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Abstract

The Set Packing Problem (SPP) is a well-known NP-hard combinatorial optimization problem.
This paper addresses the SPP through a practical case study, namely the Railway Infrastructure Ca-
pacity (RIC) problem. SPP instance sizes yielded by this problem contain up to 20,000 variables and
350,000 constraints and consequently appear intractable in reasonable computational time by pure
exact algorithms. As an operational response, approximate methods based on Ant Colony Optimiza-
tion (ACO) and Greedy Randomized Adaptive Search Procedure (GRASP) have been developed.
However, even though ACO has given the best results so far, it still requires a significant computa-
tional time on some instances.

This paper presents a hybridization coupling an ACO metaheuristic with a Column Generation
(CG) procedure. CG is used as a preprocessing to provide a reduced SPP instance to ACO as well as
a valuable upper bound on the solution quality. Experiments show that the cumulated computational
time of ACO with its CG preprocessing is in most cases smaller than the computational time of the
sole ACO method, yielding a substantial reduction that reaches 85%. Moreover, this improvement is
in general not counterbalanced by a degradation of the solution quality.

1 Introduction

1.1 The Set Packing Problem and its Application

The Set Packing Problem (SPP) is a well-known NP-hard combinatorial optimization problem. Given a
finite set of items J = {1, ..., n}, and m subsets of J denoted T1, ..., Tm, a packing is a subset P ⊆ J
such that |Ti ∩ P | ≤ 1, ∀i ∈ 1..m (all items in a subset Ti are mutually exclusive). Each item j ∈ J has
a weight denoted cj . The SPP aims at finding the packing P that maximizes the sum of its items weights.
If all items of J have the same weight, the problem is said to be Unicost SPP (USPP). Otherwise, it is
said to be Weighted SPP (WSPP). A generic Integer Programming (IP) formulation of the SPP can be
written as follows: 

max
∑
j∈J

cjxj

s.t.
∑
j∈Ti

xj ≤ 1 , ∀i ∈ 1..m

xj ∈ {0, 1} , ∀j ∈ J

 (1)

where each variable xj is set to 1 if item j is selected in the packing P , and 0 otherwise. The m
constraints represent the mutual exclusivity of all items inside each subset Ti, ∀i ∈ 1..m.

This paper addresses the IP formulation of the SPP (1), applied to the Railway Infrastructure Ca-
pacity (RIC) problem presented by Merel et al. [15]. Given a railway infrastructure and a set of trains,
it entails routing the maximum number of trains through the infrastructure while respecting safety con-
straints. Packing constraints emerge when the same railway track is requested at the same time by several
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distinct trains. The study presented in this paper is based on RIC problem instances concerning a French
infrastructure, namely the Pierrefitte-Gonesse junction which is located near Paris. Tested instances of
the RIC problem yield SPP formulations that contain up to 20,000 binary variables and 350,000 packing
constraints, implicating severe resolution difficulties.

1.2 Approach Summary

Gandibleux et al. [10, 11] give an overview of existing methods designed to solve the SPP. Exact methods
mainly consist in branch-and-cut algorithms based on a polyhedral study of the SPP matrix structure.
Very large formulations are however intractable in a sufficiently short time. Consequently, metaheuristics
have been developed, notably in the context of the RIC problem. They include a Greedy Randomized
Adaptive Search Procedure (GRASP) by Delorme et al. [5] and an Ant Colony Optimization (ACO)
algorithm by Gandibleux et al. [10, 11]. The latter has been reported to outperform the former on both
random and RIC problem instances. Alidaee et al. [1] propose an approach that consists in transposing
the SPP into a generic quadratic formulation solved with a tabu search method and obtain results that are
similar to GRASP. These previous studies enlight that ACO has given the best results on our problem,
we consequently use this algorithm as a comparison reference in this paper.

The RIC problem occurs in the context of strategic railway planning and does not require extremely
short computational times. However, it is often embedded in wider studies which require to obtain good
quality solutions in reasonable time. From that perspective, ACO spends a computational time that can
be considered as too long on some instances, namely up to 20 hours.

To tackle these instances, this paper proposes to hybridize the ACO metaheuristic with a Column
Generation (CG) procedure designed for the RIC problem. The CG procedure solves the SPP continuous
relaxation to optimality and produces a subset of generated variables. The SPP formulation restricted
to this subset is then solved by the ACO metaheuristic. The efficiency of the CG procedure is mainly
ensured thanks to the integration of additional techniques, some of them using RIC-specific data.

Computational results show that prepending the CG procedure to ACO often yields a substantial
computational time reduction, while the quality of solutions is not degraded.

Section 2 presents some advantages of hybridizing exact LP-based methods with metaheuristics as
well as a brief review of existing combinations. The algorithm we propose is explained in section 3
and computational results are presented in section 4. Conclusive remarks and perspectives are given in
section 5.

2 Literature Review

2.1 Principle of Hybridization

Metaheuristics and IP-based exact algorithms have peculiar advantages that can be complementary, as put
forward by Dumitrescu and Stützle [7]. IP-based and LP-based method often provide valuable bounds
and information from the resolution of the problem continuous relaxation. For example, Puchinger et
al. [18] propose a memetic algorithm that exploits integer solutions found by a branch-and-cut pro-
cedure running in parallel and dual solutions provided by its underlying LP resolutions. On the other
hand, metaheuristics can often find solutions of good quality within a much smaller computational time.
However, they are typically not designed to prove a solution optimality.

Hybridizations can be classified according to the way the exact algorithm and the metaheuristic inter-
act together. Puchinger [17] suggests a classification into “collaborative” and “integrative” combinations.
A collaborative combination means that the exact algorithm and the metaheuristic are executed sepa-
rately, either sequentially or in parallel. Integrative combination consists in embedding one algorithm
into the other.

A wide range of hybridization examples and applications is covered by Blum et al. [2], such as the
hybridization of an ACO algorithm with constraint programming techniques and additional examples of
interactions between branch-and-bound based procedures and metaheuristics.
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2.2 Column Generation and Related Hybridizations

CG is a generic procedure designed to solve LP formulations containing a very large number of variables
or for which variables can not be explicitly enumerated. It relies on the fact that considering all variables
is not necessary to find an optimal solution. In the context of column generation, the LP formulation is
called the “Master Problem” (MP).

A CG procedure is a sequence of iterations, each of them consisting in solving a Restricted MP
(RMP), namely the MP restricted to a subset of variables, and a pricing problem which aims at finding
new variables (also called columns) to insert into the RMP. If such columns are found, they are inserted
and another iteration is started. If no such columns exist, the RMP optimal solution found at the last
iteration is considered as the MP optimal solution.

Solving the pricing problem (or subproblem) entails computing the reduced cost of potentially new
columns. For maximization problems such as the SPP, one tries to find columns with a positive reduced
cost. An efficient pricing algorithm is an essential issue to obtain a high-performing CG procedure, even
though the pricing problem is not always easy to solve.

Integrative combinations have been proposed in which a metaheuristic is the slave algorithm respon-
sible for solving the pricing problem. They include the works by Filho and Lorena [9] which proposes
a constructive genetic algorithm and by Puchinger [17] which proposes, among others, an evolutionary
algorithm. Clements et al. [3] propose a collaborative sequential combination in which a heuristic is
used to generate a restricted formulation of a production-line scheduling problem. This restricted for-
mulation is solved afterwards by a CG-based procedure. Although these collaboration configurations are
not strictly the same, in both cases the metaheuristic has the responsibility of providing variables to the
exact algorithm.

2.3 Ant Colony Optimization Metaheuristics

ACO metaheuristics rely on the cooperation of simple agents (“ants”) via a “pheromone trail” to find
good solutions to an optimization problem. Each ant builds a solution to the problem by performing
successive moves in the search space. The pheromone trail reflects the evolution of the whole colony
and guides each ant towards a good solution. This principle, initially suggested by Colorni et al. [4] for
the traveling salesman problem, has allowed applications to many combinatorial optimization problems
such as the set covering problem by Lessing et al. [13].

To the best of our knowledge, only few hybridizations of ACO methods with IP-based exact algo-
rithms have been reported. A collaborative sequential combination is suggested by Doerner et al. [6] in
the context of a multiobjective combinatorial optimization problem. A single-objective exact IP-based
method is used as a preprocessing to a multiobjective ACO algorithm to initialize ACO pheromone trails,
in order to increase the number of efficient solutions found by ACO.

Lessing et al. [13], while comparing performances of four ACO algorithms on the set covering prob-
lem, emphasize the effect of using additional heuristic information. Heuristic information can be either
static or dynamic: the former is computed only once whereas the latter is updated throughout the solution
process. Examples of heuristic information include Lagrangian costs, illustrating the exploitability of in-
formation provided by LP-based methods. Maniezzo [14] takes advantage of lower bounds computed by
LP algorithms to quantify the attractiveness of ACO movements in the search space as well as initialize
the pheromone trail, for solving the quadratic assignment problem.

3 A Hybrid Algorithm for the Set Packing Problem

We propose a combination of CG and ACO to reduce the time spent on some instances by the sole ACO
algorithm. According to the classification by Puchinger [17], it is a collaborative sequential combination
in which the CG procedure is a preprocessing to the ACO algorithm. The proposed algorithm, denoted
CG-ACO, can be summarized as follows:
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1. Starting with a small initial subset of items J0 ⊂ J , the CG procedure solves to optimality the
continuous relaxation of (1) and returns:

• a set J ′ ⊆ J corresponding to all variables generated during the procedure;

• an optimal solution to the SPP continuous relaxation, denoted x̃∗ = {x̃∗j}j∈J , with x̃∗j ∈
[0, 1], ∀j ∈ J ′ and x̃∗j = 0, ∀j ∈ J \ J ′;

2. The ACO algorithm solves the SPP restricted to items of J ′ and returns a solution {x∗j}j∈J ′ with
x∗j ∈ {0, 1}, ∀j ∈ J ′;

3. Variables associated to items not belonging to J ′ are set to 0, thus making a solution x∗ = {x∗j}j∈J
that respects the following constraints:

∑
j∈Ti

x∗j ≤ 1 ,∀i ∈ 1..m

x∗j ∈ {0, 1} ,∀j ∈ J ′

x∗j = 0 ,∀j ∈ J \ J ′

 (2)

This solution is thus feasible for the initial SPP (1).

The objective value associated with the solution returned by the CG-ACO algorithm is defined by:

z∗ :=
∑
j∈J

cjx
∗
j (3)

The ACO pheromone trail is initialized with x̃∗, issued by the CG procedure. The continuous optimal
objective value z∗LP is an upper bound for z∗ and is defined by:

z∗LP :=
∑
j∈J ′

cj x̃∗j (4)

The aim of this approach is to gain performance by providing a much smaller formulation to ACO
than the initial full SPP formulation. In other words, we aim at having a set J ′ much smaller than the
initial J while keeping most promising variables in J ′ so that ACO can still find a good solution. The
set J ′ can be compared to the core as developed by Huston et al. [12] in the generic case of 0/1 IP as
it is a mean to solve a reduced problem while keeping a good solution quality. The continuous optimal
solution can be seen as an equivalent of the efficiency measure they present.

Subsection 3.1 highlights important improvements brought to the CG procedure to increase its per-
formance. The ACO algorithm is presented in subsection 3.2 as well as the slight modification made to
improve its collaboration with the CG procedure.

3.1 Improved Column Generation Procedure

The CG procedure returns an optimal solution for its MP, which is the continuous relaxation of the
SPP formulation defined by (1). Particularities and improvements contributing to make it an efficient
preprocessing method are summarized here. More details are given by Merel et al. [15].

3.1.1 Subproblem Solution

The RIC problem data implicitly provides all possible columns and allows the pricing problem to be
solved in polynomial time. Consequently, in our case, computing the reduced cost for all potentially new
columns requires in most cases a neglectable proportion of the CG time, namely between 2% and 10%.
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3.1.2 Dynamic Constraint Aggregation

A significant improvement exploits the presence of many redundant and dominated constraints in the SPP
formulation. The majority of them is removed from the formulation before each RMP resolution. This
drastically reduces the CG computational time. This technique, known as dynamic constraint aggregation
and initially presented by Elhallaoui et al. [8], does not alter the MP optimal solution. Its application to
the SPP formulation of the RIC problem is detailed by Merel et al. [16].

As the aggregation algorithm is executed at each CG iteration, it has to be as efficient as possible.
Consequently, we make use of RIC-specific data to heuristically achieve a strong problem reduction as
quickly as possible.

Dynamically removing constraints implicates that some dual variables values are missing at each
iteration in order to solve the subproblem. Consequently, the algorithm features a computation of a full
RMP dual solution at each iteration in a way that depicts the saturation of constraints by primal variables
so that appropriate column are generated.

3.1.3 Column Insertion Strategy

Among all columns with a positive reduced cost, column insertion strategies select columns aiming at
reaching the MP optimal solution in as few CG iterations as possible while preventing the RMP formula-
tion from growing too much. Controlling this growth contributes to keep reasonable RMP solution times
and to end up the CG procedure with a relatively small set J ′, accordingly reducing the subsequent ACO
computational time.

Insertion strategies use both generic and RIC-specific criteria to select columns. Generic criteria
include a threshold value for the reduced cost and a maximum number of columns that can be inserted at
each iteration. RIC-specific criteria include inserting not more than one column per train and diversifying
the use of railway tracks. The aggregated structure of the constraint set can also be used as a criterion by
favoring columns that preserve existing dominance and redundancy relationships as much as possible,
acting to preserve the RMP as small as possible.

3.2 Collaborative Ant Colony Optimization Algorithm for the Set Packing Problem

3.2.1 Original Ant Colony Optimization Algorithm

The considered ACO algorithm is an iterative process proposed by Gandibleux et al. [11] in which each
ant builds a complete solution at every iteration. Its parameters such as the number of ants and the stop-
ping criterion are automatically determined. Notably, the stopping criterion is based on a detection of the
convergence of the algorithm. This paragraph focuses on the pheromone trail design and management.

Given a SPP formulation (1), this version of ACO implements the pheromone trail as a vector of size
n. For each element j ∈ J , xj is associated to one pheromone level φj ∈ [0, 1]. All pheromone levels
are initialized to 1, meaning that no variable is a priori favored over any other.

At the end of each iteration, all pheromone levels are multiplied by an “evaporation” coefficient in
the range ]0, 1[, and pheromone levels associated to variables present in the best solution are increased
by a “deposit” value. Consequently, variables appearing repeatedly in good solutions are progressively
favored. Perturbation mechanisms are also presented by Gandibleux et al. [11] to diversify the solutions
explored.

This ACO implementation relies on a n× n exclusivity matrix describing pairwise incompatibilities
between variables. It is built at the initialization according to the SPP matrix and allows to determine in
constant time whether two variables are compatible or not. However, the time needed for building this
matrix often strongly penalizes the ACO computational time.
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3.2.2 Exploitation of the Column Generation Output

In the CG-ACO combination, ACO solves a restricted SPP formulation composed of the n′ = |J ′|
variables present at the end of the CG procedure. The ACO initialization is modified so that initial
pheromone levels can use the continuous optimal solution x̃∗. Formally, instead of the default value of
1, the initialization of pheromones is written φj ← x̃∗j , ∀j ∈ J ′, every x̃∗j being inside the range [0, 1].
Indeed, a number of variables can have their initial pheromone value set to 0 because the corresponding
x̃∗j is equal to 0. The consequence of such an initialization on the ACO integer solution is studied at the
end of the next section.

4 Computational Experiments

As the CG procedure subproblem and improvements use RIC-specific data, relevant tests could only be
performed on 36 private instances yielded by the RIC problem. As preliminary observations showed that
the number of variables n was the main factor impacting the ACO computational time, results focus on
a panel of 22 instances with significant enough variations of n. The SPP model developed for the RIC
problem implicates a constant number of packing constraints for all instances, namely about 350,000.
Considered RIC instances all yield an USPP formulation with all weights equal to 1.

All tests were run on a computer equipped with an Intel Core2 Duo CPU at 2.60GHz and 2Gb RAM.
LP resolutions inside the CG algorithm are made with the Coin-OR Clp 1.09 solver. Fifty runs were
made on each instance for both algorithms.

A comparison is presented between solving full SPP instances with the sole original ACO meta-
heuristic on the one side, and the CG-ACO combination in which ACO is initialized with the CG con-
tinuous solution on the other side. Comparisons are made in terms of computational time and objective
value. The upper bound provided by CG is also reported.

4.1 Computational Time

4.1.1 Total Time

Table 1 shows the CPU time required for both methods from their start to their termination with an
integer solution returned. Instances are sorted by increasing size. The column n shows the number of
variables in the full SPP formulation. Columns “aco” and “cgaco” respectively present computational
times for ACO and CG-ACO. The “n′” column shows the number of variables present at the end of the
CG procedure out of the n possible variables.

Inst. n aco cgaco n′ Inst. n aco cgaco n′

1 876 17 28 499 12 5,548 3,174 537 1,731
2 1,168 39 37 546 13 5,790 2,784 920 2,458
3 1,460 81 49 662 14 6,139 2,448 451 2,343
4 1,737 85 103 1,021 15 7,527 5,887 907 2,462
5 2,044 159 51 691 16 8,092 4,808 901 3,134
6 2,631 227 228 1,578 17 8,770 6,674 2,392 3,134
7 2,920 539 167 1,161 18 11,001 14,961 4,096 3,892
8 3,468 529 395 2,051 19 11,560 12,761 4,815 4,992
9 3,796 1,138 154 1,144 20 15,028 27,913 4,692 5,141

10 4,053 917 187 1,161 21 16,663 39,246 13,561 6,115
11 4,624 1,133 494 2,323 22 21,964 71,751 24,681 8,095

Table 1: Average computational time (seconds) out of 50 runs and number of variables generated by CG

It appears from table 1 that the CG-ACO combination runs faster on a large majority of instances. On
smallest instances (#1 to #8), computational time is relatively tight between the two methods, whereas
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CG-ACO becomes clearly better on largest instances. For instances containing more than 5,000 variables,
CG-ACO decreases the computational time by a significant amount varying between 62% and 85%.

These results are illustrated by figures 1 and 2 which present boxplots of the computational time for
both algorithms on a selection of instances. Figure 1 confirms the relative tightness of the two algorithms
on smallest instances. On the contrary, figure 2 shows the clear advantage of CG-ACO on big instances
and the relatively small dispersion of the computational time values.
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Figure 1: Computational time of ACO and CG-ACO (instances 1 to 5)

The n′ column of table 1 gives a supplementary insight to explain these results, as the best time
reductions are often correlated with small n′

n ratios. For example, on instance #18 only 35% of the
11,001 possible columns were generated and the computational time is reduced by 73%. On the con-
trary, instances #1, #4 and #6 present a ratio n′

n over 55% and CG-ACO gives a poorer performance.
These observations mean that when fewer columns have to be generated to reach the continuous optimal
solution, a smaller computational time is achieved for both parts of the CG-ACO combination.

The SPP matrix structure also seems to affect the CG behavior, though no precise causal relationship
has been determined. On the contrary, the standalone ACO algorithm computational time nearly depends
on the sole number of variables, showing a roughly quadratic increase on it.

4.1.2 Distribution of Computational Time between Ant Colony Optimization and Column Gen-
eration

In order to have a deeper insight into the CG-ACO behavior, table 2 presents the time share occupied by
the CG part of the CG-ACO algorithm, the remaining percentage being used by the ACO part.

Inst. cg% Inst. cg% Inst. cg% Inst. cg% Inst. cg%
1 92% 6 81% 11 75% 16 69% 21 82%
2 96% 7 80% 12 80% 17 69% 22 84%
3 88% 8 78% 13 77% 18 81%
4 85% 9 78% 14 70% 19 74%
5 86% 10 74% 15 76% 20 70%

Table 2: Proportion of total CPU time spent in the CG procedure in CG-ACO
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Figure 2: Computational time of ACO and CG-ACO (instances 13 to 17)

CG clearly occupies the major part of the computational time, leading to two conclusions. Firstly,
as most of the overall computational times are in favor of CG-ACO, it shows that the CG procedure
fulfills well its preprocessing role by drastically reducing the ACO computational time. Secondly, it puts
forward how essential it is to design an efficient CG procedure. In our case, improvements brought to
the CG procedure such as constraint aggregation and column selection strategies prove to be fruitful.

4.2 Solution Quality and Upper Bound

Table 3 presents the best and average solutions found by both methods and the upper bound z∗LP (4)
issued by the CG procedure.

best z∗ average z∗ best z∗ average z∗

Inst. z∗LP aco cgaco aco cgaco Inst. z∗LP aco cgaco aco cgaco
1 28 27 27 26.6 26.8 12 34 28 28 27.8 28.0
2 28 27 27 27.0 27.0 13 64 54 53 53.9 52.8
3 31 28 28 27.9 28.0 14 83 79 79 78.7 78.9
4 54 53 53 52.9 52.7 15 62 53 54 52.9 53.9
5 28 27 27 27.0 27.0 16 109 103 104 103.0 104.0
6 82 79 79 78.3 79.0 17 97 79 80 78.1 79.4
7 33 28 28 27.8 27.4 18 65 53 53 53.0 53.0
8 108 104 104 103.5 103.5 19 126 105 105 105.0 104.5
9 32 28 28 27.9 27.9 20 123 105 104 104.6 104.0

10 63 54 54 53.5 53.9 21 97 79 79 78.9 78.7
11 109 103 104 102.2 103.5 22 128 105 105 104.5 104.3

Table 3: Best and average integer solutions and upper bound

Knowing that the coefficient of variation never exceeds 3% for every 50-run benchmark on each
instance, it appears that ACO and CG-ACO perform similarly, meaning that the CG provides a good
selection of variables while removing a majority of them. Such small differences may also be explained
by the fact that all SPP variables have unitary weights. In the case of a WSPP, much larger gaps might
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be observed. An example of such gaps is shown by results presented by Gandibleux et al. [10] on WSPP
instances.

Finally, the gap between the upper bound and the best integer solution is very heterogeneous from
one instance to another. In the best cases such as instances #1, #2, #4 and #5 the difference is only of one
unit, representing a gap of 4%. In those cases, it demonstrates a very good quality of both integer solution
and upper bound. Five more instances (#6, #8, #11, #14 and #16) present a gap inferior or equal to 5%.
In eight cases, the gap is between 10% and 20%, whereas in the five last cases it is above 20%. These
observations can be interpreted as the result of a varying tightness of the SPP continuous relaxation.

4.3 Effects of Pheromone Initialization

A non-neglectable number of variables may have an initial pheromone level of 0 as a consequence of the
CG procedure optimal continuous solution. Additional tests were run to check whether or not this phe-
nomemon had a negative consequence on the integer value found by ACO, by initializing all pheromone
values to 1 in order to avoid discarding any variable. No significant difference on the CG-ACO inte-
ger solution was observed between the two approaches, but removing the pheromone initialization with
the continuous solution implicated a slight ACO computational time increase. This initialization conse-
quently seems to be a good information for ACO.

5 Conclusion

We have provided a collaborative sequential hybridization of a CG procedure with an ACO algorithm to
solve the SPP applied to the RIC problem. The CG procedure removes the necessity of solving the whole
SPP formulation by providing a limited set of promising variables to ACO. It yields a computational
time reduction up to 85% without sacrificing the quality of the solutions and provides at the same time a
potentially valuable upper bound.

These results show that CG can be a good mean to provide a good subset of variables to a metaheuris-
tic. Moreover, the continuous solution can be exploited as illustrated by the pheromone initialization.
Results also show that the performance highly depends on the CG efficiency, which often means that
problem-specific data have to be taken into account.

To further assess the benefit of CG as a preprocessing of ACO for the SPP, experiments will be
made on more SPP instances, including WSPP instances of the RIC problem. Causal relationships must
be identified between the SPP structure on the one side and computational time and gap to the upper
bound on the other side. Reducing this gap can be envisaged by using cut generation algorithms as
well as trying to improve integer solutions by building solutions with variables not generated by the CG
procedure. Finally, the continuous solution could be differentiated from the ACO pheromone vector, so
as to take a clearer role of static heuristic information as defined by Lessing et al. [13].
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76, 2009.

[17] J. Puchinger. Combining Metaheuristics and Integer Programming for Solving Cutting and Packing
Problems. PhD thesis, Vienna University of Technology, January 2006.

[18] J. Puchinger, G.R. Raidl, and M. Gruber. Cooperating Memetic and Branch-and-Cut Algorithms
for Solving the Multidimensional Knapsack Problem. In Proceedings of the Sixth Metaheuristics
International Conference (MIC2005), pages 775–780, 2005.

Udine, Italy, July 25–28, 2011


