
INFORMS Journal on Computing
Vol. 17, No. 1, Winter 2005, pp. 52–65
issn 0899-1499 �eissn 1526-5528 �05 �1701 �0052

informs ®

doi 10.1287/ijoc.1030.0043
©2005 INFORMS

Constraint-Propagation-Based Cutting Planes:
An Application to the Resource-Constrained

Project Scheduling Problem

Sophie Demassey, Christian Artigues, Philippe Michelon
Laboratoire d’Informatique d’Avignon, 339, Chemin des Meinajariés, Agroparc, BP 1228, 84911 Avignon Cedex 9, France
{sophie.demassey@lia.univ-avignon.fr, christian.artigues@lia.univ-avignon.fr, philippe.michelon@lia.univ-avignon.fr}

We propose a cooperation method between constraint programming and integer programming to com-
pute lower bounds for the resource-constrained project scheduling problem (RCPSP). The lower bounds

are evaluated through linear-programming (LP) relaxations of two different integer linear formulations. Effi-
cient resource-constraint propagation algorithms serve as a preprocessing technique for these relaxations. The
originality of our approach is to use additionally some deductions performed by constraint propagation, and
particularly by the shaving technique, to derive new cutting planes that strengthen the linear programs. Such
new valid linear inequalities are given in this paper, as well as a computational analysis of our approach.
Through this analysis, we also compare the two considered linear formulations for the RCPSP and confirm the
efficiency of lower bounds computed in a destructive way.

Key words : resource-constrained project scheduling problem; cutting plane; constraint propagation; shaving
History : Accepted by John W. Chinneck, Area Editor; received February 2001; revised December 2001,
December 2002, March 2003; accepted May 2003.

1. Introduction
The resource-constrained project scheduling problem
(RCPSP) is one of the most general scheduling prob-
lems that is extensively studied in the literature
(Brucker et al. 1999). It consists of scheduling a project,
i.e., a set of activities linked by precedence constraints,
on a set of resources with limited availabilities. The
objective is to minimize the total duration of the
project, or makespan.
Being strongly NP hard, the exact resolution of this

problem has most often been tackled by branch-and-
bound procedures; see, e.g., Baptiste and Le Pape
(2000), Brucker et al. (1998), Demeulemeester and
Herroelen (1997), Dorndorf et al. (2000), Mingozzi
et al. (1998), and Sprecher (2000). Consequently, some
research focuses on the computation of good lower
bounds. Among them we can mention the ones based
on linear programming, like the cutting-plane algo-
rithm over the time-indexed linear formulation pre-
sented in Christofides et al. (1987) and in Sankaran
et al. (1999), the lagrangian relaxation of this same for-
mulation by Christofides et al. (1987) and its enhance-
ment by Möhring et al. (2003) solving a minimum
cut problem, the preemptive linear relaxations of a
new formulation based on the concept of feasible sub-
sets proposed in Mingozzi et al. (1998), the recent
improvement of one of these relaxations in Brucker

and Knust (2000) applying column-generation tech-
niques, and the linear lower bound in Carlier and
Néron (2000) computed from the quick resolution by
a parametric approach of a new linear multi-elastic
preemptive relaxation of the problem based on the
concept of feasible configurations.
In a second category, we can group together

constraint-programming-based lower bounds like the
ones proposed by Klein and Scholl (1999), Caseau
and Laburthe (1996), Baptiste and Le Pape (2000), or
Dorndorf et al. (2000). In fact, among all these authors,
Klein and Scholl are the only ones actually to compute
a lower bound of the optimal makespan. They make
use of a destructive procedure: constraint-propagation
rules are applied in order to prove that no feasible
schedule with makespan lower than T exists, yield-
ing a fortiori that T + 1 is a lower bound. On the
other hand, in the three other papers, constraint-
propagation rules are directly applied to prune a
search tree by proving that no optimal schedule can
be reached from a given node.
The bound proposed in Brucker and Knust (2000)

belongs to both categories since they use constraint-
propagation techniques to preprocess their linear
program.
Our objective is also to propose lower bounds

for the RCPSP based on cooperation between lin-
ear programming (LP) and constraint programming

52

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 53

(CP). We first use constraint-propagation algorithms
as a preprocessing technique as in Brucker and Knust
(2000) and we compute a lower bound by solving to
optimality the linear program without the integrality
constraints (i.e., the LP relaxation). Such a prepro-
cessing of linear programs by constraint program-
ming is relatively well-known. However, in contrast
to other hybrid methods, including the Brucker and
Knust one, we aim to exploit the deductions per-
formed by constraint propagation in a deeper way.
Indeed, we derive from theses deductions new valid
linear inequalities that are added to the LP relaxation
to strengthen the LP-based bound, if they cut the cur-
rent solution. To our knowledge, the latter experiment,
which is an actual cooperation, has not been carried
out yet for this problem. However, approaches based
on such cooperation are increasingly being reported as
successful in the literature for various combinatorial
optimization problems, including scheduling prob-
lems (Harjunkoski et al. 2000, Hooker 2000). We apply
this hybrid constraint-linear programming approach
on two different linear formulations of the RCPSP,
one based on a continuous-time representation and
the other based on a discrete-time representation. In
both cases, the same preprocessing phase is used. It is
composed of constraint-propagation algorithms and it
includes an original shaving technique. Then we pro-
pose new CP-based valid inequalities for each of the
two linear programs. Last, for a further improvement,
we embed the best of these two approaches into a
destructive procedure.
The paper is organized as follows. Section 2 gives

definitions and notation for the RCPSP. In §3 we
review two integer linear formulations for the RCPSP,
as well as their relaxations. We report in §4 the differ-
ent rules implemented in our constraint-propagation
algorithm at the preprocessing stage and, in par-
ticular, the global shaving rule. In §5, we explain
for each formulation, how the information provided
by constraint programming is used to derive valid
linear inequalities within the linear program resolu-
tion procedure. Finally, §6 presents some computa-
tional results, including an experimental comparison
between the two linear formulations and the results of
the destructive approach applied to the time-indexed
formulation.

2. Definitions and Notation
An instance of the RCPSP is composed of:
• a set � of m renewable resources with limited

availabilities Rk ∈�∗� ∀k ∈�;
• a project or a set V ′ of n activities. Each activ-

ity i must execute over pi ∈�∗ time units and requests
during this period a constant amount rik ∈ � of each
resource k. Moreover, a partial order E ′ is given on

the set V ′ representing precedence relations between
the activities.
It is assumed that two dummy activities 0 and n+1

(with null duration and requests) are added to rep-
resent the start and the end of the project, respec-
tively. Let V = V ′ ∪ �0�n + 1
 and E = E ′ ∪ ��0� i�,
�i�n+ 1� � i ∈ V ′
.
The objective of the problem is then to find a

schedule S on V , i.e., an activity starting-times vector
�S0� S1� � � � � Sn+1� ∈ �V in such a way that S0 = 0,
and:
• S satisfies the precedence constraints: If i and j

are two activities linked by �i� j� ∈ E then j cannot
start before the completion of i, i.e., Sj ≥ Si+ pi.
• S satisfies the limited-resource constraints: At

any time t and for any resource k, the capacity of k
must not be exceeded by the total request of the activ-
ities in progress at time t, i.e.,

∑
j∈Vt rjk ≤ Rk, where

Vt = �j ∈ V ′ � Sj ≤ t < Sj + pj
.
• The completion time of the project (makespan)

Sn+1 is minimized.
Finally, let T denote an upper bound on the optimal

makespan.

3. Integer Linear Programs
and Relaxations

There are two usual ways to model scheduling prob-
lems as integer linear programs: by using continuous-
time variables or time-indexed variables. Our study is
related to one formulation in each category. The first
one, presented in §3.1, follows the disjunctive graph
approach by Balas (1970). The second one, in §3.2,
was presumably given first in Pritsker et al. (1969).
Once an integer program is formulated for the RCPSP,
the exact resolution of any of its relaxations, in par-
ticular of its LP relaxation (i.e., dropping the integral-
ity requirements on the variables), provides a lower
bound on the optimal makespan. We present here the
two models and the way we use their relaxations.

3.1. Continuous-Time Variables
The classical Balas disjunctive model for the job-shop
problem, based on the natural starting time vari-
ables Si, was extended to the RCPSP by Alvarez-
Valdés and Tamarit (1993) making use of the concept
from Radermacher (1985) of minimal forbidden sets (i.e.,
any subset F of activities not linked by any precedence
path in E, satisfying

∑
j∈F rjk > Rk for some resource

k ∈� and minimal for inclusion). To model resource
constraints, additional variables are defined: for any
pair of activities �i� j�, let xij be 1 if j starts after the
completion of i, and 0 otherwise.
The RCPSP is formulated in Alvarez-Valdés and

Tamarit (1993) as follows:

min Sn+1

subject to: xij=1 ∀�i�j�∈E (C1)

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
54 INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS

xij+xji≤1 ∀�i�j�∈V ×V (C2)

xik≥xij+xjk−1
∀�i�j�k�∈V ×V ×V (C3)

Sj−Si≥−M+�pi+M�xij
∀�i�j�∈V ×V (C4)∑

i�j∈F
xij≥1 ∀ minimal forbidden

set F (C5)

xij ∈�0�1
 ∀�i�j�∈V ×V (C6)

Si≥0 ∀i∈V � (C7)

Constraints (C1) give the precedence relations within
the project. Constraints (C2) and (C3) avoid cycles.
Constraints (C4) model implications xij = 1 ⇒ Sj ≥
Si+ pi, where M is some large constant. The resource
constraints (C5) state that in any minimal forbidden
set F , at least one sequencing decision must be taken.
Finally, constraints (C6) and (C7) state that decision
variables xij are Boolean and that the variables Si are
nonnegative, respectively.
Note that the implementation of the LP relaxation

of this program is not practical because of the possi-
ble exponential number of constraints (C5). Hence, in
our relaxation, besides the integrality constraints (C6),
we also drop all constraints (C5) with minimal forbid-
den sets of cardinality strictly greater than 3. Hence,
it is clearly essential to tighten this linear program,
and in particular to adjust the value of M inside
the constraints (C4), to take into account the missing
resource constraints implicitly. We will see in §5.1 how
constraint-programming preprocessing allows this.

3.2. Time-Indexed Variables
The most frequently encountered integer linear for-
mulation of the RCPSP (Christofides et al. 1987,
Möhring et al. 2003, Pritsker et al. 1969) is based on
time-indexed Boolean variables yjt where yjt = 1 if and
only if activity j starts at time t, for each activity j ∈
V and for each time period t = 0� � � � � T . Given these
variables, the RCPSP can be formulated as follows:

min
∑

t=0�����T
ty�n+1�t

subject to:
T∑
t=0
yjt = 1 ∀j ∈ V (D1)

T∑
t=0
t�yjt − yit�≥ pi ∀�i� j� ∈ E (D2)

∑
j∈V
rjk

t∑
�=t−pj+1

yj� ≤Rk

∀k ∈�� ∀t ∈ �0� � � � � T
 (D3)

yjt ∈ �0�1
 ∀j ∈ V � ∀t ∈ �0� � � � � T
� (D4)

where constraints (D1) state that each activity must
be started exactly once over the planning horizon T .
Inequalities (D2) and (D3) represent precedence and
resource constraints, respectively. Constraints (D4)
enforce variables yjt to be 0-1.
Christofides et al. (1987) introduce a variant where

precedence constraints are presented in a disaggre-
gated (strongest) way:

T∑
�=t
yi� +

t+pi−1∑
�=0

yj� ≤ 1

∀�i� j� ∈ E� ∀t = 0� � � � � T � (D2S�
Constraints (D2S) state that for any precedence rela-
tion �i� j� in E, if activity i starts at time t or later
then activity j cannot start before time t + pi, and
conversely.
We have implemented the LP relaxation for these

two variants with time-indexed variables despite the
relatively large number of constraints (D1), (D2),
(D2S), and (D3). Preprocessing is especially useful to
fix a maximal number of variables yit .

4. Constraint Programming as
Preprocessing

In the first phase of the proposed approach, a con-
straint-propagation algorithm is applied to the prob-
lem, given a feasible upper bound T on the optimal
makespan. We detail in this section the constraint-
propagation rules we have implemented, including an
original shaving technique for the RCPSP. First, we
present the way the rules are propagated within the
shaving process.
As in Brucker and Knust (2000), our algorithm is

implemented using the start-start distance (SSD)-matrix
formalism. An SSD-matrix B = �bij �V×V is any integer
matrix satisfying, for any feasible schedule S,

Sj − Si ≥ bij ∀�i� j� ∈ V ×V �
The major interest in this notion is to reflect the
sequencing relations for any pair �i� j
 of activities.
For instance, if bij ≥ pi then i precedes j (which is
denoted by i→ j) in any feasible schedule. On the
other hand, if bji ≥ 1−pi, then j starts before the com-
pletion of i (i� j) and if, moreover, bij ≥ 1− pj , then i
and j are executed in parallel (i � j) in any feasible
schedule.
With this formalism, the RCPSP can easily be seen

as a constraint-satisfaction problem (CSP) with vari-
ables (Sj−Si) and domains approximated by intervals
�bij �−bji�. The bounds on these domains are initialized
taking the precedence constraints E and the planning
horizon T into account:

bij =



0 if i= j
pi if �i� j� ∈ E
−T otherwise.

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 55

In this CSP, we also take resource constraints par-
tially into account by computing all the minimal for-
bidden sets (see §3.1) with two (�2) or three (�3)
activities. The constraint-programming algorithm also
maintains, besides the matrix B, a symmetric rela-
tion D over the set of activities, the disjunction relation
defined by �i� j� ∈D if activities i and j cannot be exe-
cuted in parallel (i→ j or j→ i). Obviously, D may be
initialized to the set �2 of minimal forbidden pairs.
The constraint-programming algorithm consists of

four local consistency-enforcing techniques (§4.1)
embedded in an original shaving framework (§4.2).
The objective is to deduce some additional relations
(parallel, conjunction, or disjunction), deriving in turn
bound adjustments on the variable domains (i.e.,
increases of some entries in B). During this process,
b0�n+1� is an actual lower bound (CPLB) of the optimal
makespan.

4.1. Local Constraint Propagation
The local constraint-propagation algorithm we use is
inspired by Brucker and Knust (2000). A series of four
CP algorithms is applied iteratively until no more
adjustments can be performed. A single execution of
these four algorithms has an ��m2n4� time complexity.
But note that in practice, they are applied only a cou-
ple of times. We refer to Brucker et al. (1998) for more
details about the four local techniques enumerated
below:

Path Consistency. The first local constraint-propag-
ation rule can be implemented in O�n3� time by
the Floyd-Warshall algorithm, which computes the
transitive closure of the matrix B by setting bil "=
maxj∈V �bij+bjl�. Hence it reflects the transitivity prop-
erty Sl − Si = �Sl − Sj�+ �Sj − Si�. Note also that when-
ever only one entry bhl is updated in a transitively
closed matrix, the path consistency is run in O�n2�
time by setting bij "= max�bij � bih + bhl + blj � ∀�i� j� ∈
V × V . This is the case in the shaving process
described in §4.2.

The immediate selection algorithm (see, e.g., Carlier
and Pinson 1989) is a simple O��D�� algorithm that
replaces each disjunction �i� j
 ∈D by the precedence
constraint i→ j whenever bij ≥ 1− pj (i.e., j� i).

Symmetric triples rules deduce new disjunctions con-
sidering forbidden sets of three activities. For exam-
ple, let �i� j� k� ∈ �3 be a forbidden set, then k � i
and k � j imply that i and j are in disjunction. Other
relations are deduced considering an additional activ-
ity l related to such a symmetric triple �i� j� k�. We
have implemented the O�m2n4� algorithm proposed
by Brucker et al. (1998).

Edge-finding rules of Carlier and Pinson (1990)
also deduce new precedence relations but consider
cliques of disjunctions that are sets in which each
pair of activities are in disjunction. We use primal

(respectively dual) edge-finding to detect whether an
activity of the clique has to execute after (respec-
tively before) all the other activities in the clique. For
instance, primal edge-finding tests for each activity j
in a clique C, if the condition mini∈C b0i +

∑
i∈C pi >

maxi∈C� i �=j �−bi0 + pi� is satisfied. In the positive case,
the earliest start time of j is updated by setting
b0j "= max�b0j �maxC ′⊆C\�j
�mini∈C ′ b0i +

∑
i∈C ′ pi�
 and

the latest start time of any activity i ∈ C� i �= j is
updated by setting bi0 "=max�bi0� bj0+ pi
.
We also perform additional adjustments on the

lower bound b0�n+1� for any computed clique C and
all its sub-cliques:

b0�n+1� "=max
{
b0�n+1��min

i∈C
b0i+

∑
i∈C
pi+min

i∈C
bi�n+1�

}
�

Note, however, that this additional constraint does
not propagate. The version of edge-finding we have
implemented runs in ���C�2� time (Nuijten 1994), as
well as the latter adjustment to the lower bound. To
compute cliques we have implemented two heuris-
tics, one proposed in Brucker et al. (1998) and the
other proposed in Baptiste and Le Pape (2000). Since
this can be done in ��n2� time, the overall algorithm
of clique generation and edge-finding runs in O�n4�
time.
The entries of B are eventually increased by all

these propagation techniques. Furthermore, infeasibil-
ity may be detected if some variable domain remains
empty (bij > −bji): that is, if no feasible schedule of
total duration lower than T exists.

4.2. Shaving
To improve the constraint-propagation process, we
apply an adapted shaving technique. Shaving (Carlier
and Pinson 1994, Caseau and Laburthe 1996, Martin
and Shmoys 1996) follows the general principle of
consistency-enforcing techniques based on refutation
for a CSP: A new constraint c is temporarily added
and constraint propagation is performed. If it leads
to an infeasibility, then the opposite constraint ¬c is
valid. We have adapted the shaving technique to the
RCPSP with the objective of generating sequencing
constraints. For each pair of activities �i� j
, we test
the validity of the three following constraints: i→ j ,
j → i, and i � j , propagating them separately on the
overall problem by means of the four local techniques
described in §4.1. We obtain three new SSD-matrices
Bi→j , Bj→i, and Bi�j of the same RCPSP instance in
which the corresponding constraint is added. If a
matrix Bc is inconsistent, that is, if bcij > −bcji for
some activities �i� j� and c ∈ �i→ j� j → i� i � j
, then
constraint c is refuted and global deductions on B can
be done. Moreover, if the constraint i � j is refuted,
then the disjunction i− j is added to D.

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
56 INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS

For instance, let �i� j
 be a pair of activities such
that Bj→i is inconsistent, but neither Bi→j nor Bi�j is
inconsistent. This implies that in any feasible schedule
either i precedes j , or i and j are in parallel. This
information is stated by

B "=min�Bi→j � Bi�j
�
Furthermore, even if no infeasibility is detected, the

distance matrix may however be updated as follows:

B "=min�Bi→j � Bj→i� Bi�j
�
Such a global operation is powerful but also very

time-consuming since it calls the local constraint-
propagation algorithm for each unresolved sequenc-
ing decision. We investigate two ways of keeping
reasonable CPU times, on the one hand, by reducing
the local constraint-propagation algorithm within the
shaving process (essentially by suppressing symmet-
ric triples rules) and, on the other hand, by restricting
shaving to a reduced set of pairs of activities.

5. Valid Inequalities Inferred from
Constraint Propagation

At the end of the preprocessing, and if the lower
bound obtained by constraint propagation CPLB =
b0�n+1� has not reached the upper bound T , we resort
to the LP relaxations reported in §3, augmented by
cutting planes. First, some data computed within the
preprocessing phase are fixed and stored: on the one
hand, the SSD-matrix B and the disjunction relation
D and, on the other hand, the cliques of disjunctions
computed for the edge-finding and all the remaining
consistent “shaved” SSD-matrices Bi→j , Bj→i, and Bi�j

for each pair �i� j
 of activities not yet sequenced. The
distance and disjunction matrices are used, before the
resolution, to sharpen the linear programs by fixing
variables and tighten linear inequalities, while shav-
ing deductions and cliques of disjunctions permit us
to infer some strong cutting planes. In this section, we
detail how deductions performed by constraint prop-
agation enhance the linear programs corresponding
to each formulation with continuous-time variables
(§5.1) and with time-indexed variables (§5.2).

5.1. Continuous-Time Variables
The constraint-programming algorithm described in
the previous section is obviously directed toward
sequencing decisions for pairs of activities. Hence,
it is especially suited to tighten the linear program
in continuous-time variables. In §§5.1.1 and 5.1.2 we
describe how constraint programming is used for pre-
processing. Then, we derive from constraint propa-
gation roughly two kinds of valid inequalities. The
first ones express shaving deductions as described in
§§5.1.3, 5.1.4, and 5.1.5. The second ones, described in
§5.1.6, translate and extend edge-finding-like rules.

5.1.1. Fixing Variables. Indeed, numerous vari-
ables can be fixed before resolution by considering the
SSD-matrix B since the following equalities hold for
any feasible schedule:

xij = 1 ∀�i� j� ∈ V ×V such that bij ≥ pi (C1′)

xij = 0 ∀�i� j� ∈ V ×V such that bji ≥ 1− pi� (C1′′)

5.1.2. Strengthening Linear Constraints. In the
same way, we can obviously replace the “big M”
value in constraint (C4) by −bij . In order to strengthen
the precedence constraints, we replace (C4) by

Sj−Si≥bij ∀�i�j�∈V ×V �bij≥pi (C4′�

Sj−Si≥bij+�pi−bij �xij
∀�i�j�∈V ×V �1−pj≤bij <pi (C4′′�

Sj−Si≥ �1−pj�+�pi+pj−1�xij+�bij+pj−1�xji
∀�i�j�∈V ×V �bij <1−pj � (C4′′′�

These inequalities express the minimal distance, per-
formed within the preprocessing phase, between the
beginning of two activities Sj − Si ≥ bij . They also rep-
resent the sequencing relations xij = 1⇔ Sj − Si ≥ pi
and xij = xji = 0⇒ Sj − Si ≥ 1− pj .
With the new disjunctions deduced by the symmet-

ric triples and the shaving techniques, we can enlarge
the definition of forbidden sets of cardinality 2 to all
pairs of activities in disjunction, hence increasing the
number of remaining constraints (C5):

xij + xji = 1 ∀�i� j� ∈D �C5′�∑
u�v∈�i� j� k

xuv ≥ 1

∀minimal forbidden set �i� j� k� ∈�3� �C5′′�

5.1.3. Four-Tuple Shaving Cuts Based on Sequen-
cing. The four-tuple shaving cuts based on sequenc-
ing link the relative sequencing of two activities
�i� j� with the relative sequencing of two other activ-
ities �h� l�. Such a link is implicitly represented in
the shaved SSD matrices. For instance, the condi-
tion bh→lij ≥ pi represents the relation h→ l⇒ i→ j .
Then the linear constraint xij ≥ xhl is clearly valid in
this case.
Following this idea, we generate all the dominant

cutting planes linking variables xij , xji, xhl, and xlh
according to the different values of bij , bji, bhl, and blh
in the matrices B, Bi→j , Bh→l, Bi�j , Bh�l, Bj→i, and Bl→h.
Another example can give theoretical insight of this

approach. Suppose that no information about the rel-
ative ordering of i and j has been deduced within the
CP phase (i.e., if bji < 1−pi and bij < 1−pj). However,
the CP has detected that h cannot be scheduled after l
(that is, if bhl ≥ 1−pl and blh < 1−ph). Hence, xlh is set

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 57

to 0 whereas xij , xji, and xhl are undetermined. Since
xij + xji ≤ 1, the projection P ′ of the fractional solu-
tion space on ��xij � xji� xhl�
⊆ �0�1�3 is included in the
convex hull of

X =



00
0


 �


 10
0


 �


 01
0


 �


 00
1


 �


 10
1


 �


01
1




 �

Because each of these vertices is associated with a
necessary existence condition, this set can be reduced
through an analysis of the shaved SSD matrices. The
proposed cuts are the facets of the convex hull of the
subset obtained after removing one or several vertices
from X.
For example, the point

(
1
0
1

)
can be removed from P ′

if the following condition is satisfied:

b
i→j
lh ≥ 1− ph or bh→lji ≥ 1− pi� (a)

Indeed, this corresponds to the implication i→ j ⇒
¬�h → l�. Furthermore, xhl ≤ 1 − xij is a facet of

conv
(
X
∖{(1

0
1

)})
. Consequently, it is a valid inequality

of P ′. Suppose that, in addition, we have,

b
i�j
lh ≥ 1− ph or bh→lij ≥ pi or bh→lji ≥ pj � (b)

In other words, there cannot simultaneously be i � j
and h→ l. Then

P ′ ⊆X ′ = conv

X

∖


 10
1


 �


 00
1








and the deeper cut xji ≤ xhl, which is a facet of
X ′, can be generated. Figure 1 gives an illustration
of the proposed cuts and shows that using jointly

xij

xji

xhl

(
1
0
1

)

(
0
0
1

)

Figure 1 Cut xji ≤ xhl as a Facet of X ′

deductions (a) and (b) clearly gives better results than
treating them separately.
The general framework for finding the dominant

sequencing cuts is as follows. For each four-tuple
�i� j�h� l�, we consider the polyhedron of Figure 1.
We remove the maximal number of infeasible extreme
points by performing an analysis of the distance
matrices similar to the above-described one. Such a
removal generates one or two facets corresponding to
the sequencing cut(s).

5.1.4. Four-Tuple Shaving Cut Based on Dis-
tance. A four-tuple shaving cut based on distance is
defined for any activities �i� j�h� l� such that i �= j and
h < l. It links starting time variables with sequenc-
ing variables and is directly derived from the shaved
distances, following the “lifting” principle for linear
inequalities:

Sj − Si ≥ bh�lij + �bh→lij − bh�lij �xhl+ �bl→hij − bl�hij �xlh� (C7)

The validity of this cut is straightforward by test-
ing the three admissible values for the pair �xhl� xlh�,
which are

(
0
0

)
,
(
1
0

)
, and

(
0
1

)
. Note that, in the general

case, there is no dominance between this cut and the
shaving cuts based on sequencing.

5.1.5. Path Cuts. Obviously, the optimal solution
of the RCPSP is equal to the length of a path made
of arcs �i� j� such that xij = 1. Hence, it is tempting to
generate some “path cuts” with three activities:

Sl− Si ≥ *++xij +,xjl ∀�i� j� l� ∈ V 3� (C8)

where the coefficients *, +, and , are computed from
default evaluations of the distance between Si and Sl
according to the different values of xij and xjl. Here
again the shaved SSD matrices provide some tight
evaluations, allowing generation of deeper cutting
planes. We detail hereafter the lifting technique that
can be used to compute some �*�+�,� triples such
that the resulting cuts C8�*�+�,� are dominant.
If � �P� denotes the set of the feasible solutions of

the initial problem P formulated in §3.1, let us define
the following notation:

b00il = min{Sl− Si � S ∈� �P�xij = 0�xjl = 0�
}

b10il = min{Sl− Si � S ∈� �P�xij = 1�xjl = 0�
}

b01il = min{Sl− Si � S ∈� �P�xij = 0�xjl = 1�
}

b11il = min{Sl− Si � S ∈� �P�xij = 1�xjl = 1�
}
�

Hence, by enumerating the four possible values for
the pair of variables �xij � xjl� we obtain the following
lemma:

Lemma 1. C8�*�+�,� is a valid inequality for P if
and only if * ≤ b00il , * + + ≤ b10il , * + , ≤ b01il , and
*+++, ≤ b11il .

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
58 INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS

Unfortunately, the computation of b00il , b
10
il , b

01
il , and b

11
il

is itself as difficult as is the original problem P . Sup-
pose however that we have four minorants of these
values (say A, B, C, and D, respectively); then there
is a dominance relation between the valid inequalities
of type C8�*�+�,�:

Proposition 2. Any valid inequality C8�*�+�,� sat-
isfying *≤A, *++≤ B, *+ , ≤ C, and *+++ , ≤D
is dominated by the conjunction of two inequalities PC1
and PC2 where,
(i) if A+D≥ B+C then PC1=C8�A�B−A�C−A�,

and PC2=C8�B+C −D�D−C�D−B�, or
(ii) if A+D≤ B+C then PC1=C8�A�D−C�C−A�,

and PC2=C8�A�B−A�D−B�.
A proof is in the appendix.
The proposed path cuts with three activities are

deepest if A, B, C, and D are close to the optimal coef-
ficients b00il , b

01
il , b

10
il , and b

11
il . A way of computing good

minorants is to use the shaving principle of constraint
propagation, running the local constraint-propagation
algorithms after posting each of the corresponding
constraints

A = b¬�i→j�∧¬�j→l�il � B= b�i→j�∧¬�j→l�il �

C = b¬�i→j�∧�j→l�il � and D= b�i→j�∧�j→l�il �

However, to save computational time, we perform
a weaker approximation, using only the shaved dis-
tance matrices stored during the CP phase:

A = max{min�bi�jil � bj→iil
�min�b
j�l
il � b

l→j
il
�

min�bj�lij � b
l→j
ij
+min�bi�jjl � bj→ijl

}
B = max{bi→jil �min�b

j�l
il � b

l→j
il
�min�b

j�l
ij � b

l→j
ij
+ bi→jjl

}
C = max{min�bi�jil � bj→iil
� b

j→l
il � b

j→l
ij +min�bi�jjl � bj→ijl

}
D = max{bi→jil � b

j→l
il � b

i→j
ij + bj→ljl � b

j→l
ij + bi→jjl

}
�

Given these coefficients, we obtain dominant path
cuts with three activities in the sense of Proposition 2.
By similar arguments, we also obtain dominant cuts

for four-activity paths starting in 0 or ending in n+1:

Sl�−S0�≥ *++xij +,xjl ∀�i� j� l� ∈ V 3 (C8′)

Sn+1− Si ≥ *++xij +,xjl ∀�i� j� l� ∈ V 3� (C8′′)

Finally, we have generated some path cuts with
four nondummy activities without attempting to find
all dominant ones:

Sl− Si ≥ *++xij +,xjh+ .xhl ∀�i� j�h� l� ∈ V 4� (C9)

5.1.6. Clique Cuts. The valid inequalities pre-
sented in this section are all defined for any clique of
disjunctions and aim at updating the starting time of
one of its activities j with respect to the other activities
in the clique. For this reason, they can be considered
as translations of some edge-finding rules in terms of
cutting planes. Each of these cuts has two symmetric
expressions. One corresponds to a lower bound of the
distance between starting time S0 = 0 of the project
and starting time Sj of j . The other corresponds to
a lower bound of the distance between completion
time Sn+1 of the project and completion time Sj + pj
of j . We provide the symmetric counterpart only for
the first cut since the mechanism for obtaining it is
straightforward.
In the remaining, C is any clique of disjunctions,

and j and l are two distinct activities in C.
The first cut we have implemented is the “half cut”

proposed in Applegate and Cook (1991) for the job-
shop problem. It states that each activity j ∈ C has to
be scheduled after all activities i ∈C if xij = 1:

Sj ≥min
i∈C

b0i+
∑
i∈C\�j

pixij ∀j ∈C� (C10)

Let qi = bi�n+1�−pi denote the tail of activity i, then the
symmetric inequality is

Sn+1− Sj ≥ pj +
∑
i∈C\�j

pixji+min
i∈C

qi� (C′10)

The second cut from Dyer and Wolsey (1990) is
called a “late job cut” and has also been introduced
for the job-shop problem. It modifies a half cut by
assuming that another activity l ∈ C is scheduled at
the first position. A penalty is then added whenever
another activity has to be scheduled before l:

Sj ≥ b0l+
∑
i∈C\�j

pixij

+ ∑
i∈C\�l

min�0�b0i−b0l
xil ∀j�l∈C� (C11)

We propose our own version of the late job cut by
introducing the actual starting time Sl of activity l
instead of its earliest starting time. Whenever an activ-
ity i ∈ C has to be scheduled before l, Sl is replaced
by Sl+ bli ≤ Si:

Sj ≥ Sl+
∑
i∈C\�j

pixij +
∑
i∈C\�l

blixil ∀j� l ∈C� (C12)

Finally, we generate another kind of cut that tight-
ens (C12) if activity l is known to precede all activities
of C (such a condition may be detected by the dual
edge-finding rule):

Sj ≥ Sl+
∑
i∈C\�j

pixij

+min
i∈C\�l

�bli−pl� ∀j�l∈C � l→C\�l
� (C13)

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 59

To generate all the cuts involving a clique of dis-
junctions, we have used the heuristic clique genera-
tion algorithm of the CP phase (see §4.1).

5.2. Time-Indexed Variables
For the two formulations in time-indexed variables,
the aggregated one and the disaggregated one, we
relax the only integrality constraints (D4) as seen in
§3.2. In §§5.2.1 and 5.2.2, we describe how CP is
used to preprocess the time-indexed linear program.
Some cutting planes have already been proposed for
the time-indexed formulations (see, e.g., Christofides
et al. 1987, Sankaran et al. 1999). Among them, we use
the clique cuts as described in §5.2.3. In §§5.2.4 and
5.2.5, we also propose a new category of cuts, shaving
cuts.

5.2.1. Fixing Variables. As for the continuous for-
mulation, before the resolution, the huge number of
variables can be drastically reduced thanks to the pre-
processed SSD-matrix B. Indeed, for each activity j
in V , we only have to define the variables yjt for t
bounded by the earliest starting time ESj = b0j of j and
its latest starting time LSj =−bj0.

5.2.2. Strengthening Linear Constraints. The
weak and the strong precedence constraints can be
more efficiently implemented as follows:

LSj∑
t=ESj

tyjt −
LSi∑
t=ESi

tyit ≥ bij ∀�i� j� ∈ V 2 �D2′�

LSi∑
�=t
yi� +

t+bij−1∑
�=ESj

yj� ≤ 1

∀�i� j� ∈ V 2� ∀t ∈ �ESj − bij + 1� � � � �LSi
� �D2′S�

5.2.3. Clique Cuts. Clique cuts are packing in-
equalities stating that if C is a maximal set of mutu-
ally incompatible activities then, at any time t, at most
one activity of C is in process:

∑
�j� ��∈Ct

yj� ≤ 1 ∀t ∈ �0� � � � � T
� (D5)

where Ct = ��j� �� ∈ C × �max�ESj� t − pj + 1
� � � � ,
min�LSj� t

 � ESj ≤ t < LSj + pj
.
These inequalities are considered for all cliques of

disjunctions which were generated during the pre-
processing phase and which are maximal for inclu-
sion. Hence, we can expect that these clique cuts are
stronger than the ones used in classical implemen-
tations since numerous additional disjunctions and
conjunctions are likely to be detected by constraint
programming.

5.2.4. Four-Tuple Shaving Cuts. With the aim of
using shaving deductions, we have first translated the
implication Sj−Si ≥ pi ⇒ Sl−Sh ≥ bi→jhl for two distinct
pairs of activities �i� j� and �h� l�, into linear inequal-
ities by means of the time-indexed variables yit .
To ensure that this deduction is not dominated by
another constraint within the CSP formulation, we
assume that bi→jhl > bhl and that bij ≤ pi− 1<−bji.
For better readability, let zij denote

LSj∑
t=ESj

tyjt −
LSi∑
t=ESi

tyit�

i.e., Sj−Si. As for the precedence constraints (D2) and
(D2S), we can write the relation according to both for-
malisms, aggregated or disaggregated:

zij > pi− 1⇒ zhl ≥ bi→jhl

zij > pi− 1⇒
LSh∑
�=t
yh� +

t+bi→jhl −1∑
�=ESl

yl� ≤ 1 ∀t ∈ �0� � � � � T
�

The first implication can be modeled by the
inequality:

�−bji− pi+ 1��zhl− bhl�≥ �zij − pi+ 1�
(
b
i→j
hl − bhl

)
� (D6)

as shown in Figure 2, where solutions of the integer
program lie in the cross-hatched zone and solutions
of the linear relaxation lie in the gray zone.
The second implication can be represented by the

next set of inequalities:

−bji− zij ≥ �−bji− pi+ 1�
(LSh∑
�=t
yh� +

t+bi→jhl −1∑
�=ESl

yl� − 1
)

∀t ∈ {
max

{
ESh�ESl− bi→jhl + 1}� � � � �

min
{
LSh�LSl− bi→jhl + 1}}� �D6S�

There is another way to write the initial relation in
a disaggregated shape. Indeed, the equivalent relation
Sl− Sh < bi→jhl ⇒ Si− Sj ≥ 1− pi can be written:

zhl < b
i→j
hl ⇒

LSj∑
�=t
yj� +

t−pj∑
�=ESi

yi� ≤ 1 ∀t ∈ �0� � � � � T
�

zijbij pi−1 −bji

zhl

bhl

bi→j
hl

]

]
(D6)

Figure 2 Projection of � in the �zij 	 zhl
-Plane

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
60 INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS

Consequently, the following inequalities are also
valid:

zhl−bhl≥
(LSj∑
�=t
yj�+

t−pi∑
�=ESi

yi�

)(
b
i→j
hl −bhl

)

∀t∈�max�ESj�ESi+pi
�����min�LSj�LSi+pi

� �D6′S�
Obviously, selecting cutting planes (D6S) (or (D6′S))

rather than (D6) amounts to choosing between the
strong, but more numerous, precedence constraints
(D2S) and the weak ones (D2).

5.2.5. Triple Shaving Cuts. If h (or l) is equal to 0,
the two corresponding valid inequalities (D6) and
(D6S) are dominated by

−bji− zij ≥ �−bji− pi+ 1�
(ESi→jl −1∑

�=ESl
yl� +

LSl∑
�=LSi→jl +1

yl�

)

(D7)

since it models the stronger implication Sj − Si ≥ pi ⇒
ES

i→j
l ≤ Sl ≤ LSi→jl �

6. Computational Experiments
We have tested our lower bounds on the ProGen
instances (Kolisch et al. 1995) with 30, 60, 90, and 120
activities. The constraint propagation, shaving, and
cutting-plane algorithms were all written in C++,
using ILOG CPLEX 7.0 as the LP solver. The exper-
iments were carried out on a Pentium III 800 MHz
system, under Linux and using g++ 2.95.4. Our pro-
cedures are essentially compared to the strongest
currently available one on these instances, i.e., (BK)
proposed by Brucker and Knust (2000), who obtained
their results on a Sun Ultra 2 workstation 167 MHz.
We first tested our CP-LP hybrid method on the

two linear models in a constructive way. In §6.1 we
present variants of these two algorithms and make
an experimental comparison of their efficiency for
computing lower bounds. To enhance our method, we
then selected whichever of these two algorithms that
obtained the best lower bounds, and we embedded it
into a destructive procedure. We explain the princi-
ple of this destructive procedure and report its results
compared to the bound by Brucker and Knust (2000)
in §6.2.

Table 1 Results on the Nontrivial KSD30 Instances

CP Discrete (aggregated)
Continuous

KSD30 264 Instances LCP CCP LCP+ LP CCP+ LP CCP+weak CCP+ strong CCP+ cuts
Average �opt (%) 5�8 3�6 5�3 3�2 3�1 3�0 3�2
Maximal �opt (%) 33�7 31�3 25�0 25�0 21�8 21�8 29�7
Average time (s.) 0�0 2�3 1�0 3�0 10�2 35�6 4�9
Max time (s.) 0�0 17�3 49�5 31�1 601 1	296 37�6
No. of LB= opt 95 155 96 157 159 160 160
No. of LP> CP — — 24 17 35 42 47

6.1. Constructive Lower Bounds
The constructive lower bounds are computed accord-
ing to the following scheme: given a feasible upper
bound T , the CP algorithm including shaving is
applied until no more deductions are found. Then the
constraint-programming lower bound CPLB = b0�n+1�
is obtained. The LP phase is invoked if CPLB < T .
Starting from the linear relaxation, the different pools
of cuts are successively added in a cyclic way. At
each iteration, all the inequalities of a single group
are tested inside an enumerative procedure, but only
the ones violating the current fractional solution are
generated and included in the LP. The LP relaxation
is solved with dual simplex, and the nonbinding cuts
are removed from the LP. The on-the-fly cutting-plane
procedure stops when no significant improvement of
the lower bound has been made during a certain
number of iterations, when no violating inequality
can be found, or when the computation time allowed
is elapsed.
In Table 1, we report experiments on the 264 KSD

nontrivial instances with 30 activities, which are the
instances for which the optimal value is not the length
of the critical path within the precedence graph.
Rows 1 and 2 give the average and maximal deviation
3opt from the optimal solution of our lower bounds.
Rows 3 and 4 give the average and maximal CPU
times. We also give the number of instances for which
the optimal value is reached (Row 5) and the number
of instances for which LP improves constraint propa-
gation (Row 6). Each column corresponds to a specific
lower bound obtained from:
• Columns 2 and 3: the constraint-programming

process alone, “LCP” local (i.e., CP without shaving),
and “CCP” complete (including shaving).
• Columns 4 and 5: the resolution of the “weak dis-

crete” linear program (i.e., in time-indexed variables
with aggregated precedence constraints) with either
LCP or CCP preprocessing.
• Columns 6 and 7: the resolution of the weak

discrete linear program with CCP preprocessing and
cutting planes including either aggregated (“weak”)
cuts (D6) or disaggregated (“strong”) cuts (D6S) and
(D6′S).

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 61

• Column 8: the resolution of the “continuous” lin-
ear program (i.e., in continuous-time variables) with
CCP preprocessing and with cutting planes.
For each of these instances, T is set to the optimal

makespan, which is known. In terms of the quality of
the bound, the results on the KSD30 instances are very
good for both formulations that prove the optimality
of 160 instances out of 264. Compared to the contin-
uous formulation, the discrete formulation using our
strong cuts and the complete CP process reaches a
slightly better average deviation under the optimum
(3.0% versus 3.2%) but requires much more average
CPU time (35.6 seconds versus 4.9 seconds).
Within the CP phase, the shaving technique greatly

improves the local rules (3.6% versus 5.8%) at the
expense of extra computational times (2.3 seconds
versus 0 seconds). The cuts derived from CP suc-
ceed in improving significantly the CP bound: Of
the 109 instances not solved by CCP alone, the pro-
posed cutting planes are useful on 18 instances for
the discrete formulation with aggregated precedence
cuts, 25 instances for the discrete formulation with
disaggregated precedence cuts, and 47 instances for
the continuous formulation.
The interest in the cooperation between CP and LP

is enlightened by this experiment. Indeed, the average
deviation from the optimum obtained with coopera-
tion is between 3.0% and 3.1% (Columns 6 and 7),
while the CP phase alone (including complete shav-
ing) obtains 3.6% (Column 3), and discrete LP relax-
ation without shaving preprocessing obtains 5.3%.
We have also tested our algorithm on the 184 non-

trivial KSD instances with 60 activities (see Table 2).
Some of them are still open (not solved to optimal-
ity). We use then for T the best known upper bounds
to date. Furthermore, we compare our bounds over
their average deviations above the trivial critical path
lower bound LB0 (Row 1: 3LB0). Here, RCP denotes
the reduced CP process where shaving is only applied
to the pairs of activities in disjunction. Finally, the
processing time is limited to 30 minutes.
For the KSD60 instances, preprocessing through CP

is less efficient than for KSD30. Because of the size
of the problems, the shaving technique has obviously
a lower power of deduction. This also holds for the
cutting planes derived from the CP. However, use of

Table 2 Results on the Nontrivial KSD60 Instances

CP Discrete (aggregated)
Continuous

KSD60 184 Instances LCP RCP CCP RCP+ LP RCP+weak RCP+ strong RCP+ cuts
Average �LB0 (%) 7�7 9�5 9�6 17�5 17�7 17�7 10�0
Average time (s.) 0�0 27�7 62�1 81�8 243 771 257
Max time (s.) 0�1 130�8 297 904 1	800 1	800 919
No. of LB= opt 41 58 59 58 58 58 59
No. of LP> CP — — — 57 62 64 51

a reduced version of the CP algorithm appears to be
really advantageous since it allows more reasonable
CPU times (27.7 seconds versus 62.1 seconds) with
only a slight deterioration of the results (9.5% versus
9.6%).
The method based on the continuous formulation

proves optimality for one more instance than does the
method based on the discrete formulation. However,
the average deviation from LB0 stays dramatically
low for the continuous model. A basic reason is that,
within this procedure, the only resource constraints
that are taken into account are the ones involving
fewer than three activities at a time.
On the other hand, the discrete LP model performs

remarkably well for this criterion, improving by more
than 8% the results of the CP phase. The weak and the
strong cuts increase the number of times LP improves
CP (by 5 and 7, respectively) and perform better in
terms of average deviation above LB0 than does the
LP relaxation without cuts (17.7% versus 17.5%). How-
ever the efficiency of the cutting planes is rather disap-
pointing since they have considerably less impact on
the quality of the bound than does the basic LP model
itself. Actually, their computation requires a great deal
of CPU time. In particular, the disaggregated prece-
dence cutting planes that dominate, in theory, the
aggregated ones, do not significantly improve the
average deviation above LB0 since their huge number
really slows down the entire procedure.
The interest in the cooperation between CP and LP

is again underlined by the improvement this coop-
eration brings to both methods used separately. As
an illustration, we improve on the bound proposed
in Möhring et al. (2003) based on the discrete-time
formulation without CP preprocessing.
As a conclusion to this experimental compari-

son, it appears that the discrete-time formulation
outperforms the continuous-time formulation as the
problem size increases. As a counterpart, the cuts
we have proposed bring more improvement for the
continuous-time formulation than for the discrete-
time formulation.
We follow up our experiments by considering only

the best algorithm (based on the discrete-time formu-
lation with aggregated precedence cutting planes) and
by including it into a destructive procedure.

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
62 INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS

6.2. Destructive Lower Bound
To improve the constructive algorithm based on
the discrete formulation, we incorporated it into a
destructive procedure. Indeed, Klein and Scholl (1999)
reported the efficiency of destructive approaches
to compute lower bounds, and the quality of the
destructive bound of Brucker and Knust (2000) seems
to confirm this conclusion. Moreover, the implemen-
tation of a destructive procedure embedding the algo-
rithm presented in the preceding section is quite easy.
Starting again from an upper bound UB of the opti-

mal makespan (e.g., the sum of the duration activi-
ties), we look, via a dichotomizing search procedure,
for the greatest value T between 0 and UB − 1
such that the constructive CP+ LP algorithm proves
that there is no feasible schedule with makespan less
than or equal to T . Our destructive lower bound
is then T + 1. In both phases of the constructive algo-
rithm, the infeasibility of the planning horizon T can
be detected: if b0�n+1 > T within the CP phase, or if
the set of feasible solutions becomes empty within the
cutting-plane-generation phase.
In Table 3, we give the results of our destructive

lower bound (destr: Column 6) compared with the
trivial critical path bound (LB0: Column 3), with the
tightest bound to date on the KSD instances proposed
by Brucker and Knust (2000) (BK: Column 4) and with
the best available lower bound for each instance (best:
Column 5) on the KSD instances with 30, 60, 90, and
120 activities (available at http://www.bwl.uni-kiel.
de/Prod/psplib/).
For the KSD60, KSD90, and KSD120 instance sets,

we give from top to bottom in Table 3 the average
deviation of the lower bounds from the critical path
bound (LB0), the average and maximal deviation from
the available best upper bound (UB), the average and
maximal CPU time in seconds (note that the two
bounds were not computed on the same machine), the
number of instances for which the optimal value is
reached (LB=UB), the number of times we perform
better than the previous best-known lower bound,
and the number of new optima we prove. Since
the optimal value is known for all instances with
30 activities, results on KSD30 presented in Table 3
are only statistics on the deviation from the optimal
value, the CPU time, and the number of instances for
which the optimal value is reached.
Finally, for each instance set, we adapted our algo-

rithm to save computation time: for the 480 instances
with 30 activities, the constructive algorithm was
run with CCP preprocessing (i.e., complete shaving),
clique cuts, and aggregated precedence cuts. For the
KSD60 instances, the algorithm was run with RCP
preprocessing (where shaving was applied only to a
reduced set of 500 pairs of activities including pairs in
disjunction), clique cuts, and aggregated precedence

Table 3 Results on the KSD Instance Sets

No. of Act LB0 BK best destr

30 (480)
Av. �opt (%) — 1�5 — 0�7
Max (%) — 11�1 — 15�2
Av. CPU∗ — 0�4 — 3�2
Max — 4�3 — 229�9
No. of LB= opt — 318 — 403

60 (480)
Av. �LB0 (%) — 7�8 7�9 7�7
Av. �UB (%) 7�1 1�9 1�8 1�8
Max (%) 50�0 14�7 13�7 17�9
Av. CPU∗ — 5 — 168
Max — 3	720 — 1	963
No. of LB= UB 296 341 356 360
No. of LB> best — — — 43
No. of new opt — — — 9

90 (480)
Av. �LB0 (%) — 7�2 7�2 7�0
Av. �UB (%) 6�6 1�8 1�8 1�8
Max (%) 50�0 12�7 12�7 23�4
Av. CPU∗ — 72 — 379
Max — 9	900 — 3	606
No. of LB= UB 334 350 351 364
No. of LB> best — — — 28
No. of new opt — — — 13

120 (600)
Av. �LB0 (%) — 21�4 21�4 19�1
Av. �UB (%) 16�2 3�8 3�8 4�8
Max (%) 66�1 17�4 17�4 33�2
Av. CPU∗ — 21	300∗∗ — 1	388
Max — 259	200 — 3	836
No. of LB= UB 178 208 208 229
No. of LB> best — — — 60
No. of new opt — — — 21

∗“BK” was computed on a Sun Ultra 2 workstation at 167 MHz and “destr”
on a Pentium III at 800 MHz.

∗∗Refers only to 481 of the 600 instances. For the remaining instances the
computation was carried out until the limit of 259,200 seconds (72 hours).

cuts, but within computation time limited to 30 min-
utes. For the 480 instances with 90 activities and for
the 600 instances with 120 activities, we just ran the
algorithm with RCP preprocessing and LP without
generating cutting planes and with computation time
limited to 1 hour.
Despite the higher computation time, our destruc-

tive lower bound is comparable to, and even
improves upon, the tightest known lower bound (BK),
in terms of both the number of solved instances
and the average deviation from the upper bound
for the KSD30, KSD60, and KSD90 instance sets. For
the biggest instances with 120 activities, we proved
optimality for more instances but the average devi-
ation from the upper bound is higher. However, an
advantage of our bound is the possibility to limit
the computation time, which is not possible for the
column-generation process. Hence, for the KSD120
set, our procedure seems to be on average faster

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 63

Table 4 Compared Results on the “Hard” KSD30 Instances

Group NC RF RS LB0 LB1 destr

21 1.8 0.50 0.20 25�67 13�55 0.00
25 1.8 0.75 0.20 36�68 9�75 1.07
29 1.8 1.00 0.20 41�56 11�66 5.67
30 1.8 1.00 0.50 8�88 5�34 3.17
31 1.8 1.00 0.70 2�66 0�74 0.95
41 2.1 0.75 0.20 37�24 8�21 0.11
45 2.1 1.00 0.20 36�52 8�26 0.36

(although the tests have not been run on the same
machine).
The power of destructive approaches is obviously

demonstrated here, comparing for each criterion
(quality and CPU time) results of the same algorithm
used in a constructive way (Table 1, Column 6 for
KSD30, and Table 2, Column 6 for KSD60) and in a
destructive way (Table 3, Column 6).
Finally, note that for each challenging instance set,

we found new lower bounds for 43 of 124 nonsolved
instances, 28 of 129 and 60 of 392 for the 60, 90, and
120 activity instance sets, respectively. Among these
new bounds, we closed the optimality gap for 9, 13,
and 21 instances, respectively.
We now propose a deeper analysis of these com-

putational results by evaluating the performance of
our bound with respect to the characteristics of the
instances. The KSD instances were generated by a
controlled design of specified parameters (Kolisch
et al. 1995). These characteristics are the network com-
plexity, the resource factor and the resource strength.
The network complexity NC ∈ �0�1� gives the ratio
of nonredundant precedence constraints. The resource
factor RF ∈ �0�1� describes the average number of
resources required by a job: RF = 1 means that any
nondummy activity requires each of the m resources.
The resource strength RS ∈ �0�1� measures the tight-
ness of the resource constraints. Hence, RS= 0 means
that the availability Rk of any resource k is set to the
minimal feasible value, whereas RS = 1 corresponds
to an unconstrained problem where the resource
availabilities are set such that the CPM schedule is
resource-feasible. The KSD30, KSD60, and KSD90 sets
are divided into 48 groups of ten instances sharing the
same triple �NC�RF�RS�. The KSD120 set is divided
into 60 groups of ten similar instances.

Table 5 Compared Results on the KSD60 Instances with RS= 0�2
LB0 BK destr No. of No. of

Groups RS RF (%) (%) (%) destr> best UB> best

1,17,33 0.20 0.25 8�82 0.99 0�08 3 3
5,21,37 0.20 0.50 23�40 8.23 3�43 27 30
9,25,41 0.20 0.75 31�51 9.38 10�43 8 30
13,29,45 0.20 1.00 39�90 7.36 11�55 0 30

Table 6 Compared Results on KSD90 Instances with RS= 0�2
LB0 BK destr No. of No. of

Groups RS RF (%) (%) (%) destr> best UB> best

1,17,33 0.20 0.25 8�23 1�65 0�36 15 18
5,21,37 0.20 0.50 22�17 8�56 8�27 10 30
9,25,41 0.20 0.75 33�13 8�81 10�69 0 30
13,29,45 0.20 1.00 37�79 7�16 8�47 1 30

For the 30 activity set, Mingozzi et al. (1998) exhib-
ited groups of instances that the branch and bound
algorithm of Demeulemeester and Herroelen (1992)
was not able to solve. In Table 4, we give the average
deviation in percent from the optimum of our destruc-
tive bound on these hard instances compared with the
LB0 bound and the best LP-based lower bound LB1
of Mingozzi et al. (1998).
Our bound performs better than LB1 on almost all

hard instance groups (21, 25, 41, 45, 29, 30), but it does
not perform as well on Group 31. In fact, it seems
that the “hard” instances identified by Mingozzi et al.
(1998) do not correspond at all to the ones for which
our method is less efficient. For example, our lower
bound reaches the optimal value for all instances of
Group 21, while its deviation from the optimal value
is on average 8.21% for Group 13.
Actually, Groups 13 and 29 correspond to a high

resource factor (RF = 1) and low resource strength
(RS= 0.2), which are characteristics that are together
not favorable to our bound. On the other hand, the
quality of our bound is very good for low resource
factors (RF = 0.25 or 0.5) as in Group 21. To show
more precisely how these characteristics affect our
bound, we give in Tables 5, 6, and 7 experimental
results on all instance groups of the 60, 90, and 120
activity sets with RS= 0.2. As mentioned by Brucker
and Knust (2000), these are the hardest instances since
they correspond to scarce resources and have numer-
ous disjunctions. Among these instances, we have
grouped the ones having the same resource factor.
In Tables 5, 6, and 7, Columns 4, 5, and 6 give

the average deviation from the best upper bound
for, respectively, LB0, BK, and destr lower bounds.
In Column 7, we report how many times destr
improves upon the best known lower bound among
the instances for which the optimality gap is not
closed, i.e., instances with the best known upper

Table 7 Compared Results on KSD120 Instances with RS= 0�2
LB0 BK destr No. of No. of

Groups RS RF (%) (%) (%) destr> best UB> best

1,21,41 0.20 0.25 18.67 4�25 1�34 25 28
6,26,46 0.20 0.50 41.69 10�23 11�72 3 29
11,31,51 0.20 0.75 53.29 10�69 19�85 0 30
16,36,56 0.20 1.00 58.82 8�61 21�44 0 30

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
64 INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS

2

4

6

8

10

12

14

16

18

0.25 0.5 0.75 1

KSD60 : Deviation from LB0/RF

UB
destr

BK

Figure 3 Comparisons on the KSD60 Instances with RS = 0.2

bound strictly greater than the best known lower
bound (Column 8).
It appears that our results on the hard instances are

not homogeneous and that the quality of our bound
strongly depends on the resource-factor characteristic.
Indeed, we significantly improve upon the BK bound
for instances where RF= 0.25, where we find a large
number of new best lower bounds (43 of 49 nonsolved
instances) and also for RF= 0.50 (40 new best lower
bounds of 89). On the other hand, our procedure is
less efficient for instances with RF= 0.75 and RF= 1,
i.e., when activities require on average from three to
four resources out of four. Again, the CP phase, which
appears to be crucial in our scheme, is inefficient for
such problem characteristics and the cuts cannot close
the gap. This is not surprising since most of the cuts
we proposed are based on the shaved distance matri-
ces computed by CP.
This property of the proposed bound is enlight-

ened by Figure 3, which represents the behavior of
the average deviation 3LB0 of our lower bound (destr),
of the best-known lower bound (BK), and of the best-
known upper bound (UB), depending on the resource
factor over the KSD60 instances.

7. Conclusion
In this paper, we have presented a new method to
compute lower bounds for the RCPSP, based on close
cooperation between CP and LP. We have first pro-
posed a new shaving technique from which we derive
original cutting planes for linear models of the RCPSP.
In order to investigate this method, we have per-
formed two parallel studies by considering two dif-
ferent linear formulations of the RCPSP. In both cases,
computational experimentations show that the pro-
posed cuts are able to improve the initial lower bound
on some hard RCPSP instances. An experimental com-
parison between the two proposed lower bounds con-
firms that the formulation with discrete-time variables

is clearly more efficient than the one with continuous-
time variables. Indeed, the bound obtained from this
first program is quite competitive with the best known
lower bounds, despite rather high computation times.
To speed up and also to improve this algorithm, we
embedded it into a destructive procedure. The results
obtained are satisfactory and confirm the power of
destructive approaches to compute lower bounds.
A significant number of new lower bounds has been

found on each challenging instance set. Although the
proposed bound is rather time consuming and signifi-
cantly weaker on average for the KSD120 instance set
than the best current bound designed by Brucker and
Knust (2000), it is in turn quite competitive compared
to the latter bound for the KSD30, KSD60, and KSD90
sets.
To make a better compromise between time require-

ments and bound quality, it would be of great interest
to combine the lagrangian approach of Möhring et al.
(2003), which would speed up the linear program res-
olution, with our cuts.
It must also be noted that our algorithm is not

adapted to difficult highly cumulative instances like
the ones proposed by Baptiste and Le Pape (2000). This
should motivate the search for constraint-propagation
algorithms and cutting planes able to tackle such prob-
lem characteristics. For that, we can modify the pre-
processing phase of our algorithm (initially developed
for the linear program in continuous-time variables),
by implementing a more classical CP procedure based
on time windows and shaving of inconsistent start-
ing times. We could then derive cutting planes better
suited to the discrete-time programwhile saving space
and computational time requirements. It would also
be interesting to add energetic reasoning (Lopez et al.
1992) within the CP phase or to generate energetic-
reasoning-based cutting planes.
The scope of the experiments we have performed

was to validate the approach. This is mostly achieved
in this study. Further necessary research lies in the
optimization of the management of the cuts inside
the cutting-plane-generation algorithm, which is still
purely enumerative. Moreover, the global scheme
introduced in this paper (cutting-plane generation
through CP) can probably be adapted on many other
problems.

Appendix
Proof of Proposition 2. In both cases (i) and (ii), PC1

and PC2 are valid since they satisfy the conditions of
Lemma 1. Let �*�+�,� satisfy the conditions of the propo-
sition. Let .* = A − *, .+ = B − A + .* − +, and ., = C −
A+.*−,. Then .*, .+, and ., are nonnegative and satisfy
.*− .+− ., ≤A+D−B−C.
(i) Suppose that A+D≥ B+C and let �S ∈� �P�.

Demassey, Artigues, and Michelon: Constraint-Propagation-Based Cutting Planes
INFORMS Journal on Computing 17(1), pp. 52–65, © 2005 INFORMS 65

(i1) if �S is such that x̄ij + x̄jl ≤ 1, then if inequality PC1
holds for �S,

*++x̄ij +,x̄jl = A+ �B−A�x̄ij + �C −A�x̄jl
+.*�x̄ij + x̄jl − 1�− .+x̄ij − .,x̄jl

≤ A+ �B−A�x̄ij + �C −A�x̄jl�

(i2) Otherwise, if �S is such that x̄ij + x̄jl > 1, then if
inequality PC2 holds for �S,
*++x̄ij +,x̄jl

= �B+C −D�+ �D−C�x̄ij + �D−B�x̄jl
+ �.*− .+− ., − �A+D−B−C���x̄ij + x̄jl − 1�
+ .+�x̄jl − 1�+ .,�x̄ij − 1�

≤ �B+C −D�+ �D−C�x̄ij + �D−B�x̄jl�
Hence, if A + D ≥ B + C, then any solution satisfying
both inequalities PC1 and PC2, also satisfies any inequality
C8�*�+�,� satisfying the conditions of the proposition.
(ii) It can be symmetrically demonstrated that if A+D≤

B + C, then any valid inequality PC�*�+�,� is dominated
by either PC1 or by PC2. �

References
Alvarez-Valdés, R., J. M. Tamarit. 1993. The project scheduling poly-

hedron: Dimension, facets and lifting theorems. Eur. J. Oper.
Res. 67 204–220.

Applegate, D., W. Cook. 1991. A computational study of job-shop
scheduling. ORSA J. Comput. 3 149–156.

Balas, E. 1970. Project scheduling with resource constraints. E. M. L.
Beale, ed. Appl. Math. Programming Tech. The English Universi-
ties Press, London, U.K., 187–200.

Baptiste, P., C. Le Pape. 2000. Constraint propagation and decompo-
sition techniques for highly disjunctive and highly cumulative
project scheduling problems. Constraints 5 119–139.

Brucker, P., A. Drexl, R. Möhring, K. Neumann, E. Pesch. 1999.
Resource-constrained project scheduling problem: Notation,
classification, models and methods. Eur. J. Oper. Res. 112 3–41.

Brucker, P., S. Knust. 2000. A linear programming and constraint
propagation-based lower bound for the RCPSP. Eur. J. Oper.
Res. 127 355–362.

Brucker, P., S. Knust, A. Schoo, O. Thiele. 1998. A branch and
bound algorithm for the resource-constrained project schedul-
ing problem. Eur. J. Oper. Res. 107 272–288.

Carlier, J., E. Néron. 2000. A new LP based lower bound for the
cumulative scheduling problem. Eur. J. Oper. Res. 127 363–382.

Carlier, J., E. Pinson. 1989. An algorithm for solving the job-shop
problem. Management Sci. 35 164–176.

Carlier, J., E. Pinson. 1990. A practical use of Jackson’s preemp-
tive schedule for solving the job-shop problem. Ann. Oper. Res.
26 269–287.

Carlier, J., E. Pinson. 1994. Adjustment of heads and tails for the
job-shop problem. Eur. J. Oper. Res. 78 146–161.

Caseau, Y., F. Laburthe. 1996. Cumulative scheduling with task
intervals. M. Maher, ed. Proc. Joint Internat. Conf. Sympos. Logic
Programming, JCPSLP’96. MIT Press, Cambridge, MA, 363–377.

Christofides, N., R. Alvarez-Valdés, J. M. Tamarit. 1987. Project
scheduling with resource constraints: A branch and bound
approach. Eur. J. Oper. Res. 29 262–273.

Demeulemeester, E., W. Herroelen. 1992. A branch-and-bound pro-
cedure for the multiple-resource constrained single project
scheduling problem. Management Sci. 38 1803–1818.

Demeulemeester, E., W. Herroelen. 1997. New benchmark results
for the resource-constrained project scheduling problem.
Management Sci. 43 1485–1492.

Dorndorf, U., E. Pesch, T. Phan-Huy. 2000. A branch-and-bound
algorithm for the resource constrained project scheduling prob-
lem. Math. Methods Oper. Res. 52 413–439.

Dyer, M., L. A. Wolsey. 1990. Formulating the single machine
sequencing problem with release dates as mixed integer pro-
gram. Discrete Appl. Math. 26 255–270.

Harjunkoski, I., V. Jain, I. Grossmann. 2000. Hybrid mixed
integer/constraint logic programming strategies for solving
scheduling and combinatorial optimization problems. Comput.
Chemical Engrg. 24 337–343.

Hooker, J. N. 2000. Logic-Based Methods for Optimization: Combining
Optimization and Constraint Satisfaction. Wiley, New York.

Klein, R., A. Scholl. 1999. Computing lower bound by destructive
improvement: An application to resource-constrained project
scheduling. Eur. J. Oper. Res. 112 322–346.

Kolisch, R., A. Sprecher, A. Drexl. 1995. Characterization and gener-
ation of a general class of resource-constrained project schedul-
ing problems. Management Sci. 41 1693–1703.

Lopez, P., J. Erschler, P. Esquirol. 1992. Ordonnancement de tâches
sous contraintes: une approche énergétique. Revue Française
Automatisme Informatique Rech. Oper. APII 26 453–481.

Martin, P., D. B. Shmoys. 1996. A new approach to computing
optimal schedules for the job-shop scheduling problem. W. H.
Cunningham, S. T. McCormick, M. Queyranne, eds. Proc. 5th
Internat. Conf. Integer Programming Combin. Optim., IPCO’96.
Vancouver, British Columbia, Canada, 389–403.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, L. Bianco. 1998. An
exact algorithm for the multiple resource-constrained project
scheduling problem based on a new mathematical formulation.
Management Sci. 44 714–729.

Möhring, R. H., A. Schultz, F. Stork, M. Uetz. 2003. Solving project
scheduling problems by minimum cut computations. Manage-
ment Sci. 49 330–350.

Nuijten, W. 1994. Time and resource constrained scheduling: A con-
straint satisfaction approach. Ph.D. thesis, University of Tech-
nology, Eindhoven, The Netherlands.

Pritsker, A., L. Watters, P. Wolfe. 1969. Multi-project scheduling
with limited resources: A zero-one programming approach.
Management Sci. 16 93–108.

Radermacher, F. 1985. Scheduling of project networks. Ann. Oper.
Res. 4 227–252.

Sankaran, J. K., D. L. Bricker, S-H. Juang. 1999. A strong frac-
tional cutting-plane algorithm for resource-constrained project
scheduling. Internat. J. Indust. Engrg.: Appl. Practice 6 99–111.

Sprecher, A. 2000. Scheduling resource-constrained projects com-
petitively at modest memory requirements. Management Sci.
46 710–723.

