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potential-flow networks &

monotropic programming



linear potential-flow networks: electric circuit

• arcs𝐴: conductors as resistors, batteries, diodes

• flow 𝑥𝑖𝑗: signed current 𝐼
• flow conservation: Kirchhoff’s current law

• potential loss 𝑣𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗: voltage 𝑉
• linear resistance 𝑉 = 𝑅𝐼 Ohm’s law

equilibrium

for a nodal demand 𝑑 and incidence matrix 𝐸, find (𝑥, 𝑢, 𝑣) s.t. 𝐸⊤𝑥 = 𝑑 and 𝑣 ∶= −𝐸𝑢 = 𝑟⊤𝑥

KKT N&S conditions for minimum energy dissipation:

(𝑃) ∶ min
𝑥∶𝐸⊤𝑥=𝑑

􏾜
𝑎∈𝐴

𝑟𝑎
2 𝑥

2
𝑎 = 􏾜

𝑎∈𝐴
𝑓𝑎(𝑥𝑎) with 𝑓′𝑎(𝑥𝑎) = 𝑟𝑎𝑥𝑎 = 𝑣𝑎
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generalization to nonlinear resistance

• transportation of newtonian fluids: water, gas, heat, blood, spring, traffic, telecom

• flow 𝑥𝑎 ∈ ℝ: signed volume/rate on arc 𝑎 ∈ 𝐴
• flow conservation/demand satisfaction 𝐸⊤𝑗 𝑥 = 𝑑𝑗 on node 𝑗 ∈ 𝑁
• potential loss 𝑣𝑎 ∶= −𝐸𝑎𝑢 due to resistance 𝑣𝑎 = 𝜙𝑎(𝑥𝑎) of arc 𝑎 ∈ 𝐴

𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚(𝐸, 𝑑𝑆, 𝑢𝑅)
Given boundary conditions at nodes𝑁 = 𝑆 ∪ 𝑅, as fixed potential 𝑢𝑅 or inflow 𝑑𝑆,
and a resistance function 𝜙𝑎 on each arc 𝑎 ∈ 𝐴,
compute overall arc flows 𝑥, node potentials 𝑢 (and arc potential losses 𝑣 = −𝐸𝑢) satisfying:

demand 𝐸⊤𝑗 𝑥 = 𝑑𝑗 ∀𝑗 ∈ 𝑆, and resistance 𝑣𝑎 = 𝜙𝑎(𝑥𝑎) ∀𝑎 ∈ 𝐴
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steady-state equilibrium

𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚(𝐸, 𝑑𝑆, 𝑢𝑅)

ℰ (𝐸, 𝑑𝑆, 𝑢𝑅) ={(𝑥𝐴, 𝑢𝑆) ∈ ℝ𝐴 × ℝ𝑆, (flows, potentials)

𝑥𝑗 ∶= 􏾜
𝑎
𝐸𝑎𝑗𝑥𝑎 = 𝑑𝑗 ∀𝑗 ∈ 𝑆, demand

𝑣𝑎 ∶= 􏾜
𝑗
−𝐸𝑎𝑗𝑢𝑗 = 𝜙𝑎(𝑥𝑎) ∀𝑎 ∈ 𝐴} resistance

comfy assumption: 𝜙𝑎 continuous, strictly increasing, bijective onℝ

⇒ integral 𝑓𝑎(𝑥) = ∫𝑥
0
𝜙𝑎(𝑡)𝑑𝑡 is smooth, strictly convex, coercive

⇒ℰ is KKT N&S conditions for minimum energy loss∑𝑎∈𝐴 𝑓𝑎(𝑥𝑎)
⇒ unique solution and strong duality
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reformulations

KKT (equilibrium): (𝑥, 𝑢) solves

ℰ ∶ 𝐸⊤
𝑆 𝑥 = 𝑑𝑆

𝑣𝑎 = 𝜙𝑎(𝑥𝑎) ∀𝑎 ∈ 𝐴

primal (distribution): 𝑥 solves

𝑃 ∶ min
𝑥

􏾜
𝑎
𝑓𝑎(𝑥𝑎) + 𝑢⊤𝑅𝐸⊤𝑅𝑥

𝑠.𝑡. 𝐸⊤𝑆 𝑥 = 𝑑𝑆

dual (differential): 𝑢 solves

𝐷 ∶min
𝑢

􏾜
𝑎
𝑓∗𝑎(𝑣𝑎) + 𝑑⊤𝑆 𝑢𝑆

𝑠.𝑡. 𝑣 ∶= −𝐸𝑢

strong duality: (𝑥, 𝑢) solves

𝑆𝐷 ∶ 𝐸⊤
𝑆 𝑥 = 𝑑𝑆, 𝑣 ∶= −𝐸𝑢
􏾜
𝑎
􏿴𝑓𝑎(𝑥𝑎) + 𝑓∗𝑎(𝑣𝑎)􏿷 + 𝑢⊤𝑅𝐸⊤𝑅𝑥 + 𝑑⊤𝑆 𝑢𝑆 ≤ 0.

with 𝑓𝑎 = ∫𝜙𝑎 and 𝑓∗𝑎 = ∫𝜙−1
𝑎 : 𝑓∗𝑎(𝑣𝑎) = −𝑓𝑎(𝜙−1

𝑎 (𝑣𝑎)) + 𝑣𝑎𝜙−1
𝑎 (𝑣𝑎) the convex conjugate*

*under our assumptions, 𝑓∗𝑎 is also smooth, strictly convex and coercive.
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Monotropic programming (Rockafellar, 1988)
additive convex objective
over linear constraints

𝑃 ∶min
𝑥∈ℝ𝐽

􏾜
𝑗∈𝐽

𝑓𝑗(𝑥𝑗)

𝑠.𝑡. 􏾜
𝑗∈𝐽

𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀𝑖 ∈ 𝐼

𝑓𝑗 closed proper convex onℝ
= l.s.c. possibly nonsmooth

• monotropic aka “one-dimension convexity” extended to finite-dimension in [Bertsekas08]

• a class of convex programs behaving like linear programs:
• combinatorial properties: finite set of descent directions (elementary vectors)
• duality properties: strong duality, explicit symmetric dual

• other application: 𝑓𝑗 piecewise linear/quad ⟹ same size dual
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Fenchel duality

Let 𝑓∗𝑗 ∶ 𝑣𝑗 ∈ ℝ ↦ sup𝑥𝑗 (𝑥𝑗𝑣𝑗 − 𝑓𝑗(𝑥𝑗)) the convex conjugate function of 𝑓𝑗 ∀𝑗 ∈ 𝐽

(𝑃) ∶min
𝑥∈ℝ𝐽

􏾜
𝑗∈𝐽

𝑓𝑗(𝑥𝑗)

𝑠.𝑡. 􏾜
𝑗∈𝐽

𝐸𝑖𝑗𝑥𝑗 = 𝑑𝑖 ∀𝑖 ∈ 𝐼

(𝐷) ∶min
𝑢∈ℝ𝐼

􏾜
𝑖∈𝐼

𝑑𝑖𝑢𝑖 +􏾜
𝑗∈𝐽

𝑓∗𝑗 (𝑣𝑗)

𝑠.𝑡. 𝑣𝑗 ∶= 􏾜
𝑖∈𝐼

−𝐸𝑖𝑗𝑢𝑖 ∀𝑗 ∈ 𝐽

• conjugate 𝑓∗𝑗 is l.s.c. convex: 𝐷 is monotropic
• biconjugate 𝑓𝑗 = 𝑓∗∗𝑗 (as 𝑓𝑗 l.s.c. convex): dual(dual)=primal
• Fenchel inequality: 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) ≥ 𝑥𝑗𝑣𝑗 and equality holds iff 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗) (subgradient)
• Fenchel equality: strong duality ⟺ stationarity:
0 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗)􏿷 + ∑𝑖 𝑑𝑖𝑢𝑖 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) − 𝑥𝑗𝑣𝑗􏿷 ⟺ 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)∀ 𝑗
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• biconjugate 𝑓𝑗 = 𝑓∗∗𝑗 (as 𝑓𝑗 l.s.c. convex): dual(dual)=primal

• Fenchel inequality: 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) ≥ 𝑥𝑗𝑣𝑗 and equality holds iff 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗) (subgradient)
• Fenchel equality: strong duality ⟺ stationarity:
0 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗)􏿷 + ∑𝑖 𝑑𝑖𝑢𝑖 = ∑𝑗 􏿴𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) − 𝑥𝑗𝑣𝑗􏿷 ⟺ 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)∀ 𝑗
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General resistance as Subdifferential

generalize the equilibrium problem to ℰ ∶ {(𝑥, 𝑣) ∶ 𝐸𝑥 = 𝑑, 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗), ∀ 𝑗} for:

• different boundary conditions

• resistance as a maximal monotone relation (𝑥𝑗, 𝑣𝑗) ∈ Γ𝑗 ⊂ ℝ2 (the characteristic curve):

Γ𝑗 ∶= {(𝑥𝑗, 𝑣𝑗) | 𝑣𝑗 ∈ 𝜕𝑓𝑗(𝑥𝑗)} ⟺ 𝑓𝑗(𝑥𝑗) + 𝑓∗𝑗 (𝑣𝑗) = 𝑥𝑗𝑣𝑗

[Rockafellar88]
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nonlinear network: drinking water distribution

• 𝐴 = { pipes, pumps, valves }

• 𝐼 = 𝑆 ∪ 𝑅: Service nodes (junctions) and Reservoir
(tanks, sources)

• 𝑥 = water flow rate

• 𝑢 = hydraulic head = pressure + elevation
• nonlinear resistance:

• friction in pipes 𝜙(𝑥) = 𝑠𝑔𝑛(𝑥)𝛼|𝑥|2
• discharge pressure in pumps 𝜙(𝑥) = |𝛽𝑥|𝑥 + 𝜅

hydraulic simulation (e.g. EPANET):
solve ℰ aka network analysis problem with Todini-Pilati (Newton-Raphson) algorithm
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spatial decomposition

𝐺 = ∪𝑏∈𝐵(𝑁𝑏, 𝐴𝑏) a graph partition
along the nodes 𝑅 with fixed potential

equilibrium is separable along the potential nodes 𝑅

ℰ (𝐸, 𝑑𝑆, 𝑢𝑅) = ∪
𝑏∈𝐵

ℰ (𝐸𝑏, 𝑑𝑆𝑏 , 𝑢𝑅𝑏 )

= ∪
𝑏∈𝐵

{(𝑥, 𝑢) ∈ ℝ𝐴𝑏 × ℝ𝑆𝑏 ∶ 𝐸⊤
𝑆𝑏𝑥 = 𝑑𝑆𝑏 , 𝑣𝑎 = 𝜙𝑎(𝑥𝑎) ∀𝑎 ∈ 𝐴𝑏}
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complexity

is ℰ (𝐸, 𝑑𝑆, 𝑢𝑅) hard ?

• NO ! separable linearly constrained strictly convex pb, solved quickly with Newton algorithms

• for fixed (𝐸, 𝑑𝑆, 𝑢𝑅)
• but not always fixed: uncertain 𝑑, active 𝐸, dynamic 𝑢
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discrete bilevel models:

design vs operation



gravity-fed network design

pipe layout (deterministic)
given a worst-case demand scenario 𝑑, select a pipe layout 𝐸 in a discrete set such that ℰ (𝐸, 𝑑, 𝑢) is
feasible and installation cost minimum

min
𝑦0/1,𝑥,𝑢

􏾜
𝑎
􏾜
𝑘
𝑐𝑎𝑘𝑦𝑎𝑘

𝑠.𝑡.(𝑥, 𝑢) ∈ ℰ (𝐸(𝑦), 𝑑𝑆, 𝑢𝑅)
𝑦𝑎𝑘 = 0 ⟹ 𝑥𝑎𝑘 = 𝑣𝑎𝑘 = 0 ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾
􏾜
𝑘∈𝐾

𝑦𝑎𝑘 = 1, 𝑢𝑖 − 𝑢𝑗 = 􏾜
𝑘
𝑣𝑎𝑘 ∀𝑎 = (𝑖, 𝑗) ∈ 𝐴.

min􏾜
𝑎
􏾜
𝑘
𝑐𝑎𝑘𝑦𝑎𝑘

𝑠.𝑡.􏾜
𝑎∈𝐴

􏾜
𝑘∈𝐾

􏿴𝑓𝑎𝑘(𝑥𝑎𝑘) + 𝑓∗𝑎𝑘(𝑣𝑎𝑘)􏿷 + 𝑢⊤𝑅𝑥𝑅 + 𝑑⊤𝑆 𝑢𝑆 ≤ 0

𝑦𝑎𝑘 = 0 ⟹ 𝑥𝑎𝑘 = 𝑣𝑎𝑘 = 0
􏾜
𝑘∈𝐾

𝑦𝑎𝑘 = 1, 𝑢𝑖 − 𝑢𝑗 = 􏾜
𝑘
𝑣𝑎𝑘.

High combinatorics but the strong duality reformulation is convex (although nonpolynomial)†

†B. Tasseff, R. Bent, M. Epelman, D. Pasqualini, P. Van Hentenryck (2020) Exact Mixed-integer Convex Programming Formulation
for Optimal Water Network Design.
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load shifting in drinking water distribution

pumping is energy-intensive
pump in advance of demand to save energy,
+ to reduce bill + to support power grid

Opportunities:

• water tanks for energy storage

• nonlinear efficiency

• dynamic electricity tariff
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load shifting in pressurized networks

pump scheduling
given a demand profile (𝑑𝑡)𝑡 on a discrete time horizon, reconfigure (𝐸𝑡)𝑡 such that ℰ (𝐸𝑡, 𝑑𝑡, 𝑢𝑡) and
tank conservation+bounds are feasible and operation costsminimum

min
𝑦0/1,𝑥,𝑢

􏾜
𝑡,𝑎

𝑐0𝑡𝑎𝑦𝑡𝑎 + 𝑐1𝑡𝑎𝑥𝑡𝑎

𝑠.𝑡.(𝑥𝑡, 𝑢𝑡𝑆) ∈ ℰ (𝐸(𝑦𝑡), 𝑑𝑡𝑆, 𝑢𝑡𝑅) ∀𝑡 ∈ 𝑇
𝑦𝑡𝑎 = 0 ⟹ 𝑥𝑡𝑎 = 0 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇
𝑢(𝑡+1)𝑅 = 𝑢𝑡𝑅 + 𝑥𝑡𝑅 ∀𝑡 ∈ 𝑇

𝑈𝑡𝑅 ≤ 𝑢𝑡𝑅 ≤ 𝑈𝑡𝑅 ∀𝑡 ∈ 𝑇.

• multiple sequence-dependent followers
• nonconvex strong duality reformulation

􏾜
𝑎
􏿴𝑓𝑎(𝑥𝑡𝑎) + 𝑓∗𝑎(𝑣𝑡𝑎)􏿷 + 𝑢⊤𝑡𝑅𝑥𝑡𝑅 + 𝑑⊤𝑡𝑆𝑢𝑡𝑆 ≤ 0

• tight tank limits, long time steps:

sensitivity to Δ𝑦: feasibility alone is an issue
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variable splitting for

pump scheduling



solutions for pump scheduling

𝑧(𝑦∗, 𝑥∗, 𝑢∗) = min
𝑦0/1,𝑥,𝑢

􏾜
𝑡,𝑎

𝑐0𝑡𝑎𝑦𝑡𝑎 + 𝑐1𝑡𝑎𝑥𝑡𝑎

𝑠.𝑡.(𝑥𝑡, 𝑢𝑡𝑆) ∈ ℰ (𝐸(𝑦𝑡), 𝑑𝑡𝑆, 𝑢𝑡𝑅) ∀𝑡 ∈ 𝑇
𝑦𝑡𝑎 = 0 ⟹ 𝑥𝑡𝑎 − 𝑣𝑡𝑎 = 0 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇
𝑢(𝑡+1)𝑅 = 𝑢𝑡𝑅 + 𝑥𝑡𝑅 ∀𝑡 ∈ 𝑇

𝑈𝑡𝑅 ≤ 𝑢𝑡𝑅 ≤ 𝑈𝑡𝑅 ∀𝑡 ∈ 𝑇.

1. approximation or relaxation
• PWL approx [Morsi12,...]
• LP relax [Burgschweiger09]
• lag relax, ADMM [Ghaddar15, Ulusoy25]
• convex relax + global search [Bonvin21]

→ complexity/accuracy trade-off

2. simulation-optimization
• metaheuristics e.g. GA [Mackle95,...]
• Benders decomposition [NaoumSawaya15]
• LP approx [Bonvin&Demassey19]

→ slow convergence, infeasibilities

• most optimize the value function 𝑔(𝑦) = 𝑧(𝑦, 𝑥(𝑦), 𝑢(𝑦))
• search the discrete upper-level 𝑦-space but feasible solutions are scarce/sparse
• time decomposition: fix coupling variables 𝑢𝑅, not just relax coupling constraints
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proposed approach

search the continuous 𝑢𝑅-space:

• solutions are less sensitive to Δ𝑢𝑅
• near-optimal storage profiles 𝑢𝑅 are more predictable

• fix 𝑢𝑅 then split time

• fix 𝑢𝑅 then split space, then enumerate 𝑦 solutions on each component

• fix 𝑢𝑅 + SD reformulation then split primal/flow and dual/potential

• however the value function 𝑔(𝑢𝑅) = 𝑧(𝑦(𝑢𝑅), 𝑥(𝑢𝑅), 𝑢(𝑢𝑅)) is nonconvex nonsmooth everywhere

• variable split methods (e.g. ADMM) do not converge a priori

• adapt as a heuristic to reconcile the inflow profile (𝑥𝑡𝑅)𝑡 and the storage profile (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅)𝑡 and
reach strictly-feasible near-optimal solutions
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option 0: dualize the time-coupling constraints

ex: lagrangian subproblem

(𝑃) ∶ min𝑥,𝑦,𝑢
􏾜
𝑡
𝑐𝑡(𝑥𝑡, 𝑦𝑡) + 𝜇⊤

𝑡 (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅)

𝑠.𝑡. ∶ 𝑥𝑡 ∈ ℰ (𝐸(𝑦𝑡), 𝑑𝑡, 𝑢𝑡𝑅) ∀𝑡 ∈ 𝑇

• the model becomes separable in time

• but each static component remains hard (and poor) as the initial state 𝑢𝑅𝑡 is unknown

18



option 1: full variable-split

1: fix storage 𝑢𝑅, then compute (𝑥, 𝑦)

𝑃(𝑢𝑅) ∶ min(𝑥,𝑦)
􏾜
𝑡
𝑐𝑡(𝑥𝑡, 𝑦𝑡) + 𝜇⊤

𝑡 (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅) + 𝜆⊤
𝑡 (ℰ (𝐸(𝑦𝑡), 𝑑𝑡, 𝑢𝑡𝑅))

↓ ↑ update 𝜇, 𝜆

2: fix command (𝑥, 𝑦), then compute 𝑢𝑅

𝑃(𝑥, 𝑦) ∶ min
𝑢

􏾜
𝑡
𝑐𝑡(𝑥𝑡, 𝑦𝑡)) + 𝜇⊤

𝑡 (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅) + 𝜆⊤
𝑡 (ℰ (𝐸(𝑦𝑡), 𝑑𝑡, 𝑢𝑡𝑅))

• no theoretical convergence of ADMM with nonconvex coupling constraints

• 𝑃(𝑢𝑅) is too poor, 𝑃(𝑥, 𝑦) too hard (inverse problem)
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option 2: partial split and ADM-like

no theory ? be practical: keep ℰ in 𝑃(𝑢𝑅), but drop it from 𝑃(𝑥, 𝑦)

1: fix storage 𝑢𝑅, then compute (𝑥, 𝑦)

𝑃(𝑢𝑅) ∶ min(𝑥,𝑦)
􏾜
𝑡
𝑐𝑡(𝑥𝑡, 𝑦𝑡) + 𝜇⊤

𝑡 (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅)

𝑠.𝑡. ∶ 𝑥𝑡 ∈ ℰ (𝐸(𝑦𝑡), 𝑑𝑡, 𝑢𝑡𝑅) ∀𝑡 ∈ 𝑇

simulate ℰ , ∀ time 𝑡, graph component 𝑏, 0/1 vector 𝑦𝑡𝑏

↓ ↑ stop when 􏿎𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅􏿎 < 𝜖

2: fix command (𝑥, 𝑦), then compute 𝑢𝑅

𝑃(𝑥, 𝑦) ∶ min
𝑢

􏾜
𝑡
𝑐𝑡(𝑥𝑡, 𝑦𝑡) + 𝜇⊤

𝑡 (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅)
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Experiments: learning profiles 𝑢𝑅 + partial split
• HA: partial split 𝜇 ∈ {50, 2} from multiple learned storage profiles [ISCO 2024]
• BC: SOA Branch-and-Check [Opt&Eng 2021] + BCpre advanced preprocessing [ICAE 2022]
• run algorithms on 50 instances within 2 hours; stop at the first feasible solution
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option 3: full variable-split on SD model

step 1: fix storage 𝑢𝑅, then compute schedule and flow (𝑦, 𝑥)

𝑤(𝑢𝑅) ∶ min(𝑦,𝑥)
􏾜
𝑡∈𝒯

𝑐0𝑡 𝑦𝑡 + 𝑐1𝑡 𝑥𝑡 + 𝜇⊤
𝑡 (𝑢𝑡+1,𝑅 − 𝑢𝑡𝑅 − 𝑥𝑡𝑅) + 𝜌𝑡𝑆𝐷𝑡(𝑥𝑡, 𝑢𝑡𝑆) ∶ (1 − 𝑦𝑡)𝑥𝑡 = 0, 𝑥𝑡𝑆 = 𝑑𝑡𝑆∀𝑡

with 𝑆𝐷𝑡(𝑥𝑡, 𝑢𝑡) = 𝑓(𝑥𝑡) + 𝑓∗(𝑣𝑡) + 𝑢⊤𝑡𝑅𝑥𝑡𝑅 + 𝑑⊤𝑡𝑆𝑢𝑡𝑆

𝑤(𝑢𝑅) is separable in time and space (graph partition on tank nodes)

moreover, each 𝑤𝑡(𝑢𝑡𝑅) is separable in primal (𝑥) /dual (𝑢𝑆) parts each corresponding to an
equilibrium problem perturbed by the UL cost 𝑐𝑡 and penalties 𝜇, 𝜌:

perturbed primal

𝑃𝑡(𝑦𝑡, 𝑢𝑡𝑅) ∶min𝑥𝑡
𝜌𝑡𝑓(𝑥𝑡) + (𝜌𝑡𝑢𝑡𝑅 − 𝜇𝑡 + 𝑐1𝑡 )⊤𝑥𝑡

𝑠.𝑡. ∶ 𝑥𝑡𝑆 = 𝑑𝑡𝑆, (1 − 𝑦𝑡)⊤𝑥𝑡 = 0.

perturbed dual

𝐷𝑡(𝑦𝑡, 𝑢𝑡𝑅) ∶min𝑢𝑡𝑆
𝜌𝑡𝑓∗(𝑣𝑡) + 𝜌𝑡𝑑⊤𝑡 𝑢𝑡𝑆

𝑠.𝑡. ∶ 𝑣𝑡 = −𝐸𝑢𝑡.
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conclusion and perspective

• storage/control variable split leads to chain decomposition: time→ space→ primal/dual

• integrate the economic and penalty costs within the physical equilibrium problem

• alternative bilevel view: (leader) implied continuous storage variables (follower) discrete decisions

• alternative ML/MIP hybrid: ML for optimality, MIP for feasibility

• ongoing works: convergence and application to traffic network design, and energy system
expansion planning

• save a polar bear, optimize load shifting
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