈ 𝐽

• conjugate 𝑓∗𝑗 is convex lower semi-continuous: 𝐷 is monotropic
• biconjugate 𝑓𝑗 = 𝑓∗∗𝑗 (as 𝑓𝑗 convex l.s.c.): dual(dual)=primal
• Fenchel inequality: 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) ≥ 𝑥𝑗𝑣𝑗 and equality holds iff 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)
• strong duality and KKT conditions for (𝑥; 𝑢, 𝑣) a feasible primal-dual pair:0 = ∑𝑗 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) + ∑𝑖 𝑑𝑖𝑢𝑖 = ∑𝑗 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) − 𝑥𝑗𝑣𝑗 ⟺ 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)∀ 𝑗
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MONOTROPIC PROGRAMMING: EQUIVALENT CONDITIONS (FINITE OPTIMUM)

primal: 𝑥 solves(𝑃) ∶ min𝑥 𝑗 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
dual: 𝑢 solves(𝐷) ∶ min𝑢 𝑖 𝑑𝑖𝑢𝑖 +𝑗 𝑓∗𝑗 (𝑣𝑗)𝑠.𝑡. 𝑣𝑗 ∶= 𝑖 −𝐸𝑖𝑗𝑢𝑖 ∀ 𝑗

equilibrium (KKT): (𝑥, 𝑢) solves(𝐸𝑞) ∶𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
𝑣𝑗 ∶= 𝑖 −𝐸𝑖𝑗𝑢𝑖 ∈ 𝜕𝑓𝑗(𝑥𝑗) ∀ 𝑗

strong duality: (𝑥, 𝑢) solves(𝑆𝐷) ∶𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
𝑗 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) +𝑖 𝑑𝑖𝑢𝑖 ≤ 0.

14



MONOTROPIC PROGRAMMING: APPLICATIONS

1. 𝑓𝑗 piecewise linear/quad-convex(𝑃) ∶ min𝑥 𝑗 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
no need to linearize to dualize

2. potential-flow network(𝐸𝑞) ∶𝑗 𝐸𝑗𝑖𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
𝑣𝑗 = 𝑖 −𝐸𝑗𝑖𝑢𝑖 ∈ 𝜕𝑓𝑗(𝑥𝑗) ∀ 𝑗

• 𝐸 incidence matrix of graph G(I,J)
• 𝑥 arc flows, 𝑢 node potentials
• 𝜕𝑓 arc resistance/conductivity
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POTENTIAL-FLOW NETWORKS

• equilibrium problem = NAP in hydraulic
• model for many other physical networks (newtonian): electricity, gas, heat,
telecommunications, transportation, vascular, elastic/spring

• ex: electric circuit
• 𝐴: conductors (resistors, batteries,...) with
linear resistance 𝑟 = 𝑣/𝑥 (Ohm’s law)

• 𝑥 current, 𝑣 voltage
• flow conservation = Kirchhoff’s current law

16



EX: EQUILIBRIUM WITH LINEAR RESISTANCE

𝜙(𝑥) = 𝑟𝑥
• laws of Ohm (electric), Fourier (thermal), Poiseulle (viscous fluids)
• equilibrium solution minimizes energy dissipation:

(𝑃) ∶ min𝑥,𝐸𝑥=𝑑𝑗 𝑓𝑗(𝑥𝑗) = 𝑟𝑗2 𝑥2𝑗 with 𝑓𝑗 = 𝜙𝑗.
17



applications to hydraulic network optimization
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HYDRAULIC NETWORK OPTIMIZATION

design
• gravity-fed network
• static demand
• installation costs
• alternative arcs

operation
• pressurized network
• dynamic demand
• energy costs
• controllable arcs

bilevel structure

1. select a subset of arcs 𝐴′ ⊆ 𝐴
2. 𝑁𝐴𝑃: find an equilibrium on 𝐴′ satisfying the demand

selection step: incomplete (metaheuristics) or implicit search (math prog)
18



DESIGN: PIPE SIZING (STATIC)

• a graph 𝐺 = (𝐽, 𝐴 × 𝐾) with replicated arcs (possible pipe dimensions)
• arc status 𝑥𝑎𝑘 ∈ {0, 1}: pipe of type 𝑘 selected on arc 𝑎

min𝑥,𝑞,ℎ 𝑎 𝑘 𝑐𝑎𝑘𝑥𝑎𝑘𝑠.𝑡.𝑥𝑎𝑘 = 0 ⟹ 𝑞𝑎𝑘 = 𝑣𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾𝑘 𝑥𝑎𝑘 = 1, ℎ𝑖 − ℎ𝑗 = 𝑘 𝑣𝑎𝑘 ∀𝑎 = (𝑖, 𝑗) ∈ 𝐴
(𝑞𝐴𝐾, ℎ𝑆) ∈ 𝑁𝐴𝑃(𝐷𝑆,𝐻𝑅, 𝜙𝐴𝐾(𝑥)).

Nonconvex MINLP formulation
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DESIGN: PIPE SIZING (STATIC)

• a graph 𝐺 = (𝐽, 𝐴 × 𝐾) with replicated arcs (possible pipe dimensions)
• arc status 𝑥𝑎𝑘 ∈ {0, 1}: pipe of type 𝑘 selected on arc 𝑎

min𝑥,𝑞,ℎ 𝑎 𝑘 𝑐𝑎𝑘𝑥𝑎𝑘𝑠.𝑡.𝑥𝑎𝑘 = 0 ⟹ 𝑞𝑎𝑘 = 𝑣𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾𝑘 𝑥𝑎𝑘 = 1, ℎ𝑖 − ℎ𝑗 = 𝑘 𝑣𝑎𝑘 ∀𝑎 = (𝑖, 𝑗) ∈ 𝐴
𝑎𝑘 𝐸𝑎𝑠𝑞𝑎𝑘 = 𝐷𝑠 ∀𝑠 ∈ 𝑆
𝑎𝑘 𝑓𝑎𝑘(𝑞𝑎𝑘) + 𝑓∗𝑎𝑘(𝑣𝑎𝑘) + 𝐻⊤𝑅 𝑞𝑅 + 𝐷⊤𝑆 ℎ𝑆 ≤ 0 (𝑆𝐷)

Exact convex MINLP reformulation [TASSEF 2020], still non-polynomial
19



OPERATION: PUMP SCHEDULING (DYNAMIC + STORAGE)

• a dynamic graph 𝐺 = (𝐽 × 𝑇,𝐴 × 𝑇) and dynamic tariff 𝑐 on discrete horizon 𝑇
• arc status 𝑥𝑎𝑡 ∈ {0, 1}: arc 𝑎 active at time 𝑡
• variable tank level 𝐻𝑟𝑡 depends on 𝑞𝑟(𝑡−1)

min𝑎 𝑡 𝑐0𝑎𝑡𝑥𝑎𝑡 + 𝑐1𝑎𝑡𝑞𝑎𝑡𝑠.𝑡.(𝑞𝐴𝑡, ℎ𝑆𝑡) ∈ 𝑁𝐴𝑃(𝐷𝑆𝑡, 𝐻𝑅𝑡, 𝜙𝐴(𝑥𝑡)) ∀𝑡 ∈ 𝑇𝑥𝑎𝑡 = 0 ⟹ 𝑞𝑎𝑡 = 0 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇𝐻𝑅(𝑡+1) = 𝐻𝑅𝑡 + 𝑠⊤𝑅𝑞𝑅𝑡 ∀𝑡 ∈ 𝑇𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ∀𝑡 ∈ 𝑇.
20



OPERATION: STRONG DUALITY REFORMULATION

strong duality constraints are not convex𝑎∈𝐴 𝑓𝑎(𝑞𝑎𝑡) + 𝑓∗𝑎(𝑣′𝑎𝑡) + 𝐻⊤𝑅𝑡𝑞𝑅𝑡 + 𝐷⊤𝑆𝑡ℎ𝑆𝑡 ≤ 0 ∀𝑡
with 𝑥𝑎𝑡 = 1 ⟹ 𝑣′𝑎𝑡 = 𝑣𝑎𝑡 and 𝑥𝑎𝑡 = 0 ⟹ 𝑣′𝑎𝑡 = (𝑓∗𝑎)−1(0)
Option 1: relax and convexify

• 𝑓𝑎(𝑞𝑎𝑡) + 𝑓∗𝑎(𝑣′𝑎𝑡) is convex ⟹ linearize at trial points
• bad news: a loose relaxation of the bilinear terms may absorb the duality gap
• good news: tank capacities provide exogenous bounds on 𝐻𝑅𝑡, 𝐻𝑅(𝑡+1) and 𝑞𝑅𝑡
to tighten McCormick’s relaxation

21



OPERATION - OPTION 1: CUT GENERATION

• Branch-and-Check [Bonvin,
Demassey, Lodi 2020]

• evolution of the primal/dual
bounds

• with or without duality cuts

22



OPERATION - OPTION 2: VARIABLE SPLITTING

min𝑥,𝑞,ℎ,𝐻𝑎 𝑡 (𝑐0𝑎𝑡𝑥𝑎𝑡 + 𝑐1𝑎𝑡𝑞𝑎𝑡)𝑠.𝑡.(𝑞𝐴𝑡, ℎ𝑆𝑡) ∈ 𝑁𝐴𝑃(𝐷𝑆𝑡, 𝐻𝑅𝑡, 𝜙𝐴(𝑥𝑡)) ∀𝑡 ∈ 𝑇𝐻𝑅(𝑡+1) = 𝐻𝑅𝑡 + 𝑠⊤𝑅𝑞𝑅𝑡 ∀𝑡 ∈ 𝑇𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ∀𝑡 ∈ 𝑇.
• complexity comes less from the nonconvex constraints 𝑣𝑎 = 𝜙𝑎(𝑞𝑎), than from
the temporal inter-dependency 𝑞𝑡 = 𝐹(𝑥𝑡, 𝐻𝑡), and 𝐻𝑡+1 = 𝐺(𝑞𝑡)

• still hard when dualizing the time-coupling constraints as 𝐻 remains variable
• fixing 𝐻 allows to decompose the problem temporally and spatially, but we
loose convergence 23



OPERATION - OPTION 2A: PENALIZE STORAGE (AMIR’S WORK)

min𝑥,𝑞,ℎ,𝐻 𝑎 𝑡 (𝑐0𝑎𝑡𝑥𝑎𝑡 + 𝑐1𝑎𝑡𝑞𝑎𝑡) +𝑟 𝑡 𝜇𝑟𝑡|𝐻𝑟(𝑡+1) − (𝐻𝑟𝑡 + 𝑠𝑟𝑞𝑟𝑡)|
𝑠.𝑡. (𝑞𝐴𝑏𝑡, ℎ𝑆𝑏𝑡) ∈ 𝑁𝐴𝑃𝑏(𝐷𝑆𝑏𝑡, 𝐻𝑅𝑏𝑡, 𝜙𝐴𝑏(𝑥𝑡)) ∀𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ∀𝑡 ∈ 𝑇.

(𝑃1): fix 𝐻, enumerate 𝑥, get 𝑞 (𝑃2): fix 𝑞, relax NAP, get 𝐻 3: update 𝜇
• (𝑃1) becomes decomposable both in time and space, thus enumerable
• not full split: then relax NAP in (𝑃2)
• initial 𝐻 obtained from a deep learning model

24



OPERATION - OPTION 2B: DUALIZE STORAGE + STRONG DUALITY

min𝑥,𝑞,ℎ,𝐻 𝑎 𝑡 (𝑐0𝑎𝑡𝑥𝑎𝑡 + 𝑐1𝑎𝑡𝑞𝑎𝑡) +𝑟 𝑡 𝜇𝑟𝑡(𝐻𝑟(𝑡+1) − 𝐻𝑟𝑡 − 𝑠𝑟𝑞𝑟𝑡) +𝑡 𝜆𝑡𝑆𝐷𝑡(𝑞, ℎ, 𝐻)
𝑠.𝑡. 𝑞𝑆𝑡 = 𝐷𝑆𝑡 ∀𝑡 ∈ 𝑇𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ≤ 𝐻𝑅𝑡 ∀𝑡 ∈ 𝑇.(𝑃1): fix 𝐻, enumerate 𝑥, get 𝑞 (𝑃2): fix 𝑞, get 𝐻 3: update 𝜇
• full split
• primal and dual objective function 𝐹 and 𝐹∗ now appear in the objective:𝑆𝐷𝑡(𝑞, ℎ, 𝐻) = 𝐹(𝑞) + 𝐹∗(ℎ,𝐻) = (𝑎∈𝐴 𝑓𝑎(𝑞𝑎𝑡) + 𝐻⊤𝑅𝑡𝑞𝑅𝑡) + (𝑎∈𝐴 𝑓∗𝑎(𝑣′𝑎𝑡) + 𝐷⊤𝑆𝑡ℎ𝑆𝑡)

25



OPERATION - OPTION 2B: DUALIZE (STORAGE + SD) AND ADM (CONT.)

(𝑃2) ∶ 𝑡 𝑟 min𝐻∈[𝐻,𝐻]𝑙(𝐻) + 𝐹∗(𝐻).(𝑃2) is computed by minimizing univariate convex functions over intervals

(𝑃1) ∶ 𝑡 𝑏 min𝑥 𝑙(𝑥) + 𝐹(�̃�(𝑥)) + 𝐹∗(ℎ̃(𝑥))
(𝑃1) is separable in time and space and results in solving two perturbed
equilibrium problems for each configuration 𝑥
costs and penalties are reported to the lower NAP level.

26



CONCLUSION

• nonconvex resistance constraints are not that hard in hydraulic network
optimization

• but dynamic storage management in pump scheduling is hard
• problems have a bilevel structure with NAP at the inner level
• ways to exploit NAP (monotropic) duality
• ways to exploit NAP (monotropic) variational properties ?

27
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