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SINGLE-LEVEL REFORMULATIONS OF BILEVEL PROGRAMS

bilevel program

min𝑥,𝑦 𝑐(𝑥, 𝑦)𝑠.𝑡. 𝑦 ∈ 𝑌𝑥 ∈ arg min𝑧 | 𝑔(𝑧,𝑦)≤0𝑓(𝑧, 𝑦)
exact reformulation if:

• N&S global optimality conditions
• closed dual form

ex: KKT if convex + CQ; strong duality if
linear, quadratic convex, SDP+feas, or
monotropic

KKT (or FJ) optimality conditions:𝑔(𝑥, 𝑦) ≤ 0, 𝑢 ≥ 0, 𝑢⊤𝑔(𝑥, 𝑦) = 0∇𝑥𝑓(𝑥, 𝑦) + 𝑢⊤∇𝑥𝑔(𝑥, 𝑦) = 0
value function:𝑔(𝑥, 𝑦) ≤ 0𝑓(𝑥, 𝑦) ≤ 𝑣(𝑦) ∶= min𝑧 | 𝑔(𝑧,𝑦)≤0𝑓(𝑧, 𝑦)
strong (lagrangian) duality:𝑔(𝑥, 𝑦) ≤ 0, 𝑢 ≥ 0,𝑓(𝑥, 𝑦) ≤ 𝑑(𝑢, 𝑦) ∶= min𝑧 𝑓(𝑧, 𝑦) + 𝑢⊤𝑔(𝑧, 𝑦) 2



1. monotropic programs (Rockafellar, 1988): convex
programs with practical duals

2. special case: nonlinear flow networks
3. bilevel optimization in water distribution networks
4. applications of strong duality reformulation:

convex reformulation, cut generation,
splitting/alternating heuristic
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MONOTROPIC PROGRAMMING (ROCKAFELLAR, 1988)

additive convex objective
over linear constraints𝑃 ∶ min𝑥∈ℝ𝐽 􏾜𝑗∈𝐽 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 􏾜𝑗∈𝐽 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ 𝐼

𝑓𝑗 closed proper convex on ℝ = lower
semi-continuous (poss. nonsmooth)

• monotropic aka “one-dimension convexity”*
• a class of convex programs behaving like linear programs:

• combinatorial properties: finite set of descent directions (elementary vectors)
• duality properties: strong duality, explicit symmetric dual

*extended to finite-dimension in [Bertsekas 2008]
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MONOTROPIC PROGRAMMING: (FENCHEL) DUALITY

Let 𝑓∗𝑗 ∶ 𝑣𝑗 ∈ ℝ ↦ sup𝑥𝑗 (𝑥𝑗𝑣𝑗 − 𝑓𝑗(𝑥𝑗)) the convex conjugate function of 𝑓𝑗 ∀ 𝑗 ∈ 𝐽
(𝑃) ∶ min𝑥∈ℝ𝐽 􏾜𝑗∈𝐽 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 􏾜𝑗∈𝐽 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ 𝐼

(𝐷) ∶ min𝑢∈ℝ𝐼 􏾜𝑖∈𝐼 𝑑𝑖𝑢𝑖 +􏾜𝑗∈𝐽 𝑓∗𝑗 (𝑣𝑗)𝑠.𝑡. 𝑣𝑗 ∶= 􏾜𝑖∈𝐼 −𝐸𝑖𝑗𝑢𝑖 ∀ 𝑗 ∈ 𝐽

• conjugate 𝑓∗𝑗 is convex lower semi-continuous: 𝐷 is monotropic
• biconjugate 𝑓𝑗 = 𝑓∗∗𝑗 (as 𝑓𝑗 convex l.s.c.): dual(dual)=primal
• Fenchel inequality: 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) ≥ 𝑥𝑗𝑣𝑗 and equality holds iff 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)
• strong duality and KKT conditions for (𝑥; 𝑢, 𝑣) a feasible primal-dual pair:0 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗)􏿷 + ∑𝑖 𝑑𝑖𝑢𝑖 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) − 𝑥𝑗𝑣𝑗􏿷 ⟺ 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)∀ 𝑗
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MONOTROPIC PROGRAMMING: (FENCHEL) DUALITY

Let 𝑓∗𝑗 ∶ 𝑣𝑗 ∈ ℝ ↦ sup𝑥𝑗 (𝑥𝑗𝑣𝑗 − 𝑓𝑗(𝑥𝑗)) the convex conjugate function of 𝑓𝑗 ∀ 𝑗 ∈ 𝐽
(𝑃) ∶ min𝑥∈ℝ𝐽 􏾜𝑗∈𝐽 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 􏾜𝑗∈𝐽 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ 𝐼

(𝐷) ∶ min𝑢∈ℝ𝐼 􏾜𝑖∈𝐼 𝑑𝑖𝑢𝑖 +􏾜𝑗∈𝐽 𝑓∗𝑗 (𝑣𝑗)𝑠.𝑡. 𝑣𝑗 ∶= 􏾜𝑖∈𝐼 −𝐸𝑖𝑗𝑢𝑖 ∀ 𝑗 ∈ 𝐽
• conjugate 𝑓∗𝑗 is convex lower semi-continuous: 𝐷 is monotropic
• biconjugate 𝑓𝑗 = 𝑓∗∗𝑗 (as 𝑓𝑗 convex l.s.c.): dual(dual)=primal
• Fenchel inequality: 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) ≥ 𝑥𝑗𝑣𝑗 and equality holds iff 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)
• strong duality and KKT conditions for (𝑥; 𝑢, 𝑣) a feasible primal-dual pair:0 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗)􏿷 + ∑𝑖 𝑑𝑖𝑢𝑖 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) − 𝑥𝑗𝑣𝑗􏿷 ⟺ 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)∀ 𝑗
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MONOTROPIC PROGRAMMING: EQUIVALENT CONDITIONS (FINITE OPTIMUM)

primal: 𝑥 solves(𝑃) ∶ min𝑥 􏾜𝑗 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 􏾜𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
dual: 𝑢 solves(𝐷) ∶ min𝑢 􏾜𝑖 𝑑𝑖𝑢𝑖 +􏾜𝑗 𝑓∗𝑗 (𝑣𝑗)𝑠.𝑡. 𝑣𝑗 ∶= 􏾜𝑖 −𝐸𝑖𝑗𝑢𝑖 ∀ 𝑗

equilibrium (KKT): (𝑥, 𝑢) solves(𝐸𝑞) ∶􏾜𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
𝑣𝑗 ∶= 􏾜𝑖 −𝐸𝑖𝑗𝑢𝑖 ∈ 𝜕𝑓𝑗(𝑥𝑗) ∀ 𝑗

strong duality: (𝑥, 𝑢) solves(𝑆𝐷) ∶􏾜𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
􏾜𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗)􏿷 +􏾜𝑖 𝑑𝑖𝑢𝑖 ≤ 0.
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MONOTROPIC PROGRAMMING: APPLICATIONS

1. 𝑓𝑗 piecewise linear/quad-convex(𝑃) ∶ min𝑥 􏾜𝑗 𝑓𝑗(𝑥𝑗)𝑠.𝑡. 􏾜𝑗 𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
no need to linearize to dualize

2. potential-flow network(𝐸𝑞) ∶􏾜𝑗 𝐸𝑗𝑖𝑥𝑗 = 𝑑𝑖 ∀ 𝑖
𝑣𝑗 = 􏾜𝑖 −𝐸𝑗𝑖𝑢𝑖 ∈ 𝜕𝑓𝑗(𝑥𝑗) ∀ 𝑗

• 𝐸 incidence matrix of graph G(I,J)
• 𝑥 arc flows, 𝑢 node potentials
• 𝜕𝑓 arc resistance/conductivity
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POTENTIAL-FLOW NETWORK

• transportation of a commodity on a digraph 𝐺 = (𝑁,𝐴) of incidence matrix𝐸 ∈ {0, 1, −1}𝐴×𝑁
• flow 𝑥𝑎 ∈ ℝ: volume/rate on arc 𝑎 ∈ 𝐴, sign=direction􏾜𝑎 𝐸𝑎𝑛𝑥𝑎 = 𝑑𝑛 flow conservation/demand at nodes 𝑛 ∈ 𝑁
• potential 𝑢𝑛 ≥ 0: energy at node 𝑛 ∈ 𝑁
• potential loss 𝑣𝑎 ∶= 𝑢𝑖 − 𝑢𝑗 = −∑𝑛 𝐸𝑎𝑛𝑢𝑛 along 𝑎 = (𝑖, 𝑗) ∈ 𝐴 is related to flow 𝑥𝑎:𝑣𝑎 = 𝜙𝑎(𝑥𝑎) resistance/conductivity of arc 𝑎 = (𝑖, 𝑗) ∈ 𝐴
• model for many physical networks (of newtonian fluids): electricity, water,
gas, heat, telecommunications, transportation, vascular, elastic/spring
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STEADY-STATE NETWORK EQUILIBRIUM PROBLEM

Given boundary conditions (some fixed flow/potential values),
compute overall arc flows 𝑥𝐴 and node potentials 𝑢𝑁 satisfying:

• flow conservation at nodes 𝐸⊤𝐴𝑛𝑥𝐴 = 𝑑𝑛, ∀𝑛 ∈ 𝑁
• resistance relation on arcs 𝑣𝑎 ∶= −∑𝑛 𝐸𝑎𝑛𝑢𝑛 = 𝜙𝑎(𝑥𝑎), ∀𝑎 ∈ 𝐴
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EX 1: ELECTRIC CIRCUIT

• 𝐴: conductors (resistors, batteries,...)

• 𝑥: current (𝐼)
• 𝑣: voltage (𝑉)
• flow conservation = Kirchhoff’s current law
• linear resistance 𝑅 = 𝑉/𝐼 (Ohm’s law)
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CASE 1: EQUILIBRIUM WITH LINEAR RESISTANCE

𝜙𝑎(𝑥𝑎) = 𝑟𝑎𝑥𝑎
• laws of Ohm (electric), Fourier (thermal), Poiseulle (viscous fluids)
• well studied in the electric context: existence, unicity, reduction
• equilibrium solution minimizes energy dissipation:(𝑃) ∶ min𝑥,𝐸𝑥=𝑑􏾜𝑎∈𝐴 𝑟𝑎2 𝑥2𝑎 = 􏾜𝑎∈𝐴 𝑓𝑎(𝑥𝑎) with 𝑓′𝑎(𝑥𝑎) = 𝜙𝑎(𝑥𝑎).
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EX 2: HYDRAULIC NETWORK

• 𝐴 = { pipes, pumps, valves }
• 𝑁 = 𝑆 ∪ 𝑅: Service nodes (junctions) and
Reservoir (tanks, sources)

• 𝑥 = water flow rate
• 𝑢 = hydraulic head = pressure + elevation
• nonlinear resistance: friction in pipes
(Darcy-Weisbach’s law), charge gain in
pumps
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WATER PIPE NETWORK ANALYSIS PROBLEM

• boundary conditions: known demand 𝑑𝑛 at service nodes 𝑛 ∈ 𝑆,
known potential/level 𝑢𝑛 at reservoirs 𝑛 ∈ 𝑅

equilibrium problem

𝑁𝐴𝑃(𝐸, 𝑑𝑆, 𝑢𝑅) ={(𝑥𝐴, 𝑢𝑆) ∈ ℝ𝐴 × ℝ𝑆, (flows, potentials)𝑥𝑠 ∶= 􏾜𝑎 𝐸𝑎𝑠𝑥𝑎 = 𝑑𝑠 ∀𝑠 ∈ 𝑆, (flow conservation)

𝑣𝑎 ∶= 􏾜𝑛 −𝐸𝑎𝑛𝑢𝑛 = 𝜙𝑎(𝑥𝑎) ∀𝑎 ∈ 𝐴} (resistance)

In practice: a system of equations solved by the Newton-Raphson algorithm (e.g.
Epanet). The boundary conditions ensure a solution exists and is unique.
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COMFY ASSUMPTIONS FOR THE NONLINEAR CASE

the resistance function 𝜙𝑎 is continuous, strictly increasing, and bijective on ℝ⇒ the integral 𝑓𝑎(𝑥) = ∫𝑥0 𝜙𝑎(𝑡)𝑑𝑡 is smooth, strictly
convex, and coercive⇒ the same for the conductivity function𝜓𝑎 = 𝜙−1𝑎
and its integrals

Examples:

• friction in pipes 𝜙𝑎(𝑥) = 𝑠𝑔𝑛(𝑥)𝛼𝑎|𝑥|𝑝 with 𝑝 = 2 (water) or 𝑝 = 1.852 (gas)
• discharge pressure in pumps 𝜙𝑎(𝑥) = 𝛼𝑎𝑥|𝑥| + 𝛽𝑎𝑥 + 𝜅𝑎 with 𝛼𝑎 > 0
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REFORMULATION OF THE NETWORK ANALYSIS PROBLEM: PRIMAL

equilibrium problem𝑁𝐴𝑃(𝐸, 𝑑𝑆, 𝑢𝑅) = {(𝑥𝐴, 𝑢𝑆) | 𝑥𝑆 = 𝑑𝑆, 𝑣𝑎 = 𝜙𝑎(𝑥𝑎)∀𝑎 ∈ 𝐴}
(𝑥𝐴, 𝑢𝑆) ∈ 𝑁𝐴𝑃(𝐸, 𝑑𝑆, 𝑢𝑅) for some 𝑢𝑆 if and only if 𝑥𝐴 solves

primal distribution problem𝑃(𝐸, 𝑑𝑆, 𝑢𝑅) ∶ min𝑥𝐴 {𝑓(𝑥𝐴) = 􏾜𝑎∈𝐴 𝑓𝑎(𝑥𝑎) + 𝑢⊤𝑅𝑥𝑅 | 𝑥𝑆 = 𝑑𝑆}
where 𝑓𝑎 = ∫𝜙𝑎, 𝑓𝑎(0) = 0 is l.s.c. convex𝐿(𝑥𝐴, 𝑢𝑆) = 𝑓(𝑥𝐴) + 𝑢⊤𝑆 (𝑥𝑆 − 𝑑𝑆) = ∑𝑎∈𝐴 𝑓𝑎(𝑥𝑎) − 𝑣⊤𝐴𝑥𝐴 − 𝑢⊤𝑆 𝑑𝑆.
NAP: the stationary points (𝜙𝑎(𝑥𝑎) − 𝑣𝑎 = 𝜕𝐿𝜕𝑥𝑎 = 0, 𝑥𝑠 − 𝑑𝑠 = 𝜕𝐿𝜕𝑢𝑠 = 0) of lagrangian L ⟹ the
primal-dual optimizers of 𝑃 (convex+LCQ). 16



REFORMULATION OF THE NETWORK ANALYSIS PROBLEM: STRONG DUALITY

Strong duality reformulation of 𝑁𝐴𝑃(𝐸, 𝑑𝑆, 𝑢𝑅)
𝑆𝐷𝑁𝐴𝑃(𝐸, 𝑑𝑆, 𝑢𝑅) = {(𝑥𝐴, 𝑢𝑆) ∈ ℝ𝐴 × ℝ𝑆, 𝑥𝑆 = 𝑑𝑆,􏾜𝑎∈𝐴 􏿴𝑓𝑎(𝑥𝑎) + 𝑓∗𝑎(𝑣𝑎)􏿷 + 𝑢⊤𝑅𝑥𝑅 + 𝑑⊤𝑆 𝑢𝑆 ≤ 0} (𝑆𝐷)

with 𝑓𝑎(𝑥𝑎) = ∫𝑥𝑎0 𝜙𝑎(𝑡)𝑑𝑡 and 𝑓∗𝑎(𝑣𝑎) = −𝑓𝑎(𝜙−1𝑎 (𝑣𝑎)) + 𝑣𝑎𝜙−1𝑎 (𝑣𝑎) convex.
• (𝑆𝐷) integrates and aggregates the flow-potential equations:(𝑆𝐷) ⟺ 𝑓𝑎(𝑥𝑎) + 𝑓∗𝑎(𝑣𝑎) = 𝑥𝑎𝑣𝑎, ∀𝑎 (addends are non-negative)⟺ 𝑓𝑎(𝑥𝑎) = 𝑓𝑎(𝜙−1𝑎 (𝑣𝑎)) + 𝑓′𝑎(𝜙−1𝑎 (𝑣𝑎))(𝑥𝑎 − 𝜙−1𝑎 (𝑣𝑎))∀𝑎⟺ 𝜙−1𝑎 (𝑣𝑎) = 𝑥𝑎∀𝑎. (𝑓𝑎strictly convex)
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APARTÉ: SPATIAL DECOMPOSITION OF NETWORK ANALYSIS PROBLEM

Let 𝐺 = ∪𝑏∈𝐵(𝑁𝑏, 𝐴𝑏) a graph
partition along some 𝑅 nodes,
then

equilibrium problem

𝑁𝐴𝑃(𝐸, 𝑑𝑆, 𝑢𝑅) = ∪𝑏∈𝐵 𝑁𝐴𝑃(𝐸𝑏, 𝑑𝑆𝑏 , 𝑢𝑅)= ∪𝑏∈𝐵{(𝑥, 𝑢) ∈ ℝ𝐴𝑏 × ℝ𝑆𝑏 ,𝑥𝑠 ∶= 􏾜𝑎∈𝐴𝑏 𝐸𝑎𝑠𝑥𝑎 = 𝑑𝑠 ∀𝑠 ∈ 𝑆𝑏
𝑣𝑎 ∶= 􏾜𝑛∈𝑁𝑏 −𝐸𝑎𝑛𝑢𝑛 = 𝜙𝑎(𝑥𝑎) ∀𝑎 ∈ 𝐴𝑏}
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discrete bilevel models
for

network optimization
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APPLICATION TO NETWORK OPTIMIZATION

• network design: select the element to install to satisfy a worst-case demand
scenario and minimize installation costs

• network operation: reconfigure the network dynamically on a discrete
horizon to meet the demand profiles and minimize operation costs

bilevel structure:

1. MILP: get a layout 𝐸(𝑦𝐴), 𝑦𝑎 ∈ {0, 1} and boundary conditions (𝑑0𝑆, 𝑢𝑅)
2. NLP: solve equilibrium (𝑥𝐴, 𝑢𝑆) ∈ 𝑁𝐴𝑃(𝐸(𝑦𝐴), 𝑑𝑆, 𝑢𝑅)
3. repeat in the dynamic case, with 𝑢𝑡𝑅 in (1) depends on 𝑥𝑡−1𝐴 from (2)
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PIPE LAYOUT IN GRAVITY-FED WATER NETWORKS (STATIC CASE)

• every node has a fixed demand 𝐷𝑆 or a fixed potential 𝑈𝑅 (sources)
• arcs are pipes (no pumps) to select in a discrete set 𝐾:𝑦𝑎𝑘 ∈ {0, 1} select pipe of type 𝑘 on arc 𝑎 ∈ 𝐴?
• model on graph 𝐺 = (𝑁,𝐴𝐾) with replicated arcs:

min𝑦,𝑥,𝑢 􏾜𝑎 􏾜𝑘 𝑐𝑎𝑘𝑦𝑎𝑘𝑠.𝑡.(𝑥𝐴𝐾, 𝑢𝑆) ∈ 𝑁𝐴𝑃(𝐸(𝑦𝐴𝐾),𝐷𝑆,𝑈𝑅)𝑦𝑎𝑘 = 0 ⟹ 𝑥𝑎𝑘 = 𝑣𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾􏾜𝑘∈𝐾 𝑦𝑎𝑘 = 1, 𝑢𝑖 − 𝑢𝑗 = 􏾜𝑘 𝑣𝑎𝑘 ∀𝑎 = (𝑖, 𝑗) ∈ 𝐴.
20



PIPE LAYOUT: EXACT CONVEX MINLP REFORMULATION

min􏾜𝑎 􏾜𝑘 𝑐𝑎𝑘𝑦𝑎𝑘𝑠.𝑡.􏾜𝑎∈𝐴􏾜𝑘∈𝐾 􏿴𝑓𝑎𝑘(𝑥𝑎𝑘) + 𝑓∗𝑎𝑘(𝑣𝑎𝑘)􏿷 + 𝑈⊤𝑅 𝑥𝑅 + 𝐷⊤𝑆 𝑢𝑆 ≤ 0 (𝑆𝐷)
𝑦𝑎𝑘 = 0 ⟹ 𝑥𝑎𝑘 = 𝑣𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾􏾜𝑘∈𝐾 𝑦𝑎𝑘 = 1, 𝑢𝑖 − 𝑢𝑗 = 􏾜𝑘 𝑣𝑎𝑘 ∀𝑎 = (𝑖, 𝑗) ∈ 𝐴.

• 𝑓𝑎𝑘(0) = 𝑓∗𝑎𝑘(0) = 0 ⟹ 𝑓𝑎𝑘(𝑥𝑎𝑘) + 𝑓∗𝑎𝑘(𝑣𝑎𝑘) = 􏿴𝑓𝑎𝑘(𝑥𝑎𝑘) + 𝑓∗𝑎𝑘(𝑣𝑎𝑘)􏿷𝑦𝑎𝑘
• convex but not polynomial†

†Tasseff et al. (2020) Exact MICP Formulation for Optimal Water Network Design.
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PUMP SCHEDULING IN PRESSURIZED NETWORKS (DYNAMIC CASE)

• controllable arcs (pumps, valves) are switch on/off on a discrete horizon 𝑇:𝑦𝑎𝑡 ∈ {0, 1} active arc 𝑎 ∈ 𝐴 on time 𝑡 ∈ 𝑇?
• fixed demand 𝐷𝑆𝑡 at service nodes ∀𝑡 ∈ 𝑇
• tank level: fixed only at 𝑡 = 0, then 𝑢𝑟(𝑡+1) depends on 𝑥𝑟𝑡 (residual inflow)
• a sequence-dependent sequence of NAPs:

min􏾜𝑎 􏾜𝑡 𝑐0𝑎𝑡𝑦𝑎𝑡 + 𝑐1𝑎𝑡𝑥𝑎𝑡𝑠.𝑡.(𝑥𝐴𝑡, 𝑢𝑆𝑡) ∈ 𝑁𝐴𝑃(𝐸(𝑦𝐴𝑡), 𝐷𝑆𝑡, 𝑢𝑅𝑡) ∀𝑡 ∈ 𝑇𝑦𝑎𝑡 = 0 ⟹ 𝑥𝑎𝑡 = 0 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇𝑢𝑅(𝑡+1) = 𝑢𝑅𝑡 + 𝑠⊤𝑅𝑥𝑅𝑡 ∀𝑡 ∈ 𝑇𝑈𝑅𝑡 ≤ 𝑢𝑅𝑡 ≤ 𝑈𝑅𝑡 ∀𝑡 ∈ 𝑇.
22



PUMP SCHEDULING: STRONG DUALITY REFORMULATION

strong duality constraints are nonconvex􏾜𝑎∈𝐴 􏿴𝑓𝑎(𝑥𝑎𝑡) + 𝑓∗𝑎(𝑣′𝑎𝑡)􏿷 + 𝑢⊤𝑅𝑡𝑥𝑅𝑡 + 𝐷⊤𝑆𝑡𝑢𝑆𝑡 ≤ 0 ∀𝑡
with 𝑦𝑎𝑡 = 1 ⟹ 𝑣′𝑎𝑡 = 𝑣𝑎𝑡 and 𝑦𝑎𝑡 = 0 ⟹ 𝑣′𝑎𝑡 = (𝑓∗𝑎)−1(0)
First application: relax and generate cuts:

• 𝑓𝑎(𝑥𝑎𝑡) + 𝑓∗𝑎(𝑣′𝑎𝑡) = 􏿴𝑓𝑎(𝑥𝑎𝑡) + 𝑓𝑎(𝑣𝑎𝑡)􏿷𝑦𝑎𝑡 is convex ⟹ linearize at trial points
• bad news: a loose relaxation of the bilinear terms may absorb the duality gap
• good news: tank capacities provide exogenous bounds on 𝑢𝑅𝑡, 𝑢𝑅(𝑡+1) and 𝑥𝑅𝑡
to tighten McCormick’s relaxation
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1ST APPLICATION OF SD REFORMULATION: CUT GENERATION

• evolution of the primal/dual
bounds in

• Branch-and-Check [Bonvin,
Demassey, Lodi 2020]

• with or without duality cuts
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2ND APPLICATION: DECOMPOSITION OF PUMP SCHEDULING

min𝑦,𝑥,𝑢 􏾜𝑎 􏾜𝑡 (𝑐0𝑎𝑡𝑦𝑎𝑡 + 𝑐1𝑎𝑡𝑥𝑎𝑡)𝑠.𝑡.(𝑥𝐴𝑡, 𝑢𝑆𝑡) ∈ 𝑁𝐴𝑃(𝐸(𝑦𝐴𝑡), 𝐷𝑆𝑡, 𝑢𝑅𝑡) ∀𝑡 ∈ 𝑇𝑢𝑅(𝑡+1) = 𝑢𝑅𝑡 + 𝑠⊤𝑅𝑥𝑅𝑡 ∀𝑡 ∈ 𝑇𝑈𝑅𝑡 ≤ 𝑢𝑅𝑡 ≤ 𝑈𝑅𝑡 ∀𝑡 ∈ 𝑇.
• complexity comes less from the nonconvex constraints 𝑣𝑎 = 𝜙𝑎(𝑥𝑎) than from
the inter-dependency 𝑥𝑡 = 𝐹(𝑦𝑡, 𝑢𝑡), and 𝑢𝑡+1 = 𝐺(𝑥𝑡)

• ⟹ bilinear terms 𝑢𝑟𝑥𝑟 in the dual formulation
• dualizing the time-coupling constraints does not change this complexity
• fixing the time-coupling variables 𝑢𝑅𝑡 ⟹ decompose & enumerate 25



ALTERNATE DIRECTION METHOD 1 (DOUGLAS-RACHFORD PRINCIPLE)

min𝑦,𝑥,𝑢,𝑋,𝑈 􏾜𝑎 􏾜𝑡 (𝑐0𝑎𝑡𝑦𝑎𝑡 + 𝑐1𝑎𝑡𝑥𝑎𝑡) +􏾜𝑟 􏾜𝑡
⎛⎜⎜⎜⎜⎜⎝􏾜𝑏 𝜇𝑏𝑟𝑡‖𝑥𝑏𝑟𝑡 − 𝑋𝑏𝑟𝑡‖2 + 𝜈𝑟𝑡‖𝑢𝑟𝑡 − 𝑈𝑟𝑡‖2⎞⎟⎟⎟⎟⎟⎠𝑠.𝑡. (𝑥𝐴𝑏𝑡, 𝑢𝑆𝑏𝑡) ∈ 𝑁𝐴𝑃𝑏(𝐸𝑏(𝑦𝐴𝑏𝑡), 𝐷𝑆𝑏𝑡, 𝑈𝑅𝑏𝑡) ∀𝑡 ∈ 𝑇, 𝑏 ∈ 𝐵𝑈𝑅(𝑡+1) = 𝑈𝑅𝑡 + 𝑠⊤𝑅 􏾜𝑏 𝑋𝑏𝑅𝑡, 𝑈𝑅𝑡 ≤ 𝑈𝑅𝑡 ≤ 𝑈𝑅𝑡 ∀𝑡 ∈ 𝑇.

(𝑃1): fix 𝑈𝑅𝑇 (test 𝑦𝐴𝑇) get 𝑥𝐴𝑇 (𝑃2): fix 𝑥𝐴𝑇 get 𝑈𝑅𝑇 3: update 𝜇, 𝜈 ‡

• (𝑃1) becomes decomposable both in time and space, thus enumerable
• relax NAP in (𝑃2); unlikely convergent bc not linearly separable: 𝑈𝑟𝑡𝑥𝑟𝑡

‡ongoing work with Valentina Sessa and Amir Tavakoli with 𝑈0 generated by ML
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ADM 2 APPLIED TO THE (𝑆𝐷) REFORMULATION (WORK IN PROGRESS)

First, dualize (𝑆𝐷), for any 𝜆𝑏𝑡 ≥ 0:
min 􏾜𝑎 􏾜𝑡 (𝑐0𝑎𝑡𝑦𝑎𝑡 + 𝑐1𝑎𝑡𝑥𝑎𝑡) +􏾜𝑟 􏾜𝑡

⎛⎜⎜⎜⎜⎜⎝􏾜𝑏 𝜇𝑏𝑟𝑡‖𝑥𝑏𝑟𝑡 − 𝑋𝑏𝑟𝑡‖2 + 𝜈𝑟𝑡‖𝑢𝑟𝑡 − 𝑈𝑟𝑡‖2⎞⎟⎟⎟⎟⎟⎠
+􏾜𝑏 􏾜𝑡 𝜆𝑏𝑡

⎛⎜⎜⎜⎜⎜⎜⎝􏾜𝑎∈𝐴𝑏(𝑓𝑎(𝑥𝑎𝑡) + 𝑓∗𝑎(𝑢𝑎𝑡)) + 􏾜𝑟∈𝑅𝑏 𝑈𝑟𝑡𝑥𝑏𝑟𝑡 + 􏾜𝑠∈𝑆𝑏 𝐷𝑠𝑡𝑢𝑠𝑡⎞⎟⎟⎟⎟⎟⎟⎠𝑠.𝑡. 𝑥𝑆𝑡 = 𝐷𝑆𝑡, 𝑈𝑅(𝑡+1) = 𝑈𝑅𝑡 + 𝑠⊤𝑅 􏾜𝑏 𝑋𝑏𝑅𝑡, 𝑈𝑅𝑡 ≤ 𝑈𝑅𝑡 ≤ 𝑈𝑅𝑡 ∀𝑡 ∈ 𝑇.
(𝑃1): fix 𝑈𝑅𝑇 (test 𝑦𝐴𝑇) get 𝑥𝐴𝑇 (𝑃2): fix 𝑥𝐴𝑇 get 𝑈𝑅𝑇 3: update 𝜇, 𝜈

No need to relax (𝑃2) anymore, and (𝑃1) becomes separable as independent
penalized NAPs
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REPORT COSTS/PENALTIES TO THE LOWER (NAP) LEVEL

(𝑃1) = min𝑦,𝑥,𝑢|𝑥𝑆𝑇=𝐷𝑆𝑇 􏾜𝑎 􏾜𝑡 (𝑐0𝑎𝑡𝑦𝑎𝑡 + 𝑐1𝑎𝑡𝑥𝑎𝑡) +􏾜𝑟 􏾜𝑡
⎛⎜⎜⎜⎜⎜⎝􏾜𝑏 𝜇𝑏𝑟𝑡‖𝑥𝑏𝑟𝑡 − 𝑋𝑏𝑟𝑡‖2 + 𝜈𝑟𝑡‖𝑢𝑟𝑡 − 𝑈𝑟𝑡‖2⎞⎟⎟⎟⎟⎟⎠

+􏾜𝑏 􏾜𝑡 𝜆𝑏𝑡
⎛⎜⎜⎜⎜⎜⎜⎝􏾜𝑎∈𝐴𝑏(𝑓𝑎(𝑥𝑎𝑡) + 𝑓∗𝑎(𝑣𝑎𝑡)) + 􏾜𝑟∈𝑅𝑏 𝑈𝑟𝑡𝑥𝑏𝑟𝑡 + 􏾜𝑠∈𝑆𝑏 𝐷𝑠𝑡𝑢𝑠𝑡⎞⎟⎟⎟⎟⎟⎟⎠= 􏾜𝑡 􏾜𝑏 min𝑦𝑡 𝑓𝜆𝑏𝑡(𝑦) + 𝑔𝜆𝑏𝑡(𝑦) + 􏾜𝑎∈𝐴𝑏 𝑐0𝑎𝑡𝑦𝑎𝑡.

primal/dual penalized NAPs =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓𝜆𝑏𝑡(𝑦) = min𝑥,𝑥𝑆=𝐷𝑆𝑡 ∑𝑎∈𝐴𝑏𝑥𝑎=1 𝑓𝜆𝑎 (𝑥𝑎) + ∑𝑟∈𝑅𝑏 𝑈𝜆𝑟 𝑥𝑟𝑔𝜆𝑏𝑡(𝑦) = min𝑢 ∑𝑎∈𝐴𝑏,𝑥𝑎=1 𝑔𝜆𝑎 (𝑣𝑎) + ∑𝑠∈𝑅𝑏 𝐷𝜆𝑠 𝑢𝑠
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CONCLUSION

• reveal the bilevel structure of some nonconvex MINLP to derive convex
MINLP reformulation or cut families

• flow networks and monotropic optimization at the inner level of many
practical problems: exploit the special duality and variational characteristics
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REFERENCES

• our papers on the pump scheduling problem are available on
https://sofdem.github.io/

• code available on: https://github.com/sofdem/gopslpnlpbb (find
the right branch!)
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