Prospective Modeling and Climate Change: Energy & Water issues. ETSAP & TTIL.5 Autumn School 2023

combinatorial optimization
for water management

Sophia-Antipolis, 13 november 2023

Sophie Demassey
sofdem.github.io/



water management ?

a commodity to collect, treat, distribute, value
ex: design and operate wastewater networks under normal or extreme conditions

a resource with limited availability to mobilize in processes
ex: withdraw water for cooling or cleaning while preserving water source quality

a biotope to preserve or a natural hazard to deal with
ex: adapt landscape to flood resilience
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operatlona research: models and a gorithm

decision & management

long-term planning

time

prospective: data and scenarios



during the next hour

overview of prescriptive tools in decision support
focus on mathematical optimization and discrete decision

selected applications in water management






from WWII: vaue
mathematical programming

in the 2010s:
Al, deep learning

in the 2000s:

business analytics,
big data

What happened?

decision support

optimization

Foresight

Why did it happen? What will happen?

Descriptive analytics Diagnostic analytics = Predictive analytics

Difficutly

Source: Gartner



Decision MaRing

Optimization

decision = optimization

identify possible alternatives, attach a quantitative score,
search an alternative with the highest score

model : describe the feasible solutions

oD

cctive: a mapping from solutions to scores

OpP

timize : compute a feasible solution of maximum score



physical and virtual/numerical models I
simulators: imperative "how" mo e s
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models

mini i diy
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built by experts

or automatically from data
(machine learning)
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optimize (black-box

numerical methods:

1. select a candidate decision
2. simulate/evaluate feasibility and score
5. stop or iterate

search: which candidates to evaluate ?

- partial, exhaustive, exhaustive but implicit
- random or directed by the proximity, the scores or highest-order information
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optimize (black-box
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examples:

- |ocal search: move to a neighbour candidate, the best one or in an Improving direction
(may converge to a global optimum, e.g. gradient descent in convex optimization,
simplex algorithm in [inear programming)

- metaheuristics (evolutionary, swarm): combine candidates, use collective memory




optimize (relaxation)
divide-and-conquer:

1. separate the search space (and refine the model)
2. estimate feasibility and best score in a simpler relaxed model
3. backtrack If not better, record If full solution, or iterate

-

bounding the maximal score:

- certificate of optimality: gap between relaxations (UB) and full solutions (LB)
- rely on tight but simple relaxations

12



optimize (relaxation)

examples:

- greedy algorithm: no backtrack, no certificate of optimality

- graph algorithms, dynamic programming /‘\N
- backtracking methods in logic/constraint programming

- Dranch-and-bound In combinatorial optimization

13



accuracy & approximation

Decision MaRing Mathematical Optimization

minf(x) : g(x) =0Vi=1,...m

xeR”

concrete problem ——— — — ,  abstract model
solve
practical decision «————— optimal solution

solve a model not a problem

14



solve a model not a problem

- imprecise (truncated) and uncertain (forecast) data
- approximate dynamics and simplified (soften) constraints
- conceptual objective

solve ?

- solution may be infeasible or feasible with a tolerance gap

- solution may be sub-optimal or optimal with a tolerance gap

- solution may not be provaply optimal, neither globally nor locally

- theoretic complexity and convergence give no practical guarantees

15



mathematical
optimization




mathematical program

minf(x) : g(x) <0, x € ZF X R"™7P

f: R" > R objective
g R"XR"™ > R"™ constraints
x € R" variables / solution



mathematical program

minf(x) : g(x) <0, x € ZF X R"™7P

well-solved classes:
f,glinear p = 0 linear programming

fconvex, g = 0,p =0 unconstrained optimization

f, g smooth convex p = 0 convex programming
f, g linear p > 1 mixed integer linear programming



Mixed Integer Linear Program

covers discrete decisions;:  off/on status x € {0,1}, operation level [ € {0O,1,..., N}

covers logical relations: [ < N(l — X) \eve\ s O ifstatus sontx=1 = [=0

covers nonlinear relations: [ = 2 Xp Y = Zf,x 1 = Z x, x; € {0,1}Vi € {0,...,N}
1=0 =0

y = f([) a discrete function

S~
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discrete setup piecewise linear
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cutting-plane algorithm

branch-and-bound
branch-and-cut

y

\V >

MILP algorithms

based on the LP relaxation

evaluate, refine, iterate
separate (on discrete variables), estimate, backtrack/iterate

refine then estimate

N
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declarative

0 EI'fOITﬂBﬂ co equations, not algorithms
sophisticated solvers :
versatile
covers logic & nonlinear
optimalit
primpdl-dual bour¥is M"'P perhs
flexible
IargE'Scale general-purpose format & solvers

decomposition methods



declarative

performance MO SO -
sophisticated solvers :
“still NP-hard: scale to some extent versatile
(or consider LP) covers logic & nonlinear
approximation

Optlmall’[y M"_P perhs‘k (or consider MINLP)

primal-dual bounds
flexible

general-purpose format & solvers
*generic = best
*algorithmic challenge
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a commodity, a resource, an environment

drinking water
wastewater

rain, Ice, surface water, ground water
fresh, brackish, saline water

irrigation water
source of hydropower (river, tide, wave)

vector of pumped-storage

steam to generate heat and energy

water
water
storms,
Sub|
relat

wet

ect
ed

to climate change, climate variabl

for cooling or cleaning
for processing (fracking, diluting, drilling)
|oods, droughts, mudflows, tsunamis

to thermal, chemical pollution

dnao

S, rain forests, oceans, coasts ano

nydroelectricity

Ity
rIVers
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to process

extract,
supply,
treat,
produce,
irrigate,
desalinate,
ourity,
drain,
heat,
blend,
store,
pump,
flow,
preserve,
measure,
orevent,
control

water IS

in small/large systems

drban networks
Sewers
desalination plants
farms

oower systems
nydropower plants
thermal plants
iIndustries
municipalities
oumMps, turbines
aquifers

drainage basins
ecosystems

world




Operational

©

organize the process

select elements to operate

assigr
alloca

operat
e resoL

sched

on leve
rces

Ule ope

rations

posItion elements
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water optimization

Tactical

design the system

select e

assign C

ements to dimension, maintain
imension, equipment

Dlan resources and times

often discrete decisions
nonlinear physical dynamics

minimize an economic/social/ecological cost



study cases

urban water networks
groundwater abstraction

hydroelectricity production






select the size O

" the pipes Ir

{o satisty the de

while minimizing the installation costs

finite catalog of pipes: Sizef capaci’q’ cosf

a gravi

Mmand at eac

N dellve

ty-fed network

ex1: pipe sizing

'y Node
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ex1: pipe sizing

assign a size k to each pipe a: x;, = 1 (otherwise x , = 0)

nydraulic equilibrium between flows g and heads A, v in the selected network

Iglqlzlzxcakxak

stxg =0 = gu=9434 =10 Vae A ke K
Exak-—-l,hi—h]-: Zvak Ya=(i,]) € A
k k

(qAK/ hS) = NAP(DS/ HR/ ¢AK(x))

bilevel program or convex MINLP or approximate MILP
simulation-based genetic algorithm + branch-and-bound



ex1: pipe sizing

convex MINLP reformulation

min Z 2 CakX gk

x,q,h
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[ Demassey. Strong duality reformulation for bilevel optimization over nonlined®flow networks. 2023}



https://sofdem.github.io/art/demassey23pmnl.pdf

ex2: pump scheduling

oad shifting in pressurized networks)

schedule pumps and valves in a pressurized network on a time horizon
to satisty the varying demand at each delivery node

and the capacity of the water tanks

while minimizing the electricity bill
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ex2: pump scheduling

activate pump/valve a attimet. x,, = 1 (otherwise x_, = 0)
hydraulic equilibrium between flows g and heads A, v in the active network

imit the water tank level H

~ 0 1
1111} Z Z CatXat T CatYat
a t

s.t.(qat, hst) € NAP(Dsy, Hyy, @ a(x,)) yied

Xy =0 = g, =0 Yae A, teT
—————  Hg1) = Hye + Sk VteT
H_ < Hg, < Hg; VieT.

—Rt —

additional complexity: temporal inter-dependency

[ Demassey Strong duality reformulation for bilevel optimization over nonlinea®flow networks. 2023 ]


https://sofdem.github.io/art/demassey23pmnl.pdf

water network optlmlzatlon

(drinking, waste, irrigation)

decisions concerns
dimension demand: standard, worst-case, emer
renovation network topology
axtensior energy consumption

eakage, over-pressure

flow conservation
oressure-flow relation
chlorine consumption

water quality, treatment
storage capacity

resilience to failures or storms
sewer overflow

sectorization

scheduling operations
scheduling maintenance

place equipments and controllers
calibrate hydraulic models

[ Bello, et al. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019]
[ Mala-Jetmarova, Sultanova, Savic. Lost in Optimisation of Water Distributidn Systems? A Literature Review of System Design. Water 2018}





http://nasa.gov

ex3: sustainable abstraction

nlace pumps and plan pumping

to prevent aguiter depletion (then land subsidence or seawater intrusion)
and guality degradation (temperature, salinity)

while maximizing the abstraction value

strong uncertainties (aquifer recharge rate), approximate dynamics(quality) and sustainability models

[Hassan et al. Mapping the optimization of groundwater abstraction research: A bibliometric review in the context of South Asian region. Heliyon 2023}






ex4: hydro unit commitment

schedule pumps and turbine
to ensure flow conservation
and maintain reservolr level in their Imits
w.rt strategic constraints (load balance, ramp, irrigation)
while maximizing the power production value

(lagrangian) subproblem of day-to-day unit
s G520 commitment encompassing national power systems

37



ex4: hydro unit commitment

flow g;, volume v.,, power production/consumption p,, in plant 1 at time ¢

nonlinear flow-power relation ¢ (turbine), disjunctive flow domains
volume conservation and limits in reservolrs

max 2: Z it Dit (1)

el teT

pit = D(Qit, vit) Vt,Vi (2)

Vit = Vie—1) + Lit + AT (—qst + Z Qr(t—1) — Z Grt-1))  VE, Vi (3)
TEIf rel;

gt €{Q; }U{0}U[Q,,Q;] VYt Vi (4)

V. <vy <V; Vt,Vi (5)

[ Taktak & dAmbrosio. An overview on mathematical programming approaches fog the deterministic unit commitment problem in hydro valleys. Energy Sys 2017]


https://link.springer.com/article/10.1007/s12667-015-0189-x

nuge diversity of water systems & processes

- management involves decision involves optimization, e.g. maximize sustainability

- mathematical optimization as a low-tech solution (except computation and data
acquisition) to get as much out of existing investments

- uncertain forecasts, Iintricated systems, nonlinear dynamics, fuzzy objectives: trade-off |

petween accurate models and efficient algorithms

- modelling sustainability accafe\y - | . !
- short/long-term model coupling: time-scale reconciliation to shed light on the
plausibility of prospective pathways




