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POTENTIAL-DRIVEN FLOW NETWORK

• transportation of a commodity on a digraph 𝐺 = (𝑁,𝐴)
• flow 𝑞𝑎: measure of volume/rate on arcs (sign=direction)

𝑞𝑛+ = 𝑞𝑛− (flow conservation at nodes)

• potential ℎ𝑛: measure of energy at nodes

Δℎ𝑎 = 𝜙𝑎(𝑞𝑎) (flow/potential equilibrium on arcs)

• model for many physical systems: electricity, water, gas, heat,
telecommunications, transportation, vascular, elastic/spring
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EX: ELECTRIC CIRCUIT

• connected conductors (resistors, batteries,...)

• current 𝐼: flow rate through conductors
• voltage 𝑉: potential difference at ends
• resistance 𝑉/𝐼: constant (Ohm’s law) or not
• Kirchhoff’s current law (flow conservation)
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EX: HYDRAULIC NETWORK

• pipes, pumps, valves
• water flow rate 𝑄
• hydraulic head 𝐻: pressure + elevation
• resistance: friction (Darcy-Weisbach’s law)

• demand satisfaction (flow conservation)
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POTENTIAL-DRIVEN FLOW NETWORKS

steady-state equilibrium
Given boundary conditions (some fixed flows or potentials),
find all flows and potentials with:

• flow conservation at nodes
• flow/potential equilibrium on arcs

Different formulations for different boundary conditions.
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EX: PIPE NETWORK ANALYSIS PROBLEM

• connected digraph 𝐺 = (𝑁,𝐴) with incidence matrix 𝐼𝐴𝑁 ∈ {0, 1, −1}𝐴×𝑁
• flow/potential drop relation 𝜙𝐴 on all arcs
• boundary conditions: nodes 𝑁 = 𝐽 ∪ 𝑅 with either fixed demands 𝑑𝐽 or fixed
potentials ℎ𝑅 (reservoirs)

𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅) ={(𝑞𝐴, ℎ𝐽) ∈ ℝ𝐴 × ℝ𝐽 , (flows, potentials)
𝑞𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐽, (flow conservation)
ℎ𝑎 = 𝜙𝑎(𝑞𝑎) ∀𝑎 ∈ 𝐴} (resistance)

with 𝑞𝑛 = 𝐼𝑇𝐴𝑛𝑞𝐴 residual flow at node 𝑛 and ℎ𝑎 = −𝐼𝑎𝑁ℎ𝑁 potential drop along arc 𝑎.
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THE LINEAR CASE

• ℎ𝑎 = 𝜙𝑎(𝑞𝑎) = 𝑟𝑎𝑞𝑎 for any arc 𝑎
• Ohm’s law (electric), Fourier’s law (thermal), Poiseulle’s law (viscous fluids)
• well studied in the electric context (ohmic conductors): existence, unicity,
reduction, optimal distribution/differential

• solution minimizes power dissipation:

𝐷 =
𝐴
𝑟𝑎𝑞2𝑎 =

𝐴
ℎ𝑎𝑞𝑎.

7



THE NONLINEAR CASE: ASSUMPTIONS ON 𝜙𝐴

resistance function 𝜙𝑎 continuous or smooth, strictly increasing, bijective on ℝ

• antiderivative Φ𝑎(𝑞) = ∫
𝑞
0
𝜙𝑎(𝑠)𝑑𝑠

⇒ smooth, strictly convex, coercive
• conductivity function 𝜙−1𝑎 : 𝑞𝑎 = 𝜙−1𝑎 (ℎ𝑎)
⇒ smooth, strictly increasing

Examples:

• friction in pipes 𝜙𝑎(𝑞) = 𝑠𝑔𝑛(𝑞)𝛼𝑎|𝑞|𝑑 with 𝑑 = 2 (water) or 𝑑 = 1.852 (gas)
• discharge pressure in pumps 𝜙𝑎(𝑞) = 𝛼𝑎𝑞|𝑞| + 𝛽𝑎𝑞 + 𝜅𝑎 with 𝛼𝑎 > 0
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SMOOTH NONCONVEX EQUATION SYSTEM

• in many practical applications, the boundary conditions ensure the existence
and unicity of the flow/potential equilibrium
see e.g. [Rockafellar (1984) Network Flows and Monotropic Optimization]

• system 𝐹(𝑥) = 0 can be solved with the Newton-Raphson algorithm.

ex: the pipe network analysis problem
if 𝐺 = (𝑁,𝐴) weakly connected, 𝑅 ≠ ∅, 𝜙𝑎 smooth strictly increasing then

𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅) = {(𝑞𝐴, ℎ𝐽) | 𝑞𝐽 = 𝑑𝐽 , ℎ𝐴 = 𝜙𝐴(𝑞𝐴)}

with 𝜙𝐴(𝑞𝐴) = (𝜙𝑎(𝑞𝑎))𝑎∈𝐴 has a unique solution.

Application of the Newton-Raphson algorithm proposed in [Todini&Pilati 1988]
implemented in the EPANET simulator
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CONVEX OPTIMIZATION REFORMULATION

primal minimization problem:
(𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅) for some ℎ𝐽 if and only if 𝑞𝐴 solves

𝑃(𝐴, 𝑞𝐽 , ℎ𝑅) ∶ min
𝑞𝐴
{𝑓(𝑞𝐴) = Φ𝐴(𝑞𝐴) + ℎ𝑅𝑞𝑅 | 𝑞𝐽 = 𝑑𝐽}

with Φ𝐴(𝑞𝐴) = ∑𝑎∈𝐴Φ𝑎(𝑞𝑎).

• Lagrangian multiplier theorem holds on 𝑃 by convexity of Φ𝑎:

𝐿(𝑞𝐴, ℎ𝐽) = Φ𝐴(𝑞𝐴) + ℎ𝑅𝑞𝑅 + ℎ𝐽(𝑞𝐽 − 𝑑𝐽) given multipliers ℎ𝐽

NAP is KKT:

⎧⎪⎪⎨
⎪⎪⎩
ℎ𝐴 = 𝜙𝐴(𝑞𝐴) ( 𝜕𝐿𝜕𝑞𝐴 = 0 1st-order condition)

𝑞𝐽 = 𝑑𝐽 ( 𝜕𝐿𝜕ℎ𝐽 = 0 primal feasibility)

• solution is unique by strict convexity of Φ𝑎.
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DUALIZATION

strong duality holds:
(𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅)

• if and only if 𝑞𝐴 solves

𝑃(𝐴, 𝑞𝐽 , ℎ𝑅) ∶ min
𝑞𝐴
{𝑓(𝑞𝐴) = Φ𝐴(𝑞𝐴) + ℎ𝑅𝑞𝑅 | 𝑞𝐽 = 𝑑𝐽}

• if and only if
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑓(𝑞𝐴) ≤ 𝐿(ℎ𝐽) = min
𝑞𝐴

{𝐿(𝑞𝐴, ℎ𝐽) = 𝑓(𝑞𝐴) + ℎ𝐽(𝑞𝐽 − 𝑑𝐽)} (strong duality)

𝑞𝐽 = 𝑑𝐽 (primal feasibility)

as 𝑓 convex and 𝑞𝐽 = 𝑑𝐽 linear: (𝑞𝐴, ℎ𝐽) is a saddle point of 𝐿
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THE DUAL FUNCTION

𝐿(𝑞𝐴, ℎ𝐽) = Φ𝐴(𝑞𝐴) + ℎ𝑅𝑞𝑅 + ℎ𝐽(𝑞𝐽 − 𝑑𝐽)
= Φ𝐴(𝑞𝐴) − ℎ𝐴𝑞𝐴 − ℎ𝐽𝑑𝐽 .

𝑞𝑎 ↦ Φ𝑎(𝑞𝑎) − ℎ𝑎𝑞𝑎 is convex and reaches its minimum at 𝑞𝑎 = 𝜙−1𝑎 (ℎ𝑎), then:

analytical formulation and decomposition:

𝐿(ℎ𝐽) = min
𝑞𝐴

𝐿(𝑞𝐴, ℎ𝐽) = 
𝑎∈𝐴

𝐿𝑎(ℎ𝑎) − ℎ𝐽𝑑𝐽

with 𝐿𝑎(ℎ𝑎) = Φ𝑎(𝜙−1𝑎 (ℎ𝑎)) − ℎ𝑎𝜙−1𝑎 (ℎ𝑎) concave.
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CONVEX REFORMULATION

𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅) is equivalent to:

𝐶𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅) = {(𝑞𝐴, ℎ𝐽) ∈ ℝ𝐴 × ℝ𝐽


𝑎∈𝐴

𝑔𝑎(𝑞𝑎, ℎ𝑎) + ℎ𝑁𝑞𝑁 ≤ 0 (strong duality 𝑓(𝑞𝐴) ≤ 𝐿(ℎ𝐽))

𝑞𝐽 = 𝑑𝐽}.

with 𝑔𝑎(𝑞𝑎, ℎ𝑎) = Φ𝑎(𝑞𝑎) − 𝐿𝑎(ℎ𝑎) = Φ𝑎(𝑞𝑎) − Φ𝑎(𝜙−1𝑎 (ℎ𝑎)) + ℎ𝑎𝜙−1𝑎 (ℎ𝑎) convex.

• aggregated form of ℎ𝑎 = 𝜙𝑎(𝑞𝑎) ∀𝑎 ∈ 𝐴
• if 𝜙𝑎 is quadratic then 𝑔𝑎 is cubic
• convex if (𝐴, 𝑑𝐽 , ℎ𝑅) are fixed
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APPLICATION TO NETWORK OPTIMIZATION

• network design: select the arc characteristics to satisfy a fixed demand and
minimize installation costs

• network operation: operate dynamically the controllable arcs to satisfy a
varying demand and minimize operation costs

nonconvex (MI)NLPs with a bilevel structure:

1. select one (or a sequence) topology 𝐴 and boundary conditions (𝑑𝐽 , ℎ𝑅)
2. check existence of an equilibrium (𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅)
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SOLUTION METHODS

bilevel structure
1/ select (𝐴, 𝑑𝐽 , ℎ𝑅) 2/ check 𝑁𝐴𝑃(𝐴, 𝑑𝐽 , ℎ𝑅)

• one monolithic approximated model (e.g. piecewise-linear)
• two independent blocks: black-box optimization (e.g metaheuristics +
simulation)

• in-between: the outer block includes a static or dynamic relaxation of the
inner block (Bender’s decomposition, bundle method, LP-NLP branch and
bound,...)
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NAP RELAXATIONS IN THE OUTER BLOCK

tractable relaxations of ℎ𝑎 = 𝜙𝑎(𝑞𝑎):

• convex/polyhedral outer-approximation
• pwl under- and over-estimators

[Fügenschuh 2013]

computed statically in a preprocessing step
or refined dynamically at trial points (OA cuts, spatial b&b separation,...)
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STRONG DUALITY CUTS

add a relaxation of 𝐶𝑁𝐴𝑃 in the outer block:
aggregated valid inequality


𝑎∈𝐴

𝑔𝑎(𝑞𝑎, ℎ𝑎) + ℎ𝑁𝑞𝑁 ≤ 0

with 𝑔𝑎(𝑞𝑎, ℎ𝑎) = Φ𝑎(𝑞𝑎) − Φ𝑎(𝜙−1𝑎 (ℎ𝑎)) + ℎ𝑎𝜙−1𝑎 (ℎ𝑎) convex when (𝐴, ℎ𝑅) given.
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EX 1: PIPE SIZING

• every node has a fixed demand 𝑑𝐽 or a fixed head ℎ𝑅 (sources)
• arcs are pipes to select in a discrete set 𝐾:

𝑥𝑎𝑘 ∈ {0, 1} select pipe of type 𝑘 on arc 𝑎 ∈ 𝐴?

• model on graph 𝐺 = (𝑁,𝐴𝐾) with replicated arcs:

min
𝑎

𝑘
𝑐𝑘𝑥𝑎𝑘

𝑠.𝑡.(𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐴𝑃(𝐴𝐾𝑥𝐾, 𝑑𝐽 , ℎ𝑅)
𝑥𝑎𝑘 = 0 ⟹ 𝑞𝑎𝑘 = ℎ𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾

𝑘∈𝐾

𝑥𝑎𝑘 = 1 ∀𝑎 ∈ 𝐴.
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EX 1: PIPE SIZING (CONT.)

min
𝑎

𝑘
𝑐𝑘𝑥𝑎𝑘

𝑠.𝑡.(𝑞𝐴, ℎ𝐽) ∈ 𝑁𝐴𝑃(𝐴𝐾𝑥𝐾, 𝑑𝐽 , ℎ𝑅)
𝑥𝑎𝑘 = 0 ⟹ 𝑞𝑎𝑘 = ℎ𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾

𝑘∈𝐾

𝑥𝑎𝑘 = 1 ∀𝑎 ∈ 𝐴.

strong duality constraint is convex [Tassef 2021]


𝑎∈𝐴


𝑘∈𝐾

𝑔𝑎𝑘(𝑞𝑎𝑘, ℎ𝑎𝑘) + ℎ𝑁𝑞𝑁 ≤ 0
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EX 2: PUMP SCHEDULING

• controllable arcs (pumps, valves) are switch on/off on a discrete horizon 𝑇:

𝑥𝑎𝑡 ∈ {0, 1} active arc 𝑎 ∈ 𝐴 on time 𝑡 ∈ 𝑇?

• fixed demand 𝑑𝐽𝑇 known for all time steps
• fixed head ℎ𝑅0 (tank level) known only at time 0
• head ℎ𝑅𝑡 bounded and depends (linearly) on flow 𝑞𝑅(𝑡−1)
• a sequence-dependent sequence of NAPs:

min
𝑎

𝑡
𝑐0𝑎𝑡𝑥𝑎𝑡 + 𝑐1𝑎𝑡𝑞𝑎𝑡

𝑠.𝑡.(𝑞𝐴𝑡, ℎ𝐽𝑡) ∈ 𝑁𝐴𝑃(𝐴𝑥𝑡, 𝑑𝐽𝑡, ℎ𝑅𝑡) ∀𝑡 ∈ 𝑇
𝑥𝑎𝑡 = 0 ⟹ 𝑞𝑎𝑡 = 0 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇
ℎ𝑅(𝑡+1) = ℎ𝑅𝑡 + 𝑠𝑅𝑞𝑅𝑡 ∀𝑡 ∈ 𝑇
𝐻𝑅 ≤ ℎ𝑅𝑡 ≤ 𝐻𝑅 ∀𝑡 ∈ 𝑇. 20



EX 2: PUMP SCHEDULING (CONT.)

min
𝑎

𝑡
𝑐0𝑎𝑡𝑥𝑎𝑡 + 𝑐1𝑎𝑡𝑞𝑎𝑡

𝑠.𝑡.(𝑞𝐴𝑡, ℎ𝐽𝑡) ∈ 𝑁𝐴𝑃(𝐴𝑥𝑡, 𝑑𝐽𝑡, ℎ𝑅𝑡) ∀𝑡 ∈ 𝑇
𝑥𝑎𝑡 = 0 ⟹ 𝑞𝑎𝑡 = 0 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇
ℎ𝑅(𝑡+1) = ℎ𝑅𝑡 + 𝑠𝑅𝑞𝑅𝑡 ∀𝑡 ∈ 𝑇
𝐻𝑅 ≤ ℎ𝑅𝑡 ≤ 𝐻𝑅 ∀𝑡 ∈ 𝑇.

strong duality constraints are not convex


𝑎∈𝐴

𝑔𝑎(𝑞𝑎𝑡, ℎ𝑎𝑡)𝑥𝑎𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 + ℎ𝑅𝑡𝑞𝑅𝑡 ≤ 0, ∀𝑡 ∈ 𝑇
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EX 2: PUMP SCHEDULING (CONT.)

strong duality constraints are not convex


𝑎∈𝐴

𝑔𝑎(𝑞𝑎𝑡, ℎ𝑎𝑡)𝑥𝑎𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 + ℎ𝑅𝑡𝑞𝑅𝑡 ≤ 0, ∀𝑡 ∈ 𝑇

• bad news: a loose relaxation of the bilinear term may absorb the duality gap
• good news: tank capacities are exogenous bounds on ℎ𝑅𝑡 and 𝑞𝑅𝑡 to tighten
McCormick’s relaxation
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EX 2: PUMP SCHEDULING (CONT.)

The strong duality constraint


𝑎∈𝐴

𝑔𝑎(𝑞𝑎𝑡, ℎ𝑎𝑡)𝑥𝑎𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 + ℎ𝑅𝑡𝑞𝑅𝑡 ≤ 0, ∀𝑡 ∈ 𝑇

Linearize 𝑔𝑎 at some feasible points (𝑞∗𝑎, 𝜙𝑎(𝑞𝑎)∗) and take the McCormick’s
envelope for the bilinear terms ℎ𝑟𝑡𝑞𝑟𝑡, 𝑟 ∈ 𝑇:


𝑎∈𝐴

𝑔𝑎𝑡 + ℎ′𝑅𝑡 + ℎ𝐽𝑡𝑑𝐽𝑡 ≤ 0 ∀𝑡 ∈ 𝑇

𝑥𝑎𝑡 = 0 ⟹ 𝑞𝑎𝑡 = ℎ𝑎𝑡 = 0 ∀𝑎 ∈ 𝐴
𝑔𝑎𝑡 ≥ 𝜙𝑎(𝑞∗𝑎)(𝑞𝑎𝑡 − 𝑞∗𝑎𝑥𝑎𝑡) + 𝑞∗𝑎ℎ𝑎𝑡 ∀𝑡 ∈ 𝑇, ∀𝑎 ∈ 𝐴, 𝑞∗𝑎 ∈ 𝒬𝑎
ℎ′𝑟𝑡 ∈ 𝑀𝐶[𝐻𝑟,𝐻𝑟](ℎ𝑟𝑡𝑞𝑟𝑡) ∀𝑡 ∈ 𝑇, ∀𝑟 ∈ 𝑅.
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COMPUTATION

with or without duality constraints

impact on the primal/dual bounds in a
LP-NLP BB [Bonvin, Demassey, Lodi 2020]

generated at preprocessing:
5 linearization/pipes and 10/pumps
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REFERENCES

• our papers on the pump scheduling problem are available on
https://sofdem.github.io/

• code (partially) available on:
https://github.com/sofdem/gopslpnlpbb
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