Flexible Optimization: Nurse Scheduling with Constraint Programming and Automata

Sophie Demassey

Centre de Mathématiques Appliquées, MINES ParisTech
http://sofdem.github.io/

CMP, Gardanne, 3 July 2014
mutability of practical recurring problems

example 1: online data center resource management

http://btrp.inria.fr/ [Hermenier09]
mutability of practical recurring problems

example 2: employee timetabling

https://github.com/sofdem/chocoETP [Menana09]
outline

1. Mutable Problem
 - Nurse Scheduling

2. Flexible Tools
 - finite automata
 - global constraints

3. Flexible Solutions
 - multicost-regular = automata + global constraints
 - ChocoETP = automata + CP + local search

4. Conclusion
Nurse Scheduling Problem
an illustration of mutability
Nurse Scheduling Problem

- I set of nurses
- T discrete time horizon \[28 \text{ days}\]
- A set of activities $N \text{ night, } M \text{ morning, } E \text{ evening, } R \text{ rest}$
Nurse Scheduling Problem

- I set of nurses
- T discrete time horizon
- A set of activities
- cover constraints C_t / day t
- working rules R_i / nurse i

- 28 days
- N night, M morning, E evening, R rest
- between 2 and 3 nurses at night
- at least 2 mornings a week
Nurse Scheduling Problem

- I set of nurses
- T discrete time horizon
- A set of activities
- cover constraints $C_t / \text{day } t$
- working rules $R_i / \text{nurse } i$

28 days

$N \text{ night, } M \text{ morning, } E \text{ evening, } R \text{ rest}$

between 2 and 3 nurses at night

at least 2 mornings a week
working rules

Examples:

- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

mutable, heterogeneous, hard/soft
Examples:

- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

mutable, heterogeneous, hard/soft
working rules

Examples:

- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

mutable, heterogeneous, hard/soft

<table>
<thead>
<tr>
<th>how ?</th>
<th>forbid</th>
<th>enforce</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>what ?</td>
<td>activity</td>
<td>stretch</td>
<td>pattern</td>
</tr>
<tr>
<td>when ?</td>
<td>fixed time</td>
<td>sliding period</td>
<td>fixed period</td>
</tr>
</tbody>
</table>
working rules

Examples:

- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

<table>
<thead>
<tr>
<th>how?</th>
<th>forbid</th>
<th>enforce</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>what?</td>
<td>activity</td>
<td>stretch</td>
<td>pattern</td>
</tr>
<tr>
<td>when?</td>
<td>fixed time</td>
<td>sliding period</td>
<td>fixed period</td>
</tr>
</tbody>
</table>
working rules

Examples:

- between 2 and 3 rests every 7 days
- no 3 consecutive nights a week
- a rest and a night every week-end

mutable, heterogeneous, hard/soft

<table>
<thead>
<tr>
<th>how?</th>
<th>forbid</th>
<th>enforce</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>what?</td>
<td>activity</td>
<td>stretch</td>
<td>pattern</td>
</tr>
<tr>
<td>when?</td>
<td>fixed time</td>
<td>sliding period</td>
<td>fixed period</td>
</tr>
</tbody>
</table>
working rules

Examples:

- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

mutable, heterogeneous, hard/soft
working rules

Examples:
- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

mutable, heterogeneous, hard/soft

individual constraint penalties (to minimize)

ex: \(5 \times \text{occurrence(violation)}^2 \)
working rules

Examples:

- *between 2 and 3 rests every 7 days*
- *no 3 consecutive nights a week*
- *a rest and a night every week-end*

mutable, heterogeneous, hard/soft

⇒ *high-level modelisation tools*
⇒ *auto-configurable algorithms*
Flexible tools in Combinatorial Optimization
finite automata
flexible tool #1
formal languages

- **alphabet**: Σ a finite non-empty set of symbols
 \[\{a, b\} \]

- **word/string**: $w \in \Sigma^n$ a finite sequence of symbols
 \[aaabb \]

- **language**: $L \subseteq \Sigma^*$ a set of words
 \[\{ab, ba, aab, bba, aaab, bbba, \ldots\} \]
formal languages

- **alphabet:** Σ a finite non-empty set of symbols
 \{a, b\}
- **word/string:** $w \in \Sigma^n$ a finite sequence of symbols
 aaabb
- **language:** $L \subseteq \Sigma^*$ a set of words
 \{ab, ba, aab, bba, aaab, bbba, \ldots\}

- **classes and recognizers:** regular, context-free, etc.
formal languages

- **alphabet**: Σ a finite non-empty set of symbols
 $$\{a, b\}$$

- **word/string**: $w \in \Sigma^n$ a finite sequence of symbols
 $$aaabb$$

- **language**: $\mathcal{L} \subseteq \Sigma^*$ a set of words
 $$\{ab, ba, aab, bba, aaab, bbba, \ldots\}$$

- **classes and recognizers**: regular, context-free, etc.

- **operations**: union, concatenation, closure, etc.
formal languages

- **alphabet**: Σ a finite non-empty set of symbols

 \{a, b\}

- **word/string**: $w \in \Sigma^n$ a finite sequence of symbols

 $aaabb$

- **language**: $L \subseteq \Sigma^*$ a set of words

 \{ab, ba, aab, bba, aaab, bbba, …\}

- **classes and recognizers**: regular, context-free, etc.

- **operations**: union, concatenation, closure, etc.

- **properties**: emptiness, membership, universality, etc.
generators and recognizers

\[\mathcal{L} = \{ab, ba, aab, bba, aaab, bbba, \ldots\} \]

1 infinite **regular** language, 3 finite representations:

finite automaton

![Finite Automaton Diagram]

regular expression

\[(a+b)|((b^+)a)\]

formal grammar

\[
\begin{align*}
S & \rightarrow aA | bB \\
A & \rightarrow aA | b \\
B & \rightarrow bB | a
\end{align*}
\]
what purpose?

- implicit and concise (finite) representation
- human-readable and machine-processable
- theories and algorithms for operations and decision properties
- models of discrete systems like languages, protocols
what purpose?

- implicit and concise (finite) representation
- human-readable and machine-processable
- theories and algorithms for operations and decision properties
- models of discrete systems like languages, protocols
- models of working rules
 - alphabet: set of activities $A = \{M, E, N, R\}$
 - word: $w \in A^T$ schedule of an employee
 - language: constrained set of schedules
working rules as a language
working rules as a language

- rule R as a regexp E_R [Pesant04]

 no more than 2 consecutive nights: $E_R = \neg(\text{NNN})$
working rules as a language

- rule \(R \) as a regexp \(E_R \) [Pesant04]

 no more than 2 consecutive nights: \(E_R = \neg (NNN) \)

- feasible schedules as a regular language \(\mathcal{L}^R \cap A^T \) with

\[
\mathcal{L}^R = \bigcap_{R \in \mathcal{R}} \mathcal{L}(E_R) = \mathcal{L}(\neg \bigcup_{R \in \mathcal{R}} \neg E_R)
\]
working rules as a language

- rule R as a regexp E_R [Pesant04]

 no more than 2 consecutive nights: $E_R = \neg(\text{NNNN})$

- feasible schedules as a regular language $\mathcal{L}^R \cap \mathcal{A}^T$ with

 $$\mathcal{L}^R = \bigcap_{R \in \mathcal{R}} \mathcal{L}(E_R) = \mathcal{L}(\neg \bigcup_{R \in \mathcal{R}} \neg E_R)$$

- extension to context-free grammars [Sellman06, Quimper06, Côté10]

 $$\mathcal{L}(S \rightarrow \epsilon, S \rightarrow aSb) = \{a^n b^n \mid n \in \mathbb{N}\}$$
working rules as a language

- rule R as a regexp E_R [Pesant04]

 no more than 2 consecutive nights: $E_R = \neg(NNN)$

- feasible schedules as a regular language $\mathcal{L}^R \cap A^T$ with

 $$\mathcal{L}^R = \bigcap_{R \in \mathcal{R}} \mathcal{L}(E_R) = \mathcal{L}(\neg \bigcup_{R \in \mathcal{R}} \neg E_R)$$

- extension to context-free grammars [Sellman06, Quimper06, Côté10]

 $$\mathcal{L}(S \to \epsilon, S \to aSb) = \{a^n b^n \mid n \in \mathbb{N}\}$$

- extension to weighted automata [Demassey05, Menana09]

 for counting, optimization and soft rules
weighted automata

Transition costs, path cost, and bounds

- Add a vector of costs (index dependent) to each transition.
- The cost of the word is the sum of the transition costs.
- Restrict the language to words with costs within given bounds.

![Diagram of a weighted automaton with transitions labeled with costs and final states labeled with constraints.](image-url)
working rules as weighted automata \cite{Menana09}

automated modeling tool in ChocoETP

1. model each rule including penalties as a language
 \[\Rightarrow \text{regex or weighted automaton} \]
2. compute the language intersection
 \[\Rightarrow \text{multi-weighted automaton} \]
working rules as weighted automata [Menana09]

automated modeling tool in ChocoETP

1. model each rule including penalties as a language
 \[\Rightarrow \text{regex or weighted automaton}\]

2. compute the language intersection
 \[\Rightarrow \text{multi-weighted automaton}\]

include parsers for different benchmark formats:

- ASAP3 (XML) [www.staffrostersolutions.com]
- NRP10 (XML) [www.kuleuven-kortrijk.be]
- NSPLib (csv) [www.projectmanagement.ugent.be]
- ETPShoe (csv+txt) [Demassey05]
modeling rules (ex: activity count)

at least one rest on week # 2

- hard rule, 2 alternatives:
 - a regexp $A\{7\}((\neg R)\ast RA\ast)A\{14\}$
 - or $A\ast$ with a counter $Z \in [1, 28]$ and $c_{tR} = 1$ iff $t \in [8, 14]$
modeling rules (ex: activity count)

at least one rest on week # 2

- **hard rule**, 2 alternatives:
 - a regexp $A^7(\neg R)^* R A^* A^{14}$
 - or A^* with a counter $Z \in [1, 28]$ and $c_{tR} = 1$ iff $t \in [8, 14]$
- **soft rule**: (ex: fixed penalty of 10 if no rest on week 2)
 - A^* with a counter $Z \in [0, 28]$ with $c_{tR} = 1$ iff $t \in [8, 14]$
 - and an external cost $Y \in [0, 10]$ with $Y = 10 \iff Z < 1$
modeling rules (ex: sliding stretch)

between 3 and 5 consecutive night shifts

- **hard rule:**
modeling rules (ex: sliding stretch)

between 3 and 5 consecutive night shifts

- hard rule:

- soft rule: \((\text{hard bounds}[0, 7] \text{ and quadratic penalty})\)

with a cost/counter \(Y = Z \in [0, +\infty]\)
modeling rules (ex: forbid pattern)

at least one rest after 2 consecutive night shifts

- hard rule:
 - $\neg (A^* (\neg N (\neg R)) A^*)$

Flexible optimization Flexible Tools finite automata
modeling rules (ex: forbid pattern)

- hard rule:
 - $\neg (A^* (NN(\neg R))A^*)$

- soft rule: (ex: linear penalty)

1. build the DFA corresponding to $(A^* (NN(\neg R)\beta^*)^*)^*$
2. get Q_β the set of states q with outgoing transition β
3. add a cost $c = 1$ on every ingoing transition of Q_β
4. associate a cost/counter $Y = Z \in [0, +\infty]$
aggregating rules

satisfying a conjunction of rules

- $R^1 \land R^2$ holds iff

 $X \in \mathcal{L}(\Pi^1) \cap \mathcal{L}(\Pi^2) \land Z^1 = \sum_t c^1_t X_t \land Z^2 = \sum_t c^2_t X_t$
aggregating rules

satisfying a conjunction of rules

- \(R^1 \land R^2 \) holds iff
 \[
 X \in \mathcal{L}(\Pi^1) \cap \mathcal{L}(\Pi^2) \land Z^1 = \sum_t c^1_t X_t \land Z^2 = \sum_t c^2_t X_t
 \]
- WFA intersection in the tropical semiring of higher dimension:
 \[
 (\Pi^1, [c^1, 0]) \cap (\Pi^2, [0, c^2]) \in WFA(\Sigma, \mathbb{R}^{n_1+n_2})
 \]
aggregating rules

satisfying a conjunction of rules

- **$R^1 \land R^2$ holds iff**

\[
X \in \mathcal{L}(\Pi^1) \cap \mathcal{L}(\Pi^2) \land Z^1 = \sum_t c^1_{tX_t} \land Z^2 = \sum_t c^2_{tX_t}
\]

- **WFA intersection in the tropical semiring of higher dimension:**

\[
(\Pi^1, [c^1, 0]) \cap (\Pi^2, [0, c^2]) \in WFA(\Sigma, \mathbb{R}^{n_1+n_2})
\]
aggregating rules

<table>
<thead>
<tr>
<th>satisfying a conjunction of rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^1 \land R^2$ holds iff</td>
</tr>
<tr>
<td>$X \in \mathcal{L}(\Pi^1) \cap \mathcal{L}(\Pi^2) \land Z^1 = \sum_t c^1_t X_t \land Z^2 = \sum_t c^2_t X_t$</td>
</tr>
<tr>
<td>WFA intersection in the tropical semiring of higher dimension:</td>
</tr>
<tr>
<td>$(\Pi^1, [c^1, 0]) \cap (\Pi^2, [0, c^2]) \in WFA(\Sigma, \mathbb{R}^{n_1+n_2})$</td>
</tr>
</tbody>
</table>

(our) intersection algorithm in $WFA(\Sigma, \mathbb{R}^n)$

| convert $WFA(\Sigma, \mathbb{R}^n)$ to $FA(\Sigma \times \mathbb{R}^n)$ and naive intersection modified: $((q_1, q_2), (\sigma_1, \sigma_2), (q'_1, q'_2)) \in \Delta \leftrightarrow$ |
| $(q_1, \sigma_1, q'_1) \in \Delta_1 \land (q_2, \sigma_2, q'_2) \in \Delta_2 \land \text{symbol}(\sigma_1) = \text{symbol}(\sigma_2)$ |
global constraints
flexible tool #2
constraint satisfaction problem (CSP)

A solution:

\[(x_1, \ldots, x_n) \in D_1 \times \cdots \times D_n \text{ s.t. } C_j(x_1, \ldots, x_n) \text{ holds } \forall j = 1, \ldots, m\]
constraint satisfaction problem (CSP)

A set of variables X_1, X_2, \ldots, X_n
on finite (discrete) domains D_1, D_2, \ldots, D_n
related by constraints C_1, \ldots, C_m

A solution:

$$(x_1, \ldots, x_n) \in D_1 \times \cdots \times D_n \text{ s.t.}$$

$C_j(x_1, \ldots, x_n) \text{ holds } \forall j = 1, \ldots, m$$
sudoku as a CSP

\[X_0, X_1, \ldots, X_{80} \]

\[D_i = [0, 9] \quad \forall i \in [0, 80] \]

\[X_0 = 2, \; X_1 = 6, \; \ldots \]

\[X_i \neq X_j \quad \forall (i, j) \in L \]

\[X_i \neq X_j \quad \forall (i, j) \in C \]

\[X_i \neq X_j \quad \forall (i, j) \in S \]

credit: N. Jussien
sudoku as a CSP

\[X_0, X_1, \ldots, X_{80} \]
\[D_i = [0, 9] \quad \forall i \in [0, 80] \]
\[X_0 = 2, \; X_1 = 6, \ldots \]
\[X_i \neq X_j \quad \forall (i, j) \in L \]
\[X_i \neq X_j \quad \forall (i, j) \in C \]
\[X_i \neq X_j \quad \forall (i, j) \in S \]

arc consistency of \(X_0 \neq X_7 \): \(D_0 = \{2\} \implies \) filter \(2 \notin D_7 \)
backtracking algorithm aka “branch-and-propagate”

1. **Propagation:**
 - for each constraint,
 - infer inconsistent value assignments
 - apply domain reduction
 - until fix point

2. **Tree Search:**
 - if domains are singleton, then solution found
 - if no domain is empty, then assign a free variable to a value
 - otherwise, backtrack
sudoku as a CSP with global constraints

\[X_0, X_1, \ldots, X_{80} \]

\[D_i = [0, 9] \quad \forall i \in [0, 80] \]

\[X_0 = 2, \; X_1 = 6, \; \ldots \]

\text{alldifferent}(X_i)_{i \in l} \quad \forall l \in L

\text{alldifferent}(X_i)_{i \in c} \quad \forall c \in C

\text{alldifferent}(X_i)_{i \in s} \quad \forall s \in S
sudoku as a CSP with global constraints

\[X_0, X_1, \ldots, X_{80} \]

\[D_i = [0, 9] \quad \forall i \in [0, 80] \]

\[X_0 = 2, \; X_1 = 6, \; \ldots \]

\textbf{alldifferent} \((X_i)_{i \in l} \quad \forall l \in L\)

\textbf{alldifferent} \((X_i)_{i \in c} \quad \forall c \in C\)

\textbf{alldifferent} \((X_i)_{i \in s} \quad \forall s \in S\)

\[\text{global AC: } X_{43} \neq 7 \]
sudoku as a CSP with global constraints

\[X_0, X_1, \ldots, X_{80} \]

\[D_i = [0, 9] \quad \forall i \in [0, 80] \]

\[X_0 = 2, \; X_1 = 6, \ldots \]

\[\text{alldifferent}(X_i)_{i \in l} \quad \forall l \in L \]
\[\text{alldifferent}(X_i)_{i \in c} \quad \forall c \in C \]
\[\text{alldifferent}(X_i)_{i \in s} \quad \forall s \in S \]

\text{global AC: } X_{43} \neq 7

\text{alldifferent} \approx \text{bipartite matching } O(m \sqrt{n}) \; [\text{Régin 94}]
examples of value global constraints

- \texttt{alldifferent}((X_1, X_2, \ldots, X_n)) \ [\text{Régis 94}]
- \texttt{global-cardinality}((X_1, X_2, \ldots, X_n), (l_j)_j, (u_j)_j) \ [\text{Régis 96}]
- \texttt{among}(Z, (X_1, X_2, \ldots, X_n), V) \ [\text{Bessière et al. 05}]
- \texttt{soft-alldifferent}(Z, (X_1, X_2, \ldots, X_n)) \ [\text{Petit et al. 01}]
- \texttt{mincost-alldifferent}(Z, (X_1, X_2, \ldots, X_n), (c_{ij})_{i,j}) \ [\text{Sellmann 02}]

see also the Global Constraint Catalog \texttt{http://sofdem.github.io/gccat/}
examples of value global constraints

- \textbf{alldifferent}((X_1, X_2, ..., X_n)) [Régin 94]
- \textbf{global-cardinality}((X_1, X_2, ..., X_n), (l_j)_j, (u_j)_j) [Régin 96]
- \textbf{among}(Z, (X_1, X_2, ..., X_n), V) [Bessière et al. 05]
- \textbf{soft-alldifferent}(Z, (X_1, X_2, ..., X_n)) [Petit et al. 01]
- \textbf{mincost-alldifferent}(Z, (X_1, X_2, ..., X_n), (c_{ij})_{i,j}) [Sellmann 02]

see also the \textbf{Global Constraint Catalog} \url{http://sofdem.github.io/gccat/}

from consistency to filtering

- robustness and incrementality
- level of consistency vs. computation time
a CSP model for NSP

<table>
<thead>
<tr>
<th>employees</th>
<th>N</th>
<th>N</th>
<th>E</th>
<th>X_0^2</th>
<th>X_1^2</th>
<th>X_2^2</th>
<th>X_3^2</th>
<th>X_4^2</th>
<th>X_5^2</th>
<th>X_6^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>M</td>
<td>N</td>
<td>X_1^1</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>N</td>
<td>N</td>
<td>X_3^3</td>
<td>R</td>
<td>R</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
<td>X_5^4</td>
<td>E</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td>X_3^5</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

The diagram illustrates the relationships and constraints within the CSP model for NSP, with `R` and `C` denoting different sets or conditions.
a CSP model for NSP

global_cardinality (gcc)
a CSP model for NSP

global_cardinality (gcc)
language global constraints
flexible solution #1
CSPs as languages

- CSP solution \((x_1, x_2, \ldots, x_n) = \text{word } x_1x_2\ldots x_n \in D^*\)
- CSP model = language representation
- (un)satisfiability = emptiness
CSPs as languages

- CSP solution \((x_1, x_2, \ldots, x_n) = \text{word } x_1 x_2 \ldots x_n \in D^*\)
- CSP model = language representation
- (un)satisfiability = emptiness

\[
\text{language global constraint family}
\]

\[
\text{language}((X_1, X_2, \ldots, X_n), L) \equiv X_1 X_2 \ldots X_n \in L
\]
CSPs as languages

- CSP solution \((x_1, x_2, \ldots, x_n) = \text{word } x_1 x_2 \ldots x_n \in D^*\)
- CSP model = language representation
- (un)satisfiability = emptiness

Language global constraint family

\[
\text{language}((X_1, X_2, \ldots, X_n), \mathcal{L}) \equiv X_1 X_2 \ldots X_n \in \mathcal{L}
\]

- **regular**\(((X_1, X_2, \ldots, X_n), \Pi)\) [Pesant 04]
- **cost-regular**\((Z, (X_1, X_2, \ldots, X_n), \Pi, c)\) [Demassey 05]
- **context-free**\(((X_1, X_2, \ldots, X_n), G)\) [Sellman 06, Quimper 06]
- **multicost-regular**\(((Z_1, Z_2, \ldots, Z_p), (X_1, X_2, \ldots, X_n), \Pi, c)\) [Menana 09]
language \(< X_1, \ldots, X_n, \mathcal{L}>\)

the satisfiability problem

is \(\mathcal{L} \cap (D_1 \times \cdots \times D_n)\) empty?

the consistency problem for \(v \in D_i\)

is \(\mathcal{L} \cap (D_1 \times \cdots \times D_{i-1} \times \{v\} \times D_{i+1} \times \cdots \times D_n)\) empty?
regular (\(< X_1, \ldots, X_n >, \Pi = (Q, D, \Delta, q_0, F) \))

\[
\begin{align*}
\mathcal{L}(\Pi) \cap (D_1 \times \cdots \times D_n) &
\end{align*}
\]

Graph connectivity [Pesant03]

State-decomposition [Beldiceanu04]

\[
\begin{cases}
S_i \in Q, & i = 1..n \\
(S_i, X_i, S_{i+1}) \in \Delta, & i = 1..n
\end{cases}
\]
regular \((< X_1, \ldots, X_n >, \Pi = (Q, D, \Delta, q_0, F))\)
regular \((< X_1, \ldots, X_n >, \Pi = (Q, D, \Delta, q_0, F))\)
regular \((< X_1, \ldots, X_n >, \Pi = (Q, D, \Delta, q_0, F)) \)
regular \((<X_1, \ldots, X_n>, \Pi = (Q, D, \Delta, q_0, F))\)

graph connexit y

state-decomposition [Beldiceanu04]

\[
\begin{align*}
S_i & \in Q, \\
(S_i, X_i, S_{i+1}) & \in \Delta,
\end{align*}
\]

\(i = 1..n\)

Flexible optimization Flexible Solutions
regular \((< X_1, \ldots, X_n >, \Pi = (Q, D, \Delta, q_0, F))\)

\[
\text{graph connectivity [Pesant03]}
\]

\[
\text{state-decomposition [Beldiceanu04]}
\]

\[
\left\{
\begin{aligned}
S_i & \in Q, \\
(S_i, X_i, S_{i+1}) & \in \Delta,
\end{aligned}
\right.
\quad i = 1..n
\]
regular \((<X_1, \ldots, X_n>, \Pi = (Q, D, \Delta, q_0, F))\)
regular \(< X_1, \ldots, X_n >, \Pi = (Q, D, \Delta, q_0, F)\)

\[
L(\Pi) \cap (D_1 \times \cdots \times D_n)
\]

graph connectivity [Pesant03]

state-decomposition [Beldiceanu04]

\[
\begin{cases}
S_i \in Q, \quad i = 1..n \\
(S_i, X_i, S_{i+1}) \in \Delta, \quad i = 1..n
\end{cases}
\]

\[
O(|\Delta_n|) \text{ with } |\Delta_n| \ll n|\Delta|
\]
optimization variants

cost-regular $(Z, <X_1, \ldots, X_n>, \Pi, c)$

\[
eq X_1 X_2 \ldots X_n \in \mathcal{L}(\Pi) \land \sum_i c_i X_i = Z
\]

- shortest/longest path problem
- $O(|\Delta_n|)$ bound consistency on Z

Ilog Solver, Choco [Demassey, Pesant & Rousseau 05]
Optimization Variants

<table>
<thead>
<tr>
<th>cost-regular $(Z, <X_1, \ldots, X_n>, \Pi, c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1X_2 \ldots X_n \in \mathcal{L}(\Pi) \land \sum_i c_i X_i = Z$</td>
</tr>
<tr>
<td>- shortest/longest path problem</td>
</tr>
<tr>
<td>- $O(</td>
</tr>
</tbody>
</table>

Ilog Solver, Choco [Demassey, Pesant & Rousseau 05]

<table>
<thead>
<tr>
<th>multicost-regular $(<Z^1, \ldots, Z^p>, <X_1, \ldots, X_n>, \Pi, <c^1, \ldots, c^p>)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1X_2 \ldots X_n \in \mathcal{L}(\Pi) \land \sum_i c^k_i X_i = Z^k (\forall k)$</td>
</tr>
<tr>
<td>- resource-constrained SPP/LPP (NP-hard)</td>
</tr>
<tr>
<td>- lagrangian relaxation $O(K</td>
</tr>
</tbody>
</table>

Choco [Menana & Demassey 09]
benefit of aggregation (1)

<table>
<thead>
<tr>
<th></th>
<th>individual</th>
<th>aggregate</th>
<th>unfolded</th>
</tr>
</thead>
<tbody>
<tr>
<td>full-time #states</td>
<td>5,782</td>
<td>682</td>
<td>230</td>
</tr>
<tr>
<td>full-time #transitions</td>
<td>40,402</td>
<td>4,768</td>
<td>400</td>
</tr>
<tr>
<td>part-time #states</td>
<td>4,401</td>
<td>385</td>
<td>421</td>
</tr>
<tr>
<td>part-time #transitions</td>
<td>30,729</td>
<td>2,689</td>
<td>681</td>
</tr>
</tbody>
</table>

Size of the automata for the ASAP/GPost hard instance for full-time and part-time contracts, \(n = 28 \)
benefit of aggregation (2)

+ assignment costs to minimize
+ cardinality \((l, p, o)\) constraints
1 employee, 96 timeslots
number of working activities \((a, b, \ldots)\) between 1 and 50
10 instances each
default backtracking of Choco in 10 minutes
benefit of aggregation (2)

+ assignment costs to minimize
+ cardinality \((l, p, o)\) constraints
1 employee, 96 timeslots
number of working activities \((a, b, \ldots)\) between 1 and 50
10 instances each
default backtracking of Choco in 10 minutes

\(A	\)	multicost-regular	\(\text{\&}\text{ cost-regular}\)	cost-regular \(\&\) gcc			
	proof	best	\#nodes	proof	best	\#nodes	proof	best	\#nodes
1	0.0	0.0	41	1.2	1.0	3654	0.3	0.2	225
2	0.1	0.1	68	2.1	0.9	1563	0.6	0.3	393
4	0.2	0.1	67	13.9	8.8	6401	2.9	2.3	1199
8	0.3	0.2	52	101.7	49.8	19637	17.9	13.2	3597
10	0.4	0.4	63	297.2	167.8	44530	50.0	47.7	7615
15	0.8	0.7	63	50\% unsolved	58.1	47.1	6233		
20	1.2	1.0	64	90\% unsolved	58.1	44.0	4577		
30	1.8	1.5	62	90\% unsolved	20\% unsolved				
50	5.0	4.8	65	100\% unsolved	60\% unsolved				

best = times (s) to find an optimum, proof = time (s) to prove optimality
ChocoETP = DFA + CP + LNS

flexible solution for NSP
a chief nurse-friendly solution?

1. high-level language to express rules
2. automated tool to model rules
3. automated tool to aggregate rules
4. automated tool to solve rules
a chief nurse-friendly solution?

1. high-level language to express rules
2. automated tool to model rules → WFA/regexp
3. automated tool to aggregate rules → WFA intersection
4. automated tool to solve rules → multicost-regular
a chief nurse-friendly solution?

1. high-level language to express rules
2. automated tool to model rules → WFA/regexp
3. automated tool to aggregate rules → WFA intersection
4. automated tool to solve rules → multicost-regular
5. automated tool to minimize penalties → CP + LNS
a chief nurse-friendly solution?

1. high-level language to express rules
2. automated tool to model rules \(\rightarrow \) WFA/regexp
3. automated tool to aggregate rules \(\rightarrow \) WFA intersection
4. automated tool to solve rules \(\rightarrow \) multicost-regular
5. automated tool to minimize penalties \(\rightarrow \) CP + LNS

ChocoETP

- CP-based Large Neighborhood Search solver
- pluggable parsers
- based on Choco and dk.brics Java libraries
- https://github.com/sofdem/chocoETP
flexibility and effectiveness

hard ASAP instances

| | \(|I \times T|\) | [Métivier 09] | ChocoETP |
|---------|-----------------|---------------|-----------|
| | cpu | cpu | nodes | bk |
| Azaïez | 13×28 | 233 | 6.3 | 4006 | 5574 |
| Sintef | 24×21 | - | 1.4 | 165 | 53 |
| Millar-2S-1.1 | 8×12 | 1 | 0.5 | 29 | 0 |
| Millar-2S-1 | 8×12 | 1 | 0.3 | 25 | 0 |
| Ozkarahan | 14×7 | 1 | 0.2 | 24 | 5 |

soft ASAP instances

	\(I \times T	\)	[Métivier 09]	ChocoETP	
	opt	penalty	cpu	penalty	cpu	
GPost	8×28	5	8	234	5	75
GPost-B	8×28	3	-	-	3	3
LLR	27×7	301	314	119	320	114
Valouxis	16×28	20	160	3780	20	4879
ORTEC01	16×31	270	-	-	290	2920

Comparison with an ad-hoc LNS solver [Métivier09]
Conclusion
Flexible optimization

<table>
<thead>
<tr>
<th>modular solutions for recurring problems with mutable constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ key of flexibility: decomposed models</td>
</tr>
<tr>
<td>■ key of effectiveness: aggregated algorithms</td>
</tr>
</tbody>
</table>

Conclusion
Flexible optimization

Modular solutions for recurring problems with mutable constraints

- Key of flexibility: decomposed models
- Key of effectiveness: aggregated algorithms

⇒ Automated composition
flexible optimization

<table>
<thead>
<tr>
<th>modular solutions for recurring problems with mutable constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ key of flexibility: decomposed models</td>
</tr>
<tr>
<td>■ key of effectiveness: aggregated algorithms</td>
</tr>
</tbody>
</table>

⇒ automated composition ⇒ constraint learning
Flexible optimization

Modular solutions for recurring problems with mutable constraints

- Key of flexibility: decomposed models
- Key of effectiveness: aggregated algorithms

⇒ Automated composition ⇒ Constraint learning

Tools for flexibility

- Automata and graphs
- Global constraints and propagation
- Decomposition methods in linear programming (e.g. [Demassey06])
- Linearization (e.g. [Côté13])
Bibliography

Bibliography