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1 Introduction

An instance of the Resource Constrained Project Scheduling Problem (RCPSP) is
given by m renewable resources with limited capacities R1, . . . , Rm and a project
of n activities with simple precedence constraints (we note (i, j) ∈ E if activity j

has to start after the end of activity i). Each activity i must be processed during
pi uninterrupted time units and requires a constant amount rik of each resource
k. Two dummy activities 0 and n + 1 represent the beginning and the end of the
project, respectively. A feasible schedule S (defined by the starting times S1, . . . , Sn

of the activities) meets altogether precedence constraints (Sj ≥ Si +pi if (i, j) ∈ E)
and resource constraints (at any time t, the total amount of a resource k required
by all the activities in process at t can not exceed Rk). The objective is then to find
a feasible schedule S whose total completion time or makespan Sn+1 is minimal.

The RCPSP and its variants have numerous applications in practice and contain
many well-known difficult problems as special cases, like e.g. shop scheduling. Hence,
RCPSP is very attractive for researchers and its intractibility has led many of
them to design elaborated resolution methods. For instance, the currently strongest
lower bounds of the minimal makespan (Brucker and Knust (2000), Demassey et
al. (2003), Baptiste and Demassey (2003)) for the standard PSPLIB benchmark
instances are computed in a destructive way by hybrid constraint programming-
linear programming methods.

The approach presented in this paper is related to these methods: constraint
propagation techniques are ran in a preprocessing phase of an integer linear formu-
lation to compute and tighten time windows for activities (Si ∈ [ESi, LSi]). A lower
bound is then directly derived, in a constructive way, by solving a relaxation of the
linear program, or, in a destructive way, by finding the greatest value T for which
the constraint and the linear relaxations prove that no schedule with makespan
lower than T exists.

Within the linear programming phase, we focus on the formulation given by Min-
gozzi et al. (1998) and on its preemptive relaxation lately improved by Brucker and
Knust (2000). Both models contain an exponential number of binary variables, each
one corresponding to a feasible set, i.e. a subset of activities that may be processed
simultaneously without violating neither precedence nor resource constraints. The
well-known LB3 lower bound is obtained by Mingozzi et al. (1998) with an heuris-
tic solving a set-packing problem equivalent to the dual program of the preemptive
relaxation. Alternatively, Brucker and Knust (2000) solve the preemptive relaxation
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by column generation. In this paper, we present a third way to tackle the size of
this program by means of lagrangean relaxation. The proposed decomposition ex-
hibit easily-solved substructures as small-sized multi-knapsack problems. The same
technique is also applied to the initial complete model, then exhibiting, in addi-
tion within each lagrangean subproblem, one minimum cut problem, solvable in
polynomial time (Möhring et al. (2003)).

2 Integer Linear Model with Feasible Sets

A feasible set (which can be the empty set) is denoted by Fl with l ∈ F and one
containing a given activity i is indexed by l ∈ Fi. A feasible schedule with makespan
lower than T is defined by a sequence (l0, . . . , lT−1) where Flt is the set (actually a
feasible set) of activities in process between times t and t+1. With this observation,
Mingozzi et al. (1998) propose the following integer linear model for the RCPSP:

(P ) min
∑T

t=0 ty(n+1)t (1)

s.t. :
∑T

t=0 yit = 1 ∀ i ∈ {0, . . . , n+ 1} (2)
∑T

t=0 t(yjt − yit) ≥ pi ∀ (i, j) ∈ E (3)
∑

l∈Fi

∑T−1
t=0 xlt = pi ∀ i ∈ {1, . . . , n} (4)

∑
l∈F

xlt ≤ 1 ∀ t ∈ {0, . . . , T − 1} (5)

yit ≥
∑

l∈Fi
xlt −

∑
l∈Fi

xlt−1 ∀ t ∈ {0, . . . , T − 1}, ∀ i ∈ {1, . . . , n} (6)

xlt ∈ {0, 1}, xl(−1) = 0 ∀ l ∈ F , ∀ t ∈ {0, . . . , T − 1} (7)

yit ∈ {0, 1} ∀ i ∈ {0, . . . , n+ 1}, ∀ t ∈ {0, . . . , T} (8)

This program contains two kinds of binary variables: xlt = 1 if l is the feasible set
which is “active” at time t, and yit = 1 if activity i starts at time t.

We propose to dualize both constraints (6), with multipliers λit ∈ IR+, i ∈
{1, . . . , n} and t ∈ {0, . . . , T}, and constraints (4), with multipliers µi ∈ IR, i ∈
{1, . . . , n}. For a given value (λ, µ) of the multipliers, the lagrangean subproblem
can then be splitted into T +1 parts according to the independency of the variables:
one program (SP t

λµ) for each t ∈ {0, . . . , T−1} with the set of variables {xlt | l ∈ F}
and the corresponding constraints among (5), and one program (SPλ) with variables
{yit | i ∈ {0, . . . , n+ 1}, t ∈ {0, . . . , T}} and constraints (2) and (3).

Formally, the lagrangean dual of (P ) may be written:

(DLP ) : z̄ = max
λ,µ

n∑

i=1

µipi +

T−1∑

t=0

φt
λµ + ψλ,

where φt
λµ and ψλ are respectively the optimal values of the binary integer linear

programs (SP t
λµ) and (SPλ).

Each subproblem (SP t
λµ) consists in making active at time t a feasible set lt

which minimizes a certain cost
∑

i∈Flt

νit where ν depends on λ and µ. It can

be then reformulated as a quickly-solved multi-knapsack problem: lt is such an
optimal set of activities that can be executed altogether at time t, according to
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the resource and precedence constraints, but also according to the time windows
computed within the preprocessing phase.

On other hand, the subproblem (SPλ) is a project scheduling problem without
resource constraints but with time-depending costs. This problem has recently been
studied by Möhring et al. (2003) for an other lagrangean relaxation approach for
the RCPSP. They show that this problem is equivalent to find a cut of minimal
capacity in a digraph and propose then a polynomial time algorithm to solve it.
Here again, constraint programming deductions can be useful to reduce the size of
the digraph and then to speed up the resolution.

3 The Preemptive Relaxation

Mingozzi et al. (1998) consider also a relaxation of program (P ) allowing preemption
of activities and partly removing precedence constraints. Powerful lower bounds are
then derived by Mingozzi et al. (1998) and by Brucker and Knust (2000) who
enhance the formulation by taking into account the time windows computed for a
given value T : time horizon [0, T ] is partitioned with the different values of ESi

and LSi + pi into σ subintervals. For each period s ∈ {1, . . . , σ}, the feasible sets
{Fl | l ∈ Fs}, of activities that can be in process during period s are treated
separately. Furthermore, they use a destructive approach and consider for different
values of T a decision variant of the problem. We propose a quasi-dual approach
of the column generation method of Brucker and Knust (2000) in using lagrangean
relaxation on a slightly different linear program:

(PP ) min
∑n

i=1 ei (9)

s.t. :
∑

l∈Fs zls ≤ δs ∀ s ∈ {1, . . . , σ} (10)
∑σ

s=1

∑
l∈Fi∩Fs zls + ei ≥ pi ∀ i ∈ {1, . . . , n} (11)

zls ≥ 0 ∀ s ∈ {1, . . . , σ}, l ∈ Fs (12)

ei ≥ 0 ∀ i ∈ {1, . . . , n} (13)

Here, integer variable zls represents the total time during which the feasible set is
active within interval s, and δs the length of s. No feasible schedule exists for the
given time windows if the optimal value of program (PP ) is strictly greater than 0.

By dualizing constraints (11), the resolution of the lagrangean subproblem amounts
again to solve, for each period s ∈ {1, . . . , σ}, a multi-knapsack program and to
compute exactly one feasible set active within s.

4 Experimental Results

Both constructive and destructive lower bounds may be derived from either the com-
plete or the preemptive linear program, just taking the suitable objective function.
We experiment the computation of the destructive lower bound with lagrangean
relaxation for the preemptive model on the PSPLIB benchmark instances with 30
and 60 instances (Kolisch et al. (1997)).

The same constraint programming algorithm as described in Demassey et al.
(2003) is used in the preprocessing phase. It includes the deduction techniques also
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used by Brucker and Knust (2000) such as disjunctive edge-finding or symmetric
triple rules. It also includes a global technique of shaving. We use Ilog Cplex for the
resolution of the multi-knapsack programs and solve the lagrangean dual iteratively
with a subgradient algorithm. In the destructive process, values of horizon T are
taken by dichotomy on an interval [0, UB] where UB is the upper bound used by
Brucker and Knust in the computational experiments of their bound (BK).

For the 480 instances with 30 activities, the quality of our bound is proved
since it is strictly better than BK in terms of deviation from the optimum (0.8% vs.
1.5%) or in the number of instances for which optimum is reached (392 vs. 318) and
despite of a processing time overcost, with an average CPU time of 14.3 seconds
on a Pentium III 833 MHz versus 0.4 seconds for BK computed on a Sun Ultra 2
station running at 167MHz.

Not all the 480 instances with 60 activities are solved to optimality to date. So
we compare the bounds over the deviation from the best upper bound available (UB)
at the PSPLIB library. Again our bound is actually more time consuming than BK

(195 seconds in average vs. 5 seconds) but it remains also greater in average with a
deviation from UB of 1.9% (against 2.0% for BK) and 360 optimum proofs (against
341). Our bound dominates the best known lower bound (also available at PSPLIB)
for 43 instances among the 124 not yet solved and allows to close 10 new instances.

Additional work has now to be done for a better parametrization to speed up
the resolution of the lagrangean dual but our first experimented bound is clearly
competitive with the best lower bounds to date. Also, it is really promising and
encourage us to test and comparate the other bounds relative to this one, by consid-
ering the lagrangean relaxation of the complete model or by means of a constructive
approach.
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