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a commodity to collect, treat, distribute, value 

water management ?

ex: design and operate wastewater networks under normal or extreme conditions 

a resource with limited availability to mobilize in processes
ex: withdraw water for cooling or cleaning while preserving water source quality 

a biotope to preserve or a natural hazard to deal with  
ex: adapt landscape to flood resilience
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StrategicTacticalOperational

decision & management

time

accuracy

e!ective process system design long-term planning

prospective: data and scenariosoperational research: models and algorithms  3



during the next hour

overview of  prescriptive tools in decision support 

focus on mathematical optimization and discrete decision 

selected applications in water management
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prescriptive tools  

in decision support
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donnée brute

connaissance

information

donnée numérique

décision

prédiction

datawarehouse 
visualisation

datamining

machine learning

optimization

decision support

in the 2000s:  
business analytics, 
big data 

in the 2010s:  
AI, deep learning 

from  WWII:  
mathematical programming 
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Decision Making identify possible alternatives, attach a quantitative score, 
 search an alternative with the highest score        

Optimization

decision = optimization

model : describe the feasible solutions
objective: a mapping from solutions to scores
optimize : compute a feasible solution of maximum score 
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physical and virtual/numerical models

min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

conceptual models

modelssimulators: imperative "how" 

formulation: declarative "what" 
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min
K

∑
k=1

n

∑
j=1

djk

s . t . djk ≥
p

∑
i=1

(mi
j − yi

k)2 − djk(1 − xjk) ∀j, k

K

∑
k=1

xjk = 1 ∀j

xjk ∈ {0,1}, yi
k ∈ ℝ, djk ≥ 0

models

(machine learning)

built by experts
or automatically from data
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optimize (black-box)

numerical methods:

1. select a candidate decision 
2. simulate/evaluate feasibility and score  
3. stop or iterate

search: which candidates to evaluate ? 

- partial, exhaustive, exhaustive but implicit
- random or directed by the proximity, the scores or highest-order information
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optimize (black-box)

- local search: move to a neighbour candidate, the best one or in an improving direction 
(may converge to a global optimum, e.g. gradient descent in convex optimization, 
simplex algorithm in linear programming)

- metaheuristics (evolutionary, swarm): combine candidates, use collective memory

examples:
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optimize (relaxation)
divide-and-conquer:
1. separate the search space (and refine the model) 
2. estimate feasibility and best score in a simpler relaxed model 
3. backtrack if not better, record if full solution, or iterate 

bounding the maximal score:
- certificate of optimality: gap between relaxations (UB) and full solutions (LB)
- rely on tight but simple relaxations

X

X
X
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optimize (relaxation)

- greedy algorithm: no backtrack, no certificate of optimality 
- graph algorithms, dynamic programming  
- backtracking methods in logic/constraint programming 
- branch-and-bound in combinatorial optimization

examples:

X

X
X
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Decision Making Mathematical Optimization

concrete problem 

practical decision

abstract model 

optimal solution
solve

min
x∈ℝn

f(x) : gi(x) = 0 ∀i = 1,...,m

accuracy & approximation

solve a model not a problem
14



- imprecise (truncated) and uncertain (forecast) data
- approximate dynamics and simplified (soften) constraints
- conceptual objective

 solving

solve a model not a problem

solve ?
- solution may be infeasible or feasible with a tolerance gap 
- solution may be sub-optimal or optimal with a tolerance gap 
- solution may not be provably optimal, neither globally nor locally 
- theoretic complexity and convergence give no practical guarantees
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mathematical  

optimization
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mathematical program

 min f(x) : g(x) ≤ 0, x ∈ ℤp × ℝn−p

 objective 
 constraints  

 variables / solution

f : ℝn ↦ ℝ
g : ℝn × ℝm ↦ ℝm

x ∈ ℝn
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mathematical program

 min f(x) : g(x) ≤ 0, x ∈ ℤp × ℝn−p

 linear  f, g p = 0
 convex, , f g ≡ 0 p = 0
 smooth convex f, g p = 0

 linear f, g p > 1

linear programming
unconstrained optimization
convex programming
mixed integer linear programming

well-solved classes:
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Mixed Integer Linear Program
covers discrete decisions: o!/on status , operation level  x ∈ {0,1} l ∈ {0,1,…, N}
covers logical relations: l ≤ N(1 − x) level is 0 if status is on:   x = 1 ⟹ l = 0

covers nonlinear relations: l =
N

∑
i=0

ixi, y =
N

∑
i=0

fixi, 1 =
N

∑
i=0

xi, xi ∈ {0,1}∀i ∈ {0,…, N}

 a discrete function y = f(l)

discrete setup piecewise linear
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MILP algorithms

branch-and-bound 

- based on the LP relaxation

- evaluate, refine, iterate

- separate (on discrete variables), estimate, backtrack/iterate

- refine then estimate

cutting-plane algorithm

branch-and-cut 
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MILP perks

21

declarative
equations, not algorithmsperformance

sophisticated solvers

flexible
general-purpose format & solvers

versatile
covers logic & nonlinear 

large-scale
decomposition methods

optimality
primal-dual bounds



MILP perks*
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declarative
equations, not algorithmsperformance

sophisticated solvers

flexible
general-purpose format & solvers

versatile
covers logic & nonlinear 

large-scale
decomposition methods

optimality
primal-dual bounds

*still NP-hard: scale to some extent  
(or consider LP) 

*approximation  
(or consider MINLP) 

*good model ?

*generic ≠ best
*algorithmic challenge



water  

optimization
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extract,  
supply,  
treat,  
produce, 
irrigate,  
desalinate, 
purify, 
drain, 
heat, 
blend,  
store, 
pump, 
flow, 
preserve, 
measure, 
prevent, 
control

water is

drinking water 
wastewater 
rain, ice, surface water, ground water 
fresh, brackish, saline water 
irrigation water 
source of hydropower (river, tide, wave) 
vector of pumped-storage hydroelectricity 
steam to generate heat and energy 
water for cooling or cleaning 
water for processing (fracking, diluting, drilling) 
storms, floods, droughts, mudflows, tsunamis 
subject to thermal, chemical pollution 
related to climate change, climate variability 
wetlands, rain forests, oceans, coasts and rivers

urban networks 
sewers  
desalination plants 
farms 
power systems 
hydropower plants  
thermal plants 
industries 
municipalities 
pumps, turbines 
aquifers 
drainage basins 
ecosystems 
world

a commodity, a resource, an environment in small/large systemsto process
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TacticalOperational

water optimization

organize the process design the system

select elements to operate 
assign operation level 
allocate resources 
schedule operations 
position elements 

select elements to dimension, maintain 
assign dimension, equipment  
plan resources and times

often discrete decisions 
nonlinear physical dynamics 

minimize an economic/social/ecological cost 
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urban water networks

study cases

groundwater abstraction

hydroelectricity production
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Urban networks
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select the size of the pipes in a gravity-fed network  
to satisfy the demand at each delivery node 
while minimizing the installation costs

ex1: pipe sizing

finite catalog of pipes:    size capacity cost
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assign a size  to each pipe :  (otherwise )k a xak = 1 xak = 0
hydraulic equilibrium between flows  and heads  in the selected network  q h, v

ex1: pipe sizing

bilevel program or 
simulation-based genetic algorithm

convex MINLP  or approximate MILP 
+ branch-and-bound
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convex MINLP reformulation 

ex1: pipe sizing

[Demassey. Strong duality reformulation for bilevel optimization over nonlinear flow networks. 2023]30

https://sofdem.github.io/art/demassey23pmnl.pdf


schedule pumps and valves in a pressurized network on a time horizon 
to satisfy the varying demand at each delivery node 
and the capacity of the water tanks 
while minimizing the electricity bill

ex2: pump scheduling
(load shifting in pressurized networks)
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ex2: pump scheduling
activate pump/valve   at time :  (otherwise )a t xat = 1 xat = 0
hydraulic equilibrium between flows  and heads  in the active networkq h, v
limit the water tank level      H

additional complexity: temporal inter-dependency

[Demassey Strong duality reformulation for bilevel optimization over nonlinear flow networks. 2023]32

https://sofdem.github.io/art/demassey23pmnl.pdf


water network optimization 
decisions

dimension 
renovation 
extension 
sectorization 
scheduling operations 
scheduling maintenance 
place equipments and controllers 
calibrate hydraulic models

demand: standard, worst-case, emergency 
network topology 
energy consumption 
leakage, over-pressure 
flow conservation 
pressure-flow relation 
chlorine consumption 
water quality, treatment 
storage capacity 
resilience to failures or storms 
sewer overflow

concerns

[Bello, et al. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. Water 2019]
[Mala-Jetmarova, Sultanova, Savic. Lost in Optimisation of Water Distribution Systems? A Literature Review of System Design. Water 2018]

(drinking, waste, irrigation)
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Groundwater

credit: nasa.gov 34

http://nasa.gov


place pumps and plan pumping 
to prevent aquifer depletion (then land subsidence or seawater intrusion) 
and quality degradation (temperature, salinity) 
while maximizing the abstraction value

ex3: sustainable abstraction

strong uncertainties (aquifer recharge rate), approximate dynamics(quality) and sustainability models

[Hassan et al. Mapping the optimization of groundwater abstraction research: A bibliometric review in the context of South Asian region. Heliyon 2023]35



Hydropower
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schedule pumps and turbine 
to ensure flow conservation 
and maintain reservoir level in their limits 

w.r.t strategic constraints (load balance, ramp, irrigation)  
while maximizing the power production value

ex4: hydro unit commitment

(lagrangian) subproblem of day-to-day unit 
commitment encompassing national power systems 
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ex4: hydro unit commitment

[Taktak & d'Ambrosio. An overview on mathematical programming approaches for the deterministic unit commitment problem in hydro valleys. Energy Sys 2017]

flow , volume , power production/consumption  in plant  at time  

nonlinear flow-power relation  (turbine), disjunctive flow domains 
volume conservation and limits in reservoirs     

qit vit pit i t
ϕ

38

https://link.springer.com/article/10.1007/s12667-015-0189-x


conclusion
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- huge diversity of water systems & processes 
- management involves decision involves optimization, e.g. maximize sustainability 
- mathematical optimization as a low-tech solution (except computation and data 

acquisition) to get as much out of existing investments 
- uncertain forecasts, intricated systems, nonlinear dynamics, fuzzy objectives: trade-o! 

between accurate models and e"cient algorithms 

and next
- modelling sustainability accurately 
- short/long-term model coupling: time-scale reconciliation to shed light on the 

plausibility of prospective pathways


