Comparing lower bounds for the RCPSP under a
hybrid constraint-linear programming approach

S. DEMASSEY, C. ARTIGUES, P. MICHELON

Laboratoire d’Informatique d’Avignon,
339, chemin des Meinajariés, Agroparc, BP 1228,
84911 Avignon Cedex 9, France

email: sophie.demassey@lia.univ-avignon.fr

Abstract

We propose a cooperation method between constraint programming
and integer programming to compute lower bounds for the resource-cons-
trained project scheduling problem. Lower bounds are evaluated through
linear relaxations of the two main integer program formulations of the
RCPSP. We show how these bounds can be improved by performing (i)
efficient preprocessing and (ii) on-the-fly generation of cutting planes, both
by using constraint propagation algorithms. The interest of such a coop-
eration is demonstrated through a preliminary computational analysis.

Keywords: Resource-constrained project scheduling problem, lower bounds,
constraint propagation rules, linear programming, cutting-planes.

1 Introduction

The resource-constrained project scheduling problem (RCPSP) is one of the
most general scheduling problems and is extensively studied in the literature
(for a survey of the RCPSP, we refer the reader to the article of Briicker et
al.[6]). It consists in scheduling a project, i.e. a set of activities linked by
precedence constraints by means of a set of limited resources while minimiz-
ing the total duration of the project. Being strongly NP hard, this problem
has most often been tackled by branch and bound techniques, see e.g.[14, 5].
Consequently some research focuses on the computation of good lower bounds.
Our objective is to compare new lower bounds for the RCPSP, based on a
cooperation between linear programming and constraint programming.
Constraint programming has been widely applied in the area of scheduling.
Especially, numerous deductive “constraint propagation” techniques have yet
been successfully implemented. To compute lower bounds, these techniques are
generally used at a preprocessing stage to sharpen an integer program formula-
tion of the scheduling problem before evaluating its relaxation. They are very

useful to decrease the program size, fixing variables for example and strength-
ening the linear constraints. Such a cooperation has already been implemented
for the RCPSP in [7].

We follow this approach but we lead also the cooperation between constraint
programming and integer programming further. Actually, we study here lower
bounds resulting of the resolution at optimality of some linear relaxations of
the two main integer program formulations of the RCPSP, with natural date
variables or with time-indexed variables. With the aim of comparing these
different evaluations, the linear programs are preprocessed by a same constraint
propagation scheme, including our own shaving technique. Furthermore, we
enhance the relaxations of the integer programs, deriving in two manners new
cutting-planes from constraint propagation. The cutting-planes of the first
class are basically translations of some constraint programming rules in terms
of linear inequalities, while the second class of cutting-planes makes use of some
deductions implicitly performed by preprocessing. To our knowledge, the latter
experiment, which is an actual cooperation, has not been carried out yet for
the RCPSP, although similar hybrid approaches are more and more successful
in the literature for various combinatorial optimization problems, including
scheduling problems [16, 17].

The paper is organized as follows:

Section 2 gives the definitions and notations of the considered problem.
In section 3 we present the two existing integer program formulations most
encountered for the RCPSP, as well as their respective relaxations being con-
sidered. We report in section 4 the different rules implemented in our constraint
propagation algorithm at the preprocessing stage. In section 5, we explain for
each formulation, how the preprocessing deductions are used within the linear
program resolution process. Finally, section 6 presents our preliminary compu-
tational experiments on a well-known set of benchmark instances.

2 Definitions and notations

A project is made of a set of activities linked by precedence constraints repre-
sented by an activity-on-node (AON) network G = (V, E) where each node in
V represents an activity and each arc in E represents a precedence constraint.
It is assumed that |V| = n + 2 where 0 and n + 1 are dummy activities repre-
senting the start and the end of the project, respectively. The processing time
of activity j is denoted by p; with py = p,11 = 0.

A set R of renewable resources is considered, each resource k € R having a
number Ry of units available on the entire planning horizon 7. Each activity
J € V requires a positive amount r;; of each resource & € R and must be
executed without being interrupted.

The objective of the RCPSP is to find a precedence and resource-feasible
schedule with a minimal duration, in other words to determine starting times
S; for the activities 2 € V in such a way that:

e the precedence constraints are fulfilled, i.e. S; > S; 4 p; for all (7,7) € £,

e at each time ¢ on the entire planning horizon 7', and for each resource
k € R, if S(t) denotes the set of activities j executed at time ¢, i.e.
verifying S; <t < S; + pj, then Zjes(t) rik < Ry,

e the total duration, or makespan, max;cy S; + p; = Sp41 i minimized.

3 Integer program formulations and relaxations for
the RCPCP

There are two common ways to model scheduling problems as integer programs.
The first ones use continuous time variables, the second ones use time indexed
variables. Our study relates to two formulations for the RCPSP, one of each
kind. The first one, presented in section 3.1, follows Balas’ disjunctive graph
approach [3]. The second one, in section 3.2, was presumably first inspired by
Pritsker et al.[21]. Once an integer program is formulated for the RCPSP, any
of its relaxations, in particular its linear programming (LP) relaxation that is
the relaxation of the integrality requirements, provides a lower bound of the
optimal makespan. We present here the two models and the way we use their
relaxations.

3.1 Continuous time variables

The classical Balas’ disjunctive model for the job-shop problem, based on
the natural starting date variables, has been extended for the RCPSP by
Alvarez-Valdés and Tamarit [2] making use of the concept of minimal forbid-
den set (i.e. any subset F' of activities, minimal for the inclusion and verifying
Zje ik > Ry for some resource k € R). To model resource constraints, ad-
ditional variables are defined: for all couple of activities (i,7), let z;; be 1 if j
starts after the completion of i, and 0 otherwise.
The problem in [2] is formulated as follows:

min Sy, 41
subject to:
Ty =1 vV (i,j) € E (C1)
Tij + x50 < 1 vV (i,5) € V? (C2)
Tig > Tij + Tjg — 1 Y (i,5,k) € V? (C3)
Sj—8;>—-M+(pi+ M)z, VY (i,j) €V? (C4)
> @i >1 V minimal forbidden set F (C5)
i,jeF
z;; € {0,1} vV (i,5) € V2 (C6)

Constraints (C1) give the precedence relations within the project. Constraints
(C4) model implications z;; = 1 = S; > S; + p;. Here M is an arbitrarily

big constant (greater than 7" for example). The resource constraints (C5) state
that in any minimal forbidden set F', at least one sequencing decision must be
taken.

Note that the implementation of the only linear relaxation of this program
is not realistic because of the eventual exponential number of constraints (C5).
Hence in our relaxation, besides constraints of integrity (C6) we also withdraw
all constraints (C5) for minimal forbidden sets of cardinality strictly greater
than 3. For that reason, it is clearly essential to tighten this linear program,
and in particular to adjust values M of constraints (C4), implicitly taking
into account the missing resource constraints. We will see in section 5.1 how
constraint programming preprocessing allows it.

3.2 Time-indexed variables

The most encountered integer linear formulation of the RCPSP [21, 12, 20] is
based on time indexed boolean variables z;; defined by: z;; = 1 if and only
if activity j starts at time ¢, for each activity j € V' and for each time period
t=0,...,T. Given these variables, the RCPSP can be formulated as follows:

min Z LT (1)t
T

t=0,...,
subject to:
T
> w=1 VieV (D1)
t=0
T
t(xje — xit) > pi V(i,j) €E (D2)
t=0
t
rik Y. @ <Ry VEeRVte{0,...T} (D3)
JeEV T=t—p;+1
zj; € {0,1} VieV,vte{o,..., T} (D4)

where inequalities (D2) and (D3) represent precedence and resource constraints
respectively.

Christofides et al. propose in [12] the same formulation but where prece-
dence constraints are presented in a disaggregated strongest way:

T t+p;—1
Yowpt+ Y zp<1l V(i,j) €BNVt=0,...,T (D2s)
T=t 7=0

Constraints (D2s) state that for all couple (4,7) in FE, if activity ¢ starts at or
after time ¢ then activity 7 cannot start before time ¢ + p; and conversely.

For the two formulations, we have implemented their linear relaxation: con-
straints (D1), (D2), (D2s) et (D3) being easily computable despite of their large

number. Preprocessing will be, here especially, useful to fix a maximal number
of variables.

4 Constraint programming as preprocessing

In the first phase, a constraint propagation algorithm is applied to the problem
given a feasible upper bound 7.

As Briicker and Knust [7], our algorithm has been implemented using the
start-start distance (SSD)-matriz formalism. A SSD-matrix B = (b;;) is any
matrix of integers indexed by V? and verifying:

S;—S; > bij, V(i,§) € V?, V optimal schedule S.

The goal of our preprocessing is then to adjust with more close the interval
domains [b;;, —bj;] of the variables S; —.S;, in other words to increase entries
b;j of the matrix.

First, note that in terms of start-start distance:

® by(n+1) is a lower bound (CPLB) of the optimal value of the RCPSP, and

e the relative order between two activities 7 and j is explicit:

bij > p; <= i — j (i precedes j) V optimal schedule
bji>1—p; <= i j (i does not precede j) V optimal schedule
bii >1—p;
= pz} <= il j (¢ and j in parallel) V optimal schedule.

bij > 1 —pj

Note also that a first SSD-matrix is easily computable for a given instance
of RCPSP with a planning horizon T'. Floyd algorithm applied to the oriented
valuated graph G' = (V, E U (n + 1,0)) (arc (n + 1,0) being valuated by —T')
computes such a matrix with a O(n3) complexity, setting for each 4,5 € V, bij
to the longest path length in G’ between i and j.

The propagation of any increase of entries b;; on the overall matrix B will be
also provided by the same algorithm, which computes the transitive closure
of the matrix B (by, := maxgev(bij + bji)), hence reflecting the transitivity

property:
Sp—98; >bjr NSj—S; >bi; = Sk —Si >bij +bjp.

Besides this algorithm, we have implemented the three following local con-
straint propagation techniques. They use (and maintain for the first one) a
symmetric relation, namely the disjunction relation D, over the set V of activ-
ities, defined as follows:

(i,7) € D (or i — j) if and only if, in all optimal schedule, i and j are not
executed simultaneously.

Symmetric triples algorithm deduces new disjunctions considering forbid-
den sets of three activities. For example, let (i,7,k) € V? be a forbidden
set, then k || ¢ and k || j imply that ¢ and j are in disjunction. Other
relations are deduced considering an additional activity [related to such
a symmetric triple (i, j, k). We have implemented the O(m?n*) algorithm
proposed by Brucker et al. [5].

Immediate selection algorithm (see e.g. [8]) is a simple O(|D|) algorithm
that states implication: 4¢—jandi»j7 = j — 1.

Edge-finding algorithm of Carlier and Pinson [9] deduces also new prece-
dence relations but considering cliques of disjunction that are sets of
activities pairwise in disjunction. To compute maximal cliques we have
implemented two heuristics, the one proposed by Briicker et al. [5] the
other proposed by Baptiste and Le Pape [4]. The overall algorithm of
clique generation and edge-finding runs in O(n?).

By all these propagation techniques the entries of B are eventually increased.
Furthermore, infeasibility may be detected if for some activity i, b; > 0 occurs,
that says: no feasible schedule of total duration less than T' exists. To still
improve the constraint propagation process, we use this last property applying
an adapted shaving technique. Shaving [10, 19, 11] follows the general principle
of consistency enforcing techniques based upon refutation for the Constraint
Satisfaction Problem: A new constraint c¢ is temporarily added and constraint
propagation, for example, is performed. If it leads to an infeasibility, then the
negative constraint |c is posted. We have adapted the shaving techniques to
the RCPSP in the way of solving sequencing decisions:

Shaving algorithm. For each pair of activities {i,j} we test the validity of
the three following constraints: i — j, 7 — ¢ and 7 || j, propagating it on
the overall problem by means of the four local techniques described above.
We obtain then the new SSD-matrices B 7, Bi~% and Bili of the same
RCPSP instance in which is added the corresponding constraint. If one or
two among this three matrices is proved inconsistent (that is if an entry
of its diagonal is strictly positive) then the corresponding constraints
are refuted and global deductions on B can be done. Moreover, if the
constraint 7 || j is refuted then the disjunction i — j is added to D. One
example: let {i,j} a pair of activities such that B/~ is inconsistent but
not B/ and Bli. It implies that in any optimal schedule (and in any
feasible schedule S such that S, 11 < T'), either ¢ precedes j or ¢ and j are
in parallel. This information is stated by the global increase of entries of
B:

B :=min(B"7, Bl

Going further, even if no infeasibility is detected, the distance matrix may
however be updated as follows

B := min(B*7, Bi7 Bl

Such a global operation is mostly powerful but also very time consuming since
it reproduces the local constraint propagation algorithm for each unresolved se-
quencing decision between two activities. We have been exploring two manners
of keeping reasonable CPU times, on the one hand reducing the local constraint
propagation algorithm within the shaving (essentially by suppressing symmetric
triples rules), on the other hand restricting shaving to some pairs of activities
(the disjunctive pairs).

5 Valid inequalities inferred from constraint propa-
gation

At the end of the preprocessing, and if the latter did not reach alone the upper
bound, that is if by(,11) < 7', some computed data are fixed and stored in order
to tighten the linear programs reported in section 3. These data are

(i) the SSD-matrix B and the disjunction relation D (they will be useful to
sharpen the integer programs),

(ii) the maximal cliques of disjunction calculated for the edge-finding and all
of the remaining “shaved” distance matrices B*J ,Bi~% Billi for each
pair {i,7} of activities not yet sequenced. Indeed they may infer some
strong cutting-planes.

In the two next sections we detail how all these results of constraint propagation
enhance linear programs corresponding to each formulation with continuous
time variables (5.1) or with time-indexed variables (5.2).

5.1 Continuous time variables

As stated in section 3.1, for the integer formulation in continuous time variables,
we have chosen to relax, besides the integrity constraints, a number of resource
constraints (C5). Some of these constraints have been considered within the
preprocessing. So the cooperation allows us to take these dropped constraints
implicitly into account in the linear programming stage.

5.1.1 Fixing variables

First before resolution, numerous variables can be fixed considering the SSD-
matrix B since the following equalities yield for all optimal schedule

zi; =1 V(i,j) € V? such that b;; > p; (C1)
z;; =0 V(i,j) € V* such that bj; > 1 —p; (C17)

5.1.2 Strengthening linear constraints

In the same way, we can obviously replace the “big M” value in constraint (C4)
by b;;. In order to strengthen the precedence constraints, we replace (C4) by

S;—S; > bij V(i,j) €V? | by > pi (C4)
Sj —Si > bij + (pi — bij)zij V(i,j) €V | 1—p; <bj<p (C4)
Sj—8i > (1 =pj) + (pi + pj — Dwij + (bij +pj — D)y

V(i,j) € VZ | bij < 1—p;j (C47)

All these inequalities model the relation z;; = 1 < S; — S; > p; with more
close.

With the new disjunctions deduced by the symmetric triples and the shaving
techniques, we can enlarge the definition of forbidden sets of cardinal 2 at all
the pair of activities in disjunction, hence increasing the number of remaining
constraints (C5).

ZTij + x5 =1 V(i,j) € D (CH)
> @w>1 Y minimal forbidden set (i, 7, k) (C57)
u,wef{i,j,k}

5.1.3 Generating cutting-planes

We derived from constraint propagation roughly two kinds of valid inequalities.
Some fully use shaving deductions, other translate and extend edge-finding
techniques in terms of linear inequalities. All of them are seen more in details
in [13].

4-uple shaving cuts link the relative sequencing of two activities (i, 7)
with the relative sequencing of two activities (h,[). Such a link is implicitly
represented by the shaved matrices. For instance the inequality bgfl > p;
represents the relation h — [= 1 — j. Then the linear constraint z;; > zp,
is clearly valid.

Following this idea, we generated all the deepest cutting-planes linking vari-
ables x;j, i, Tp1, 21, according to the different values of b;j, bj;, by, byp in the
matrices B, B, B"l Billi_ . We give here a single example of such a
cut when, for all optimal schedules where h precedes [, ¢ and j are necessarily

executed in parallel:

bf:j >1—ppor b;-bfl >1—p; and,

Tij + i <1 —xpy if v
bl =1 —ppor b7 > 1 —p;

We have also obtained good results in generating the straightforward valid

inequality for all activities ¢,7,h,l with ¢ # j and h < [:

Sj—8i > b?jw + (b5 - b;}'”)xhz + (b — bgj‘h)xlh (Cs)

Path cuts. Since the optimal solution of the RCPSP is equal to the length
of a path made of arcs (4, 7) such that z;; = 1, we have generated 3-activities
and 4-activities path cuts:

S1— 8 > a+ Prij + vz V(i,j,0) € V3 (Csp)
Si = Si > a+ By + v + 6z Vi, 4, h 1) €V (Cap)

The coefficients «, 3, v, § are calculated from default evaluations of the distance
between S; and S; in all optimal schedules, according to the different values of
xi; and x;; (or of 5, x,, and xp;). Here again the shaved SSD-matrices provide
some tight evaluations, allowing then to generate deeper cutting-planes.

Clique cuts. Under this name, we pool valid inequalities used to update
the starting time of an activity of a clique of disjunction with respect to the
other activities of the clique. For this reason, these inequalities can be seen
as a translation of the edge-finding rules in terms of linear constraints. The
maximal cliques C' computed and stored within the preprocessing (c.f. section
4) are reused here to apply the clique cuts.

In the remaining, C' is any clique of activities all being pairwise in disjunc-
tion, and 7 and [two different activities in C.

The first cuts that we have implemented are those that Applegate and Cook
[1] have already used for the job-shop problem under the name “half cuts”.
They state that each activity j € C has to be scheduled after all activities
i € C such that z;; = 1:

S. > min b e ;
> rirélcr‘lbm + Z pizi; VjeC (Cp)
i€C\{j}
The second cuts from Dyer and Wolsey [15] are called “late job cuts”. It
modifies half cut by assuming that another activity [€ C is scheduled at the

first position. A penalty is then added whenever another activity has to be
scheduled before (.

S; > by + Z PiTij + Z min(0, by; — by)zy Vj,l € C (Cry)
ieC\{j} i€eC\ {1}

We propose our own version of the late-job cut by introducing the actual
starting time S; of activity / instead of its earliest start time. Whenever an
activity ¢ € C has to be scheduled before [, S is replaced by S; + b; < S;.

S;>Si+ Y. pwy+ Y, by Vj,leC (CL2)
ieC\{j} icC\{l}

Finally, we generate other cuts that tighten (Crs2) in the case where activity
[is known, by CP, to precede all activities of C.

S; > 8+ Z pirij+ min (b —p) Vj,leC (CrLy3)
i€\ (i} et

Note that each of these cuts has a symmetric expression that we have also
implemented. Actually, the cuts (Cy), (Crs), (Cry2) and (Cpy3), compute a
lower bound of the distance between the starting time Sy = 0 of the project and
the starting time S;. Their symmetric counterparts compute a lower bound of
the distance between the finishing time S, of the project and finishing time
S; +pj.

5.2 Time-indexed variables
For the two formulations in time-indexed variables, the weak one and the strong
one, we relax only the integrity constraints (D4) as seen in section 3.2.

5.2.1 Fixing variables

As for the continuous formulation, before the resolution, the possibly huge
number of variables can be drastically reduced thanks to the SSD-matrix B of
the preprocessing. Indeed, for each activity ¢ in V', we only have to define the
variables x;; for ¢ bounded by the earliest starting time ES; = bg; of 4, and its
latest starting time LS; = —bo.

5.2.2 Strengthening linear constraints

Obviously, precedence constraints may be enhanced as follows:

LS; LS;

Z txjt — Z txy > bij v (Z,]) € V2 (D2’)
t=ES; t=ES;

LS; t+bi;—1
> wmir+ Y wmpp <1l V(i) € VA VEE{ES; — by + 1,...,L3;} (D2s)
T=t T=ES;

5.2.3 Generating cutting-planes

Numerous cutting-planes have already been proposed for the time-indexed for-
mulations (see e.g. [12, 22]). We reuse some of them, the clique cuts, and
propose new ones, the shaving cuts.

Clique cuts. As for the continuous formulation, the well-known clique cuts
can be easily implemented for each maximal clique of disjunction precalculated
within the constraint programming process.

Z zi <1 V maximal clique C,V ¢t € {0,...,T} (De)
i€Ct

where C; = {i € C | ES; <t < LS;}.
Shaving cuts. With the aim of using shaving results, we propose new
valid inequalities, the 4-uple shaving cuts: Let see the example of translating

10

the straightforward implication
Sj—Si>pi—1=>Sl—Sthz7J,

for two distinct pairs of activities (7, 7) and (h,[), by means of the time-indexed
variables z;;. Since such a relation has an interest only if the current solution
of the linear relaxation does not already verify neither S; — S, > b;jj nor
S; — Si < pi, we assume that bfl?j > by, and bj; < 1 — p;. Doing so we also
ensure that ¢ — j is not already known by CP, i.e. that b;; < p;.

For more readability, let y;; denote Efjjésj trj — Zfﬁ ’ESi tzi;. As for the
precedence constraints (D2) and (D2s), we can write the relation according to
both formalisms, aggregated or disaggregated:

yij > pi—1 = yn > by,

ES), by 1
Yij >pi—1= thT-i- thgl Vte{O,...,T}
T=t T:ESI

The inequality representing the first implication can be written as follows:
(=bji = pi + Dy = (b, = bra)yij + by, (1 = pi) — bribi (Ds)

as show the figure 1, where solutions of the integer program lie in the hatching
zone and solutions of the linear relaxation lie in the gray zone.

Yhi
o (Ds)
pi—d .

hi ‘

|

|

bn |

| |

I |
bij pi—1 by

Figure 1: Projection of S in (yij;, yn)-plane

The second implication can be designed by the next constraints:

ES), by 1
Yij +bji < (=bji —pi +1) (1 =D am— Y)
T=t T=FES,

Vt € {max(ESy, ES; — by, +1),...,min(LSy, LS, — b7 + 1)} (Ds,)

Obviously, choosing cutting-planes (Dgs) rather than (Dg) amounts to the
same thing as choosing between the strong, but more numerous, precedence
constraints (D2s) and the weak ones (D2).

11

6 Preliminary Computational Experiments

We have tested the proposed lower bounds on the Kolisch, Sprecher and Drexl
RCPCP instances [18]. The local constraint propagation, shaving and cutting-
planes generation algorithms have been written in C++, using ILOG CON-
CERT 1.0, a LP library embedding CPLEX 7.0.

The lower bounds are built in a constructive way: starting from a feasible
upper bound 7', the local CP and eventually shaving (total or reduced to the
pairs of disjunction) algorithms are applied until no more deductions are found.
Then CPLB is obtained. The linear programming phase is invoked if CPLB < T.

We have implemented the proposed CP based cutting planes for the con-
tinuous LP formulation only. For the discrete one, we generate the strong
precedence constraints as cuts.

Starting from the LP relaxation, the different pools of cuts are successively
added. At each iteration, all the inequalities of a single group are tested inside
an enumerative procedure but only the ones violating the current fractional
solution are generated and included in the LP. The LP relaxation is solved
with the dual simplex and the non-binding cuts are removed from the LP.
The on-the-fly cutting plane generation procedure stops when no significant
improvement of the lower bound has been made during a certain number of
iterations, or when no violating inequality can be found.

Our results were obtained using a Pentium III 800MHz. We compare them
with the best known lower bounds computed by Briicker and Knust [7].

In figure 2, we report experiments on the 480 KSD instances with 30 activ-
ities. Lines 1 and 2 give the average and maximal deviation A from optimum
of our lower bounds. Lines 3 and 4 give the average and maximal CPU times.
We give also the number of instances for which optimal value is reached (line
5) and the number of instances for which linear programming improves con-
straint propagation (line 6). Each column corresponds to a specific lower bound
obtained from:

(1) the local constraint programming (LCP) process alone (i.e. constraint
programming without shaving),

(2) the complete constraint programming process (including shaving),

(3) the resolution of the weak formulation in time-indexed variables (without
cuts) with only LCP preprocessing,

(4) the resolution of the weak formulation in time-indexed variables with
complete CP preprocessing and strong precedence cuts,

(5) the resolution of the formulation in continuous time variables with cutting-
planes and with the complete CP preprocessing.

For these instances T is set to the optimal solutions which are known. In terms
of the quality of the bound, the results on the KSD30 instances are very good.

12

KSD30 CpP discrete continuous
€)) (2) (3) @) (5)

Average Ap 3.6% 2.1% 3.3% 1.8% 1.9%

Maximal Ap 38.0% 34.3% | 25.0% 23.9% | 31.3%

Av. CPU time (s.) | 0.0 0.9 0.3 2.9 2.2

Max. CPU time (s.) | 0.0 11.1 7.5 672.8 33.6

verified instances 307 367 308 369 373

LP improves CP - - 25 39 57

Figure 2: Results on KSD30

With the continuous formulation, we prove the optimality of 373 instances out
of 480 whereas the lower bound of Bricker and Knust verifies 318 instances.
With the discrete formulation, we verify less instances but the average deviation
under the optimum is slightly better (1.8%). However we do not outperform
for this criterion the result (1.5%) of Briicker and Knust.

In terms of constraint programming, the shaving technique greatly improves
the local rules at the expense of extra computational times. The LP cuts derived
from constraint programming succeed in improving significantly the CP bound,
especially for the continuous model (57 instances).

We have also tested our algorithm on the 480 KSD instances with 60 ac-
tivities (see figure 3). For some of them, optimal values are not known. We
use then for 71" the best known upper bounds to date. Here, RCP means the
reduced constraint programming process where shaving is only applied to the
pairs of activities in disjunction. Columns of the array correspond to:

(1
(2a

the LCP process,
the RCP process,

(2b) the complete CP process,

)
)
)
)

(3) the resolution of the weak formulation in time-indexed variables with only

LCP preprocessing,

(4) the resolution of the weak formulation in time-indexed variables with the
RCP preprocessing and strong precedence cuts,

(5) the resolution of the formulation in continuous time variables with cutting-
planes and with the RCP preprocessing.

KSD60 CP discrete continuous
(1) (2a) (2b) | (3 (4) ()

Average Ap 5.5% 4.9% 4.8% 3.3% 2.8% 4.7%

Maximal Ap 471% 471% 471% | 24.8% 20.5% | 47.1%

Av. CPU time (s.) 0.0 1.2 18.8 4.6 164.8 34.8

Max. CPU time (s.) | 0.1 27.7 355.3 305.2 1500 591

verified instances 337 348 354 337 348 349

LP improves CP - - - 66 70 52

Figure 3: Results on KSD60

13

For the KSD60 instances, the preprocessing through CP is less efficient than
for the previous ones. Because of the size of the problem, the shaving technique
has obviously a lower power of deduction. This holds also for the cuts derived
from the CP. The continuous formulation still verifies more instances (349) than
the discrete formulation (348), and requires much less CPU time. Furthermore
we still perform better than Briicker and Knust (340). However the average
deviation from the best known solution increases dramaticaly for the continous
model. On the other hand, the discrete LP model performs remarkably well
for this criterion, improving by 2% the results of the CP phase. This seems
to indicate that the size of the problem has less impact on the performance of
the discrete time LP relaxation than on the performance of the continuous one.
The deviation under the best known lower bound (Briicker and Knust) is of
1.1%.

The interest of the cooperation between CP and LP is enlightened by this
experiment. Indeed, the average deviation from the best solution obtained
with the cooperation is 2.8% (column 4), while the CP phase alone (including
shaving) obtains 4.8% (column 2b) and discrete LP relaxation without any
preprocessing obtains 4.3% (not diplayed in the array).

7 Conclusion

We take care not to conclude prematurely on any comparison between our dif-
ferent lower bounds before more complete tests. However we can be encouraged
by the first results. Our hybrid approach seems to be very competitive with
the best known methods although our computational times are rather high.
We aim at developping new shaving cuts for the discrete LP model, since they
show their efficiency in the continuous formulation.

We project too, considering the other existing lower bounds, to embed our
algorithm in a destructive method with the goal to always find the better lower
bound with a minimal computing effort, in view of an exact resolution method

for the RCPSP.

References

[1] Applegate D., Cook W., 1991. A computational study of the job-shop scheduling problem. ORSA
Journal on Computing, 3(2), 149-156.

[2] Alvarez-Valdés R., Tamarit J.M., 1993. The project scheduling polyhedron: dimension, facets
and lifting theorems. European Journal of Operational Research 67, 204-220.

[3] Balas E., 1970. Project scheduling with resource constraints, in E.M.L. Beale (ed.), Applications
of Mathematical Programming Techniques, American Elsevier.

[4] Baptiste P., Le Pape C., 2000. Constraint propagation and decomposition techniques for highly
disjunctive and highly cumulative project scheduling problems, Constraints, 5, 119-139.

[5] Briicker P., Knust S., Schoo A., Thiele O., 1998. A branch and bound algorithm for the resource-
constrained project scheduling problem, European Journal of Operational Research, 107, 272-288.

14

[6] Briicker P., Drexl A., Méhring R., Neumann K., Pesch E., 1999. Resource-constrained project
scheduling: Notation, classification, models, and methods, European Journal of Operational Re-
search, 112, 3-41.

[7] Briicker P., Knust S., 2000. A linear programming and constraint propagation-based lower bound
for the RCPSP, European Journal of Operational Research, 127, 355-362.

[8] Carlier J., Pinson E., 1989. An algorithm for solving the job-shop problem. Management Science
35, 164-176.

[9] Carlier J., Pinson, E., 1990. A practical use of Jackson’s preemptive schedule for solving the
job-shop problem. Annals of Operational Research, 26, 269—287.

[10] Carlier J., Pinson E., 1994. Adjustment of heads and tails for the job-shop problem. European
Journal of Operational Research, 78, 146-61.

[11] Caseau Y., Laburthe F., 1996. Cumulative scheduling with task intervals. In Michael Maher,
editor, Proceedings of the Joint International Conference and Symposium on Logic Programming,

MIT Press, 363-377.

[12

Christofides N., Alvarez-Valdés R., Tamarit J.M., 1987. Project scheduling with resource con-
straints: a branch and bound approach, European Journal of Operational Research, 29(3), 262—
273.

[13] Demassey S., Artigues C., Michelon P., 2000. Constraint propagation based cutting planes: an
application to the resource-constrained project scheduling problem, Technical report LIA-237,

University of Avignon.

[14] Demeulemeester E., Herroelen W., 1997. New benchmark results for the resource-constrained
project scheduling problem, Management Science, 43(11), 1485-1492.

[15] Dyer M., Wolsey L.A., 1990. Formulating the single machine sequencing problem with release
dates as mixed integer program, Discrete Applied Mathematics, 26, 255-270.

[16] Hooker J., 2000. Logic-based methods for optimization, Wiley, New-York.
[17] Harjunkoski I., Jain V., Grossmann [.E., 2000. Hybrid mixed integer/constraint logic program-
ming strategies for solving scheduling and combinatorial optimization problems. Computers and

Chemical Engineering, 24, 337-343.

[18] Kolisch R., Sprecher A., Drexl A., 1995. Characterization and generation of a general class of
RCPSP, Management Science, 41, 1693-1703.

19

Martin P., Shmoys D.B., 1996. A New Approach to computing optimal schedules for the job-shop
scheduling problem. in Proceedings of the 5th conference on integer programming and combina-
torial optimization Vancouver, British Columbia.

[20] Mohring R.H., Schulz A.S., Stork F., Uetz M., 2000. Solving project scheduling problems by
minimum cut computations. Research Report 680/2000, Technische Universitat Berlin, 2000.

[21] Pritsker A.A., Watters L.J., Wolfe P.M., 1969, Multi-project scheduling with limited resources:
a zero-one programming approach, Management Science, 16, 93-108.

[22] Sankaran J.K., Bricker D.L., Huang S.-H., 1999. A strong fractional cutting-plane algorithm for

resource-constrained project scheduling, International Journal of Industrial Engineering, 6(2),
99-111.

15

