
Comparing lower bounds for the RCPSP under ahybrid onstraint-linear programming approahS. Demassey, C. Artigues, P. MihelonLaboratoire d'Informatique d'Avignon,339, hemin des Meinajari�es, Agropar, BP 1228,84911 Avignon Cedex 9, Franeemail: sophie.demassey�lia.univ-avignon.frAbstratWe propose a ooperation method between onstraint programmingand integer programming to ompute lower bounds for the resoure-ons-trained projet sheduling problem. Lower bounds are evaluated throughlinear relaxations of the two main integer program formulations of theRCPSP. We show how these bounds an be improved by performing (i)eÆient preproessing and (ii) on-the-y generation of utting planes, bothby using onstraint propagation algorithms. The interest of suh a oop-eration is demonstrated through a preliminary omputational analysis.Keywords: Resoure-onstrained projet sheduling problem, lower bounds,onstraint propagation rules, linear programming, utting-planes.1 IntrodutionThe resoure-onstrained projet sheduling problem (RCPSP) is one of themost general sheduling problems and is extensively studied in the literature(for a survey of the RCPSP, we refer the reader to the artile of Br�uker etal.[6℄). It onsists in sheduling a projet, i.e. a set of ativities linked bypreedene onstraints by means of a set of limited resoures while minimiz-ing the total duration of the projet. Being strongly NP hard, this problemhas most often been takled by branh and bound tehniques, see e.g.[14, 5℄.Consequently some researh fouses on the omputation of good lower bounds.Our objetive is to ompare new lower bounds for the RCPSP, based on aooperation between linear programming and onstraint programming.Constraint programming has been widely applied in the area of sheduling.Espeially, numerous dedutive \onstraint propagation" tehniques have yetbeen suessfully implemented. To ompute lower bounds, these tehniques aregenerally used at a preproessing stage to sharpen an integer program formula-tion of the sheduling problem before evaluating its relaxation. They are very1



useful to derease the program size, �xing variables for example and strength-ening the linear onstraints. Suh a ooperation has already been implementedfor the RCPSP in [7℄.We follow this approah but we lead also the ooperation between onstraintprogramming and integer programming further. Atually, we study here lowerbounds resulting of the resolution at optimality of some linear relaxations ofthe two main integer program formulations of the RCPSP, with natural datevariables or with time-indexed variables. With the aim of omparing thesedi�erent evaluations, the linear programs are preproessed by a same onstraintpropagation sheme, inluding our own shaving tehnique. Furthermore, weenhane the relaxations of the integer programs, deriving in two manners newutting-planes from onstraint propagation. The utting-planes of the �rstlass are basially translations of some onstraint programming rules in termsof linear inequalities, while the seond lass of utting-planes makes use of somededutions impliitly performed by preproessing. To our knowledge, the latterexperiment, whih is an atual ooperation, has not been arried out yet forthe RCPSP, although similar hybrid approahes are more and more suessfulin the literature for various ombinatorial optimization problems, inludingsheduling problems [16, 17℄.The paper is organized as follows:Setion 2 gives the de�nitions and notations of the onsidered problem.In setion 3 we present the two existing integer program formulations mostenountered for the RCPSP, as well as their respetive relaxations being on-sidered. We report in setion 4 the di�erent rules implemented in our onstraintpropagation algorithm at the preproessing stage. In setion 5, we explain foreah formulation, how the preproessing dedutions are used within the linearprogram resolution proess. Finally, setion 6 presents our preliminary ompu-tational experiments on a well-known set of benhmark instanes.2 De�nitions and notationsA projet is made of a set of ativities linked by preedene onstraints repre-sented by an ativity-on-node (AON) network G = (V;E) where eah node inV represents an ativity and eah ar in E represents a preedene onstraint.It is assumed that jV j = n+ 2 where 0 and n+ 1 are dummy ativities repre-senting the start and the end of the projet, respetively. The proessing timeof ativity j is denoted by pj with p0 = pn+1 = 0.A set R of renewable resoures is onsidered, eah resoure k 2 R having anumber Rk of units available on the entire planning horizon T . Eah ativityj 2 V requires a positive amount rjk of eah resoure k 2 R and must beexeuted without being interrupted.The objetive of the RCPSP is to �nd a preedene and resoure-feasibleshedule with a minimal duration, in other words to determine starting timesSi for the ativities i 2 V in suh a way that:2



� the preedene onstraints are ful�lled, i.e. Sj � Si+ pi for all (i; j) 2 E,� at eah time t on the entire planning horizon T , and for eah resourek 2 R, if S(t) denotes the set of ativities j exeuted at time t, i.e.verifying Sj � t < Sj + pj, then Pj2S(t) rjk � Rk,� the total duration, or makespan, maxi2V Si + pi = Sn+1 is minimized.3 Integer program formulations and relaxations forthe RCPCPThere are two ommon ways to model sheduling problems as integer programs.The �rst ones use ontinuous time variables, the seond ones use time indexedvariables. Our study relates to two formulations for the RCPSP, one of eahkind. The �rst one, presented in setion 3.1, follows Balas' disjuntive graphapproah [3℄. The seond one, in setion 3.2, was presumably �rst inspired byPritsker et al.[21℄. One an integer program is formulated for the RCPSP, anyof its relaxations, in partiular its linear programming (LP) relaxation that isthe relaxation of the integrality requirements, provides a lower bound of theoptimal makespan. We present here the two models and the way we use theirrelaxations.3.1 Continuous time variablesThe lassial Balas' disjuntive model for the job-shop problem, based onthe natural starting date variables, has been extended for the RCPSP byAlvarez-Vald�es and Tamarit [2℄ making use of the onept of minimal forbid-den set (i.e. any subset F of ativities, minimal for the inlusion and verifyingPj2F rjk > Rk for some resoure k 2 R). To model resoure onstraints, ad-ditional variables are de�ned: for all ouple of ativities (i; j), let xij be 1 if jstarts after the ompletion of i, and 0 otherwise.The problem in [2℄ is formulated as follows:minSn+1subjet to:xij = 1 8 (i; j) 2 E (C1)xij + xji � 1 8 (i; j) 2 V 2 (C2)xik � xij + xjk � 1 8 (i; j; k) 2 V 3 (C3)Sj � Si � �M + (pi +M)xij 8 (i; j) 2 V 2 (C4)Xi;j2F xij � 1 8 minimal forbidden set F (C5)xij 2 f0; 1g 8 (i; j) 2 V 2 (C6)Constraints (C1) give the preedene relations within the projet. Constraints(C4) model impliations xij = 1 ) Sj � Si + pi. Here M is an arbitrarily3



big onstant (greater than T for example). The resoure onstraints (C5) statethat in any minimal forbidden set F , at least one sequening deision must betaken.Note that the implementation of the only linear relaxation of this programis not realisti beause of the eventual exponential number of onstraints (C5).Hene in our relaxation, besides onstraints of integrity (C6) we also withdrawall onstraints (C5) for minimal forbidden sets of ardinality stritly greaterthan 3. For that reason, it is learly essential to tighten this linear program,and in partiular to adjust values M of onstraints (C4), impliitly takinginto aount the missing resoure onstraints. We will see in setion 5.1 howonstraint programming preproessing allows it.3.2 Time-indexed variablesThe most enountered integer linear formulation of the RCPSP [21, 12, 20℄ isbased on time indexed boolean variables xjt de�ned by: xjt = 1 if and onlyif ativity j starts at time t, for eah ativity j 2 V and for eah time periodt = 0; : : : ; T . Given these variables, the RCPSP an be formulated as follows:min Xt=0;:::;T tx(n+1)tsubjet to:TXt=0 xjt = 1 8 j 2 V (D1)TXt=0 t(xjt � xit) � pi 8 (i; j) 2 E (D2)Xj2V rjk tX�=t�pj+1xj� � Rk 8 k 2 R;8 t 2 f0; : : : ; Tg (D3)xjt 2 f0; 1g 8 j 2 V;8 t 2 f0; : : : ; Tg (D4)where inequalities (D2) and (D3) represent preedene and resoure onstraintsrespetively.Christo�des et al. propose in [12℄ the same formulation but where pree-dene onstraints are presented in a disaggregated strongest way:TX�=t xi� + t+pi�1X�=0 xj� � 1 8 (i; j) 2 E;8 t = 0; : : : ; T (D2s)Constraints (D2s) state that for all ouple (i; j) in E, if ativity i starts at orafter time t then ativity j annot start before time t+ pi and onversely.For the two formulations, we have implemented their linear relaxation: on-straints (D1), (D2), (D2s) et (D3) being easily omputable despite of their large4



number. Preproessing will be, here espeially, useful to �x a maximal numberof variables.4 Constraint programming as preproessingIn the �rst phase, a onstraint propagation algorithm is applied to the problemgiven a feasible upper bound T .As Br�uker and Knust [7℄, our algorithm has been implemented using thestart-start distane (SSD)-matrix formalism. A SSD-matrix B = (bij) is anymatrix of integers indexed by V 2 and verifying:Sj � Si � bij ; 8(i; j) 2 V 2; 8 optimal shedule S:The goal of our preproessing is then to adjust with more lose the intervaldomains [bij ;�bji℄ of the variables Sj � Si, in other words to inrease entriesbij of the matrix.First, note that in terms of start-start distane:� b0(n+1) is a lower bound (CPLB) of the optimal value of the RCPSP, and� the relative order between two ativities i and j is expliit:bij � pi () i! j (i preedes j) 8 optimal shedulebji � 1� pi () i9 j (i does not preede j) 8 optimal shedulebji � 1� pibij � 1� pj�() i k j (i and j in parallel) 8 optimal shedule:Note also that a �rst SSD-matrix is easily omputable for a given instaneof RCPSP with a planning horizon T . Floyd algorithm applied to the orientedvaluated graph G0 = (V;E [ (n + 1; 0)) (ar (n + 1; 0) being valuated by �T )omputes suh a matrix with a O(n3) omplexity, setting for eah i; j 2 V , bijto the longest path length in G0 between i and j.The propagation of any inrease of entries bij on the overall matrix B will bealso provided by the same algorithm, whih omputes the transitive losureof the matrix B (bik := maxk2V (bij + bjk)), hene reeting the transitivityproperty: Sk � Sj � bjk ^ Sj � Si � bij =) Sk � Si � bij + bjk:Besides this algorithm, we have implemented the three following loal on-straint propagation tehniques. They use (and maintain for the �rst one) asymmetri relation, namely the disjuntion relation D, over the set V of ativ-ities, de�ned as follows:(i; j) 2 D (or i � j) if and only if, in all optimal shedule, i and j are notexeuted simultaneously. 5



Symmetri triples algorithm dedues new disjuntions onsidering forbid-den sets of three ativities. For example, let (i; j; k) 2 V 3 be a forbiddenset, then k k i and k k j imply that i and j are in disjuntion. Otherrelations are dedued onsidering an additional ativity l related to suha symmetri triple (i; j; k). We have implemented the O(m2n4) algorithmproposed by Bruker et al. [5℄.Immediate seletion algorithm (see e.g. [8℄) is a simple O(jDj) algorithmthat states impliation: i� j and i9 j =) j ! i:Edge-�nding algorithm of Carlier and Pinson [9℄ dedues also new pree-dene relations but onsidering liques of disjuntion that are sets ofativities pairwise in disjuntion. To ompute maximal liques we haveimplemented two heuristis, the one proposed by Br�uker et al. [5℄ theother proposed by Baptiste and Le Pape [4℄. The overall algorithm oflique generation and edge-�nding runs in O(n4).By all these propagation tehniques the entries of B are eventually inreased.Furthermore, infeasibility may be deteted if for some ativity i, bii > 0 ours,that says: no feasible shedule of total duration less than T exists. To stillimprove the onstraint propagation proess, we use this last property applyingan adapted shaving tehnique. Shaving [10, 19, 11℄ follows the general prinipleof onsisteny enforing tehniques based upon refutation for the ConstraintSatisfation Problem: A new onstraint  is temporarily added and onstraintpropagation, for example, is performed. If it leads to an infeasibility, then thenegative onstraint e is posted. We have adapted the shaving tehniques tothe RCPSP in the way of solving sequening deisions:Shaving algorithm. For eah pair of ativities fi; jg we test the validity ofthe three following onstraints: i! j, j ! i and i k j, propagating it onthe overall problem by means of the four loal tehniques desribed above.We obtain then the new SSD-matries Bi!j, Bj!i and Bikj of the sameRCPSP instane in whih is added the orresponding onstraint. If one ortwo among this three matries is proved inonsistent ( that is if an entryof its diagonal is stritly positive) then the orresponding onstraintsare refuted and global dedutions on B an be done. Moreover, if theonstraint i k j is refuted then the disjuntion i� j is added to D. Oneexample: let fi; jg a pair of ativities suh that Bj!i is inonsistent butnot Bi!j and Bikj. It implies that in any optimal shedule (and in anyfeasible shedule S suh that Sn+1 � T ), either i preedes j or i and j arein parallel. This information is stated by the global inrease of entries ofB: B := min(Bi!j; Bikj):Going further, even if no infeasibility is deteted, the distane matrix mayhowever be updated as followsB := min(Bi!j; Bj!i; Bikj)6



Suh a global operation is mostly powerful but also very time onsuming sineit reprodues the loal onstraint propagation algorithm for eah unresolved se-quening deision between two ativities. We have been exploring two mannersof keeping reasonable CPU times, on the one hand reduing the loal onstraintpropagation algorithm within the shaving (essentially by suppressing symmetritriples rules), on the other hand restriting shaving to some pairs of ativities(the disjuntive pairs).5 Valid inequalities inferred from onstraint propa-gationAt the end of the preproessing, and if the latter did not reah alone the upperbound, that is if b0(n+1) < T , some omputed data are �xed and stored in orderto tighten the linear programs reported in setion 3. These data are(i) the SSD-matrix B and the disjuntion relation D (they will be useful tosharpen the integer programs),(ii) the maximal liques of disjuntion alulated for the edge-�nding and allof the remaining \shaved" distane matries Bi!j; Bj!i; Bikj for eahpair fi; jg of ativities not yet sequened. Indeed they may infer somestrong utting-planes.In the two next setions we detail how all these results of onstraint propagationenhane linear programs orresponding to eah formulation with ontinuoustime variables (5.1) or with time-indexed variables (5.2).5.1 Continuous time variablesAs stated in setion 3.1, for the integer formulation in ontinuous time variables,we have hosen to relax, besides the integrity onstraints, a number of resoureonstraints (C5). Some of these onstraints have been onsidered within thepreproessing. So the ooperation allows us to take these dropped onstraintsimpliitly into aount in the linear programming stage.5.1.1 Fixing variablesFirst before resolution, numerous variables an be �xed onsidering the SSD-matrix B sine the following equalities yield for all optimal shedulexij = 1 8(i; j) 2 V 2 suh that bij � pi (C1')xij = 0 8(i; j) 2 V 2 suh that bji � 1� pi (C1")
7



5.1.2 Strengthening linear onstraintsIn the same way, we an obviously replae the \bigM" value in onstraint (C4)by bij . In order to strengthen the preedene onstraints, we replae (C4) bySj � Si � bij 8(i; j) 2 V 2 j bij � pi (C4')Sj � Si � bij + (pi � bij)xij 8(i; j) 2 V 2 j 1� pj � bij < pi (C4")Sj � Si � (1� pj) + (pi + pj � 1)xij + (bij + pj � 1)xji8(i; j) 2 V 2 j bij < 1� pj (C4"')All these inequalities model the relation xij = 1 , Sj � Si � pi with morelose.With the new disjuntions dedued by the symmetri triples and the shavingtehniques, we an enlarge the de�nition of forbidden sets of ardinal 2 at allthe pair of ativities in disjuntion, hene inreasing the number of remainingonstraints (C5).xij + xji = 1 8(i; j) 2 D (C5')Xu;v2fi;j;kgxuv � 1 8 minimal forbidden set (i; j; k) (C5")5.1.3 Generating utting-planesWe derived from onstraint propagation roughly two kinds of valid inequalities.Some fully use shaving dedutions, other translate and extend edge-�ndingtehniques in terms of linear inequalities. All of them are seen more in detailsin [13℄.4-uple shaving uts link the relative sequening of two ativities (i; j)with the relative sequening of two ativities (h; l). Suh a link is impliitlyrepresented by the shaved matries. For instane the inequality bh!lij � pirepresents the relation h ! l ) i ! j. Then the linear onstraint xij � xhlis learly valid.Following this idea, we generated all the deepest utting-planes linking vari-ables xij , xji, xhl, xlh aording to the di�erent values of bij, bji, bhl, blh in thematries B, Bi!j, Bh!l, Bikj , ... We give here a single example of suh aut when, for all optimal shedules where h preedes l, i and j are neessarilyexeuted in parallel:xij + xji � 1� xhl if (bi!jlh � 1� ph or bh!lji � 1� pi and,bj!ilh � 1� ph or bh!lij � 1� pjWe have also obtained good results in generating the straightforward validinequality for all ativities i,j,h,l with i 6= j and h < l:Sj � Si � bhjjlij + (bh!lij � bhjjlij )xhl + (bl!hij � bljjhij )xlh (CS)8



Path uts. Sine the optimal solution of the RCPSP is equal to the lengthof a path made of ars (i; j) suh that xij = 1, we have generated 3-ativitiesand 4-ativities path uts:Sl � Si � �+ �xij + xjl 8(i; j; l) 2 V 3 (C3P )Sl � Si � �+ �xij + xjh + Æxhl 8(i; j; h; l) 2 V 4 (C4P )The oeÆients �, �, , Æ are alulated from default evaluations of the distanebetween Si and Sl in all optimal shedules, aording to the di�erent values ofxij and xjl (or of xij, xjh and xhl). Here again the shaved SSD-matries providesome tight evaluations, allowing then to generate deeper utting-planes.Clique uts. Under this name, we pool valid inequalities used to updatethe starting time of an ativity of a lique of disjuntion with respet to theother ativities of the lique. For this reason, these inequalities an be seenas a translation of the edge-�nding rules in terms of linear onstraints. Themaximal liques C omputed and stored within the preproessing (.f. setion4) are reused here to apply the lique uts.In the remaining, C is any lique of ativities all being pairwise in disjun-tion, and j and l two di�erent ativities in C.The �rst uts that we have implemented are those that Applegate and Cook[1℄ have already used for the job-shop problem under the name \half uts".They state that eah ativity j 2 C has to be sheduled after all ativitiesi 2 C suh that xij = 1:Sj � mini2C b0i + Xi2Cnfjg pixij 8j 2 C (CH)The seond uts from Dyer and Wolsey [15℄ are alled \late job uts". Itmodi�es half ut by assuming that another ativity l 2 C is sheduled at the�rst position. A penalty is then added whenever another ativity has to besheduled before l.Sj � b0l + Xi2Cnfjg pixij + Xi2Cnflgmin(0; b0i � b0l)xil 8j; l 2 C (CLJ)We propose our own version of the late-job ut by introduing the atualstarting time Sl of ativity l instead of its earliest start time. Whenever anativity i 2 C has to be sheduled before l, Sl is replaed by Sl + bli � Si.Sj � Sl + Xi2Cnfjg pixij + Xi2Cnflg blixil 8j; l 2 C (CLJ2)Finally, we generate other uts that tighten (CLJ2) in the ase where ativityl is known, by CP, to preede all ativities of C.Sj � Sl + Xi2Cnfjg pixij + mini2Cnflg(bli � pl) 8j; l 2 C (CLJ3)9



Note that eah of these uts has a symmetri expression that we have alsoimplemented. Atually, the uts (CH), (CLJ), (CLJ2) and (CLJ3), ompute alower bound of the distane between the starting time S0 = 0 of the projet andthe starting time Sj. Their symmetri ounterparts ompute a lower bound ofthe distane between the �nishing time Sn+1 of the projet and �nishing timeSj + pj .5.2 Time-indexed variablesFor the two formulations in time-indexed variables, the weak one and the strongone, we relax only the integrity onstraints (D4) as seen in setion 3.2.5.2.1 Fixing variablesAs for the ontinuous formulation, before the resolution, the possibly hugenumber of variables an be drastially redued thanks to the SSD-matrix B ofthe preproessing. Indeed, for eah ativity i in V , we only have to de�ne thevariables xit for t bounded by the earliest starting time ESj = b0i of i, and itslatest starting time LSj = �bi0.5.2.2 Strengthening linear onstraintsObviously, preedene onstraints may be enhaned as follows:LSjXt=ESjtxjt � LSiXt=ESitxit � bij 8 (i; j) 2 V 2 (D2')LSiX�=txi� + t+bij�1X�=ESj xj� � 1 8 (i; j) 2 V 2;8t2fESj � bij + 1; : : : ; LSig (D2's)5.2.3 Generating utting-planesNumerous utting-planes have already been proposed for the time-indexed for-mulations (see e.g. [12, 22℄). We reuse some of them, the lique uts, andpropose new ones, the shaving uts.Clique uts. As for the ontinuous formulation, the well-known lique utsan be easily implemented for eah maximal lique of disjuntion prealulatedwithin the onstraint programming proess.Xi2Ct xit � 1 8 maximal lique C;8 t 2 f0; : : : ; Tg (DC)where Ct = fi 2 C j ESi � t � LSig.Shaving uts. With the aim of using shaving results, we propose newvalid inequalities, the 4-uple shaving uts: Let see the example of translating10



the straightforward impliationSj � Si > pi � 1) Sl � Sh � bi!jhl ;for two distint pairs of ativities (i; j) and (h; l), by means of the time-indexedvariables xit. Sine suh a relation has an interest only if the urrent solutionof the linear relaxation does not already verify neither Sl � Sh � bi!jhl norSj � Si < pi, we assume that bi!jhl > bhl and bji < 1 � pi. Doing so we alsoensure that i! j is not already known by CP, i.e. that bij < pi.For more readability, let yij denote PLSjt=ESj txjt �PLSit=ESi txit. As for thepreedene onstraints (D2) and (D2s), we an write the relation aording toboth formalisms, aggregated or disaggregated:yij > pi�1 ) yhl � bi!jhlyij > pi�1 ) EShX�=t xh� +t+bi!jhl �1X�=ESlxl� � 1 8t 2 f0; : : : ; TgThe inequality representing the �rst impliation an be written as follows:(�bji � pi + 1)yhl � (bi!jhl � bhl)yij + bi!jhl (1� pi)� bhlbij (DS)as show the �gure 1, where solutions of the integer program lie in the hathingzone and solutions of the linear relaxation lie in the gray zone.
yijbij pi�1 �bji

yhl
bhlbi!jhl ℄℄ (DS)

Figure 1: Projetion of S in (yij ; yhl)-planeThe seond impliation an be designed by the next onstraints:yij + bji � (�bji � pi + 1)�1� EShX�=t xht �t+bi!jhl �1X�=ESlxlt �8t 2 fmax(ESh; ESl � bi!jhl + 1); : : : ;min(LSh; LSl � bi!jhl + 1)g (DSs)Obviously, hoosing utting-planes (DSs) rather than (DS) amounts to thesame thing as hoosing between the strong, but more numerous, preedeneonstraints (D2s) and the weak ones (D2).11



6 Preliminary Computational ExperimentsWe have tested the proposed lower bounds on the Kolish, Spreher and DrexlRCPCP instanes [18℄. The loal onstraint propagation, shaving and utting-planes generation algorithms have been written in C++, using ILOG CON-CERT 1.0, a LP library embedding CPLEX 7.0.The lower bounds are built in a onstrutive way: starting from a feasibleupper bound T , the loal CP and eventually shaving (total or redued to thepairs of disjuntion) algorithms are applied until no more dedutions are found.Then CPLB is obtained. The linear programming phase is invoked if CPLB < T .We have implemented the proposed CP based utting planes for the on-tinuous LP formulation only. For the disrete one, we generate the strongpreedene onstraints as uts.Starting from the LP relaxation, the di�erent pools of uts are suessivelyadded. At eah iteration, all the inequalities of a single group are tested insidean enumerative proedure but only the ones violating the urrent frationalsolution are generated and inluded in the LP. The LP relaxation is solvedwith the dual simplex and the non-binding uts are removed from the LP.The on-the-y utting plane generation proedure stops when no signi�antimprovement of the lower bound has been made during a ertain number ofiterations, or when no violating inequality an be found.Our results were obtained using a Pentium III 800MHz. We ompare themwith the best known lower bounds omputed by Br�uker and Knust [7℄.In �gure 2, we report experiments on the 480 KSD instanes with 30 ativ-ities. Lines 1 and 2 give the average and maximal deviation �T from optimumof our lower bounds. Lines 3 and 4 give the average and maximal CPU times.We give also the number of instanes for whih optimal value is reahed (line5) and the number of instanes for whih linear programming improves on-straint propagation (line 6). Eah olumn orresponds to a spei� lower boundobtained from:(1) the loal onstraint programming (LCP) proess alone (i.e. onstraintprogramming without shaving),(2) the omplete onstraint programming proess (inluding shaving),(3) the resolution of the weak formulation in time-indexed variables (withoututs) with only LCP preproessing,(4) the resolution of the weak formulation in time-indexed variables withomplete CP preproessing and strong preedene uts,(5) the resolution of the formulation in ontinuous time variables with utting-planes and with the omplete CP preproessing.For these instanes T is set to the optimal solutions whih are known. In termsof the quality of the bound, the results on the KSD30 instanes are very good.12



KSD30 CP disrete ontinuous(1) (2) (3) (4) (5)Average �T 3.6% 2.1% 3.3% 1.8% 1.9%Maximal �T 38.0% 34.3% 25.0% 23.9% 31.3%Av. CPU time (s.) 0.0 0.9 0.3 2.9 2.2Max. CPU time (s.) 0.0 11.1 7.5 672.8 33.6# veri�ed instanes 307 367 308 369 373# LP improves CP - - 25 39 57Figure 2: Results on KSD30With the ontinuous formulation, we prove the optimality of 373 instanes outof 480 whereas the lower bound of Br�uker and Knust veri�es 318 instanes.With the disrete formulation, we verify less instanes but the average deviationunder the optimum is slightly better (1.8%). However we do not outperformfor this riterion the result (1.5%) of Br�uker and Knust.In terms of onstraint programming, the shaving tehnique greatly improvesthe loal rules at the expense of extra omputational times. The LP uts derivedfrom onstraint programming sueed in improving signi�antly the CP bound,espeially for the ontinuous model (57 instanes).We have also tested our algorithm on the 480 KSD instanes with 60 a-tivities (see �gure 3). For some of them, optimal values are not known. Weuse then for T the best known upper bounds to date. Here, RCP means theredued onstraint programming proess where shaving is only applied to thepairs of ativities in disjuntion. Columns of the array orrespond to:(1) the LCP proess,(2a) the RCP proess,(2b) the omplete CP proess,(3) the resolution of the weak formulation in time-indexed variables with onlyLCP preproessing,(4) the resolution of the weak formulation in time-indexed variables with theRCP preproessing and strong preedene uts,(5) the resolution of the formulation in ontinuous time variables with utting-planes and with the RCP preproessing.KSD60 CP disrete ontinuous(1) (2a) (2b) (3) (4) (5)Average �T 5.5% 4.9% 4.8% 3.3% 2.8% 4.7%Maximal �T 47.1% 47.1% 47.1% 24.8% 20.5% 47.1%Av. CPU time (s.) 0.0 1.2 18.8 4.6 164.8 34.8Max. CPU time (s.) 0.1 27.7 355.3 305.2 1500 591# veri�ed instanes 337 348 354 337 348 349# LP improves CP - - - 66 70 52Figure 3: Results on KSD6013



For the KSD60 instanes, the preproessing through CP is less eÆient thanfor the previous ones. Beause of the size of the problem, the shaving tehniquehas obviously a lower power of dedution. This holds also for the uts derivedfrom the CP. The ontinuous formulation still veri�es more instanes (349) thanthe disrete formulation (348), and requires muh less CPU time. Furthermorewe still perform better than Br�uker and Knust (340). However the averagedeviation from the best known solution inreases dramatialy for the ontinousmodel. On the other hand, the disrete LP model performs remarkably wellfor this riterion, improving by 2% the results of the CP phase. This seemsto indiate that the size of the problem has less impat on the performane ofthe disrete time LP relaxation than on the performane of the ontinuous one.The deviation under the best known lower bound (Br�uker and Knust) is of1.1%.The interest of the ooperation between CP and LP is enlightened by thisexperiment. Indeed, the average deviation from the best solution obtainedwith the ooperation is 2.8% (olumn 4), while the CP phase alone (inludingshaving) obtains 4.8% (olumn 2b) and disrete LP relaxation without anypreproessing obtains 4.3% (not diplayed in the array).7 ConlusionWe take are not to onlude prematurely on any omparison between our dif-ferent lower bounds before more omplete tests. However we an be enouragedby the �rst results. Our hybrid approah seems to be very ompetitive withthe best known methods although our omputational times are rather high.We aim at developping new shaving uts for the disrete LP model, sine theyshow their eÆieny in the ontinuous formulation.We projet too, onsidering the other existing lower bounds, to embed ouralgorithm in a destrutive method with the goal to always �nd the better lowerbound with a minimal omputing e�ort, in view of an exat resolution methodfor the RCPSP.Referenes[1℄ Applegate D., Cook W., 1991. A omputational study of the job-shop sheduling problem. ORSAJournal on Computing, 3(2), 149{156.[2℄ Alvarez-Vald�es R., Tamarit J.M., 1993. The projet sheduling polyhedron: dimension, faetsand lifting theorems. European Journal of Operational Researh 67, 204-220.[3℄ Balas E., 1970. Projet sheduling with resoure onstraints, in E.M.L. Beale (ed.), Appliationsof Mathematial Programming Tehniques, Amerian Elsevier.[4℄ Baptiste P., Le Pape C., 2000. Constraint propagation and deomposition tehniques for highlydisjuntive and highly umulative projet sheduling problems, Constraints, 5, 119{139.[5℄ Br�uker P., Knust S., Shoo A., Thiele O., 1998. A branh and bound algorithm for the resoure-onstrained projet sheduling problem, European Journal of Operational Researh, 107, 272{288.14
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