
Pump scheduling in drinking water distribution
networks with an LP/NLP-based branch and bound

Gratien Bonvin, Sophie Demassey, Andrea Lodi

June 18, 2019

Abstract

This paper offers a novel approach for computing globally opti-
mal solutions to the pump scheduling problem in drinking water dis-
tribution networks. A tight integer linear relaxation of the original
non-convex formulation is devised and solved by branch and bound
where integer nodes are investigated through non-linear programming
to check the satisfaction of the non-convex constraints and compute
the actual cost. This generic method can tackle a large variety of net-
works, e.g. with variable-speed pumps. We also propose to specialize it
for a common subclass of networks with several improving techniques,
including a new primal heuristic to repair near-feasible integer relaxed
solutions. Our approach is numerically assessed on various case studies
of the literature and compared with recently reported results.

1 Introduction
To transition to a low-carbon energy system, EU countries have agreed a
40% cut in greenhouse gas emissions in 2030 compared to 1990 levels [9].
It would induce to shift the share of electricity generated from renewable
energy sources, primarily by investing in wind and solar power generation
capacities [28]. The incorporation of intermittent sources motivates a tran-
sition from “a power system in which controllable power stations follow
electricity demand” to “an efficient power system overall where flexible pro-
ducers, flexible consumers and storage systems respond increasingly to the
intermittent supply of wind and solar power” [17].

The evolution of the power sector constitutes a significant issue but also
an opportunity for drinking water distribution network (DWDN) operators.
On the one hand, intermittency is likely to jeopardize electricity peak/off-
peak tariffs, on which standard pump control strategies of DWDNs rely:
they pump at night to take advantage of the lower cost [18]. Furthermore,
a higher electricity average price would increase energy expenditure due to
pump operation, which represents around 40% of the life cycle costs of a
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pump [41]. On the other hand, the substitution of peak/off-peak tariffs for
highly dynamic tariffs might be profitable to DWDNs given their flexible
consumption and storage capacities: the pumps can be quickly and auto-
matically operated, while the elevated water tanks act as (potential) energy
storages and allow to partly dissociate pump operation and power consump-
tion from water delivery to the end-consumers.

The introduction of dynamic tariffs motivates the use of optimization
tools to schedule the pump operation on a daily horizon at a minimum
operation cost, given water demand and electricity price forecasts [20, 35].
However, optimizing the day-ahead pump schedule of a DWDN remains a
difficult task, because the pressure-related physical laws are non-convex and
the pump operation decisions are discrete [12]. A direct resolution of the
non-convex Mixed Integer Non Linear Programming (MINLP) formulation
with a state-of-the-art solver, through spatial branch and bound and a sys-
tematic relaxation, is then not yet an option for most DWDNs of practical
size [36, 4].

Following the traditional way to handle non-convex MINLP, a large share
of the literature proposed to approximate the non-convex constraints with
piecewise linear functions leading to solve a Mixed Integer Linear Program-
ming (MILP) approximation of the problem, but the approach has two ma-
jor drawbacks. First, the approximated solution is infeasible for the original
problem if the approximation is not tight enough. Second, a tight approxi-
mation may require to introduce a large number of linearization points, and
the associated binary variables make the MILP model hard to solve when
the size of the DWDN grows.

Paper contribution. In this paper, we first introduce a tailored tractable
relaxation of the non-convex constraints instead of systematic relaxations or
piecewise-linear approximations: we compute a tight convex linear Outer
Approximation (OA) of the non-convex equality constraints relaxed to in-
equalities. This two-step approximation leads to a MILP relaxation (vs.
approximation) of reasonable size and that is consistent with the objective.
Indeed, as observed in [4], minimizing the power consumption tends to sat-
isfy the non-convex constraints at equality even if relaxed to inequalities.

Second, to solve the original non-convex MINLP, we present a variant of
LP/NLP branch and bound for convex MINLPs [43], where no OA cuts are
generated except the ones defining the MILP relaxation at the root node.
The MILP relaxation is solved with a standard LP branch and bound. Each
time an integer solution is found in the process, a non-convex NLP solver
checks the satisfaction of the non-convex constraints and, if feasible, returns
the actual cost of the solution. This results in an exact solution method: a
spatial branch and bound – using two relaxations in a single tree – which is
readily implemented by embedding an NLP solver, as lazy cuts, in a MILP
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solver. (The relation of the proposed algorithm with respect to a few others
in the literature is discussed in Section 4.)

The third originality of our approach, regarding the literature of pump
scheduling, is to cover a broad variety of DWDNs with little or no restriction
on the topology of the network (branched or with loops, directed or not),
on the distribution of the elements (single or multiple sources, demand or
tanks at intermediate nodes or at leaves), and on the nature of the elements
(types of pumps and valves, models of the physical laws).

DWDNs considered in the literature often fall in the category of DWDNs
with binary settings (BS), i.e. DWDNs where the operation mode of the
active elements (valves and pumps) is binary (on/off), as opposed to DWDNs
with mixed settings (MS), i.e. DWDNs that contain at least one variable-
speed pump or pressure-reducing valve. We propose then to specialize our
method by exploiting a feature of class BS: the fixed NLP subproblem reverts
to a feasibility problem and we can generate effective combinatorial cuts for
the MILP relaxation at infeasible nodes.

Furthermore, from the near-feasible solutions found at these nodes, we
apply a primal heuristic which slightly adjusts the time step lengths to fix
the tank level limit violations. Note that this new heuristic has a broader
scope of application, as it could also be used to derive feasible schedules
from approximated solutions of piecewise linear models.

Finally, we experimented our approach on various benchmark sets (Sim-
ple FSD/VSD [34], AT(M) [45, 10], Poormond [20, 38, 50] and DWG [56]),
and drove an empirical comparison with recently reported results [10, 20,
38, 50] and with the reference global optimization solver BARON [47]. The
computational results demonstrate the applicability of our generic solution
method and also its efficiency regarding the results of the dedicated algo-
rithms on given instances, although the resolution of the non-convex NLP
subproblems remains a bottleneck for the largest instances of class MS.

Paper structure. The paper is structured as follows: Section 2 surveys
the relevant literature on pump scheduling in DWDNs. A generic MINLP
formulation of the problem is defined in Section 3. Section 4 describes our
adapted LP/NLP branch and bound for non-convex MINLPs and special-
ization techniques to the class BS or MS of the network. Section 5 provides
the MILP outer approximation. Section 6 describes the time-step adjust-
ment heuristic. Section 7 presents the experimental results, comparisons
and analysis.

2 Literature Review
An extensive literature has been devoted to the pump scheduling problem
in DWDNs for almost half a century. In earliest contributions, the complex
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hydraulic network model is often simplified by the use of mass-balance or
regression models, where the pressure aspects are either fully neglected or
approximated by calibrated curves [40]. For example, Ormsbee et al. [39]
consider DWDNs with one single tank and multiple pump stations: they
estimate, with regression curves, the minimum energy requirement associ-
ated with a specific tank water level transition and required pump flow,
which they embed in a dynamic programming model of the tank water level
trajectory.

As stated in [32], “deterministic methods started being supplemented by
metaheuristics during the mid 1990s”, in particular genetic algorithms [31]
sometimes coupled with local search techniques [55], but also ant colony op-
timization [30] or simulated annealing [33]. Besides their non-exact nature,
they appear to be not less expensive: for example in [21], a hybrid method
based on linear programming shows a strong reduction in computing time
with respect to a genetic algorithm.

Due to a large improvement of the dedicated methods and solvers [11],
Mixed Integer Non-Linear Programming approaches have recently grown in
popularity in the field of water network optimization [12], in particular to
solve the static design problem of gravity-fed DWDNs. However, solving
the non-convex MINLP formulation of the dynamic pump scheduling prob-
lem with any off-the-shelf global optimizer does still not scale up when the
number of time steps or the network size increase [36]. In [23] for instance,
the spatial branch and bound of SCIP is directly applied to two large case
studies in the MS class but only the static variant of the problem, i.e. on one
time step [12], is considered. Alternative methods based on mathematical
programming relaxations or approximations have thus been investigated.

To tackle the large DWDN of Berlin, Burgschweiger et al. [7] rely on
network reduction strategies, and on smoothing the valve and pump oper-
ation, in particular by aggregating the dozen of pumps installed in parallel
at each station. The hierarchical approach solves the resulting continuous
non-convex NLP, then determines the individual pump schedules to provide
locally optimal solutions in less than 30 minutes. This continuous relaxation
is however not suitable to a majority of rural DWDNs having only one or
two pairs of pumps at each station.

In a significant share of the literature [19, 37, 56, 14, 36, 34], the non-
linear flow-coupling constraints are approximated by piecewise linear func-
tions. While this technique outperforms a direct resolution through MINLP
solvers [36], it is often limited to small DWDNs since computing a feasi-
ble schedule may require a fine-grained approximation resulting in a large
MILP, especially in networks with multiple loops [35]. Furthermore, the
MILP optimal solutions are not certified to correspond to feasible schedules
(see also [5] in the context of the optimal design problem).

Ghaddar et al. [20] present a Lagrangian decomposition by dualizing the
time-coupling constraints to separate the scheduling problem in independent
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one-time step MINLPs. It provides valid lower bounds and the Lagrangian
solutions are converted to feasible solutions by a simulation-based limited
discrepancy search. Naoum-Sawaya et al. [38] obtained better solutions on
the Poormond network (class BS) with another hybrid approach. They
apply a Benders decomposition with combinatorial cuts to separate the de-
cision on the binary operation variables, in the master problem, from the
simulation of the hydraulic constraints. The solution space is only explored
locally to speed up the search, thus the solutions have no performance guar-
antee. Costa et al. [10] also employ a simulation-optimization framework but
which explicitly evaluates all the possible combinations of the binary oper-
ation variables. This full enumeration scheme was successfully applied to a
small DWDN of class BS but it probably does not scale well. Shi and You [50]
consider a similar decomposition but they develop an exact method and
use a tight master MILP where the hydraulic constraints are only partially
relaxed: non-convex outer approximations defined by piecewise-linear seg-
ments are automatically generated and refined during the search. Contrarily
to the previous works, this approach directly applies to DWDNs of class MS,
although only experiments on two small DWDNs of class BS with a limited
number of time steps are presented. This exact method outperformed a di-
rect resolution with SCIP on these cases, but the proposed piecewise-linear
relaxation may require, like piecewise-linear approximations, a large number
of auxiliary binary variables to model the linear segments. Bonvin et al. [4]
exploited a specific property of a class of branched DWDNs to derive a tight
convex relaxation with the same size of the original non-convex MINLP:
they showed how to relax the head-flow coupling equalities into inequalities
and convert the solutions to feasible near-optimal (even optimal if all pumps
are identical) schedules. The same relaxation has been used in a heuristic
to approximate the operation of fixed-speed pumps [36] and variable-speed
pumps [34].

In this paper, we generalize the convex relaxation of [4] to DWDNs with
loops, both in classes BS and MS, and devise an exact method based on
a similar decomposition to [38] and [50]. The key differences with these
approaches are that: (1) our MILP master relaxation is both tight and
of limited size, and (2) the solutions are searched and evaluated within
one single tree search. Our approach bears similarities with the LP/NLP
branch-and-bound framework developed by Quesada and Grossmann [43] for
general convex MINLPs but we progressively tighten the MILP relaxation
with combinatorial cuts, as in [38], instead of OA cuts. Furthermore, we
specialize the method for DWDNs of class BS by exploiting, like in [38, 10],
the fact that the NLP subproblem can be turned into a feasibility check
with a simple hydraulic simulation. A similar characteristic happens on the
optimal DWDN design problem and was exploited by Raghunatan [44] to
improve the LP/NLP branch and bound he applies to a convex formulation
of this static problem.
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A arcs J nodes
L ⊂ A pipes JT ⊂ J tank nodes
V ⊂ A valves JS ⊂ J source nodes
K ⊂ A pumps JJ ⊂ J internal nodes
KF ⊂ K fixed-speed pumps t ∈ [1, T ] time periods
KV ⊂ K variable-speed pumps

xat ∈ {0, 1} status of active element a ∈ K ∪ V in period t
wkt ∈ [0, 1] speed of pump k ∈ KV in period t
qat ∈ R flow through a ∈ A in period t
hjt ≥ 0 hydraulic head at node j ∈ J in period t

Table 1: Summary of notation

Finally, as stated in [5], the variety of the modeling assumptions makes
difficult to set up a formal comparison with alternative methods of the lit-
erature. In contrast with the problem of the optimal design of gravity-fed
DWDNs where a benchmark set of 9 instances exists1, the methods dedi-
cated to the pump scheduling problem are often evaluated on only one or
two instance sets which vary from study to study. Menke et al. [36] com-
pared different implementations of mathematical programming approaches
on small generated instances and concluded that piecewise-linear approxi-
mation was faster than the direct resolution of the non-convex model with
SCIP solver. The two hybrid approaches by [20] and [38] were also rigor-
ously compared on instances of the Poormond network [38]. For this paper,
we built a benchmark set of 75 instances by applying the 5 electricity tariff
profiles of [20] to a variety of networks with different characteristics coming
from [34, 45, 20, 56]. While it was not an option to reimplement the complex
methods of the literature, we propose to drive an empiric comparison with
the computational results reported in four recent papers [20, 38, 10, 50].

3 Model formulation
This section describes the standard assumptions we used to model the dif-
ferent physical assets of DWDNs, and provides a non-convex MINLP for-
mulation (P) of the pump scheduling problem.

3.1 Notations and variables

A DWDN is described as a directed graph G=(J ,A), where nodes J are
divided into tanks JT , sources JS and internal nodes JJ , and arcs A are
divided into pumps K, pipes L and valves V [12]. The set of pumps K

1available at http://www.or.deis.unibo.it/research_pages/ORinstances/
ORinstances.htm
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is further split into fixed-speed pumps KF and variable-speed pumps KV .
The scheduling horizon is discretized in T periods of equal length ∆t (in h),
during which we assume a steady state operation [6, 20]2. As water demands
and electricity tariffs often fluctuate on a daily basis, it is typically limited
to one day: T = 24 and ∆t = 1.

The pump scheduling problem involves 4 sets of variables: qat ∈ R de-
notes the water flow rate (in m3/h) through arc a during period t; hydraulic
head hjt ≥ 0 is the sum of the geographical elevation and the water pressure
head (in m) at node j at the end of period t; binary variable xat ∈ {0, 1}
models the status of an active element a ∈ K ∪ V during period t, e.g.
whether a pump is turned on or off, or a gate valve is open or not; finally,
for variable-speed pumps k ∈ KV , continuous variable 0 ≤ wkt ≤ 1 gives the
normalized speed value during period t.

3.2 Nodes

Internal nodes. Flow conservation at internal node j ∈ JJ is enforced at
any time t by ∑

ij∈A
qijt =

∑
ji∈A

qjit +Djt, (1)

with Djt ≥ 0 the forecasted water demand rate (in m3/h) for period t. Note
that pressure-dependant water leaks could be considered, by adding a term
to (1) as in [51], but we neglect them here for simplicity. Water has also to
be served with a minimal pressure level Pj ≥ 0 (in m), thus

hjt ≥ Zj + Pj , if Djt 6= 0, (2)

where Zj is the elevation (in m) of node j.

Sources. We assume that head level Hjt (in m) at source node j ∈ JS
varies in time t but is exogenous as it is independent of the system operation,
thus

hjt = Hjt. (3)

This is a common assumption as sources are often high capacity reservoirs
such as lakes, rivers or groundwater aquifers [46]. In addition, one can
enforce a daily maximal withdrawal limit Vj ≥ 0 (in m3) due to the capacity
of raw water pumping stations or to a contractual agreement [7, 56], namely∑

t∈T

∑
ji∈A

qjit∆t ≤ Vj . (4)

2In [37], transitional regimes are taken into account through the hammer equation but,
as pointed out in [12], it is yet unclear whether the dynamic hydraulic behavior needs to
be described this accurately in the context of pump scheduling.
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Water tanks. Flow conservation at water tank j ∈ JT is enforced at any
time t by ∑

ij∈A
qijt −

∑
ji∈A

qjit = Sj
∆t

(hjt − hj(t−1)). (5)

The right-hand side represents the water tank net inflow during t, where
Sj > 0 denotes the surface (in m2) of the tank and hjt − hj(t−1) models
the variation of the water level. The water level is bounded by [Hj , Hj ]
according to the geographic elevation, the capacity and the water volume
reserved for emergency purposes. Finally, the water level at the end of the
day is usually constrained to be greater than the initial level H0

j , namely

Hj ≤ hjt ≤ Hj , (6)

hj0 = H0
j ≤ hjT . (7)

3.3 Arcs

Pipes. Under the steady-state assumption, the Hazen-Williams or Darcy-
Weisbach formulae are empirically-close approximations of the head losses
due to friction through pipes [6]. Since they are sometimes difficult to han-
dle in an optimisation framework, accurate quadratic approximations have
been proposed [16, 42]. Our resolution scheme is compatible with these re-
lations but, to facilitate the comparison with previously proposed methods,
we adopt here, for each pipe l = ij ∈ L and time t, the quadratic relation

hit − hjt = Φl(qlt) = Alqlt +Blqlt|qlt|, (8)

where Al and Bl are real parameters that can be either extrapolated from
experiments or approximated from the cited formulae.

Since Φl is not differentiable at 0, state-of-the-art global optimization
solvers cannot handle this model. An alternative formulation (see, e.g. [50])
is to specify the flow direction with a binary variable xlt ∈ {0, 1} and to
split the flow into its positive q+

lt ≥ 0 and negative q−lt ≥ 0 parts, as

qlt = q+
lt − q

−
lt , (8a)

q+
lt ≤ Qltxlt, (8b)
q−lt ≤ |Qlt|(1− xlt), (8c)
hit − hjt = Al(q+

lt − q
−
lt ) +Bl(q+2

lt − q
−2
lt ), (8d)

where flow bounds Qlt ≤ 0 ≤ Qlt can be computed as proposed in Sec-
tion 5.1.

Pumps. When sources are elevated, gravity-fed water is supplied to the
household connections with sufficient pressure. Otherwise, pumps are re-
quired to increase the hydraulic head within the network. Following [7, 37],
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when a pump k = ij ∈ K is active, the head increase between the inlet i
and outlet j nodes at time t can be approximated by

Ψk(qkt, wkt) = w2
kt

(
αk − βk

(
qkt
wkt

)γk)
, (9a)

where αk, βk, γk are real parameters derived from the pump manufacturer
data, and the flow qkt and speed wkt variables are restricted to some positive
intervals [Qk, Qk] and [Wk,Wk], with Wk = Wk = 1 for a fixed-speed pump.
When the pump is inactive, flow and speed are null and the head at the inlet
and outlet nodes remain uncoupled [12]. This behavior can be modeled by
binary variable xkt ∈ {0, 1}, with xkt = 1 iff k is active at time t, and the
following constraints:

Mk(1− xkt) ≤ hjt − hit −Ψk(qkt, wkt) ≤Mk(1− xkt), (9)
Qkxkt ≤ qkt ≤ Qkxkt, (10)
Wkxkt ≤ wkt ≤Wkxkt, (11)

with Mk and Mk sufficiently large big-M values.
The maintenance cost of a pump can represent around 10% of its overall

net present value lifecycle cost [41]. Sound practices can limit this cost, for
example by restricting the number N of daily pump switches or fixing the
minimum duration τ1 (resp. τ0) a pump has to remain on (resp. off) [29].
These constraints are modeled in [20] by using a binary variable ykt (resp.
zkt) that is 1 if the pump k is switched on (resp. off) at time t and by

T∑
t=2

ykt ≤ N, (12)

ykt ≥ xkt − xk(t−1), (13)
ykt ≤ xkt′ , ∀t′ : t ≤ t′ < t+ τ1 (14)
zkt ≥ xk(t−1) − xkt, (15)
zkt ≤ 1− xkt′ , ∀t′ : t ≤ t′ < t+ τ0. (16)

Valves. A large variety of valves with distinct functions exist for DWDNs [46].
We focus on the three types appearing the most frequently in optimization
studies: gate valves (GVs), check valves (CVs) and pressure-reducing valves
(PRVs). Their purposes are to totally open or close a pipe, to avoid re-
versed flow, and to enforce a given head loss, respectively. Any of these
valves v = ij ∈ V can be modeled by two constraints at any time t, namely

Mv(1− xvt) ≤ hit − hjt ≤Mv (1− g(xvt)) , (17)
Qvg(xvt) ≤ qvt ≤ Qvxvt, (18)
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with xvt a binary variable modeling the valve status, Qv, Qv, Mv and Mv

sufficiently large big-M values and g a Boolean function defined by g(xvt) =
xvt if v is a GV or a CV and by g(xvt) = 1− xvt if v is a PRV.

For a GV, flow is null and head at inlet and outlet are decoupled if the
valve is close (xvt = 0), and heads and flow are untouched, otherwise. For
a CV, by setting Qv = Mv = 0, either the flow is positive and heads are
untouched (xvt = 1) or the quantity hit − hjt is negative and the valve is
closed (xvt = 0) in order to prevent a negative flow. For a PRV, xvt denotes
the flow direction and the head drop hit − hjt can be seen as a decision
variable, then (17) forces the head to decrease in the flow direction. The
alternative formulation of PRVs used in [6],

(hit − hjt)qvt ≥ 0, (17a)

does not require binary variables but is non-convex.

3.4 Optimization task

The common objective of pump scheduling is to supply the forecast wa-
ter demand with appropriate pressure requirements at minimal operating
cost [6]. Following [56], we define a constant cost Ej per unit of raw water
for its extraction and treatment at source j ∈ JS , to which we add the en-
ergy costs induced by pumping. The power consumption of a variable-speed
pump k ∈ KV can be approximated by [7, 37]

ΓVk (qkt, wkt) = w3
kt

(
λk + µk

(
qkt
wkt

))
, (19)

with λk and µk two parameters computed from experimental points provided
by the pump manufacturer. For a fixed-speed pump, (19) is linear, i.e.

ΓFk (qkt, xkt) = λkxkt − µkqkt, (20)

since either wkt = xkt = 1 and qkt ≥ Qv, or wkt = xkt = qkt = 0.
Given Ct the electricity unit cost at time t, the objective function to

minimize is given by

Γ =
∑
t∈T

∑
j∈JS

∑
ji∈A

Ejqijt∆t +
∑
t∈T

∑
k∈KV

CtΓVk (qkt, wkt)∆t

+
∑
t∈T

∑
k∈KF

∑
k∈KF

CtΓFk (qkt, xkt)∆t. (21)
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3.5 Summary of the mathematical model

With the help of notations given in Table 1, the Pump Scheduling Problem
(P) can be formulated as the non-convex MINLP

min (21) subject to

Flow conservation
{
Equ. (1) ∀ j ∈ JJ ,∀t
Equ. (5) ∀ j ∈ JT ,∀t

Head-flow relations


Equ. (8) ∀ l ∈ L,∀t
Equ. (9) ∀ k ∈ K,∀t
Equ. (17) ∀ v ∈ V,∀t

Flow bounds
{
Equ. (10) ∀ k ∈ K,∀t
Equ. (18) ∀ v ∈ V,∀t

Speed bounds Equ. (11) ∀k ∈ KV ,∀t

Head bounds


Equ. (2) ∀ j ∈ JJ , ∀t
Equ. (3) ∀ j ∈ JS , ∀t
Equ. (6) ∀ j ∈ JT , ∀t
Equ. (7) ∀ j ∈ JT

Pump activation Equ. (12)− (16) ∀k ∈ K
Maximal withdrawal Equ. (4) ∀j ∈ JS

4 A LP/NLP-based branch and bound
Spatial branch and bound [52] is the best-known exact method for solving
non-convex MINLP [2]. Its implementation in global optimization solvers
is based on generic reformulation and linearization techniques to get valid
relaxations for bounding, and thus is applicable to a broad variety of prob-
lems including the model (P) defined in Section 3. However, the reformu-
lation introduces an auxiliary variable for each elementary non-linear term
and lifts then the model in a larger space: O(T (|L| + |KV |)) new variables
in our case. Each non-linear term being relaxed independently, the auto-
matic reformulation may also be too weak to effectively prune the search
tree [2]. Furthermore, global optimization solvers miss the advanced search
and cut generation and management techniques that are part of modern
MILP solvers. This section presents our implementation of a spatial branch
and bound for (P), based on the tailored MILP relaxation (Pε) described
in Section 5, and built on top of the combination of a MILP solver with a
non-convex NLP solver.
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4.1 Two relaxations, one search tree

Theoretically, we solve (P) within a single-tree branch and bound: we first
branch on the binary variables x and use the LP relaxation of the MILP
relaxation (Pε) for bounding. Once all the binary variables are fixed at a
given node (x = X), the search continues to solve the resulting restricted
continuous non-convex NLP (P(X)), now in the subtree, by evaluating the
lower bounds with a systematic relaxation of (P(X)), and by branching on
fractional variables appearing in violated non-convex constraints.

In practice, we embed a non-convex NLP solver in a modern MILP
solver, using the so-called lazy callback functionality, to automatically drive
the search and take advantage of its advanced implementations. Relaxation
(Pε) is solved by the MILP solver but we specifically manage the incumbent
update as follows: In a callback function, at every node where a new incum-
bent solution (X,W,Q,H) of (Pε) is found (either at a leaf node or by a
heuristic), we check its feasibility against (P). The function calls the global
optimization solver on the restricted non-convex NLP (P(X, z̄)) obtained
by fixing the integer variables x = X in (P) and by bounding the optimal
solution value by the current MILP incumbent value, say z̄. If the restricted
problem is feasible, then it returns an actual feasible solution of (P), and
we update the incumbent with its actual value, which may differ from the
cost of the relaxed solution. Hence, whether the relaxed solution is feasible
or not, the node is discarded from the search.

This solution scheme is similar to the LP/NLP branch-and-bound al-
gorithm originally developed by Quesada and Grossmann [43] for convex
MINLP optimization problems, with the difference that the MILP relax-
ation is not refined with OA cuts during the search. Indeed, OA cuts are
not necessarily valid in non-convex optimization and the method cannot di-
rectly be used in the non-convex case. Instead, we generate a set of alleged
active OA cuts, once for all before the search, when constructing the MILP
relaxation (Pε). Our solution scheme (with actually two different implemen-
tations for classes BS and MS) is also in the spirit of the branch-and-check
algorithm [53] which, in its original framework, solves the restricted subprob-
lems with constraint programming and generates no-good cuts by linearizing
logical conditions. More recently, Dan et al. [13] propose to treat subtrees of
a unique MILP relaxation of a class of MINLP with equilibrium constraints
as separated search optimization problems and solve them by refining their
associated formulation.

Relative to our problem, the static optimal design of gravity-fed DWDNs
has been tackled by Raghunathan [44] through a similar scheme with two
differences. First, in that application, the objective depends on the binary
(pipe size choice) variables only, hence, a relaxed solution is discarded from
the search only if infeasible; otherwise, its relaxed cost matches its actual
cost and the incumbent is updated as usual. Second, an interesting feature
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in [44] is that the restricted subproblem (P(X)) gets reduced to a feasibility
problem since, in gravity-fed DWDNs, flows and pressures (the continuous
variables) are fully determined once the sizes of the pipes (the binary vari-
ables) are decided. In the pump scheduling problem, the same feature may
appear depending on the nature of the active elements (pumps and valves) in
the considered DWDN. Hereafter, we propose to characterize the subclasses
of DWDNs having or not this feature and give implementation details to
improve the algorithm in both cases.

4.2 DWDNs with binary settings

This class defines the set of DWDNs that contain as active elements only
fixed-speed pumps, check valves (CVs) and gate valves (GVs). Elements of
these types operate in one state on or off at each time, then can be modeled
with only binary variables x. In this context, after fixing the active element
states, flows and pressures through the DWDN are uniquely determined
if the two following conditions – which are met for us – hold: (1) Φl is
monotonically increasing with the flow value for each pipe l ∈ L, according
to [54], and (2) Ψk(., 1) is strictly decreasing with the flow value for each
fixed speed pump k ∈ KF , according to [48]. Notice also that the unicity of
the head-flow configuration is not jeopardized by the presence of check or
gate valves, according to [48]. Therefore, the restricted subproblem (P(X))
allows at most one feasible solution when all the binary variables x are fixed
to specific values X.

As a consequence, instead of solving P(X) with an NLP solver, the
hydraulic feasibility of a new incumbent relaxed solution X is verified by
running an extended period analysis: starting with the time period t = 1,
we apply the Newton method3 [54] to quickly compute the unique head-flow
configuration consistent with the actual water demands, tank and source
heads and active element status. Then we check that it satisfies internal
node head and pump flow bounds (2) and (10) and compute the associated
operation cost zt(Xt). Then, tank heads for the following time period t = 2
are updated according to flow conservation (5) and checked against their
bounds (6). As long as no constraint is violated, the simulation goes succes-
sively over all time periods t ∈ {1, . . . , T}. The solution is feasible if the final
tank heads at t = T satisfy their bounds (7). In this case, the subproblem
returns the total operation cost z(X) =

∑T
t=1 zt(Xt). Otherwise, as soon as

a constraint is violated, say at time period t = t̄, the simulation is halted
and the relaxed solution X is registered as infeasible. As in the Benders
decomposition of [38], we can then reinforce our MILP relaxation (Pε) with

3It is the core method of the EPANET simulator which is used in other optimiza-
tion/simulation approaches like [38, 10] but we use our own implementation to match the
quadratic model of the pipe head losses.
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the combinatorial infeasibility cut

t̄∑
t=1

 ∑
a∈K∪V :
Xat=0

xat +
∑

a∈K∪V :
Xat=1

(1− xat)

 ≥ 1. (22)

The so-called [1] canonical cut (22), mostly known as a no-good cut [15],
forces here to swap at least one binary decision Xat for some active element
a and time period t ∈ {1, . . . , t̄} to prevent the infeasibility at time period t̄.

4.3 DWDNs with mixed settings

This class defines the set of DWDNs that contain at least one variable-speed
pump (VSP) or one pressure-reducing valve (PRV). The operating modes of
these active elements are not discrete and their models require a continuous
variable which is not implied by the on/off status: pump speed wkt for VSPs
and head drop hit − hjt for PRVs. Applying the branch and bound to this
class of problems requires this time a non-convex NLP solver to optimize
the restricted subproblem, where all binary variables are fixed.

In our implementation, we use Baron after bringing two adjustments
to the NLP restricted model (P(X)): we remove the non-differentiability
related with the second derivative of function φ at q = 0 by replacing con-
straints (8) by (8a) - (8d), and we model PRVs with the non-convex con-
straints (17a). The first condition introduces discrete variables in the NLP
model, while the latter condition means that, at a given integer node x = X,
we optimize a less restricted subproblem where the flow directions through
the PRVs (xvt, v ∈ VPR, t ∈ {1, . . . , T}) are unfixed. Once checked, whether
a feasible solution is found or not, the following combinatorial infeasibility
cut is added to the MILP (P):

T∑
t=1

 ∑
a∈K∪VC∪VG:

Xat=0

xat +
∑

a∈K∪VC∪VG:
Xat=1

(1− xat)

 ≥ 1. (23)

Solving the resulting restricted non-convex MINLP remains a hard task
and the branch and bound can possibly not finish in reasonable time. In this
case, we propose to turn the solution process into a heuristic providing also
a lower bound and then a certificate of performance of the returned solution.
First, the problem can be solved within a given ratio of the optimum 0 <
G < 1. Each restricted subproblem is then solved after setting z̄(1 − G)
as an upper bound on the optimal value (where z̄ is the current MILP
incumbent). Second, to prevent the branch and bound to get stuck in a node
X which is difficult to close, we fix a time limit Ts to the NLP subproblem
resolution. If available, the best feasible solution found is used to update
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the MILP incumbent z̄ and we record the final lower bound L(X). At the
end of the branch and bound, the global lower bound L is then corrected by
L = min(L,minX∈S L(X)), where S denotes the set of unresolved integer
nodes. Note that after correction, the final optimality gap z∗−L

L may be
greater than G.

Finally, a local optimization solver can be used instead of the global
optimization solver to handle the restricted non-convex NLP subproblems.
In our experiments, we tested Bonmin [3] alone which regularly computes
good feasible solutions in short computing times. Note that in this case,
our resolution scheme keeps providing a global lower bound even if Bonmin
does not return value L(X) for the unsolved integer nodes X ∈ S. We use
instead the optimum Lε(X \XV ) (or a lower bound) of the restricted MILP
(Pε(X \XV )) obtained by fixing all the binary variables to X except for the
status of the PRVs. When solving this MILP at optimality was too long,
we fixed the optimality gap (we used GL = 1% for DWG with T = 48) and
used the final lower bound.

5 An ε-Outer Approximation
In the case of a DWDN with only one-way pipes and fixed-speed pumps,
a convex MINLP relaxation of the pump scheduling problem (P) is readily
obtained by relaxing the equality in the head-flow coupling constraints (8)
and (9a) to inequality [4]. This relaxation is no longer convex in the general
case when considering two-direction pipes or variable-speed pumps. To get a
tractable MILP relaxation (Pε) of (P) for bounding in the branch and bound
described in Section 4, we now describe tight linear outer approximations
of the non-convex constraints (8), (9a), and, for variable-speed pumps, (19).
As explained below, the synergy between these relaxations and the objective
function motivates our approach.

First, minimizing power consumption tends to prevent extra head losses
through the pipes. As depicted in Figure 1, for a given flow value through a
pipe l = ij ∈ L, the minimum head loss (in absolute value, in red) admitted
by the convex hull relaxation (in the hatched area) satisfies the coupling
constraint (8) (on the orange curve Φl) except for flow values close to 0
(where the relaxation may under-estimate the head loss). We show in Sec-
tion 5.1 how to tighten the flow bounds Ql and Ql to reduce this faulty
interval [Ql(1−

√
2), Ql(1−

√
2)]. We then provide in Section 5.2 an OA Φ̃l

(the dashed lines) within a maximal distance ε > 0 on the rest of the flow
domain, i.e such that |hi − hj | ≥ |Φl(ql)| − ε for all (ql, hi − hj) ∈ Φ̃l and
ql ∈ [Ql, Ql(1−

√
2)] ∪ [Ql(1−

√
2), Ql].

Second, for a given speed value, a pump k = ij ∈ KV is enforced to
pump as much water as possible in periods when it is on because of the
fixed operating cost αk > 0 in equation (19). Thus, minimizing power
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Figure 1: A convex relaxation (hatched area) of head loss in pipes (in orange)
on the interval [Q, Q].

consumption tends to maximize the head increase hj−hi through the pumps.
As depicted in Figure 2a, we exhibit in Section 5.3 a family of linear over-
estimators of the characteristic curve Ψk(qk, wk) in constraint (9) that is
valid for a wide range of pumps. As for the pipes, given a precision value
ε > 0, a relaxation Ψk is built by generating a subset of these estimators
in such a way that if (hj − hi, qk, qk) ∈ Ψk and wk = 1, then hj − hi ≤
Ψk(qk, wk) + ε.

Finally, as the objective function may not be linear when variable-speed
pumps are present, we exhibit in Section 5.4 a family of linear under-
estimators of the power consumption Γk (19) depicted in Figure 2b.

5.1 Bound tightening

The quality of an approximation highly depends on the sharpness of the
bounds on the variables from which it is built. To tighten the relaxations
of the non-convex constraints, the variable domains and the big-M values in
the indicator constraints, we estimate, as a preprocessing step, static bounds
of the dynamic variables of the problem: flow bounds Qa and Qa for each
pipe, pump or valve a ∈ A, speed bounds Wk, Wk for each pump k ∈ KV ,
and head increase bounds Ma and Ma (resp. Pa and Pa) for each inactive
(resp. active) pump or valve a ∈ A.

These static bounds can be obtained using optimization-based bound
tightening [22] (OBBT): quantities qa for a ∈ A, wk for k ∈ K and (hj −
hi) for ij ∈ K ∪ V are, successively, minimized and maximized under the
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following set of constraints (C):∑
ij∈A

qij =
∑
ji∈A

qji + dj , ∀j ∈ JJ (24)

hi − hj = Φij(qij), ∀ij ∈ L (25)
Mk(1− xk) ≤ hj − hi −Ψk(qk, wk) ≤Mk(1− xk), ∀k ∈ K (26)
Mv(1− xv) ≤ hi − hj ≤Mv (1− g(xv)) , ∀v ∈ V (27)
Qkxk ≤ qk ≤ Qkxk, xk ∈ {0, 1} ∀k ∈ K (28)
Wkxk ≤ wk ≤Wkxk, ∀k ∈ K (29)
Qvg(xv) ≤ qv ≤ Qvxv, ∀v ∈ V (30)
min

1≤t≤T
(Djt) ≤ dj ≤ max

1≤t≤T
(Djt), ∀j ∈ JJ (31)

Hj ≤ hj ≤ Hj , ∀j ∈ JT (32)
min

1≤t≤T
(Hjt) ≤ hj ≤ max

1≤t≤T
(Hjt), ∀j ∈ JS . (33)

where the variable bounds Qa, Qa for a ∈ K ∪ V and Wa, Wa for a ∈ K
are initialized with the technical information provided by the component
manufacturer and the big-M values Ma, Ma for a ∈ K ∪ V are fixed to
arbitrary large values. These bounds are valid since for any solution (q, h, x)
of (P), the static configuration (qt, ht, xt, dt) at any time t satisfies these
constraints.

For DWDNs of limited size, we opted for solving these non-convex MINLPs
directly with BARON after adding binary variables to model the flow direc-
tion in the non-smooth constraints (25) (see (8a)-(8d)). For larger DWDNs
or for DWDNs where the flow direction is unknown in a large share of pipes
(see network AT(M) in the experiments), solving the non-convex MINLP
may become prohibitive and solving the continuous relaxation may be con-
sidered as an alternative. Another approach is to sample discrete values for
the continuous variables (pressure decrease for PRVs, pump speed for VSPs,
water tank heads), then to apply the Newton method [54] to compute the
head-flow equilibrium within the network for each period t and each config-
uration of binary and continuous values. Finally, a safety margin is applied
to the obtained extreme values.

5.2 Outer approximation of the head loss in a pipe

We now devise linear functions to under- and over-approximate the quadratic
curve Φ representing the head loss through a pipe (8), given tight bounds
Q and Q on the flow values, as depicted in Figure 1.

Proposition 1 Given a real function φ defined on R by φ(q) = Aq +Bq|q|
with A,B ∈ R, B > 0, let fq∗(q) = φ′(q∗)(q − q∗) + φ(q∗) for q∗ 6= 0
denote the tangent of φ at q∗ with, by extension, f0 = 0, and g[q1,q2](q) =
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φ(q2)−φ(q1)
q2−q1

(q − q2) + φ(q2) for q1 6= q2 denote the straight line intersecting φ
at q1 and q2. Then, on any interval [Q,Q], with Q < Q:

1. φ ≤ fq∗ ∀q∗ ≤ min(Q,Q(1−
√

2)), if Q < Q(1−
√

2),

2. φ ≤ g[Q,Q], otherwise;

3. φ ≥ fq∗ ∀q∗ ≥ max(Q,Q(1−
√

2)), if Q > Q(1−
√

2),

4. and φ ≥ g[Q,Q], otherwise.

Proof: We prove the validity of the upper bounds (1,2); the proof for the
lower bounds (3,4) is similar given the symmetry φ(q) = −φ(−q).

On R−, φ is concave (since φ′′ = −2B ≤ 0), so its graph lies below
its tangents: φ(q) ≤ fq∗(q) for all q, q∗ ≤ 0. On R+, φ is convex (since
φ
′′ = 2B ≥ 0), so its graph lies below the line segment between any two

points of the graph: φ(q) ≤ g[q1,q2](q) for all 0 ≤ q1 ≤ q ≤ q2. It proves the
proposition when Q ≤ 0 in case 1 and when Q ≥ 0 in case 2.

Suppose now that Q < 0 < Q and note, by direct computation, that φ
is continuous at 0, Q∗ = Q(1 −

√
2) < 0 and f ′Q∗ = φ′(Q∗) = g′[Q∗,Q], so

fQ∗ = g[Q∗,Q], i.e. the tangent at Q∗ intersects φ at Q.
In case 1, Q < Q∗ < 0 < Q, consider fq∗ the tangent at any q∗ < Q∗:

by concavity, fq∗ ≥ fQ∗ on [Q∗,+∞), fq∗ ≥ φ and fQ∗ ≥ φ on R−. In
particular, fQ∗(0) ≥ φ(0) then, since fQ∗(Q) = φ(Q), fq∗ ≥ fQ∗ ≥ g[0,Q] ≥ φ
on [0, Q].

In case 2, Q∗ ≤ Q < 0 < Q: g′[Q,Q] ≥ g′[Q∗,Q] (by direct computation),
g′[Q∗,Q] = f ′Q∗ ≥ f ′Q (by concavity), and g[Q,Q](Q) = φ(Q) = fQ(Q) (by
definition), then g[Q,Q] ≥ fQ ≥ φ on [Q, 0]. In particular, g[Q,Q](0) ≥ φ(0)
and, since g[Q,Q](Q) = φ(Q), then g[Q,Q] ≥ g[0,Q] ≥ φ on [0, Q]. �

Building on Proposition 1, we relax the non-convex constraint (8) for
each pipe l = ij ∈ L and time t to

hit − hjt ≤

g
l
[Ql,Ql]

(qlt) if Ql ≥ Ql(1−
√

2)

f lq∗(qlt) ∀q∗ ∈ N ε
l otherwise

(8ε)

hit − hjt ≥

g
l
[Ql,Ql]

(qlt) if Ql ≤ Ql(1−
√

2)

f lq∗(qlt) ∀q∗ ∈ N ε
l otherwise.

(8ε)

In our implementation, the sets N ε
l and N ε

l of points, at which OA
constraints are generated, are built progressively in such a way that the
distance between Φl(q) and the closest approximation f lq∗(q) never exceeds
a fixed precision value ε > 0.
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5.3 Over approximation of the pump head increase

To approximate the head increase function Ψk through an active pump k =
ij ∈ K, we consider the points that operate a minimal increase: Ψk(q, w) ≥
Pk, where Pk > 0 is computed from the pump manufacturer information or,
with more precision, in our preprocessing step by minimizing hj − hi under
constraints (C) and the additional constraint xk = 1 for the given pump k.

To simplify the two next propositions, we replace a bivariate function
with its graph in the 3-dimensional space, e.g. (q, w, p) ∈ Ψ ⇐⇒ Ψ(q, w) =
p and denote with subscripts its monovariate restrictions, e.g. Ψw(q) =
Ψ(q, w) or Ψq=a(w) = Ψ(a,w). The two propositions are illustrated on
Figures 2a and 2b.

Proposition 2 Given a real bivariate function Ψ defined on R+ × (0, 1] by
Ψ(q, w) = w2(α− β qγ

wγ ) with positive parameters α, β, γ and 1 ≤ γ ≤ 3, and
a positive lower bound P ≤ α, then:

1. Ψ(q, w) ≥ P only on the domain D = {(q, w) |
√

P
α ≤ w ≤ 1, 0 ≤ q ≤

s(w)} where (s(w), w, P ) defines the non-empty intersection of Ψ with
the plane p = P , i.e. s(w) = Ψ−1

w (P ) = w(αβ −
P
βw2 )

1
γ , ∀w ∈ [

√
P
α , 1].

2. For any 0 < q∗ < s(1), if the tangent line of Ψ at (q∗, 1) in the plane
w = 1 intersects the tangent line of Ψ in the plane p = P at some
point (s(w∗), w∗), defined by s(w∗) + s′(w∗)(1−w∗) = q∗+ P−Ψw=1(q∗)

Ψ′w=1(q∗)

with w∗ ∈ [
√

P
α , 1], then Ψ lies below the plane Π∗ containing these

two lines, i.e. Ψ(q, w) ≤ Π∗(q, w) = Ψw=1(q∗) + Ψ′w=1(q∗)(q − q∗) −
Ψ′w=1(q∗)s′(w∗)(w − 1) for any (q, w) ∈ D.

Proof: Since 0 < P
α ≤ 1 and Ψw is strictly decreasing, a direct computation

proves the first assertion. Assuming that P denotes a lower bound of Ψ, we
now restrict our study to the domain of definition D.

The restriction Ψq(w) = Ψ(q, w) to any fixed plane q is convex since, for
(q, w) ∈ D, Ψ′′q = 2α − β qγ

wγ (2 − γ)(1 − γ), hence Ψ′′q ≥ 0 if 1 ≤ γ ≤ 2, and
Ψ′′q ≥ 2α−β s(w)γ

wγ (2−γ)(1−γ) ≥ 2α−2(α− P
w2 ) ≥ 0 if 2 < γ ≤ 3. Since the

restriction Π∗q(w) = Π∗(q, w) to the plane q is a line, we just need to show
that Ψq(w) ≤ Π∗(q, w) at w = 1 and at w = s−1(q) in order to show that
Ψ ≤ Π∗ on D.

Case w = 1: In the plane w = 1, Ψw=1 is clearly concave, then it lies
below its tangent Π∗w=1 at q = q∗. Thus Ψq(1) = Ψw=1(q) ≤ Π∗w=1(q) =
Π∗(q, 1).

Case w = s−1(q): Note that Π∗w=1 is strictly decreasing and Π∗w=1(q∗) =
Ψ(q∗, 1) > P , then line Π∗w=1 intersects the plane p = P at some point
(q′, 1, P ) with q′ > q∗. Considering their restrictions to the plane p = P ,
Π∗ is by definition the tangent line to Ψ (then to the curve defined by
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(a) Head increase

(b) Power consumption (nonconvex part)

Figure 2: Illustrations of (a) a linear over-estimator Π∗ (in red) of the head
increase Ψ (in orange) and (b) a linear under-estimator Π∗ (in red) of the
non-convex addend Γ (in orange) of the power consumption. The black curve
lines depict function s(w), the maximum flow value for a given speed value
w, projected on Ψ and Γ: (a) Π∗ is tangent to the black curve Ψ(s(w), w)
and also to Ψ at some point (q∗, 1) in the plane w = 1. (b) Π∗ is tangent to
the black curve Γ(s(w), w) at some w∗ and meets Γ at (0, 1).

20



s) at (s(w∗), w∗) going through (q′, 1). Observe by computation that s
is non-decreasing and concave (since s′ ≥ 0 and s′′ ≤ 0 as γ ≥ 1), and
that the restriction Π∗q of Π∗ to a fixed plane q is non-decreasing (since
Π∗q ′ ≥ 0). Hence, for any (q, w) ∈ D such that Π∗(q, w) = P , we have:
q ≥ s(w) (since s concave), then w ≤ s−1(q) (since s non-decreasing), then
Ψq(s−1(q)) = P = Π∗q(w) ≤ Π∗q(s−1(q)) = Π∗(q, s−1(q)) (since Π∗q non-
decreasing). �

Note that Proposition 2 only applies when the characteristic pump func-
tion Ψk is between linear and cubic in the flow (1 ≤ γ ≤ 3). This range
does not restrict the practicability of the method as the pump head in-
crease can be reasonably represented by a quadratic curve of the flow [8]
and that reported values do not depart significantly from γ = 2 [6]. Propo-
sition 2 also provides a linear relaxation for fixed-speed pumps, although the
tighter relaxation hjt − hit ≤ Ψk(qkt, 1) may sometimes be directly handled
by efficient solvers, such as second-order cone solvers when the function is
quadratic (γ = 2) [4].

As for relaxing the head loss in pipes, in our implementation, we pro-
gressively generate approximations Π∗k for a subset Qεk of points 0 < q∗ <
s(1) such that the distance between Ψk(q, 1) and the closest approximation
Π∗k(q, 1) never exceeds a fixed precision value ε > 0.

For each pump k = ij ∈ K and for each time t, constraint (9) is then
relaxed to

hjt − hit ≤ Ψw=1(q∗)xkt + Ψ′w=1(q∗)(qkt − q∗xkt)
−Ψ′w=1(q∗)s′(w∗)(wkt − xkt) +Mk(1− xkt),∀ q∗ ∈ Qεk, (9ε)

where Mk is computed in the preprocessing step as the maximum head
difference hj−hi under constraints (C) and the additional constraint xkt = 0.
Constraints (9ε) are then reduced to hjt − hit ≤ Π∗(qkt, wkt) when xkt = 1
and hjt − hit ≤Mk when xkt = 0.

5.4 Under approximation of the power consumption

The power consumption of a fixed-speed pump is linear in the flow through
the pump, but it becomes polynomial in the speed value for a variable-speed
pump. Next proposition describes a family of linear under-estimators of the
non-convex addend of the power consumption function in this latter case. As
in Proposition 2, the study of the function is limited to domain D on which
the pump operates with a minimum pressure increase P . Furthermore,
we restrict the proof to the case where

√
P
α ≥

1
3 , i.e. α

9 ≤ P ≤ α, and
µ > 0. This reasonable assumption is satisfied by all the instances in our
benchmarks although µ may sometimes be negative as in [56].

Proposition 3 Given a real bivariate function Γ defined on D (see Propo-
sition 2) by Γ(q, w) = µqw2 with µ > 0, let γ denote its restriction to the
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surface q = s(w) (i.e. Ψ(q, w) = P ): γ(w) = Γ(s(w), w) for w ∈ [
√

P
α , 1].

Then, Γ ≥ Π∗ on D, for any w∗ ∈ [
√

P
α , 1], where Π∗ denotes the plane

passing through M0 = (0, 1, 0) and tangent to γ at M∗ = (s(w∗), w∗, γ(w∗))
and which is formally defined by

Π∗(q, w) = b∗
c∗

(1− w)− a∗
c∗
q,

with (a∗, b∗, c∗) = u∗ × v∗ the cross product of u∗ = (s(w∗), w∗ − 1, γ(w∗))
the vector pointing from M0 to M∗ and v∗ = (s′(w∗), 1, γ′(w∗)) the tangent
vector of γ at M∗.

Proof: Let π∗ denote the intersection of Π∗ with the surface q = s(w),
i.e. π∗(w) = Π∗(s(w), w), we first show that γ ≥ π∗ on this surface. By
construction, π∗ is tangent to γ at M∗ and, by direct computation, we
show that γ is convex (γ′′ ≥ 0) and that π∗ is concave (π′′∗ ≤ 0), then
γ(w) ≥ γ(w∗) + γ′(w∗)(w − w∗) = π(w∗) + π′(w∗)(w − w∗) ≥ π∗(w) for all
w ∈ [

√
P
α , 1].

Now consider, for any w+ ∈ [
√

P
α , 1], the plane Π+ containingM0,M+ =

(s(w+), w+, γ(w+)) and vector (0, 0, 1). Let D+ be the straight line of Π+
passing throughM0 andM+ and let D+

∗ be the line at the intersection of Π∗
and Π+. By definition, D+

∗ pass through M0 and M = (s(w+), w+, π∗(w+))
and, because γ(w+) ≥ π∗(w+), then D+

∗ lies below D+ in plane Π+, i.e. if
(q, w, p1) ∈ D and (q, w, p2) ∈ D+, then p1 ≤ p2.

Let C denote the intersection of Γ with Π+, then C intersects D+ in
M0 and M+. If w+ = 1, then Π+ is the plane w = 1 and C is the straight
line defined by w = 1 and p = µq, so it coincides with D+. Otherwise, if
w+ < 1, then an equation for Π+ is given by q = π+(w) = s(w+)

1−w+
(1 − w).

Because Γ is restricted to domain D and π+(w) ≤ s(w) implies w ≥ w+
and vice-versa, then C is defined by the parametric equation q = π+(w)
and p = Γ(π+(w), w) for w ∈ [w+, 1]. Consider, for example, the first-order
condition

< ∇Γ(π+(w2), w2)−∇Γ(π+(w1), w1), (π+(w2), w2)− (π+(w1), w1) >

= µ
s(w+)
1− w+

(w2 − w1)2(2− 3(w1 + w2)) ≤ 0, if w1 + w2 ≥
2
3 .

It shows that C is concave on the segment (w+, 1) then it lies above D+,
then above D+

∗ . This being true for any w+ ∈ [
√

P
α , 1], it proves that Γ lies

above Π∗. �
The power consumption of a variable-speed pump k ∈ KV is given

by (19) as the sum of a convex function λw3, which can be approximated
from below by its tangent lines (λw2

∗(3w − 2w∗), for any w∗ > 0), and
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of function µqw2 studied in Proposition 3. In our implementation, for each
variable-speed pump k ∈ KV , we generate a fixed number nk of linear under-
estimators by setting Wk the set of nk values of w∗ evenly distributed in the

interval [
√

Pk
αk
, 1]. Then we introduce, for each time t, two new decision

variables y1
kt ≥ 0 and y2

kt ≥ 0 with the constraints

y1
kt ≥ λw2

∗(3wkt − 2w∗),∀w∗ ∈Wk, (34)

y2
kt ≥

b∗
c∗

(1− wkt)−
a∗
c∗
qkt, ∀w∗ ∈Wk. (35)

Finally, we relax the objective function (21) to∑
t∈T

∆t(
∑

ji∈A|j∈JS

Ejqijt +
∑
k∈KV

Ct(y1
kt + y2

kt) +
∑
k∈KF

CtΓFk (qkt, xkt)). (36)

6 A time-step duration adjustment-based heuris-
tic for class BS

As explained in Section 5, we expect that integer feasible nodes X of the
MILP relaxation (Pε) are either feasible or close to feasible for (P). In
this context, close to feasible means that the restricted NLP subproblem
(P(X)) has no solution but there exists a pump schedule that is physically
feasible – but possibly not a solution of our model (P) – at a slight distance
of X. This is particulary true for instances of class BS where the binary
variables x are the unique decision variables so that, contrarily to class MS,
small flow imbalances cannot be compensated by a different setting of the
continuous (implied) variables. Small imbalances result in low violations of
the water tank level limits (6) and (7). These violations could be prevented
by allowing to switch the active elements not just at fixed times. This
motivates the following primal heuristic to turn close-to-feasible solutions
of (P) to feasible pump schedules, by adjusting the duration of the time
periods. We describe it in the context of instances of class BS, i.e. without
variable-speed pumps or pressure-reducing valves.

6.1 Heuristic formulation

Let X be a feasible instantiation of the binary variables x of (Pε) and AXt =
{a ∈ K ∪ V |Xat = 1} denote the combination of pumps and valves that are
active at time step t. We allow AXt to be active earlier or latter (up to 1
time step), and for a shorter or longer duration (from 0 to 3 time steps).
We formulate as a mathematical program denoted as (Hα(X)) the problem
of finding a solution of minimum power cost in the neighborhood of X thus
created. For this, we divide each time step t into three parts of variable
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lengths δ1
t , δ2

t and δ3
t in [0,∆t], during which, respectively, AXt−1, AXt and

AXt+1 are active.

z′ = min
T∑
t=1

3∑
p=1

CtΓFk (qpkt, X
p
kt)δ

p
t (37)

s.t. δ1
t + δ2

t + δ3
t = ∆t, ∀t ≥ 1 (38)

u3
t−1 + u1

t ≤ Lt ∀t ≥ 2 (39)
δ3
t−1 − δ3

t′−1 − δ1
t + δ1

t′ ≥ (τs + t− t′)∆t,∀s ∈ {0, 1}, (t, t′) ∈ Is (40)
0 ≤ δ2

t ≤ ∆t, ∀t ≥ 1 (41)
0 ≤ δpt ≤ u

p
t∆t, u

p
t ∈ {0, 1}, ∀t ≥ 1, p ∈ {1, 3} (42)

upt ∈ {0, 1}, u1
1 = 0, u3

T = 0, ∀t ≥ 1, p ∈ {1, 3} (43)∑
ij∈A

qpijt =
∑
ji∈A

qpjit +Djt, ∀j ∈ Jj , t ≥ 1, p ∈ {1, 2, 3} (1’)

hpjt ≥ Zj + Pj , ∀j ∈ JJ , t ≥ 1|Djt 6= 0, p ∈ {1, 2, 3}
(2’)

hpjt = Hjt, ∀j ∈ JR, t ≥ 1, p ∈ {1, 2, 3} (3’)∑
t∈T

3∑
p=1

∑
ji∈A

qpjitδ
p
t ≤ Vj , ∀j ∈ JS (4’)

∑
ij∈A

qpijtδ
p
t = Sj(hpjt − h

p−1
jt ), ∀j ∈ JT , t ≥ 1, p ∈ {2, 3} (5’)

∑
ij∈A

q1
ijtδ

1
t = Sj(h1

jt − h3
j(t−1)), ∀j ∈ JT , t ≥ 1 (5”)

Hj + αHj ≤ hpjt ≤ (1− α)Hj , ∀j ∈ JT , t ≥ 1, p ∈ {1, 2, 3} (6’α)

h3
j0 = H0

j ≤ h3
jT − αHj , ∀j ∈ JT (7’α)

hpit − h
p
jt = Φij(qpijt), ∀ij ∈ L, t ≥ 1, p ∈ {1, 2, 3} (8’)

(hpjt − h
p
it −Ψij(qpkt))X

p
kt = 0, ∀k ∈ K, t ≥ 1, p ∈ {1, 2, 3} (9’)

QkX
p
kt ≤ q

p
kt ≤ QkX

p
kt, ∀k ∈ K, t ≥ 1, p ∈ {1, 2, 3} (10’)

hpit − h
p
jt ≥Mv(1−Xp

vt), ∀v ∈ V, t ≥ 1, p ∈ {1, 2, 3} (17’)
hpit − h

p
jt ≤Mv(1−Xp

vt), ∀v ∈ V, t ≥ 1, p ∈ {1, 2, 3} (17”)
QvX

p
vt ≤ q

p
vt ≤ QvX

p
vt, ∀v ∈ V, t ≥ 1, p ∈ {1, 2, 3} (18’)

where Xp
at denotes the status of active element a during part p of step t,

i.e. X1
at = Xa(t−1), X2

at = Xat, and X3
at = Xa(t+1). Constraints (39) - (43)

prevent to separate AXt in two parts, then the number of pump switches to
increase, where Lt = 0 if AXt−1 = AXt and Lt = 1 otherwise. Constraints
(40) ensure that the maintenance constraints (13)-(16) are still verified after
adjusting the time step length, with (t, t′) ∈ I1 (resp. I0) if at least one
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active element k ∈ K is on (resp. off) at t and off (resp. on) at t′. Constraints
(1’)-(18’) ensure a feasible flow-head configuration during each time step part
p. Parameter α in (6’α) and (7’α) has default value 0, but we set it to a
positive value (e.g. α = 1%�) to strengthen the water tank head bounds, in
order to improve the convergence of the iterative resolution scheme described
thereafter. Indeed, we do not solve the non-convex MINLP (Hα(X)) directly
but propose to solve a sequence of MILP restrictions (Hα(X,Q)) obtained
by fixing the flow variables at different values q = Q.

6.2 Solution scheme

Consider the part p ∈ {1, 2, 3} of a time period t ∈ {1, . . . , T}. For a DWDN
of class BS, once the status Xp

at of each active elements a ∈ K ∪ V is fixed,
the only quantities which can affect the head-flow equilibrium are the head
levels hpjt at every water tank j ∈ JT . Interestingly, if the proposed heuristic
can recover a low cost feasible solution, it is unlikely that the tank head
trajectories are significantly modified because they provide a lower bound
on the objective for the node X under attention. Furthermore, a slight
alteration of the water tank heads will cause only a limited modification
of the head-flow configuration. These observations motivate the iterative
Algorithm 1 where the lengths of the time periods and the flows in arcs are
successively refined and possibly converge to a fix point.

Algorithm 1 Time-step duration adjustment-based heuristic for DWDNs
of class BS
Input: (Hjt)j∈JT ,t≥1, (Xt)t≥1, α ∈ R+
Initialize: (h1

jt, h
2
jt, h

3
jt) = (Hj(t−1), Hjt, Hjt) ∀j ∈ JT , t ≥ 1

while time limit is not reached do
Step 1 (Input: h / Output: q̄): for all t ≥ 1, p ∈ {1, 2, 3}, fix
h̄pjt = hpjt ∀j ∈ JT and compute the head-flow configuration (q̄pt , h̄

p
t )

with the Newton method [54].
Step 2 (Input: q̄ / Output: δ): solve (Hα(X, q̄)),
if infeasible then
break

else
Step 3 (Input: δ / Output: (q,h)): compute the head-flow con-
figurations (qpt ,h

p
t ) for all t ≥ 1, p ∈ {1, 2, 3} with the extended period

analysis (see Section 4.2) given time step durations δpt .
if (q,h,δ) is feasible for (H0(X)) then
(q,h,δ) is a feasible solution. Compute z as in (37)
Output: (X, q, h, δ, z)

end if
end if

end while
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Instance Class |L| |V | |K| |JT | |JS | |JJ |
Simple FSD (A) 2 0 3 1 1 2
AT(M) (A) 41 0 3 3 1 19
Poormond (A) 44 4 7 5 1 46
Simple VSD (B) 2 0 3 1 1 2
DWG (B) 22 6 5 6 3 24

Table 2: Characteristics of DWDNs instances.

First, water tank heads hpjt are initialized to their values in the investi-
gated solution (X,Q,H) of the MILP relaxation (Pε). Then, an iteration
consists of three tasks. In the first step, we compute from the tank head
values the head-flow configurations providing temporary values q̄pt for flows
for all time step parts (t, p). In the second step, we fix the flow values qpt
in the MINLP (H0(X)) and solve the restricted MILP (Hα(X, q̄)) to obtain
new values δpt . In the third step, we simulate through an extended period
analysis (see Section 4.2) the pump schedule corresponding to the new time
step lengths. If the schedule is feasible for (H0(X)), then we compute its
cost and possibly update the incumbent. Otherwise, when the schedule vi-
olates at least one constraint, next iteration starts with the last computed
tank head values.

7 Experimental results
In this section, we report on the computational evaluation of our algorithm.
In Section 7.1, we describe the benchmark set, while in Section 7.2 we discuss
the computational results. Finally, in Section 7.3 we compare our results
with those in the literature.

7.1 Experimental data

Experimental data consist of 5 case studies which cover different aspects
that can be encountered in real-world DWDNs. Their characteristics are
summarized in Table 2. Simple FSD (resp. Simple VSD) is a test net-
work drawn from [34] with 1 source, 1 water tank, 2 pipes and 3 identical
fixed-speed (resp. variable-speed) pumps operating in parallel. AT(M) is
a modified version proposed in [45] and further investigated in [10] of the
extensively studied hypothetical network Anytown [57]4. It consists of 1

4With respect to [10], we connect the water tanks 165 and 265 with a pipe of zero
length to prevent non-physical behaviors induced by the discretization, especially when
∆t is large. This change is justified by the fact that the head levels in the two tanks are
always very close, as shown in Figure 8 of [10]. The alternative used in [10] is to run the
extended period analysis with a time step smaller than ∆t.
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source, 3 water tanks, 41 pipes and 3 identical fixed-speed pumps working
in parallel. Poormond is adapted by [20] from the schematic representation
of the Richmond water distribution system owned by Yorkshire Water in
the UK [21]. It comprises 1 source, 5 water tanks, 44 pipes, 7 fixed-speed
pumps and 4 check valves. Finally, DWG is a slightly modified version of a
Belgium network operated by the water company De Watergroep [56]5. It
consists of 3 sources, 6 water tanks, 22 pipes, 5 fixed-speed pumps and 6
PRVs. Simple VSD and DWG are the only DWDNs of class MS because of
the presence of 3 variable-speed pumps for the former and 6 PRVs for the
latter.

To appreciate how the computational scheme responds to an increase
number of time periods, we considered the cases T=12, 24 and 48 by smooth-
ing the electrical tariff and water demand profiles, if need be. We considered
five different daily electrical tariffs profiles that correspond to the wholesale
prices occurring on the Single Electricity Market (SEM) on the five-day
period starting from May 21, 2013 at 7am [49]. In summary, we built a
benchmark of 75 instances that we are pleased to share under request.

For each instance, we applied the following solution process. First, the
variable bounds are estimated with the procedure described in Section 5.1.
Then, MILP relaxation (Pε) is built – with parameters ε = 0.01 m and
nk = 10 for all k ∈ KV – using the Gurobi Python API, and solved with
Gurobi v.5.6.3 [24] on one thread of a 2× Xeon E5-2650V4 2.2.GHz, 256
GB RAM. The restricted NLPs (P(X)) are investigated through a Gurobi
callback function, which differs whether the DWDN is of class BS or MS. For
BS, the extended period analysis is implemented in Python, as well as the
primal heuristic which is launched at most one time each 30 seconds with
a time limit of 10 seconds. For MS, the non-convex NLP is modeled with
Pyomo [25] and solved successively by Bonmin (v.1.8.4) and Baron (v.18.5.8)
with a time limit of 300 seconds each. Finally, the overall resolution scheme
is stopped once reaching either the optimality gap G or the overall time
limit, fixed respectively to 0% and 1 hour for BS, and to 1% and 2 hours for
MS.

7.2 Computational results

Table 3 presents the results for DWDNs of class BS (Simple FSD, AT(M),
Poormond) and MS (Simple VSD, DWG). For each instance, defined by a
day and a time step number T , Best gives the cost of the best solution found
within the given optimality gap and time limit, if available, otherwise the
lower bound computed as in Section 4.3 (in parenthesis); Gap is either the

5To use our MINLP formulation, we made three modifications: 1) the minimal pressure
level P is only required for internal nodes with positive demands, 2) we modeled the
complex operation of the water tanks (see Eq.(5)-(9) in [56]) by preceding each water
tank with a PRV, 3) we dropped the operating constraints related to raw water pump.
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T=12 T=24 T=48
Day Best Gap %CB 1st Best Gap %CB 1st Best Gap %CB 1st

Si
m
pl
e
FS

D 21 inf <1s 51% <1s 155.1 3s 33% 1s 150.9 1285s 1% 2s
22 inf <1s 34% <1s 159.1 2s 29% <1s 155.7 0.9% 3% 2s
23 inf <1s 34% <1s 172.4 3s 39% <1s 168.5 0.9% <1% 4s
24 inf <1s 34% <1s 181.7 6s 55% 1s 176.0 0.2% <1% <1s
25 inf <1s 34% <1s 147.8 2s 42% <1s 145.5 0.6% <1% <1s

AT
(M

)

21 766.3 17s 6% 9s 733.2 1.2% 26% 48s 731.8 1.5% 18% 195s
22 796.4 7s 14% 5s 732.1 1.1% 26% 32s 730.6 2.7% 15% 514s
23 825.5 23s 5% 12s 761.5 0.8% 28% 51s 765.0 2.9% 16% 367s
24 884.2 16s 6% 10s 822.9 2.0% 26% 69s 824.0 2.6% 22% 99s
25 845.8 4s 27% 3s 690.6 0.1% 16% 7s 685.6 3.7% 18% 143s

Po
or
m
on

d 21 111.6 404s 11% 61s 109.0 2.2% <1% 52s 110.1 4.9% <1% 561s
22 113.6 342s 8% 31s 113.0 3.8% <1% 87s 112.4 4.8% <1% 556s
23 126.6 230s 6% 31s 125.2 3.8% <1% 54s 124.5 4.9% <1% 262s
24 138.9 465s 3% 31s 136.3 2.6% <1% 51s 136.0 4.1% <1% 174s
25 113.4 359s 19% 32s 94.2 1.4% <1% 52s 92.4 3.9% <1% 212s

Si
m
pl
e
V
SD

21 148.2 <1s 79% <1s 146.8 7s 14% <1s 146.9 1.3% <1% <1s
22 154.0 <1s 82% <1s 152.4 6s 12% <1s 151.5 1.2% <1% <1s
23 167.5 <1s 76% <1s 165.1 6s 11% <1s 164.0 817s <1% <1s
24 173.5 <1s 78% <1s 172.2 6s 12% <1s 171.2 3368s <1% <1s
25 145.0 <1s 81% <1s 139.8 3s 30% <1s 140.9 742s <1% <1s

D
W
G

21 3379.3 1.6% >99% 322s (3266.5) - 99% - (3266.9) - 92% -
22 3469.1 4.2% >99% 268s (3292.3) - 99% - (3284.8) - 87% -
23 3635.4 4.5% >99% 36s (3428.9) - 99% - (3417.9) - 88% -
24 3689.4 1.5% >99% 47s (3549.8) - 99% - (3549.1) - 93% -
25 3602.3 12.2% >99% 25s (3128.1) - 99% - (3122.9) - 93% -

Table 3: Results on the different networks of class BS and MS.

time (in s.) to find an optimal solution or its optimality gap (in %); %CB is
the share of time spent in the callback function; First is the time to compute
a first feasible solution.

7.2.1 Results for class BS

For all 45 instances of class BS, we computed solutions with an optimality
gap of 5% and obtained the first solutions in less than 10 minutes. Except
for the simplest instances, a small share of the overall computing time is
spent in the callback function to evaluate the feasibility and possibly repair
the integer relaxed solutions X. Indeed for class BS, subproblem (P(X)) is a
feasibility problem fast checked with the procedure described in Section 4.2,
and the primal heuristic is launched only on 4% of the nodes.

We evaluated the impact of the combinatorial cuts (22) by dropping
them, i.e. by generating, at each integer node X, the constraint (22) with
t̄ = T which cuts no other solution than X. For Simple FSD with T = 24
and Poormond with T = 12, the computational duration increased of 1.1
and 3.0 times in average. For AT(M) with T = 12, no feasible solutions are
obtained in 10 minutes for 2 instances and an optimality gap above 7% is
still present for the 3 others. Cuts (22) are then effective and even necessary
to solve the problem in some cases.

The heuristic has contrasted performances over the three DWDNs. For
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T=12 T=24 T=48
Day Best Gap %CB 1st Best Gap %CB 1st Best Gap %CB 1st

Po
or
m
on

d 21 118.1 7.5% 21% 2531s 118.5 10.5% 12% 1458s 111.3 6.3% 4% 1229s
22 (112.2) - 27% - (108.5) - 14% - 115.9 7.7% 2% 1714s
23 (124.4) - 29% - 132.6 9.6% 13% 2706s 134.1 11.8% 8% 308s
24 (136.7) - 24% - 141.8 6.8% 13% 307s 140.0 6.8% 1% 501s
25 (110.8) - 34% - (91.4) - 33% - 98.6 10.1% 1% 312s

Table 4: Results on Poormond (BS class) without the primal heuristic.

Simple FSD, all instances are solved in less than 30 seconds for T = 12
and T = 24 and we do not call the heuristic in this case; for T = 48,
most of the integer relaxed solutions (87%) were feasible. For AT(M) with
T = 24 and T = 48, 12% of the feasible solutions as well as 9 out of the
10 best feasible solutions are computed by the heuristic. For Poormond, all
computed feasible solutions are provided by the heuristic. The strength of
the heuristic can be enlighted by considering the electricity tariffs of day
25. Indeed, it is about four times higher between 9.30am and 11.30am
and significant savings can be obtained by turning the pump on as little
as possible during this time window. On the Poormond instance, pumping
was required during this time window. While the discretization imposes to
switch the pumps on during a multiple of ∆t, the heuristic allows to adjust
this duration at its minimum.

We further investigated on Poormond the impact of the primal heuristic
and, in turn, the strength of the MILP relaxation, by disabling the heuristic
(see results in Table 4). For 6 out of the 15 instances, no solutions are
obtained in the time limit of 1 hour. For the remaining 9 instances, the cost
of the best solutions obtained was 5% higher on average, and the time needed
to compute a first feasible solution is 15 times higher. These results show first
that many integer relaxed solutions of (Pε) are infeasible for (P). Indeed,
with the heuristic disabled, only 26 out of the 105,159 potential candidates
over the 15 instances were in fact feasible. However, many relaxed solutions
are near feasible and the heuristic is able to quickly repair them and recover
feasible solutions of good quality, which helps a lot in cutting the search tree.
Indeed, with the heuristic on, only 36 relaxed solutions were to investigate
and the heuristic was able to repair 33 out of them, even leading to solutions
of lower cost for 30. Note finally, as expected, the higher deterioration when
turning off the heuristic for instances with T=12 and T=24. Indeed, the
heuristic helps to adjust the time step duration, then it allows to schedule
with fewer and longer time steps without degrading the optimum.

These experiments show that the MILP relaxation is often tight for in-
stances of class BS, providing low-cost and close-to-feasible solutions, and
that it is well complemented by the heuristic, which appears to be a key
factor of the overall solution scheme in some cases.
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T=12 T=24 T=48
Day Best Gap % CB 1st Best Gap % CB 1st Best Gap % CB 1st

D
W
G

21 3382.8 1.6% 94% 982s (3266.7) - 98% - (3267.0) - 88% -
22 3398.2 1.8% >99% 1814s 3420.6 3.7% 98% 7057s (3284.9) - 82% -
23 3555.6 1.8% 98% 668s (3429.2) - 98% - (3418.0) - 82% -
24 3692.3 1.4% 88% 510s 3737.5 5.0% 98% 4568s (3549.4) - 86% -
25 3477.2 8.4% >99% 509s 3312.7 5.3% 98% 1971s 3360.4 7.0% 91% 6958s

Table 5: Results on DWG (MS class) solving NLPs with Bonmin only

7.2.2 Results for class MS

High quality solutions are quickly computed for all 15 instances of Simple
VSD: the first feasible solutions are found in less than 1 second and the best
feasible solutions (with optimality gap G = 1%) in less than 20 seconds.
Incidentally, for each of the 85 integer nodes investigated, Baron was never
called. Indeed, if Lε(X) denotes the optimum of (Pε) at node X, Bonmin
was always able to return feasible solutions of (P(X)) with a cost smaller
than (1 +G)Lε(X).

Solving the instances of DWG was more difficult: for T = 12, feasible
solutions are obtained in less than 2 minutes and best solutions found in
2 hours have an average optimality gap of 4.8%, but no feasible solutions
are found for the largest instances with T = 24 and T = 48. Apart from
the problem size, 3 characteristics of network DWG make these instances
difficult: (a) the flow direction is unknown for 12 out of the 22 pipes. Each
requires to introduce binary variables and linear and non-convex quadratic
constraints (8a)-(8d) to the NLP subproblems (P(X)); (b) the internal node
pressure constraints (2) and the daily maximal withdrawal limits (4) are
tight and make harder to recover feasibility from integer relaxed solutions;
(c) DWG has PRVs but no variable-speed pumps, which offers less flexibility
to readjust flows once the status of the pumps and valves is fixed since PRVs
can only dissipate an excess of pressure, while variable-speed pumps can
balance the pressure upward or downward. Hence, even for the smallest
instances (T = 12), Bonmin and Baron were able to close (i.e. either to
find a feasible solution in the gap limit G or to prove infeasibility) only 72
out of the 181 nodes investigated within the 5 minutes time limit, and they
provided new incumbent solutions at 14 nodes. Only one improving solution
was provided by Bonmin directly, but the mean computing time per node
required by Baron was 192 seconds against only 6 seconds for Bonmin.

Table 5 presents the individual results when disabling Baron to solve
the NLP subproblems heuristically with Bonmin only. Note that Bonmin
almost always finished long before the 300s time limit. First, we observe
in Table 5 (compared to Table 3) for the 5 instances with T = 12 that
the best solutions found are improved, the mean cost being 1.5% lower and
the mean optimality gap reduced from 4.8% to 3.0%. This improvement
results from the increase of the number of nodes explored, from 36 to 741
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on average. The search tree was even completely explored in the time limit
for two instances: Day 21 in 6482s and Day 24 in 6596s. For T = 24 and
T = 48, the heuristic approach allowed to compute feasible solutions within
the time limit on 4 out of 10 instance.

7.3 Comparison with published results

This section provides an empiric comparison of our results with previous
published results of alternative methods applied to one of the DWDNs pre-
sented so far. We evaluated our method on a different machine, but on the
same data, including the electricity tariffs.

7.3.1 Enumeration and simulation [10] on AT(M)

In [10], Costa et al. apply their enumeration scheme on the AT(M) network
(class BS) with 3 identical pumps and a rather complex pipe layout. The
daily scheduling horizon is divided into 24 hours and the case study is inves-
tigated for different values of N the maximum number of pump activations.
The search tree is built by deciding progressively for every hour the number
of pumps to activate. Partial schedules at nodes are pruned if the hydraulic
simulation with EPANET proves them to be infeasible. Performed on a PC
(i7-4771 CPU, 3.5 GHz, 32 GB), the method computed optimal solutions in
425 seconds (N = 1), 10 hours (N = 2) and 81 hours (N = 3). Our LP/NLP
branch and bound was not able to outperform these results: our computing
time was longer for N = 1 (440 seconds) and a positive gap of 1.6% for
N = 2 and 1.9% for N = 3 remained after the same amount of computing
time for the two other cases. However, near-optimal solutions were quickly
obtained with our algorithm with an optimality gap of less than 6% after 5
minutes, while no information on the quality of intermediate solutions are
provided with the enumeration scheme if prematurely stopped because the
search tree is explored by Breadth First Search.

7.3.2 Lagrangian relaxation [20] or Benders decomposition [38]
on Poormond

Ghaddar et al. [20] and Naoum-Saway et al. [38] reported results on network
Poormond (class BS) with T = 48 and 96 respectively. In both papers,
modeling assumptions are identical and the only difference with ours is the
shape of the pump power consumption function.6 We then solved our model
with T = 48 after computing the linear coefficients in (20) to approximate
their cubic formulation, then recalculated the costs from the best solutions
found. Bearing in mind that our method was performed on a different

6The authors of [20] and [38] do not mention check valves in their mathematical for-
mulation, but likely include them in the hydraulic model of EPANET. That could explain
the inconsistency between the lower bounds reported in [20] and our results.
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Day LR [20] BD [38] LP/NLP ∆

Po
or
m
on

d 21 130.7 129.74 116.05 10.6%
22 139.4 131.39 119.35 9.2%
23 140.2 140.59 124.12 13.0%
24 151.8 147.73 137.68 6.8%
25 130.3 125.57 93.32 25.7%

Table 6: Best costs obtained with a Lagrangian relaxation (LR), a Benders
decomposition (BD), and our method (LP/NLP) with a time limit of 1 hour
on different machines (LR and BD were performed on a RedHat Linux blade
server 3.5 GHz). ∆ gives the cost improvement of LP/NLP with respect to
the best of LR and BD.

environment, we reported in Table 6 substantially better solutions for the
five instances investigated.

Our approach bears similarities with the combinatorial Benders decom-
position of [38] but it seems to benefit a lot of our tigher MILP relaxation.
In [38], the non-convex constraints and the objective are almost totally re-
laxed in the master MILP. Furthermore, we showed in Section 7.2.1 the
importance of the primal heuristic on these instances. Finally, note that
the best solutions were found with the Benders decomposition of [38] when
run in the manner of a local search, loosing thus the faculty to provide
performance guarantee.

7.3.3 Outer-approximation algorithm [50] on simplified versions
of Poormond

The outer-approximation algorithm proposed by Shi and You [50] is applied
to two simplified versions of the instance Poormond with a scheduling hori-
zon of 8 one-hour time periods. Despite some differences with our model
(Hazen-William formula for φ, cubic function of the flow for ΓFk ), the optimal
solutions found are similar (the state of one pump differs during one time
period for the small-scale case study while the two solutions are identical
for the large-scale case study). Thus, we propose to compare the computing
times to obtain them. The reported results were obtained, on an Intel Core
i5-2400 CPU @ 3.10 GHz with 8GB RAM, using CPLEX 12 and CONOPT
3 for solving the MILP relaxations and NLP restrictions, respectively. The
reported computing times are 60.74s and 321.69s, while we obtain 1.44s and
9.15s, respectively. This difference can be explained by analysing Figure 9
in [50] which decomposes the time needed to solve the large-scale instance
into the different steps. We observe that the OA algorithm takes only two
iterations, but most of the time is spent to solve two MILP relaxations: at
the first iteration (190.35s) to obtain a relaxed integer solution, and at the
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Instance 21 22 23 24 25
Simple VSD 148.2 154.0 167.5 173.7 145.0

(22s) (25s) (21s) (26s) (24s)
DWG - - - - -

Table 7: Optimum values (with G = 1%) and computation times for solving
(P) with Baron on the MS case studies with T = 12 in a time limit of 2
hours.

second iteration (129.51s) to prove that no cheaper solution exists. With
our branch and bound, the optimal solution was obtained in less than 1s,
then it took less than 9s to explore the search tree and evaluate 512 other
integer nodes.

The comparison highlights two key features of the proposed method.
First, we explore one single search tree and evaluate all integer solutions,
in the manner of the LP/NLP branch and bound, while the OA algorithm
waits to evaluate the optimal solution of the MILP relaxation. This is
justified as the evaluation step is cheap for instances of class BS. Second,
our convex OA relaxation may perhaps be not as tight as the non-convex
OA relaxation of [50], but it results in a much smaller MILP as we do not
introduce additional binary variables to model piecewise linear segments.
Finally, note that the MILP relaxation of [50] is automatically generated
while we propose a tailored generic MILP relaxation, but both approaches
have a wide range of application.

7.3.4 Direct resolution of Simple VSD and DWG through MINLP

Finally, we directly solved the non-convex MINLP formulations of the two
DWDNs of class MS with Baron using the default parameters.7 Results
are given in Table 7 for T = 12 and can be compared to the results of the
proposed approach summarized in Table 3. For Simple VSD, the direct res-
olution required more than 20 seconds to find and prove the optimum while
our method required less than 1 second. For DWG, the direct resolution
found no feasible solutions at all in 2 hours, while our method found at
least one feasible solution for all instances in less than one hour and with
an optimality gap lower than 15%.

8 Conclusion
In this paper, we presented a tailored LP/NLP-based branch-and-bound
algorithm to solve at optimality a non-convex formulation of the pump

7Note that [34] and [56] report approximated solutions that cannot be directly com-
pared with ours.
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scheduling problem in DWDNs. This framework can readily be implemented
by embedding a non-convex NLP solver as a lazy cut separator within a
MILP solver. To our knowledge, this framework has never been applied
in the context of water or gas networks. The full resolution scheme in-
cludes also several contributions such as a generic tight MILP relaxation
that has provided the opportunity to deal with networks of class MS, i.e.
with multi-settings active elements such as variable-speed pumps. For the
other networks (of class BS: binary-settings), we added several improving
techniques including a fast evaluation, cuts, and a new primal heuristic
to turn slightly infeasible solutions into feasible solutions. A computational
study on several benchmark instances, including a comparison with compet-
ing methods, highlights the strengths and weaknesses of the proposed ap-
proach. For DWDNs of class BS, it quickly computes near-optimal solutions
but the lower bound evolves slowly afterwards. While a systematic piecewise
linear relaxation as in spatial branch and bound does not seem worthwhile,
the MILP relaxation could be refined during the search by branching on
the non-convex constraints which are consistently violated. For DWDNs of
class MS, the proposed method outperforms a direct resolution with a global
optimization solver but solving the non-convex NLP restrictions at integer
nodes remains a bottleneck as the problem size grows. One option could be
to derive sufficient conditions to reject the infeasible integer nodes as done
in [26, 27] in the context of the optimal design of gas networks. Finally, this
work suggests that this two-step LP/NLP-based branch and bound could be
considered in a broader context to solve non-convex MINLPs given efficient
bound tightening techniques and a tight MILP relaxation.
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