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drinking water distribution network

I nodes: reservoirs JR , tanks JT , junctions (demand nodes) JJ

I arcs: pipes L , pumps K , valves V
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operating water distribution networks

I tanks = storage: dissociate water pumping/supplying times

I a scheduling problem: when to switch on/off pumps K and how to use the

tanks JT limited storage to satisfy the predicted demand Djt at any

junction j ∈ JJ at any time t = 1, . . . , T at the lowest cost ?

pumping

tank level

demand

tariff

I the historic day/night strategy is not compatible with dynamic tariffs

I a highly combinatorial O(2K.T ), highly non-convex scheduling problem

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 3 / 18



operating water distribution networks

I tanks = storage: dissociate water pumping/supplying times

I a scheduling problem: when to switch on/off pumps K and how to use the

tanks JT limited storage to satisfy the predicted demand Djt at any

junction j ∈ JJ at any time t = 1, . . . , T at the lowest cost ?

pumping

tank level

demand

tariff

I the historic day/night strategy is not compatible with dynamic tariffs

I a highly combinatorial O(2K.T ), highly non-convex scheduling problem

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 3 / 18



operating water distribution networks

I tanks = storage: dissociate water pumping/supplying times

I a scheduling problem: when to switch on/off pumps K and how to use the

tanks JT limited storage to satisfy the predicted demand Djt at any

junction j ∈ JJ at any time t = 1, . . . , T at the lowest cost ?

pumping

tank level

demand

tariff

I the historic day/night strategy is not compatible with dynamic tariffs

I a highly combinatorial O(2K.T ), highly non-convex scheduling problem

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 3 / 18



operating water distribution networks

I tanks = storage: dissociate water pumping/supplying times

I a scheduling problem: when to switch on/off pumps K and how to use the

tanks JT limited storage to satisfy the predicted demand Djt at any

junction j ∈ JJ at any time t = 1, . . . , T at the lowest cost ?

pumping

tank level

demand

tariff

I the historic day/night strategy is not compatible with dynamic tariffs

I a highly combinatorial O(2K.T ), highly non-convex scheduling problem

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 3 / 18



non-convex flow/head relation

I minimum hydraulic head (elevation + pressure) required to supply a node

pipe: head loss

∆h = Aq|q| + Bq

pump: head increase + power

∆h = −Fq2 + G, p = Cq + E

I good news: at time t and demand Dt ∈ R
JJ , given a pump configuration

X ∈ {0,1}K and tank heads H ∈ RJT , there is at most one possible

flow/head (q,h) ∈ RL×J solution, which can quickly be computed with

the Newton method [Todini-Pilati88].
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two main solution approaches

relax the NL part of MINLP

PWL approximation [Morsi12,Menke16,...]

convex relaxation [Bonvin17,Bonvin19]

I many binaries

separate feasibility/optimization

choose configurations

↓ ↑

simulate hydraulics

metaheuristics, ex: GA [Mackle95,...],

Benders decomposition [Naoum15],

lagrangian relaxation [Ghaddar15]

I slow convergence
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model decomposition

the compact model

I min pump power consumption

I flow conservation at junctions

I flow conservation at tanks

I head increase by pumps

I head losses in pipes

I tank capacities

I pump capacities

I pumps on/off

I time coupling constraints
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model decomposition

the compact model rewrite one-time steps

min
∑
t∈T

∑
k∈K

Ct∆t (Ckqkt + Ekxkt )

s.t. hjt − hj(t−1) =
∆t

Sj
(
∑
ĳ∈L

qĳt −
∑
ji∈L

qjit ) ∀t, j ∈ JT

(xt , qt ,ht ) ∈ St ∀t

I St set of feasible pump/flow/head configurations to supply demand Dt
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model decomposition

compact model

min
∑
t∈T

∑
k∈K

Ct∆t (Ckqkt + Ekxkt )

s.t. hjt − hj(t−1) =
∆t

Sj
(
∑
ĳ∈L

qĳt −
∑
ji∈L

qjit ) ∀t, j ∈ JT

(xt , qt ,ht ) ∈ St ∀t

extended model

min
∑
t∈T

∑
s∈St

CtP
s∆tyst

s.t. hjt − hj(t−1) =
∑
s∈St

Rs
j ∆tyst ∀t, j ∈ JT

hjt =
∑
s∈St

Hs
j yst ∀t, j ∈ JT∑

s∈St

yst = 1 ∀t

yst ∈ {0,1} ∀t, s ∈ St

I P ∈ R power consumption, R ∈ RJT tank filling rate, H ∈ RJT tank head

I |St | = ∞ but from [Todini&Pilati88]:

I (at most) one s ∈ St for each xt ∈ {0,1}K and ht ∈ [Hmin
t ,Hmax

t ] ⊆ RJT
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proposed approximation

extended model

min
∑
t∈T

∑
s∈St

CtP
s∆tyst

s.t. hjt − hj(t−1) =
∑
s∈St

Rs
j ∆tyst ∀t, j ∈ JT

hjt =
∑
s∈St

Hs
j yst ∀t, j ∈ JT∑

s∈St

yst = 1 ∀t

yst ≥ 0 ∀t, s ∈ St

I relax the integrality constraints

I relax the head/configuration

linking constraint

I restrict to columns s ∈ S′t ⊆ St

with Hs
j =

Hmax
j −Hmin

j

2 , ∀j ∈ JT
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motivations
I integrality constraints are artificial: pumps can physically be operated

during a time step

I column restriction amounts to neglect the impact of the tank levels on the

hydraulic equilibrium: R = R′, P = P′ if x = x′ and hj = h′j ∀j ∈ JT .

I a reasonable assumption as tanks tend to be equally filled at optimality

ex: relative errors on R and P for , levels in tanks A and B in (Van Zyl)

I |S′t | < 2|K | AND can be computed efficiently
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generating S′t
I apply Newton method: fix Dt ∈ R

JJ and Ht ∈ R
JT , then compute Qs then

(Ps,Rs) (if feasible) for all Xs ∈ {0,1}K

I network decomposition: split at tank nodes and compute flows

independently on each component

I example: Van Zyl network has 2 components:

|K ∪ V | = 4, |JJ | = 0

|K | = 0, |JJ | = 1

solve 24 + |T | flows to generate 24.|T | columns (max)

I symmetry breaking: Dt1 = Dt2 ⇒ S
′
t1 = S′t2

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 11 / 18



generating S′t
I apply Newton method: fix Dt ∈ R

JJ and Ht ∈ R
JT , then compute Qs then

(Ps,Rs) (if feasible) for all Xs ∈ {0,1}K

I network decomposition: split at tank nodes and compute flows

independently on each component

I example: Van Zyl network has 2 components:

|K ∪ V | = 4, |JJ | = 0

|K | = 0, |JJ | = 1

solve 24 + |T | flows to generate 24.|T | columns (max)

I symmetry breaking: Dt1 = Dt2 ⇒ S
′
t1 = S′t2

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 11 / 18



generating S′t
I apply Newton method: fix Dt ∈ R

JJ and Ht ∈ R
JT , then compute Qs then

(Ps,Rs) (if feasible) for all Xs ∈ {0,1}K

I network decomposition: split at tank nodes and compute flows

independently on each component

I example: Van Zyl network has 2 components:

|K ∪ V | = 4, |JJ | = 0

|K | = 0, |JJ | = 1

solve 24 + |T | flows to generate 24.|T | columns (max)

I symmetry breaking: Dt1 = Dt2 ⇒ S
′
t1 = S′t2

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 11 / 18



generating S′t
I apply Newton method: fix Dt ∈ R

JJ and Ht ∈ R
JT , then compute Qs then

(Ps,Rs) (if feasible) for all Xs ∈ {0,1}K

I network decomposition: split at tank nodes and compute flows

independently on each component

I example: Van Zyl network has 2 components:

|K ∪ V | = 4, |JJ | = 0

|K | = 0, |JJ | = 1

solve 24 + |T | flows to generate 24.|T | columns (max)

I symmetry breaking: Dt1 = Dt2 ⇒ S
′
t1 = S′t2

INOC 2019, Avignon S. Demassey -- extended LP for pump scheduling June 3, 2019 11 / 18



generalization

I variable speed pumps have continuous operation modes: either off or

speed wk ∈ [W min
k ,W max

k ]

I approximation: sample Nk + 1 modes in the allowed speed range:

xk = p + 1 ⇐⇒ wk = W min
k +

p
Nk

(W max
k −W min

k ).
I choose the sampling step carefully

Nk + 1 2 3 4 5 6 7 8 9 10

|S′t | 21 52 105 186 301 456 657 910 1221

Z ′ 244.44 242.15 215.62 215.34 217.50 213.95 211.70 212.97 212.20

I also for pressure-reducing valves: either open or pressure reduction

pv ∈ [pmin
v , pmax

v ]
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approximated solution

I solve the extended LP model and get for each time t the active

configurations C∗t = {s ∈ S′t | yst > 0} of durations δ∗s = ∆tyst .

Order each set C∗t arbitrarily and get an approximated pumping plan:

P∗ = s0, s1, . . . , sn0︸            ︷︷            ︸
C∗0

, sn0+1, . . . , sn0+n1︸                ︷︷                ︸
C∗1

, . . . , . . .︸        ︷︷        ︸
C∗T−1

I start with i = 0, apply the Newton method to si with Hi ∈ R
JT to get the

actual flow rates Qi , then compute the filling rates Ri and update tank

heads Hi+1 = Hi + δiRi .

I plan P∗ is valid if Hmin ≤ Hi ≤ Hmax for all i
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to a close feasible solution

I each pump can be switched at any time... not in any old way

I operational constraints to prevent premature aging, e.g

N max nb of switches on, τ0/τ1 max nb of consecutive times off/on∑
t∈T

ykt ≤ N ,

ykt ≥ xkt − xk(t−1), ∀t

xkt′ ≥ ykt , ∀t, t′ ∈ [t, t + τ1]
zkt ≥ xk(t−1) − xkt , ∀t

xkt′ ≤ 1 − zkt , ∀t, t′ ∈ [t, t + τ0]

I find a feasible plan P (with one configuration per time step, satisfying tank

capacities and operational constraints) at a close distance of P∗

i.e. with δkt ≈ δ∗kt , the activity duration of pump k in time step t
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combinatorial Benders local search

I solve (M) : min
∑

k
∑

t(δ∗kt − xkt∆t)2 +
∑

k∈K (
∑

t δ
∗
kt −
∑

t xkt∆t)2

s.t.: [operational constraints], x ∈ {0,1}K×T

I apply Newton method iteratively on each configuration xt ,

t = 0, . . . , T − 1, and get the actual flows-heads (Q,H)
I if some constraint is violated at time t̄, add to (M) a no-good constraint

t̄∑
t=1


∑
k∈K

Xkt=0

xkt +
∑
k∈K

Xkt=1

(1 − xkt)

 ≥ 1

I try to correct the small violations by adjusting the time step durations ∆t

using the matheuristic from [Bonvin-Demassey-Lodi19]
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computational results
near-feasible approximated solutions P∗

I Poormond instance [Ghaddar15]

I average relative error on Q < 1%
I 3% (104) active columns for |T | = 48
I aging constraints are mostly satisfied

I feasible P in 1 iteration (LS + heuristic)

I Z = 111.03, Z ∗ = 117.5 euros
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computational results
fast heuristic

Computation time (s) Cost (euros)

Day S′ LP LS Total LS best LS/LB best/LB

Poormond

P21 1.6 <0.1 16.3 17.9 117.50 112.48 8.2% 4.1%

P22 1.6 <0.1 11.2 12.8 118.55 116.49 5.6% 3.9%

P23 1.6 <0.1 8.0 9.6 120.93 120.85 4.1% 4.0%

P24 1.6 <0.1 10.9 12.5 137.05 134.99 4.6% 3.1%

P25 1.6 <0.1 21.2 22.8 98.74 92.53 9.8% 3.8%

Van Zyl

Z21 2.1 <0.1 0.7 2.8 220.60 222.66 14.9% 15.7%

Z22 2.1 <0.1 1.7 3.8 230.07 230.69 14.1% 14.3%

Z23 2.1 <0.1 1.4 3.5 240.67 240.93 13.7% 13.8%

Z24 2.1 <0.1 0.6 2.6 267.77 268.91 14.4% 14.7%

Z25 2.1 <0.1 0.7 2.8 188.52 190.29 14.5% 15.3%

I best and LB computed in 1h with LP/NLP branch and check [Bonvin19]

I Van Zyl (sampling 6 speeds/3 pumps, 1 valve, |T | = 48)

I 63 × 2 × 48 ≈ 20,000 configurations to evaluate

I network decomposition: 63 × 2 + 48 = 480 to compute

I P∗: 50 active configurations

I get P by solving the compact NLP with fixed X
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limits and perspectives

I evaluate the method on bigger networks: where are the instances ?

I still an exponential number of configurations to compute: could we build

S′t from historical data ?

I no optimality certificate: how to integrate the approximated model into a

global optimization approach ?
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