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 1.Introduction

 1.1. Railway Infrastructure Capacity Problem and Economic Issues

In accordance with European directives ensuring free competition, national railway infrastructures 
are not owned by national train operating companies anymore, but are now under the responsibility of  
dedicated managers. As a consequence of free competition, private operating companies can request  
slots to infrastructure managers. One illustration of this phenomenon is Italian companies requesting 
slots on the French network,  as part  of  the link between Paris and Milan.   We thus observe an  
increasing  number  of  actors  aiming  at  exploiting  the  railway  network.  Moreover,  rolling  stock 
characteristics such as trains length and maximum speed often vary from one operator to another, 
which may implicate additional difficulties to make them circulate on the same infrastructure without 
implicating heavy perturbations.

In addition, the global railway traffic tends to increase, as shown by recent heavy investments 
consented to build new infrastructures such as the East-European high-speed line and the Polish 
project  for a high-speed connecting Warsaw to Wroclaw and Poznan. Railway transportation also 
tends to be favored as a result of environment-aware policies, as it is considered as a low-polluting 
means of transport.

Synthetically, infrastructures tend to become more and more saturated with heterogeneous rolling 
stock, yielding an essential problematic for both infrastructure managers and train operators. On the 
one  hand,  infrastructure  managers  have  to  decide  whether  a  slot  should  actually  be sold  to  an 
operating company in order to make the infrastructure as profitable as possible. On the other hand, 
operating  companies  may  want  to  best  meet  the  passenger  demand  by  designing  optimized 
schedules before requesting slots.

From that perspective, the capacity of a given infrastructure may prove to be a valuable argument 
to arbitrate discussions between operating companies and infrastructure managers. The UIC Code 
406 (1) states that capacity can be interpreted in various ways, depending on parameters that have to 
be taken into account, such as priorities for certain trains, environmental considerations or quality of 
service criteria. This paper uses the following interpretation for capacity. Given a voluntarily over-
dimensioned schedule, it is defined as the maximum number of trains from this schedule that can  
circulate  through  the  infrastructure  within  a  certain  time  window,  while  preventing  conflicts  and 
respecting safety constraints enforced by the signaling system. The input over-dimensioned schedule 
will  be named  traffic demand.  If  necessary,  trains can be allowed to be slightly shifted from their  
nominal time specified by the demand. It may also possibly be required that this maximum number of 
routed trains have to constitute a schedule that respects a certain  robustness, which is its ability to 
absorb unforeseen delays.
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 1.2. Declinations of Capacity Analysis and Existing Software

Two distinct levels are usually considered when estimating an infrastructure capacity. On the one 
hand, the “network scale”, or macroscopic level, entails computing capacity on large sub-networks 
such as corridors between major cities. On the other hand, the “node scale”, or microscopic level, 
aims at assessing capacity in junctions and stations that often consist in bottlenecks for the network. 
The two approaches differ by the level of details considered. At microscopic level, only one node is  
considered  and it  is  modeled  as  precisely  as  possible  in  order  to  optimize  efficiently  the  traffic,  
whereas macroscopic approaches can not afford to model precisely all stations and junctions crossed 
by the traffic as they consider a wider view of the traffic.

Joint  work  between academic  researchers  and  railway  companies  led  to  the  development  of 
capacity analysis software. One of the first efforts at macroscopic level is the work by Hachemane (2) 
that led to the CAPRES software, which has been used by Swiss and French companies. A more 
recent system is the DEMIURGE software, which is also dedicated to macroscopic level and intended 
as a replacement to CAPRES. In the context of the European project ARRIVAL, Abril et al.  (3) also 
present the MOM capacity analysis system and provide a complete review of existing software.

At microscopic level, one of the first effort was put forward by Zwaneveld et al. (4) and led to the 
STATIONS software, included in the wider DONS project for the Dutch railways. Based on theoretical 
contributions brought by STATIONS, Delorme (5) suggested adaptations that were implemented in the 
French software RECIFE  (6), which is dedicated to microscopic level capacity assessment. As put 
forward by Schlechte (7), the high level of details considered in microscopic studies often implicates 
that only small instances can be computed in reasonable time, i.e. with a moderately large initial 
schedule.

Many  additional  approaches  exist,  although  not  all  of  them  necessarily  led  to  user-oriented 
software. An exhaustive review is provided by Lusby et al. (8).

Finally,  an  effort  to  regroup  microscopic  and  macroscopic  models  is  made  by  Schlechte  (7) 
through  the  NETCAST software  to  create  aggregated  large-scale  networks  from  highly  detailed 
descriptions provided by modeling software such as OpenTrack.

 1.3. RECIFE: A Multi-Criteria Decision Support System for Assessing 
Capacity

RECIFE  (6) is a research project originally supported by the French Nord-Pas-de-Calais region 
and for which research has been carried out by several partners, including IFSTTAR 1, University of 
Valenciennes, École des Mines de Saint-Étienne and University of Nantes. It led to the development 
of the RECIFE software platform which is dedicated to leading capacity studies at microscopic level.  
From that  perspective,  it  contains a  collection of  tools  useful  for  such studies,  including,  among 
others:

• Traffic scheduling algorithms aiming at re-ordering traffic in case of delays, as presented by 
Rodriguez (9);

• Optimization algorithms to saturate the infrastructure with a given traffic demand and thus 
obtain a capacity assessment;

• Robustness computation algorithms for saturated schedules;

• Tools for visualizing the circulation yielded by saturated schedules, Gantt diagrams of  the 
circulation, estimation of schedules robustness according to varying primary delays, etc.

Optimization algorithms are a key point  to assess capacity as they are in charge of  finding a  
schedule that saturates the infrastructure. Their objective is to find the largest subset of trains from the 
traffic demand that can be routed through the infrastructure without conflicts. The number of trains in  
this subset is considered as the capacity assessment for this infrastructure and for the given demand.

Due to the great number of schedules that can be derived from the traffic demand, it can be an 
intractable problem even on modern computers. However, in the context of user-oriented software, 
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obtaining good solutions in reasonable time is highly desirable.

This paper focuses on the optimization module and on its new underlying optimization algorithm 
which has given the best results so far for tackling this problem. Thanks to this algorithm, the module 
provides a capacity assessment by finding a schedule that saturates the infrastructure with trains from 
the  traffic  demand.  It  also  provides  a  so-called  upper  bound  which  is  an  over-estimation  of  the 
capacity. This upper bound can in some cases allow to confirm that the capacity assessment derived 
from the generated schedule is optimal or close to its optimal value. More precisely, a saturating 
schedule is said to be optimal if it is not possible to derive a schedule from the same traffic demand 
that routes more trans in the infrastructure. The upper bound can thus be seen as a mean to evaluate 
the quality of the capacity assessment.

The next section presents the RECIFE optimization module by detailing its input and output data. 
Section 3 gives a slightly deeper technical insight to its underlying new optimization algorithm. Section 
4 presents some computational results of the algorithm and section 5 gives conclusive remarks and 
perspectives to further improve the RECIFE platform.

 2.RECIFE Optimization Module for Infrastructure 
Saturation

 2.1. Input Data: Infrastructure and Traffic Demand

The input data of the optimization module consists in two parts: the description of the infrastructure  
and the traffic demand.

The infrastructure is “naturally” divided into track sections, and track sections are grouped into 
blocks as part of safety measures to prevent collisions. When a train enters a block, all track sections 
of this block are reserved at once, and none of them can host another train. Input data provide a set of 
available paths through the infrastructure. A path is a sequence of track sections coupled to the time 
elapsed since the train entry when it  reserves and releases each of  these track sections.  These 
reservation and release times take into account the block system.  Figure 1 illustrates an example of 
visualization of a route through the infrastructure in RECIFE and the relative entry and exit times for  
each track section of this route.

In more practical terms, the relative entry and exit times in a path are the result of the nominal 
circulation speed enforced by the signaling system.

The traffic demand consists in a set of trains that are considered as potentially incoming into the 
node. Each train has exactly one entry point and one exit point and one or several possible paths to 
go from the former to the latter. It has a nominal time at which it is ought to enter into the infrastructure  
and a maximum temporal shifting value that can be used to slightly delay its entry time. Finally, data 
specify the type of each train (e.g. high-speed train, intercity, freight, etc.).

In concrete terms, the entry and exit points represent lines of the main network from which trains 
can  arrive  and  to  which  they can  go.  A small  sample  of  traffic  demand as  provided  by data  is  
illustrated by the following table.

Figure  1: Visualization of a route through the infrastructure (left) and its associated description in  
terms of track sections occupation (right, in French)



Train Type Train # Entry Line Exit Line Nominal Time Maximum Shifting

High-Speed 7184 Paris North High-Speed 18:00:00 30 seconds

High-Speed 9562 North High-Speed Paris 18:05:00 30 seconds

Intercity 76732 Paris Chantilly 18:12:00 3 minutes

Intercity 156320 Chantilly Paris 18:16:00 3 minutes

Freight 42468 Chantilly “Grande Ceinture” 18:02:00 5 minutes

For instance, the high-speed train 7184 arrives from Paris at 18:00 and goes towards the North 
High-Speed line. A maximum shifting of 30 seconds is specified, meaning that this train can be routed 
considering any entry time between 18:00:00 and 18:00:30.

 2.2. Output: Saturated Schedule and Upper Bound

The output of the optimization module is a schedule that has the following properties:

• Trains that have been successfully routed through the node are associated to a unique path 
and their entry time is fixed to their nominal entry time plus a shift between zero and their 
maximum shifting;

• Other trains are absent from the schedule;

• There  is  no  conflict  between  the  trains  that  have  been  selected  to  be  routed  in  the 
infrastructure;

• No additional train from the initial demand can be easily inserted into the generated schedule 
without creating a conflict (in other words, the schedule saturates the infrastructure).

It is essential to remember that the optimality of the saturating schedule is not always proven. In  
other words, there are cases in which it might be possible to find a schedule that routes more trains,  
although the optimization algorithm was not able to find such a schedule.

To overcome this drawback, the optimization module provides additional information which may be 
valuable to assess the quality of the saturating schedule. This information is the upper bound and 
consists  in  an  over-estimation  of  the  capacity,  which  means  that  the  optimal  capacity  value  is 
necessarily inferior or equal to this upper bound.

In  most  favorable  cases,  it  can happen that  the upper bound equals  to  the number of  trains 
actually  routed  in  the generated schedule,  thus proving that  the capacity  assessment  is  actually 
optimal according to the initial traffic demand. Other favorable cases include those in which the gap 
between the actual number of routed trains and the upper bound is small (namely between one and 
three trains), as it indicates that the schedule is close to optimality, if not optimal. When the gap is  
larger, a conclusion can hardly be drawn as it can mean either that the schedule is far from optimality 
or the upper bound is too much over-estimated.

Although the upper bound can happen to be far from the capacity assessment, it should be noticed  
that it  is  provided at no cost in terms of computational time as it  is  the result  of an intermediate  
process of the optimization algorithm.



 2.3. Additional Parameters

Finally,  the  problem  solved  by  the  optimization  module  can  be  slightly  customized  by  one 
parameter called the  granularity.  It  represents a level  of temporal detail  for trying to route a train 
between its nominal time and its maximum shifting.  More precisely,  for a granularity value of  g  
(expressed in seconds), the algorithm is allowed to consider routing each train every  g  seconds 
between its nominal entry time and its maximum shifted time.

As a consequence, a finer granularity increases the possibilities for routing each train, accordingly 
increasing chances to route more trains. However, it also implicates a more complicated saturation 
problem which can need a longer computational time to be solved.

 3.Mathematical and Algorithmic Background

 3.1. A Hybridization of Optimization Techniques

The RECIFE optimization module algorithm lies on two distinct paradigms to solve the saturation 
problem. Both consist in optimization techniques and are combined together in order to achieve an 
enhanced overall performance.

The  first  technique  is  Integer  Linear  Programming  (ILP),  which  is  a  well-known  optimization 
domain based on a strong mathematical theory. As suggested by its name, algorithms that rely on the 
ILP theory are designed to optimize linear quantities that are subject to constraints, themselves being 
expressed under the form of linear equalities or inequalities. The linear quantity to optimize is called 
the objective function and is expressed according to a set of variables. An optimal solution to the  
problem is an assignment of a value to each variable such that it is not possible to further improve the 
objective function value without violating at least one constraint.

One main characteristic (and strength) of  ILP-based algorithms is that the ILP theory provides 
tools allowing to attain the optimal solution with certainty in finite computational time. However, real-
world problems often yield large ILP formulations (i.e. containing many variables and constraints) and 
implicate prohibitive computational time to reach and prove optimality.

An ILP problem may specify that some of its variables can take any fractional value inside a given 
range whereas some others are constrained to an integer value. A formulation with many integer 
variables  often  requires  successive  resolutions  of  that  same  formulation  in  which  integrality 
constraints are dropped (which is then called the “continuous relaxation” of the initial formulation).  

Figure  2: Visualization of the progress of the optimization algorithm : blue and black curves reach  
each other at the upper bound and the red curve shows the number of trains actually routed



Consequently, ILP problems with a large number of integer variables are much harder to solve but are 
unfortunately often more adapted to model real-world problems.

To compensate these difficulties,  the second technique is  a  so-called metaheuristic  algorithm. 
Such algorithms are designed to solve various problem which are not necessarily modeled as an ILP 
problem. Their main advantage is their ability to find good quality solutions (i.e. for which the objective 
function value should not be too far from its optimal value) in a very short time compared to exact ILP-
based algorithms. However, they can not ensure that the solution is actually optimal.

The proposed approach is a simple hybridization of a ILP-based algorithm and a metaheuristic 
algorithm in order to obtain as quickly as possible a saturated schedule as well as assessing if it is  
close to an optimal schedule.  The use of  an ILP-based technique implicates that  our problem is  
modeled in the form of an ILP problem.

 3.2. Mathematical Model

Although  this  paper  is  not  meant  to  provide  mathematical  and  algorithmic  details,  the  ILP 
formulation yielded by the saturation problem is presented to give an example of an ILP problem and  
to illustrate how real constraints for assessing capacity are transposed into a mathematical model. 
Presenting the ILP model requires the introduction of a few notations:

• The set of trains in the traffic demand is denoted T ;

• For each train, the combination of a route across the infrastructure with an entry time between 
its nominal time and its maximum shifted time with respect to the granularity parameter forms 
a path for this train and is denoted c ; the set of all possible paths for a train t  is written C t ;

• The set of all track sections of the infrastructure is denoted Z  and the time window of the 
traffic demand is represented by a set of seconds, which is denoted P ;

• As a track section can host at most one train at a time, each element of Z  coupled with each 
element of P  forms a unary resource (i.e. a resource that can be used by at most one train) 
and their set is denoted M ;

• Given a unary resource m , we denote by Om  the set of all train-path couples that would 
occupy the resource m  by circulating across the infrastructure;

• A variable denoted x t , c is created for each possible combination c  for each train t ; it is 
set to 1 if train t  crosses the infrastructure by using combination c  and to 0 otherwise.

The ILP problem that needs to be solved to obtain a capacity assessment can finally be written as 
follows:

The first line is the objective function and states that we aim at maximizing the number of trains 
present in the final schedule and taken from the initial traffic demand. The two following lines are 
constraints ensuring respectively that:

1. For each train, only one of its possible combinations can be selected in the final schedule;

2. Conflicts are avoided by preventing each unary resource from being used by more than one 
train.

Finally, the last line expresses that each variable can be set to no other value than either 0 or 1. 

max∑
t∈T

x t , c

s.t.∑
c∈C t

xt , c≤1 ∀ t∈T

∑
(t , c)∈Om

x t , c≤1 ∀m∈M

x t , c∈{0,1 } ∀ t∈T ,c∈C t



Obviously, the objective function and constraints are all linear on the problem variables, thus making 
this set of equations a valid ILP problem.

 3.3. Overview of the Solution Algorithm

Once input data have been transposed into the ILP formulation as presented above, the core part  
of the optimization module is in charge of solving this formulation, that is finding an assignment to 0 or 
1 for every variable such that the objective function is maximized and linear constraints are respected.

The algorithm starts by the ILP-based method to solve the continuous relaxation to optimality. 
Even though it is easier than the initial formulation containing the integrality constraints, the number of  
variables and constraints  yielded by input  data are very large and implicate  the need to use an  
adapted solution algorithm. This algorithm is a generic technique called “Column Generation” which 
aims at solving very large Linear Programming formulations. It is an iterative process that can be 
summarized as follows:

1. Solve  the  continuous relaxation  in  which  only  a  small  subset  of  all  possible  variables  is 
present;

2. Search for new variables in the initial traffic demand that are likely to improve the continuous 
objective function value if they are inserted into the formulation;

3. If such variables exist, go back to step 1 considering some of these supplementary variables;  
otherwise,  it  is  considered that  the optimal  solution has been reached for the continuous 
relaxation and the procedure stops.

The  implemented  CG  procedure  contains  several  particularities  and  improvements  that  are 
detailed by Merel et al.  (10). The continuous relaxation optimal objective function value provided by 
the CG procedure is an upper bound for the original ILP problem with integrality constraints. In other 
words, it is an over-estimation of the maximum value attainable for the original ILP problem.

The  second  part  of  the  optimization  algorithm consists  in  using  a  metaheuristic  algorithm to 
compute quickly a saturated schedule. The metaheuristic algorithm used is a so-called Ant Colony 
Optimization (ACO) algorithm which has been designed to solve ILP formulations equivalent to the 
one presented above. The result of the CG procedure is used in a favorable way by restricting the 
variables  considered  by  ACO to  the  set  of  variables  considered  at  the  last  iteration  of  the  CG 
procedure. In that way, CG accelerates the ACO computational time by providing a small set of most  
promising variables to generate a saturated schedule.

Finally, the overall result of the optimization algorithm consists of:

• The  upper  bound  to  the  original  ILP  problem,  provided  by  the  CG  procedure  and 
corresponding to the upper bound for the infrastructure capacity;

• A solution to the ILP problem in which variables are assigned to either 0 or 1 and linear  
constraints are respected, corresponding to a saturating schedule containing circulation from 
the initial traffic demand.

 4.Case Study

 4.1. Infrastructure and Traffic Demand

Computational  tests  were  made  on  instances  yielded  by  real  data  related  to  the  Pierrefitte-
Gonesse railway junction located near Paris. As shown by figure 3, it is a crucial link between several 
high-traffic lines, namely:

• High-speed trains such as TGV, Eurostar and Thalys between Paris on the one side and the 
North High-Speed Line to Lille, Brussels and London on the other side;

• Classical  passenger  intercity  trains  linking  Paris  and  nearby  provincial  towns  such  as 
Chantilly;



• Freight trains coming to and from the Chantilly line and the “Grande Ceinture” which is a track 
going round Paris through suburban towns such as Rungis and Versailles.

The optimization module was tested against several samples of mixed traffic demand, containing a 
combination of high-speed, intercity and freight trains. Three traffic samples that represent a wide 
enough variation on the demand size were selected to be presented in this paper. An overview of 
these demands is given by the following table, in which high-speed trains are abbreviated by “HST” 
and intercity trains are abbreviated by “IC”. The table gives the number of trains in each considered 
traffic demand, according to their type and direction.

Traffic Demand Number

Train Types and Directions 1 2 3

HST
Paris → Lille 12 23 46

Lille → Paris 9 18 36

IC
Paris → Chantilly 11 23 46

Chantilly → Paris 8 16 31

Freight
Chantilly → Grande Ceinture 5 9 19

Grande Ceinture → Chantilly 8 15 30

Total 53 104 208

The purpose of considering such a panel of traffic demands lies in three main considerations:

• The RECIFE optimization module has to be tested against various sizes of problems in order 
to check to what extent it produces a solution in a reasonable computational time;

• Saturated schedule patterns may differ from one traffic demand to another, implicating the 
need to study the optimization algorithm behavior on several cases;

• The gap between the capacity estimation and the upper bound may also vary.

Variations are also considered in terms of shifting granularity (as explained at the end of section 2)  
and  maximum shifting  allowed per  train.  Granularity  varies  between 1  and  15  seconds whereas 
considered maximum shifting values are between 30 and 90 seconds.

Synthetically, the difficulty for solving the problem increases when the number of train increases,  
when the maximum shifting increases and when the granularity is smaller. However, a finer granularity 
and higher shiftings may give the opportunity to route more trains through the infrastructure.

All  possible  combinations  of  granularity,  maximum shifting  values  and  traffic  demand  number 
constitute a very large range of test instances. Consequently, only some representative results have  
been selected in this paper.

Figure 3: The Pierrefitte-Gonesse junction



 4.2. Computational Time

Tests were made on a system equipped with an Intel Core2 Duo Microprocessor at 2.60GHz and 
2GB  of  system  memory.  The  following  table  gives  the  computational  times,  in  seconds,  for  27 
instances yielded by varying the three parameters:

Traffic Demand

Max. Shifting Granularity 1 2 3

30

15 32 103 397

10 34 120 496

5 51 186 895

60

15 49 188 808

10 69 319 1,441

5 156 908 4,691

90

15 94 432 2,013

10 168 925 4,824

5 535 4,105 24,685

Unsurprisingly, the shortest computational time is obtained for the 53-train instance with the largest 
granularity and smallest maximum shifting, and the longest time appears for the 208-train instance 
with a fine granularity and the highest maximum shifting delay. There is a factor 771 between these 
two computational times, which is system-independent and illustrates how the solution process can 
quickly become more difficult with tougher parameters.

In the four most favorable cases, the computational time is below one minute, and below five 
minutes in eight additional cases. The usability of the algorithm according to these measures depends 
on the user expectations, implicating that a conclusion can hardly be drawn by the sole knowledge of  
these  results.  However,  it  should  be  noticed  that  this  algorithm  outperforms  other  attempts  in  
assessing capacity on the Pierrefitte-Gonesse junction, as shown by Merel et al. (10).

 4.3. Capacity Assessment and Upper Bound

The following table presents the capacity assessment in terms of number of trains present in the 
saturated schedule produced by the optimization module.  The table also shows the upper bound 
provided by the optimization module in the columns denoted “U.B.”. Results are presented for the 
same 27 instances as for the computational time.

Traffic Demand

1 2 3

Max. Shifting Granularity U.B. Capacity U.B. Capacity U.B. Capacity

30

15 28 27 54 53 108 104

10 28 27 55 53 109 104

5 28 27 55 53 109 104

60

15 31 28 60 54 120 105

10 32 28 61 52 122 105

5 32 28 62 54 123 104

90

15 33 28 63 54 124 107

10 33 28 64 53 126 105

5 34 28 65 53 128 105



In every case, the number of trains routed in the saturated schedule is about half of the trains 
present in the traffic demand. This result can be explained by the structure of the traffic demand, in 
which trains nominal entry times are very close, thus making some of them mutually exclusive due  to  
conflict prevention constraints.

For traffic demand 1, the capacity assessment increases (or is at least stable) when the granularity 
is  refined or when the maximum shifting increases,  which does not contradict  the statement that  
higher shifting allowance and finer granularity gives more chances to route more trains. However, 
surprisingly  uneven  capacity  assessments  are  observed  for  traffic  demands  2  and  3,  as  more 
favorable parameter configurations do not necessarily implicate better capacity assessments. As an 
example, traffic demand 2 with maximum shifting of 60 and granularity of 10 shows a relatively poor 
capacity assessment. This phenomenon is explained by the use of the ACO metaheuristic algorithm 
which includes randomness in its search for a solution and can thus implicate a slight instability in the 
quality of generated schedules. Nevertheless, the global trend shows that increasing the maximum 
shift and refining the granularity lead to more trains routed onto the infrastructure, as nicely illustrated  
by the capacity assessment of 107 trains in one case for traffic demand 3.

Another interesting point is the gap between the capacity assessment and the upper bound, both  
of  them being provided by the optimization module. It  is relatively small for the smallest maximal 
shifting value and then progressively increases. This phenomenon is amplified with increasing number 
of trains. In the most favorable cases, the gap equals to one, meaning that the optimal saturated 
schedule does not contain more than one train than the saturated schedule actually found. In other  
words, it is an excellent indicator showing that the capacity assessed is very close – if not equal – to  
its  optimal  value.  When the gap is higher,  it  can mean either  that  the upper bound is  much too 
optimistic or that the capacity assessment is far from the optimal solution. These variations of the gap 
can be explained by considerations based on the LP theory but are out of the scope of this paper.  
Preliminary observations led to thinking that the gap is mainly due to the fact that the upper bound is 
too much optimistic.

 4.4. Saturated Schedule Pattern

A deeper insight into saturated schedules provided by the RECIFE optimization module is given 
here in order to evaluate to what extent the capacity value provided by the module is realistic. The 
following table presents the distribution of train types and directions in the saturated schedule for the 
208-train demand (traffic demand 3), with a maximum shifting of 90 seconds and a granularity of 5 
seconds. This pattern is representative of what is obtained for other traffic demands and parameters 
configurations, thus illustrating the trend for all saturated schedules.

Train Types and Directions Number in Saturated Schedule % of Initial Demand

HST
Paris → Lille 44 96%

Lille → Paris 17 47%

IC
Paris → Chantilly 1 2%

Chantilly → Paris 13 42%

Freight
Chantilly → Grande Ceinture 1 5%

Grande Ceinture → Chantilly 29 97%

It can be immediately noticed that the number of routed trains is extremely unbalanced. Firstly, for  
each train type, there is a significant gap between the two directions, as shown, for instance, by  
freight trains. Secondly, a significant though smaller gap exists between train types, with namely the 
relatively small number of intercity trains present in the schedule.

This phenomenon is explained by a combination of reasons which can be summarized as follows:

1. The optimization problem has an unique objective,  which is the maximization of  the total 
number of trains routed through the infrastructure;

2. As it can be noticed on figure 2, the infrastructure contains a significant number of two-way 
tracks that can potentially be used by same train types going in opposite directions;



3. Some routes associated to particular train types and directions use more track sections than 
others;

4. Routing the maximum number of trains implicitly implicates favoring paths that use as few 
track sections as possible and create as few conflicts as possible with other paths;

Consequently, some particular paths and directions are favored because of points 1 and 3, and 
two-way tracks are actually mainly used by paths going in the same direction as in creates less inter-
path conflicts, as put forward by points 2 and 4. These observation logically lead to the circulation 
pattern presented in the table. This capacity assessment is thus essentially a theoretical which forces 
“ideal” conditions leading to a large total number of routed trains.

 5.Conclusion and Perspectives

In the context of the RECIFE software platform, this paper has detailed an optimization module 
which  is  capable  to  assess  infrastructure  capacity  on  junctions  and  stations.  This  capacity 
assessment is provided thanks to the saturation of the considered infrastructure with as much traffic 
as possible from a given initial demand. Techniques used in the underlying optimization algorithm 
ensure a reasonable computational time in most cases, and experiments on the Pierrefitte-Gonesse 
case showed that this algorithm outperforms all  previous attempts in terms of computational time. 
Combined  with  the  other  RECIFE  components  such  as  the  robustness  evaluation  module,  the 
optimization module proves its usefulness to lead capacity studies.

As  explained,  the  mathematical  model  simply  entails  maximizing the  number  of  trains  routed 
through the infrastructure from the initial traffic demand. Although the developed algorithm is efficient  
to solve this hard combinatorial problem, a closer look at resulting saturated schedules shows a lack 
of realisticness in their structure, mainly because of a lack of balance between traffic types.

From this observation, we deduce an essential perspective for the optimization module, which is 
the inclusion of  additional constraints and/or optimization objectives in the mathematical  model in 
order to guide the algorithm towards more realistic solutions. Fortunately, the genericity of the ILP 
modeling and ILP-based solution methods such as Column Generation eases the inclusion of such 
additional  criteria,  and both the model and solution algorithm should  easily  evolve towards more 
sophisticated  versions.  More  generally,  we  look  for  real-world  criteria  to  study  and  insert  in  the  
mathematical model.

Another  important  concern  is  that  it  must  be remember  that  capacity  assessment  also highly 
depends on the initial traffic demand structure. For instance, a traffic demand with a large majority of 
slow and long freight trains will  not yield the same capacity value as if  there is a majority of fast  
passenger trains.

This last  statement enlightens the importance of  being provided with data in order to test  the 
module against additional traffic demands. Moreover, we also look forward to check to what extent the 
module can be adapted to other infrastructures, possibly by improving the mathematical model. The 
promising results in terms of computational time and the flexibility of the model give good reasons to 
think that the model would be successfully adapted to other cases.
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