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Abstract

The resource-constrained project scheduling problem (RCPSP) is to minimize
the makespan of a project, i.e. the total duration of a set of activities linked by
precedence constraints and which execute on limited resources. In this paper, we
present a new lower bound for this problem computed in a destructive way by both
constraint programming and linear programming. The continuous relaxation of the
classical integer linear formulation of the RCPSP with time-indexed variables is
considered. The algorithm tests the validity of a given lower bound 7' by proving
the infeasibility of this linear program tightened by the additional constraint that
is, the makespan does not exceed 7' — 1. In order to strengthen the linear relax-
ation, efficient constraint propagation techniques including shaving, are performed
as preprocessing. As well as original constraint programming-based cutting planes
are generated. The interest of such a cooperative method is demonstrated through
a computational analysis on well-known sets of instances.

Keywords: resource-constrained project scheduling problem, cutting plane method,
constraint propagation.

1 Introduction

An instance of the resource-constrained project scheduling problem (RCPSP) is made of:
e a set R of m resources with limited availabilities Ry € N*, Vk € R,

e a project i.e. aset V' of n activities. Each activity ¢ must execute over p; € N* time
units and request during this period a constant amount r;; € N of each resource k.
Moreover a partial order E’ is given on the set V' representing precedence relations
between the activities.



Two dummy activities 0 and n + 1 (with duration and requests equal to 0) are also
added to represent the start and the end of the project respectively. Hence let define
V=V'U{0,n+ 1} and E = E' U{(0,%),(i,n+1) | i € V'}.

The objective of the problem is then to find a schedule S on V, i.e. an activity
starting times vector (Sy, S1,...,S.4+1) € NV such that:

e S verifies the precedence constraints:
S; > S; + p; for all (i,j) € E,

e S verifies the limitation resource constraints:
Ejew rjr < Ry for any time ¢ and for any resource k € R,
where V; = {j € V' | S; <t < Sj+p;} is the set of activities in progress at time ¢,

e the duration of the project or makespan S, 11 is minimized.

As a generalization of classical scheduling problems as the Job-Shop problem, RCPSP
is clearly NP-hard and widely studied in the literature (see e.g. the survey [3]).

Numerous lower bounds on RCPSP have been proposed to be incorporated into
branch-and-bound procedures, and especially linear programming (LP) based lower bounds.
The most encountered integer linear formulation is based on time-indexed variables and
has been treated by cutting-plane methods [9, 19] or by lagrangian relaxation [9, 17].
Another formulation have also been proposed in [16]. One of its relaxation has recently
been enhanced by Brucker and Knust [4] applying column generation techniques.

Another way of bounding search trees is to apply constraint propagation rules to prove
that no optimal schedule lie in a given node of the tree. Such constraint programming
(CP) techniques have been used for the RCPSP (see e.g. [8, 1, 12]).

In [13], Klein and Scholl used CP techniques too, but in a destructive way to explicitly
compute a lower bound. The principle of destructive approaches is to deduce that a given
value T'is a lower bound by proving there exists no feasible schedule with makespan lower
than 7T'. The lower bound by Brucker and Knust [4] is also computed in a destructive
way. Moreover, for each tested value T', they use CP techniques at a first stage either to
directly refute 7" or to tighten the linear program of their column generation procedure.

We inspired from this latter method with the aim of providing a deeper cooperation
between constraint programming and linear programming. Hence in a preceding paper
[11], we proposed two hybrid lower bounds for the RCPSP computed in a constructive
way. The two bounds directly result of continuous relaxation of two different integer
linear programs tightened by constraint propagation as preprocessing and by generation
of original CP-based cutting planes. In this paper, we propose to still improve the best
of these two algorithms, i.e. the one based on the time-indexed formulation, embedding
it in a destructive procedure.

In section 2 we present the framework of this procedure. Section 3 gives the con-
straint programming rules implemented and section 4 gives the integer linear program
preprocessed by CP. In section 5, we describe the valid linear inequalities for the linear
program deriving from CP. Finally, section 6 presents some computational experiments
on well-known sets of benchmark instances.



2 The destructive procedure

Let UB be an upper bound of the optimal makespan (for instance the sum of the du-
ration activities) and LB be the current lower bound which is initialized at 0. By a
dichotomizing search procedure, we look for the greatest value 17" between LB and UB
such that the CP+LP algorithm proves there is no feasible schedule with makespan lower
than T

In the first stage of the algorithm, RCPSP is seen as a Constraint Satisfaction Problem
with decision variables S; — S;. All the precedence constraints are taken into account
as well as the additional constraint 5,11 < T. Some basic resource constraints are then
propagated by means of classical consistency enforcing techniques, including shaving
technique. Hence, they perform domain bound adjustments and detect new disjunctions,
i.e. pairs of activities that cannot execute at the same time. The set of disjunctions is
represented by a symmetrical relation D over V. The domain bounds are represented
by a so-called Start Start Distance-matriz B = (b;;) € ZY*"V where the distance b;; is
defined as a minimum time lag between start of activity ¢ and start of activity j:

S;—8; >bij, V(i,j) € V>

With this formalism, [b;;, —bj;] is obviously a domain for S; — S; such that bound ad-
justments consist of increasing distances b;;.

The CP phase stops either when infeasibility of T' is proved, that is if a variable
domain becomes empty (b;; > —bji), or when no more deduction is performed. In the
second case, the RCPSP including constraint S, 1 < 7" is modeled as an integer linear
program taking into account the SSD-matrix B previously adjusted by CP. Its continuous
relaxation is solved. Then series of valid inequalities deriving from disjunctions and
shaving deductions are iteratively added to the program when they are violated by the
current fractional solution.

Here again, process stops either if the linear program (and a fortiori 7') is infeasible
or when no violated inequality can be found or when no significant improvement of the
lower bound has been made during a number of iterations. In the two latter cases the
whole process CP+LP is run again with UB set to T' — 1. Otherwise, as soon as the
constraint 5,41 < T is proved to be inconsistent, LB can be updated to 7'+ 1 and the
whole process is reiterated.

The destructive procedure is run until LB > UB or until computational time limit
is reached. At the end, LB is the lower bound.

3 Constraint programming as preprocessing

In this section, we briefly report the different consistency enforcing techniques applied in
the CP phase. As explain in the preceding section, their goal is to detect new disjunctive
pairs of activities and to increase entries of the SSD-matrix B. All these techniques are
seen more in details in [10].

First B is initialized by taking into account all the precedence constraints and the



additional constraint Sy < 71"

0 ifi=3j
bij=qpi if(i,j)€E
—T  otherwise.

In turn, D is initialized to the set of pairs {7, j} of activities such that r; +rj;, > Ry, for
at least one resource k.

Then, a set of four local constraint propagation rules implemented with an O(m?n?)
complexity is applied:

e the transitive closure of B,

e the symmetric triples rules by Brucker et al. [2],

e the immediate selection rule (see e.g. [5]),

e the primal and dual edge-finding rules of Carlier and Pinson [6].

We have also adapted the shaving technique [7, 15, 8] to the RCPSP in the way of
removing inconsistent sequencing decisions:

For each pair of activities {i,j} we test the validity of the three following constraints:
] (S] > Si-f-pi), J =1 (Sz > Sj-l-pj) and ¢ || J (S] <Si+pi NS < Sj +pj),
propagating it by means of the four local techniques described above, and getting then
three new SSD-matrices B*7, Bi—i and BillJ.

The inconsistency of one or two of these matrices results in global deductions on B
or detection of new precedence, parallel or disjunction relation. For instance:

B := min(Bi~7, Billy) if ~(j — 1)
i — jand B := Bi~i if =(i [| j) and —=(j — 1)
{i,j} € D and B := min(B7/, BI~?) if = (i || 4)

Obviously the infeasibility of the three “shaved” SSD-matrices for one pair of activities
means the infeasibility of 7'
Last, even if no infeasibility is detected, B can however be updated as follows:

B :=min(B'™7 B~ pil)

Since shaving is mostly time consuming, we restrict its application to a reduced set
of pairs of activities including especially pairs in disjunction.

At the end of the CP phase and if T is not already proved to be infeasible, linear
programming is invoked. In order to tighten the linear program, deductions performed
within the CP phase will be used: the adjusted SSD-matrix B to sharpen the integer
program, the extended disjunction relation D and all the remaining consistent “shaved”
SSD-matrices Bi=7 Bi— Billi to infer cutting planes.



4 The integer linear formulation

Our study relates to the formulation the most encountered for the RCPSP and given
first by Pritsker et al. [18]. In this program, the decision variables are binary variables
defined for each activity j € V' and for each time period ¢t € {0,...,T} by:

y;¢+ = 1 if and only if activity j starts at time ¢.
Note that for each activity j, S; = ZZ;O ty;it-

A first improvement allowed by CP preprocessing is to dratiscally reduce the number
of variables since y;; = 0 for any time ¢ lower than the earliest starting time of j (ES; =
boj) or greater than its latest starting time (LS; = —bjo).

Hence, the RCPSP can be formulated as follows:

min Z tY(nt1)t (1)

t:ESn+1,...,T

subject to:

LS;

Z yjt =1 VjeV (2)
t=ES;

LSj LS;

Z tyje — Z tyie > bij Y (i,§) € V? (3)
t=ES; t=ES;

min(LSj,t)

Z(Tjk . Yjr )SRk VkeR,Vte{0,...,T} (4)
Jjev T=max(ESj,t—p;+1)
yth{O,l} VjEV,VtE{ESj,...,LSj} (5)

Constraints (2) avoid preemption. Inequalities (3) derive immediately from CP deduc-
tions since they impose minimum time lags b;; between start of ¢ and start of j. They
extend in particular the precedence constraints (S; —S; > by; > p; if (i,7) € E) and
include the additional constraint (So) — Spy1 > b(n41)0 = —7T'. Constraints (4) are the
resource constraints while constraints (5) enforce variables y;; to be boolean.

The continuous relaxation of this program is solved first. Then cutting planes de-
scribed in the following section are iteratively added within the solution process.

5 CP-based valid inequalities

We have generated two kinds of CP-based valid inequalities: The clique cuts (subsection
5.1) have a classical shape but they are here mostly deep since they rest on the disjunc-
tion relation D enhanced by CP. The shaving cuts (subsection 5.2) are original valid
inequalities which translate shaving deductions.



5.1 Clique cuts

Clique cuts are straightforward inequalities stating that if C' is a maximal set of mutually
incompatible activities then, at any time ¢, at most one activity of C' is executing:

> yir<1 Vtedo,...,T} (6)
(jvT)ect

where C; is the set of couples (j, 7) verifying:

j € Cand ES; <t < LS; +pj,
7 € {max(ES;,t —p; +1),...,min(LS;,t)}.

Inequalities (6) are considered for cliques over the disjunction+precedence relation which
are generated using two heuristics proposed by Brucker et al. [2] and by Baptiste and
Le Pape [1]. We build in average about n cliques with an O(n?) complexity.

5.2 Shaving cuts

Deductions performed by shaving have not all been propagated within the CP process.
However they are stored within the shaved matrices. With shaving cuts, we aim to
express such informations in terms of valid linear inequalities for the linear program.

weak 4-uple shaving cuts. The first shaving deduction we have considered is the
following straightforward implication

S; =8 >pi = Sl—Sth;L?j, (7)

where {i,j} and {h,l} are two distinct pairs of activities.

To ensure that this deduction is not dominated by another constraint within the CSP
formulation, we assume that b;?f > by, and that b;; <p; — 1 < —bj;.

The inequality representing this implication can obviously be written as follows:

(=bji — pi + 1)((St = Sn) = but) > ((Sj — Si) — pi + 1)(bj7 — bur) (8)

as shows the figure 1, where solutions of the integer program lie in the hatching zone and
solutions of the linear relaxation lie in the gray zone.

Sy — Shn

L (Ds)
i— .
bhl !

bni

|
|

bij pi—1 —bji 85 = S
Figure 1: Projection of § in (S; — S;,.S; — Sh)-plane

Expressing it as a valid linear inequality for the program with time-indexed variables
only consists in replacing variables S; by Ztlﬁ%sj tyj+ in inequality (8).



strong 4-uple shaving cuts. There is another way to design the initial relation (7)
in a “disaggregated” shape.

Indeed Christofides et al. have proposed in [9] this other representation of precedence
constraint Sj — S,‘ Z b,‘j:

t+bij—

Zy”+ Z yir <1 VY (i,j)eVivte{o,...,T} (9)

The set of inequalities (9) dominates the aggregated precedence constraint (3). On
the other hand, the formulation with the disaggregated precedence constraints (9) take
obviously more time to compute.

According to the disaggregated formalism, relation (7) can be formulated by each of
the two following logical constraints:

LS, b7 -1
Sj_Si>pi_]- = thr+ Zyl‘rg]- VtE{O,,T}
T=t T=ES;
t—pj
S,—Sh<bg7f;»zij+Zy,Tg1 vt e {0,...,T}
T=ES;

The first implication can be designed by the next set of valid inequalities:

t4bi7I -1

—bji — (S — Si) 2 (=bji pz+1<zyhr+ Zyl-r_1>

T= ES,
Vt € {max(ESy, ES; — b7 +1),...,min(LSy, LS; — bi,) + 1)} (10)

And the second implication by:

t—p;
(St = Sh) —br > (Z yir + Y Yir ) = bnr)

T=ES;

Vt € {max(ES;, ES; + p;),...,min(LS;, LS; + p;)} (11)

3-uple Shaving cuts. In case h (or [) is equal to 0, the two corresponding valid
inequalities (8) and (10) are dominated by the following one

ES;7 1
=bji — (Sj — Si) > (=bji —pi +1) < Z Yir + Zylr > (12)
T=ES; r=LS; 7741

since it models this stronger implication:

Sj — Si Z Pi ES’_” < Sl LS”_”



6 Computational Experiments

We have tested our procedure on the Kolisch, Sprecher and Drexl RCPSP instances [14]
with m = 4 resources. The whole algorithm is written in C++, using ILOG CONCERT
1.0, an LP library embedding CPLEX 7.0, for the linear programming phase. Our results
were obtained using a Pentium IIT 800MHz. We compare them with the best known lower
bounds computed by Brucker and Knust [4] as well as the lower bound computed with
the proposed hybrid CP+LP algorithm in a constructive way [11].

In figure 2, we report experiments on the 480 KSD instances with 30 activities. Lines
1 and 2 give the average and maximal deviation A,y of the lower bounds from the
optimum. Lines 3 and 4 give the average and maximal CPU times in seconds. We also
give the number of instances for which the optimal value is reached (line 5) and the
number of instances for which linear programming improves constraint propagation (line
6). Each column corresponds to a specific lower bound:

(1) the destructive lower bound with complete CP preprocessing, clique cuts and strong
shaving cuts,

(2) the constructive lower bound with complete CP preprocessing, clique cuts and
strong shaving cuts [11],

(3) the best lower bound [4]

KSD30 hybrid BK
1 (2) (3)
Average Aopt 0.68% 1.69% 1.50%
Maximal Agpe 15.2%  21.8% | 11.1%
Av. CPU time (s.) 3.2 13.7 0.4
Max. CPU time (s.) | 230 1129 4.3
# verified instances 403 376 318
# LP improves CP 28 35 71

Figure 2: Results on KSD30

Despite higher computational time, the quality of our destructive lower bound is unde-
niable since it is clearly better than the tightest known lower bound, in terms of both
number of verified instances (403 against 318) and average deviation from the optimum
(0.68% against 1.50%).

The power of destructive approaches is obviously demonstrated here, comparing for
each criterion (quality and CPU time) results of the same algorithm used in a constructive
way (column (2)) and in a destructive way (column (1)).

Finally, the CP algorithm seems to be almost self-sufficient for the KSD30 instances
since the cutting-plane procedure is successfully invoked (i.e. at least one tested upper
bound 7" has been refuted within the LP phase) for only 28 instances.

We have also tested our algorithm on the 480 KSD instances with 60 activities (see
figure 3). To save computational time here, shaving is only applied to a reduced set
of 500 pairs of activities including essentially pairs in disjunction. In our preliminary
experiments on these instances, we had not yet implemented the cutting plane procedure.
Hence in the array, column (1) (resp. column (2)) corresponds to the proposed lower
bound with reduced shaving and without cutting planes computed in a destructive (resp.
constructive) way. The maximal CPU time allowed to solve an instance is also set at



1800 seconds. Column (3) is again the best known lower bound by Brucker and Knust
[4]. The two first rows give now the average and maximal deviation of the lower bounds
from the trivial critical path lower bound.

KSD60 hybrid BK
N )

Average AcpB 7.69% 6.73% | 7.75%

Maximal Acpp 81.8% 81.8% 85.7%

Av. CPU time (s.) 115.5  45.0 5.0
Max. CPU time (s.) | 1800 1238 62
# verified instances 360 355 341
# LP improves CP 61 57 92

Figure 3: Results on KSD60

As already observed in [11] the shaving technique has a power of deduction as low
as the size of the problem grows. On the other hand, linear programming improves the
bound for a higher number of instances (61).

For KSD60 instances, the bound by Brucker and Knust is in average slightly better
than our bound (7.75% against 7.69%), but again we verify more instances (360 against
341). However the current implementation of our procedure requires clearly much CPU
time.

A deeper study of these latter results offers an interesting property of the proposed
bound: The following graph represents the behavior of the average deviation Agpp of:
our lower bound (destr), the best known lower bound (BK) and the best known upper
bound (UB), depending on the Resource Factor (see [14]) over the KSD60 instances. It
shows that the performance of our algorithm is worse on instances with RF=0.75 and
RF=1 i.e. when activities requires in average three or four resources (with m = 4).

KSD60: Average deviation from CPB / Resource Factor
20 1
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7 Conclusion

In this paper, we have presented a new lower bound for the RCPSP resulting from a
hybrid constraint programming-cutting plane procedure embedded in a destructive ap-
proach. Preliminar computational experiments are also given. This lower bound seems
to be really competitive with the best known lower bounds despite rather high com-
putational times. It obtains very good results especially on the KSD instances with 30
activities. In order to save computational time requirements, we are considering to imple-
ment a more classical CP procedure based on time windows and shaving of inconsistent
starting times. By the way, we will also be able to derive more adapted CP-based cutting
planes for the time-indexed linear program.
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