
Proeedings CPAIOR'02A hybrid onstraint propagation-uttingplane proedure for the RCPSPSophie Demassey, Christian Artigues, Philippe MihelonLaboratoire d'Informatique d'Avignon - CNRS FRE 2487Universit�e d'Avignon et des Pays du VauluseLIA-CERI, BP 1228,84911 Avignon Cedex 9, Franeemail: sophie.demassey�univ-avignon.frAbstratThe resoure-onstrained projet sheduling problem (RCPSP) is to minimizethe makespan of a projet, i.e. the total duration of a set of ativities linked bypreedene onstraints and whih exeute on limited resoures. In this paper, wepresent a new lower bound for this problem omputed in a destrutive way by bothonstraint programming and linear programming. The ontinuous relaxation of thelassial integer linear formulation of the RCPSP with time-indexed variables isonsidered. The algorithm tests the validity of a given lower bound T by provingthe infeasibility of this linear program tightened by the additional onstraint thatis, the makespan does not exeed T � 1. In order to strengthen the linear relax-ation, eÆient onstraint propagation tehniques inluding shaving, are performedas preproessing. As well as original onstraint programming-based utting planesare generated. The interest of suh a ooperative method is demonstrated througha omputational analysis on well-known sets of instanes.Keywords: resoure-onstrained projet sheduling problem, utting plane method,onstraint propagation.1 IntrodutionAn instane of the resoure-onstrained projet sheduling problem (RCPSP) is made of:� a set R of m resoures with limited availabilities Rk 2 N� ; 8k 2 R,� a projet i.e. a set V 0 of n ativities. Eah ativity i must exeute over pi 2 N� timeunits and request during this period a onstant amount rik 2 N of eah resoure k.Moreover a partial order E0 is given on the set V 0 representing preedene relationsbetween the ativities.



Two dummy ativities 0 and n + 1 (with duration and requests equal to 0) are alsoadded to represent the start and the end of the projet respetively. Hene let de�neV = V 0 [ f0; n+ 1g and E = E0 [ f(0; i); (i; n+ 1) j i 2 V 0g.The objetive of the problem is then to �nd a shedule S on V , i.e. an ativitystarting times vetor (S0; S1; : : : ; Sn+1) 2 NV suh that:� S veri�es the preedene onstraints:Sj � Si + pi for all (i; j) 2 E,� S veri�es the limitation resoure onstraints:Pj2Vt rjk � Rk for any time t and for any resoure k 2 R,where Vt = fj 2 V 0 j Sj � t < Sj + pjg is the set of ativities in progress at time t,� the duration of the projet or makespan Sn+1 is minimized.As a generalization of lassial sheduling problems as the Job-Shop problem, RCPSPis learly NP-hard and widely studied in the literature (see e.g. the survey [3℄).Numerous lower bounds on RCPSP have been proposed to be inorporated intobranh-and-bound proedures, and espeially linear programming (LP) based lower bounds.The most enountered integer linear formulation is based on time-indexed variables andhas been treated by utting-plane methods [9, 19℄ or by lagrangian relaxation [9, 17℄.Another formulation have also been proposed in [16℄. One of its relaxation has reentlybeen enhaned by Bruker and Knust [4℄ applying olumn generation tehniques.Another way of bounding searh trees is to apply onstraint propagation rules to provethat no optimal shedule lie in a given node of the tree. Suh onstraint programming(CP) tehniques have been used for the RCPSP (see e.g. [8, 1, 12℄).In [13℄, Klein and Sholl used CP tehniques too, but in a destrutive way to expliitlyompute a lower bound. The priniple of destrutive approahes is to dedue that a givenvalue T is a lower bound by proving there exists no feasible shedule with makespan lowerthan T . The lower bound by Bruker and Knust [4℄ is also omputed in a destrutiveway. Moreover, for eah tested value T , they use CP tehniques at a �rst stage either todiretly refute T or to tighten the linear program of their olumn generation proedure.We inspired from this latter method with the aim of providing a deeper ooperationbetween onstraint programming and linear programming. Hene in a preeding paper[11℄, we proposed two hybrid lower bounds for the RCPSP omputed in a onstrutiveway. The two bounds diretly result of ontinuous relaxation of two di�erent integerlinear programs tightened by onstraint propagation as preproessing and by generationof original CP-based utting planes. In this paper, we propose to still improve the bestof these two algorithms, i.e. the one based on the time-indexed formulation, embeddingit in a destrutive proedure.In setion 2 we present the framework of this proedure. Setion 3 gives the on-straint programming rules implemented and setion 4 gives the integer linear programpreproessed by CP. In setion 5, we desribe the valid linear inequalities for the linearprogram deriving from CP. Finally, setion 6 presents some omputational experimentson well-known sets of benhmark instanes.



2 The destrutive proedureLet UB be an upper bound of the optimal makespan (for instane the sum of the du-ration ativities) and LB be the urrent lower bound whih is initialized at 0. By adihotomizing searh proedure, we look for the greatest value T between LB and UBsuh that the CP+LP algorithm proves there is no feasible shedule with makespan lowerthan T .In the �rst stage of the algorithm, RCPSP is seen as a Constraint Satisfation Problemwith deision variables Sj � Si. All the preedene onstraints are taken into aountas well as the additional onstraint Sn+1 � T . Some basi resoure onstraints are thenpropagated by means of lassial onsisteny enforing tehniques, inluding shavingtehnique. Hene, they perform domain bound adjustments and detet new disjuntions,i.e. pairs of ativities that annot exeute at the same time. The set of disjuntions isrepresented by a symmetrial relation D over V . The domain bounds are representedby a so-alled Start Start Distane-matrix B = (bij) 2 ZV�V where the distane bij isde�ned as a minimum time lag between start of ativity i and start of ativity j:Sj � Si � bij ; 8(i; j) 2 V 2:With this formalism, [bij ;�bji℄ is obviously a domain for Sj � Si suh that bound ad-justments onsist of inreasing distanes bij .The CP phase stops either when infeasibility of T is proved, that is if a variabledomain beomes empty (bij > �bji), or when no more dedution is performed. In theseond ase, the RCPSP inluding onstraint Sn+1 � T is modeled as an integer linearprogram taking into aount the SSD-matrix B previously adjusted by CP. Its ontinuousrelaxation is solved. Then series of valid inequalities deriving from disjuntions andshaving dedutions are iteratively added to the program when they are violated by theurrent frational solution.Here again, proess stops either if the linear program (and a fortiori T ) is infeasibleor when no violated inequality an be found or when no signi�ant improvement of thelower bound has been made during a number of iterations. In the two latter ases thewhole proess CP+LP is run again with UB set to T � 1. Otherwise, as soon as theonstraint Sn+1 � T is proved to be inonsistent, LB an be updated to T + 1 and thewhole proess is reiterated.The destrutive proedure is run until LB > UB or until omputational time limitis reahed. At the end, LB is the lower bound.3 Constraint programming as preproessingIn this setion, we briey report the di�erent onsisteny enforing tehniques applied inthe CP phase. As explain in the preeding setion, their goal is to detet new disjuntivepairs of ativities and to inrease entries of the SSD-matrix B. All these tehniques areseen more in details in [10℄.First B is initialized by taking into aount all the preedene onstraints and the



additional onstraint Sn+1 � T :bij = 8><>:0 if i = jpi if (i; j) 2 E�T otherwise.In turn, D is initialized to the set of pairs fi; jg of ativities suh that rik + rjk > Rk forat least one resoure k.Then, a set of four loal onstraint propagation rules implemented with an O(m2n4)omplexity is applied:� the transitive losure of B,� the symmetri triples rules by Bruker et al. [2℄,� the immediate seletion rule (see e.g. [5℄),� the primal and dual edge-�nding rules of Carlier and Pinson [6℄.We have also adapted the shaving tehnique [7, 15, 8℄ to the RCPSP in the way ofremoving inonsistent sequening deisions:For eah pair of ativities fi; jg we test the validity of the three following onstraints:i ! j (Sj � Si + pi), j ! i (Si � Sj + pj) and i k j (Sj < Si + pi ^ Si < Sj + pj),propagating it by means of the four loal tehniques desribed above, and getting thenthree new SSD-matries Bi!j , Bj!i and Bikj .The inonsisteny of one or two of these matries results in global dedutions on Bor detetion of new preedene, parallel or disjuntion relation. For instane:B := min(Bi!j ; Bikj) if :(j ! i)i! j and B := Bi!j if :(i k j) and :(j ! i)fi; jg 2 D and B := min(Bi!j ; Bj!i) if :(i k j)Obviously the infeasibility of the three \shaved" SSD-matries for one pair of ativitiesmeans the infeasibility of T .Last, even if no infeasibility is deteted, B an however be updated as follows:B := min(Bi!j ; Bj!i; Bikj)Sine shaving is mostly time onsuming, we restrit its appliation to a redued setof pairs of ativities inluding espeially pairs in disjuntion.At the end of the CP phase and if T is not already proved to be infeasible, linearprogramming is invoked. In order to tighten the linear program, dedutions performedwithin the CP phase will be used: the adjusted SSD-matrix B to sharpen the integerprogram, the extended disjuntion relation D and all the remaining onsistent \shaved"SSD-matries Bi!j ; Bj!i; Bikj to infer utting planes.



4 The integer linear formulationOur study relates to the formulation the most enountered for the RCPSP and given�rst by Pritsker et al. [18℄. In this program, the deision variables are binary variablesde�ned for eah ativity j 2 V and for eah time period t 2 f0; : : : ; Tg by:yjt = 1 if and only if ativity j starts at time t.Note that for eah ativity j, Sj =PTt=0 tyjt.A �rst improvement allowed by CP preproessing is to dratisally redue the numberof variables sine yjt = 0 for any time t lower than the earliest starting time of j (ESj =b0j) or greater than its latest starting time (LSj = �bj0).Hene, the RCPSP an be formulated as follows:min Xt=ESn+1;:::;T ty(n+1)t (1)subjet to:LSjXt=ESj yjt = 1 8 j 2 V (2)LSjXt=ESj tyjt � LSiXt=ESi tyit � bij 8 (i; j) 2 V 2 (3)Xj2V �rjk :min(LSj;t)X�=max(ESj;t�pj+1)yj� � � Rk 8 k 2 R;8 t 2 f0; : : : ; Tg (4)yjt 2 f0; 1g 8 j 2 V;8 t 2 fESj ; : : : ; LSjg (5)Constraints (2) avoid preemption. Inequalities (3) derive immediately from CP dedu-tions sine they impose minimum time lags bij between start of i and start of j. Theyextend in partiular the preedene onstraints (Sj � Si � bij > pi if (i; j) 2 E) andinlude the additional onstraint (S0) � Sn+1 � b(n+1)0 = �T . Constraints (4) are theresoure onstraints while onstraints (5) enfore variables yjt to be boolean.The ontinuous relaxation of this program is solved �rst. Then utting planes de-sribed in the following setion are iteratively added within the solution proess.5 CP-based valid inequalitiesWe have generated two kinds of CP-based valid inequalities: The lique uts (subsetion5.1) have a lassial shape but they are here mostly deep sine they rest on the disjun-tion relation D enhaned by CP. The shaving uts (subsetion 5.2) are original validinequalities whih translate shaving dedutions.



5.1 Clique utsClique uts are straightforward inequalities stating that if C is a maximal set of mutuallyinompatible ativities then, at any time t, at most one ativity of C is exeuting:X(j;�)2Ct yj� � 1 8 t 2 f0; : : : ; Tg (6)where Ct is the set of ouples (j; �) verifying:(j 2 C and ESj � t < LSj + pj ;� 2 fmax(ESj ; t� pj + 1); : : : ;min(LSj ; t)g:Inequalities (6) are onsidered for liques over the disjuntion+preedene relation whihare generated using two heuristis proposed by Bruker et al. [2℄ and by Baptiste andLe Pape [1℄. We build in average about n liques with an O(n2) omplexity.5.2 Shaving utsDedutions performed by shaving have not all been propagated within the CP proess.However they are stored within the shaved matries. With shaving uts, we aim toexpress suh informations in terms of valid linear inequalities for the linear program.weak 4-uple shaving uts. The �rst shaving dedution we have onsidered is thefollowing straightforward impliationSj � Si � pi =) Sl � Sh � bi!jhl ; (7)where fi; jg and fh; lg are two distint pairs of ativities.To ensure that this dedution is not dominated by another onstraint within the CSPformulation, we assume that bi!jhl > bhl and that bij � pi � 1 < �bji.The inequality representing this impliation an obviously be written as follows:(�bji � pi + 1)((Sl � Sh)� bhl) � ((Sj � Si)� pi + 1)(bi!jhl � bhl) (8)as shows the �gure 1, where solutions of the integer program lie in the hathing zone andsolutions of the linear relaxation lie in the gray zone.
Sj � Sibij pi�1 �bji

Sl � Sh
bhlbi!jhl ℄℄ (DS)

Figure 1: Projetion of S in (Sj � Si; Sl � Sh)-planeExpressing it as a valid linear inequality for the program with time-indexed variablesonly onsists in replaing variables Sj by PLSjt=ESj tyjt in inequality (8).



strong 4-uple shaving uts. There is another way to design the initial relation (7)in a \disaggregated" shape.Indeed Christo�des et al. have proposed in [9℄ this other representation of preedeneonstraint Sj � Si � bij :TX�=t yi� + t+bij�1X�=0 yj� � 1 8 (i; j) 2 V 2;8 t 2 f0; : : : ; Tg (9)The set of inequalities (9) dominates the aggregated preedene onstraint (3). Onthe other hand, the formulation with the disaggregated preedene onstraints (9) takeobviously more time to ompute.Aording to the disaggregated formalism, relation (7) an be formulated by eah ofthe two following logial onstraints:Sj � Si > pi�1 ) LShX�=t yh� +t+bi!jhl �1X�=ESlyl� � 1 8t 2 f0; : : : ; TgSl � Sh < bi!jhl ) LSjX�=t yj� + t�pjX�=ESi yi� � 1 8t 2 f0; : : : ; TgThe �rst impliation an be designed by the next set of valid inequalities:� bji � (Sj � Si) � (�bji � pi + 1)�LShX�=t yh� +t+bi!jhl �1X�=ESlyl� � 1 �8t 2 fmax(ESh; ESl � bi!jhl + 1); : : : ;min(LSh; LSl � bi!jhl + 1)g (10)And the seond impliation by:(Sl � Sh)� bhl � �LSjX�=t yj� + t�piX�=ESi yi� �(bi!jhl � bhl)8t 2 fmax(ESj ; ESi + pi); : : : ;min(LSj ; LSi + pi)g (11)3-uple Shaving uts. In ase h (or l) is equal to 0, the two orresponding validinequalities (8) and (10) are dominated by the following one�bji � (Sj � Si) � (�bji � pi + 1)�ESi!jl �1X�=ESl yl� + LSlX�=LSi!jl +1yl� � (12)sine it models this stronger impliation:Sj � Si � pi =) ESi!jl � Sl � LSi!jl :



6 Computational ExperimentsWe have tested our proedure on the Kolish, Spreher and Drexl RCPSP instanes [14℄with m = 4 resoures. The whole algorithm is written in C++, using ILOG CONCERT1.0, an LP library embedding CPLEX 7.0, for the linear programming phase. Our resultswere obtained using a Pentium III 800MHz. We ompare them with the best known lowerbounds omputed by Bruker and Knust [4℄ as well as the lower bound omputed withthe proposed hybrid CP+LP algorithm in a onstrutive way [11℄.In �gure 2, we report experiments on the 480 KSD instanes with 30 ativities. Lines1 and 2 give the average and maximal deviation �opt of the lower bounds from theoptimum. Lines 3 and 4 give the average and maximal CPU times in seonds. We alsogive the number of instanes for whih the optimal value is reahed (line 5) and thenumber of instanes for whih linear programming improves onstraint propagation (line6). Eah olumn orresponds to a spei� lower bound:(1) the destrutive lower bound with omplete CP preproessing, lique uts and strongshaving uts,(2) the onstrutive lower bound with omplete CP preproessing, lique uts andstrong shaving uts [11℄,(3) the best lower bound [4℄KSD30 hybrid BK(1) (2) (3)Average �opt 0.68% 1.69% 1.50%Maximal �opt 15.2% 21.8% 11.1%Av. CPU time (s.) 3.2 13.7 0.4Max. CPU time (s.) 230 1129 4.3# veri�ed instanes 403 376 318# LP improves CP 28 35 71Figure 2: Results on KSD30Despite higher omputational time, the quality of our destrutive lower bound is unde-niable sine it is learly better than the tightest known lower bound, in terms of bothnumber of veri�ed instanes (403 against 318) and average deviation from the optimum(0.68% against 1.50%).The power of destrutive approahes is obviously demonstrated here, omparing foreah riterion (quality and CPU time) results of the same algorithm used in a onstrutiveway (olumn (2)) and in a destrutive way (olumn (1)).Finally, the CP algorithm seems to be almost self-suÆient for the KSD30 instanessine the utting-plane proedure is suessfully invoked (i.e. at least one tested upperbound T has been refuted within the LP phase) for only 28 instanes.We have also tested our algorithm on the 480 KSD instanes with 60 ativities (see�gure 3). To save omputational time here, shaving is only applied to a redued setof 500 pairs of ativities inluding essentially pairs in disjuntion. In our preliminaryexperiments on these instanes, we had not yet implemented the utting plane proedure.Hene in the array, olumn (1) (resp. olumn (2)) orresponds to the proposed lowerbound with redued shaving and without utting planes omputed in a destrutive (resp.onstrutive) way. The maximal CPU time allowed to solve an instane is also set at



1800 seonds. Column (3) is again the best known lower bound by Bruker and Knust[4℄. The two �rst rows give now the average and maximal deviation of the lower boundsfrom the trivial ritial path lower bound.KSD60 hybrid BK(1) (2) (3)Average �CPB 7.69% 6.73% 7.75%Maximal �CPB 81.8% 81.8% 85.7%Av. CPU time (s.) 115.5 45.0 5.0Max. CPU time (s.) 1800 1238 62# veri�ed instanes 360 355 341# LP improves CP 61 57 92Figure 3: Results on KSD60As already observed in [11℄ the shaving tehnique has a power of dedution as lowas the size of the problem grows. On the other hand, linear programming improves thebound for a higher number of instanes (61).For KSD60 instanes, the bound by Bruker and Knust is in average slightly betterthan our bound (7.75% against 7.69%), but again we verify more instanes (360 against341). However the urrent implementation of our proedure requires learly muh CPUtime.A deeper study of these latter results o�ers an interesting property of the proposedbound: The following graph represents the behavior of the average deviation �CPB of:our lower bound (destr), the best known lower bound (BK) and the best known upperbound (UB), depending on the Resoure Fator (see [14℄) over the KSD60 instanes. Itshows that the performane of our algorithm is worse on instanes with RF=0.75 andRF=1 i.e. when ativities requires in average three or four resoures (with m = 4).
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