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POTENTIAL-DRIVEN FLOW NETWORK

- transportation of a commodity on a digraph G = (N, A)

- flow g,: measure of volume/rate on arcs (sign=direction)
g.+ = g,- (flow conservation at nodes)
- potential &,: measure of energy at nodes
Ah, = ¢,(q,) (flow/potential equilibrium on arcs)

- model for many physical systems: electricity, water, gas, heat,
telecommunications, transportation, vascular, elastic/spring



EX: ELECTRIC CIRCUIT

R: Rz N\ Rs
I’V\/\/“L—"’J\/\/\ - connected conductors (resistors, batteries, ...
- m ® . current I: flow rate through conductors
:i_ Ré . i N voltage V: potential difference at ends
T Rs - resistance V/I: constant (Ohm’s law) or not
“""E,T smai 'V/\/\/\/ D;caUe BTTWI - Kirchhoff’s current law (flow conservation)




EX: HYDRAULIC NETWORK

TankF  Pump7

Pipe head loss

R

50 100 150 200 250 3
Flow in m® /h

- pipes, pumps, valves
- water flow rate Q
- hydraulic head H: pressure + elevation

resistance: friction (Darcy-Weisbach’s law)

- demand satisfaction (flow conservation)



POTENTIAL-DRIVEN FLOW NETWORKS

steady-state equilibrium

Given boundary conditions (some fixed flows or potentials),
find all flows and potentials with:

- flow conservation at nodes

- flow/potential equilibrium on arcs

Different formulations for different boundary conditions.



EX: PIPE NETWORK ANALYSIS PROBLEM

- connected digraph G = (N, A) with incidence matrix Iy € {0,1, -1}N
- flow/potential drop relation ¢4 on all arcs

- boundary conditions: nodes N = J U R with either fixed demands d; or fixed
potentials hy (reservoirs)

NAP(A,dy, hg) ={(qa, hy) e RA xR/, (flows, potentials)
q; =d Vie], (flow conservation)
hy = $a(q,) Vae A) (resistance)

with g, = I} g4 residual flow at node n and h, = —I,yhy potential drop along arc a.



THE LINEAR CASE

* Ty = a(q,) = 149, for any arc a
- Ohm's law (electric), Fourier's law (thermal), Poiseulle’s law (viscous fluids)

- well studied in the electric context (ohmic conductors): existence, unicity,
reduction, optimal distribution/differential

- solution minimizes power dissipation:

D= Eraqg = Eha%-
A A



THE NONLINEAR CASE: ASSUMPTIONS ON ¢4

resistance function ¢, continuous or smooth, strictly increasing, bijective on R

- antiderivative @,(g) = f ba(s)ds
= smooth, strictly convex, coercive

- conductivity function ¢;1: g, = ¢zt (h,)
= smooth, strictly increasing
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Examples:

- friction in pipes ¢,(q) = sgn(q)a,lgl¥ with d = 2 (water) or d = 1.852 (gas)
- discharge pressure in pumps ¢,(q) = a.qlql + B.q + x, with @, > 0



SMOOTH NONCONVEX EQUATION SYSTEM

- in many practical applications, the boundary conditions ensure the existence

and unicity of the flow/potential equilibrium
see e.g. [Rockafellar (1984) Network Flows and Monotropic Optimization]

- system F(x) = 0 can be solved with the Newton-Raphson algorithm.

ex: the pipe network analysis problem
if G = (N, A) weakly connected, R # @, ¢, smooth strictly increasing then

NAP(A,d], hg) = {(QA,h]) | q; = d],hA = ¢a(qa)}
With ¢ 4(94) = (¢0a(94))aea has a unique solution.

Application of the Newton-Raphson algorithm proposed in [Todini&Pilati 1988]
implemented in the EPANET simulator



CONVEX OPTIMIZATION REFORMULATION

primal minimization problem:
(qa,hy) € NAP(A,d;, hg) for some hy if and only if g4 solves

P(A, g5, hg) : H;in{f(QA) = D@4(94) + hrqr | 97 = dj}
with q)A(qA) = EQGA q)a(%)~

- Lagrangian multiplier theorem holds on P by convexity of ®,:

L(qA,h]) = (I)A(qA) ot hRqR alx h](ﬂ]] = d]) given mUltip“erS I’l]

ha=da04) (2 =071st-order condition)
NAP is KKT: a(q ‘;‘7LA
q; = dj (a_h, = 0 primal feasibility)

- solution is unique by strict convexity of @,.
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DUALIZATION

strong duality holds:
(QA/h]) € NAP(A,d],hR)

- ifand only if g4 solves
P(A, q;,hg) : U(;in{f(QA) = DQ4(qa) + hrqr | q; = dj}
- if and only if

f(ga) < L(hy) = rnln {L(qa hy) = f(qa) + Iy(q; — d))}  (strong duality)

qr = dy (primal feasibility)

as f convex and gq; = dj linear: (g4, ) is a saddle point of L
M



THE DUAL FUNCTION

L(ga, hy) = ®a(ga) + hrqr + hy(g; — dj)
= ®(q4) —haqa — hyd.

Ga — D,(q,) — haq, is convex and reaches its minimum at g, = ¢, '(h,), then:

analytical formulation and decomposition:

L(hy) = min L(qga, hy) = Y] La(h,) = hydy
94 aceA

with Ly(h,) = @u(dz1(h,)) — haz 1 (h,) concave.
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CONVEX REFORMULATION

NAP(A,d;, hg) is equivalent to:

CNAP(A,dj, hg) = (g4, hy) € RAX R

> 8u@aha) + hngy <0 (strong duality £(g4) < L(y))
acA

q; = dj}-
with ga(‘]ar ha) = q)a(qa) - Lu(hu) = q)a(qa) - q)a((P;l(ha)) + haqb;l(ha) convex.

- aggregated form of h, = ¢,(q,) Va e A
- if ¢, is quadratic then g, is cubic
- convex if (A,d;, hg) are fixed
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APPLICATION TO NETWORK OPTIMIZATION

- network design: select the arc characteristics to satisfy a fixed demand and
minimize installation costs

- network operation: operate dynamically the controllable arcs to satisfy a
varying demand and minimize operation costs

nonconvex (MI)NLPs with a bilevel structure:

1. select one (or a sequence) topology A and boundary conditions (dj, hg)

2. check existence of an equilibrium (g4, ) € NAP(A, d;, hg)
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SOLUTION METHODS

bilevel structure
1/ select (A, d}, hg) 2/ check NAP(A, d;, hg)

- one monolithic approximated model (e.g. piecewise-linear)
- two independent blocks: black-box optimization (e.g metaheuristics +
simulation)

- in-between: the outer block includes a static or dynamic relaxation of the
inner block (Bender's decomposition, bundle method, LP-NLP branch and
bound,...)
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NAP RELAXATIONS IN THE OUTER BLOCK

tractable relaxations of h, = ¢,(q,):

- convex/polyhedral outer-approximation

- pwl under- and over-estimators

a) b) <)

[Figenschuh 2013]
computed statically in a preprocessing step
or refined dynamically at trial points (OA cuts, spatial b&b separation,...)



STRONG DUALITY CUTS

add a relaxation of CNAP in the outer block:
aggregated valid inequality

> 8u(@a he) + gy <0
acA

With €.(qa, 1a) = Pu(qa) = Pal(Pzt(hy)) + hapzt(h,) convex when (A, hg) given.



EX1: PIPE SIZING

- every node has a fixed demand d; or a fixed head hg (sources)
- arcs are pipes to select in a discrete set K:

X € {0,1} select pipe of type k on arca € A?

- model on graph G = (N, AX) with replicated arcs:

min E E CrXgk
a  k

S.t.(EIA, h}) & NAP(AKXK, d], hR)
xak:O:qak:hak:O Yae A keK

Exakzl YaceA.
keK



EX 1: PIPE SIZING (CONT.)

min E E CrXak
a k

S.t.(qA, I’l]) S NAP(AKXK, d], hR)

xak=0=qak=huk=0 VYae A keK
Exukzl Vae A
keK

strong duality constraint is convex [Tassef 2021]

Z Zgak(qakrhak) + thN <0
a€A kekK
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EX 2: PUMP SCHEDULING

- controllable arcs (pumps, valves) are switch on/off on a discrete horizon T:
x; €1{0,1} active arcae AontimeteT?

- fixed demand d;r known for all time steps

- fixed head hg (tank level) known only at time 0

- head hg, bounded and depends (linearly) on flow gg._1
- a sequence-dependent sequence of NAPs:

: 0 1
min Z 2 CatXat + Carlat
R

S.t.(th, h]f) € NAP(Axt, d]tl th) YteT
Xp=0 = g, =0 Vae AteT
hR(t+1) = hre + SRYR: VteT

H, < hg, < Hyg VteT. 20



EX 2: PUMP SCHEDULING (CONT.)

min Z E CorXat + Carllat
a t
st.(qat. hyr) € NAP(Axy, dyy, hyy)
xat = 0 - CIat = 0

hR(t+1) = hre + SRYR:
Hy <hg < Hp

strong duality constraints are not convex

> 8e(ats hat)Xat + hyedys + i <0,

aceA

VteT
Yae A,teT
VteT
VteT.

YteT
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EX 2: PUMP SCHEDULING (CONT.)

strong duality constraints are not convex

Z 8a(Gats Bap)Xor + Bydyy + hpyqry <0, VEET
aeA

- bad news: a loose relaxation of the bilinear term may absorb the duality gap

- good news: tank capacities are exogenous bounds on hg; and gg; to tighten
McCormick’s relaxation
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EX 2: PUMP SCHEDULING (CONT.)

The strong duality constraint

Ega(qat, Rap)Xar + Hpdye + hgeqre <0, YteT
aceA

Linearize g, at some feasible points (g3, ¢,(9,)*) and take the McCormick’s
envelope for the bilinear terms h,q,;, v € T:

) Qat + By + ey < 0 VteT
acA
X3 =0 = qu=h; =0 Yae A

Sat = Pa(qa)(ar — GaXar) + Galtar VteT,VaeAqg,e€Q,

h, € MC[Hr,ﬁr](hrtht) VteT,VreR.
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COMPUTATION

with or duality constraints

impact on the primal/dual bounds in a
LP-NLP BB [Bonvin, Demassey, Lodi 2020]

generated at preprocessing:
5 linearization/pipes and 10/pumps
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REFERENCES

- our papers on the pump scheduling problem are available on
https://sofdem.github.io/

- code (partially) available on:
https://github.com/sofdem/gopslpnlpbb
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