
Pro
eedings CPAIOR'02A hybrid 
onstraint propagation-
uttingplane pro
edure for the RCPSPSophie Demassey, Christian Artigues, Philippe Mi
helonLaboratoire d'Informatique d'Avignon - CNRS FRE 2487Universit�e d'Avignon et des Pays du Vau
luseLIA-CERI, BP 1228,84911 Avignon Cedex 9, Fran
eemail: sophie.demassey�univ-avignon.frAbstra
tThe resour
e-
onstrained proje
t s
heduling problem (RCPSP) is to minimizethe makespan of a proje
t, i.e. the total duration of a set of a
tivities linked bypre
eden
e 
onstraints and whi
h exe
ute on limited resour
es. In this paper, wepresent a new lower bound for this problem 
omputed in a destru
tive way by both
onstraint programming and linear programming. The 
ontinuous relaxation of the
lassi
al integer linear formulation of the RCPSP with time-indexed variables is
onsidered. The algorithm tests the validity of a given lower bound T by provingthe infeasibility of this linear program tightened by the additional 
onstraint thatis, the makespan does not ex
eed T � 1. In order to strengthen the linear relax-ation, eÆ
ient 
onstraint propagation te
hniques in
luding shaving, are performedas prepro
essing. As well as original 
onstraint programming-based 
utting planesare generated. The interest of su
h a 
ooperative method is demonstrated througha 
omputational analysis on well-known sets of instan
es.Keywords: resour
e-
onstrained proje
t s
heduling problem, 
utting plane method,
onstraint propagation.1 Introdu
tionAn instan
e of the resour
e-
onstrained proje
t s
heduling problem (RCPSP) is made of:� a set R of m resour
es with limited availabilities Rk 2 N� ; 8k 2 R,� a proje
t i.e. a set V 0 of n a
tivities. Ea
h a
tivity i must exe
ute over pi 2 N� timeunits and request during this period a 
onstant amount rik 2 N of ea
h resour
e k.Moreover a partial order E0 is given on the set V 0 representing pre
eden
e relationsbetween the a
tivities.



Two dummy a
tivities 0 and n + 1 (with duration and requests equal to 0) are alsoadded to represent the start and the end of the proje
t respe
tively. Hen
e let de�neV = V 0 [ f0; n+ 1g and E = E0 [ f(0; i); (i; n+ 1) j i 2 V 0g.The obje
tive of the problem is then to �nd a s
hedule S on V , i.e. an a
tivitystarting times ve
tor (S0; S1; : : : ; Sn+1) 2 NV su
h that:� S veri�es the pre
eden
e 
onstraints:Sj � Si + pi for all (i; j) 2 E,� S veri�es the limitation resour
e 
onstraints:Pj2Vt rjk � Rk for any time t and for any resour
e k 2 R,where Vt = fj 2 V 0 j Sj � t < Sj + pjg is the set of a
tivities in progress at time t,� the duration of the proje
t or makespan Sn+1 is minimized.As a generalization of 
lassi
al s
heduling problems as the Job-Shop problem, RCPSPis 
learly NP-hard and widely studied in the literature (see e.g. the survey [3℄).Numerous lower bounds on RCPSP have been proposed to be in
orporated intobran
h-and-bound pro
edures, and espe
ially linear programming (LP) based lower bounds.The most en
ountered integer linear formulation is based on time-indexed variables andhas been treated by 
utting-plane methods [9, 19℄ or by lagrangian relaxation [9, 17℄.Another formulation have also been proposed in [16℄. One of its relaxation has re
entlybeen enhan
ed by Bru
ker and Knust [4℄ applying 
olumn generation te
hniques.Another way of bounding sear
h trees is to apply 
onstraint propagation rules to provethat no optimal s
hedule lie in a given node of the tree. Su
h 
onstraint programming(CP) te
hniques have been used for the RCPSP (see e.g. [8, 1, 12℄).In [13℄, Klein and S
holl used CP te
hniques too, but in a destru
tive way to expli
itly
ompute a lower bound. The prin
iple of destru
tive approa
hes is to dedu
e that a givenvalue T is a lower bound by proving there exists no feasible s
hedule with makespan lowerthan T . The lower bound by Bru
ker and Knust [4℄ is also 
omputed in a destru
tiveway. Moreover, for ea
h tested value T , they use CP te
hniques at a �rst stage either todire
tly refute T or to tighten the linear program of their 
olumn generation pro
edure.We inspired from this latter method with the aim of providing a deeper 
ooperationbetween 
onstraint programming and linear programming. Hen
e in a pre
eding paper[11℄, we proposed two hybrid lower bounds for the RCPSP 
omputed in a 
onstru
tiveway. The two bounds dire
tly result of 
ontinuous relaxation of two di�erent integerlinear programs tightened by 
onstraint propagation as prepro
essing and by generationof original CP-based 
utting planes. In this paper, we propose to still improve the bestof these two algorithms, i.e. the one based on the time-indexed formulation, embeddingit in a destru
tive pro
edure.In se
tion 2 we present the framework of this pro
edure. Se
tion 3 gives the 
on-straint programming rules implemented and se
tion 4 gives the integer linear programprepro
essed by CP. In se
tion 5, we des
ribe the valid linear inequalities for the linearprogram deriving from CP. Finally, se
tion 6 presents some 
omputational experimentson well-known sets of ben
hmark instan
es.



2 The destru
tive pro
edureLet UB be an upper bound of the optimal makespan (for instan
e the sum of the du-ration a
tivities) and LB be the 
urrent lower bound whi
h is initialized at 0. By adi
hotomizing sear
h pro
edure, we look for the greatest value T between LB and UBsu
h that the CP+LP algorithm proves there is no feasible s
hedule with makespan lowerthan T .In the �rst stage of the algorithm, RCPSP is seen as a Constraint Satisfa
tion Problemwith de
ision variables Sj � Si. All the pre
eden
e 
onstraints are taken into a

ountas well as the additional 
onstraint Sn+1 � T . Some basi
 resour
e 
onstraints are thenpropagated by means of 
lassi
al 
onsisten
y enfor
ing te
hniques, in
luding shavingte
hnique. Hen
e, they perform domain bound adjustments and dete
t new disjun
tions,i.e. pairs of a
tivities that 
annot exe
ute at the same time. The set of disjun
tions isrepresented by a symmetri
al relation D over V . The domain bounds are representedby a so-
alled Start Start Distan
e-matrix B = (bij) 2 ZV�V where the distan
e bij isde�ned as a minimum time lag between start of a
tivity i and start of a
tivity j:Sj � Si � bij ; 8(i; j) 2 V 2:With this formalism, [bij ;�bji℄ is obviously a domain for Sj � Si su
h that bound ad-justments 
onsist of in
reasing distan
es bij .The CP phase stops either when infeasibility of T is proved, that is if a variabledomain be
omes empty (bij > �bji), or when no more dedu
tion is performed. In these
ond 
ase, the RCPSP in
luding 
onstraint Sn+1 � T is modeled as an integer linearprogram taking into a

ount the SSD-matrix B previously adjusted by CP. Its 
ontinuousrelaxation is solved. Then series of valid inequalities deriving from disjun
tions andshaving dedu
tions are iteratively added to the program when they are violated by the
urrent fra
tional solution.Here again, pro
ess stops either if the linear program (and a fortiori T ) is infeasibleor when no violated inequality 
an be found or when no signi�
ant improvement of thelower bound has been made during a number of iterations. In the two latter 
ases thewhole pro
ess CP+LP is run again with UB set to T � 1. Otherwise, as soon as the
onstraint Sn+1 � T is proved to be in
onsistent, LB 
an be updated to T + 1 and thewhole pro
ess is reiterated.The destru
tive pro
edure is run until LB > UB or until 
omputational time limitis rea
hed. At the end, LB is the lower bound.3 Constraint programming as prepro
essingIn this se
tion, we brie
y report the di�erent 
onsisten
y enfor
ing te
hniques applied inthe CP phase. As explain in the pre
eding se
tion, their goal is to dete
t new disjun
tivepairs of a
tivities and to in
rease entries of the SSD-matrix B. All these te
hniques areseen more in details in [10℄.First B is initialized by taking into a

ount all the pre
eden
e 
onstraints and the



additional 
onstraint Sn+1 � T :bij = 8><>:0 if i = jpi if (i; j) 2 E�T otherwise.In turn, D is initialized to the set of pairs fi; jg of a
tivities su
h that rik + rjk > Rk forat least one resour
e k.Then, a set of four lo
al 
onstraint propagation rules implemented with an O(m2n4)
omplexity is applied:� the transitive 
losure of B,� the symmetri
 triples rules by Bru
ker et al. [2℄,� the immediate sele
tion rule (see e.g. [5℄),� the primal and dual edge-�nding rules of Carlier and Pinson [6℄.We have also adapted the shaving te
hnique [7, 15, 8℄ to the RCPSP in the way ofremoving in
onsistent sequen
ing de
isions:For ea
h pair of a
tivities fi; jg we test the validity of the three following 
onstraints:i ! j (Sj � Si + pi), j ! i (Si � Sj + pj) and i k j (Sj < Si + pi ^ Si < Sj + pj),propagating it by means of the four lo
al te
hniques des
ribed above, and getting thenthree new SSD-matri
es Bi!j , Bj!i and Bikj .The in
onsisten
y of one or two of these matri
es results in global dedu
tions on Bor dete
tion of new pre
eden
e, parallel or disjun
tion relation. For instan
e:B := min(Bi!j ; Bikj) if :(j ! i)i! j and B := Bi!j if :(i k j) and :(j ! i)fi; jg 2 D and B := min(Bi!j ; Bj!i) if :(i k j)Obviously the infeasibility of the three \shaved" SSD-matri
es for one pair of a
tivitiesmeans the infeasibility of T .Last, even if no infeasibility is dete
ted, B 
an however be updated as follows:B := min(Bi!j ; Bj!i; Bikj)Sin
e shaving is mostly time 
onsuming, we restri
t its appli
ation to a redu
ed setof pairs of a
tivities in
luding espe
ially pairs in disjun
tion.At the end of the CP phase and if T is not already proved to be infeasible, linearprogramming is invoked. In order to tighten the linear program, dedu
tions performedwithin the CP phase will be used: the adjusted SSD-matrix B to sharpen the integerprogram, the extended disjun
tion relation D and all the remaining 
onsistent \shaved"SSD-matri
es Bi!j ; Bj!i; Bikj to infer 
utting planes.



4 The integer linear formulationOur study relates to the formulation the most en
ountered for the RCPSP and given�rst by Pritsker et al. [18℄. In this program, the de
ision variables are binary variablesde�ned for ea
h a
tivity j 2 V and for ea
h time period t 2 f0; : : : ; Tg by:yjt = 1 if and only if a
tivity j starts at time t.Note that for ea
h a
tivity j, Sj =PTt=0 tyjt.A �rst improvement allowed by CP prepro
essing is to dratis
ally redu
e the numberof variables sin
e yjt = 0 for any time t lower than the earliest starting time of j (ESj =b0j) or greater than its latest starting time (LSj = �bj0).Hen
e, the RCPSP 
an be formulated as follows:min Xt=ESn+1;:::;T ty(n+1)t (1)subje
t to:LSjXt=ESj yjt = 1 8 j 2 V (2)LSjXt=ESj tyjt � LSiXt=ESi tyit � bij 8 (i; j) 2 V 2 (3)Xj2V �rjk :min(LSj;t)X�=max(ESj;t�pj+1)yj� � � Rk 8 k 2 R;8 t 2 f0; : : : ; Tg (4)yjt 2 f0; 1g 8 j 2 V;8 t 2 fESj ; : : : ; LSjg (5)Constraints (2) avoid preemption. Inequalities (3) derive immediately from CP dedu
-tions sin
e they impose minimum time lags bij between start of i and start of j. Theyextend in parti
ular the pre
eden
e 
onstraints (Sj � Si � bij > pi if (i; j) 2 E) andin
lude the additional 
onstraint (S0) � Sn+1 � b(n+1)0 = �T . Constraints (4) are theresour
e 
onstraints while 
onstraints (5) enfor
e variables yjt to be boolean.The 
ontinuous relaxation of this program is solved �rst. Then 
utting planes de-s
ribed in the following se
tion are iteratively added within the solution pro
ess.5 CP-based valid inequalitiesWe have generated two kinds of CP-based valid inequalities: The 
lique 
uts (subse
tion5.1) have a 
lassi
al shape but they are here mostly deep sin
e they rest on the disjun
-tion relation D enhan
ed by CP. The shaving 
uts (subse
tion 5.2) are original validinequalities whi
h translate shaving dedu
tions.



5.1 Clique 
utsClique 
uts are straightforward inequalities stating that if C is a maximal set of mutuallyin
ompatible a
tivities then, at any time t, at most one a
tivity of C is exe
uting:X(j;�)2Ct yj� � 1 8 t 2 f0; : : : ; Tg (6)where Ct is the set of 
ouples (j; �) verifying:(j 2 C and ESj � t < LSj + pj ;� 2 fmax(ESj ; t� pj + 1); : : : ;min(LSj ; t)g:Inequalities (6) are 
onsidered for 
liques over the disjun
tion+pre
eden
e relation whi
hare generated using two heuristi
s proposed by Bru
ker et al. [2℄ and by Baptiste andLe Pape [1℄. We build in average about n 
liques with an O(n2) 
omplexity.5.2 Shaving 
utsDedu
tions performed by shaving have not all been propagated within the CP pro
ess.However they are stored within the shaved matri
es. With shaving 
uts, we aim toexpress su
h informations in terms of valid linear inequalities for the linear program.weak 4-uple shaving 
uts. The �rst shaving dedu
tion we have 
onsidered is thefollowing straightforward impli
ationSj � Si � pi =) Sl � Sh � bi!jhl ; (7)where fi; jg and fh; lg are two distin
t pairs of a
tivities.To ensure that this dedu
tion is not dominated by another 
onstraint within the CSPformulation, we assume that bi!jhl > bhl and that bij � pi � 1 < �bji.The inequality representing this impli
ation 
an obviously be written as follows:(�bji � pi + 1)((Sl � Sh)� bhl) � ((Sj � Si)� pi + 1)(bi!jhl � bhl) (8)as shows the �gure 1, where solutions of the integer program lie in the hat
hing zone andsolutions of the linear relaxation lie in the gray zone.
Sj � Sibij pi�1 �bji

Sl � Sh
bhlbi!jhl ℄℄ (DS)

Figure 1: Proje
tion of S in (Sj � Si; Sl � Sh)-planeExpressing it as a valid linear inequality for the program with time-indexed variablesonly 
onsists in repla
ing variables Sj by PLSjt=ESj tyjt in inequality (8).



strong 4-uple shaving 
uts. There is another way to design the initial relation (7)in a \disaggregated" shape.Indeed Christo�des et al. have proposed in [9℄ this other representation of pre
eden
e
onstraint Sj � Si � bij :TX�=t yi� + t+bij�1X�=0 yj� � 1 8 (i; j) 2 V 2;8 t 2 f0; : : : ; Tg (9)The set of inequalities (9) dominates the aggregated pre
eden
e 
onstraint (3). Onthe other hand, the formulation with the disaggregated pre
eden
e 
onstraints (9) takeobviously more time to 
ompute.A

ording to the disaggregated formalism, relation (7) 
an be formulated by ea
h ofthe two following logi
al 
onstraints:Sj � Si > pi�1 ) LShX�=t yh� +t+bi!jhl �1X�=ESlyl� � 1 8t 2 f0; : : : ; TgSl � Sh < bi!jhl ) LSjX�=t yj� + t�pjX�=ESi yi� � 1 8t 2 f0; : : : ; TgThe �rst impli
ation 
an be designed by the next set of valid inequalities:� bji � (Sj � Si) � (�bji � pi + 1)�LShX�=t yh� +t+bi!jhl �1X�=ESlyl� � 1 �8t 2 fmax(ESh; ESl � bi!jhl + 1); : : : ;min(LSh; LSl � bi!jhl + 1)g (10)And the se
ond impli
ation by:(Sl � Sh)� bhl � �LSjX�=t yj� + t�piX�=ESi yi� �(bi!jhl � bhl)8t 2 fmax(ESj ; ESi + pi); : : : ;min(LSj ; LSi + pi)g (11)3-uple Shaving 
uts. In 
ase h (or l) is equal to 0, the two 
orresponding validinequalities (8) and (10) are dominated by the following one�bji � (Sj � Si) � (�bji � pi + 1)�ESi!jl �1X�=ESl yl� + LSlX�=LSi!jl +1yl� � (12)sin
e it models this stronger impli
ation:Sj � Si � pi =) ESi!jl � Sl � LSi!jl :



6 Computational ExperimentsWe have tested our pro
edure on the Kolis
h, Spre
her and Drexl RCPSP instan
es [14℄with m = 4 resour
es. The whole algorithm is written in C++, using ILOG CONCERT1.0, an LP library embedding CPLEX 7.0, for the linear programming phase. Our resultswere obtained using a Pentium III 800MHz. We 
ompare them with the best known lowerbounds 
omputed by Bru
ker and Knust [4℄ as well as the lower bound 
omputed withthe proposed hybrid CP+LP algorithm in a 
onstru
tive way [11℄.In �gure 2, we report experiments on the 480 KSD instan
es with 30 a
tivities. Lines1 and 2 give the average and maximal deviation �opt of the lower bounds from theoptimum. Lines 3 and 4 give the average and maximal CPU times in se
onds. We alsogive the number of instan
es for whi
h the optimal value is rea
hed (line 5) and thenumber of instan
es for whi
h linear programming improves 
onstraint propagation (line6). Ea
h 
olumn 
orresponds to a spe
i�
 lower bound:(1) the destru
tive lower bound with 
omplete CP prepro
essing, 
lique 
uts and strongshaving 
uts,(2) the 
onstru
tive lower bound with 
omplete CP prepro
essing, 
lique 
uts andstrong shaving 
uts [11℄,(3) the best lower bound [4℄KSD30 hybrid BK(1) (2) (3)Average �opt 0.68% 1.69% 1.50%Maximal �opt 15.2% 21.8% 11.1%Av. CPU time (s.) 3.2 13.7 0.4Max. CPU time (s.) 230 1129 4.3# veri�ed instan
es 403 376 318# LP improves CP 28 35 71Figure 2: Results on KSD30Despite higher 
omputational time, the quality of our destru
tive lower bound is unde-niable sin
e it is 
learly better than the tightest known lower bound, in terms of bothnumber of veri�ed instan
es (403 against 318) and average deviation from the optimum(0.68% against 1.50%).The power of destru
tive approa
hes is obviously demonstrated here, 
omparing forea
h 
riterion (quality and CPU time) results of the same algorithm used in a 
onstru
tiveway (
olumn (2)) and in a destru
tive way (
olumn (1)).Finally, the CP algorithm seems to be almost self-suÆ
ient for the KSD30 instan
essin
e the 
utting-plane pro
edure is su

essfully invoked (i.e. at least one tested upperbound T has been refuted within the LP phase) for only 28 instan
es.We have also tested our algorithm on the 480 KSD instan
es with 60 a
tivities (see�gure 3). To save 
omputational time here, shaving is only applied to a redu
ed setof 500 pairs of a
tivities in
luding essentially pairs in disjun
tion. In our preliminaryexperiments on these instan
es, we had not yet implemented the 
utting plane pro
edure.Hen
e in the array, 
olumn (1) (resp. 
olumn (2)) 
orresponds to the proposed lowerbound with redu
ed shaving and without 
utting planes 
omputed in a destru
tive (resp.
onstru
tive) way. The maximal CPU time allowed to solve an instan
e is also set at



1800 se
onds. Column (3) is again the best known lower bound by Bru
ker and Knust[4℄. The two �rst rows give now the average and maximal deviation of the lower boundsfrom the trivial 
riti
al path lower bound.KSD60 hybrid BK(1) (2) (3)Average �CPB 7.69% 6.73% 7.75%Maximal �CPB 81.8% 81.8% 85.7%Av. CPU time (s.) 115.5 45.0 5.0Max. CPU time (s.) 1800 1238 62# veri�ed instan
es 360 355 341# LP improves CP 61 57 92Figure 3: Results on KSD60As already observed in [11℄ the shaving te
hnique has a power of dedu
tion as lowas the size of the problem grows. On the other hand, linear programming improves thebound for a higher number of instan
es (61).For KSD60 instan
es, the bound by Bru
ker and Knust is in average slightly betterthan our bound (7.75% against 7.69%), but again we verify more instan
es (360 against341). However the 
urrent implementation of our pro
edure requires 
learly mu
h CPUtime.A deeper study of these latter results o�ers an interesting property of the proposedbound: The following graph represents the behavior of the average deviation �CPB of:our lower bound (destr), the best known lower bound (BK) and the best known upperbound (UB), depending on the Resour
e Fa
tor (see [14℄) over the KSD60 instan
es. Itshows that the performan
e of our algorithm is worse on instan
es with RF=0.75 andRF=1 i.e. when a
tivities requires in average three or four resour
es (with m = 4).

2468
10121416
1820

0.25 0.5 0.75 1

KSD60: Average deviation from CPB / Resour
e Fa
torUBdestrBK



7 Con
lusionIn this paper, we have presented a new lower bound for the RCPSP resulting from ahybrid 
onstraint programming-
utting plane pro
edure embedded in a destru
tive ap-proa
h. Preliminar 
omputational experiments are also given. This lower bound seemsto be really 
ompetitive with the best known lower bounds despite rather high 
om-putational times. It obtains very good results espe
ially on the KSD instan
es with 30a
tivities. In order to save 
omputational time requirements, we are 
onsidering to imple-ment a more 
lassi
al CP pro
edure based on time windows and shaving of in
onsistentstarting times. By the way, we will also be able to derive more adapted CP-based 
uttingplanes for the time-indexed linear program.Referen
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