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tionThe resour
e-
onstrained proje
t s
heduling problem (RCPSP) is one of themost general s
heduling problems and is extensively studied in the literature(for a survey of the RCPSP, we refer the reader to the arti
le of Br�u
ker etal.[6℄). It 
onsists in s
heduling a proje
t, i.e. a set of a
tivities linked bypre
eden
e 
onstraints by means of a set of limited resour
es while minimiz-ing the total duration of the proje
t. Being strongly NP hard, this problemhas most often been ta
kled by bran
h and bound te
hniques, see e.g.[14, 5℄.Consequently some resear
h fo
uses on the 
omputation of good lower bounds.Our obje
tive is to 
ompare new lower bounds for the RCPSP, based on a
ooperation between linear programming and 
onstraint programming.Constraint programming has been widely applied in the area of s
heduling.Espe
ially, numerous dedu
tive \
onstraint propagation" te
hniques have yetbeen su

essfully implemented. To 
ompute lower bounds, these te
hniques aregenerally used at a prepro
essing stage to sharpen an integer program formula-tion of the s
heduling problem before evaluating its relaxation. They are very1



useful to de
rease the program size, �xing variables for example and strength-ening the linear 
onstraints. Su
h a 
ooperation has already been implementedfor the RCPSP in [7℄.We follow this approa
h but we lead also the 
ooperation between 
onstraintprogramming and integer programming further. A
tually, we study here lowerbounds resulting of the resolution at optimality of some linear relaxations ofthe two main integer program formulations of the RCPSP, with natural datevariables or with time-indexed variables. With the aim of 
omparing thesedi�erent evaluations, the linear programs are prepro
essed by a same 
onstraintpropagation s
heme, in
luding our own shaving te
hnique. Furthermore, weenhan
e the relaxations of the integer programs, deriving in two manners new
utting-planes from 
onstraint propagation. The 
utting-planes of the �rst
lass are basi
ally translations of some 
onstraint programming rules in termsof linear inequalities, while the se
ond 
lass of 
utting-planes makes use of somededu
tions impli
itly performed by prepro
essing. To our knowledge, the latterexperiment, whi
h is an a
tual 
ooperation, has not been 
arried out yet forthe RCPSP, although similar hybrid approa
hes are more and more su

essfulin the literature for various 
ombinatorial optimization problems, in
ludings
heduling problems [16, 17℄.The paper is organized as follows:Se
tion 2 gives the de�nitions and notations of the 
onsidered problem.In se
tion 3 we present the two existing integer program formulations mosten
ountered for the RCPSP, as well as their respe
tive relaxations being 
on-sidered. We report in se
tion 4 the di�erent rules implemented in our 
onstraintpropagation algorithm at the prepro
essing stage. In se
tion 5, we explain forea
h formulation, how the prepro
essing dedu
tions are used within the linearprogram resolution pro
ess. Finally, se
tion 6 presents our preliminary 
ompu-tational experiments on a well-known set of ben
hmark instan
es.2 De�nitions and notationsA proje
t is made of a set of a
tivities linked by pre
eden
e 
onstraints repre-sented by an a
tivity-on-node (AON) network G = (V;E) where ea
h node inV represents an a
tivity and ea
h ar
 in E represents a pre
eden
e 
onstraint.It is assumed that jV j = n+ 2 where 0 and n+ 1 are dummy a
tivities repre-senting the start and the end of the proje
t, respe
tively. The pro
essing timeof a
tivity j is denoted by pj with p0 = pn+1 = 0.A set R of renewable resour
es is 
onsidered, ea
h resour
e k 2 R having anumber Rk of units available on the entire planning horizon T . Ea
h a
tivityj 2 V requires a positive amount rjk of ea
h resour
e k 2 R and must beexe
uted without being interrupted.The obje
tive of the RCPSP is to �nd a pre
eden
e and resour
e-feasibles
hedule with a minimal duration, in other words to determine starting timesSi for the a
tivities i 2 V in su
h a way that:2



� the pre
eden
e 
onstraints are ful�lled, i.e. Sj � Si+ pi for all (i; j) 2 E,� at ea
h time t on the entire planning horizon T , and for ea
h resour
ek 2 R, if S(t) denotes the set of a
tivities j exe
uted at time t, i.e.verifying Sj � t < Sj + pj, then Pj2S(t) rjk � Rk,� the total duration, or makespan, maxi2V Si + pi = Sn+1 is minimized.3 Integer program formulations and relaxations forthe RCPCPThere are two 
ommon ways to model s
heduling problems as integer programs.The �rst ones use 
ontinuous time variables, the se
ond ones use time indexedvariables. Our study relates to two formulations for the RCPSP, one of ea
hkind. The �rst one, presented in se
tion 3.1, follows Balas' disjun
tive graphapproa
h [3℄. The se
ond one, in se
tion 3.2, was presumably �rst inspired byPritsker et al.[21℄. On
e an integer program is formulated for the RCPSP, anyof its relaxations, in parti
ular its linear programming (LP) relaxation that isthe relaxation of the integrality requirements, provides a lower bound of theoptimal makespan. We present here the two models and the way we use theirrelaxations.3.1 Continuous time variablesThe 
lassi
al Balas' disjun
tive model for the job-shop problem, based onthe natural starting date variables, has been extended for the RCPSP byAlvarez-Vald�es and Tamarit [2℄ making use of the 
on
ept of minimal forbid-den set (i.e. any subset F of a
tivities, minimal for the in
lusion and verifyingPj2F rjk > Rk for some resour
e k 2 R). To model resour
e 
onstraints, ad-ditional variables are de�ned: for all 
ouple of a
tivities (i; j), let xij be 1 if jstarts after the 
ompletion of i, and 0 otherwise.The problem in [2℄ is formulated as follows:minSn+1subje
t to:xij = 1 8 (i; j) 2 E (C1)xij + xji � 1 8 (i; j) 2 V 2 (C2)xik � xij + xjk � 1 8 (i; j; k) 2 V 3 (C3)Sj � Si � �M + (pi +M)xij 8 (i; j) 2 V 2 (C4)Xi;j2F xij � 1 8 minimal forbidden set F (C5)xij 2 f0; 1g 8 (i; j) 2 V 2 (C6)Constraints (C1) give the pre
eden
e relations within the proje
t. Constraints(C4) model impli
ations xij = 1 ) Sj � Si + pi. Here M is an arbitrarily3



big 
onstant (greater than T for example). The resour
e 
onstraints (C5) statethat in any minimal forbidden set F , at least one sequen
ing de
ision must betaken.Note that the implementation of the only linear relaxation of this programis not realisti
 be
ause of the eventual exponential number of 
onstraints (C5).Hen
e in our relaxation, besides 
onstraints of integrity (C6) we also withdrawall 
onstraints (C5) for minimal forbidden sets of 
ardinality stri
tly greaterthan 3. For that reason, it is 
learly essential to tighten this linear program,and in parti
ular to adjust values M of 
onstraints (C4), impli
itly takinginto a

ount the missing resour
e 
onstraints. We will see in se
tion 5.1 how
onstraint programming prepro
essing allows it.3.2 Time-indexed variablesThe most en
ountered integer linear formulation of the RCPSP [21, 12, 20℄ isbased on time indexed boolean variables xjt de�ned by: xjt = 1 if and onlyif a
tivity j starts at time t, for ea
h a
tivity j 2 V and for ea
h time periodt = 0; : : : ; T . Given these variables, the RCPSP 
an be formulated as follows:min Xt=0;:::;T tx(n+1)tsubje
t to:TXt=0 xjt = 1 8 j 2 V (D1)TXt=0 t(xjt � xit) � pi 8 (i; j) 2 E (D2)Xj2V rjk tX�=t�pj+1xj� � Rk 8 k 2 R;8 t 2 f0; : : : ; Tg (D3)xjt 2 f0; 1g 8 j 2 V;8 t 2 f0; : : : ; Tg (D4)where inequalities (D2) and (D3) represent pre
eden
e and resour
e 
onstraintsrespe
tively.Christo�des et al. propose in [12℄ the same formulation but where pre
e-den
e 
onstraints are presented in a disaggregated strongest way:TX�=t xi� + t+pi�1X�=0 xj� � 1 8 (i; j) 2 E;8 t = 0; : : : ; T (D2s)Constraints (D2s) state that for all 
ouple (i; j) in E, if a
tivity i starts at orafter time t then a
tivity j 
annot start before time t+ pi and 
onversely.For the two formulations, we have implemented their linear relaxation: 
on-straints (D1), (D2), (D2s) et (D3) being easily 
omputable despite of their large4



number. Prepro
essing will be, here espe
ially, useful to �x a maximal numberof variables.4 Constraint programming as prepro
essingIn the �rst phase, a 
onstraint propagation algorithm is applied to the problemgiven a feasible upper bound T .As Br�u
ker and Knust [7℄, our algorithm has been implemented using thestart-start distan
e (SSD)-matrix formalism. A SSD-matrix B = (bij) is anymatrix of integers indexed by V 2 and verifying:Sj � Si � bij ; 8(i; j) 2 V 2; 8 optimal s
hedule S:The goal of our prepro
essing is then to adjust with more 
lose the intervaldomains [bij ;�bji℄ of the variables Sj � Si, in other words to in
rease entriesbij of the matrix.First, note that in terms of start-start distan
e:� b0(n+1) is a lower bound (CPLB) of the optimal value of the RCPSP, and� the relative order between two a
tivities i and j is expli
it:bij � pi () i! j (i pre
edes j) 8 optimal s
hedulebji � 1� pi () i9 j (i does not pre
ede j) 8 optimal s
hedulebji � 1� pibij � 1� pj�() i k j (i and j in parallel) 8 optimal s
hedule:Note also that a �rst SSD-matrix is easily 
omputable for a given instan
eof RCPSP with a planning horizon T . Floyd algorithm applied to the orientedvaluated graph G0 = (V;E [ (n + 1; 0)) (ar
 (n + 1; 0) being valuated by �T )
omputes su
h a matrix with a O(n3) 
omplexity, setting for ea
h i; j 2 V , bijto the longest path length in G0 between i and j.The propagation of any in
rease of entries bij on the overall matrix B will bealso provided by the same algorithm, whi
h 
omputes the transitive 
losureof the matrix B (bik := maxk2V (bij + bjk)), hen
e re
e
ting the transitivityproperty: Sk � Sj � bjk ^ Sj � Si � bij =) Sk � Si � bij + bjk:Besides this algorithm, we have implemented the three following lo
al 
on-straint propagation te
hniques. They use (and maintain for the �rst one) asymmetri
 relation, namely the disjun
tion relation D, over the set V of a
tiv-ities, de�ned as follows:(i; j) 2 D (or i � j) if and only if, in all optimal s
hedule, i and j are notexe
uted simultaneously. 5



Symmetri
 triples algorithm dedu
es new disjun
tions 
onsidering forbid-den sets of three a
tivities. For example, let (i; j; k) 2 V 3 be a forbiddenset, then k k i and k k j imply that i and j are in disjun
tion. Otherrelations are dedu
ed 
onsidering an additional a
tivity l related to su
ha symmetri
 triple (i; j; k). We have implemented the O(m2n4) algorithmproposed by Bru
ker et al. [5℄.Immediate sele
tion algorithm (see e.g. [8℄) is a simple O(jDj) algorithmthat states impli
ation: i� j and i9 j =) j ! i:Edge-�nding algorithm of Carlier and Pinson [9℄ dedu
es also new pre
e-den
e relations but 
onsidering 
liques of disjun
tion that are sets ofa
tivities pairwise in disjun
tion. To 
ompute maximal 
liques we haveimplemented two heuristi
s, the one proposed by Br�u
ker et al. [5℄ theother proposed by Baptiste and Le Pape [4℄. The overall algorithm of
lique generation and edge-�nding runs in O(n4).By all these propagation te
hniques the entries of B are eventually in
reased.Furthermore, infeasibility may be dete
ted if for some a
tivity i, bii > 0 o

urs,that says: no feasible s
hedule of total duration less than T exists. To stillimprove the 
onstraint propagation pro
ess, we use this last property applyingan adapted shaving te
hnique. Shaving [10, 19, 11℄ follows the general prin
ipleof 
onsisten
y enfor
ing te
hniques based upon refutation for the ConstraintSatisfa
tion Problem: A new 
onstraint 
 is temporarily added and 
onstraintpropagation, for example, is performed. If it leads to an infeasibility, then thenegative 
onstraint e
 is posted. We have adapted the shaving te
hniques tothe RCPSP in the way of solving sequen
ing de
isions:Shaving algorithm. For ea
h pair of a
tivities fi; jg we test the validity ofthe three following 
onstraints: i! j, j ! i and i k j, propagating it onthe overall problem by means of the four lo
al te
hniques des
ribed above.We obtain then the new SSD-matri
es Bi!j, Bj!i and Bikj of the sameRCPSP instan
e in whi
h is added the 
orresponding 
onstraint. If one ortwo among this three matri
es is proved in
onsistent ( that is if an entryof its diagonal is stri
tly positive) then the 
orresponding 
onstraintsare refuted and global dedu
tions on B 
an be done. Moreover, if the
onstraint i k j is refuted then the disjun
tion i� j is added to D. Oneexample: let fi; jg a pair of a
tivities su
h that Bj!i is in
onsistent butnot Bi!j and Bikj. It implies that in any optimal s
hedule (and in anyfeasible s
hedule S su
h that Sn+1 � T ), either i pre
edes j or i and j arein parallel. This information is stated by the global in
rease of entries ofB: B := min(Bi!j; Bikj):Going further, even if no infeasibility is dete
ted, the distan
e matrix mayhowever be updated as followsB := min(Bi!j; Bj!i; Bikj)6



Su
h a global operation is mostly powerful but also very time 
onsuming sin
eit reprodu
es the lo
al 
onstraint propagation algorithm for ea
h unresolved se-quen
ing de
ision between two a
tivities. We have been exploring two mannersof keeping reasonable CPU times, on the one hand redu
ing the lo
al 
onstraintpropagation algorithm within the shaving (essentially by suppressing symmetri
triples rules), on the other hand restri
ting shaving to some pairs of a
tivities(the disjun
tive pairs).5 Valid inequalities inferred from 
onstraint propa-gationAt the end of the prepro
essing, and if the latter did not rea
h alone the upperbound, that is if b0(n+1) < T , some 
omputed data are �xed and stored in orderto tighten the linear programs reported in se
tion 3. These data are(i) the SSD-matrix B and the disjun
tion relation D (they will be useful tosharpen the integer programs),(ii) the maximal 
liques of disjun
tion 
al
ulated for the edge-�nding and allof the remaining \shaved" distan
e matri
es Bi!j; Bj!i; Bikj for ea
hpair fi; jg of a
tivities not yet sequen
ed. Indeed they may infer somestrong 
utting-planes.In the two next se
tions we detail how all these results of 
onstraint propagationenhan
e linear programs 
orresponding to ea
h formulation with 
ontinuoustime variables (5.1) or with time-indexed variables (5.2).5.1 Continuous time variablesAs stated in se
tion 3.1, for the integer formulation in 
ontinuous time variables,we have 
hosen to relax, besides the integrity 
onstraints, a number of resour
e
onstraints (C5). Some of these 
onstraints have been 
onsidered within theprepro
essing. So the 
ooperation allows us to take these dropped 
onstraintsimpli
itly into a

ount in the linear programming stage.5.1.1 Fixing variablesFirst before resolution, numerous variables 
an be �xed 
onsidering the SSD-matrix B sin
e the following equalities yield for all optimal s
hedulexij = 1 8(i; j) 2 V 2 su
h that bij � pi (C1')xij = 0 8(i; j) 2 V 2 su
h that bji � 1� pi (C1")
7



5.1.2 Strengthening linear 
onstraintsIn the same way, we 
an obviously repla
e the \bigM" value in 
onstraint (C4)by bij . In order to strengthen the pre
eden
e 
onstraints, we repla
e (C4) bySj � Si � bij 8(i; j) 2 V 2 j bij � pi (C4')Sj � Si � bij + (pi � bij)xij 8(i; j) 2 V 2 j 1� pj � bij < pi (C4")Sj � Si � (1� pj) + (pi + pj � 1)xij + (bij + pj � 1)xji8(i; j) 2 V 2 j bij < 1� pj (C4"')All these inequalities model the relation xij = 1 , Sj � Si � pi with more
lose.With the new disjun
tions dedu
ed by the symmetri
 triples and the shavingte
hniques, we 
an enlarge the de�nition of forbidden sets of 
ardinal 2 at allthe pair of a
tivities in disjun
tion, hen
e in
reasing the number of remaining
onstraints (C5).xij + xji = 1 8(i; j) 2 D (C5')Xu;v2fi;j;kgxuv � 1 8 minimal forbidden set (i; j; k) (C5")5.1.3 Generating 
utting-planesWe derived from 
onstraint propagation roughly two kinds of valid inequalities.Some fully use shaving dedu
tions, other translate and extend edge-�ndingte
hniques in terms of linear inequalities. All of them are seen more in detailsin [13℄.4-uple shaving 
uts link the relative sequen
ing of two a
tivities (i; j)with the relative sequen
ing of two a
tivities (h; l). Su
h a link is impli
itlyrepresented by the shaved matri
es. For instan
e the inequality bh!lij � pirepresents the relation h ! l ) i ! j. Then the linear 
onstraint xij � xhlis 
learly valid.Following this idea, we generated all the deepest 
utting-planes linking vari-ables xij , xji, xhl, xlh a

ording to the di�erent values of bij, bji, bhl, blh in thematri
es B, Bi!j, Bh!l, Bikj , ... We give here a single example of su
h a
ut when, for all optimal s
hedules where h pre
edes l, i and j are ne
essarilyexe
uted in parallel:xij + xji � 1� xhl if (bi!jlh � 1� ph or bh!lji � 1� pi and,bj!ilh � 1� ph or bh!lij � 1� pjWe have also obtained good results in generating the straightforward validinequality for all a
tivities i,j,h,l with i 6= j and h < l:Sj � Si � bhjjlij + (bh!lij � bhjjlij )xhl + (bl!hij � bljjhij )xlh (CS)8



Path 
uts. Sin
e the optimal solution of the RCPSP is equal to the lengthof a path made of ar
s (i; j) su
h that xij = 1, we have generated 3-a
tivitiesand 4-a
tivities path 
uts:Sl � Si � �+ �xij + 
xjl 8(i; j; l) 2 V 3 (C3P )Sl � Si � �+ �xij + 
xjh + Æxhl 8(i; j; h; l) 2 V 4 (C4P )The 
oeÆ
ients �, �, 
, Æ are 
al
ulated from default evaluations of the distan
ebetween Si and Sl in all optimal s
hedules, a

ording to the di�erent values ofxij and xjl (or of xij, xjh and xhl). Here again the shaved SSD-matri
es providesome tight evaluations, allowing then to generate deeper 
utting-planes.Clique 
uts. Under this name, we pool valid inequalities used to updatethe starting time of an a
tivity of a 
lique of disjun
tion with respe
t to theother a
tivities of the 
lique. For this reason, these inequalities 
an be seenas a translation of the edge-�nding rules in terms of linear 
onstraints. Themaximal 
liques C 
omputed and stored within the prepro
essing (
.f. se
tion4) are reused here to apply the 
lique 
uts.In the remaining, C is any 
lique of a
tivities all being pairwise in disjun
-tion, and j and l two di�erent a
tivities in C.The �rst 
uts that we have implemented are those that Applegate and Cook[1℄ have already used for the job-shop problem under the name \half 
uts".They state that ea
h a
tivity j 2 C has to be s
heduled after all a
tivitiesi 2 C su
h that xij = 1:Sj � mini2C b0i + Xi2Cnfjg pixij 8j 2 C (CH)The se
ond 
uts from Dyer and Wolsey [15℄ are 
alled \late job 
uts". Itmodi�es half 
ut by assuming that another a
tivity l 2 C is s
heduled at the�rst position. A penalty is then added whenever another a
tivity has to bes
heduled before l.Sj � b0l + Xi2Cnfjg pixij + Xi2Cnflgmin(0; b0i � b0l)xil 8j; l 2 C (CLJ)We propose our own version of the late-job 
ut by introdu
ing the a
tualstarting time Sl of a
tivity l instead of its earliest start time. Whenever ana
tivity i 2 C has to be s
heduled before l, Sl is repla
ed by Sl + bli � Si.Sj � Sl + Xi2Cnfjg pixij + Xi2Cnflg blixil 8j; l 2 C (CLJ2)Finally, we generate other 
uts that tighten (CLJ2) in the 
ase where a
tivityl is known, by CP, to pre
ede all a
tivities of C.Sj � Sl + Xi2Cnfjg pixij + mini2Cnflg(bli � pl) 8j; l 2 C (CLJ3)9



Note that ea
h of these 
uts has a symmetri
 expression that we have alsoimplemented. A
tually, the 
uts (CH), (CLJ), (CLJ2) and (CLJ3), 
ompute alower bound of the distan
e between the starting time S0 = 0 of the proje
t andthe starting time Sj. Their symmetri
 
ounterparts 
ompute a lower bound ofthe distan
e between the �nishing time Sn+1 of the proje
t and �nishing timeSj + pj .5.2 Time-indexed variablesFor the two formulations in time-indexed variables, the weak one and the strongone, we relax only the integrity 
onstraints (D4) as seen in se
tion 3.2.5.2.1 Fixing variablesAs for the 
ontinuous formulation, before the resolution, the possibly hugenumber of variables 
an be drasti
ally redu
ed thanks to the SSD-matrix B ofthe prepro
essing. Indeed, for ea
h a
tivity i in V , we only have to de�ne thevariables xit for t bounded by the earliest starting time ESj = b0i of i, and itslatest starting time LSj = �bi0.5.2.2 Strengthening linear 
onstraintsObviously, pre
eden
e 
onstraints may be enhan
ed as follows:LSjXt=ESjtxjt � LSiXt=ESitxit � bij 8 (i; j) 2 V 2 (D2')LSiX�=txi� + t+bij�1X�=ESj xj� � 1 8 (i; j) 2 V 2;8t2fESj � bij + 1; : : : ; LSig (D2's)5.2.3 Generating 
utting-planesNumerous 
utting-planes have already been proposed for the time-indexed for-mulations (see e.g. [12, 22℄). We reuse some of them, the 
lique 
uts, andpropose new ones, the shaving 
uts.Clique 
uts. As for the 
ontinuous formulation, the well-known 
lique 
uts
an be easily implemented for ea
h maximal 
lique of disjun
tion pre
al
ulatedwithin the 
onstraint programming pro
ess.Xi2Ct xit � 1 8 maximal 
lique C;8 t 2 f0; : : : ; Tg (DC)where Ct = fi 2 C j ESi � t � LSig.Shaving 
uts. With the aim of using shaving results, we propose newvalid inequalities, the 4-uple shaving 
uts: Let see the example of translating10



the straightforward impli
ationSj � Si > pi � 1) Sl � Sh � bi!jhl ;for two distin
t pairs of a
tivities (i; j) and (h; l), by means of the time-indexedvariables xit. Sin
e su
h a relation has an interest only if the 
urrent solutionof the linear relaxation does not already verify neither Sl � Sh � bi!jhl norSj � Si < pi, we assume that bi!jhl > bhl and bji < 1 � pi. Doing so we alsoensure that i! j is not already known by CP, i.e. that bij < pi.For more readability, let yij denote PLSjt=ESj txjt �PLSit=ESi txit. As for thepre
eden
e 
onstraints (D2) and (D2s), we 
an write the relation a

ording toboth formalisms, aggregated or disaggregated:yij > pi�1 ) yhl � bi!jhlyij > pi�1 ) EShX�=t xh� +t+bi!jhl �1X�=ESlxl� � 1 8t 2 f0; : : : ; TgThe inequality representing the �rst impli
ation 
an be written as follows:(�bji � pi + 1)yhl � (bi!jhl � bhl)yij + bi!jhl (1� pi)� bhlbij (DS)as show the �gure 1, where solutions of the integer program lie in the hat
hingzone and solutions of the linear relaxation lie in the gray zone.
yijbij pi�1 �bji

yhl
bhlbi!jhl ℄℄ (DS)

Figure 1: Proje
tion of S in (yij ; yhl)-planeThe se
ond impli
ation 
an be designed by the next 
onstraints:yij + bji � (�bji � pi + 1)�1� EShX�=t xht �t+bi!jhl �1X�=ESlxlt �8t 2 fmax(ESh; ESl � bi!jhl + 1); : : : ;min(LSh; LSl � bi!jhl + 1)g (DSs)Obviously, 
hoosing 
utting-planes (DSs) rather than (DS) amounts to thesame thing as 
hoosing between the strong, but more numerous, pre
eden
e
onstraints (D2s) and the weak ones (D2).11



6 Preliminary Computational ExperimentsWe have tested the proposed lower bounds on the Kolis
h, Spre
her and DrexlRCPCP instan
es [18℄. The lo
al 
onstraint propagation, shaving and 
utting-planes generation algorithms have been written in C++, using ILOG CON-CERT 1.0, a LP library embedding CPLEX 7.0.The lower bounds are built in a 
onstru
tive way: starting from a feasibleupper bound T , the lo
al CP and eventually shaving (total or redu
ed to thepairs of disjun
tion) algorithms are applied until no more dedu
tions are found.Then CPLB is obtained. The linear programming phase is invoked if CPLB < T .We have implemented the proposed CP based 
utting planes for the 
on-tinuous LP formulation only. For the dis
rete one, we generate the strongpre
eden
e 
onstraints as 
uts.Starting from the LP relaxation, the di�erent pools of 
uts are su

essivelyadded. At ea
h iteration, all the inequalities of a single group are tested insidean enumerative pro
edure but only the ones violating the 
urrent fra
tionalsolution are generated and in
luded in the LP. The LP relaxation is solvedwith the dual simplex and the non-binding 
uts are removed from the LP.The on-the-
y 
utting plane generation pro
edure stops when no signi�
antimprovement of the lower bound has been made during a 
ertain number ofiterations, or when no violating inequality 
an be found.Our results were obtained using a Pentium III 800MHz. We 
ompare themwith the best known lower bounds 
omputed by Br�u
ker and Knust [7℄.In �gure 2, we report experiments on the 480 KSD instan
es with 30 a
tiv-ities. Lines 1 and 2 give the average and maximal deviation �T from optimumof our lower bounds. Lines 3 and 4 give the average and maximal CPU times.We give also the number of instan
es for whi
h optimal value is rea
hed (line5) and the number of instan
es for whi
h linear programming improves 
on-straint propagation (line 6). Ea
h 
olumn 
orresponds to a spe
i�
 lower boundobtained from:(1) the lo
al 
onstraint programming (LCP) pro
ess alone (i.e. 
onstraintprogramming without shaving),(2) the 
omplete 
onstraint programming pro
ess (in
luding shaving),(3) the resolution of the weak formulation in time-indexed variables (without
uts) with only LCP prepro
essing,(4) the resolution of the weak formulation in time-indexed variables with
omplete CP prepro
essing and strong pre
eden
e 
uts,(5) the resolution of the formulation in 
ontinuous time variables with 
utting-planes and with the 
omplete CP prepro
essing.For these instan
es T is set to the optimal solutions whi
h are known. In termsof the quality of the bound, the results on the KSD30 instan
es are very good.12



KSD30 CP dis
rete 
ontinuous(1) (2) (3) (4) (5)Average �T 3.6% 2.1% 3.3% 1.8% 1.9%Maximal �T 38.0% 34.3% 25.0% 23.9% 31.3%Av. CPU time (s.) 0.0 0.9 0.3 2.9 2.2Max. CPU time (s.) 0.0 11.1 7.5 672.8 33.6# veri�ed instan
es 307 367 308 369 373# LP improves CP - - 25 39 57Figure 2: Results on KSD30With the 
ontinuous formulation, we prove the optimality of 373 instan
es outof 480 whereas the lower bound of Br�u
ker and Knust veri�es 318 instan
es.With the dis
rete formulation, we verify less instan
es but the average deviationunder the optimum is slightly better (1.8%). However we do not outperformfor this 
riterion the result (1.5%) of Br�u
ker and Knust.In terms of 
onstraint programming, the shaving te
hnique greatly improvesthe lo
al rules at the expense of extra 
omputational times. The LP 
uts derivedfrom 
onstraint programming su

eed in improving signi�
antly the CP bound,espe
ially for the 
ontinuous model (57 instan
es).We have also tested our algorithm on the 480 KSD instan
es with 60 a
-tivities (see �gure 3). For some of them, optimal values are not known. Weuse then for T the best known upper bounds to date. Here, RCP means theredu
ed 
onstraint programming pro
ess where shaving is only applied to thepairs of a
tivities in disjun
tion. Columns of the array 
orrespond to:(1) the LCP pro
ess,(2a) the RCP pro
ess,(2b) the 
omplete CP pro
ess,(3) the resolution of the weak formulation in time-indexed variables with onlyLCP prepro
essing,(4) the resolution of the weak formulation in time-indexed variables with theRCP prepro
essing and strong pre
eden
e 
uts,(5) the resolution of the formulation in 
ontinuous time variables with 
utting-planes and with the RCP prepro
essing.KSD60 CP dis
rete 
ontinuous(1) (2a) (2b) (3) (4) (5)Average �T 5.5% 4.9% 4.8% 3.3% 2.8% 4.7%Maximal �T 47.1% 47.1% 47.1% 24.8% 20.5% 47.1%Av. CPU time (s.) 0.0 1.2 18.8 4.6 164.8 34.8Max. CPU time (s.) 0.1 27.7 355.3 305.2 1500 591# veri�ed instan
es 337 348 354 337 348 349# LP improves CP - - - 66 70 52Figure 3: Results on KSD6013



For the KSD60 instan
es, the prepro
essing through CP is less eÆ
ient thanfor the previous ones. Be
ause of the size of the problem, the shaving te
hniquehas obviously a lower power of dedu
tion. This holds also for the 
uts derivedfrom the CP. The 
ontinuous formulation still veri�es more instan
es (349) thanthe dis
rete formulation (348), and requires mu
h less CPU time. Furthermorewe still perform better than Br�u
ker and Knust (340). However the averagedeviation from the best known solution in
reases dramati
aly for the 
ontinousmodel. On the other hand, the dis
rete LP model performs remarkably wellfor this 
riterion, improving by 2% the results of the CP phase. This seemsto indi
ate that the size of the problem has less impa
t on the performan
e ofthe dis
rete time LP relaxation than on the performan
e of the 
ontinuous one.The deviation under the best known lower bound (Br�u
ker and Knust) is of1.1%.The interest of the 
ooperation between CP and LP is enlightened by thisexperiment. Indeed, the average deviation from the best solution obtainedwith the 
ooperation is 2.8% (
olumn 4), while the CP phase alone (in
ludingshaving) obtains 4.8% (
olumn 2b) and dis
rete LP relaxation without anyprepro
essing obtains 4.3% (not diplayed in the array).7 Con
lusionWe take 
are not to 
on
lude prematurely on any 
omparison between our dif-ferent lower bounds before more 
omplete tests. However we 
an be en
ouragedby the �rst results. Our hybrid approa
h seems to be very 
ompetitive withthe best known methods although our 
omputational times are rather high.We aim at developping new shaving 
uts for the dis
rete LP model, sin
e theyshow their eÆ
ien
y in the 
ontinuous formulation.We proje
t too, 
onsidering the other existing lower bounds, to embed ouralgorithm in a destru
tive method with the goal to always �nd the better lowerbound with a minimal 
omputing e�ort, in view of an exa
t resolution methodfor the RCPSP.Referen
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