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Preface

“Although dictionaries give the impression of analyzing words all the way
down to their very atoms, all they do in fact is graze their surfaces.”

– Douglas Hofstadter, Emmanuel Sander, Surfaces and Essences

This catalogue presents a list of global constraints. Within this catalogue the term
global constraint should be understood as an expressive and concise condition involv-
ing a non-fixed number of variables. This informal definition does not make any
assumption neither about the potential use of a global constraint nor about the tech-
niques1 associated with the development of global constraints. It contains about 431
constraints, which are explicitly described in terms of graph properties and/or automata
and/or first order logic formulae and/or conjunction of other constraints.

This Global Constraint Catalogue is an expanded version of the list of global con-
straints presented in [28] and an updated version of [43]. The principle used for describ-
ing global constraints has been slightly modified in order to deal with a larger number
of global constraints. Since 2003, we try to provide an automaton that recognises the
solutions associated with a global constraint. Since 2009, we also try to provide a first
order logic formula for defining the solutions accepted by a geometrical constraint.

Writing a dictionary is a long process, especially in a field where new words are
defined every year. In this context, one difficulty is to express explicitly the meaning of
global constraints in terms of meta-data. Finding an appropriate and concise descrip-
tion that both easily captures the meaning of most global constraints and allows fast
inferences2 involving global constraints seems to be a tricky task.

One may wonder how so many constraints can be used at all in practice? However
many fields produce a number of articles containing partial and specific results. Within
the area of global constraints, we fill that trying extracting and classifying such knowl-
edge, as well as providing meta-data for encoding it, may be a help, both for humans
and machines, to exploit systematically ongoing research results and to put these re-
sults in perspective. Work about the constraint seeker [61] and the model seeker [62]
relies on these meta-data to identify global constraints and to automatically come up
with a constraint model from a set of positive samples.

1As quoted by J. N. Hooker in [225], “identifying a field with its techniques is an intellectually as well as
practically unsatisfying” and has a lot of drawbacks.

2E.g., in the context of the constraint and model seeker [61, 62] we have gradually identified a num-
ber of properties for inferring that a constraint/conjunction of constraints is implied by another con-
straint/conjunction of constraints.

i



ii PREFACE

Goal of the catalogue. This catalogue has four main goals. First, it provides an
overview of most of the different global constraints that were gradually introduced in
the area of constraint programming since the work of J.-L. Laurière on ALICE [267]. It
also identifies new global constraints for which no existing published work exists. The
global constraints are arranged in alphabetic order, and for all of them a description and
an example are systematically provided. When available, it also presents some typical
usage as well as some pointers to existing filtering algorithms.

Second, the global constraints described in this catalogue are not only accessible
to humans, who can read the catalogue for searching for some information. It is also
available to machines, which can read and interpret it. This is why there exists an
electronic version of this catalogue where one can get, for most global constraints, a
complete description in terms of meta-data. In fact, most of this catalogue and its fig-
ures were automatically generated from this electronic version by a computer program.
This description is based on three complementary ways to look at a global constraint.
The first one defines a global constraint as searching for a graph with specific proper-
ties [27], the second one characterises a global constraint in terms of an automaton that
only recognises the solutions associated with that global constraint [39, 317]3, while
the third one defines in the context of geometric constraints a global constraint as a
restricted first order logic formula [107]. The key point of these descriptions is their
ability to define explicitly in a concise way the meaning of most global constraints. In
addition these descriptions can also be systematically turned into polynomial filtering
algorithms.

Third, we hope that this unified description of apparently diverse global constraints
will allow for establishing a systematic link between the properties of basic concepts
used for describing global constraints and the properties of the global constraints as a
whole.

Finally, we also hope that it will attract more people from the algorithmic commu-
nity into the area of constraints. To a certain extent this has already started in places
like CWI in Amsterdam, the Max-Planck für Informatik (Saarbrücken) or the univer-
sity of Waterloo. We also hope that it will attract people from combinatorics in order
to produce theories and knowledge that could nicely unify and/or put in perspective
different aspects of constraints (i.e., breaking symmetries, counting the number of so-
lutions). Identifying bijections [408, 407] relating global constraints to well known
combinatorial objects would be a step in this direction.4

Use of the catalogue. The catalogue is organised into five chapters:

• Chapter 1 provide a short overview of the main entries you may first consult
when you are not familiar with the catalogue.

3Automata were first used in the 90ies by N. R. Vempaty [442] and J. Amilhastre [8] in the context of
constraint networks. Later on in 2007, they were also used by M.-C. Coté et al. [134] in the context of linear
programming.

4This is currently the case only for a few constraints like ALLDIFFERENT, CYCLE or TREE. The informa-
tion about the number of solutions to a global constraint in the Counting slot could certainly help identifying
relevant combinatorial objects.
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• Chapter 2 explains how the meaning of global constraints is described in terms
of graph-properties or in terms of automata. On the one hand, if one wants to
consult the catalogue for getting the informal definition of a global constraint,
examples of use of that constraint or pointers to filtering algorithms, then one
only needs to read the first section of Chapter 2: describing the arguments of a
global constraint, page 14. On the other hand, if one wants to understand those
entries describing explicitly the meaning of a constraint then all the material of
Chapter 2 is required.

• Chapter 3 describes the content of the catalogue as well as different ways for
searching through the catalogue. This material is essential.

• Chapter 4 covers additional topics, such as the differences from the 2000 re-
port [28] on global constraints, the generation of implied constraints that are
systematically linked to the graph-based description of a global constraint, and
the electronic version of the catalogue. The material describing the format of
the entries of a global constraint is mandatory for those who want to exploit the
electronic version in order to write pre-processors for performing various tasks
for a global constraint.

• Finally, Chapter 5 corresponds to the catalogue itself, which gives the global
constraints in alphabetical order.
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Getting started

If you are using the pdf version of the catalogue use Adobe Reader if you want to be
sure to see PDF annotations.1 If you do not see on your screen a small yellow bullet at
the beginning of this paragraph, you are using a PDF viewer that does not fully support
PDF annotations. Within keywords and constraints, the icons

indicates a point of interest (e.g., a necessary condition, a typical use),

denotes a typical error or a common misunderstanding.

The main entries you may consult if you want to have a first look to the catalogue are:

• To get an idea of the multiple facets of global constraints look at Section 2.1.

• To get an idea of how global constraint arguments are described look at Sec-
tion 2.2.

• To search in the catalogue look at Section 3.3.

• To search a constraint from a keyword look at Section 3.7.

• To get an idea how keywords are structured look at Section 3.6.

• To know available semantic links between constraints look at Section 2.6.

• To get through the core global constraints look at the keyword core. Most
core global constraints have a small set of exercises with solutions for checking
that different facets of a core constraint are well understood. These exercises
are located in the Quiz slot at the end of a constraint catalog entry, e.g. for
ALLDIFFERENT see page 557.

• To see how constraints symmetries are described look at Section 2.2.5.
1Since we are using the LATEX package pdfcomment and since most PDF viewers do not support PDF

annotations.

1
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2 1. GETTING STARTED

• To get an idea of general filtering techniques look at the meta-keyword filtering
and more specifically to the entries Berge-acyclic constraint network, construc-
tive disjunction, flow and sweep. To get the notion of consistency achieved by a
filtering algorithm look at the keywords arc-consistency and bound-consistency.

• To get an idea of modelling techniques and of modelling exercises look at the
meta-keywords modelling and modelling exercises.

• To get and idea of reformulations of global constraints look at Section 2.5.

• To get an idea of general ways to explicitly represent the meaning of global
constraints look at (a) Section 2.3 for the graph property based description,
(b) Section 2.4 for the automaton based description, (c) the reference [107]) for
the logical based description (e.g., see the Logic slot of MEET SBOXES).

• To get an idea of the meta-data used for describing various aspects of a con-
straint look at Section 4.5.1 for the facts and Section 4.5.2 for the XML schema.

• To get the correspondence of global constraints of the catalogue with concrete
constraint systems or modelling languages, such as Choco, Gecode, JaCoP,
MiniZinc, or SICStus look at Appendix C.

Some material of the global constraint catalogue may be used for teaching global
constraints, namely:

• Section 2.1 to get a first idea about global constraints,

• The definition and use of the core global constraints starting with
ALLDIFFERENT and ELEMENT, continuing with CUMULATIVE, DIFFN and
CYCLE, and finishing with GLOBAL CARDINALITY, NVALUE, and SORT. Exer-
cises for these constraints are located in the Quiz slot at the end of a constraint
catalog entry. Exercises involving more than one constraint are available from
the keyword Modelling exercises. All exercises are listed at the end of the cata-
logue page 3930.

Moreover additional on-line material that could also be used for teaching is:

• An online version constraint course focussing on core global constraints is avail-
able where exercises can be done interactively.

• The constraint seeker allows users searching for global constraints, given positive
and negative, fully instantiated examples without knowing neither the names of
the constraints nor the way they arguments are organised (see the on-line help
for using that tool).

http://choco.emn.fr/
http://www.gecode.org/
http://www.jacop.eu/
http://www.minizinc.org/
http://www.sics.se/sicstus/
http://imedia.emn.fr/global_constraints_course/
http://seeker.mines-nantes.fr/
http://4c.ucc.ie/~hsimonis/seekerhelp.html
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Describing Global Constraints
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We first introduce the notion of global constraint as well as the different facets at-
tached to global constraints. We then motivate the need for an explicit description of
global constraints and then present the graph-based as well as the automaton-based
descriptions used throughout the catalogue. On the one hand, the graph-based repre-
sentation considers a global constraint as a subgraph of an initial given graph. This
subgraph has to satisfy a set of required graph properties. On the other hand, the au-
tomaton-based representation denotes a global constraint as a hypergraph constructed
from a given constraint checker.1 Both, the initial graph of the graph-based represen-
tation, as well as the hypergraph of the automaton-based representation have a very

1A constraint checker is a program that takes an instance of a constraint for which all variables are fixed
and tests whether the constraint is satisfied or not.
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regular structure, which should give the opportunity for efficient filtering algorithms
taking advantage of this structure.

We now present our motivations for an explicit description of the meaning of global
constraints. The current trend2 is to first use natural language for describing the mean-
ing of a global constraint and second to work out a specialised filtering algorithm.
Since we have a huge number of potential global constraints that can be combined
in a lot of ways, this is an immense task. Since we are also interested in providing
other services, such as visualisation [463, 397, 400], explanations [371], cuts for lin-
ear programming [227], moves for local search [88], generation of clauses for SAT
solvers [306], generation of multivalued decision diagrams that represent compact re-
laxations of global constraints [224], soft global constraints [325, 57, 435], learning
implied global constraints [66], simplifying away fixed variables from global con-
straints when they have the same effect on the remaining unfixed variables in order
to automatically identify equivalent subproblems during search [124], and specialised
heuristics for each global constraint this is even worse. One could argue that a candi-
date for describing explicitly the meaning of global constraints would be second order
predicate calculus. This could perhaps solve our description problem but would, at least
currently, not be useful for deriving any filtering algorithm.3 For a similar reason Pro-
log was restricted to Horn clauses for which one had a reasonable solving mechanism.
What we want to stress through this example is the fact that a declarative description is
really useful only if it also provides some hints about how to deal with that description.
Our first choice of a graph-based representation has been influenced by the following
observations:

• The concept of graph has its roots in the area of mathematical recreations (see,
for example, L. Euler [164], H. E. Dudeney [155], E. Lucas [280] and T. P. Kirk-
man [249]), which was somehow the ancestor of combinatorial problems. In this
perspective a graph-based description makes sense.

• In one of the first books introducing graph theory [63], C. Berge presents graph
theory as a way of grouping apparently diverse problems and results. This was
also the case for global constraints.

• The parameters associated with graphs are concrete and concise. Moreover a lot
of results about graphs can be expressed in terms of graph invariants involving
various graph parameters that are valid for specific graph classes. In essence,
formulae are a kind of declarative statement that is much more compact than
algorithms.

• Finally, it is well known that graph theory is an important tool [291] with respect
to the development of efficient filtering algorithms [351, 353, 356, 364, 292, 244,
54, 433, 344].

Our second choice of an automaton-based representation has been motivated by
the following observation. Writing a constraint checker is usually a straightforward

2This can be noted in all constraint manuals where the description of the meaning is always informal.
3One could perhaps use a system like MONA [221] or some ideas from [91] for getting a constraint

checker in the context of the graph-based representation.
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task. The corresponding program can usually be turned into an automaton. Of course
an automaton is typically used on a fixed sequence of symbols. But, in the context of
filtering algorithms, we have to deal with a sequence of variables. For this purpose
we have shown [39] for some automata how to decompose them into a conjunction of
smaller constraints. In this context, a global constraint can be seen as a hypergraph
corresponding to its decomposition. The hypergraph has two types of hyperedges: the
first type corresponds to transition constraints describing the behavior of the automa-
ton, while the second type represents signature constraints encoding the mapping of
arguments of the constraint to symbols of the alphabet of the automaton.

2.1 Global constraint: what it is, and what it is not

As said in the preface, the term global constraint should be understood as an expressive
and concise condition involving a non-fixed number of partially known objects. The
ideas conveyed by this informal definition are:

• Context independence points to the fact that the condition may be typically useful
in more than one context. Like a word in the context of natural language, a global
constraint encapsulates its own concept that is independent from any specific use.
Like words, once you have the right concepts, you can directly reason at the
appropriate level of abstraction.

• Conciseness means that the condition should be expressible in a compact way,
typically by one or two sentences in natural language.4 The condition directly
mentions objects that match the right level of abstraction it considers, i.e., when
appropriate it does not just refer to a flat list of variables. If necessary, the con-
dition typically involves one or several collections of objects (e.g. tasks), where
each object has a number of attributes (e.g., an origin, a duration and an end if
we consider tasks). An attribute may correspond either to a constant (i.e., a fixed
value), or to a variable.

The second key point conveyed by this informal definition is that, it does not make
any assumption about the techniques associated with the potential use of global con-
straints. Consequently, a global constraint cannot just be reduced to:

1. A concept that is only linked to constraint programming.

2. A function that computes a result from a given set of input arguments.

3. An algorithm that, given a condition on a set of variables, removes some values
to enforce that condition.

4. A way to express a condition as a set of clauses or as a set of linear constraints.

4In Sections 2.3 and 2.4 we will describe some possible ways of defining concisely the meaning of a
significant number of global constraints in a formal way.
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We now illustrate through the example of the ALLDIFFERENT constraint differ-
ent facets of a global constraint. Given a collection of variables 〈x1, x2, . . . , xn〉, the
ALLDIFFERENT(〈x1, x2, . . . , xn〉) constraint forces all variables x1, x2, . . . , xn to be
assigned distinct values. We successively consider the checker view, the feasibility
view, the filtering view, the explanation view, the cost violation view, the reification
view, the counting view and the property view.

2.1.1 Checker view

Considering a constraint for which all variables are fixed, the checker view is about
finding an algorithm that checks whether a ground instance of that constraint holds or
not. In the context of learning models, the usage of dedicated checkers rather than
general filtering algorithms is crucial for performance issues.

For the ALLDIFFERENT(〈x1, x2, . . . , xn〉) constraint one can first sort the sequence
x1, x2, . . . , xn and then check that adjacent values are distinct, or alternatively, insert
each value into a hash table in order to check that no value occurs more than once.

2.1.2 Feasibility view

Given a constraint where not all variables are fixed yet, a question is whether that
constraint has at least one solution or not. We assume that all the not yet fixed variables
must be assigned a value in a finite set of values. In this context we are looking for a
necessary, and possibly sufficient, condition that can be evaluated in polynomial time
with respect to the size of the arguments of that constraint.

For the ALLDIFFERENT constraint we associate a variable-value graph where
(1) each vertex corresponds to its variables and to the values that can be assigned to
these variables, and (2) each edge corresponds to the fact that a variable can be as-
signed a given value. A necessary and sufficient condition is that the cardinality of the
maximum matching, i.e. the maximum number of edges such that no two edges have a
vertex in common, in this variable-value graph is equal to the number of variables.

2.1.3 Filtering view

Once we know that a constraint for which not all variables are fixed yet is potentially
feasible, the next question is to identify variable-value pairs of the form (var , val) such
that, if value val is assigned to variable var , the constraint has no solution. Since re-
moving such values reduces a priori the search space, filtering is strongly supported
by the implicit motto of constraint programming that the more you prune the better.
Assuming that you already have a necessary and sufficient condition that can be evalu-
ated in polynomial time for checking whether a constraint has at least one solution or
not, you can directly reuse it for checking whether a value can be assigned or not to
a variable. Since the number of variable-value pairs to check may be quadratic with
respect to the total number of variables and values one usually prefers developing a
dedicated filtering algorithm that is less costly than checking the feasibility condition
on each variable-value pair.
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For the ALLDIFFERENT constraint a first filtering algorithm [351] is based on a
characterisation of the edges of the variable-value graph that belong to a maximum
matching but not to all. A matching on a graph is a set of edges of the graph such
that no two edges have a vertex in common; it is maximum if its number of edges is
maximum. We first introduce a digraph

−→
GM that is associated with a matching M

that matches all variables of the ALLDIFFERENT constraint. The vertices of
−→
GM are

defined as the variables and the values that can be assigned to the variables of the
ALLDIFFERENT constraint. To each value val that can be assigned to a variable var

corresponds an arc of
−→
GM from var to val . Finally, if value val is matched to variable

var in the matching M we add the reverse arc from val to var to the arcs of
−→
GM .

Now a variable var can be assigned a value val if and only if var and val belong to the
same strongly connected component of

−→
GM or if there is a path consisting of distinct

vertices and arcs of
−→
GM that start with (var , val) and ends up in an unmatched value

with respect to matching M , see [417, page 29].

V1 V2 V3 V4 V5 V6 V7 V8

1 2 3 4 5 6 7 8 9

s.c.c. 1 s.c.c. 2 s.c.c. 3 s.c.c. 4 s.c.c. 5

matched values: values 1, 2, 3, 4, 5, 6, 7 and 8︷ ︸︸ ︷ unmatched
value: 9

−→
GM

Figure 2.1: Illustration of the filtering for
ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6, V7, V8〉) with V1 ∈ [1, 2], V2 ∈ [1, 3],
V3 ∈ [3, 4], V4 ∈ [3, 5], V5 ∈ [4, 5], V6 ∈ [6, 7], V7 ∈ [6, 8], V8 ∈ [8, 9] with respect
to the maximum matching M defined by Vi = i (1 ≤ i ≤ 8) and the corresponding
digraph and its five strongly connected components s.c.c. k (1 ≤ k ≤ 5): 8 can be
assigned to V7 (blue arc) since the path (V7 8 V8 9) ends up in an unmatched value, but
3 cannot be assigned to V2 (red arc) since 3 and V2 do not belong to the same strongly
connected component and since there is no path from V2 to the unique unmatched
value 9.

Another filtering algorithm for ALLDIFFERENT based on Hall intervals just focuses
on adjusting the minimum and maximum values of the variables. Given a set of domain
variables, a Hall interval is an interval of values [low , up] denoted by H[low ,up] such
that there are up − low + 1 variables whose domains are contained in H[low ,up]. A
minimal Hall intervalH[low ,up] is a Hall interval that does not contain any Hall interval
H[low ′,up′] such that either low = low ′ or up = up′. Given a Hall interval H and a
variable V whose domain is not included in H but intersects H, the idea is to adjust
the minimum (respectively maximum) value of variable V to the smallest (respectively
largest) value that does not belong toH. Figure 2.2 illustrates this idea on the constraint
ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6, V7, V8, V9〉) with V1 ∈ [1, 2], V2 ∈ [1, 2], V3 ∈
[2, 5], V4 ∈ [4, 5], V5 ∈ [5, 6], V6 ∈ [4, 6], V7 ∈ [1, 9], V8 ∈ [8, 9], V9 ∈ [8, 9].

• Part (A) of Figure 2.2 shows in light blue, in light pink and in light yellow
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the three minimal Hall intervals associated with the initial domains of variables
V1, V2, . . . , V9.

– H[1,2] corresponds to interval [1, 2], which contains the domains of V1 and
V2.

– H[4,6] corresponds to interval [4, 6], which contains the domains of V4, V5
and V6.

– H[8,9] corresponds to interval [8, 9], which contains the domains of V8 and
V9.

• Part (B) of Figure 2.2 shows the first propagation step with respect to the Hall
intervalsH[1,2],H[4,6] andH[8,9]. First note that variables V3 and V7 are the only
variables whose domain is not included in a Hall interval. Consequently V3 and
V7 are candidates for adjusting their minimum or maximum domain values.

– Since the minimum value of V3, that is i.e. value 2, belongs to the Hall
intervalH[1,2] we adjust the minimum of V3 to the smallest value that does
not yet belong to any Hall interval, i.e. value 3.

– Since the maximum value of V3, that is i.e. value 5, belongs to the Hall
intervalH[4,6] we adjust the maximum value of V3 to the largest value that
does not yet belong to any Hall interval, i.e. value 3.

– Since the minimum value of V7, that is i.e. value 1, belongs to the Hall
intervalH[1,2] we adjust the minimum of V7 to the smallest value that does
not yet belong to any Hall interval, i.e. value 3.

– Since the maximum value of V7, that is i.e. value 9, belongs to the Hall
interval H[8,9] we adjust the maximum of V7 to the largest value that does
not yet belong to any Hall interval, that is i.e. value 7.

• Part (C) of Figure 2.2 shows the second propagation step with respect to the new
Hall interval H[3,3]. Now V7 is the only variable whose domain is not included
in a Hall interval so it is a candidate for adjusting its minimum or maximum
domain value.

– Since the minimum value of V7, i.e. value 3, belongs to the new Hall
intervalH[3,3] we adjust the minimum of V7 to the smallest value that does
not yet belong to any Hall interval, i.e. value 7.

• Finally, part (D) of Figure 2.2 shows all the minimal Hall intervals after reaching
the fix point of the filtering, whereH[7,7] is a new minimal Hall interval.

2.1.4 Explanation view
Given a constraint that cannot be satisfied the goal is to identify a smallest subset of
variables and values for explaining that the constraint has no solution. Similarly, given
a constraint that can be satisfied and a variable-value pair (var , val) such that, if value
val is assigned to variable var the constraint has no solution, the same question arises.
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Figure 2.2: Steps (A), (B), (C) and (D) for filtering the minimum and maximum values
wrt Hall intervals H[low ,up] for ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6, V7, V8, V9〉)
with V1 ∈ [1, 2], V2 ∈ [1, 2], V3 ∈ [2, 5], V4 ∈ [4, 5], V5 ∈ [5, 6], V6 ∈ [4, 6],
V7 ∈ [1, 9], V8 ∈ [8, 9], V9 ∈ [8, 9]. Each horizontal grey strip corresponds to a set
of consecutive values that do not belong to the domain of a variable, while each hori-
zontal red strip represents an adjustment of the minimum or the maximum value of the
domain of a variable.

Explanations are expressed in term of values that should be added to the domains of
some variables in order to prevent unsatisfiability or filtering.

For the ALLDIFFERENT constraint Figure 2.3 provides the explanation attached to
the instance described in Figure 2.1, i.e. what arcs should be added to prevent value 3
from being removed from the domain of variable V2.
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V1 V2 V6 V7 V8

1 2 6 7 8 9

V3 V4 V5

3 4 5

s.c.c. 1

s.c.c. 2

s.c.c. 3 s.c.c. 4 s.c.c. 5

merging s.c.c. 2
and s.c.c. 1

reaching the
unmatched value 9

−→
GM

Figure 2.3: Illustration of the explanation why variable V2 cannot be assigned value
3 for ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6, V7, V8〉) with V1 ∈ [1, 2], V2 ∈ [1, 3],
V3 ∈ [3, 4], V4 ∈ [3, 5], V5 ∈ [4, 5], V6 ∈ [6, 7], V7 ∈ [6, 8], V8 ∈ [8, 9] wrt the
maximum matching M defined by Vi = i (1 ≤ i ≤ 8) and the corresponding digraph:
(1) since adding any dotted green arc from V3, V4, V5 to values 1 or 2 merges the
strongly connected components containing V2 and 3 this would prevent 3 from being
removed from V2; (2) since adding any dotted brown arc from V3, V4, V5 to values 6, 7,
8 or 9 allows V3 to reach the unmatched value 9 this would also prevent 3 from being
removed from V2.

2.1.5 Cost violation view

Considering a constraint for which all variables are fixed such that the constraint does
not hold, a question is to evaluate the degree of violation of that constraint assuming
that for a satisfied constraint the degree of violation is equal to zero.

For the ALLDIFFERENT constraint we can define its degree of violation by the min-
imum number of variables to reassign in order to get a solution. This is called the
variable-based degree of violation. We can also define its degree of violation by the
number of pairs of variables that do not satisfy the disequality constraint. This is called
the decomposition-based degree of violation. Figure 2.4 illustrates these two degree of
violation costs.

2.1.6 Reification view

Suppose we want to associate a 0-1 domain variable b to a constraint C and maintain
the equivalence b ≡ C. This is called the reification of C. For most global constraints
this can be achieved by reformulating the global constraint as a conjunction of pure
functional dependency constraints together with constraints that can be easily reified,
e.g. linear constraints involving at most two variables [37].

We can reify the ALLDIFFERENT(〈x1, x2, . . . , xn〉) constraint by using the idea
of sorting its variables (i.e., the pure functional dependency part) and by stating that
within the sorted list of variables adjacent variables are in strictly increasing order. This
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variable-based degree of violation:

ALLDIFFERENT(〈2, 5, 2, 2, 5〉)

ALLDIFFERENT(〈2,
1,3,4

5,2,2, 5〉)
violation = (#5− 1) + (#2− 1)

= (2− 1) + (3− 1)

= 3
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=
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violation = 4

(four binary
disequality
constraints
are violated)

Figure 2.4: Illustration of the variable-based and the decomposition-based degrees of
violation for ALLDIFFERENT(〈2, 5, 2, 2, 5〉), where #v denotes the number of occur-
rences of value v in the argument of the ALLDIFFERENT constraint instance

leads to the following expression SORT(〈x1, x2, . . . , xn〉, 〈y1, y2, . . . , yn〉) ∧ (y1 <
y2 ∧ y2 < y3 ∧ · · · ∧ yn−1 < yn) ≡ b.

2.1.7 Counting view

Considering a constraint for which not all variables are fixed yet, a question is to
count, or estimate, its number of solutions. This is useful for writing heuristics that
take into account the tightness of the constraints in order, for example, to select the
next variable to assign. Considering a pure functional dependency constraint it is in-
teresting to consider how the number of solutions to that constraint varies depend-
ing on the value of the pure functional dependency parameter (e.g., in the context of
the NVALUE(N, VARIABLES) constraint, its number of solutions if extremely low when
N = 1, then increase as N increases up to a point where it decreases again and ends up
with N = |VARIABLES| like an ALLDIFFERENT). This is useful, for example, for rank-
ing pure functional dependency constraints in the context of the constraint seeker [61].

Counting the number of solutions to an ALLDIFFERENT constraint is equiva-
lent to counting the number of maximum matchings in a bipartite graph, which is
#P-complete [424]. Consequently faster approximations for estimating the number
of solutions are used in practice [459].

2.1.8 Property view

If we want to reason about constraints we need to know their properties. Examples of
properties of a constraint with respect to one of its arguments are:

• A constraint c(〈x1, x2, . . . , xn〉) is contractible if each ground satisfied instance
c(〈val1, val2, . . . , valn〉) is still satisfied if we remove any of its val i (1 ≤ i ≤
n).

• A constraint c(〈x1, x2, . . . , xn〉) is extensible if each ground satisfied instance
c(〈val1, val2, . . . , valn〉) is still satisfied if we insert any value into the sequence
val1, val2, . . . , valn.
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Examples of properties of a constraint with respect to another constraint are:

• The fact that a constraint implies another constraint under the assumption that
both constraints have exactly the same arguments.

• The fact that if a constraint holds then another constraint does not hold, under
the assumption that both constraints have exactly the same arguments.

Implications between two different constraints are provided by the See also slot
(i.e., see implies, implied by and negation) as well as by the Conditional implication
slot.

Regarding the ALLDIFFERENT constraint we have:

• It is contractible since removing a value from a ground satisfied instance leaves
the remaining constraint satisfied.

• It is not extensible since adding a value into a ground satisfied instance may not
necessarily lead to a satisfied constraint.

• The ALLDIFFERENT constraint is implied by more specific constraints, such
as the ALLDIFFERENT CONSECUTIVE VALUES constraint, which in addition
forces all used values to be consecutive.

We now illustrate how to use such knowledge as a method for trying to check that a
given conjunction of identical constraints, i.e. constraints with the same name, is im-
plied by another conjunction of also identical constraints. This subproblem originates
from learning models where we want to keep only the more general conjunctions of
identical constraints. Consider the conjunction C1{

ALLDIFFERENT CONSECUTIVE VALUES(〈v1, v2, v3, v4〉) ∧
ALLDIFFERENT CONSECUTIVE VALUES(〈v5, v6, v7, v8〉)

where ALLDIFFERENT CONSECUTIVE VALUES forces variables to take consecutive
distinct values, and the conjunction C2{

ALLDIFFERENT(〈v1, v2〉) ∧ ALLDIFFERENT(〈v3, v4〉) ∧
ALLDIFFERENT(〈v5, v6〉) ∧ ALLDIFFERENT(〈v7, v8〉)

Conjunction C1 implies conjunction C2 since every constraint of C2 is implied by
at least one constraint of C1. For example, ALLDIFFERENT(〈v1, v2〉) is implied by
ALLDIFFERENT CONSECUTIVE VALUES(〈v1, v2, v3, v4〉) since:

• ALLDIFFERENT CONSECUTIVE VALUES(〈v1, v2, v3, v4〉) ⇒
ALLDIFFERENT(〈v1, v2, v3, v4〉).

• ALLDIFFERENT(〈v1, v2, v3, v4〉) is contractible, it implies
ALLDIFFERENT(〈v1, v2〉).
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2.2 Describing the arguments of a global constraint
Since global constraints have to receive their arguments in some form, no matter
whether we use the graph-based or the automaton-based description, we start by de-
scribing the abstract data types that we use in order to specify the arguments of a
global constraint. These abstract data types are not related to any specific program-
ming language like Caml, C, C++, Java or Prolog. If one wants to focus on a specific
language, then one has to map these abstract data types to the data types that are avail-
able within the considered programming language. In a second phase we describe all
the restrictions that one can impose on the arguments of a global constraint. Finally, in
a third phase we show how to use these ingredients in order to declare the arguments
of a global constraint.

2.2.1 Basic data types
We provide the following basic data types:

• atom corresponds to an atom. Predefined atoms are MININT and MAXINT,
which respectively correspond to the smallest and to the largest integer.

• int corresponds to an integer value.

• dvar corresponds to a domain variable. A domain variable V is a variable
that will be assigned an integer value taken from an initial finite set of integer
values denoted by dom(V ). V and V respectively denote the minimum and the
maximum values of dom(V ).

• fdvar corresponds to a possibly unbounded domain variable. A possibly un-
bounded domain variable is a variable that will be assigned an integer value from
an initial finite set of integer values denoted by dom(V ) or from interval minus
infinity, plus infinity. This type is required for declaring the domain of a vari-
able. It is also required by some systems in the context of specific constraints
like arithmetic or ELEMENT constraints.

• sint corresponds to a finite set of integer values.

• svar corresponds to a set variable. A set variable V is a variable that will be
assigned to a finite set of integer values. Its lower bound V denotes the set of
integer values that for sure belong to V , while its upper bound V denotes the set
of integer values that may belong to V . dom(V ) = {v1, . . . ,vn, vn+1, . . . , vm}
is a shortcut for combining the lower and upper bounds of V in a single notation:

– Bold values designate those values that only belong to V .

– Plain values indicate those values that belong to V and not to V .

• mint corresponds to a multiset of integer values.

• mvar corresponds to a multiset variable. A multiset variable is a variable that
will be assigned to a multiset of integer values.
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• real corresponds to a real number.

• rvar corresponds to a real variable. A real variable is a variable that will be
assigned a real number taken from an initial finite set of intervals. A real number
is usually represented by an interval of two floating point numbers.

Beside domain, set, multiset and float variables we have not yet introduced graph
variables [151]. A graph variable is currently simulated by using one set variable for
each vertex of the graph (see the third example of type declaration of 2.2.2).
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2.2.2 Compound data types

We provide the following compound data types:

• list(T ) corresponds to a list of elements of type T , where T is a basic or a
compound data type.

• collection(A1, A2, . . . , An) corresponds to a collection of ordered items,
where each item consists of n > 0 attributes A1, A2, . . . , An. Each attribute is
an expression of the form a − T , where a is the name of the attribute and T
the type of the attribute (a basic or a compound data type). All names of the
attributes of a given collection should be distinct and different from the keyword
key, which corresponds to an implicit5 attribute. Its value is the position of
an item within the collection. The first item of a collection is associated with
position 1.

The following notations are used for instantiated arguments:

• A list of elements e1, e2, . . . , en is denoted [e1, e2, . . . , en].

• A finite set of integers i1, i2, . . . , in is denoted {i1, i2, . . . , in}.

• A multiset of integers i1, i2, . . . , in is denoted {{i1, i2, . . . , in}}.

• A collection of n items, each item having m attributes, is denoted by
〈a1− v11 . . . am− v1m, a1− v21 . . . am− v2m, . . . , a1− vn1 . . . am− vnm〉.
Each item is separated from the previous item by a comma. When the items of
the collection involve a single attribute a1, 〈v11, v21, . . . , vn1〉 can possibly be
used as a shortcut for 〈a1 − v11, a1 − v21, . . . , a1 − vn1〉.

• The ith item of a collection c is denoted c[i].

• The value of the attribute a of the ith item of a collection c is denoted c[i].a.
Note that, within an arithmetic expression, we can use the shortcut c[i] when the
collection c involves a single attribute.

• The number of items of a collection c is denoted |c|.

5This attribute is not explicitly defined.
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EXAMPLE: Let us illustrate with four examples, the types one can create. These ex-
amples concern the creation of a collection of variables, a collection of tasks, a graph
variable [151] and a collection of orthotopes.a

• In the first example we define VARIABLES so that it corresponds to a collection of
variables. VARIABLES is used, for example, in the ALLDIFFERENT constraint. The
declaration VARIABLES : collection(var− dvar) defines a collection of items,
each of which having one attribute var that is a domain variable.

• In the second example we define TASKS so that it corresponds to a collection of
tasks, each task being defined by its origin, its duration, its end and its resource con-
sumption. Such a collection is used, for example, in the CUMULATIVE constraint.
The declaration TASKS : collection(origin− dvar, duration− dvar, end−
dvar, height−dvar) defines a collection of items, each of which having the four
attributes origin, duration, end and height which all are domain variables.

• In the third example we define a graph as a collection of nodes NODES, each
node being defined by its index (i.e., identifier) and its successors. Such a col-
lection is used, for example, in the DAG constraint. The declaration NODES :
collection(index − int, succ − svar) defines a collection of items, each of
which having the two attributes index and succ which respectively are integers
and set variables.

• In the last example we define ORTHOTOPES so that is corresponds to a collection of
orthotopes. Each orthotope is described by an attribute orth. Unlike the previous
examples, the type of this attribute does not correspond any more to a basic data
type but rather to a collection of n items, where n is the number of dimensions of
the orthotope.b This collection, named ORTHOTOPE, defines for a given dimension
the origin, the size and the end of the object in this dimension. This leads to the
two declarations:

– ORTHOTOPE− collection(ori− dvar, siz− dvar, end− dvar),

– ORTHOTOPES− collection(orth− ORTHOTOPE).

ORTHOTOPES is used, for example, in the DIFFN constraint.

aAn orthotope corresponds to the generalisation of a segment, a rectangle and a box to the
n-dimensional case.

b1 for a segment, 2 for a rectangle, 3 for a box, . . . .

2.2.3 Restrictions
When defining the arguments of a global constraint, it is often the case that one needs to
express additional conditions that refine the type declarations of its arguments. For this
purpose we provide restrictions that allow for specifying these additional conditions.
Each restriction has a name and a set of arguments and is described by the following
items:

• A small paragraph first describes the effect of the restriction,

• An example points to a constraint using the restriction,

• Finally, a ground instance, preceded by the symbolB, which satisfies the restric-
tion is given. Similarly, a ground instance, preceded by the symbol I, which
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violates the restriction is proposed. In this latter case, a bold font may be used
for pointing to the source of the problem.

Currently the list of restrictions is:

• in list(Arg, ListAtoms)

– Arg is an argument of type atom,

– ListAtoms is a non-empty list of distinct atoms.

This restriction forces Arg to be one of the atoms specified in the list ListAtoms.

EXAMPLE: An example of use of such restriction can be found in the
CHANGE(NCHANGE, VARIABLES, CTR) constraint: in list(CTR, [=, 6=, <,≥, >,≤])
forces the last argument CTR of the CHANGE constraint to take its value in the list of
atoms [=, 6=, <,≥, >,≤].
B CHANGE(1, 〈var− 4, var− 4, var− 4, var− 6〉, 6=)
I CHANGE(1, 〈var− 4, var− 4, var− 4, var− 6〉,3)

• in list(Arg, Attr, ListIntOrAtom)

– Arg is an argument of type collection,

– Attr is an attribute of type int or of type atom of the collection denoted
by Arg,

– When Attr is an attribute of type int, ListIntOrAtom is a non-empty
list of distinct integers; otherwise, when Attr is an attribute of type atom,
ListIntOrAtom is a non-empty list of distinct atoms.

This restriction forces for all items of the collection Arg, the attribute Attr to
take its value within the list ListIntOrAtom.

• in attr(Arg1, Attr1, Arg2, Attr2)

– Arg1 is an argument of type collection,

– Attr1 is an attribute of type dvar or of type int of the collection denoted
by Arg1,

– Arg2 is an argument of type collection,

– Attr2 is an attribute of type int of the collection denoted by Arg2.

Let S2 denotes the set of values assigned to the Attr2 attributes of the items of
the collection Arg2. This restriction forces the following condition: for all items
of the collection Arg1, the attribute Attr1 takes its value in the set S2.
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EXAMPLE: An example of use of such restriction can be found in the
CUMULATIVES(TASKS, MACHINES, CTR) constraint: in attr(TASKS, machine,
MACHINES, id) forces that the machine attribute of each task of the TASKS collection
correspond to a machine identifier (i.e., an id attribute of the MACHINES collection).
BCUMULATIVES(〈 machine− 1 origin− 2 duration− 2 end− 4 height− 2,

machine− 1 origin− 2 duration− 2 end− 4 height− 2,
machine− 2 origin− 1 duration− 4 end− 5 height− 5,
machine− 1 origin− 4 duration− 2 end− 6 height− 1〉,
〈id− 1 capacity− 9, id− 2 capacity− 8〉, ≤)

ICUMULATIVES(〈 machine− 5 origin− 2 duration− 2 end− 4 height− 2,
machine− 1 origin− 2 duration− 2 end− 4 height− 2,
machine− 2 origin− 1 duration− 4 end− 5 height− 5,
machine− 1 origin− 4 duration− 2 end− 6 height− 1〉,
〈id− 1 capacity− 9, id− 2 capacity− 8〉, ≤)

• distinct(Arg, Attrs)

– Arg is an argument of type collection,

– Attrs is an attribute of type int or dvar, or a list (possibly empty) of
distinct attributes of type int or dvar of the collection denoted by Arg.

For all pairs of distinct items of the collection Arg this restriction forces that
there be at least one attribute specified by Attrs with two distinct values. When
Attrs is the empty list all items of the collection Arg should be distinct.

EXAMPLE: An example of use of such restriction can be found in the
CYCLE(NCYCLE, NODES) constraint: distinct(NODES, index) forces that all index at-
tributes of the NODES collection take distinct values.
BCYCLE(2, 〈index− 1 succ− 2, index− 2 succ− 1, index− 3 succ− 3〉)
ICYCLE(2, 〈index− 1 succ− 2, index− 1 succ− 1, index− 3 succ− 3〉)

• increasing seq(Arg, Attrs)

– Arg is an argument of type collection,

– Attrs is an attribute of type int or a list of distinct attributes of type int
of the collection denoted by Arg.

Let n and m respectively denote the number of items of the collection Arg, and
the number of attributes of Attrs. For item i of the collection Arg let ti denotes
the tuple of values 〈vi,1, vi,2, . . . , vi,m〉 where vi,j is the value of attribute j of
Attrs of item i of Arg. The restriction forces a strict lexicographical ordering
on the tuples t1, t2, . . . , tn.
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EXAMPLE: An example of use of such restriction can be found in the
ELEMENT MATRIX(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint:
increasing seq(MATRIX, [i, j]) forces that all items of the MATRIX collection be sorted
in strictly increasing lexicographic order on the pair (i, j).
B ELEMENT MATRIX(2, 2, 1, 2, 〈i− 1 j− 1 v− 4, i− 1 j− 2 v− 7,

i− 2 j− 1 v− 1, i− 2 j− 2 v− 1〉, 7)
I ELEMENT MATRIX(2, 2, 1, 2, 〈i− 1 j− 2 v− 4, i− 1 j− 1 v− 7,

i− 2 j− 1 v− 1, i− 2 j− 2 v− 1〉, 7)

• non increasing size(Arg, Attr)

– Arg is an argument of type collection,
– Attr is an attribute of the collection denoted by Arg. This attribute should

be of type collection.

This restriction forces for each pair of consecutive items Arg[i], Arg[i + 1] that
the number of items of the collection Arg[i].Attr is greater than or equal to the
number of items of the collection Arg[i+ 1].Attr.

EXAMPLE: An example of use of such restriction can be found in the K USED BY(SETS)
constraint: non increasing size(SETS, set) forces for all consecutive pairs of items
SETS[i], SETS[i+ 1] that the number of items of the collection SETS[i].set is not greater
than or equal to the number of items of the collection SETS[i+ 1].set.
BK USED BY(〈 set− 〈var− 5, var− 1, var− 1〉,

set− 〈var− 5, var− 1, var− 1〉,
set− 〈var− 5, var− 1〉 〉)

IK USED BY(〈 set− 〈var− 5, var− 1, var− 1〉,
set− 〈var− 5, var− 1〉,
set− 〈var− 5, var− 1, var− 1〉 〉)

• required(Arg, Attrs)

– Arg is an argument of type collection,
– Attrs is an attribute or a list of distinct attributes of the collection denoted

by Arg.

This restriction forces that all attributes denoted by Attrs be explicitly used
within all items of the collection Arg.

EXAMPLE: An example of use of such restriction can be found in the
CUMULATIVE(TASKS, LIMIT) constraint: required(TASKS, height) forces that all
items of the TASKS collection mention the height attribute.
BCUMULATIVE(〈 origin− 2 duration− 2 end− 4 height− 2,

origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

ICUMULATIVE(〈 origin− 2 duration− 2 end− 4,
origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)
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The required restriction is usually systematically used for every attribute of a
collection. It is not used when some attributes may be implicitly defined accord-
ing to other attributes. In this context, we use the require at least restriction,
which we now introduce.

• require at least(Atleast, Arg, Attrs)

– Atleast is a positive integer,

– Arg is an argument of type collection,

– Attrs is a non-empty list of distinct attributes of the collection denoted by
Arg. The length of this list should be strictly greater than Atleast.

This restriction forces that at least Atleast attributes of the list Attrs be ex-
plicitly used within all items of the collection Arg.

EXAMPLE: An example of use of such restriction can be found in the
CUMULATIVE(TASKS, LIMIT) constraint:
require at least(2, TASKS, [origin, duration, end]) forces that all items of the
TASKS collection mention at least two attributes from the list of attributes
[origin, duration, end]. In this context, this stems from the equality origin +
duration = end. This allows for retrieving the third attribute from the values of the
two others.
BCUMULATIVE(〈 origin− 2 duration− 2 height− 2,

origin− 2 end− 4 height− 2,
duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

ICUMULATIVE(〈 origin− 2 height− 2,
origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

• same size(Arg, Attr)

– Arg is an argument of type collection,

– Attr is an attribute of the collection denoted by Arg. This attribute should
be of type collection.

This restriction forces that all collections denoted by Attr have the same number
of items.
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EXAMPLE: An example of use of such restriction can be found in the
DIFFN(ORTHOTOPES) constrainta: same size(ORTHOTOPES, orth) forces all the items
of the ORTHOTOPES collection to be constituted from the same number of items (of type
ORTHOTOPE). From a practical point of view, this forces the DIFFN constraint to take as its
argument a set of points, a set of rectangles, . . . , a set of orthotopes.
BDIFFN(〈 orth− 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉,

orth− 〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 3〉,
orth− 〈ori− 9 siz− 2 end− 11, ori− 4 siz− 3 end− 7〉 〉)

IDIFFN(〈 orth− 〈ori− 2 siz− 2 end− 4〉,
orth− 〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 3〉,
orth− 〈ori− 9 siz− 2 end− 11, ori− 4 siz− 3 end− 7〉 〉)

aORTHOTOPES corresponds to the third item of the example presented at page 17.

• Term1 Comparison Term2

– Term1 is a term. A term is an expression that can be evaluated to one or
possibly several integer values. The expressions we allow for a term are
defined in the next paragraph.

– Comparison is one of the following comparison operators ≤, ≥, <, >, =,
6=.

– Term2 is a term.

Let v1,1, v1,2, . . . , v1,n1
and v2,1, v2,2, . . . , v2,n2

be the values respectively asso-
ciated with Term1 and with Term2. The restriction Term1 Comparison Term2
forces v1,i Comparison v2,j to hold for every i ∈ [1, n1] and every j ∈ [1, n2].

A term is one of the following expressions:

– e , where e is an integer. The corresponding value is e.

– |c| , where c is an argument of type collection. The value of |c| is the
number of items of the collection denoted by c.

EXAMPLE: This kind of expression is used, for example, in the restrictions of
the ATLEAST(N, VARIABLES, VALUE) constraint: N ≤ |VARIABLES| restricts N to be
less than or equal to the number of items of the VARIABLES collection.
BATLEAST(2, 〈var− 5, var− 8, var− 5〉, 5)
IATLEAST(4, 〈var− 5, var− 8, var− 5〉, 5)

– first(c.a) : first(c.a) denotes the value assigned to the attribute a of
the first item of the collection denoted by c. It is equal to 0 if the collection
is empty.

– last(c.a) : last(c.a) denotes the value assigned to the attribute a of the
last item of the collection denoted by c. It is equal to 0 if the collection is
empty.

– sum(c.a), sum(`) : sum(c.a) denotes the sum of the values assigned to the
attribute a of the collection denoted by c, it is equal to 0 if the collection
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is empty; sum(`) where ` is a list of collections attributes, each of them of
the form ci.ai (with i ∈ [1, n]), is the sum of the values assigned to the
attributes ai of the collections denoted by ci (i ∈ [1, n]).

– range(c.a), range(`) : range(c.a) denotes the difference between the
maximum value and the minimum value plus one of the values assigned
to the attribute a of the collection denoted by c, it is equal to 0 if the col-
lection is empty; range(`) where ` is a list of collections attributes, each
of them of the form ci.ai (with i ∈ [1, n]), is the difference between the
maximum value and the minimum value plus one of the values assigned to
the attributes ai of the collections denoted by ci (i ∈ [1, n]).

– minval(c.a), minval(`) : minval(c.a) denotes the minimum over the
values assigned to the attribute a of the collection denoted by c, it is equal
to 0 if the collection is empty; minval(`) where ` is a list of collections
attributes, each of them of the form ci.ai (with i ∈ [1, n]), is the minimum
over the values assigned to the attributes ai of the collections denoted by ci
(i ∈ [1, n]).

– maxval(c.a), maxval(`) : maxval(c.a) denotes the maximum over the
values assigned to the attribute a of the collection denoted by c, it is equal
to 0 if the collection is empty; maxval(`) where ` is a list of collections
attributes, each of them of the form ci.ai (with i ∈ [1, n]), is the maximum
over the values assigned to the attributes ai of the collections denoted by ci
(i ∈ [1, n]).

– nval(c.a), nval(`) : nval(c.a) denotes the number of distinct values
over the values assigned to the attribute a of the collection denoted by c,
it is equal to 0 if the collection is empty; nval(`) where ` is a list of col-
lections attributes, each of them of the form ci.ai (with i ∈ [1, n]), is the
number of distinct values over the values assigned to the attributes ai of the
collections denoted by ci (i ∈ [1, n]).

– prod(c.a), prod(`) : prod(c.a) denotes the product of the values as-
signed to the attribute a of the collection denoted by c, it is equal to 1
if the collection is empty; prod(`) where ` is a list of collections attributes,
each of them of the form ci.ai (with i ∈ [1, n]), is the product of the values
assigned to the attributes ai of the collections denoted by ci (i ∈ [1, n]).

– pfdc(c.a), pfdc(`) : pfdc(c.a), where pfdc is a pure functional depen-
dency constraint of the form pfdc(v, col) (e.g. AMONG DIFF 0, PEAK,
VALLEY) that computes a value v from a collection of variables col , and
where c.a is a collection with attribute a denotes the pfdc of the values
assigned to the attribute a of the collection denoted by c, it is equal to 0 if
the collection is empty; pfdc(`) where ` is a list of collections attributes,
each of them of the form ci.ai (with i ∈ [1, n]), is the pfdc of the values
assigned to the attributes ai of the collections denoted by ci (i ∈ [1, n]).

– t , where t is an argument of type int. The value of t is the value of the
corresponding argument.
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EXAMPLE: This kind of expression is used, for example, in the restrictions of the
ATLEAST(N, VARIABLES, VALUE) constraint: N ≥ 0 forces the first argument of the
ATLEAST constraint to be greater than or equal to 0.
BATLEAST(2, 〈var− 5, var− 8, var− 5〉, 5)
IATLEAST(−1, 〈var− 5, var− 8, var− 5〉, 5)

– v , where v is an argument of type dvar. The value of v will be the value
assigned to variable v.6

EXAMPLE: This kind of expression is used, for example, in the restrictions of the
AMONG(NVAR, VARIABLES, VALUES) constraint: NVAR ≥ 0 forces the first argu-
ment of the AMONG constraint to be greater than or equal to 0.
BAMONG(2, 〈var− 5, var− 8, var− 5〉, 〈val− 1, val− 5〉)
IAMONG(−9, 〈var− 5, var− 8, var− 5〉, 〈val− 1, val− 5〉)

– s , where s is an argument of type sint or svar. The values denoted by s
are all the values of the corresponding set.

EXAMPLE: This kind of expression is used, for example, in the restrictions of the
OPEN ALLDIFFERENT(S, VARIABLES) constraint: S ≥ 1 forces all elements of the
set corresponding to the first argument of the OPEN ALLDIFFERENT constraint to
be greater than or equal to 1.
BOPEN ALLDIFFERENT({1, 2, 3}, 〈var− 5, var− 8, var− 3, var− 8, var− 9〉)
IOPEN ALLDIFFERENT({0, 1, 2, 3}, 〈var−5, var−8, var−3, var−8, var−9〉)

– c.a , where c is an argument of type collection and a an attribute of c
of type int or dvar. The values denoted by c.a are all the values corre-
sponding to attribute a for the different items of c. When c.a designates a
domain variable we consider the value assigned to that variable.

EXAMPLE: This kind of expression is used, for example, in the restrictions of
the CUMULATIVE(TASKS, LIMIT) constraint: TASKS.duration ≥ 0 forces for all
items of the TASKS collection that the duration attribute be greater than or equal
to 0.
BCUMULATIVE(〈 origin− 2 duration− 2 end− 4 height− 2,

origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

ICUMULATIVE(〈 origin− 2 duration−−2 end− 4 height− 2,
origin− 2 duration− 2 end− 4 height− 2,
origin− 1 duration− 4 end− 5 height− 5,
origin− 4 duration− 2 end− 6 height− 1〉, 12)

– c.a , where c is an argument of type collection and a an attribute of c of
type sint or svar. The values denoted by c.a are all the values belonging
to the sets corresponding to attribute a for the different items of c. When
c.a designates a set variable we consider the values that finally belong to
that set.

6Restrictions are defined on the ground instance of a global constraint.
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EXAMPLE: This kind of expression is used, for example, in the restrictions of the
INVERSE SET(X, Y) constraint: X.x ≥ 1 forces for all items of the X collection that
all the potential elements of the set variable associated with the x attribute be greater
than or equal to 1.
BINVERSE SET(〈 index− 1 x− {2, 4},

index− 2 x− {4},
index− 3 x− {1},
index− 4 x− {4} 〉,
〈 index− 1 y− {3},
index− 2 y− {1},
index− 3 y− {},
index− 4 y− {1, 2, 4},
index− 5 y− {} 〉)

IINVERSE SET(〈 index− 1 x− {0, 2, 4},
index− 2 x− {4},
index− 3 x− {1},
index− 4 x− {4} 〉,
〈 index− 1 y− {3},
index− 2 y− {1},
index− 3 y− {},
index− 4 y− {1, 2, 4},
index− 5 y− {} 〉)

– min(t1, t2) or max(t1, t2) , where t1 and t2 are terms. Let V1 and V2
denote the sets of values respectively associated with the terms t1 and t2.
Let min(V1), max(V1) and min(V2), max(V2) denote the minimum and
maximum values of V1 and V2. The value associated with min(t1, t2) is
min(min(V1),min(V2)), while the value associated with max(t1, t2) is
max(max(V1),max(V2)).

EXAMPLE: This kind of expression is used, for example, in the restric-
tions of the NINTERVAL(NVAL, VARIABLES, SIZE INTERVAL) constraint: NVAL ≥
min(1, |VARIABLES|) forces NVAL to be greater than or equal to the minimum of 1
and the number of items of the VARIABLES collection.
B NINTERVAL(2, 〈var− 3, var− 1, var− 9, var− 1, var− 9〉, 4)
I NINTERVAL(0, 〈var− 3, var− 1, var− 9, var− 1, var− 9〉, 4)

– t1 op t2 , where t1 and t2 are terms and op one of the operators +, −,
∗ or /.7 Let V1 and V2 denote the sets of values respectively associated
with the terms t1 and t2. The set of values associated with t1 op t2 is
V12 = {v : v = v1 op v2, v1 ∈ V1, v2 ∈ V2}.

7/ denotes an integer division, a division in which the fractional part is discarded.
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EXAMPLE: This kind of expression is used, for example, in the restrictions of
the RELAXED SLIDING SUM(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES) con-
straint: ATMOST ≤ |VARIABLES| − SEQ + 1 forces ATMOST to be less than or equal
to an arithmetic expression that corresponds to the number of sequences of SEQ
consecutive variables in a sequence of |VARIABLES| variables.
B RELAXED SLIDING SUM(3, 4, 3, 7, 4, 〈var− 2, var− 4, var− 2, var− 0,

var− 0, var− 3, var− 4〉)
I RELAXED SLIDING SUM(3,9, 3, 7, 4, 〈var− 2, var− 4, var− 2, var− 0,

var− 0, var− 3, var− 4〉)

• We can use a disjunction between two restrictions .

EXAMPLE: This kind of expression is used, for example, in the Typical slot of
the AMONG LOW UP(LOW, UP, VARIABLES, VALUES) constraint: LOW > 0 ∨ UP <
|VARIABLES| forces the pair LOW, UP to impose a restriction on the variables of the
VARIABLES collection.a

B AMONG LOW UP(1, 2, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)
B AMONG LOW UP(0, 3, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)
B AMONG LOW UP(1, 4, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)
I AMONG LOW UP(0,4, 〈9, 2, 4, 5〉, 〈0, 2, 4, 6, 9〉)

aSince when both, LOW ≤ 0 and UP ≥ |VARIABLES|, the corresponding AMONG LOW UP con-
straint always holds.

• Finally, we can also use a constraint C of the catalogue for expressing a restric-
tion as long as that constraint is not defined according to the constraint under con-
sideration. The constraint C should have a graph-based or an automaton-based
description so that its meaning is explicitly defined.

EXAMPLE: An example of use of such restriction can be found in the
SORT PERMUTATION(FROM, PERMUTATION, TO) constraint: ALLDIFFERENT(PERMUTA-
TION) is used to express that the variables of the second argument of the
SORT PERMUTATION constraint should take distinct values.

2.2.4 Declaring a global constraint
Declaring a global constraint consists of providing the following information:

• A term constraint(A1, A2, . . . , An) , where constraint corresponds to the
name of the global constraint and A1, A2, . . . , An to its arguments.

• A possibly empty list of type declarations , where each declaration has the form
type:type declaration; type is the name of the new type we define and
type declaration is a basic data type, a compound data type or a type pre-
viously defined.

• An argument declaration A1:T1, A2:T2, . . . , An:Tn giving for each argument
A1, A2, . . . , An of the global constraint constraint its type. Each type is a
basic data type, a compound data type, or a type that was declared in the list of
type declarations.
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• A possibly empty list of restrictions , where each restriction is one of the re-
strictions described in Section 2.2.3 on page 17.

EXAMPLE: The arguments of the ALL DIFFER FROM AT LEAST K POS constraint are de-
scribed by:

Constraint ALL DIFFER FROM AT LEAST K POS(K, VECTORS)

Type(s) VECTOR− collection(var− dvar)

Argument(s) K− int

VECTORS− collection(vec− VECTOR)

Restriction(s) required(VECTOR, var)

K ≥ 0

required(VECTORS, vec)

same size(VECTORS, vec)

The first line indicates that the ALL DIFFER FROM AT LEAST K POS constraint has two ar-
guments: K and VECTORS. The second line declares a new type VECTOR, which corresponds
to a collection of variables. The third line indicates that the first argument K is an integer,
while the fourth line tells that the second argument VECTORS corresponds to a collection of
vectors of type VECTOR. Finally the four restrictions respectively enforce that:

• All the items of the VECTOR collection mention the var attribute,

• K be greater than or equal to 0,

• All the items of the VECTORS collection mention the vec attribute,

• All the vectors have the same number of components.

2.2.5 Describing symmetries between arguments
Given a satisfied ground instance of a global constraint constraint, it is often the
case that the constraint is still satisfied [129, 180] if we permute:

• Some of its arguments.

E.g., consider the disequality constraint NEQ(X, Y), which forces X being as-
signed an integer value that is different from Y. Given the solution NEQ(3, 5)
we can swap both arguments and still get a solution (i.e., NEQ(5, 3)).

• Items of some collections that are passed as one of its arguments.

E.g., consider the ALLDIFFERENT(VARIABLES) constraint, which imposes all
variables of the collection VARIABLES being assigned a distinct integer value.
Given the solution ALLDIFFERENT(〈5, 1, 9, 3〉) we can swap any pair of items
and still get a solution. For example, if we swap the first and fourth items we
still get a solution (i.e., ALLDIFFERENT(〈3, 1, 9, 5〉)).

• Attributes of some items of some of its collections.

E.g., given a collection of pairs PAIRS, where each pair has two attributes x and
y, the NPAIR(N, PAIRS) constraint forces N being the number of distinct pairs in
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PAIRS. Given the solution NPAIR(3, 〈x− 3 y− 1, x− 1 y− 5, x− 3 y− 1, x−
1 y−5, x−1 y−3〉) we can interchange attributes x and y and still get a solution
(i.e., NPAIR(3, 〈x− 1 y− 3, x− 5 y− 1, x− 1 y− 3, x− 5 y− 1, x− 3 y− 1〉)).

• A pair of values with respect to an attribute of some of its collections.

E.g., consider the BIN PACKING constraint, which assigns items to bins in such
a way that the total weight of the items in each bin does not exceed an overall
fixed capacity. Each item has a bin and a weight attributes, which respectively
give the bin to which the item will be assigned, and the weight of the item.
Given the solution BIN PACKING(5, 〈bin − 3 weight − 4, bin − 1 weight −
3, bin − 3 weight − 1〉), we can interchange all occurrences of value 3 with
all occurrences of value 1 with respect to the bin attribute. After this swap of
values we get the new solution BIN PACKING(5, 〈bin − 1 weight − 4, bin −
3 weight − 3, bin − 1 weight − 1〉). This simply consists of swapping the
content of two bins. Since all bins have the same capacity we still get a solution.

We provide the following moves, where each move is described by (1) an explicit
fact (i.e., a meta-data), (2) a textual explanation, and (3) several concrete examples:

• args(PERMUTATION) denotes the fact that we swap the arguments of a con-
straint with respect to a given permutation. Arguments which are exchanged
must have the same type under the hypothesis that they are ground (for example,
the basic data types int and dvar, which respectively denote an integer value
and a domain variable can be exchanged since a ground domain variable cor-
responds to an integer value). The permutation PERMUTATION is described by
using standard notation, that is by providing the different cycles of the permuta-
tion.

EXAMPLE 1: As a first example where we can swap two arguments, consider
the EQ CST(VAR1, VAR2, CST2) constraint which, given two domain variables VAR1,
VAR2 and an integer value CST2, forces the condition VAR1 = VAR2 + CST2.
Within the electronic catalogue this is represented by the following meta-data,
args([[VAR1], [VAR2, CST2]]), to which corresponds the following textual form:

arguments are permutable w.r.t. permutation (VAR1) (VAR2, CST2).
Note that, even though arguments VAR2 and CST2 do not have the same type (i.e.,
VAR2 is a domain variable, while CST2 is an integer value), both arguments can be
exchanged since we consider the ground case. For example, since EQ CST(8,2,6) is
satisfied, EQ CST(8,6,2) is also satisfied.
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EXAMPLE 2: As a second example where we can swap several arguments, consider
the COMMON(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint which,
given two domain variables NCOMMON1, NCOMMON2 and two collections of domain vari-
ables VARIABLES1, VARIABLES2, forces the following two conditions:

– NCOMMON1 is the number of variables of VARIABLES1 assigned a value in
VARIABLES2.

– NCOMMON2 is the number of variables of VARIABLES2 assigned a value in
VARIABLES1.

Within the electronic catalogue this is represented by the following meta-data,
args([[NCOMMON1, NCOMMON2], [VARIABLES1, VARIABLES2]]), to which corresponds
the following textual form:

arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2).

For example, since COMMON(3,4, 〈1 , 9 , 1 , 5 〉, 〈2 , 1 , 9 , 9 , 6 , 9 〉) is satisfied,
COMMON(4,3, 〈2 , 1 , 9 , 9 , 6 , 9 〉, 〈1 , 9 , 1 , 5 〉) is also satisfied.

• items(COLLECTION, PERMUTATIONS) denotes the fact that we can permute the
items of the collection COLLECTION with respect to a permutation belonging to
a given set of permutations PERMUTATIONS:

– COLLECTION stands for one of the following:

1. An argument ARG of the global constraint that corresponds to a
collection of items.

2. A term ARG.attr, where attr is an attribute of a collection of
items that is an argument ARG of the global constraint; in addition,
the type of attr is itself a collection. Given a collection ARG of m
items 〈ARG[1], ARG[2], . . . , ARG[m]〉, a permutation of PERMUTATIONS,
not necessarily the same, is applied on the items of a subset of the set
of collections {ARG[1].attr, ARG[2].attr, . . . , ARG[m].attr}.

– PERMUTATIONS represents a set of permutations. It can take one of the
following values:

1. all stands for all possible permutations. Note that this case is a lit-
tle artificial since it does not really correspond to a symmetry of the
constraint, but rather to the use of a collection for representing a set
of variables. But, to our best knowledge in 2010, concrete solvers do
also not use sets of variables but rather collections, lists or arrays of
variables.

2. reverse stands for the set that only contains the permutation that
maps the sequence e1, e2, . . . , en to en, en−1, . . . , e1.

3. shift stands for the set that only contains the permutation that maps
the sequence e1, e2, . . . , en to en, e1, . . . , en−1.
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EXAMPLE 1: As a first example, consider the ALLDIFFERENT(VARIABLES) con-
straint, which has a single argument corresponding to a collection of variables which
must all be assigned distinct values. Within the electronic catalogue this is represented
by the following meta-data, items(VARIABLES, all), to which corresponds the fol-
lowing textual form:

items of VARIABLES are permutable.
For example, since ALLDIFFERENT(〈1,4,9〉) is satisfied, all permutations of 〈1, 4, 9〉
(i.e., 〈1,4,9〉, 〈1,9,4〉, 〈4,1,9〉, 〈4,9,1〉, 〈9,1,4〉, 〈9,4,1〉) correspond to valid
solutions to the ALLDIFFERENT constraint.

EXAMPLE 2: As a second example, consider the K SAME(SETS) constraint, which
has a single argument corresponding to a collection of sets, where each set is a col-
lection of domain variables that must be assigned the same set of values (i.e., K SAME

forces an equality between multisets). The argument SETS is a collection, where each
item consists of a single set attribute. The type of a set attribute is a collection of
domain variables. Within the electronic catalogue this is represented by the following
meta-data, items(SETS.set, all), to which corresponds the following textual form:

items of SETS.set are permutable.
For example, since K SAME(〈set−〈1, 4, 4〉, set−〈4,4,1〉, set−〈1, 4, 4〉〉) is sat-
isfied, it is also satisfied for all permutations of the elements of its second set 〈4, 4, 1〉,
i.e.:

– K SAME(〈set− 〈1, 4, 4〉, set− 〈1,4,4〉, set− 〈1, 4, 4〉〉),

– K SAME(〈set− 〈1, 4, 4〉, set− 〈4,1,4〉, set− 〈1, 4, 4〉〉),

– K SAME(〈set− 〈1, 4, 4〉, set− 〈4,4,1〉, set− 〈1, 4, 4〉〉).

• items sync(COLLECTIONS, PERMUTATIONS) denotes the fact that we can per-
mute the items of several collections COLLECTIONS with respect to a permutation
belonging to a given set of permutations PERMUTATIONS in such a way that one
and the same permutation is used on all collections (i.e., therefore the keyword
items sync which stands for items synchronisation):

– COLLECTIONS stands for a non-empty list of terms of the form ARG or
ARG.attr, where ARG is an argument of the global constraint that corre-
sponds to a collection, and attr is an attribute of ARG such that its type is
itself a collection. In addition, we also have the following restrictions:

1. If COLLECTIONS contains a single element then this element has the
form ARG.attr. This is done to allow to designate more than a single
collection.

2. All collections designated by COLLECTIONS have the same type as
well as the same number of items.

The same permutation of PERMUTATIONS is applied on the items of the
different collections referenced by COLLECTIONS.

– As for the symmetry keyword items, PERMUTATIONS represents a set of
permutations. It can take the same set of values as before, namely:

1. all stands for all possible permutations.
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2. reverse stands for the set that only contains the permutation that
maps the sequence e1, e2, . . . , en to en, en−1, . . . , e1.

3. shift stands for the set that only contains the permutation that maps
the sequence e1, e2, . . . , en to en, e1, . . . , en−1.

EXAMPLE 1: As a first example, consider the
CONSECUTIVE GROUPS OF ONES(GROUP SIZES, VARIABLES) constraint, which has
two arguments GROUP SIZES and VARIABLES respectively corresponding to a collec-
tion of positive integers and to a collection of 0-1 domain variables. The constraint
imposes that the m successive maximum groups of consecutive ones of VARIABLES
have sizes GROUP SIZES[1].nb, GROUP SIZES[2].nb, . . . , GROUP SIZES[m].nb. Note
that, if we reverse the items of both GROUP SIZES and VARIABLES, we still have a so-
lution. Within the electronic catalogue this is represented by the following meta-data,
items sync([GROUP SIZES, VARIABLES], reverse), to which corresponds the
following textual form:

items of GROUP SIZES and VARIABLES are simultaneously reversible.
For example, since CONSECUTIVE GROUPS OF ONES(〈2,1〉, 〈1 , 1 , 0 , 0 , 0 , 1 , 0 〉) is
a solution, CONSECUTIVE GROUPS OF ONES(〈1,2〉, 〈0 , 1 , 0 , 0 , 0 , 1 , 1 〉) is also a
valid solution.

EXAMPLE 2: As a second example, consider the NVECTOR(NVEC, VECTORS) con-
straint, which has two arguments NVEC and VECTORS respectively corresponding to
a domain variable and to a collection of collections of domain variables, where all
collections have the same number of items. The unique attribute of VECTORS is de-
noted by vec and its type is a collection of domain variables. Each collection is
interpreted as a vector and two vectors are distinct if and only if they differ in at
least one component. The NVECTOR constraint forces NVEC to be equal to the num-
ber of distinct vectors within VECTORS. If we permute the components of all vectors
with respect to a same permutation we still have the same number of distinct vec-
tors. Within the electronic catalogue this is represented by the following meta-data,
items sync([VECTORS.vec], all), to which corresponds the following textual form:

items of VECTORS.vec are permutable (same permutation used).
For example, since NVECTOR(2, 〈vec− 〈1,1,8〉, vec− 〈5,1,6〉, vec− 〈1,1,8〉〉)
is a solution, any permutation applied simultaneously to the three components of each
vector leads to a solution, i.e.:

– NVECTOR(2, 〈vec− 〈1,1,8〉, vec− 〈5,1,6〉, vec− 〈1,1,8〉〉),

– NVECTOR(2, 〈vec− 〈1,8,1〉, vec− 〈5,6,1〉, vec− 〈1,8,1〉〉),

– NVECTOR(2, 〈vec− 〈1,1,8〉, vec− 〈1,5,6〉, vec− 〈1,1,8〉〉),

– NVECTOR(2, 〈vec− 〈1,8,1〉, vec− 〈1,6,5〉, vec− 〈1,8,1〉〉),

– NVECTOR(2, 〈vec− 〈8,1,1〉, vec− 〈6,1,5〉, vec− 〈8,1,1〉〉),

– NVECTOR(2, 〈vec− 〈8,1,1〉, vec− 〈6,5,1〉, vec− 〈8,1,1〉〉).

• attrs(COLLECTION, PERMUTATION) denotes the fact that we can permute the
attributes of the collection COLLECTION, not necessarily all items, with respect
to a permutation PERMUTATION. Attributes that are exchanged must have the
same type under the hypothesis that they are ground (e.g., an attribute attr1 of
type int can be exchanged with an attribute attr2 of type dvar.
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EXAMPLE: As an example, consider the SCALAR PRODUCT(LINEARTERM, CTR,
VAL) constraint, which forces a linear term, represented by a collection with two at-
tributes coeff and var, to be equal, different, less, greater than or equal, greater,
or less than or equal (i.e., depending on the value of CTR) to VAL. In the ground
case we can exchange attributes coeff and var without affecting the fact the con-
straint is satisfied. Within the electronic catalogue this is represented by the following
meta-data, attrs(LINEARTERM, [[coeff, var]]), to which corresponds the following
textual form:

attributes of LINEARTERM are permutable w.r.t. permutation (coeff, var)
(permutation not necessarily applied to all items).
For example, since SCALAR PRODUCT(〈coeff − 1 var − 1, coeff − 3 var −
1, coeff − 1 var − 4, 〉,=, 8) is a solution, SCALAR PRODUCT(〈coeff − 1 var −
1, coeff − 1 var − 3, coeff − 1 var − 4, 〉,=, 8) is also a valid solution (i.e., the
attributes coeff and var of the second item were permuted).

• attrs sync(COLLECTION, PERMUTATION) denotes the fact that we can per-
mute the attributes of the collection COLLECTION, necessarily all items, with
respect to a permutation PERMUTATION. As before, attributes that are exchanged
must have the same type under the hypothesis that they are ground.

EXAMPLE: As an example, consider the CROSSING(NCROSS, SEGMENTS) constraint,
which forces NCROSS to be equal to the number of line segments intersections between
the line segments defined by the SEGMENTS collection. Each line segment is defined by
the coordinates (ox, oy) and (ex, ey) of its two extremities. Note that we can exchange
the role of the x and y axes without affecting the number of line segments intersec-
tions. Within the electronic catalogue this is represented by the following meta-data,
attrs sync(SEGMENTS, [[ox, oy], [ex, ey]]), to which corresponds the following tex-
tual form:

attributes of SEGMENTS are permutable w.r.t. permutation (ox, oy) (ex, ey)
(permutation applied to all items).
For example, since CROSSING(3, 〈ox− 1 oy− 4 ex− 9 ey− 2 , ox− 1 oy− 1 ex−
3 ey− 5 , ox−3 oy−2 ex− 7 ey− 4 , ox−9 oy−1 ex− 9 ey− 4 〉) is a solution,
CROSSING(3, 〈ox − 4 oy − 1 ex − 2 ey − 9 , ox − 1 oy − 1 ex − 5 ey − 3 , ox −
2 oy− 3 ex− 4 ey− 7 , ox− 1 oy− 9 ex− 4 ey− 9 〉) is also a valid solution.

• vals(ATTRIBUTES, PARTITION, PAIRS, SOURCE, TARGET) denotes the fact
that we can permute some source value with some distinct target value. The
kind of value permutation we can perform is parameterised by five parameters:

– ATTRIBUTES is a list of paths of the form ARG0 or ARG1. · · · .ARGn.attr
(n ≥ 1), where:

∗ ARG0 is an argument of the global constraint of type domain variable,
integer, or collection of domain variables or integers.

∗ ARG1. · · · .ARGn.attr is a path to an integer attribute or to a collection
of integers attribute of the global constraint. ARG1, ARG2, . . . , ARGn are
collections and attr is an attribute of ARGn of type domain variable,
integer, or collection of domain variables or integers. In this last con-
text, all collections have the same number of items since we can only
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exchange tuples of values that have the same number of components.
The path does not necessarily start from a top level collection.

Its purpose is to define the scope where the exchange of values, or tuples
of values, will take place. Note that:

∗ The case corresponding to ARG0 allows to express the fact the value of
an integer argument can be changed in such a way that we still have a
solution.

∗ The case when ARG1 is not a top level collection allows to express the
fact the exchange of value takes place within a nested collection. In
this context this implicitly defines several scopes for the exchange of
values.

∗ The case where ARG1. · · · .ARGn.attr is a path to a collection of vari-
ables or integers allows expressing swap between tuples of values (i.e.,
the exchange of values is generalised to the exchange of tuples of val-
ues).

– PARTITION usually defines a partition P of integer values. Only when
ARG1. · · · .ARGn.attr is a path to a collection of variables or integers,
PARTITION defines a partition of tuples of integer values. For the time
being we focus on the first case, i.e., a partition of integer values. Its aim
is to define classes of values from which the source and target values will
be selected. In order to define a partition P we first introduce the notion
of set of values generator. Within these definitions, u and v both denote
(1) an integer value, or (2) an argument of the constraint of type integer or
domain variable, or (3) a term of the form |ARG| where ARG is an argument
of type collection denoting the number of items of the collection, (4) a sum
or difference of elements of the form (1), (2) or (3). We have two kinds of
generators, namely:

∗ A basic set of values generator is defined by one of those:
· ARG.attr, where ARG is an argument of type collection and attr

is an attribute of ARG of type integer or domain variable, denotes
the set of all values assigned to ARG.attr.
· notin(ARG.attr), where ARG is an argument of type collection

and attr is an attribute of ARG of type integer or domain vari-
able, denotes the set of all elements of Z that are not assigned to
ARG.attr.
· diff(ARG1.attr1, ARG2.attr2), where ARG1 (respectively
ARG2) is an argument of type collection and attr1 (respectively
attr2) is an attribute of ARG1 (respectively ARG2) of type integer
or domain variable, denotes the set of all elements of Z that are
assigned to ARG1.attr1 but not to ARG2.attr2.
· u, denotes the set {u}.
· cmp(u), (cmp ∈ {=, 6=, <,≥, >,≤}), denotes the set of all inte-

gers e such that the comparison e cmp u holds.
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· in(u, v), (u ≤ v), denotes the set of all integers located in interval
[u, v].
· notin(u, v), (u ≤ v), denotes the set of all integers not located in

interval [u, v].
· mod(u, v), (0 < v < u, u, v ∈ N+), denotes all integer values in
Z that have v as remainder when divided by u.8

∗ Given set of values generators S1, S2, . . . , Sn (n ≥ 2), a compound
set of values generator is defined by:
· [S1,S2, . . . ,Sn] denotes all values that are in at least one of the

sets S1, S2, . . . , Sn.
· notin([S1,S2, . . . ,Sn]) denotes all values of Z that are not in any

set S1, S2, . . . , Sn.

We now describe the different partition generators. Within the description,
S and D denote set of values generators. Classes of a partition are ordered.
Unless explicitly specified, classes are ordered with respect to the smallest
element they contain.

∗ int denotes a partition P where, to each element of Z corresponds a
specific class of P containing just that element.

∗ int(S) denotes a partition P where, to each element of S corresponds
a specific class of P containing just that element.

∗ all denotes a partition P containing a single class of values corre-
sponding to all integer values in Z.

∗ all(S) denotes a partition P containing a single class of values cor-
responding to the elements of S.

∗ comp(S) denotes of partitionP containing two classes of values: a first
class corresponding to the elements of S, and a second class consisting
of all elements of Z that are not in S.

∗ comp diff(S,D) denotes of partitionP containing two classes of val-
ues: a first class corresponding to the elements of S but not in D, and
a second class consisting of all elements of Z that are neither in S nor
in D.

∗ intervals(u), (u > 0), denotes a partition P containing intervals of
the form [k · u, k · u+ u− 1], k ∈ Z.

∗ mod(u), (u > 0), denotes a partition P such that each class of P is
made up from all integers in Z that have the same remainder when
divided by u.9

∗ part(P ), where P is a collection of collections of integers passed as
one of the arguments of the constraint, where each integer occurs once,
denotes a partition P such that each class corresponds to the elements
of one of the collections of P . Classes are ordered with respect to their
occurrences in P .

8remainder(a, n) = a− n
⌊
a
n

⌋
.

9remainder(a, n) = a− nb a
n
c.
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When PARTITION defines a partition of tuples, where each tuple consists of
k integers, PARTITION can only be set to int. In this context int denotes
a partition P where, to each element of Zk corresponds a specific class of
P containing just that element.

– PAIRS is one of the symbols 6=, =, <,≥, >,≤, or dontcare. It specifies a
set of pairs {(pi1 , pj1), (pi2 , pj2), . . . , (pin , pjn)} of elements of the parti-
tion P such that, when PAIRS is different from dontcare,10 the condition
ik PAIRS jk holds for all k ∈ [1, n]. The aim of the PAIRS parameter is
to allow to specify which partitions of P the source value u and the tar-
get value v should belong to. In fact there should exist a pair (pik , pjk),
(k ∈ [1, n]), such that u ∈ pik and v ∈ pjk .

– SOURCE is one of the options all or dontcare:

∗ When set to all it indicates that all occurrences of the source value
should be replaced by the target value. All occurrences of the target
value, if it is used, should also be replaced by the source value.

∗ When set to dontcare it tells that not necessarily all occurrences
of the source value should be replaced. The target value is left un-
changed.

– TARGET is one of the options in or dontcare:

∗ When set to in it indicates that the target value should correspond to
an already existing value of ARG.attr.

∗ When set to dontcare it tells that the target value can either corre-
spond to an already existing value of ARG.attr, or designate a new
value.

We now define the set of conditions we must have in order to exchange a
source and a target values. Consider,

1. a ground instance of a global constraint C,
2. a path PATH that designates either an argument of type integer, or an

integer attribute of a collection that occurs, possibly in a nested way,
as one of the arguments of C,

3. the sets of values V1,V2, . . . ,Vh that are assigned to PATH in the
ground instance of C,11

4. a partition of integer values P derived from PARTITION,
5. a set of pairs {(pi1 , pj1), (pi2 , pj2), . . . , (pin , pjn)} of elements of the

partition P such that the condition PAIRS = dontcare∨ ik PAIRS jk
holds for all k ∈ [1, n],

6. a TARGET option.

Given one of the sets of values Vα, (1 ≤ α ≤ h), a source value u can be
permuted with a target value v if and only if the following conditions are
all satisfied:

10When PAIRS is equal to dontcare we just consider all possible pairs.
11We may have more than one set when the path does not start from a top level collection.
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1. u 6= v (source and target values should be distinct),

2. u ∈ Vα (source value, i.e., value that is replaced, should be part of the
solution),

3. ∃k|u ∈ pik ∧ v ∈ pjk (source and target values should be located in
the appropriate partition classes),

4. TARGET = in ⇒ v ∈ Vα (if TARGET = in then the target value
should also be part of the solution).

If SOURCE is equal to all we replace each occurrence of u by v, and con-
versely each occurrence of v by u. Otherwise we replace at least one oc-
currence of u by v.

Without loss of generality, when PATH designates a collection of integer
values or domain variables, the exchange of tuples of values is defined in a
similar way.

We now provide a number of examples of value symmetry and illustrate how to
encode them with the five parameters we just introduced. We start from the most
common value symmetry, namely exchanging all occurrences of two distinct
values or replacing all occurrences of a value by an unused value.

EXAMPLE 1: As a first example, consider the ALLDIFFERENT(VARIABLES) con-
straint, which forces all variables of the collection VARIABLES to take distinct val-
ues. Note that we can exchange two assigned values of VARIABLES, or replace an
assigned value of VARIABLES by a new value, i.e., a value that is not yet assigned
to any variable of VARIABLES. Within the electronic catalogue this is represented by
the following meta-data, vals([VARIABLES.var], int, 6=, all, dontcare), to which
corresponds the following textual form:

Two distinct values of VARIABLES.var can be swapped; a value of VARIABLES.var
can be renamed to any unused value.
For example, since ALLDIFFERENT(〈5, 1,9, 3〉) is a solution, we can replace value
9 by a not yet assigned value 0, for instance, and get another valid solution
ALLDIFFERENT(〈5, 1,0, 3〉).
The five parameters of vals([VARIABLES.var], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in VARIABLES.var.
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EXAMPLE 2: As a second example, consider the NVALUE(NVAL, VARIABLES) con-
straint, which forces NVAL to be equal to the number of distinct values assigned to
the variables of the collection VARIABLES. Note that we can exchange all occur-
rences of two distinct values of VARIABLES, or replace all occurrences of an assigned
value of VARIABLES by a new value, i.e., a value that is not yet assigned to any vari-
able of VARIABLES. Within the electronic catalogue this is represented by the fol-
lowing meta-data, vals([VARIABLES.var], int, 6=, all, dontcare), to which corre-
sponds the following textual form:

All occurrences of two distinct values of VARIABLES.var can be swapped; all oc-
currences of a value of VARIABLES.var can be renamed to any unused value.
For example, since NVALUE(4, 〈3,1, 7,1, 6〉) is a solution, we can replace all occur-
rences of value 1 by a not yet assigned value 8, for instance, and get another valid
solution NVALUE(4, 〈3,8, 7,8, 6〉). We can also swap all occurrences of value 1 and
value 3, and get another valid solution NVALUE(4, 〈1,3, 7,3, 6〉).
The five parameters of vals([VARIABLES.var], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in VARIABLES.var.

We now introduce a third and a fourth example where the meta-data used for de-
scribing value symmetry, vals([VARIABLES.var], int, 6=, all, dontcare), is
replaced by vals([VARIABLES.var], int, 6=, all, in), i.e., we are not allowed
to introduce an unused value.
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EXAMPLE 3: As a third example, consider the ALL MIN DIST(MINDIST,
VARIABLES) constraint, which forces for each pair (vari, varj) of distinct variables
of the collection VARIABLES that |vari − varj | ≥ MINDIST. Note that we can ex-
change two occurrences of distinct values of VARIABLES, but we cannot replace an
existing value u by a new value v (since the new value v may be too close from an-
other existing value w, i.e., |v − w| < MINDIST). Within the electronic catalogue this
is represented by the following meta-data, vals([VARIABLES.var], int, 6=, all, in),
to which corresponds the following textual form:

Two distinct values of VARIABLES.var can be swapped.
For example, since ALL MIN DIST(2, 〈5, 1,9, 3〉) is a solution, we can swap values 5
and 9, and get another valid solution ALL MIN DIST(2, 〈9, 1,5, 3〉).
The five parameters of vals([VARIABLES.var], int, 6=, all, in) have the following
meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– in tells that the source value has to be replaced by an already existing value in
VARIABLES.var.

EXAMPLE 4: As a fourth example, consider the MINIMUM(MIN, VARIABLES)
constraint, which forces MIN to be equal to the minimum value of the collection
VARIABLES. Note that we can exchange all occurrences of two distinct values of
VARIABLES, but we cannot replace an existing value u by a new value v (since the new
value v may be smaller than MIN). Within the electronic catalogue this is represented
by the following meta-data, vals([VARIABLES.var], int, 6=, all, in), to which cor-
responds the following textual form:

All occurrences of two distinct values of VARIABLES.var can be swapped.
For example, since MINIMUM(2, 〈3, 2, 7, 2, 6〉) is a solution, we can swap values 2 and
6, and get another valid solution MINIMUM(2, 〈3, 6, 7, 6, 2〉).
The five parameters of vals([VARIABLES.var], int, 6=, all, in) have the following
meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– in tells that the source value has to be replaced by an already existing value in
VARIABLES.var.

We now present three examples where, using the partition generator comp(S),
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we consider two classes of values: a first class consisting of elements of S and a
second class of elements of Z not in S. The first example corresponds to a value
symmetry where values from the same class are exchanged, while the two other
examples consider permutation of values between distinct classes with respect to
a given class ordering.

EXAMPLE 5: As a fifth example, consider the AMONG(NVAR, VARIABLES, VALUES)
constraint, which forces NVAR to be equal to the number of variables of the collec-
tion VARIABLES that are assigned a value in VALUES. We focus on exchanges of
values that take place within VARIABLES. Note that, given a value that both occurs
in VARIABLES and in VALUES, we can replace it by any value in VALUES. But we
can also replace a value that occurs in VARIABLES, but not in VALUES, by any value
not in VALUES. Within the electronic catalogue this is represented by the following
meta-data, vals([VARIABLES.var], comp(VALUES.val),=, dontcare, dontcare),
to which corresponds the following textual form:

An occurrence of a value of VARIABLES.var that belongs to VALUES.val
(resp. does not belong to VALUES.val) can be replaced by any other value in
VALUES.val (resp. not in VALUES.val).
For example, since AMONG(3, 〈4,5, 5,4, 1〉, 〈1, 5, 8〉) is a solution, we can swap the
first occurrence of value 5 with the second occurrence of value 4 in VARIABLES.var,
and get another valid solution AMONG(3, 〈4,4, 5,5, 1〉, 〈1, 5, 8〉).
The five parameters of vals([VARIABLES.var], comp(VALUES.val),=, dontcare,
dontcare) have the following meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– comp(VALUES.val) defines two set of values, a first set S1 corresponding to all
values in VALUES.val, and a second set S2 corresponding to all values not in
VALUES.val.

– = indicates that the exchange of values takes place within the same set, i.e.,
within S1 or within S2.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in VARIABLES.var.
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EXAMPLE 6: As a sixth example, consider the ATLEAST(N, VARIABLES, VALUE)
constraint, which forces at least N variables of the collection VARIABLES to be
assigned value VALUE. Note that, given an occurrence of value that belongs to
VARIABLES that is different from VALUE, we can replace it by any other value
that is also different from VALUE.a But we can also replace it by value VALUE

since this does not decrease the number of variables that are assigned value VALUE.
Within the electronic catalogue this is represented by the following meta-data,
vals([VARIABLES.var], comp(VALUE),≥, dontcare, dontcare), to which corre-
sponds the following textual form:

An occurrence of a value of VARIABLES.var that is different from VALUE can be
replaced by any other value.
For example, since ATLEAST(2, 〈4, 2, 4, 5,2〉, 4) is a solution, we can replace the
second occurrence of value 2 with a value that is different from value 4, e.g., value
8, and get another valid solution ATLEAST(2, 〈4, 2, 4, 5,8〉, 4). We can also re-
place the second occurrence of value 2 with value 4 and get another valid solution
ATLEAST(2, 〈4, 2, 4, 5,4〉, 4).
The five parameters of vals([VARIABLES.var], comp(VALUE),≥, dontcare,
dontcare) have the following meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– comp(VALUE) defines two set of values, a first set S1 containing only value
VALUE, and a second set S2 corresponding to all values different from VALUE.

– ≥ indicates that the the source and target values should respectively belong to
sets Si and Sj where i ≥ j:

1. If the source value is different from VALUE (i.e., the source value belongs
to S2), then the target value can indifferently be equal or not equal to
VALUE (i.e., the target value belongs to S1 or S2).

2. If the source value is equal to VALUE (i.e., the source value belongs to S1),
then the target value is equal to VALUE (i.e., the target value also belongs
to S1). But in this case no exchange can take place since the source and
target values are identical.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in VARIABLES.var.

aWithin the collection VARIABLES, this swap does not change the number of variables that are
assigned value VALUE.
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EXAMPLE 7: As a seventh example, consider the ATMOST(N, VARIABLES, VALUE)
constraint, which forces at most N variables of the collection VARIABLES to be assigned
value VALUE. Note that, given an occurrence of value that belongs to VARIABLES, and
that is different from VALUE, we can replace it by any other value that is also different
from VALUE.a But we can also replace an occurrence of value VALUE by a value that
is different from VALUE, since this does not increase the number of variables that are
assigned value VALUE. Within the electronic catalogue this is represented by the fol-
lowing meta-data, vals([VARIABLES.var], comp(VALUE),≤, dontcare, dontcare),
to which corresponds the following textual form:

An occurrence of a value of VARIABLES.var can be replaced by any other value
that is different from VALUE.
For example, since ATMOST(1, 〈4, 2,4, 5〉, 2) is a solution, we can replace the
second occurrence of value 4 with a value that is different from value 2,
e.g., value 8, and get another valid solution ATMOST(1, 〈4, 2,8, 5〉, 2). But, within
ATMOST(1, 〈4,2, 4, 5〉, 2), we can also replace value 2 with any other value, e.g. value
4 and get another valid solution ATMOST(1, 〈4,4, 4, 5〉, 2).
The five parameters of vals([VARIABLES.var], comp(VALUE),≤, dontcare,
dontcare) have the following meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES collection.

– comp(VALUE) defines two set of values, a first set S1 containing only value
VALUE, and a second set S2 corresponding to all values different from VALUE.

– ≤ indicates that the the source and target values should respectively belong to
sets Si and Sj where i ≤ j:

1. If the source value is different from VALUE (i.e., the source value belongs
to S2), then the target value is also different from VALUE (i.e., the tar-
get value belongs to S2). This supports the fact that we do not want to
increase the number of occurrences of value VALUE.

2. If the source value is equal to VALUE (i.e., the source value belongs to
S1), then there is no restriction on the target value (i.e., the target value
belongs to S1 or to S2). But the set S1 is not relevant since the target
value would also be fixed to VALUE, and, in this context, no exchange can
take place.

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in VARIABLES.var.

aWithin the collection VARIABLES, this swap does not change the number of variables that are
assigned value VALUE.

We now illustrate the fact the scope of value symmetry can sometimes be ex-
tended to several collections of variables. For this purpose we consider the
COMMON constraint.
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EXAMPLE 8: Consider the COMMON(NCOMMON1, NCOMMON2, VARIABLES1,
VARIABLES2) constraint, which forces the two following conditions:

– NCOMMON1 is the number of variables of the collection VARIABLES1 taking a
value in VARIABLES2.

– NCOMMON2 is the number of variables of the collection VARIABLES2 taking a
value in VARIABLES1.

Note that we can exchange all occurrences of two distinct values of
VARIABLES1 or VARIABLES2, or replace all occurrences of an assigned
value of VARIABLES1 or VARIABLES2 by a new value, i.e., a value that is
not yet assigned to any variable of VARIABLES1 and VARIABLES2. Within
the electronic catalogue this is represented by the following meta-data,
vals([VARIABLES1.var, VARIABLES2.var], int, 6=, all, dontcare), to which
corresponds the following textual form:

All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or VARIABLES2.var
can be renamed to any unused value.
For example, since COMMON(3, 4, 〈1, 9,1, 5〉, 〈2,1, 9, 9, 6, 9〉) is a solution, we can
replace all occurrences of value 1 by a not yet assigned value 7, for instance, and get
another valid solution COMMON(3, 4, 〈7, 9,7, 5〉, 〈2,7, 9, 9, 6, 9〉).
The five parameters of vals([VARIABLES1.var, VARIABLES2.var], int, 6=, all,
dontcare) have the following meaning:

– [VARIABLES1.var, VARIABLES2.var] indicates that the modification takes
place within the values assigned to the var attribute of the VARIABLES1 and
VARIABLES2 collections.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in VARIABLES1 or
VARIABLES2.

We now present an example that illustrates the fact that value symmetry can also
occur between two arguments that both correspond to a domain variable, i.e.,
not just between the variables of a collection of variables. For this purpose we
consider the LEQ constraint.
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EXAMPLE 9: Consider the LEQ(VAR1, VAR2) constraint, which forces VAR1 to be less
than or equal to VAR2. Note that VAR1 can be decreased to any value, and that VAR1 can
be increased up to VAR2. Similarly, VAR2 can be increased to any value, and VAR2 can
be decreased down to VAR1. Within the electronic catalogue this is respectively repre-
sented by the following meta-data, vals([VAR1], int(≤ (VAR2)), 6=, all, dontcare)
and vals([VAR2], int(≥ (VAR1)), 6=, all, dontcare), to which corresponds the fol-
lowing textual form:

VAR1 can be replaced by any value ≤ VAR2;
VAR2 can be replaced by any value ≥ VAR1.

For example, since LEQ(2, 9) is a solution, we can replace value 2 by any value less
than or equal to 9, e.g. value 5 and get another valid solution LEQ(5, 9). But, within
LEQ(2,9), we can also replace value 9 with any other value greater than or equal to 2,
e.g. value 4 and get another valid solution LEQ(2,4).
The five parameters of vals([VAR1], int(≤ (VAR2)), 6=, all, dontcare) have the fol-
lowing meaning:

– [VAR1] indicates that the modification takes place within the value assigned to
the argument VAR1 of the constraint LEQ.

– int(≤ (VAR2)) defines the partition of values P = . . . , {VAR2− 2}, {VAR2−
1}, {VAR2} (i.e., we only consider values that are less than or equal to VAR2).

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be replaced by
the target value. Note that, since the scope of the change is reduced to a single
variable, we have one occurrence of the source value and no occurrence of the
target value.

– dontcare tells that the source value will be replaced by a new value.

The meta-data vals([VAR2], int(≥ (VAR1)), 6=, all, dontcare) has a similar expla-
nation.

We now present two examples related to the K DISJOINT constraint. The first
example illustrates the fact the path specifying the scope of the exchange can
contain more than one collection. The second example exemplifies the fact the
path specifying the scope of the exchange does not necessarily start with a top
level collection.
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EXAMPLE 10: Consider the K DISJOINT(SETS) constraint which, given |SETS| sets
of domain variables, forces that no value is assigned to more than one set. Note that
we can swap all the occurrences of two values, or replace all occurrences of a value
by a value that is not yet used. Within the electronic catalogue this is represented
by the following meta-data, vals([SETS.set.var], int, 6=, all, dontcare), to which
corresponds the following textual form:

All occurrences of two distinct values of SETS.set.var can be swapped; all occur-
rences of a value of SETS.set.var can be renamed to any unused value.
For example, since K DISJOINT(〈set − 〈1, 9,1, 5〉, set − 〈7, 2, 7〉〉) is a solution,
we can replace value 1 by any value that is different from the already used val-
ues 2, 5, 7, and 9, e.g. value 3, and get another valid solution K DISJOINT(〈set −
〈3, 9,3, 5〉, set−〈7, 2, 7〉〉). From the solution K DISJOINT(〈set−〈1, 9,1, 5〉, set−
〈7,2, 7〉〉), we can also swap all occurrences of two values, e.g. values 1 and 2, and
get another valid solution K DISJOINT(〈set− 〈2, 9,2, 5〉, set− 〈7,1, 7〉〉).
The five parameters of vals([SETS.set.var], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [SETS.set.var] indicates that the modification takes place within the values
assigned to the var attribute of the SETS.set collections.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– all specifies that all occurrences of the source value have to be exchanged with
all occurrences of the target value.

– dontcare tells that the source value can be replaced by an already existing
value or by a new value, i.e., a value not already used in SETS.set.var.
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EXAMPLE 11: Consider the K DISJOINT(SETS) constraint which, given |SETS| sets
of domain variables, forces that no value is assigned to more than one set. Note that,
within any set, we can replace any occurrence of a value by another value that is already
used in the same set. Within the electronic catalogue this is represented by the follow-
ing meta-data, vals([VARIABLES.var], int, 6=, dontcare, in), to which corresponds
the following textual form:

An occurrence of a value of VARIABLES.var can be replaced by any value of
VARIABLES.var.
For example, since K DISJOINT(〈set− 〈1, 9, 1, 5〉, set− 〈7, 2, 7〉〉) is a solution, we
can replace within the first set the first occurrence of value 1 by the already used value
5, and get another valid solution K DISJOINT(〈set− 〈5, 9, 1, 5〉, set− 〈7, 2, 7〉〉).
The five parameters of vals([VARIABLES.var], int, 6=, dontcare, in) have the fol-
lowing meaning:

– [VARIABLES.var] indicates that the modification takes place within the values
assigned to the var attribute of the VARIABLES.var collections. Note that
since the corresponding path does not start from a top level collection (i.e.,
VARIABLES does not correspond to an argument of the K DISJOINT constraint),
this represents one set of values for each set: the scope of value symmetry is
located within a single set.

– int defines the partition of values P = . . . , {−1}, {0}, {1}, . . . .

– 6= indicates that the exchange of values takes place between two distinct ele-
ments of P .

– dontcare specifies that one occurrence of the source value has to be replaced
by the target value.

– in tells that the source value has to be replaced by an already existing value in
VARIABLES.var.

We present a last example where the path specifying the scope of the exchange
does not end with an attribute but rather with a collection. This can be seen
as a generalisation of value symmetry where, instead of exchanging values, we
exchange tuples of values. This kind of value symmetry occurs in constraints like
COND LEX COST, IN RELATION, NPAIR, NVECTOR, NVECTORS, or PATTERN.
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EXAMPLE 12: Consider the NVECTOR(NVEC, VECTORS) constraint which forces an
equality between NVEC and the number of distinct tuples of values taken by the vectors
of the collection VECTORS. Note that we can swap all the occurrences of two tuples
of values, or replace all occurrences of a tuple of values by a tuple of values that
is not yet used. Within the electronic catalogue this is represented by the following
meta-data, vals([VECTORS.vec], int, 6=, all, dontcare), to which corresponds the
following textual form:

All occurrences of two distinct tuples of values of VECTORS.vec can be swapped;
all occurrences of a tuple of values of VECTORS.vec can be renamed to any unused
tuple of values.
For example, since NVECTOR(2, 〈vec − 〈5,6〉, vec − 〈9, 2〉, vec − 〈5,6〉〉) is a so-
lution, we can replace all the occurrences of the tuple of values 〈5, 6〉 by any un-
used tuple of values, e.g. the tuple of values 〈1, 2〉, and get another valid solution
NVECTOR(2, 〈vec− 〈1,2〉, vec− 〈9, 2〉, vec− 〈1,2〉〉).
The five parameters of vals([VECTORS.vec], int, 6=, all, dontcare) have the fol-
lowing meaning:

– [VECTORS.vec] indicates that the modification takes place within the tuples of
values assigned to the vec attribute of the VECTORS collections.

– int defines the partition of values P = Z|VECTORS|.
– 6= indicates that the exchange of tuple of values takes place between two distinct

elements of P .

– all specifies that all occurrences of the source tuple of values have to be ex-
changed with all occurrences of the target tuple of values.

– dontcare tells that the source tuple of values can be replaced by an already
existing tuple of values or by a new tuple of values, i.e., a tuple of values not
already used in VECTORS.vec.

• translate(ATTRIBUTES) denotes the fact that we add a constant to some col-
lection attributes (i.e., we express the fact that solutions are preserved under
some specific translation). ATTRIBUTES is a list of terms of the form ARG1, or
ARG2.attr, or ARG3.attri.attrj, where:

– ARG1 is an argument of the global constraint of type domain variable or
integer.

– ARG2 is an argument of the global constraint that corresponds to a collec-
tion, and attr is an attribute of ARG2 of type domain variable or integer.

– ARG3 is an argument of the global constraint that corresponds to a collec-
tion, and attri is an attribute of ARG3 of type collection, and attrj is an
attribute of ARG3.attri of type domain variable or integer.

Its purpose is to define all the elements that have to be simultaneously incre-
mented by one and the same constant.

– The case corresponding to ARG1 is motivated by the fact that we sometimes
want to increment an argument that is a domain variable or an integer.
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– The case corresponding to ARG2.attr is the standard case where we want
to express that we increment attribute attr of all items of a collection that
is passed as an argument of the global constraint.

– Finally, the last case ARG3.attri.attrj corresponds to the fact that
we want to increment attribute attrj of all items corresponding to
ARG3.attri.

We now provide two examples, where the translation is respectively applied on a
single attribute and on two attributes of a collection.

EXAMPLE 1: Consider the ALL MIN DIST(MINDIST, VARIABLES) constraint which
forces for each pair (vari, varj) of distinct variables of the collection VARIABLES that
|vari − varj | ≥ MINDIST. Note that we can add one and the same constant to all
variables of the collection VARIABLES since this does not change the difference be-
tween any pair of variables. Within the electronic catalogue this is represented by the
following meta-data, translate([VARIABLES.var]), to which corresponds the fol-
lowing textual form:

One and the same constant can be added to the var attribute of all items of
VARIABLES.
For example, since ALL MIN DIST(2, 〈5,1,9,3〉) is a solution, we can add the
constant 6 to all items of the collection 〈5, 1, 9, 3〉, and get another valid solution
ALL MIN DIST(2, 〈11,7,15,9〉).

EXAMPLE 2: Consider the CUMULATIVE(TASKS, LIMIT) constraint which forces
that at each point in time, the cumulated height of the set of tasks that overlap that
point, does not exceed a given limit. Note that we can add one and the same constant
to all origin and end attributes of the different tasks of the TASKS collection. This
operation simply shifts the overall schedule by a given constant without affecting the
maximum resource consumption. Within the electronic catalogue this is represented
by the following meta-data, translate([TASKS.origin, TASKS.end]), to which cor-
responds the following textual form:

One and the same constant can be added to the origin and end attributes of all
items of TASKS.
For example, since


〈 origin− 1 duration− 3 end− 4 height− 1,

origin− 2 duration− 9 end− 11 height− 2,
origin− 3 duration− 10 end− 13 height− 1,
origin− 6 duration− 6 end− 12 height− 1,
origin− 7 duration− 2 end− 9 height− 3

〉
, 8


is a solution, we can add the constant 2 to all origin and end attributes, and get
another valid solution


〈 origin− 3 duration− 3 end− 6 height− 1,

origin− 4 duration− 9 end− 13 height− 2,
origin− 5 duration− 10 end− 15 height− 1,
origin− 8 duration− 6 end− 14 height− 1,
origin− 9 duration− 2 end− 11 height− 3

〉
, 8

 .
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We conclude by listing other types of symmetries that we may also consider in the
future, namely:

• In the context of graph constraints we can usually relabel the vertices of the
corresponding graph. This is the case, for example, of the CIRCUIT constraint
where the index attribute corresponds to the name of a vertex.

• In the context of constraints on a matrix we can have symmetries on both the
rows and the columns of the matrix. On the one hand, since a row corresponds to
a collection this can be currently expressed. On the other hand, since a column
corresponds to all the ith items of the collections corresponding to the rows, this
currently cannot be expressed.

• Given a collection of items, we want to express a symmetry on different subsets
of items: more precisely, on all items for which a given attribute is assigned the
same value. As an illustrative example consider the CUMULATIVES constraint.
We would like to express the possibility of translating the origin of all tasks that
are assigned the same machine.

• Given a collection of items we can sometimes multiply by −1 all occurrences of
one of its attributes. This usually corresponds to a mirror symmetry. This is the
case, for example, for the origin attribute of the CUMULATIVE constraint.

2.3 Describing global constraints in terms of graph
properties

Through a practical example, we first present in a simplified form the basic principles
used for describing the meaning of global constraints in terms of graph properties. We
then give the full details about the different features used in the description process.

2.3.1 Basic ideas and illustrative example

Within the graph-based representation, a global constraint is represented as a digraph
where each vertex corresponds to a variable and each arc to a binary arc constraint
between the variables associated with the extremities of the corresponding arc. The
main difference from classical constraint networks [142], stems from the fact that we do
not force any more all arc constraints to hold. We rather consider this graph from which
we discard all the arc constraints that do not hold as well as all isolated vertices (i.e,
vertices not involved any more in any arc) and impose one or several graph properties
on this remaining graph. These properties can be, for example, a restriction on the
number of connected components, on the size of the smallest connected component or
on the size of the largest connected component.
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Figure 2.5: Illustration of the link between graph-properties and global constraints

EXAMPLE: We give an example of interpretation of such graph properties in terms
of global constraints. For this purpose we consider the sequence s of values
1 3 1 1 2 8 8 2 3 6 8 8 3 from which we construct the following graph G:

• To each value associated with a position in s corresponds a vertex of G,

• There is an arc from a vertex v1 to a vertex v2 if these vertices correspond to the
same value.

Figure 2.5 depicts graph G. Since G is symmetric, we omit the directions of the arcs.
We have the following correspondence between graph properties and constraints on the
sequence s:

• The number of connected components of G corresponds to the number of distinct
values of s.

• The size of the smallest connected component of G is the smallest number of
occurrences of the same value in s.

• The size of the largest connected component of G is the largest number of occur-
rences of the same value in s.

As a result, in this context, putting a restriction on the number of connected components
of G can been seen as a global constraint on the number of distinct values of a sequence
of variables. Similar global constraints can be associated with the two other graph prop-
erties.

We now explain how to generate the initial graph associated with a global constraint.
A global constraint has one or more arguments, which usually correspond to an integer
value, to one variable or to a collection of variables. Therefore we have to describe the
process that allows for generating the vertices and the arcs of the initial graph from the
arguments of a global constraint under consideration. For this purpose we will take a
concrete example.

Consider the constraint NVALUE(NVAL, VARIABLES) where NVAL and VARIABLES

respectively correspond to a domain variable and to a collection of domain variables
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〈var − V1, var − V2, . . . , var − Vm〉.12 This constraint holds if NVAL is equal to the
number of distinct values assigned to the variables V1, V2, . . . , Vm. We first show how
to generate the initial graph associated with the NVALUE constraint. We then describe
the arc constraint associated with each arc of this graph. Finally, we give the graph
property we impose on the final graph.

To each variable of the collection VARIABLES corresponds a vertex of the initial
graph. We generate an arc between each pair of vertices. To each arc, we associate
an equality constraint between the variables corresponding to the extremities of that
arc. We impose that NVAL, the variable corresponding to the first argument of NVALUE,
be equal to the number of strongly connected components of the final graph. This
final graph consists of the initial graph from which we discard all arcs such that the
corresponding equality constraint does not hold.

Part (A) of Figure 2.6 shows the graph initially generated for the constraint NVALUE
(NVAL, 〈var−V1, var−V2, var−V3, var−V4〉), where NVAL, V1, V2, V3 and V4 are
domain variables. Part (B) presents the final graph associated with the ground instance
NVALUE(3, 〈var−5, var−5, var−1, var−8〉). For each vertex of the initial and final
graph we respectively indicate the corresponding variable and the value assigned to that
variable. We have removed from the final graph all the arcs associated with equalities
that do not hold. The constraint NVALUE(3, 〈var − 5, var − 5, var − 1, var − 8〉)
holds since the final graph contains three strongly connected components, which in the
context of the definition of the NVALUE constraint, can be reinterpreted as the fact that
NVAL is the number of distinct values assigned to variables V1, V2, V3, V4.

V1

V2 V3

V4

(A)

5

5 1

8

(B)

Figure 2.6: (A) Initial and (B) final graph associated with the constraint
NVALUE(3, 〈var− 5, var− 5, var− 1, var− 8〉)

Now that we have illustrated the basic ideas for describing a global constraint in
terms of graph properties, we go into more details.

2.3.2 Ingredients used for describing global constraints

We first introduce the basic ingredients used for describing a global constraint and illus-
trate them shortly on the example of the NVALUE constraint introduced in the previous

12var corresponds to the name of the attribute used in the collection of variables.
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section on page 49. We then go through each basic ingredient in more detail. The
graph-based description is founded on the following basic ingredients:

• Data types and restrictions used in order to describe the arguments of a global
constraint. Data types and restrictions were already described in the previous
section (from page 14 to page 27).

• Collection generators used in order to derive new collections from the argu-
ments of a global constraint for one of the following reasons:

– Collection generators are sometimes required since the initial graph of a
global constraint cannot always be directly generated from the arguments
of the global constraint. The NVALUE(NVAL, VARIABLES) constraint did
not require any collection generator since the vertices of its initial graph
were directly generated from the VARIABLES collection.

– A second use of collection generators is for deriving a collection of items
for different set of vertices of the final graph. This is sometimes required
when we use set generators (see the last item of the enumeration).

• Elementary constraints associated with the arcs of the initial and final graph of
a global constraint. The NVALUE constraint was using an equality constraint, but
other constraints are usually required.

• Graph generators employed for constructing the initial graph of a global con-
straint. In the context of the NVALUE constraint the initial graph was a clique.
As we will see later, other patterns are needed for generating an initial graph.

• Graph properties and graph classes used for constraining the final graph we
want to obtain. In the context of the NVALUE constraint we were using the num-
ber of strongly connected components for counting the number of distinct values.

• Set generators that may be used for generating specific sets of vertices of the
final graph on which we want to enforce a given constraint. Since the NVALUE
constraint forces a graph property on the final graph (and not on subparts of the
final graph) we did not use this feature.

We first start to explain each ingredient separately and then show how one can
describe most global constraints in terms of these basic ingredients.

Collection generators

The vertices of the initial graph are usually directly generated from collections of items
that are arguments of the global constraint G under consideration. However, it some-
times happens that we would like to derive a new collection from existing arguments
of G in order to produce the vertices of the initial graph.
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EXAMPLE: This is the case, for example, of the ELEMENT(INDEX, TABLE, VALUE)
constraint, where INDEX and VALUE are domain variables that we would like to group as
a single item I (with two attributes) of a new derived collection. This is in fact done in
order to generate the following initial graph:

• The item I as well as all items of TABLE constitute the vertices,

• There is an arc from I to each item of the TABLE collection.

We provide the following mechanism for deriving new collections:

• In a first phase we declare the name of the new collection as well as the names
of its attributes and their respective types. This is achieved exactly in the same
way as those collections that are used in the arguments of a global constraint (see
page 16).

EXAMPLE: Consider again the example of the ELEMENT(INDEX, TABLE, VALUE)
constraint. The declaration ITEM− collection(index− dvar, value− dvar) in-
troduces a new collection called ITEM where each item has an index and a value

attribute. Both attributes correspond to domain variables.

• In a second phase we give a list of patterns that are used for generating the items
of the new collection. A pattern o − item(a1 − v1, a2 − v2, . . . , an − vn) or
item(a1 − v1, a2 − v2, . . . , an − vn) specifies for each attribute ai(1 ≤ i ≤ n)
of the new collection how to fill it.13 This is done by providing for each attribute
ai one of the following expression vi:

– A constant.

– An argument of the global constraint G.

– An expression c.a, where a is an attribute of a collection c, such that c
is an argument of the global constraint G or a derived collection that was
previously declared. An expression of this form is called a direct reference
to an attribute of a collection.

– An expression c1.c2.a, where a is an attribute of a collection c2, and c2
is an attribute of a collection c1 such that c1 is an argument of the global
constraint G or a derived collection that was previously declared. An ex-
pression of this form is called an indirect reference to an attribute of a
collection.

This expression vi must be compatible with the type declaration of the corre-
sponding attribute of the new collection.

13o is one of the comparison operators =, 6=, <,≥, >,≤. When omitted its default value is =.
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EXAMPLE: We continue the example of the
ELEMENT(INDEX, TABLE, VALUE) constraint and the derived collec-
tion ITEM− collection(index− dvar, value− dvar). The pattern
item(index− INDEX, value− VALUE) indicates that:

• The index attribute of the ITEM collection will be generated by
using the INDEX argument of the ELEMENT constraint. Since
INDEX is a domain variable, it is compatible with the declaration
ITEM− collection(index− dvar, value− dvar) of the new collection.

• The value attribute of the ITEM collection will be generated by using the VALUE
argument of the ELEMENT constraint. VALUE is also compatible with the declara-
tion statement of the new collection.

We now describe how we use the pattern for generating the items of a derived collec-
tion. We have the following two cases:

• If the pattern o−item(a1−v1, a2−v2, . . . , an−vn) does not contain any direct
or indirect reference to an attribute of a collection then we generate a single item
for such pattern.14 In this context the value vi of the attribute ai (1 ≤ i ≤ n)
corresponds to a constant, to an argument of the global constraint or to a new
derived collection.

• If the pattern o − item(a1 − v1, a2 − v2, . . . , an − vn), where o is one of the
comparison operators =, 6=, <,≥, >,≤, contains one or several direct or indirect
references to an attribute of a collection15 we denote by:

– D the set of indices of the positions corresponding to a direct reference to
an attribute of a collection within item(a1 − v1, a2 − v2, . . . , an − vn).
In this context, let cα1

, cα2
, . . . , cαm and aα1

, aα2
, . . . , aαm respectively

denote the corresponding collections and attributes.

– I the set of indices of the positions corresponding to an indirect reference
to an attribute of a collection within item(a1−v1, a2−v2, . . . , an−vn). In
this context, let c1β1

, c1β2
, . . . , c1βp , c2β1

, c2β2
, . . . , c2βp and aβ1

, aβ2
, . . . , aβp

respectively denote the corresponding collections, attributes of type collec-
tion and attributes.

– Let dir1, dir2, . . . , dirm, ind1, ind2, . . . , indp and id1, id2, . . . , idm+p

respectively denote the indices sorted in increasing order ofD, I andD∪I.

For each combination of items cα1
[i1], cα2

[i2], . . . , cαm [im],
c1β1

[j1].c2β1
[k1], c1β2

[j2].c2β2
[k2], . . . , c1βp [jp].c

2
βp

[kp] such that:
i1 ∈ [1, |cα1 |], i2 ∈ [1, |cα2 |], . . . , im ∈ [1, |cαm |]
j1 ∈ [1, |c1

β1
|], j2 ∈ [1, |c1

β2
|], . . . , jp ∈ [1, |c1

βp |]
k1 ∈ [1, |c1

β1
[j1].c2

β1
|], k2 ∈ [1, |c1

β2
[j2].c2

β2
|], . . . , kp ∈ [1, |c1

βp [jp].c
2
βp |]

id1 o id2 o . . . o idm+p

we generate an item of the new derived collection 〈a1−w1 a2−w2 . . . an−wn〉
defined by:

14In this first case the value of o is irrelevant.
15This collection is an argument of the global constraint or corresponds to a newly derived collection.
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wj(1 ≤ j ≤ n) =


cαr [ir].aαr ifj ∈ D, j = dirr

c1
βr [jr].c

2
βr [kr].aβr ifj ∈ I, j = indr

vj ifj /∈ D ∪ I
.

We illustrate this generation process on a set of examples. Each example is de-
scribed by providing:

• The global constraint and its arguments,

• The declaration of the new derived collection,

• The pattern used for creating an item of the new collection,

• The items generated by applying this pattern to the global constraint,

• A comment about the generation process.

We first start with four examples that do not mention any references to an attribute of a
collection. A box surrounds an argument of a global constraint that is mentioned in a
generated item.

EXAMPLE

CONSTRAINT : ELEMENT( INDEX , TABLE, VALUE )

DERIVED COLLECTION: ITEM− collection(index− dvar, value− dvar)

PATTERN(S) : item(index− INDEX, value− VALUE)

GENERATED ITEM(S) : 〈index− INDEX value− VALUE 〉
We generate a single item where the two attributes index and value respectively take the
first argument INDEX and the third argument VALUE of the ELEMENT constraint.

EXAMPLE

CONSTRAINT : LEX LESSEQ(VECTOR1, VECTOR2)

DERIVED COLLECTION: DESTINATION− collection(index− int, x− int, y− int)

PATTERN(S) : item(index− 0, x− 0, y− 0)

GENERATED ITEM(S) : 〈index− 0 x− 0 y− 0〉
We generate a single item where the three attributes index, x and y take value 0.

EXAMPLE

CONSTRAINT : IN RELATION( VARIABLES , TUPLES OF VALS)

DERIVED COLLECTION: TUPLES OF VARS− collection(vec− TUPLE OF VARS)

PATTERN(S) : item(vec− VARIABLES)

GENERATED ITEM(S) : 〈vec− VARIABLES 〉
We generate a single item where the unique attribute vec takes the first argument of the
IN RELATION constraint as its value.



2.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES55

EXAMPLE

CONSTRAINT : DOMAIN CONSTRAINT( VAR , VALUES)

DERIVED COLLECTION: VALUE− collection(var01− int, value− dvar)

PATTERN(S) : item(var01− 1, value− VAR)

GENERATED ITEM(S) : 〈var01− 1 value− VAR 〉
We generate a single item where the two attributes var01 and value respectively take
value 1 and the first argument of the DOMAIN CONSTRAINT constraint.

We continue with three examples that mention one or several direct references to
an attribute of some collections. We now need to explicitly give the items of these
collections in order to generate the items of the derived collection.

EXAMPLE

CONSTRAINT : LEX LESSEQ( VECTOR1 , VECTOR2 )

VECTOR1 : 〈var− 5, var− 2, var− 3, var− 1〉
VECTOR2 : 〈var− 5, var− 2, var− 6, var− 2〉
DERIVED COLLECTION: COMPONENTS− collection(index− int,

x− dvar, y− dvar)

PATTERN(S) : item(index− VECTOR1.keya,

x− VECTOR1.var, y− VECTOR2.var)

GENERATED ITEM(S) : 〈index− 1 x− 5 y− 5, index− 2 x− 2 y− 2,

index− 3 x− 3 y− 6, index− 4 x− 1 y− 2〉
The pattern mentions three references VECTOR1.key, VECTOR1.var and VECTOR2.var to
the collections VECTOR1 and VECTOR2 used in the arguments of the LEX LESSEQ con-
straint. ∀i1 ∈ [1, |VECTOR1|], ∀i2 ∈ [1, |VECTOR2|] such that i1 = i2

b we generate an
item index− v1 x− v2 y− v3 where:

v1 = i1, v2 = VECTOR1[i1].var, v3 = VECTOR2[i1].var.
This leads to the four items listed in the GENERATED ITEM(S) field.

aAs defined in Section 2.2.2 on page 16, key is an implicit attribute corresponding to the position
of an item within a collection.

bWe use an equality since this is the default value of the comparison operator o when we do not
use a pattern of the form o− item(. . . ).
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EXAMPLE

CONSTRAINT : CUMULATIVES( TASKS , MACHINES, CTR)

TASKS : 〈machine− 1 origin− 1 duration− 4 end− 5 height− 1,

machine− 1 origin− 4 duration− 2 end− 6 height− 3,

machine− 1 origin− 2 duration− 3 end− 5 height− 2,

machine− 2 origin− 5 duration− 2 end− 7 height− 2〉
DERIVED COLLECTION: TIME POINTS− collection(idm− int,

duration− dvar, point− dvar)

PATTERN(S) : item(idm− TASKS.machine,

duration− TASKS.duration, point− TASKS.origin)

item(idm− TASKS.machine,

duration− TASKS.duration, point− TASKS.end)

GENERATED ITEM(S) : 〈idm− 1 duration− 4 point− 1,

idm− 1 duration− 2 point− 4,

idm− 1 duration− 3 point− 2,

idm− 2 duration− 2 point− 5,

idm− 1 duration− 4 point− 5,

idm− 1 duration− 2 point− 6,

idm− 1 duration− 3 point− 5,

idm− 2 duration− 2 point− 7〉

The two patterns mention the references TASKS.machine, TASKS.duration,
TASKS.origin and TASKS.end of the TASKS collection used in the arguments
of the CUMULATIVES constraint. ∀i ∈ [1, |TASKS|], we generate two items
idm − u1 duration − u2 point − u3 , idm − v1 duration − v2 point − v3

where:
u1 = TASKS[i].machine, u2 = TASKS[i].duration, u3 = TASKS[i].origin,
v1 = TASKS[i].machine, v2 = TASKS[i].duration, v3 = TASKS[i].end.

This leads to the eight items listed in the GENERATED ITEM(S) field.

EXAMPLE

CONSTRAINT : GOLOMB( VARIABLES )

VARIABLES : 〈var− 0, var− 1, var− 4, var− 6〉
DERIVED COLLECTION: PAIRS− collection(x− dvar, y− dvar)

PATTERN(S) : > −item(x− VARIABLES.var, y− VARIABLES.var)

GENERATED ITEM(S) : 〈x− 1 y− 0,

x− 4 y− 0, x− 4 y− 1,

x− 6 y− 0, x− 6 y− 1, x− 6 y− 4〉
The pattern mentions two references VARIABLES.var and VARIABLES.var to the
VARIABLES collection used in the arguments of the GOLOMB constraint. ∀i1 ∈
[1, |VARIABLES|], ∀i2 ∈ [1, |VARIABLES|] such that i1 > i2

a we generate the item
x− u1 y− u2 where:

u1 = VARIABLES[i1].var, u2 = VARIABLES[i2].var.
This leads to the six items listed in the GENERATED ITEM(S) field.

aWe use the comparison operator > since we have a pattern of the form > −item(. . . ).
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We finish with an example that mentions an indirect reference to an attribute of a
collection.

EXAMPLE

CONSTRAINT : CUMULATIVE CONVEX( TASKS , LIMIT)

TASKS : 〈points− 〈var− 2, var− 1, var− 5〉 height− 1,

points− 〈var− 4, var− 5, var− 7〉 height− 2,

points− 〈var− 14, var− 15〉 height− 2〉

DERIVED COLLECTION: INSTANTS− collection(instant− int)

PATTERN(S) : item(instant− TASKS.points.var)

GENERATED ITEM(S) : 〈instant− 2, instant− 1, instant− 5, instant− 4,

instant− 5, instant− 7, instant− 14, instant− 15〉

The pattern mentions the indirect reference TASKS.points.var of the TASKS collection
used in the arguments of the CUMULATIVE CONVEX constraint. ∀i ∈ [1, |TASKS|], ∀j ∈
[1, |TASKS[i].points|] we generate the item instant− uij where:

uij = TASKS[i].points[j].
This leads to the eight items listed in the GENERATED ITEM(S) field.

Elementary constraints attached to the arcs

This section describes the constraints that are associated with the arcs of the initial
graph of a global constraint. These constraints are called arc constraints. To each
arc one can associate one or several arc constraints. An arc will belong to the final
graph if and only if all its arc constraints hold. An arc constraint from a vertex v1 to a
vertex v2 mentions variables and/or values associated with v1 and v2. Before defining
an arc constraint, we first need to introduce simple arithmetic expressions as well as
arithmetic expressions. Simple arithmetic expressions and arithmetic expressions are
defined recursively.

Simple arithmetic expressions A simple arithmetic expression is defined by one of
the five following expressions.

• I : I is an integer.

• Arg : Arg is an argument of the global constraint of type int or dvar.

• Arg : Arg is a formal parameter provided by the arc generator16 of the
graph-constraint.

• Col.Attr : Col is a formal parameter provided by the arc generator or the
collection used in the For all items of iterator.17 Attr is an attribute of the
collection referenced by Col.

16Arc generators are described in Section 2.3.2 on page 61.
17The For all items of iterator is described in Section 2.3.3 on page 80.
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EXAMPLE: As an example consider the first graph-constraint associated with the
GLOBAL CARDINALITY WITH COSTS(VARIABLES, VALUES, MATRIX, COST) constraint
and its arc constraint variables.var = VALUES.val. Both, variables.var as well as
VALUES.val are simple arithmetic expressions of the form Col.Attr:

– In variables.var, variables corresponds to the formal parameter provided by
the arc generator SELF 7→ collection(variables), while var is an attribute
of the VARIABLES collection.

– In VALUES.val, VALUES corresponds to the collection denoted by the For

all items of iterator, while val is an attribute of the VALUES collection.

• Col[Expr].Attr : Col is an argument of type collection, Attr one attribute
of Col and Expr an arithmetic expression.

Col[Expr].Attr denotes the value of attribute Attr of the Exprth item of the
collection denoted by Col.

EXAMPLE: As an example consider the GLOBAL CARDINALITY WITH COSTS(
VARIABLES, VALUES, MATRIX, COST) constraint and its second graph-constraint, which
defines the COST variable. The expression MATRIX[(variables.key− 1) ∗ |VALUES|+
values.key].c is a simple arithmetic expression of the form Col[Expr].Attr:

– MATRIX is a collection of items collection(i− int, j− int, c− int) where
all items are sorted in increasing order on attributes i, j (because of the restriction
increasing seq(MATRIX, [i, j])).

– MATRIX[(variables.key− 1) ∗ |VALUES|+ values.key].c denotes the value
of attribute c of an item of the MATRIX collection. The position of this item within
the MATRIX collection depends on the position of a variable of the VARIABLES

collectiona as well as on the position of a value of the VALUES collection.b

aThis position is denoted by the expression variables.key. As defined in Section 2.2.2 on
page 16, key is an implicit attribute corresponding to the position of an item within a collection.

bThis position is denoted by the expression values.key.

Arithmetic expressions An arithmetic expression is recursively defined by one of
the following expressions:

• A simple arithmetic expression.

• Exp1 Op Exp2

– Exp1 is an arithmetic expression,

– Op is one of the following symbols +, −, ∗, /18,

– Exp2 is an arithmetic expression.

• |Collection|

– Collection is an argument of type collection and |Collection| de-
notes the number of items of that collection.

18/ denotes an integer division, a division in which the fractional part is discarded.
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• |Exp|

– Exp is an arithmetic expression, and |Exp| denotes the absolute value of
this expression.

• sign(Exp)

– Exp is an arithmetic expression, and sign(Exp) the sign of Exp (−1 if Exp
is negative, 0 if Exp is equal to 0, 1 if Exp is positive).

EXAMPLE: An example of use of sign can be found in the last part of the arc constraint
of the CROSSING constraint:
sign((s2.ox− s1.ex) ∗ (s1.ey− s1.oy)− (s1.ex− s1.ox) ∗ (s2.oy− s1.ey)) 6=
sign((s2.ex− s1.ex) ∗ (s2.oy− s1.oy)− (s2.ox− s1.ox) ∗ (s2.ey− s1.ey))

• card set(Set) :

– Set is a reference to a set of integers or to a set variable. card set(Set)
denotes the number of elements of that set.

EXAMPLE: An example of use of card set can be found in the SYMMETRIC GCC

constraint: vars.nocc = card set(vars.var).

• SimpleExp1 mod SimpleExp2 ,

min(SimpleExp1, SimpleExp2) or max(SimpleExp1, SimpleExp2)

– SimpleExp1 is a simple arithmetic expression,

– SimpleExp2 is a simple arithmetic expression.

Arc constraints Now that we have introduced simple arithmetic expressions as well
as arithmetic expressions we define an arc constraint. An arc constraint is recursively
defined by one of the following expressions:

• TRUE

This stands for an arc constraint that always holds. As a result, the corresponding
arc always belongs to the final graph.

EXAMPLE: An example of use of TRUE can be found in the SUM CTR(VARIABLES,
CTR, VAR) constraint, where it is used in order to enforce keeping all items of the
VARIABLES collection in the final graph.

• Exp1 Comparison Exp2

– Exp1 is an arithmetic expression,

– Comparison is one of the comparison operators ≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.
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EXAMPLE: As an example of such arc constraint, the second graph-constraint of the
CUMULATIVE(TASKS, LIMIT) constraint uses the following arc constraints:

– tasks1.duration > 0,

– tasks2.origin ≤ tasks1.origin,

– tasks1.origin < tasks2.end.

The conjunction of these three arc constraints can be interpreted in the following way:
an arc from a task tasks1 to a task tasks2 will belong to the final graph if and only if
tasks2 overlaps the origin of tasks1.

• Exp1 SimpleCtr Exp2

– Exp1 is an arithmetic expression,

– SimpleCtr is an argument of type atom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the CHANGE(NCHANGE, VARIABLES, CTR) constraint: variables1.var CTR

variables2.var. Within this expression, variables1 and variables2 correspond
to consecutive items of the VARIABLES collection.

• Exp1 ¬SimpleCtr Exp2

– Exp1 is an arithmetic expression,

– SimpleCtr is an argument of type atom that can only take one of the values
≤, ≥, <, >, =, 6=,

– Exp2 is an arithmetic expression.

EXAMPLE: An example of use of such an arc constraint can be found
in the CHANGE CONTINUITY(NB PERIOD CHANGE, NB PERIOD CONTINUITY,
MIN SIZE CHANGE, MAX SIZE CHANGE, MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY, NB CHANGE, NB CONTINUITY, VARIABLES, CTR) constraint:
variables1.var ¬CTR variables2.var. Within this expression, variables1 and
variables2 correspond to consecutive items of the VARIABLES collection.

• constraint(Exp1, . . . , Expn)

– constraint is a global constraint defined in the catalogue for which there
exists a graph-based and/or an automaton-based representation,

– Exp1, . . . , Expn correspond to the arguments of the global constraint
constraint. Each argument should be a simple arithmetic expression that
is compatible with the type declaration of the argument of constraint.
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EXAMPLE: An example of such arc constraint can be found in the definition of
DIFFN: DIFFN(ORTHOTOPES) uses the TWO ORTH DO NOT OVERLAP(ORTHOTOPE1,
ORTHOTOPE2) global constraint for defining its arc constraint. Since ORTHOTOPES is
a collection of type collection(ori− dvar, siz− dvar, end− dvar) and since
both ORTHOTOPE1 and ORTHOTOPE2 correspond to items of ORTHOTOPES there is no
type compatibility problem between the call to TWO ORTH DO NOT OVERLAP and its
definition.

• ArcCtr1 LogicalConnector ArcCtr2

– ArcCtr1 is an arc constraint,

– LogicalConnector is one of the logical connectors ∨, ∧,⇒,⇔,

– ArcCtr2 is an arc constraint.

EXAMPLE: As shown by the following example, MINIMUM(MIN, VARIABLES) uses
this kind of arc constraint: variables1 = variables2 ∨ variables1.var <
variables2.var, where variables1 and variables2 correspond to items of the
VARIABLES collection, holds if and only if one of the following conditions holds:

– variables1 and variables2 correspond to the same item of the VARIABLES

collection,

– The var attribute of variables1 is strictly less than the var attribute of
variables2.

Graph generators

This section describes how to generate the initial graph associated with a global con-
straint. Initial graphs correspond to directed hypergraphs [64], which have a very reg-
ular structure. They are defined in the following way:

• The vertices of the directed hypergraph are generated from collections of items
such that each item corresponds to one vertex of the directed hypergraph. These
collections are either collections that arise as arguments of the global constraint,
or collections that are derived from one or several arguments of the global con-
straint. In this latter case these derived collections are computed by using the
collection generators previously introduced (see Section 2.3.2 on page 51).

• To all arcs of the directed hypergraph corresponds the same arc constraint that
involves vertices in a given order.19 These arc constraints, which are mainly
unary and binary constraints, were described in the previous section (see Sec-
tion 2.3.2 on page 57). We describe all the arcs of an initial graph with a set of
predefined arc generators, which correspond to classical regular structures one
can find in the graph literature [402, pages 140–153]. An arc generator of arity a
takes n collections of items, denoted ci(1 ≤ i ≤ n), as input and returns the cor-
responding hypergraph where the vertices are the items of the input collections

19Usually the edges of a hypergraph are not oriented [64, pages 1–2]. However for our purpose we need
to define an order on the vertices of an edge since the corresponding arc constraint takes its arguments in a
given order.
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ci(1 ≤ i ≤ n) and where all arcs involve a vertices. Specific arc generators al-
low for giving an a-ary constraint for which a is not fixed, which means that the
corresponding hypergraph contains arcs involving various number of vertices.

Each arc generator has a name and takes one or several collections of items as input
and generates a set of arcs. Each arc is made from a sequence of items i1 i2 . . . ia and
is denoted by (i1, i2, . . . , ia). a is called the arity of the arc generator. We have the
following types of arc generators:

• Arc generators with a fixed predefined arity. In fact most arc generators have a
fixed predefined arity of 2. The graphs they generate correspond to digraphs.

• Arc generators that can be used with any arity a greater than or equal to 1. These
arc generators generate directed hypergraphs where all arcs consist of a items.

• Arc generators that generate arcs that do not involve the same number of items.

We now give the list of arc generators, listed in alphabetic order, and the arcs they
generate. For each arc generator we point to a global constraint where it is used in
practice. Finally, Figure 2.8 illustrates the different arc generators. At present the
following arc generators are in use:

• CHAIN has a predefined arity of 2. It takes one collection c and generates the
following arcs20:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – ∀i ∈ [1, |c| − 1]: (c[i+ 1], c[i]).

EXAMPLE: The arc generator CHAIN is used, for example, in the
GROUP SKIP ISOLATED ITEM constraint.

• CIRCUIT has a predefined arity of 2. It takes one collection c and generates
the following arcs:

– ∀i ∈ [1, |c| − 1]: (c[i], c[i+ 1]), – (c[|c|], c[1]).

EXAMPLE: The arc generator CIRCUIT is used, for example, in the
CIRCULAR CHANGE constraint.

• CLIQUE can be used with any arity a greater than or equal to 2. It takes
one collection c and generates the arcs: ∀i1 ∈ [1, |c|],∀i2 ∈ [1, |c|], . . . ,∀ia ∈
[1, |c|] : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The arc generator CLIQUE is usually used with an arity a = 2. For
example, this is the case of the ALLDIFFERENT constraint.

20As defined in Section 2.2.2 on page 16 we use the following notation: for a given collection c, |c| and
c[i] respectively denote the number of items of c and the ith item of c.
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• CLIQUE (Comparison) , where Comparison is one of the comparison oper-
ators ≤, ≥, <, >, =, 6=, can be used with any arity a greater than or equal to 2.
It takes one collection c and generates the arcs:

∀i1 ∈ [1, |c|],

∀i2 ∈ [1, |c|] such that i1 Comparison i2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

∀ia ∈ [1, |c|] such that ia−1 Comparison ia : (c[i1], c[i2], . . . , c[ia]).

EXAMPLE: The ORCHARD(TREES) constraint is an example of constraint that uses the
CLIQUE(<) arc generator with an arity a = 3. It generates an arc for each set of three
trees.

• CYCLE has a predefined arity of 2. It takes one collection c and generates
the following arcs:

– ∀i ∈ [1, |c| − 1] (c[i], c[i+ 1]) and (c[i+ 1], c[i]),

– (c[|c|], c[1]) and (c[1], c[|c|]).

The arc generator CYCLE is currently not used.

• GRID([d1, d2, . . . , dn]) takes a collection c consisting of d1·d2· · · · ·dn items
and generates the arcs (c[i], c[j]) where i and j satisfy the following condition.
There exists an integer α (0 ≤ α ≤ n− 1) such that (1) and (2) hold:

(1) |i− j| =
∏

1≤k≤α dk (when α = 0 we have
∏

1≤k≤α = 1),

(2) b i∏
1≤k≤α+1 dk

c = b j∏
1≤k≤α+1 dk

c.

EXAMPLE: The CONNECT POINTS constraint uses the GRID arc generator.

• LOOP has a predefined arity of 2. It takes one collection c and generates the
arcs: ∀i ∈ [1, |c|]: (c[i], c[i]). LOOP is usually used in order to generate a loop
on some vertices, so that they do not disappear from the final graph.

EXAMPLE: The GLOBAL CONTIGUITY(VARIABLES) constraint is an example of con-
straint that uses the LOOP arc generator so that each variable of the VARIABLES collec-
tion belongs to the final graph.

• PATH can be used with any arity a greater than or equal to 1. It takes one
collection c, and generates the following arcs: ∀i ∈ [1, |c| − a+ 1] : (c[i], c[i+
1], . . . , c[i+ a− 1]).

EXAMPLE: PATH is used, for example, in the SLIDING SUM(LOW, UP, SEQ,
VARIABLES) constraint with an arity SEQ, where SEQ is an argument of the
SLIDING SUM constraint.
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• PATH 1 generates arcs that do not involve the same number of items. It takes
one collection c, and generates the following arcs: (c[1]), (c[1], c[2]), . . . ,
(c[1], c[2], . . . , c[|c|]).

EXAMPLE: PATH 1 is used in the
SIZE MAX STARTING SEQ ALLDIFFERENT constraint.

• PATH N generates arcs that do not involve the same number of items. It takes
one collection c, and generates the following arcs: ∀i ∈ [1, |c|],∀j ∈ [i, |c|] :
(c[i], c[i+ 1], . . . , c[j]).

EXAMPLE: PATH N is used, for example, in the SIZE MAX SEQ ALLDIFFERENT

constraint.

• PRODUCT has a predefined arity of 2. It takes two collections c1, c2 and
generates the arcs: ∀i ∈ [1, |c1|],∀j ∈ [1, |c2|] : (c1[i], c2[j]).

EXAMPLE: PRODUCT is used, for example, in the SAME(VARIABLES1,
VARIABLES2) constraint for generating an arc from every item of the VARIABLES1 col-
lection to every item of the VARIABLES2 collection.

• PRODUCT (Comparison) , where Comparison is one of the comparison
operators ≤, ≥, <, >, =, 6=, has a predefined arity of 2. It takes two col-
lections c1, c2 and generates the arcs: ∀i ∈ [1, |c1|],∀j ∈ [1, |c2|] such that
i Comparison j : (c1[i], c2[j]).

EXAMPLE: PRODUCT (=) is used, for example, in the
DIFFER FROM AT LEAST K POS(K, VECTOR1, VECTOR2) constraint in order to
generate an arc between the ith component of VECTOR1 and the ith component of
VECTOR2.

• SELF has a predefined arity of 1. It takes one collection c and generates the
arcs: ∀i ∈ [1, |c|]: (c[i]).

EXAMPLE: SELF is used, for example, in the AMONG(NVAR, VARIABLES, VALUES)
constraint in order to generate a unary arc constraint IN(variables.var, VALUES) for
each variable of the VARIABLES collection.

• SYMMETRIC PRODUCT has a predefined arity of 2. It takes two col-
lections c1, c2 and generates the following arcs: ∀i ∈ [1, |c1|],∀j ∈ [1, |c2|] :
(c1[i], c2[j]) and (c2[j], c1[i]).

EXAMPLE: SYMMETRIC PRODUCT is used, for example, in the
INVERSE WITHIN RANGE constraint.

• SYMMETRIC PRODUCT (Comparison) , where Comparison is one of
the comparison operators ≤, ≥, <, >, =, 6=, has a predefined arity of 2. It takes
two collections c1, c2 and generates the arcs: ∀i ∈ [1, |c1|],∀j ∈ [1, |c2|] such
that i Comparison j : (c1[i], c2[j]) and (c2[j], c1[i]).
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EXAMPLE: The TWO ORTH DO NOT OVERLAP constraint is an example of con-
straint that uses the SYMMETRIC PRODUCT (=) arc generator.

• VOID takes one collection and does not generate any arc.

EXAMPLE: VOID is used, for example, in the LEX LESSEQ constraint.

Finally, we can combine the PRODUCT arc generator with the arc generators
from the following set Generator = {CIRCUIT , CHAIN , CLIQUE , LOOP ,
PATH , VOID}. This is achieved by using the construction PRODUCT (G1, G2)
where G1 and G2 belong to Generator . It applies G1 to the first collection c1 passed
to PRODUCT and G2 to the second collection c2 passed to PRODUCT . Finally, it
applies PRODUCT on c1 and c2. In a similar way the PRODUCT (Comparison)
arc generator is extended to PRODUCT (G1, G2, Comparison).

EXAMPLE: As an illustrative example, consider the
ALLDIFFERENT SAME VALUE(NSAME, VARIABLES1, VARIABLES2) constraint,
which uses the arc generator PRODUCT (CLIQUE ,LOOP ,=) on the collections
VARIABLES1 and VARIABLES2. It generates the following arcs:

• Since the first argument of PRODUCT is CLIQUE it generates an arc between
each pair of items of the VARIABLES1 collection.

• Since the second argument of PRODUCT is LOOP it generates a loop for each
item of the VARIABLES2 collection.

• Since the third argument is the comparison operator = it finally generates an arc
between an item of the VARIABLES1 collection and an item of the VARIABLES2

collection when the two items have the same position.

Figure 2.7 shows the generated graph under the hypothesis that VARIABLES1 and
VARIABLES2 have respectively 3 and 3 items.

i3

i1

i2

j3

j1

j2

VARIABLES1 VARIABLES2

Figure 2.7: Example of initial graph generated by PRODUCT(CLIQUE, LOOP,=) when
applied to collections VARIABLES1 and VARIABLES2

Figure 2.8 illustrates the different arc generators. On the one hand, for those arc
generators that take a single collection, we apply them on the collection of items
〈i − 1, i − 2, i − 3, i − 4〉. On the other hand, for those arc generators that take two
collections, we apply them on 〈i − 1, i − 2〉 and 〈i − 3, i − 4〉. We use the following
pictogram for the graphical representation of a constraint network:
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• A line for an arc constraint of arity 1,

• An arrow for an arc constraint of arity 2,

• A closed line for an arc constraint with an arity strictly greater than 2. In this
last case, since the vertices of an arc are ordered, a black circle at one of the
extremities indicates the direction of the closed line. For example, consider the
example of PATH 1 in Figure 2.8. The closed line that contains vertices 1, 2
and 3 means that a 3-ary arc constraint involves items 1, 2, and 3 in this specific
order.

Dotted circles represent vertices that do not belong to the graph. This stems from
the fact the arc generator did not produce any arc involving these vertices. The leftmost
lowest corner indicates the arity of the corresponding arc generator:

• An integer if it has a fixed predefined arity,

• n if it can be used with any arity greater than or equal to 1,

• ∗ if it generates arcs that do not necessarily involve the same number of items.
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Figure 2.8: Examples of arc generators
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Graph properties

We represent a global constraint as the search of a subgraph (i.e., a final graph) of
a known initial graph, so that this final graph satisfies a given set of graph proper-
ties and possibly belongs to a specific graph class. Most graph properties have the
form Parameter Comparison Exp or the form Parameter /∈ [Exp1, Exp2], where
Parameter is a graph parameter [63], [208], Comparison is one of the comparison
operators =, <, ≥, >, ≤, 6=, and Exp, Exp1, Exp2 are expressions that can be eval-
uated to an integer. Before defining each graph parameter, let’s first introduce some
basic vocabulary on graphs.

Graph terminology and notations A digraph G = (V (G), E(G)) is a pair where
V (G) is a finite set, called the set of vertices, and where E(G) is a set of ordered
pairs of vertices, called the set of arcs. The arc, path, circuit and strongly connected
component of a graph G correspond to oriented concepts, while the edge, chain, cycle
and connected component are non-oriented concepts. However, as reported in [63,
page 6] an undirected graph can be seen as a digraph where to each edge we associate
the corresponding two arcs. Parts (A) and (B) of Figure 2.9 respectively illustrate the
terms for undirected graphs and digraphs.

cycle

vertex connected component

edge

chain

(A) Undirected graph

circuit

vertex strongly connected component

arc

path

sink

source

(B) Digraph

Figure 2.9: Graph terminology for an undirected graph and a digraph (similar concepts
are outlined with the same colour)

• We say that e2 is a successor of e1 if there exists an arc that starts from e1 and
ends at e2. In the same way, we say that e2 is a predecessor of e1 if there exists
an arc that starts from e2 and ends at e1.

• A vertex of G that does not have any predecessor is called a source. A vertex of
G that does not have any successor is called a sink.

• A sequence (e1, e2, . . . , ek) of edges of G such that each edge has a common
vertex with the previous edge, and the other vertex common to the next edge is
called a chain of length k. A chain where all vertices are distinct is called an
elementary chain. Each equivalence class of the relation “ei is equal to ej or
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there exists a chain between ei and ej” is a connected component of the graph
G.

• A sequence (e1, e2, . . . , ek) of arcs of G such that, for each arc ei (1 ≤ i < k)
the end of ei is equal to the start of the arc ei+1, is called a path of length
k. A path where all vertices are distinct is called an elementary path. Each
equivalence class of the relation “ei is equal to ej or there exists a path between
ei and ej” is a strongly connected component of the graph G.

• A chain (e1, e2, . . . , ek) of G is called a cycle if the same edge does not occur
more than once in the chain and if the two extremities of the chain coincide. A
cycle (e1, e2, . . . , ek) of G is called a circuit if for each edge ei (1 ≤ i < k), the
end of ei is equal to the start of the edge ei+1.

• Given a graph G, we define the reduced graph R(G) of G as follows: to each
strongly connected component of G corresponds a vertex of R(G); to each arc
of G that connects different strongly connected components corresponds an arc
in R(G) (multiple arcs between the same pair of vertices are merged).

• The rank function associated with the vertices V (G) of a graph G that does not
contain any circuit is defined in the following way:

– The rank of the vertices that do not have any predecessor (i.e., the sources)
is equal to 0,

– The rank r of a vertex v that is not a source is the length of longest path
(e1, e2, . . . , er) such that the start of the arc e1 is a source and the end of
arc er is the vertex v.

We now present the different notations used in the catalogue:

• [k] corresponds to {1, · · · , k} for k any positive integer.

• Given a set X , |X| is the number of its elements.

• Given two sets X and Y , X
⊎
Y denotes the union of the two sets when they are

disjoint.

• Given a digraph G and x ∈ V (G), d+G(x) = |{y : y ∈ V (G) : (x, y) ∈ E(G)}|
and d−G(x) = |{y : y ∈ V (G) : (y, x) ∈ E(G)}|.

• Given a digraph G and X a subset of V (G), the sub-digraph of G induced by X
is the digraph G[X] where V (G[X]) = X and E(G[X]) = X2∩E(G). By aim
of simplicity, we denote G[V (G) −X] by G −X . Moreover, if X = {x}, we
use G− x instead of G− {x}.

• Given two digraph G1 and G2 such that V (G1)∩ V (G2) = ∅, G1⊕G2 denotes
the graph whose vertices set is V (G1) ∪ V (G2) and whose arcs set is E(G1) ∪
E(G2).
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• Given a graph parameter P ∈ {NCC,NSCC}, a digraph G and an integer k,
CH(G, k) is the number of connected components (respectively strongly con-
nected components) of G with cardinal k.

Given a graph parameter, for example, the number of connected components,
NCCINITIAL denotes the number of connected components of the initial graph (i.e.,
the graph induced by the constraint under consideration), NCC denotes the num-
ber of connected components of the final graph (i.e., a subgraph of the initial graph).
NCC(G) denotes the number of connected components of the digraph G.

Given a global constraint C, and a graph parameter P used in the description of C,
P (respectively P) denotes a lower bound (respectively upper bound) of P among all
possible final graphs compatible with the current status of C.

Graph parameters We list in alphabetic order the different graph parameters we
consider for a final graph Gf = (V (Gf ), E(Gf )) associated with a global constraint
and give an example of constraint where they are used:

• MAX DRG : largest distance between sources and sinks in the reduced
graph associated with Gf (adjacent vertices are at a distance of 1).

EXAMPLE: We do not provide any example since MAX DRG is currently not used.

• MAX ID : number of predecessors of the vertex ofGf that has the maximum
number of predecessors without counting an arc from a vertex to itself.

EXAMPLE: The CIRCUIT constraint uses the graph property MAX ID = 1 in order
to force each vertex of the final graph to have at most one predecessor.

• MAX NCC : number of vertices of the largest connected component of Gf .

EXAMPLE: The LONGEST CHANGE(SIZE, VARIABLES, CTR) constraint uses the
graph property MAX NCC = SIZE in order to catch in SIZE the maximum number
of consecutive variables of the VARIABLES collection for which constraint CTR holds.

• MAX NSCC : number of vertices of the largest strongly connected compo-
nent of Gf .

EXAMPLE: The TREE constraint covers a digraph by a set of trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-property MAX NSCC ≤ 1 in
order to avoid to have any circuit involving more than one vertex.
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• MAX OD : number of successors of the vertex of Gf that has the maximum
number of successors without counting an arc from a vertex to itself.

EXAMPLE: The TOUR constraint forces to cover a graph with a Hamiltonian cycle. It
uses the graph-property MAX OD = 2 to enforce that each vertex ofGf have at most
twoa successors.

aSince the TOUR constraint uses the CLIQUE(6=) arc generator the vertices of Gf do not have
any loop.

• MIN DRG : smallest distance between sources and sinks in the reduced
graph associated with Gf (adjacent vertices are at a distance of 1).

EXAMPLE: We do not provide any example since MIN DRG is currently not used
by any constraint.

• MIN ID : number of predecessors of the vertex of Gf that has the minimum
number of predecessors without counting an arc from a vertex to itself.

EXAMPLE: The TOUR constraint forces to cover a graph with a Hamiltonian cycle. It
uses the graph-property MIN ID = 2 to enforce that each vertex of Gf have at most
twoa predecessors.

aSince the TOUR constraint uses the CLIQUE(6=) arc generator the vertices of Gf do not have
any loop.

• MIN NCC : number of vertices of the smallest connected component ofGf .

EXAMPLE: Within the GROUP constraint, each connected component of Gf corre-
sponds to a maximum sequence of consecutive variables that take their values in a given
set of values. Therefore, the graph-property MIN NCC = MIN SIZE forces that the
smallest sequence of such variables consist of MIN SIZE variables.
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• MIN NSCC : number of vertices of the smallest strongly connected com-
ponent of Gf .

EXAMPLE: The CIRCUIT(NODES) constraint forces covering a digraph with one
circuit visiting once all its vertices. The graph-property MIN NSCC = |NODES|
forces that the smallest strongly connected component of Gf contain |NODES| vertices.
Since |NODES| also corresponds to the number of vertices of the initial graph this means
that Gf is a strongly connected component involving all the vertices. This is clearly a
necessary conditiona for having a circuit visiting once all vertices.

aOf course, this is not enough, and the description of the CIRCUIT constraint asks for some other
properties.

• MIN OD : number of successors of the vertex of Gf that has the minimum
number of successors without counting an arc from a vertex to itself.

EXAMPLE: The TOUR constraint forces to cover a graph with a Hamiltonian cycle. It
uses the graph-property MIN OD = 2 to enforce that each vertex of Gf have at most
twoa successors.

aSince the TOUR constraint uses the CLIQUE(6=) arc generator the vertices of Gf do not have
any loop.

• NARC : cardinality of the set E(Gf ).

EXAMPLE: The DISJOINT(VARIABLES1, VARIABLES2) constraint forces that each
variable of the collection VARIABLES1 take a value that is distinct from all the values
assigned to the variables of the collection VARIABLES2.
This is imposed by creating an arc from each variable of VARIABLES1 to each variable
of VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. Finally, the graph property NARC = 0
forces Gf to be empty so that no value is both assigned to a variable of VARIABLES1 as
well as to a variable of VARIABLES2.

• NARC NO LOOP : cardinality of the set E(Gf ) without considering the
arcs linking the same vertex (i.e., a loop).

EXAMPLE: The constraint ALLDIFFERENT SAME VALUE uses the
NARC NO LOOP graph-property.

• NCC : number of connected components of Gf .
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EXAMPLE: The TREE constraint covers a digraph by NTREES trees in such a way that
each vertex belongs to a distinct tree. It uses the graph-property NCC = NTREES in
order to state that Gf is made up from NTREES connected components.

• NSCC : number of strongly connected components of Gf .

EXAMPLE: The constraint NVALUE(NVAL, VARIABLES) forces NVAL to be equal to the
number of distinct values assigned to the variables of the collection VARIABLES. This
is enforced by using the graph-property NSCC = NVAL. Each strongly connected
component of the final graph corresponds to the variables that are assigned to the same
value.

• NSINK : number of vertices of Gf that do not have any successor.

EXAMPLE: The SAME(VARIABLES1, VARIABLES2) forces that the variables of the
VARIABLES1 collection correspond to the variables of the VARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable of VARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables
associated with the extremities of the arc. We use the graph-property NSINK =
|VARIABLES2| in order to express the fact that each value assigned to a variable of
VARIABLES2 should also be assigned to a variable of VARIABLES1.

• NSINK NSOURCE : sum over the different connected components ofGf
of the minimum of the number of sinks and the number of sources of a connected
component.

EXAMPLE: The SOFT SAME VAR(C, VARIABLES1, VARIABLES2) constraint forces C
to be the minimum number of values to change in the VARIABLES1 and the VARIABLES2
collections of variablesa, so that the variables of VARIABLES2 correspond to the variables
of VARIABLES1 according to a permutation.
A connected component Cval of the final graph Gf corresponds to all variables that are
assigned to the same value val : the sources and the sinks of Cval respectively correspond
to the variables of VARIABLES1 and to the variables of VARIABLES2 that are assigned to
val . For a connected component, the minimum of the number of sources and sinks ex-
presses the number of variables for which we do not need to make any change. Therefore
we use the graph-property NSINK NSOURCE = |VARIABLES1| − C for encoding
the meaning of the SOFT SAME VAR constraint.

aBoth collections have the same number of variables.
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• NSOURCE : number of vertices of Gf that do not have any predecessor.

EXAMPLE: The SAME(VARIABLES1, VARIABLES2) forces that the variables of the
VARIABLES1 collection correspond to the variables of the VARIABLES2 collection ac-
cording to a permutation.
We first create an arc from each variable of VARIABLES1 to each variable of
VARIABLES2. To each arc corresponds an equality constraint involving the variables as-
sociated with the extremities of the arc. We use the graph-property NSOURCE =
|VARIABLES1| in order to express the fact that each value assigned to a variable of
VARIABLES1 should also be assigned to a variable of VARIABLES2.

• NTREE : number of vertices of Gf that do not belong to any circuit and for
which at least one successor belongs to a circuit. Such vertices can be interpreted
as root nodes of a tree.

EXAMPLE: The CYCLE(NCYCLE, NODES) forces that NCYCLE equal the number of cir-
cuits for covering an initial graph in such a way that each vertex belongs to a single
circuit.
The graph-property NTREE = 0 forces that all vertices of the final graph belong to a
circuit.

• NVERTEX : cardinality of the set V (Gf ).

EXAMPLE: The CUTSET(SIZE CUTSET, NODES) constraint considers a digraph with
n vertices described by the NODES collection. It forces that the subset of kept vertices
of cardinality n − SIZE CUTSET and their corresponding arcs form a graph without a
circuit. It uses the graph-property NVERTEX = n − SIZE CUTSET for enforcing
that the final graph Gf contain the required number of vertices.

• RANGE DRG : difference between the largest distance between sources
and sinks in the reduced graph associated with Gf and the smallest distance
between sources and sinks in the reduced graph associated with Gf .

EXAMPLE: The TREE RANGE constraint forces to cover a digraph in such a way that
each vertex belongs to a distinct tree. In addition it forces the difference between the
longest and the shortest paths of Gf to be equal to the variable R. For this purpose it
uses the graph-property RANGE DRG = R.

• RANGE NCC : difference between the number of vertices of the largest
connected component ofGf and the number of vertices of the smallest connected
component of Gf .
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EXAMPLE: We do not provide any example since RANGE NCC is currently not
used by any constraint.

• RANGE NSCC : difference between the number of vertices of the largest
strongly connected component of Gf and the number of vertices of the smallest
strongly connected component of Gf .

EXAMPLE: The BALANCE(BALANCE, VARIABLES) constraint forces BALANCE to be
equal to the difference between the number of occurrences of the value that occurs the
most and the value that occurs the least within the collection of variables VARIABLES.
Each strongly connected component ofGf corresponds to the variables that are assigned
to the same value. The graph property RANGE NSCC = BALANCE allows for ex-
pressing this definition.

• ORDER(rank, default, attr)

– rank is an integer or an argument of type integer of the global constraint,

– default is an integer,

– attr is an attribute corresponding to an integer or to a domain variable that
occurs in all the collections that were used for generating the vertices of the
initial graph.

We explain what is the value associated with ORDER(rank, default, attr).
Let V denotes the vertices of rank rank of Gf from which we remove any loops.

– When V is not empty, it corresponds to the values of attribute attr of the
items associated with the vertices of V ,

– Otherwise, when V is empty, it corresponds to the default value default.

EXAMPLE: The MINIMUM(MIN, VARIABLES) forces MIN to be the minimum value
of the collection of domain variables VARIABLES. There is an arc from a vari-
able var1 to a variable var2 if and only if var1 < var2. The graph-property
ORDER(0, MAXINT, var) = MIN expresses the fact that MIN is equal to the value
of the source of Gf (since rank = 0).

• PATH FROM TO(attr, from, to)

– ∗ attr is an attribute corresponding to an integer that occurs in all the
collections that were used for generating the vertices of the initial
graph,
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∗ from is an integer or an argument of type integer of the global con-
straint,

∗ to is an integer or an argument of type integer of the global constraint.
Let F (respectively T ) denotes the vertices of Gf such that attr is equal
to from (respectively to). PATH FROM TO(attr, from, to) is equal
to 1 if there exists a path between each vertex of F and each vertex of T ,
and 0 if there exists no path between a vertex of F and a vertex of T .

– ∗ attr is an attribute corresponding to an integer that occurs in all the
collections that were used for generating the vertices of the initial
graph,

∗ from is an attribute corresponding to an integer or to a set of inte-
gers that occurs in all the collections that were used for generating the
vertices of the initial graph,

∗ to is an attribute corresponding to an integer or to a set of integers that
occurs in all the collections that were used for generating the vertices
of the initial graph,

For each vertex v of Gf let:

∗ Fv the set of vertices for which the value of the attribute attr is equal
to the from attribute (or is included within the from attribute when it
corresponds to a set of integers).

∗ Tv the set of vertices for which the value of the attribute attr is equal
to the to attribute (or is included within the to attribute when it corre-
sponds to a set of integers).

PATH FROM TO(attr, from, to) is equal to

∗ 1 if for each vertex of Gf there exists a path between each vertex of
Fv and each vertex of Tv .

∗ 0 if for a vertex of Gf there is no path between a vertex of Fv and a
vertex of Tv .

EXAMPLE: The constraints LEX LESSEQ and STABLE COMPATIBILITY use the
PATH FROM TO graph-property.

• PROD(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.



2.3. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF GRAPH PROPERTIES77

– If V is not empty, PROD(col, attr) corresponds to the product of the
values of attribute attr associated with the vertices of V ,

– Otherwise, if V is empty, PROD(col, attr) is equal to 1.

EXAMPLE: The constraint PRODUCT CTR(VARIABLES, CTR, VAR) forces the product
of the variables of the VARIABLES collection to be equal, less than or equal, . . . to a
given domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together
with the TRUE arc constraint. Finally, PROD(VARIABLES, var) CTR VAR expresses
the required condition. In this expression var and CTR respectively corresponds to the
attribute of the collection VARIABLES (a domain variable) and to the condition we want
to enforce. Since the final graph Gf contains all the vertices of the initial graph, the
expression PROD(VARIABLES, var) corresponds to the product of the variables of the
VARIABLES collection.

• RANGE(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, RANGE(col, attr) corresponds to the difference be-
tween the maximum and the minimum values of attribute attr associated
with the vertices of V ,

– Otherwise, if V is empty, RANGE(col, attr) is equal to 0.

EXAMPLE: The constraint RANGE CTR(VARIABLES, CTR, VAR) forces the difference
between the maximum value and the minimum value of the variables of the VARIABLES
collection to be equal, less than or equal, . . . to a given domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together with
the TRUE arc constraint. Finally, RANGE(VARIABLES, var) CTR VAR expresses the
required condition. In this expression var and CTR respectively corresponds to the at-
tribute of the collection VARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sion RANGE(VARIABLES, var) corresponds to the difference between the maximum
value and the minimum value of the variables of the VARIABLES collection.
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• SUM(col, attr)

– col is a collection that was used for generating the vertices of the initial
graph,

– attr is an attribute corresponding to an integer or to a domain variable of
the collection col.

Let V be the set of vertices of Gf that were generated from the items of the
collection col.

– If V is not empty, SUM(col, attr) corresponds to the sum of the values
of attribute attr associated with the vertices of V ,

– Otherwise, if V is empty, SUM(col, attr) is equal to 0.

EXAMPLE: The constraint SUM CTR(VARIABLES, CTR, VAR) forces the sum of the
variables of the VARIABLES collection to be equal, less than or equal, . . . to a given
domain variable VAR.
To each variable of VARIABLES corresponds a vertex of the initial graph. Since we want
to keep all the vertices of the initial graph we use the SELF arc generator together
with the TRUE arc constraint. Finally, SUM(VARIABLES, var) CTR VAR expresses the
required condition. In this expression var and CTR respectively correspond to the at-
tribute of the collection VARIABLES (a domain variable) and to the condition we want to
enforce. Since the final graphGf contains all the vertices of the initial graph, the expres-
sion SUM(VARIABLES, var) corresponds to the sum of the variables of the VARIABLES
collection.

• SUM WEIGHT ARC(Expr) Expr is an arithmetic expression.
For each arc a of E(Gf ), let f(a) denotes the value of Expr.
SUM WEIGHT ARC(Expr) is equal to

∑
a∈E(Gf )

f(a). The value of
Expr usually depends on the attributes of the items located at the extremities
of an arc.

EXAMPLE: The constraint GLOBAL CARDINALITY WITH COSTS(VARIABLES,
VALUES, MATRIX, COST) forces that each value VALUES[i].val be assigned to exactly
VALUES[i].noccurrence variables of the VARIABLES collection. In addition the COST

of an assignment is equal to the sum of the elementary costs associated with the fact that
we assign the ith variable of the VARIABLES collection to the jth value of the VALUES

collection. These elementary costs are given by the MATRIX collection.
The graph-property SUM WEIGHT ARC(MATRIX[(variables.key−1)∗size(VALUES)+
values.key].c) = COST expresses that the COST variable is equal to the sum of the
elementary costs associated with each variable-value assignment. All these elementary
costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in
the attribute c of the ((i− 1) ∗ |VALUES)|+ j)th entry of the MATRIX collection.

A last graph parameter, DISTANCE , is computed on two final graphs G1 and
G2 that have the same set V of vertices and the sets E(G1) and E(G2) of arcs. This
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graph parameter is the cardinality of the set (E(G1) − E(G2)) ∪ (E(G2) − E(G1)).
This corresponds to the number of arcs that belong to E(G1) but not to E(G2), plus
the number of arcs that are in E(G2) but not in E(G1).

Graph class For a given global constraint, a graph class specifies a general property
that holds on its final digraph. We list the different graph classes and, for each of
them, we point to some global constraints that fit in that class. Finding all the global
constraints corresponding to a given graph class can be done by looking into the list of
keywords (see Section 3.7 on page 161).

• ACYCLIC : the final graph does not have any circuit.

• BIPARTITE : the final graph is bipartite.

• CONSECUTIVE LOOPS ARE CONNECTED : denotes that the graph constraint of
a global constraint uses only the PATH and the LOOP arc generators and that
the final graph does not contain consecutive vertices that have a loop and that are
not connected together by an arc.

• EQUIVALENCE : the final graph is reflexive, symmetric and transitive.

• NO LOOP : the final graph does not have any loop.

• ONE SUCC : the vertices of the initial graph belong to the final graph and all
vertices of the final graph have exactly one successor.

• SYMMETRIC : the final graph is symmetric. A digraph is symmetric if and only
if, if there is an arc from a vertex u to a vertex v, there is also an arc from v to u.
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2.3.3 Graph constraint
A global constraint can be defined as a conjunction of several simple or dynamic graph
constraints21 that all share the same name, the same arguments and the same argument
restrictions.22 This section first describes simple graph constraints and then dynamic
graph constraints, which are an extension of simple graph constraints.

Simple graph constraint

To a simple graph constraint correspond several initial graphs, usually one, where
all the initial graphs have the same vertices and arcs. Specifying more than one ini-
tial graph is usually23 achieved by using the FOR ALL ITEMS OF iterator (e.g., see the
definition of the GLOBAL CARDINALITY constraint), which takes a collection C and
generates an initial graphGi(t) for each item t of C. In this context, the arc constraints
and/or graph properties of an initial graph may depend of the attributes of the item t of
C from which they were generated. All arc constraints attached to a given arc24 have
to be pairwise mutually incompatible.25

The graphs of a simple graph constraint are defined by the following slots:

• An Arc input(s) slot, which consists of:

– Either a sequence of collections C1, C2, . . . , Cd (d ≥ 1). To each item
of these collections corresponds a vertex of the initial graph (i.e., in this
context we generate a single initial graph).

– Either a list of sequences of collections. To each item of the collections of
a given sequence corresponds a vertex of one of the initial graphs (i.e., in
this context we generate one initial graph for each sequence 26).

• An Arc generator slot, which can be one or several expressions27 of the follow-
ing forms:

– ARC GENERATOR 7→ collection(item1, item2, . . . , itema),
where ARC GENERATOR is one of the arc generators with a fixed ar-
ity28 defined in Section 2.3.2 on page 61, and itemi (1 ≤ i ≤ a) denotes
the ith item associated with the ith vertex of an arc. These items corre-
spond to formal parameters29 which can be used within an arc constraint.

21For an example of a global constraint that is defined by more than one graph constraint see, for instance,
the SORT constraint and its two graph constraints.

22The arguments and the argument restrictions were described in Section 2.2.4 on page 26.
23Another way of generating several initial graphs will be explained later on in the Arc input(s) slot.
24As we previously said, even though we have more than one initial graph, all vertices and arcs of the

different initial graphs are identical.
25Two arc constraints constraint1(X1, X2, . . . , Xn) and constraint2(X1, X2, . . . , Xn) are

incompatible if there does not exist any tuple of values 〈v1, v2, . . . , vn〉 such that both
constraint1(X1, X2, . . . , Xn) and constraint2(X1, X2, . . . , Xn) hold.

26This is the case, for example, for the DISTANCE BETWEEN constraint.
27Usually a single expression.
28Any arc generator different from PATH 1 and PATH N .
29See the description of simple arithmetic expressions page 57.
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When the Arc input(s) slot consists of a single collection (d = 1), itemi
(1 ≤ i ≤ a) represents an item of the collection C1. Otherwise, when
d > 1, we must have a = d and, in this context, itemi (1 ≤ i ≤ a)
represents an item of Ci.

EXAMPLE: The ALLDIFFERENT(VARIABLES) constraint has the following Arc
input(s) and Arc generator slots:

∗ Its Arc input(s) slot refers only to the collection VARIABLES (i.e., d = 1).

∗ Its Arc generator slot consists of
CLIQUE 7→ collection (variables1, variables2) (i.e., a = 2).

In this context, where d = 1, both variables1 and variables1 are items of
the VARIABLES collection.

EXAMPLE: The SAME(VARIABLES1, VARIABLES2) constraint has the follow-
ing Arc input(s) and Arc generator slots:

∗ Its Arc input(s) slot refers to the collections VARIABLES1 and
VARIABLES2 (i.e., d = 2).

∗ Its Arc generator slot consists of
PRODUCT 7→ collection(variables1, variables2) (i.e., a =
2).

In this context, where d > 1, variables1 and variables1 respectively corre-
spond to items of the VARIABLES1 and the VARIABLES2 collections.

– ARC GENERATOR 7→ collection, where ARC GENERATOR
is one of the arc generators PATH 1 or PATH N . In this context,
collection denotes a collection of items corresponding to the vertices
of an arc of the initial graph. An arc constraint forces a restriction on the
items of this collection.

EXAMPLE:
The SIZE MAX SEQ ALLDIFFERENT (SIZE, VARIABLES) constraint has the fol-
lowing Arc input(s) and Arc generator slots:

∗ Its Arc input(s) slot refers to the VARIABLES collection.

∗ Its Arc generator slot consists of PRODUCT 7→ collection.

In this context, collection is a collection of the same type as the VARIABLES

collection. It corresponds to the variables associated with an arc of the initial
graph.

When the Arc generator slot consists of n (n > 1) expressions then these
expressions have the form:

ARC GENERATOR1 7→ collection(item1, item2, . . . , itema)

ARC GENERATOR2 7→ collection(item1, item2, . . . , itema)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ARC GENERATORn 7→ collection(item1, item2, . . . , itema)

All leftmost part of the expressions must be the same since they will be involved
in a single Arc constraint(s) slot. The GLOBAL CONTIGUITY constraint is an
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example of global constraint where more than one arc generator is used.

• An Arc arity slot, which corresponds to the number of vertices a of each arc of
the initial graph. a is either a strictly positive integer, an argument of the global
constraint of type int, or the character *. In this last case, this is used for denot-
ing that all the arc constraints do not involve the same number of vertices. This
is the case, for example, when we use the arc generators PATH 1 or PATH N
as in the ARITH SLIDING or the SIZE MAX SEQ ALLDIFFERENT constraints.

• An Arc constraint(s) slot, which corresponds to a conjunction of arc con-
straints30 those were introduced in Section 2.3.2 on page 57.

• A Graph property(ies) slot, which corresponds to one or several graph proper-
ties (see Section 2.3.2 on page 68) to be satisfied on the final graphs associated
with an instantiated solution to the global constraint. To each initial graph corre-
sponds one final graph obtained by removing all arcs for which the corresponding
arc constraints do not hold as well as all vertices that do not have any arc.

We now give several examples of descriptions of simple graph constraints, start-
ing from the NVALUE constraint, which was introduced as a first example of global
constraint that can be modelled by a graph property in Section 2.3.1 on page 48.

EXAMPLE: The constraint NVALUE(NVAL, VARIABLES) restricts NVAL to be the number of
distinct values taken by the variables of the collection VARIABLES. Its meaning is described
by a simple graph constraint corresponding to the following items:

Arc input(s) : VARIABLES

Arc generator : CLIQUE 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

Graph property(ies): NSCC = NVAL

Since this description does not use the FOR ALL ITEMS OF iterator we generate a single initial
graph. Each vertex of this graph corresponds to one item of the VARIABLES collection. Since
we use the CLIQUE arc generator we have an arc between each pair of vertices. An arc
constraint corresponds to an equality constraint between the two variables that are associated
with the extremities of the arc. Finally, the Graph property(ies) slot forces the final graph
to have NVAL strongly connected components.

30Usually this conjunction consists of a single arc constraint.
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EXAMPLE: The constraint GLOBAL CONTIGUITY(VARIABLES) forces all variables of the
VARIABLES collection to be assigned to 0 or 1. In addition, all variables assigned to value
1 appear contiguously. Its meaning is described by a simple graph constraint corresponding
to the following items:

Arc input(s) : VARIABLES

Arc generator : PATH 7→ collection(variables1, variables2)

LOOP 7→ collection(variables1, variables2)

Arc arity : 2

Arc constraint(s) : variables1.var = variables2.var

variables1.var = 1

Graph property(ies): NCC ≤ 1

Since this description does not use the FOR ALL ITEMS OF iterator we generate a single initial
graph. Each vertex of this graph corresponds to one item of the VARIABLES collection.
Since we use the PATH arc generator we generate an arc from item VARIABLES[i] to item
VARIABLES[i + 1] (1 ≤ i < |VARIABLES|). In addition, since we use the LOOP arc
generator, we generate also an arc from each item of the VARIABLES collection to itself.a

The effect of the arc constraint is to keep in the final graph those vertices for which the
corresponding variable is assigned to 1. Adjacent variables assigned to 1 form a connected
component of the final graph and the graph property NCC ≤ 1 forces to have at most one
such group of adjacent variables assigned to 1.

aWe use the LOOP arc generator in order to keep in the final graph those isolated variables assigned
to 1. This is because isolated vertices with no arcs are always removed from the final graph.

EXAMPLE:
The GLOBAL CARDINALITY(VARIABLES, VALUES) constraint forces that each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) be taken by exactly VALUES[i].noccurrence vari-
ables of the VARIABLES collection. Its meaning is described by a simple graph constraint
corresponding to the following items:

For all items of VALUES:

Arc input(s) : VARIABLES

Arc generator : SELF 7→ collection(variables)

Arc arity : 1

Arc constraint(s) : variables.var = VALUES.val

Graph property(ies): NVERTEX = VALUES.noccurrence

Since this description uses the For all items of VALUES iterator on the VALUES collection
we generate an initial graph for each item of the VALUES collection (i.e., one graph for
each value). Each vertex of an initial graph corresponds to one item of the VARIABLES

collection. Since we use the SELF arc generator we have an arc for each vertex. For an
initial graph associated with a value val an arc constraint on a vertex v corresponds to an
equality constraint between the variable associated with v and the value val . Finally, the
Graph property(ies) slot forces the final graph to have a given number of vertices (i.e.,
associated with the attribute val ).
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Dynamic graph constraint

The purpose of a dynamic graph constraint is to enforce a condition on different subsets
of variables, not known in advance. This situation occurs frequently in practice and is
hard to express since one cannot use a classical constraint for which it is required
to provide all variables right from the beginning. One good example of such global
constraint is the CUMULATIVE constraint where one wants to force the sum of some
variables to be less than or equal to a given limit. In the context of the CUMULATIVE
constraint, each set of variables is defined by the height of the different tasks that
overlap a given instant i. Since the origins of the tasks are not initially fixed, we do not
know in advance which task will overlap a given instant and so, we cannot state any
sum constraint initially.

A dynamic graph constraint is defined in exactly the same way as a simple graph
constraint, except that we may omit the Graph property(ies) slot, and that we have to
provide the two following additional slots:

• The Set slot denotes a generator of sets of vertices. Such a generator takes as
argument a final graph and produces different sets of vertices. In order to have
something tractable, we force the total number of generated sets to be polynomial
in the number of vertices.

In practice each set of vertices is represented by a collection of items. The type
of this collection corresponds either to the type of the items associated with the
vertices, or to the type of a new derived collection. This is achieved by providing
an expression of the form name or name-derived collection, where name

represents a formal parameter, and derived collection a declaration of a new
derived collection (as specified in Section 2.3.2 on page 51).

• The Constraint(s) on sets slot provides a global constraint defined in the cata-
logue that has to hold for each set created by the previous generator.

We now describe the different generators of sets of vertices currently available:

• ALL VERTICES generates a single set containing all the vertices of the final
graph. It is specified by a declaration of the form

ALL VERTICES>> [vertices]

where vertices represents all the vertices of the final graph.

• CC generates one set of vertices for each connected component of the final
graph. These sets correspond to all the vertices of a given connected component.
It is specified by a declaration of the form

CC>> [connected component]

where connected component represents the vertices of a connected component
of the final graph.

• PATH LENGTH(L) generates all elementary paths31 of L vertices of the final
graph such that, discarding loops, all vertices of a path (except the last one) have

31A path where all vertices are distinct is called an elementary path.
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no more than one successor in the final graph. It is specified by a declaration of
the form

PATH LENGTH(L)>> [path]

where path represents the vertices of an elementary path, ordered according to
their occurrences in the path.

• PRED generates the non-empty sets corresponding to the predecessors of each
vertex of the final graph. It is specified by a declaration of the form

PRED>> [predecessor, destination]

where destination represents a vertex of the final graph and predecessor its
predecessors.

• SUCC generates the non-empty sets corresponding to the successors of each
vertex of the final graph. It is specified by a declaration of the form

SUCC>> [source, successor]

where source represents a vertex of the final graph and successor its succes-
sors.

As an illustrative example of dynamic graph constraint we now consider the
CUMULATIVE constraint.
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EXAMPLE: The CUMULATIVE(TASKS, LIMIT) constraint, where TASKS is a col-
lection of the form collection(origin− dvar, duration− dvar, end− dvar,
height− dvar), and where LIMIT is a non-negative integer, holds if, for any point the
cumulated height of the set of tasks that overlap that point, does not exceed LIMIT.
The first graph constraint of CUMULATIVE forces for each task of the TASKS collection
the equality origin + duration = end. We focus on the second graph constraint, which
uses a dynamic graph constraint described by the following items:

Arc input(s) : TASKS TASKS

Arc generator : PRODUCT 7→ collection(tasks1, tasks2)

Arc arity : 2

Arc constraint(s) : tasks1.duration > 0

tasks2.origin ≤ tasks1.origin

tasks1.origin ≤ tasks2.end

Sets : SUCC>>

[source,

variables− col(VARIABLES− collection(var− dvar),

[item(var− TASKS.height)])]

Constraint(s) on sets: SUM CTR(variables,≤, LIMIT)

The second graph constraint is defined by:

• To each item of the TASKS collection correspond two vertices of the initial graph.

• The arity of the arc constraint is 2.

• The arcs of the initial graph are constructed with the PRODUCT arc generator
between the TASKS collection and the TASKS collection. Therefore, each vertex
associated with a task is linked to all the vertices related to the different tasks.

• The arc constraint that is associated with an arc between a task tasks1 and a task
tasks2 is an overlapping constraint that holds if both, the duration of tasks1 is
strictly greater than zero, and if the origin of tasks1 is overlapped by task tasks2.

• The set generator is SUCC. The final graph will consist of those tasks for which
the origin is covered by at least one task and of those corresponding tasks.

• The dynamic constraint on a set forces the sum of the heights of the tasks that
belong to a successor set to not exceed LIMIT.
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Figure 2.10: Initial and final graph of an instance of the CUMULATIVE constraint

Parts (A) and (B) of Figure 2.10 respectively show the initial and the final graph corre-
sponding to the following instance:

CUMULATIVE(〈origin− 1 duration− 3 height− 1,
origin− 2 duration− 9 height− 2,
origin− 3 duration− 10 height− 1,
origin− 6 duration− 6 height− 1,
origin− 7 duration− 2 height− 3〉, 8).

We label the vertices of the initial and final graph by giving the keya of the corresponding
task. On both graphs the edges are oriented from left to right. On the final graph we
consider the sets that consist of the successors of the different vertices; those are the sets
of tasks {1}, {1, 2}, {1, 2, 3}, {2, 3, 4} and {2, 3, 4, 5}. Since the SUCC set generator
uses a derived collection that only considers the height attribute of a task, these sets
respectively correspond to the following collection of items:

• 〈var− 1〉,
• 〈var− 1, var− 2〉,
• 〈var− 1, var− 2, var− 1〉,
• 〈var− 2, var− 1, var− 1〉,
• 〈var− 2, var− 1, var− 1, var− 3〉.

The CUMULATIVE constraint holds since, for each successors set, the corresponding con-
straint holds:

• SUM CTR(〈var− 1〉, ≤, 8),

• SUM CTR(〈var− 1, var− 2〉, ≤, 8),

• SUM CTR(〈var− 1, var− 2, var− 1〉, ≤, 8),

• SUM CTR(〈var− 2, var− 1, var− 1〉, ≤, 8),

• SUM CTR(〈var− 2, var− 1, var− 1, var− 3〉, ≤, 8).

The SUM CTR(VARIABLES, CTR, VAR) constraint holds if the sum S of the variables of the
VARIABLES collection satisfies S CTR VARIABLES, where CTR is a comparison operator.

akey is an implicit attribute corresponding to the position of an item within a collection that was
introduced in Section 2.2.2 on page 16.
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2.4 Describing global constraints in terms of automata
This section is based on the article describing global constraint in terms of au-
tomata [39]. The main difference from the original article is the introduction of array
of counters within the description of an automaton. We consider global constraints for
which any ground instance can be checked in linear time by scanning once through
their variables without using any data structure, except counters or arrays of counters.
In order to concretely illustrate this point we first select a set of global constraints and
write down a checker for each of them. Finally, we give for each checker a sketch
of the corresponding automaton. Based on these observations, we define the type of
automaton we use in the catalogue.

2.4.1 Selecting an appropriate description
As we previously said, we focus on those global constraints that can be checked by
scanning once through their variables. This is the case, for example, of:

• ELEMENT [429],

• MINIMUM [29],

• PATTERN [92],

• GLOBAL CONTIGUITY [282],

• LEX LESSEQ [184],

• AMONG [47],

• INFLEXION [27],

• ALLDIFFERENT [351].

Since they illustrate key points needed for characterising the set of solutions asso-
ciated with a global constraint, our discussion will be based on the last five constraints
for which we now recall the definition:

• The GLOBAL CONTIGUITY(vars) constraint forces the sequence of 0-1 vari-
ables vars to have at most one group of consecutive 1. For example, the con-
straint GLOBAL CONTIGUITY(〈0, 1, 1, 0〉) holds since we have only one group
of consecutive 1.

• The lexicographic ordering constraint −→x≤lex
−→y (see LEX LESSEQ) over two

vectors of variables −→x = 〈x0, . . . , xn−1〉 and −→y = 〈y0, . . . , yn−1〉 holds if and
only if n = 0 or x0 < y0 or x0 = y0 and 〈x1, . . . , xn−1〉≤lex〈y1, . . . , yn−1〉.

• The AMONG(nvar, vars, values) constraint restricts the number of variables
of the sequence of variables vars that take their values in a given set values, to
be equal to the variable nvar. For example, AMONG(3, 〈4, 5, 5, 4, 1〉, 〈1, 5, 8〉)
holds since exactly 3 values of the sequence 45541 are located in the set of values
{1, 5, 8}.

• The INFLEXION(ninf, vars) constraint forces the number of inflexions of the
sequence of variables vars to be equal to the variable ninf. An inflexion is
described by one of the following patterns: a strict increase followed by a strict
decrease or, conversely, a strict decrease followed by a strict increase. For exam-
ple, INFLEXION(4, 〈3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3〉) holds since we can extract from
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the sequence 33145565563 the four subsequences 314, 565, 6556 and 563, which
all follow one of these two patterns.

• The ALLDIFFERENT(vars) constraint forces all pairs of distinct vari-
ables of the collection vars to take distinct values. For example,
ALLDIFFERENT(〈6, 1, 5, 9〉) holds since we have four distinct values.

Parts (A1), (B1), (C1), (D1) and (E1) of Figure 2.11 depict the five checkers re-
spectively associated with GLOBAL CONTIGUITY, with LEX LESSEQ, with AMONG,
with INFLEXION and with ALLDIFFERENT. Within the corresponding automata an ini-
tial state is indicated by an arc coming from no state and an accepting state is denoted
graphically by a double circle. For each checker we note the following facts:

• Within the checker depicted by part (A1) of Figure 2.11, the values of the se-
quence vars[0], . . . , vars[n − 1] are successively compared against 0 and 1 in
order to check that we have at most one group of consecutive 1. This can be trans-
lated to the automaton depicted by part (A2) of Figure 2.11. The automaton takes
as input the sequence vars[0], . . . , vars[n−1], and triggers successively a tran-
sition for each term of this sequence. Transitions labelled by 0 and 1 are respec-
tively associated with the conditions vars[i] = 0 and vars[i] = 1.Transitions
leading to failure are systematically skipped. This is why no transition labelled
with a 1 starts from state z.

• Within the checker given by part (B1) of Figure 2.11, the components of vectors
−→x and −→y are scanned in parallel. We first skip all the components that are
equal and then perform a final check. This is represented by the automaton
depicted by part (B2) of Figure 2.11. The automaton takes as input the sequence
〈x[0], y[0]〉, . . . , 〈x[n−1], y[n−1]〉 and triggers a transition for each term of this
sequence. Unlike the GLOBAL CONTIGUITY constraint, some transitions now
correspond to a condition (e.g., x[i] = y[i], x[i] < y[i]) between two variables
of the LEX LESSEQ constraint.

• Note that the AMONG(nvar, vars, values) constraint involves a variable nvar
whose value is computed from a given collection of variables vars. The
checker depicted by part (C1) of Figure 2.11 counts the number of variables
of vars[0], . . . , vars[n − 1] that take their values in values. For this pur-
pose it uses a counter c, which is possibly tested against the value of nvar.
This convinced us to allow the use of counters in an automaton. Each counter
has an initial value, which can be updated while triggering certain transitions.
The accepting states of an automaton can force a variable of the constraint to
be equal to a given counter. Part (C2) of Figure 2.11 describes the automa-
ton corresponding to the code given in part (C1) of the same figure. The au-
tomaton uses the counter variable c initially set to 0 and takes as input the se-
quence vars[0], . . . , vars[n − 1]. It triggers a transition for each variable of
this sequence and increments c when the corresponding variable takes its value
in values. The accepting state returns a success when the value of c is equal
to nvar. At this point we want to stress the following fact: it would have been
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GLOBAL CONTIGUITY(vars[0..n− 1]):boolean
1 begin
2 i← 0
3 while i < n ∧ vars[i] = 0 do i++
4 while i < n ∧ vars[i] = 1 do i++
5 while i < n ∧ vars[i] = 0 do i++
6 return (i = n)
7 end

(A1)

LEX LESSEQ(x[0..n− 1], y[0..n− 1]):boolean
1 begin
2 i← 0
3 while i < n ∧ x[i] = y[i] do i++
4 return (i = n ∨ x[i] < y[i])
5 end

(B1)

AMONG(nvar, vars[0..n− 1], values):boolean
1 begin
2 i, c← 0
3 while i < n do
4 if vars[i] ∈ values then c++
5 i++
6 return (nvar = c)
7 end

(C1)

INFLEXION(ninf, vars[0..n− 1]):boolean
1 begin
2 i, c← 0
3 while i < n− 1 ∧ vars[i] = vars[i+ 1] do i++
4 if i < n− 1 then less ← (vars[i] < vars[i+ 1])
5 while i < n− 1 do
6 if less then
7 if vars[i] > vars[i+ 1] then {c++; less ← false;}
8 else
9 if vars[i] < vars[i+ 1] then {c++; less ← true;}

10 i++
11 return (ninf = c)
12 end

(D1)

ALLDIFFERENT(vars[0..n− 1]):boolean
1 begin
2 u, v ← vars[0]; i← 1;
3 while i < n do
4 if vars[i] < u then u← vars[i]
5 else if vars[i] > v then v ← vars[i]
6 i++
7 for i← u to v do c[i]← 0
8 for i← 0 to n− 1 do
9 c[vars[i]]← c[vars[i]] + 1

10 for i← u to v do
11 if c[i] > 1 then return false
12 return true
13 end

(E1)
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vars[i] ≥
vars[i+ 1]

vars[i] < vars[i+ 1],
{c← c+ 1}

(D2)

INFLEXION

∀i ∈ [0, n− 1] c[i] ≤ 1

s {c[vars[i]]← c[vars[i]] + 1}(E2)

ALLDIFFERENT

{∀i ∈ [0, n− 1] c[i]← 0}

Figure 2.11: Five checkers and their corresponding automata

possible to use an automaton that avoids the use of counters. However, this au-
tomaton would depend on the effective value of the argument nvar. In addition,
it would require more states than the automaton of part (C2) of Figure 2.11. This
is typically a problem if we want to have a fixed number of states in order to save
memory as well as time.
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• As the AMONG constraint, the INFLEXION(ninf, vars) constraint involves a
variable ninf whose value is computed from a given sequence of variables
vars[0], . . . , vars[n − 1]. Therefore, the checker depicted in part (D1) of Fig-
ure 2.11 uses also a counter c for counting the number of inflexions, and com-
pares its final value to the ninf argument. The automaton depicted by part (D2)
of Figure 2.11 represents this program. It takes as input the sequence of pairs
〈vars[0], vars[1]〉, 〈vars[1], vars[2]〉 , . . . , 〈vars[n − 2], vars[n − 1]〉 and
triggers a transition for each pair. Note that a given variable may occur in more
than one pair. Each transition compares the respective values of two consecutive
variables of vars[0..n − 1] and increments the counter c when a new inflexion
is detected. The accepting state returns a success when the value of c is equal to
ninf.

• The checker associated with ALLDIFFERENT is depicted by part (E1) of Fig-
ure 2.11. It first initialises an array of counters to 0. The entries of the array
correspond to the potential values of the sequence vars[0], . . . , vars[n− 1]. In
a second phase the checker computes for each potential value its number of oc-
currences in the sequence vars[0], . . . , vars[n − 1]. This is done by scanning
this sequence. Finally in a third phase the checker verifies that no value is used
more than once. These three phases are represented by the automaton depicted
by part (E2) of Figure 2.11. The automaton depicted by part (E2) takes as input
the sequence vars[0], . . . , vars[n − 1]. Its initial state initialises an array of
counters to 0. Then it triggers successively a transition for each element vars[i]
of the input sequence and increments by 1 the entry corresponding to vars[i].
The accepting state checks that all entries of the array of counters are strictly
less than 2, which means that no value occurs more than once in the sequence
vars[0], . . . , vars[n− 1].

Synthesising all the observations we got from these examples leads to the following
remarks and definitions for a given global constraint C:

• For a given state, no transition can be triggered indicates that the constraint C
does not hold.

• Since all transitions starting from a given state are mutually incompatible all
automata are deterministic. Let M denotes the set of mutually incompatible
conditions associated with the different transitions of an automaton.

• Let S0, . . . ,Sm−1 denotes the sequence of subsets of variables of C on which the
transitions are successively triggered. All these subsets contain the same num-
ber of elements and refer to some variables of C. Since these subsets typically
depend on the constraint, we leave the computation of S0, . . . ,Sm−1 outside the
automaton. To each subset Si of this sequence corresponds a variable Si with an
initial domain ranging over [min,min + |M| − 1], where min is a fixed inte-
ger. To each integer of this range corresponds one of the mutually incompatible
conditions of M. The sequences S0, . . . , Sm−1 and S0, . . . ,Sm−1 are respec-
tively called the signature and the signature argument of the constraint. The
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constraint between Si and the variables of Si is called the signature constraint
and is denoted by ΨC(Si,Si).

• From a pragmatic point the view, the task of writing a constraint checker is nat-
urally done by writing down an imperative program where local variables, ar-
rays, assignment statements and control structures are used. This suggested us
to consider deterministic finite automata augmented with local variables and as-
signment statements on these variables. Regarding control structures, we did not
introduce any extra feature since the deterministic choice of which transition to
trigger next seemed to be good enough.

• Many global constraints involve a variable whose value is computed from a given
collection of variables. This convinced us to allow the accepting state of an
automaton to optionally return a result. In practice, this result corresponds to the
value of a local variable of the automaton in the accepting state.

2.4.2 Defining an automaton
An automaton A of a global constraint C is defined by

〈Signature , SignatureDomain , SignatureArg , SignatureArgPattern ,
Counters , Arrays , States , T ransitions〉

where:

• Signature is the sequence of variables S0, . . . , Sm−1 corresponding to the sig-
nature of the constraint C.

• SignatureDomain is an interval that defines the range of possible values of the
variables of Signature.

• SignatureArg is the signature argument S0, . . . ,Sm−1 of the constraint C. The
link between the variables of Si and the variable Si (0 ≤ i < m) is done by
writing down the signature constraint ΨC(Si,Si).

• When used, SignatureArgPattern defines a symbolic name for each term of
SignatureArg . These names can be used within the description of a transition
for expressing an additional condition for triggering the corresponding transition.

• Counters is the, possibly empty, list of all counters used in the automaton A.
Each counter is described by a term t(Counter , InitialValue, FinalVariable)
where Counter is a symbolic name representing the counter, InitialValue is an
integer giving the value of the counter in the initial state ofA, and FinalVariable
gives the variable that should be unified with the value of the counter in the
accepting state of A.

• Arrays is the, possibly empty, list of all arrays used in the automaton A.
Each array is described by a term t(Array , InitialValue, FinalConstraint)



2.4. DESCRIBING GLOBAL CONSTRAINTS IN TERMS OF AUTOMATA 93

where Array is a symbolic name representing the array, InitialValue is an in-
teger giving the value of all the entries of the array in the initial state of A.
FinalConstraint denotes an existing constraint of the catalogue that should hold
in the accepting state of A. Arguments of this constraint correspond to collec-
tions of variables that are bound to array of counters, or to variables that are
bound to counters declared in Counters . For an array of counters we only con-
sider those entries that are located between the first and the last entries that were
modified while triggering a transition of A.

• States is the list of states of A, where each state has the form source(id),
sink(id) or node(id). id is a unique identifier associated with each state. Fi-
nally, source(id) and sink(id) respectively denote the initial and the accepting
state of A. An automaton has a single initial state and at least one accepting
state. The initial and accepting states may coincide.

• T ransitions is the list of transitions ofA. Each transition t has the form arc(id1,
label , id2) or arc(id1, label , id2, counters). id1 and id2 respectively corre-
spond to the state just before and just after t, while label denotes the value that
the signature variable should have in order to trigger t. When used, counters
gives for each counter of Counters its value after firing the corresponding tran-
sition. This value is specified by an arithmetic expression involving counters,
constants, as well as usual arithmetic functions, such as +, −, min, or max. The
order used in the counters list is identical to the order used in Counters .

EXAMPLE: As an illustrative example we give the description of the automaton associ-
ated with the INFLEXION(ninf , vars) constraint. We have:

• Signature = S0, S1, . . . , Sn−2,

• SignatureDomain = 0..2,

• SignatureArg = 〈vars[0], vars[1]〉, . . . , 〈vars[n− 2], vars[n− 1]〉,
• SignatureArgPattern is not used,

• Counters = t(c, 0,ninf ),

• States = [source(s), sink(s), sink(i), sink(j)],

• T ransitions = [arc(s, 1, s), arc(s, 2, i), arc(s, 0, j), arc(i, 1, i), arc(i, 2, i),
arc(i, 0, j, [c+ 1]), arc(j, 1, j), arc(j, 0, j), arc(j, 2, i, [c+ 1]).

The signature constraint relating each pair of variables 〈vars[i], vars[i+ 1]〉 to the signa-
ture variable Si is defined as follows: Ψinflexion(Si, vars[i], vars[i + 1]) ≡ vars[i] >
vars[i + 1] ⇔ Si = 0 ∧ vars[i] = vars[i + 1] ⇔ Si = 1 ∧ vars[i] <
vars[i + 1] ⇔ Si = 2. The sequence of transitions triggered on the ground in-

stance INFLEXION(4, [3, 3, 1, 4, 5, 5, 6, 5, 5, 6, 3]) is s
c=0

3=3⇔S0=1−−−−−−−→ s
3>1⇔S1=0−−−−−−−→

j
1<4⇔S2=2−−−−−−−→

c=1
i

4<5⇔S3=2−−−−−−−→ i
5=5⇔S4=1−−−−−−−→ i

5<6⇔S5=2−−−−−−−→ i
6>5⇔S6=0−−−−−−−→

c=2
j

5=5⇔S7=1−−−−−−−→

j
5<6⇔S8=2−−−−−−−→

c=3
i

6>3⇔S9=0−−−−−−−→
c=4

j. Each transition gives the corresponding condition and,

possibly, the value of the counter c just after firing that transition. After the last encoun-
tered state j the first argument ninf of the INFLEXION constraint is fixed to the current
value of the counter c, i.e. ninf = 4.
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2.5 Reformulating global constraints as a conjunction

Many global constraints can be reformulated as a conjunction of global or reified con-
straints. The slot Reformulation provides for some global constraints such refor-
mulations (see, for example, the reformulation slots respectively associated with the
COLOURED CUMULATIVE or the TREE constraints). When it exists, the corresponding
code is available in the “.pl file” attached to a constraint. The initial concrete moti-
vation for providing reformulations was triggered by the fact that it is usually an easy
way to have a first implementation of a constraint, which is a feature we want to have
in the context of the catalogue. However many reformulations (e.g., ALLDIFFERENT,
NVALUE, TREE) involve a quadratic (or even more) number of variables and/or con-
straints, which does not scale in practice when one wants to handle constraints with
thousands of variables. This is why many filtering algorithms compute again and again
common quantities that would require too much memory if stored explicitly.

2.6 Semantic links between global constraints

For each global constraint entry of the catalogue, the slot See also provides links
to other global constraints. Rather than just pointing to a set of constraints, we
prefer to explicitly indicate the reason why we point to a given constraint. A link
link(Centry , Calso) from a constraint Centry (i.e., the constraint associated with a cat-
alogue entry) to another constraint Calso (i.e., the constraint of the See also slot located
in the catalogue entry of constraint Centry ) has a given semantics and this section de-
scribes the kind of semantic links that are currently used. Before introducing each
semantic link and its meaning, let us first quote that some of them are related by one of
the following relations:

• A link link is symmetric if and only if link(C1, C2)⇔ link(C2, C1).

• A link link is asymmetric if and only if link(C1, C2) ⇒ ¬link(C2, C1)
(¬link(C2, C1) is a shortcut for denoting that the link link(C2, C1) does not
occur in the catalogue).

• A link link j is the converse of a link link i if and only if link i(C1, C2) ⇔
link j(C2, C1).

Table 2.1 lists each semantic link and the relation it has.32 Then one section de-
scribes the meaning of each semantic link.

2.6.1 Assignment dimension added

Constraint Calso corresponds to constraint Centry where an assignment dimension is
added to Centry .

32All links are automatically checked with respect to their relations each time the catalogue is generated.
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semantic links relation between semantic links

assignment dimension added converse: assignment dimension removed
assignment dimension removed converse: assignment dimension added
attached to cost variant converse: cost variant
common keyword symmetric
comparison swapped symmetric
cost variant converse: attached to cost variant
generalisation converse: specialisation
hard version converse: soft variant
implied by converse: implies
implies converse: implied by
implies (if swap arguments) symmetric
implies (items to collection) asymmetric
negation symmetric
part of system of constraints converse: system of constraints
related symmetric
related to a common problem symmetric
root concept converse: shift of concept
shift of concept converse: root concept
soft variant converse: hard version
specialisation converse: generalisation
system of constraints converse: part of system of constraints
used in graph description asymmetric
used in reformulation converse: uses in its reformulation
uses in its reformulation converse: used in reformulation

Table 2.1: Available semantic links between constraints

EXAMPLE: As an example, constraintCalso = CUMULATIVES corresponds to constraint
Centry = CUMULATIVE where an assignment dimension corresponding to the machine

attribute is added (i.e., the constraint CUMULATIVES enforces a CUMULATIVE constraint
for each maximum set of tasks that are assigned the same machine).

2.6.2 Assignment dimension removed

Constraint Calso corresponds to constraint Centry where an assignment dimension is
removed from Centry .

EXAMPLE: As an example, constraint Calso = AMONG LOW UP corresponds to con-
straint Centry = INTERVAL AND COUNT where an assignment dimension correspond-
ing to the origin attribute is removed from Centry = INTERVAL AND COUNT (i.e., the
constraint INTERVAL AND COUNT enforces a AMONG LOW UP constraint for each maxi-
mum set of tasks for which the origin is assigned the same interval [k ·SIZE INTERVAL, k ·
SIZE INTERVAL + SIZE INTERVAL − 1]) (SIZE INTERVAL is the last argument of
INTERVAL AND COUNT).
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2.6.3 Attached to cost variant
Constraint Calso is the original version attached to the cost variant constraint Centry .

EXAMPLE: As an example, constraintCalso = ALLDIFFERENT is the original version at-
tached to the cost variant constraintCentry = MINIMUM WEIGHT ALLDIFFERENT, where
the total cost of a solution is the sum of the costs associated with the fact that we assign a
given value to a specific variable.

2.6.4 Common keyword
Constraints Centry and Calso share one or more common keywords with a strong se-
mantic connotation.

EXAMPLE: As an example, constraints Centry = TREE and Calso = CYCLE are both
graph partitioning constraints (i.e., constraints that partition the vertices of a given initial
digraph so that each partition corresponds to a specific pattern, a tree and a circuit in this
example).

2.6.5 Comparison swapped
Constraint Calso corresponds to constraint Centry where one of the following condi-
tions holds:

• The comparison operator ≥ is swapped to ≤ or, conversely, ≤ is swapped to ≥.

• The comparison operator > is swapped to < or, conversely, < is swapped to >.

EXAMPLE: Constraint Calso = ATMOST corresponds to constraint Centry = ATLEAST

where the comparison ≤ N for expressing that we should not exceed a given threshold
(i.e., restricts the maximum number of occurrences for a given value) is replaced by ≥ N

for expressing that we should reach a given threshold (i.e., forces a minimum number of
occurrences for a given value).

2.6.6 Cost variant
Constraint Calso is a cost variant of constraint Centry .

EXAMPLE: As an example, constraint Calso =
SUM OF WEIGHTS OF DISTINCT VALUES is the cost variant of constraint Centry =
NVALUE, where we introduce a weight for each value and we replace the number of
distinct values by the sum of weights associated with distinct values.

2.6.7 Generalisation
Denotes that constraint Calso is a generalisation of constraint Centry .

EXAMPLE: As an example, constraint Calso = ALL MIN DIST is a generalisation of
constraintCentry = ALLDIFFERENT where we replace a disequality between two variables
by the fact that two line segments of same length do not overlap.
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2.6.8 Hard version
Constraint Calso is a hard version of constraint Centry (i.e., constraint Centry is a soft
variant of constraint Calso).

EXAMPLE: As an example, constraint Calso = ALLDIFFERENT is a hard version of con-
straint Centry = SOFT ALLDIFFERENT, which restricts the minimum number of variables
that should be assigned differently in order that all variables take a distinct value.

2.6.9 Implied by
If constraint Calso holds and if all restrictions of constraint Centry hold then constraint
Centry also holds. Note that we try to restrict ourselves to the transitive reduction of
the implication graph between constraints.

EXAMPLE: As an example, constraint Centry = MINIMUM is implied by constraint
Calso = AND.

2.6.10 Implies
If constraint Centry holds and if all restrictions of constraint Calso hold then constraint
Calso also holds. Note that we also consider all the implications depicted in the impli-
cation graphs mentioned in the tables associated with the normalised signature tree of
global constraints arguments. For an example of such table see Table 3.1.

EXAMPLE: As an example, constraint Centry = ALLDIFFERENT implies constraint
Calso = NOT ALL EQUAL. Note that the case of an ALLDIFFERENT constraint with a
single variable does not imply a NOT ALL EQUAL constraint since its restriction (i.e., the
number of variables of a NOT ALL EQUAL constraint should be strictly greater than one)
does not hold.

2.6.11 Implies (if swap arguments)
Given two constraints Centry and Calso that both have two arguments, if constraint
Centry(arg1, arg2) holds then constraint Calso(arg2, arg1) also holds.

EXAMPLE: As an example, we can go from constraint Centry = LEX LESSEQ to con-
straint LEX GREATEREQ if we swap the two arguments of constraint LEX LESSEQ.

2.6.12 Implies (items to collection)
Given two constraints Centry and Calso where:

• Centry has a single argument arg1 corresponding to a collection of k items, each
attribute of type int or dvar.

• Calso has a single argument arg2 corresponding to a collection of collections of
dvar, each of them having the same number of items k.

If constraint Centry(arg1) holds then constraint Calso(arg2) also holds.
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EXAMPLE: As an example, we can go from constraint Centry = CIRCUIT to constraint
LEX ALLDIFFERENT if we create for each item “index − i succ − s” of the CIRCUIT

constraint a collection 〈var− i, var− s〉.

2.6.13 Negation
If constraint Centry holds then constraint Calso does not hold. Reciprocally, if con-
straint Calso holds then constraint Centry does not hold. Note that constraints Centry

and Calso must also have exactly the same parameters, but not necessarily the same
parameters restrictions.

EXAMPLE: As an example, the constraint Calso = NOT ALL EQUAL (i.e., prevent
all variables to be assigned the same value) is the negation of constraint Centry =
ALL EQUAL (i.e., enforce all variables to be assigned the same value).

Note that negation is also directly available for constraints which are defined by:

• A single counter free automaton, see keyword automaton without counters.

• A single automaton with counter, see keyword automaton with counters.

• A set of functional dependencies, see keyword pure functional dependency.

2.6.14 Part of system of constraints
Denotes that a constraint Centry is a conjunction of constraints Calso (i.e., see the
keyword system of constraints).

EXAMPLE: As an example, the constraint Calso = NEQ (i.e., prevent two variables
to be assigned the same value) can be used to reformulate the constraint Centry =
ALLDIFFERENT (i.e., enforce a set of variables to take distinct values) as a conjunction
of NEQ constraints.

2.6.15 Related
Denotes that a constraint Centry and a constraint Calso are related by a specific reason
that is not covered by an existing link.

EXAMPLE: As an example, the constraint Calso = TREE RANGE (i.e., given a digraph,
partition it so that each vertex belongs to one tree for which the difference between the
longest and the shortest paths – from a leaf to the root – is restricted) is related to the
constraintCentry = BALANCE (i.e., given a set of variables, restrict the difference between
the number of occurrence of the value that occurs the most and the value that occurs the
least) by the fact that, on the one hand the constraint TREE RANGE can express a balanced
tree, on the other side the constraint BALANCE can express a balanced assignment.

2.6.16 Related to a common problem
Denotes that a constraint Centry and a constraint Calso are related to a same problem
(i.e., they can both be used for modelling that problem).
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EXAMPLE: As an example, the constraints Centry = COLORED MATRIX and Calso =
SAME can both be used for modelling the matrix reconstruction problem.

2.6.17 Root concept

Constraint Centry is derived from constraint Calso .

EXAMPLE: As an example, the constraint Centry = TREE RESOURCE is derived from
the constraint Calso = TREE. Given a digraphG, the TREE constraint forces a partitioning
of G by a set of trees in such a way that each vertex of G belongs to one distinct tree.
In addition, the TREE RESOURCE constraint distinguishes resource and task vertices, and
forces each tree to contain exactly one resource vertex.

2.6.18 Shift of concept

Constraint Calso is derived from constraint Centry .

EXAMPLE: As an example, constraint Calso =
GLOBAL CARDINALITY NO LOOP(NLOOP, VARIABLES, VALUES) is derived from
constraint Centry = GLOBAL CARDINALITY(VARIABLES, VALUES) (i.e., each value
VALUES[i].val should be taken by exactly VALUES[i].val variables of the VARIABLES

collection) by discarding all variables such that VARIABLES[i].var = i.

2.6.19 Soft variant

Constraint Calso is a soft variant of constraint Centry . Note that, from an academic
point of view, a soft constraint Calso = is usually defined with a cost variable that
quantifies how much the constraint Centry = is violated. We exceptionally breaks this
rule when it seems to make sense from an application point of view. For example,
within the ALLDIFFERENT constraint, we refer to the ALLDIFFERENT EXCEPT 0 since
it can be seen as a kind of relaxation of the ALLDIFFERENT constraint where we allow
to use value 0 several times.

EXAMPLE: As an example, one of the possible soft variants of constraint Centry =
ALLDIFFERENT (i.e., the ALLDIFFERENT constraint forces all variables of a collection to
take distinct values) is the constraint Calso = SOFT ALLDIFFERENT VAR, where the cost
is the minimum number of variables that need to be assigned differently to satisfy the
ALLDIFFERENT constraint.

2.6.20 Specialisation

Denotes that constraint Calso is a specialisation of constraint Centry .

EXAMPLE: As an example, constraint Calso = PATH is a specialisation of constraint
Centry = TREE. Given a digraph G, the TREE constraint forces a covering of G by a set
of trees in such a way that each vertex ofG belongs to one distinct tree. If, in addition, we
restrict each vertex to have at most one child we get the PATH constraint.
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2.6.21 System of constraints
Denotes that a constraint Calso is a conjunction of constraints Centry (see the keyword
system of constraints).

EXAMPLE: As an example, the constraint Calso = COLORED MATRIX corresponds to a
conjunction of constraints of the form Centry = GLOBAL CARDINALITY: Given a matrix
M of variables, the COLORED MATRIX constraint forces a GLOBAL CARDINALITY on
each row and each column ofM.

2.6.22 Used in graph description
Constraint Calso is used within a graph based description of constraint Centry .

EXAMPLE: As an example, the constraint Calso = TWO ORTH DO NOT OVERLAP, a
constraint enforcing two orthotopesa to not overlap, is used in the graph based description
of the constraint Centry = DIFFN. Given a collection of orthotopes, the DIFFN constraint
forces for each pair of orthotopes (O1, O2) that O1 and O2 do not overlap.

aAn orthotope corresponds to the generalisation of a segment, a rectangle and a box to the
n-dimensional case.

2.6.23 Used in reformulation
Constraint Calso is used within a reformulation of constraint Centry . Since it is already
handled by the link part of system of constraints, we do not consider the case where
constraint Centry can be expressed as a conjunction of constraints Calso .

EXAMPLE: As an example, the constraint Calso = OPEN MINIMUM is used within the
reformulation slot of the constraint Centry = TREE RANGE.

2.6.24 Uses in its reformulation
Constraint Calso uses constraint Centry in its reformulation. Since it is already handled
by the link system of constraints, we do not consider the case where constraint Calso

can be expressed as a conjunction of constraints Centry .
EXAMPLE: As an example, the reformulation slot of constraint Calso = TREE RANGE

uses the constraint Centry = OPEN MINIMUM.
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3.1 Which global constraints are included?
The global constraints of this catalogue come from the following sources:

• Existing constraint systems like:

– ALICE [267],
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– CHARME in C [309],

– CHIP [150] in Prolog, C and C++ (http://www.cosytec.com),

– Choco [256] in Java (http://choco.emn.fr/),

– ECLAIR [416] in Claire,

– ECLiPSe [121, 11] in Prolog (http://eclipseclp.org/),

– FaCile in OCaml (http://www.recherche.enac.fr/opti/facile/),

– Gecode in C++ [385] (http://www.gecode.org/),

– IF/PROLOG in Prolog
(http://www.ifcomputer.com/IFProlog/Constraints/home_en.html),

– Ilog Solver [334] in C++ and later in Java (http://www.ilog.com),

– JaCoP in Java (http://www.jacop.eu/),

– Koalog in Java,

– Minion [199] (http://minion.sourceforge.net/index.html),

– Mozart [405, 130] in Oz (http://www.mozart-oz.org/),

– SICStus [109] in Prolog (http://www.sics.se/sicstus/).

When available, the Systems slot of a global constraint entry of the catalogue
provides the name of the corresponding global constraint in the context of the
Choco, Gecode, JaCoP, MiniZinc, and SICStus systems.

• Constraint programming articles mostly from conferences like:

– The Principles and Practice of Constraint Programming (CP)
(http://www.informatik.uni-trier.de/˜ley/db/conf/cp/index.
html),

– The International Joint Conference on Artificial Intelligence (IJCAI)
(http://www.informatik.uni-trier.de/˜ley/db/conf/ijcai/index.
html),

– The National Conference on Artificial Intelligence (AAAI)
(http://www.informatik.uni-trier.de/˜ley/db/conf/aaai/index.
html),

– The International Conference on Logic Programming (ICLP)
(http://www.informatik.uni-trier.de/˜ley/db/conf/iclp/index.
html),

– The International Conference of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimisation Problems (CPAIOR)
(http://www.informatik.uni-trier.de/˜ley/db/conf/cpaior/).

• Graph constraints from the CP(Graph) computation domain [151].

• New constraints inspired by variations of existing constraints, practical applica-
tions, combinatorial problems, puzzles or discussions with colleagues.
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http://choco.emn.fr/
http://eclipseclp.org/
http://eclipseclp.org/
http://www.recherche.enac.fr/opti/facile/
http://www.recherche.enac.fr/opti/facile/
http://www.gecode.org/
http://www.gecode.org/
http://www.ifcomputer.com/IFProlog/Constraints/home_en.html
http://www.ifcomputer.com/IFProlog/Constraints/home_en.html
http://www.ilog.com
http://www.ilog.com
http://www.jacop.eu/
http://www.jacop.eu/
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3.2 Which global constraints are missing?

Constraints with too many arguments like, for example, the original CYCLE [133]
constraint with 16 arguments, which are in fact a combination of several constraints,
were not directly put into the catalogue. Constraints that have complex arguments
were also omitted. Beside this, the following constraints should be added in some
future version of the catalogue: ALLDIFFERENT ON MULTISETS [346] [347],
CASE [108, 103], [122, 123], CHOQUET [231], COST REGULAR [145],
CUMULATIVE TRAPEZE [331, 59], DEVIATION [382, 380], INEQUALITY SUM [365,
366], MINIMUM SPANNING TREE [152, 360], NO CYCLE [113], RANGE [69, 71],
REGULAR [317] [134], SOFT GCC VAL [435, 436, 457, 383], SOFT GCC VAR [435,
436, 457], SOFT REGULAR [435], SPREAD [318, 381], MULTICOST REGULAR [293],
PREF ALLDIFFERENT VAR (i.e., variable-based relaxation of ALLDIFFERENT
with preferences) [295, page 100], PREF ALLDIFFERENT CTR (i.e., decom-
position-based relaxation of ALLDIFFERENT with preferences) [295, page
103], PREF GLOBAL CARDINALITY LOW UP VAR (i.e., variable-based relax-
ation of GLOBAL CARDINALITY LOW UP with preferences) [295, page 123],
PREF GLOBAL CARDINALITY LOW UP CTR (i.e., decomposition-based relaxation
of GLOBAL CARDINALITY LOW UP with preferences) [295, page 126]. Finally we
only consider a restricted number of constraints involving set variables since this is a
relatively new area, which is currently growing rapidly since 2003.

3.3 Searching in the catalogue

3.3.1 How to see if a global constraint is in the catalogue?

Searching a given global constraint through the catalogue can be achieved in the fol-
lowing ways:

• If you have an idea of the name of the global constraint you are looking for,
then put all its letters in lower case, separate distinct words by an underscore
and search the resulting name in the index. Within the pdf document, the entry
of the catalogue where the constraint is defined is shown in bold. Common
abbreviations, synonyms and usual names found in articles have also been put in
the index in bold and italic.

• If you do not know the name of the global constraint you are looking for, but
you know the types of its arguments then Section 3.5 lists the different argument
patterns and the corresponding global constraints.

• You can also search a global constraint through the list of keywords that is at-
tached to each global constraint. All available keywords are listed alphabetically
in Section 3.7 on page 161. For each keyword we give the list of global con-
straints using the corresponding keyword as well as the definition of the key-
word.
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• In order to make it possible to search for all keywords related to a spe-
cific area, we have also attached to each keyword one, or exceptionally two,
meta-keywords. For example, if you are searching for global constraints that are
mentioning puzzles, you first look to the meta-keyword Puzzles where you find
the keywords corresponding to puzzles (i.e., Autoref , Conway packing problem,
. . . , Sudoku, Zebra puzzle). Then as previously described, for each keyword you
can access to the corresponding global constraints. All available meta-keywords
are listed alphabetically in Section 3.6 on page 150. For each meta-keyword it
first gives the list of keywords using the corresponding meta-keyword and then
defines the meta-keyword.

3.3.2 How to search for all global constraints sharing the same
structure

Since we have three ways of defining global constraints (e.g., searching for a graph with
specific properties, coming up with an automaton that only recognises the solutions
associated with the global constraint or using a first order logic formula) we can look
to the global constraints from these three perspectives.

Searching from a graph property perspective

The index contains all the arc generators as well as all the graph properties and the
pages where they are mentioned.1 This allows finding all global constraints that use
a given arc generator or a given graph property in their definitions. You can further
restrict your search to those global constraints using a specific combination of arc gen-
erators and graph properties. All these combinations are listed at the “signature” entry
of the index. Within these combinations, a graph property with an underline means
that the constraint should be evaluated each time the minimum of this graph property
increases. Similarly a graph property with an overline indicates that the constraint
should be evaluated each time the maximum of this graph property decreases. For
example, if we look for those constraints that both use the CLIQUE arc generator
as well as the NARC graph-property we find the INVERSE and PLACE IN PYRAMID
constraints. Since NARC is underlined and overlined these constraints will have to
be woken each time the minimum or the maximum of NARC changes. The signa-
ture associated with a global constraint is also shown in the header of the even pages
corresponding to the description of the global constraint.

Searching from an automaton perspective

We have created the following list of keywords, which allow finding all global con-
straints defined by a specific type of automaton that recognises its solutions2:

• Automaton indicates that the catalogue provides a deterministic automaton,
1Arc generators and graph properties are introduced in the section “Describing Explicitly Global Con-

straints”.
2Automata that recognise the solutions to a global constraint were introduced in the section “Describing

Explicitly Global Constraints”.
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• Automaton without counters indicates that the catalogue provides a deterministic
automaton without counters as well as without array of counters,

• Automaton with counters indicates that the catalogue provides a deterministic
automaton with counters but without array of counters,

• Automaton with array of counters indicates that the catalogue provides a deter-
ministic automaton with array of counters and possibly with counters.

In addition, we also provide a list of keywords that characterise the structure of the
hypergraph associated with the decomposition of the automaton of a global constraints
(i.e., see the meta-keyword constraint network structure). Note that, when a global
constraint is defined by several graph properties it is also defined by several automata
(usually one automata for each graph property). This is the case, for example, of the
CHANGE CONTINUITY constraint. Currently we have these keywords:

• Berge-acyclic constraint network,

• Alpha-acyclic constraint network(2),

• Alpha-acyclic constraint network(3),

• Sliding cyclic(1) constraint network(1),

• Sliding cyclic(1) constraint network(2),

• Sliding cyclic(1) constraint network(3),

• Sliding cyclic(2) constraint network(2),

• Circular sliding cyclic(1) constraint network(2),

• Centered cyclic(1) constraint network(1),

• Centered cyclic(2) constraint network(1),

• Centered cyclic(3) constraint network(1),

When a global constraint is only defined by one or several automaton its signature is
set to the keyword AUTOMATON.

Searching from a first order logic perspective

The keyword logic provides the list of constraints that are described within the cata-
logue in term of a first order logic formula where predicates are replaced by arithmetic
constraints.

3.3.3 Searching all places where a global constraint is referenced
Beside the page where a global constraint is defined (in bold), the index also gives all
the pages where a global constraint is referenced.

Last, since a global constraint can also be used for defining another global con-
straint the slot Used in of the description of a global constraint provides this informa-
tion.
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3.3.4 Searching the mapping with a constraint of a concrete system
Two distinct ways are provided for making the correspondence between a constraint of
the catalogue and a constraint of a concrete existing system:

1. Appendix C provides, when it exists, the direct correspondence3 between the
constraints of the catalogue and the constraints of a given concrete system. For
the time being we have considered, with the help of their respective authors, the
following systems:

• Choco in Java [256] (http://choco.emn.fr/),

• Gecode in C++ [385] (http://www.gecode.org/),

• JaCoP in Java (http://www.jacop.eu/),

• MiniZinc (http://www.minizinc.org/),

• SICStus [109] in Prolog (http://www.sics.se/sicstus/).

Since not all constraints of a given system always have their counterparts in the
current version of the catalogue, and since systems are always enriched, this is
the reason why this mapping is not complete.

2. Within the entry of the catalogue the slot Systems provides the correspondence
between the constraint associated with that entry and the name of the constraint
in a given concrete system or modelling language. For example, the Systems
slot of the entry of the catalogue corresponding to the ELEMENT constraint indi-
cates that ELEMENT is called NTH in Choco and ELEMENT in Gecode, JaCoP
MiniZinc and SICStus.

3.4 Figures of the catalogue
The catalogue contains the following types of figures:

• Figures that give the normalised signature tree of the arguments of a global con-
straint These figures are located in Section 3.5.

• Figures that provide the implication graph between global constraints that have
the same normalised signature tree for their arguments (e.g., see the figure em-
bedded in the lower part of Table 3.1).

• Figures that illustrate a global constraint or a keyword (e.g., see Figure 3.38 that
illustrates the keyword limited discrepancy search).

• Figures that depict the initial as well as the final graphs associated with a global
constraint (e.g., see Figure 5.159 that provides the initial and final graphs of the
CHANGE constraint).

3We do not consider that a given constraint of the catalogue can be reformulated in terms of a conjunction
of constraints of a given concrete system.

http://choco.emn.fr/
http://choco.emn.fr/
http://www.gecode.org/
http://www.gecode.org/
http://www.jacop.eu/
http://www.jacop.eu/
http://www.minizinc.org/
http://www.minizinc.org/
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
http://choco.emn.fr/
http://www.gecode.org/
http://www.jacop.eu/
http://www.minizinc.org/
http://www.sics.se/sicstus/
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• Figures that provide an automaton that only recognises the solutions associated
with a given global constraint (e.g., see Figure 5.387 that gives the automaton of
the GLOBAL CONTIGUITY constraint).

• Figures that give the hypergraph associated with the decomposition of an
automaton in terms of signature and transition constraints (e.g., see Fig-
ure 5.388 that gives the hypergraph of the automaton-based reformulation of
the GLOBAL CONTIGUITY constraint).

• Figures for the graph structure of the XML schema of the parameters of a global
constraint. They are only available in the on-line version of the catalogue.

• Figures for visualising different views (i.e., compulsory part and cumulative pro-
file) of two-dimensional placement of constraints. These figures are only avail-
able in the on-line version of the catalogue. They are accessible from the table
containing the squared squares problem instances.

Most of the graph figures that depict the initial and final graph of a global constraint
of this catalogue as well as the graph structure of the XML schema of the parameters of a
global constraint were automatically generated by using the open source graph drawing
software Graphviz [193] available from AT&T.4 Since late 2012 TikZ [415] is used
for generating all new figures and for converting the old Xfig, PSTricks [447] and
Graphviz figures so that all figures are done with TikZ.

4http://www.research.att.com/sw/tools/graphviz

http://www.research.att.com/sw/tools/graphviz
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3.5 Constraints argument patterns
If you do not know the name of the global constraint you are looking for, but you
know the types of its arguments this section allows to find out all global constraints
which have similar arguments. For this purpose we associate to each global constraint
of the catalogue a unique normalised signature tree derived from the types of its argu-
ments.5 The purpose of this normalised signature tree is to get a concise normal form
of the arguments of a global constraint that does not depend of the order in which these
arguments are defined.
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Figure 3.1: Illustrating steps (2), (3) and (4) for computing the normalised signature
tree

The normalisation takes as input the slots Type(s) and Argument(s) of the description
of a global constraint6 and computes the normalised signature tree in four steps:

1. The first step converts all types related to variables to their corresponding ground
counterparts: the types dvar, svar, mvar and rvar are respectively transformed
to int, sint, mint and real.

2. The second step builds a tree of types T by exploring the slot Argument(s) and
by developing the compound data types possibly used. The root of this tree is
the type atom and represents the name of the global constraint.

3. The third step normalises the tree of types T by first normalising each subtree
of T and then by sorting the children of T . We assume the following ordering

5An informal rule used in the catalogue about the order of the arguments of a constraint is that we usually
first mention a domain variable which represents a result computed from one or several collections that occur
just after. Finally, eventual parameters are put as the last arguments of the constraint.

6See Section 2.2.4 for the description of these slots.
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on the different types: atom ≺ int ≺ sint ≺ mint ≺ real ≺ list ≺
collection. Let Tn denotes the normalised tree obtained at this third step.

4. Finally the last step tries to reduce the size of the normalised tree Tn by identify-
ing k(k > 1) children of a vertex v of Tn for which the k subtrees are identical.
When such a configuration is identified the k subtrees of v are replaced by a
single subtree and the integer k is put as an exponent of v.
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atom

col2

int

1. ALLDIFFERENT ON INTERSECTION

2. CONSECUTIVE GROUPS OF ONES

3. DISJOINT

4. INCOMPARABLE

5. INT VALUE PRECEDE CHAIN

6. INVERSE WITHIN RANGE

7. LEX DIFFERENT

8. LEX EQUAL

9. LEX GREATER

10. LEX GREATEREQ

11. LEX LESS

12. LEX LESSEQ

13. LEX LESSEQ ALLPERM

14. SAME

15. SAME INTERSECTION

16. SORT

17. USED BY

18. USES

19. VEC EQ TUPLE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

11 9 8 16 3

19

12 7 10 14 1

17 15

18

Table 3.1: Example of information associated with a normalised signature tree (within
the signature tree col is a shortcut for collection)

The three rows of Figure 3.1 illustrate respectively the second, third and fourth
steps for computing the normalised signature tree associated with the arguments of the
constraints ALLDIFFERENT, CHANGE, COUNT, CUMULATIVE, DIFFN, MINIMUM and
SAME.

The next sections provide for each possible constraints arity all existing normalised
signature trees together with the corresponding list of global constraints of the cata-
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logue. The leftmost part of an entry corresponds to a normalised signature tree, while
the rightmost upper part gives the corresponding list of global constraints. Finally
the rightmost lower part describes the dependency between the constraints of the list:
there is an edge from a constraint ctr1 to a constraint ctr2 if and only if the fact that
ctr1 holds implies that ctr2 also holds. For example, consider the constraints asso-
ciated with the normalised signature tree corresponding to two collections of integers
depicted by Table 3.1. There is an edge from 16 (i.e., SORT) to 14 (i.e., SAME) since
the fact that a SORT constraint holds implies that a SAME constraint also holds.
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3.5.1 Constraints with 1 argument

atom

sint

1. SUM FREE
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atom

col

int

1. ALL EQUAL

2. ALL EQUAL EXCEPT 0

3. ALL EQUAL PEAK

4. ALL EQUAL PEAK MAX

5. ALL EQUAL VALLEY

6. ALL EQUAL VALLEY MIN

7. ALLDIFFERENT

8. ALLDIFFERENT CONSECUTIVE VALUES

9. ALLDIFFERENT EXCEPT 0

10. CONSECUTIVE VALUES

11. DECREASING

12. DECREASING PEAK

13. DECREASING VALLEY

14. GLOBAL CONTIGUITY

15. GOLOMB

16. INCREASING

17. INCREASING PEAK

18. INCREASING VALLEY

19. MULTI GLOBAL CONTIGUITY

20. NO PEAK

21. NO VALLEY

22. NOT ALL EQUAL

23. PERMUTATION

24. SOME EQUAL

25. STRICTLY DECREASING

26. STRICTLY INCREASING

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

14 1 8 25 26

21

10 7 11 16

23 15

22 9 20 21

19 4 6 19

3 5

1712 18 13

2
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atom

col

sint

1. ALLDIFFERENT BETWEEN SETS

atom

col

col

int

1. ALLPERM

2. K ALLDIFFERENT

3. K DISJOINT

4. K SAME

5. K USED BY

6. LEX2

7. LEX ALLDIFFERENT

8. LEX ALLDIFFERENT EXCEPT 0

9. LEX CHAIN GREATER

10. LEX CHAIN GREATEREQ

11. LEX CHAIN LESS

12. LEX CHAIN LESSEQ

13. STRICT LEX2

14. ZERO OR NOT ZERO VECTORS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

13

6 11 9 5

4

12 7 10

8

atom

col

col

int3

1. DIFFN

2. ORTHS ARE CONNECTED

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

2

1
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atom

col

int2

1. ALLDIFFERENT CST

2. CIRCUIT

3. DERANGEMENT

4. DISJUNCTIVE

5. DISJUNCTIVE OR SAME END

6. DISJUNCTIVE OR SAME START

7. PRECEDENCE

8. PROPER CIRCUIT

9. SEQUENCE FOLDING

10. SYMMETRIC ALLDIFFERENT

11. SYMMETRIC ALLDIFFERENT EXCEPT 0

12. SYMMETRIC ALLDIFFERENT LOOP

13. TWIN

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

10

32 11 12 4

8 13

7

5 6

atom

col

int sint

1. ATMOST1

2. BIPARTITE

3. CONNECTED

4. DAG

5. STRONGLY CONNECTED

6. SYMMETRIC

7. TOUR

atom

col

int3

1. INVERSE

2. INVERSE EXCEPT LOOP

3. ORTH LINK ORI SIZ END
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atom

col

int3 sint

1. DISJ

atom

col

int2 sint2

1. STABLE COMPATIBILITY

atom

col

int5

1. POLYOMINO
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3.5.2 Constraints with 2 arguments

atom

int2

1. ABS VALUE

2. DIVISIBLE

3. DIVISIBLE OR

4. EQ

5. GEQ

6. GT

7. LEQ

8. LT

9. NEQ

10. OPPOSITE SIGN

11. SAME SIGN

12. SIGN OF

13. ZERO OR NOT ZERO

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

2 8 1 6

4

3 7 9 5

11

atom

int sint

1. IN SET
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atom

int col

int

1. ALL MIN DIST

2. ALLDIFFERENT INTERVAL

3. ALLDIFFERENT MODULO

4. AMONG DIFF 0

5. AND

6. ATLEAST NVALUE

7. ATMOST NVALUE

8. BALANCE

9. BETWEEN MIN MAX

10. DEEPEST VALLEY

11. EQUIVALENT

12. FIRST VALUE DIFF 0

13. HIGHEST PEAK

14. IN

15. INCREASING NVALUE

16. INCREASING SUM

17. INFLEXION

18. IMPLY

19. LENGTH FIRST SEQUENCE

20. LENGTH LAST SEQUENCE

21. LONGEST DECREASING SEQUENCE

22. LONGEST INCREASING SEQUENCE

23. MAX DECREASING SLOPE

24. MAX INCREASING SLOPE

25. MAX NVALUE

26. MAX SIZE SET OF CONSECUTIVE VAR

27. MAXIMUM

28. MIN DECREASING SLOPE

29. MIN DIST BETWEEN INFLEXION

continued *
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atom

int col

int

30. MIN INCREASING SLOPE

31. MIN NVALUE

32. MIN SIZE FULL ZERO STRETCH

33. MIN SIZE SET OF CONSECUTIVE VAR

34. MIN SURF PEAK

35. MIN WIDTH PEAK

36. MIN WIDTH PLATEAU

37. MIN WIDTH VALLEY

38. MINIMUM

39. NAND

40. NOR

41. NOT IN

42. NSET OF CONSECUTIVE VALUES

43. NVALUE

44. NVISIBLE FROM END

45. NVISIBLE FROM START

46. OR

47. PEAK

48. SIZE MAX SEQ ALLDIFFERENT

49. SIZE MAX STARTING SEQ ALLDIFFERENT

50. SOFT ALLDIFFERENT CTR

51. SOFT ALLDIFFERENT VAR

52. SOFT ALL EQUAL MAX VAR

53. SOFT ALL EQUAL MIN CTR

54. SOFT ALL EQUAL MIN VAR

55. SUM OF INCREMENTS

56. VALLEY

57. XOR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

1

2

39 40 48, 49 43 27 38

15 46 5

6 7 14

9
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atom

int col

col

int

1. ALL DIFFER FROM AT LEAST K POS

2. NVECTOR

3. ATLEAST NVECTOR

4. ATMOST NVECTOR

5. K SAME INTERVAL

6. K SAME MODULO

7. K USED BY INTERVAL

8. K USED BY MODULO

9. ORDERED ATLEAST NVECTOR

10. ORDERED ATMOST NVECTOR

11. ORDERED NVECTOR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

5 6

7 8 9 2 10

11

3 4

atom

int col

col

int3

1. DIFFN COLUMN

2. DIFFN INCLUDE

3. PLACE IN PYRAMID

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

1

2
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atom

int col

int2

1. BALANCE CYCLE

2. BALANCE PATH

3. BALANCE TREE

4. BIN PACKING

5. BINARY TREE

6. CYCLE

7. DOMAIN CONSTRAINT

8. IN INTERVALS

9. INCREASING NVALUE CHAIN

10. MAX INDEX

11. MIN INDEX

12. NPAIR

13. OPEN MAXIMUM

14. OPEN MINIMUM

15. ORDERED GLOBAL CARDINALITY

16. PATH

17. TREE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

16

5

17

atom

int col

int sint

1. CLIQUE

2. DISCREPANCY

3. K CUT

4. PROPER FOREST

atom

int col

int col

int

1. CUMULATIVE CONVEX
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atom

int col

int3

1. CIRCUIT CLUSTER

2. GRAPH CROSSING

3. ORCHARD

4. ORTH ON THE GROUND

5. TRACK

atom

int col

int2 sint

1. CUTSET

atom

int col

int4

1. COLOURED CUMULATIVE

2. CROSSING

3. CUMULATIVE

4. CUMULATIVE PRODUCT

5. TEMPORAL PATH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

3

1

atom

int col

int7

1. CUMULATIVE TWO D

atom

sint2
1. EQ SET

atom

sint col

int

1. OPEN ALLDIFFERENT
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atom

sint col

int2

1. LINK SET TO BOOLEANS

atom

col2

int

1. ALLDIFFERENT ON INTERSECTION

2. CONSECUTIVE GROUPS OF ONES

3. DISJOINT

4. INCOMPARABLE

5. INT VALUE PRECEDE CHAIN

6. INVERSE WITHIN RANGE

7. LEX DIFFERENT

8. LEX EQUAL

9. LEX GREATER

10. LEX GREATEREQ

11. LEX LESS

12. LEX LESSEQ

13. LEX LESSEQ ALLPERM

14. SAME

15. SAME INTERSECTION

16. SORT

17. USED BY

18. USES

19. VEC EQ TUPLE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

11 9 8 16 3

19

12 7 10 14 1

17 15

18
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atom

col

int

col

col

int

1. ALLDIFFERENT PARTITION

2. IN RELATION

3. ORDER

4. PATTERN

atom

col

int

col

int2

1. GLOBAL CARDINALITY

atom

col

int

col

int3

1. INCREASING GLOBAL CARDINALITY

2. GLOBAL CARDINALITY LOW UP

3. STRETCH CIRCUIT

4. STRETCH PATH

atom

col

int

col

int2 col

int

1. STRETCH PATH PARTITION

atom

col2

col

int

1. K SAME PARTITION

2. K USED BY PARTITION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

1

2
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atom

col2

int2

1. BIN PACKING CAPA

2. ELEM

3. ELEMENT GREATEREQ

4. ELEMENT LESSEQ

5. ELEMENTS

6. ELEMENTS ALLDIFFERENT

7. INDEXED SUM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

2

3 4

6

5

atom

col

int2

col

int3

1. STAGE ELEMENT

2. TREE RESOURCE

atom

col2

int sint

1. INVERSE SET

atom

col

int2

col

int5

1. COLOURED CUMULATIVES

2. CUMULATIVE WITH LEVEL OF PRIORITY

3. ELEM FROM TO

atom

col2

int3

1. CYCLE RESOURCE

2. DISJOINT TASKS

3. TWO ORTH ARE IN CONTACT

4. TWO ORTH DO NOT OVERLAP

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

3

4
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atom

col2

int2 sint

1. SYMMETRIC GCC

atom

col2

int3 sint

1. SYMMETRIC CARDINALITY
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3.5.3 Constraints with 3 arguments

atom

int3

1. DISTANCE

2. EQ CST

3. GCD

4. GEQ CST

5. IN INTERVAL

6. LEQ CST

7. MULTIPLE

8. NEQ CST

9. POWER

10. REMAINDER

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

2 1

4 6
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atom

atom int col

int

1. ARITH

2. ARITH SLIDING

3. CHANGE

4. CIRCULAR CHANGE

5. LONGEST CHANGE

6. NVALUES

7. NVALUES EXCEPT 0

8. PERIOD

9. PERIOD EXCEPT 0

10. PRODUCT CTR

11. RANGE CTR

12. SUM CTR

13. SUM CUBES CTR

14. SUM POWERS4 CTR

15. SUM POWERS5 CTR

16. SUM POWERS6 CTR

17. SUM SQUARES CTR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

8

9

atom

atom int col

int2

1. ASSIGN AND NVALUES

2. SCALAR PRODUCT

atom

atom int

int2

col

int5

1. CUMULATIVES
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atom

atom int col

col

int

1. NVECTORS

atom

int col

atom

col

col

int

1. CHANGE VECTORS

2. PERIOD VECTORS
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atom

int2 col

int

1. ALL BALANCE

2. ATLEAST

3. ATMOST

4. BALANCE INTERVAL

5. BALANCE MODULO

6. DOMAIN

7. ELEMENT

8. EXACTLY

9. INT VALUE PRECEDE

10. ITH POS DIFFERENT FROM 0

11. MAX N

12. MAXIMUM MODULO

13. MIN N

14. MINIMUM EXCEPT 0

15. MINIMUM GREATER THAN

16. MINIMUM MODULO

17. MULTI INTER DISTANCE

18. NEQUIVALENCE

19. NEXT GREATER ELEMENT

20. NINTERVAL

21. NUMBER DIGIT

22. SAME REMAINDER

23. SMOOTH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

19 8

15 2 3

atom

int2 col

sint

1. SET VALUE PRECEDE
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atom

int2 col

col

int

1. IN SAME PARTITION

2. MAX OCC OF CONSECUTIVE TUPLES OF VALUES

3. MAX OCC OF SORTED TUPLES OF VALUES

4. MAX OCC OF TUPLES OF VALUES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

4

3

atom

int2 col

int2

1. INTERVAL AND SUM

2. MAP

3. PATH FROM TO

4. TREE RANGE

atom

int2 col

int3

1. INVERSE OFFSET

2. SHIFT

3. SLIDING TIME WINDOW

atom

int2 col

int4

1. CYCLE OR ACCESSIBILITY

2. SLIDING TIME WINDOW SUM
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atom

int col2

int

1. ALLDIFFERENT SAME VALUE

2. AMONG

3. AMONG VAR

4. CARDINALITY ATLEAST

5. CARDINALITY ATMOST

6. CLAUSE AND

7. CLAUSE OR

8. DIFFER FROM AT LEAST K POS

9. ELEMENTN

10. NVALUE ON INTERSECTION

11. SAME INTERVAL

12. SAME MODULO

13. SOFT SAME VAR

14. SOFT USED BY VAR

15. USED BY INTERVAL

16. USED BY MODULO

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

2

3 5 15 16 14

11 12 13

atom

int col

int

col

col

int

1. BALANCE PARTITION

2. CARDINALITY ATMOST PARTITION

3. CHANGE PARTITION

4. COND LEX COST

5. NCLASS

atom

int col

int

col

int2

1. GLOBAL CARDINALITY NO LOOP

2. SUM OF WEIGHTS OF DISTINCT VALUES
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atom

int col

int

col

int3

1. MINIMUM WEIGHT ALLDIFFERENT

2. SLIDING DISTRIBUTION

atom

int col2

int2

1. ELEMENT SPARSE

2. ELEMENTS SPARSE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

1

2

atom

int col2

int3

1. ORTH ON TOP OF ORTH

2. TASKS INTERSECTION

3. TWO ORTH COLUMN

4. TWO ORTH INCLUDE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

3

4

atom

int col

int2 col

int

col

int col2

int

1. GEOST

atom

sint2 col

int

1. ROOTS

atom

sint col

int

col

int2

1. OPEN GLOBAL CARDINALITY
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atom

sint col

int

col

int3

1. OPEN GLOBAL CARDINALITY LOW UP

atom

col3

int

1. CORRESPONDENCE

2. LEX BETWEEN

3. SORT PERMUTATION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

3

1

atom

col

int

col2

int sint

1. SUBGRAPH ISOMORPHISM

2. GRAPH ISOMORPHISM

atom

col2

int

col

col

int

1. COND LEX GREATER

2. COND LEX GREATEREQ

3. COND LEX LESS

4. COND LEX LESSEQ

5. SAME PARTITION

6. USED BY PARTITION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

1 3 5

2 4 6

atom

col2

int

col

int2

1. SAME AND GLOBAL CARDINALITY
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atom

col2

int

col

int3

1. SAME AND GLOBAL CARDINALITY LOW UP
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3.5.4 Constraints with 4 arguments

atom

atom2 int col

int2

1. CHANGE PAIR

atom

atom int2 col

int

1. COUNT

2. CYCLIC CHANGE

3. CYCLIC CHANGE JOKER

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

2

3

atom

atom int sint col

int2

1. SUM SET

atom

atom int col2

int

1. ARITH OR

2. COUNTS

3. DISTANCE BETWEEN

4. DISTANCE CHANGE

atom

atom int col

int

col

int2

1. ASSIGN AND COUNTS

atom

int4
1. IN INTERVAL REIFIED
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atom

int3 col

int

1. AMONG INTERVAL

2. AMONG MODULO

3. ELEMENT PRODUCT

4. SLIDING SUM

atom

int3 col

int2

1. NEXT ELEMENT

2. SLIDING TIME WINDOW FROM START

atom

int3 col

int4

1. SOFT CUMULATIVE

atom

int2 sint col

int

1. OPEN ATLEAST

2. OPEN ATMOST

atom

int2 col2

int

1. AMONG LOW UP

2. COMMON

3. SLIDING CARD SKIP0

4. SOFT SAME INTERVAL VAR

5. SOFT SAME MODULO VAR

6. SOFT USED BY INTERVAL VAR

7. SOFT USED BY MODULO VAR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

4 5

6 7

atom

int2 col

int

col

int2

1. INTERVAL AND COUNT

2. WEIGHTED PARTIAL ALLDIFF
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atom

int2 col

int

col

int sint

1. SUM

atom

int2 col

int

col

int3

1. GLOBAL CARDINALITY LOW UP NO LOOP

atom

int sint col2

int

1. OPEN AMONG

atom

int sint col

int col2

int

col

int5 col

int

1. GEOST TIME

atom

int col3

int sint

1. DOM REACHABILITY

atom

int col2

int

col

col

int

1. SOFT SAME PARTITION VAR

2. SOFT USED BY PARTITION VAR

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
implication graph

1

2

atom

int col

int

col

int2

col

int3

1. GLOBAL CARDINALITY WITH COSTS
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atom

int col2

int2

col

int3

1. TWO LAYER EDGE CROSSING
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3.5.5 Constraints with 5 arguments

atom

int sint col

int2

col

int5 col

int

col

int col

int2

col2

int

1. VISIBLE

atom

int4 col

int

1. CONNECT POINTS

atom

int3 col2

int

1. AMONG SEQ

2. COMMON INTERVAL

3. COMMON MODULO

atom

int2 col2

int

col

col

int

1. COMMON PARTITION
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3.5.6 Constraints with 6 arguments

atom

int5 col

int

1. RELAXED SLIDING SUM

atom

int5 col

int3

1. ELEMENT MATRIX

atom

int4 col2

int

1. GROUP SKIP ISOLATED ITEM

atom

int4 col

int

col

int3

1. CYCLE CARD ON PATH

atom

int3 col3

int3

1. COLORED MATRIX
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3.5.7 Constraints with 8 arguments

atom

atom int6 col

int

1. EQUILIBRIUM

atom

int6 col2

int

1. FULL GROUP

2. GROUP

3.5.8 Constraints with 10 arguments

atom

atom int8 col

int

1. CHANGE CONTINUITY
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3.6 Meta-keywords attached to the keywords
This section explains the meaning of the meta-keywords attached to the keywords of the
catalogue. Keywords are usually associated with a single meta-keyword, except some
that are linked to the meta-keyword modelling exercises and to one other meta-keyword
like modelling or puzzles (e.g., see the keywords magic series or degree of diversity of
a set of solutions). For each meta-keyword it first gives the list of keywords using
the corresponding meta-keyword and then defines the meta-keyword. At present the
following meta-keywords are in use.

3.6.1 Application area

• Air traffic management,

• Assignment,

• Bioinformatics,

• Configuration problem,

• Deadlock breaking,

• Floor planning problem,

• Frequency allocation problem,

• Phylogeny,

• Program verification,

• SLAM problem,

• Sport timetabling,

• Workload covering.

Denotes that a keyword is related to an application area.

3.6.2 Characteristic of a constraint

• All different,

• Automaton,

• Automaton with array of counters,

• Automaton with counters,

• Automaton with same input symbol,

• Automaton without counters,

• Coloured,

• Consecutive values,
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• Convex,

• Convex hull relaxation,

• Core,

• Cyclic,

• Derived collection,

• Difference,

• Disequality,

• Equality,

• Hypergraph,

• Joker value,

• Maximum,

• maxint,

• Minimum,

• Modulo,

• Non-deterministic automaton,

• Pair,

• Partition,

• Product,

• Range,

• Rank,

• Reified automaton constraint,

• Reified constraint,

• Sort,

• Sort based reformulation,

• Sum,

• Time window,

• Tuple,

• Undirected graph,

• Vector.

Denotes that a keyword is related to a characteristic of the description of a con-
straint.

3.6.3 Combinatorial object

• Involution,

• Latin square,

• Matching,

• Multiset,

• Path,

• Pentomino,

• Periodic,

• Permutation,

• Relation,

• Run of a permutation,

• Sequence.

Denotes that a keyword corresponds to a combinatorial object or to a characteristic
of a combinatorial object.
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3.6.4 Complexity

• 3-dimensional-matching,
• 3-SAT,
• Minimum hitting set cardinality,
• Rectangle clique partition,

• Sequencing with release times and deadlines,

• Set packing,

• Subset sum.

Denotes that a keyword corresponds to a problem used to recognise NP-hard prob-
lems attached to the feasibility of a constraint.

3.6.5 Constraint network structure

• Alpha-acyclic constraint network(2),

• Alpha-acyclic constraint network(3),

• Berge-acyclic constraint network,

• Centered cyclic(1) constraint network(1),

• Centered cyclic(2) constraint network(1),

• Centered cyclic(3) constraint network(1),

• Circular sliding cyclic(1) constraint net-
work(2),

• Sliding cyclic(1) constraint network(1),

• Sliding cyclic(1) constraint network(2),

• Sliding cyclic(1) constraint network(3),

• Sliding cyclic(2) constraint network(2),

Denotes that a keyword designates a specific constraint network structure occurring
repeatedly in several constraints.
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3.6.6 Constraint type

• Arithmetic constraint,

• Boolean constraint,

• Conditional constraint,

• Constraint on the intersection,

• Counting constraint,

• Data constraint,

• Decomposition,

• Decomposition-based violation measure,

• Extension,

• Graph constraint,

• Graph partitioning constraint,

• Logic,

• Open automaton constraint,

• Open constraint,

• Order constraint,

• Overlapping alldifferent,

• Predefined constraint,

• Proximity constraint,

• Relaxation,

• Resource constraint,

• Scheduling constraint,

• Sliding sequence constraint,

• Soft constraint,

• System of constraints,

• Temporal constraint,

• Timetabling constraint,

• Value constraint,

• Value partitioning constraint,

• Variable-based violation measure.

Denotes that a keyword designates a constraint category.

3.6.7 Constraint arguments

• Aggregate,

• Binary constraint,

• Business rules,

• Constraint between three collections of vari-
ables,

• Constraint between two collections of vari-
ables,

• Constraint involving set variables,

• Contractible,

• Extensible,

• Pure functional dependency,

• Reverse of a constraint,

• Ternary constraint,

• Unary constraint.

Denotes that a keyword provides an information about the arguments of a con-
straint.
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3.6.8 Filtering

• Abstract interpretation,

• Arc-consistency,

• Bipartite matching,

• Bipartite matching in convex bipartite
graphs,

• Border,

• Bound-consistency,

• Compulsory part,

• Constructive disjunction,

• Convex bipartite graph,

• Cost filtering constraint,

• Cumulative longest hole problems,

• DFS-bottleneck,

• Duplicated variables,

• Dynamic programming,

• Entailment,

• Flow,

• Glue matrix,

• Hall interval,

• Hungarian method for the assignment prob-
lem,

• Hybrid-consistency,

• Klee measure problem,

• Linear programming,

• Minimum cost flow,

• Minimum task duration,

• Phi-tree,

• Planarity test,

• Quadtree,

• SAT,

• Strong articulation point,

• Strong bridge,

• Sweep.

Denotes that a keyword is related to an existing or a potential filtering algorithm of
a constraint or to an algorithm checking a ground instance of a constraint.

3.6.9 Final graph structure

• Acyclic,

• Apartition,

• Bipartite,

• Circuit,

• Connected component,

• Consecutive loops are connected,

• Directed acyclic graph,

• Equivalence,

• No cycle,

• No loop,

• One succ,

• Strongly connected component,

• Symmetric,

• Tree,

• Vpartition.

Denotes that a keyword describes the structure of the final graph associated with a
constraint.
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3.6.10 Geometry

• Alignment,

• Contact,

• Geometrical constraint,

• Guillotine cut,

• Line segments intersection,

• Non-overlapping,

• Orthotope,

• Polygon,

• Positioning constraint,

• RCC8,

• Touch.

Denotes that a keyword is related to a geometrical constraint or to a geometrical
object.

3.6.11 Heuristics
• Heuristics,

• Heuristics and Berge-acyclic constraint network,

• Heuristics and lexicographical ordering,

• Heuristics for two-dimensional rectangle placement problems,

• Labelling by increasing cost,

• Limited discrepancy search,

• Regret based heuristics,

• Regret based heuristics in matrix problems.

Denotes that a keyword is related to a search heuristic.
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3.6.12 Miscellaneous

• Obscure.

Denotes that a keyword does not belong to any class.

3.6.13 Modelling
• Array constraint,

• Assigning and scheduling tasks that run in parallel,

• Assignment dimension,

• Assignment to the same set of values,

• At least,

• At most,

• Balanced assignment,

• Balanced tree,

• Boolean channel,

• Channelling constraint,

• Cluster,

• Cost matrix,

• Cycle,

• Degree of diversity of a set of solutions,

• Difference between pairs of variables,

• Disjunction,

• Domain channel,

• Domain definition,

• Dual model,

• Empty intersection,

• Equality between multisets,

• Excluded,

• Functional dependency,

• Included,

• Inclusion,

• Incompatible pairs of values,

• Interval,



3.6. META-KEYWORDS ATTACHED TO THE KEYWORDS 157

• Matrix,

• Matrix model,

• Maximum number of occurrences,

• Minimum number of occurrences,

• Multi-site employee scheduling with calendar constraints,

• Number of changes,

• Number of distinct equivalence classes,

• Number of distinct values,

• Permutation channel,

• Preferences,

• Relaxation dimension,

• Scalar product,

• Scheduling with machine choice, calendars and preemption,

• Sequence dependent set-up,

• Set channel,

• Shared table,

• Sparse functional dependency,

• Sparse table,

• Statistics,

• Table,

• Variable indexing,

• Variable subscript,

• Zero-duration task.

Denotes that a keyword is related to a modelling issue.

3.6.14 Modelling exercises
• Assigning and scheduling tasks that run in parallel: inspired by a modelling question on the Choco

mailing list about an assignment and scheduling problem involving nurses and surgeons, use one
GEOST constraint as well as inequalities for breaking symmetries with respect to groups of identical
persons. The keyword relaxation dimension shows how to extend the previous model in order to take
into account over-constrained assignment and scheduling problems.

• Assignment to the same set of values: inspired by a presentation of F. Hermenier about a task assign-
ment problem where subtasks have to be assigned a same group of machines, use several ELEMENT
constraints and a single resource constraint that has an assignment dimension (e.g., BIN PACKING,
CUMULATIVES, DIFFN, GEOST).

http://choco.emn.fr/
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• Degree of diversity of a set of solutions: inspired by a discussion with E. Hebrard, how to
find out 9 completely different solutions for the 10-queens problem, use the ALLDIFFERENT, the
SOFT ALLDIFFERENT CTR and the LEX CHAIN LESS constraints.

• Logigraphe: inspired by an instance from [328, page 36], use a conjunction of
CONSECUTIVE GROUPS OF ONES constraints.

• Magic series: a special case of Autoref, use a single GLOBAL CARDINALITY constraint.

• Metro: a model from H. Simonis, use only LEQ CST constraints and propagation (i.e., no enumera-
tion) for modelling the shortest path problem in a network.

• Multi-site employee scheduling with calendar constraints: a timetabling problem, inspired by H. Si-
monis, where tasks have to be assigned groups of employes located in different countries subject to
different calendars, use resource constraints as well as the CALENDAR constraint.

• n-Amazons: an extension of the n-queens problem, use one ALLDIFFERENT constraint, two
ALLDIFFERENT CST constraints and three SMOOTH constraints.

• relaxation dimension: illustrate how to model over-constrained placement problems by introducing
an extra dimension in the context of the DIFFN and the GEOST constraints.

• Scheduling with machine choice, calendars and preemption: a scheduling problem with crossable
and non-crossable unavailability periods as well as resumable and non-resumable tasks, illustrate the
use of two time coordinates systems within the same model, use precedence and resource constraints
as well as the CALENDAR constraint.

• Sequence dependent set-up: a classical scheduling problem, use the SUM CTR, ELEMENT and
TEMPORAL PATH constraints.

• Zebra puzzle: illustrate the duality of choice of what is a variable and what is a value in a con-
straint model as well as the difficulty of stating the constraints in one of the two models, use the
ALLDIFFERENT, the ELEMENT – with variables in the table – and the INVERSE constraints.

Denotes that a keyword describes a constraint modelling exercise.
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3.6.15 Problems

• Channel routing,

• Demand profile,

• Domination,

• Facilities location problem,

• Graph colouring,

• Hamiltonian,

• Maximum clique,

• Minimum feedback vertex set,

• Pallet loading,

• Pattern sequencing,

• Pick-up delivery,

• Producer-consumer,

• Schur number,

• Strip packing,

• Two-dimensional orthogonal packing,

• Weighted assignment.

Denotes that a keyword is related to a problem from Operations Research.

3.6.16 Puzzles
• Autoref,

• Conway packing problem,

• Costas arrays,

• Dominating queens,

• Euler knight,

• Golomb ruler,

• Logigraphe,

• Magic hexagon,

• Magic series,

• Magic square,

• n-Amazons,

• n-queens,

• Packing almost squares,

• Partridge,

• pentomino,

• Shikaku,

• Smallest rectangle area,

• Smallest square for packing consecutive dominoes,

• Smallest square for packing rectangles with distinct sizes,

• Squared squares,
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• Sudoku,

• Zebra puzzle.

Denotes that a keyword is related to a specific puzzle.

3.6.17 Symmetry

• Indistinguishable values,

• Lexicographic order,

• Matrix symmetry,

• Multiset ordering,

• Symmetry,

• Value precedence.

Denotes that a keyword is related to a symmetry breaking technique [129, 180].
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3.7 Keywords attached to the global constraints
This section explains the meaning of the keywords attached to the global constraints
of the catalogue. For each keyword it first gives the list of global constraints using
the corresponding keyword and then defines the keyword. At present the following
keywords are in use.

3.7.1 H3-dimensional-matching à [2 CONS]

• K SAME, • SOFT ALL EQUAL MIN CTR.

Denotes that, by reduction to 3-dimensional-matching, deciding whether a con-
straint has a solution or not was shown to be NP-hard. The 3-dimensional-matching
problem can be described as follows: given a set S ⊆ X × Y ×Z, where X , Y and Z
are disjoint sets having the same number of elements m, does S contain a subset M of
m elements such that no two elements of M agree in any coordinate?

3.7.2 H3-SAT à [5 CONS]

• ATMOST NVALUE,
• COMMON,
• GLOBAL CARDINALITY,

• NVALUE,

• USES.

Denotes that, by reduction to 3-SAT, deciding whether a constraint has a solution or
not was shown to be NP-hard. The 3-SAT problem can be described as follows: given
a collection C of clauses involving a set of variables V , where each clause has exactly
3 variables, is there a truth assignment for V that satisfies all the clauses of C?
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3.7.3 HAbstract interpretation à [2 CONS]

• GCD, • POWER.

Denotes that abstract interpretation was used for deriving a filtering algorithm for
a constraint C from a polynomial algorithm describing a checker for a ground instance
of C. Abstract interpretation [136] executes an algorithm on abstract values in order
to deduce some information about that algorithm.

3.7.4 HAcyclic à [28 CONS]

• ALLDIFFERENT ON INTERSECTION,

• ALLPERM,

• AMONG LOW UP,

• AMONG VAR,

• ARITH OR,

• ASSIGN AND COUNTS,

• ASSIGN AND NVALUES,

• BIN PACKING,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CARDINALITY ATMOST PARTITION,

• CHANGE,

• CHANGE CONTINUITY,

• CHANGE PAIR,

• CHANGE PARTITION,

• COMMON,

• COMMON INTERVAL,

• COMMON MODULO,

• COMMON PARTITION,

• CORRESPONDENCE,

• COUNTS,

• CROSSING,

• CUTSET,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DECREASING,

• LEX EQUAL,

• USES.

Denotes that a constraint is defined by a single graph constraint for which the final
graph does not have any circuit.
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3.7.5 HAggregate à [36 CONS]

• AMONG (+, union, sunion),

• AMONG DIFF 0 (+, union),

• AMONG INTERVAL (+, union, id, id),

• AMONG LOW UP (+, +, union, sunion),

• AMONG MODULO (+, union, id, id),

• AMONG VAR (+, union, union),

• AND (∧, union),

• COUNT (id, union, id, +) when RELOP ∈
[<,≤,≥, >],

• COUNTS (unions, union, id, +) when
RELOP ∈ [<,≤,≥, >],

• DISCREPANCY (union, +),

• EXACTLY (+, union, id),

• INT VALUE PRECEDE (id, id, union),

• INT VALUE PRECEDE CHAIN (id, union),

• MAXIMUM (max, union),

• MINIMUM (min, union),

• MINIMUM GREATER THAN (min, id,
union),

• NAND (∨, union),

• NOR (∧, union),

• OR (∨, union),

• PRODUCT CTR (union, id, ∗) when CTR ∈
[=],

• SAME (union, union),

• SAME INTERVAL (union, union, id),

• SAME MODULO (union, union, id),

• SAME PARTITION (union, union, id),

• SCALAR PRODUCT (union, id, +),

• SUM CTR (union, id, +),

• SUM CUBES CTR (union, id, +),

• SUM POWERS4 CTR (union, id, +),

• SUM POWERS5 CTR (union, id, +),

• SUM POWERS6 CTR (union, id, +),

• SUM SQUARES CTR (union, id, +),

• USED BY (union, union),

• USED BY INTERVAL (union, union, id),

• USED BY MODULO (union, union, id),

• USED BY PARTITION (union, union, id),

• USES (union, union).

Denotes that, given two instances of a constraint, we can combine (i.e., aggregate)
these two instances in order to obtain a third constraint, which has the same name as the
first two constraints. The first two constraints are called the source constraints, while
the implied constraint is called the target constraint. The ith argument of the target
constraint is obtained by combining the ith arguments of the two source constraints.
This is specified for each argument by one of the following options.

• id: check that the corresponding arguments of the two source constraints are
identical and take it as the argument of the target constraint; this option if often
used for specifying that an argument corresponding to a parameter has to be the
same in the two source constraints, as well as in the target constraint (i.e., the
source and the target constraints share the same parameter).

• +: add the corresponding arguments of the two source constraints.

• ∗: multiply the corresponding arguments of the two source constraints.

• ∧: make an and between the corresponding 0-1 arguments of the two source
constraints.

• ∨: make an or between the corresponding 0-1 arguments of the two source con-
straints.
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• min: take the minimum of the corresponding arguments of the two source con-
straints.

• max: take the maximum of the corresponding arguments of the two source con-
straints.

• union: take the union, without removing duplicates, of the collections items of
the corresponding arguments of the two source constraints.

• sunion: take the union, and remove duplicates, of the collections items of the
corresponding arguments of the two source constraints, where collections corre-
spond to collection of ground values (i.e., parameters).

Finally, the aggregation may me be conditioned by a list of restrictions, each restric-
tion corresponding to one of the restrictions described in Section 2.2.3. We call this
conditional aggregation.

Most constraints for which aggregation applies correspond to constraints where
one of the arguments is functionally determined by the other arguments. For example,
this is the case for the MAXIMUM(MAX, VARIABLES) constraint which forces MAX to be
equal to the maximum value assigned to the variables of VARIABLES. However some
constraints, like the SAME constraint, for which aggregation applies, do not have any
argument that is functionally determined by the other arguments.

We now present three examples of deductions that can be obtained by aggregating
two source constraints.

• AMONG(1, 〈4, 5, 5, 4, 1〉, 〈0, 1〉) ∧ AMONG(3, 〈1, 1, 9, 0〉, 〈0, 1〉) ⇒
AMONG(4, 〈4, 5, 5, 4, 1, 1, 1, 9, 0〉, 〈0, 1〉), where:

1. The first argument of the target constraint, i.e., 4, is equal to the sum of the
first arguments of the two source constraints, i.e., 1 + 3.

2. The second argument of the target constraint, 〈4, 5, 5, 4, 1, 1, 1, 9, 0〉, is
equal to the union (without removing duplicates) of the second arguments
〈4, 5, 5, 4, 1〉 and 〈1, 1, 9, 0〉 of the two source constraints.

3. The third arguments of the two source constraints are identical, i.e., 〈0, 1〉,
and the third argument of the target constraint.

• MAXIMUM(5, 〈3, 0, 5, 2, 5〉) ∧ MAXIMUM(9, 〈1, 1, 9, 0〉) ⇒
MAXIMUM(9, 〈3, 0, 5, 2, 5, 1, 1, 9, 0〉), where:

1. The first argument of the target constraint, i.e., 9, is equal to the maximum
value of the first arguments of the two source constraints, i.e., max(5, 9).

2. The second argument of the target constraint, 〈3, 0, 5, 2, 5, 1, 1, 9, 0〉, is
equal to the union (without removing duplicates) of the second arguments
〈3, 0, 5, 2, 5〉 and 〈1, 1, 9, 0〉 of the two source constraints.

• SAME(〈3, 3, 1〉, 〈3, 1, 3〉) ∧ SAME(〈1, 9, 1, 5, 5〉, 〈5, 5, 1, 1, 9〉) ⇒
SAME(〈3, 3, 1, 1, 9, 1, 5, 5〉, 〈3, 1, 3, 5, 5, 1, 1, 9〉), where:
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1. The first argument of the target constraint, 〈3, 3, 1, 1, 9, 1, 5, 5〉, is equal to
the union (without removing duplicates) of the first arguments 〈3, 3, 1〉 and
〈1, 9, 1, 5, 5〉 of the two source constraints.

2. The second argument of the target constraint, 〈3, 1, 3, 5, 5, 1, 1, 9〉, is
equal to the union (without removing duplicates) of the second arguments
〈3, 1, 3〉 and 〈5, 5, 1, 1, 9〉 of the two source constraints.

3.7.6 HAir traffic management à [4 CONS]

• ALL MIN DIST,

• K ALLDIFFERENT,

• MULTI INTER DISTANCE,

• SORT.

Denotes that a constraint was used for solving a problem in the area of air traffic
management.

3.7.7 HAlignment à [1 CONS]

• ORCHARD.

Denotes that a constraint forces the alignment of different sets of points.
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3.7.8 HAll different à [20 CONS]

• ALLDIFFERENT,

• ALLDIFFERENT BETWEEN SETS,

• ALLDIFFERENT CST,

• ALLDIFFERENT CONSECUTIVE VALUES,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT ON INTERSECTION,

• ALLDIFFERENT PARTITION,

• GOLOMB,

• K ALLDIFFERENT,

• OPEN ALLDIFFERENT,

• PERMUTATION,

• SIZE MAX STARTING SEQ ALLDIFFERENT,

• SIZE MAX SEQ ALLDIFFERENT,

• SOFT ALLDIFFERENT CTR,

• SOFT ALLDIFFERENT VAR,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT LOOP,

• WEIGHTED PARTIAL ALLDIFF.

Denotes that we have one or several cliques of disequalities or that a con-
straint is a variation of the ALLDIFFERENT constraint. Variations may be related
to relaxation (see, e.g., the ALLDIFFERENT EXCEPT 0, SOFT ALLDIFFERENT CTR,
and SOFT ALLDIFFERENT VAR constraints), or to specialisation (see, e.g., the
SYMMETRIC ALLDIFFERENT constraint), of the ALLDIFFERENT constraint. Varia-
tions may also result from an extension of the notion of disequality (see, e.g., the
ALLDIFFERENT INTERVAL, ALLDIFFERENT MODULO, ALLDIFFERENT PARTITION
and GOLOMB constraints).
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3.7.9 HAlpha-acyclic constraint network(2) à [15 CONS]

• AMONG,

• AMONG DIFF 0,

• AMONG INTERVAL,

• AMONG LOW UP,

• AMONG MODULO,

• ATLEAST,

• ATMOST,

• COUNT,

• COUNTS,

• DIFFER FROM AT LEAST K POS,

• EXACTLY,

• FULL GROUP,

• GROUP,

• GROUP SKIP ISOLATED ITEM,

• SLIDING CARD SKIP0.

Before defining alpha-acyclic constraint network(2) we first need to introduce the
following notions:

• The dual graph of a constraint network N is defined in the following way: to
each constraint ofN corresponds a vertex in the dual graph and if two constraints
have a non-empty set S of shared variables, there is an edge labelled S between
their corresponding vertices in the dual graph.

• An edge in the dual graph of a constraint network is redundant if its variables are
shared by every edge along an alternative path between the two end points [144].

• If the subgraph resulting from the removal of the redundant edges of the dual
graph is a tree the original constraint network is called α-acyclic [168].

Alpha-acyclic constraint network(2) denotes an α-acyclic constraint network such
that, for any pair of constraints, the two sets of involved variables share at most two
variables.

3.7.10 HAlpha-acyclic constraint network(3) à [5 CONS]

• FULL GROUP,
• GROUP,
• GROUP SKIP ISOLATED ITEM,

• ITH POS DIFFERENT FROM 0,

• MIN SIZE FULL ZERO STRETCH.

Alpha-acyclic constraint network(3) denotes an α-acyclic constraint network
(see alpha-acyclic constraint network(2)) such that, for any pair of constraints, the
two sets of involved variables share at most three variables.



168 3. DESCRIPTION OF THE CATALOGUE

3.7.11 HApartition à [1 CONS]

• CHANGE CONTINUITY.

Denotes that a constraint is defined by two graph constraints having the same initial
graph, where each arc of the initial graph belongs to one of the final graphs (but not to
both).

3.7.12 HArc-consistency à [117 CONS]

• ABS VALUE,

• ALLDIFFERENT,

• ALLDIFFERENT CST,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT PARTITION,

• AMONG,

• AMONG DIFF 0,

• AMONG INTERVAL,

• AMONG LOW UP,

• AMONG MODULO,

• AMONG SEQ,

• AND,

• ARITH,

• ARITH OR,

• ATLEAST,

• ATLEAST NVALUE,

• ATMOST,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CARDINALITY ATMOST PARTITION,

• CLAUSE AND,

• CLAUSE OR,

• COND LEX COST,

• COND LEX GREATER,

• COND LEX GREATEREQ,

• COND LEX LESS,

• COND LEX LESSEQ,

• CONSECUTIVE GROUPS OF ONES,

• COUNT,

• COUNTS,

• DECREASING,

• DERANGEMENT,

• DISCREPANCY,

• DIVISIBLE,

• DOMAIN CONSTRAINT,

• ELEM,

• ELEM FROM TO,

• ELEMENT,

• ELEMENTN,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT MATRIX,

• ELEMENT SPARSE,

• ELEMENTS,

• ELEMENTS SPARSE,

• EQ,

• EQ CST

• EQUIVALENT,
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• EXACTLY,

• GEQ,

• GEQ CST,

• GLOBAL CARDINALITY LOW UP,

• GLOBAL CONTIGUITY,

• GT,

• IMPLY,

• IN,

• IN INTERVAL,

• IN INTERVAL REIFIED,

• IN INTERVALS,

• IN RELATION,

• IN SAME PARTITION,

• INCREASING,

• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• INVERSE,

• INVERSE OFFSET,

• LEQ,

• LEQ CST,

• LEX ALLDIFFERENT,

• LEX BETWEEN,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LT,

• MAXIMUM,

• MINIMUM,

• NAND,

• NEQ,

• NEQ CST,

• NOR,

• NOT ALL EQUAL,

• NOT IN,

• OPPOSITE SIGN,

• OR,

• ORDERED GLOBAL CARDINALITY,

• PATTERN,

• PRECEDENCE,

• SAME,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SAME SIGN,

• SIGN OF,

• SOFT ALL EQUAL MAX VAR,

• SOFT ALL EQUAL MIN VAR,

• STAGE ELEMENT,

• STRETCH CIRCUIT,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• STRICTLY DECREASING,

• STRICTLY INCREASING,

• SYMMETRIC ALLDIFFERENT,

• TREE,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH DO NOT OVERLAP,

• USED BY,

• VEC EQ TUPLE,

• XOR.

Denotes that, for a given constraint involving only domain variables, there is a
filtering algorithm that ensures arc-consistency. A constraint ctr defined on the distinct
domain variables V1, . . . , Vn is arc-consistent if and only if for every pair (V, v) such
that V is a domain variable of ctr and v ∈ dom(V ), there exists at least one solution to
ctr in which V is assigned the value v. As quoted by C. Bessière in [65], “a different
name has often been used for arc-consistency on non-binary constraints”, like domain
consistency, generalised arc-consistency or hyper arc-consistency.
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There is also a weaker form of arc-consistency that also try to remove values from
the middle of the domain of a variable V (i.e., unlike bound-consistency which focus
on reducing the minimum and maximum value of a variable), called range consistency
in [65], that is defined in the following way. A constraint ctr defined on the distinct
domain variables V1, . . . , Vn is range-consistent if and only if, for every pair (V, v)
such that V is a domain variable of ctr and v ∈ dom(V ), there exists at least a solution
to ctr in which, (1) V is assigned the value v, and (2) each variable U ∈ {V1, . . . , Vn}
distinct from V is assigned a value located in its range [U,U ].

3.7.13 HArithmetic constraint à [37 CONS]

• ABS VALUE,

• ARITH SLIDING,

• DISTANCE,

• DIVISIBLE,

• DIVISIBLE OR,

• EQ,

• EQ CST,

• GCD,

• GEQ,

• GEQ CST,

• GT,

• INCREASING SUM,

• LEQ,

• LEQ CST,

• LT,

• MULTIPLE,

• NEQ,

• NEQ CST,

• NUMBER DIGIT,

• OPPOSITE SIGN,

• POWER,

• PRODUCT CTR,

• RANGE CTR,

• REMAINDER,

• SAME REMAINDER,

• SAME SIGN,

• SIGN OF,

• SCALAR PRODUCT,

• SUM CTR,

• SUM SET,

• SUM CUBES CTR,

• SUM POWERS4 CTR,

• SUM POWERS5 CTR,

• SUM POWERS6 CTR,

• SUM SQUARES CTR,

• ZERO OR NOT ZERO,

• ZERO OR NOT ZERO VECTORS.

An arithmetic constraint between two or three variables or an arithmetic constraint
involving a sum, a product, or a difference between a maximum and a minimum value.
The non binary constraints were introduced within the catalogue since they are required
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for defining a given global constraint. For example, the SUM CTR constraint is used
within the definition of the CUMULATIVE constraint.

3.7.14 HArray constraint à [9 CONS]

• ELEM,
• ELEM FROM TO,
• ELEMENT,
• ELEMENTS ALLDIFFERENT,
• ELEMENT LESSEQ,

• ELEMENT GREATEREQ,

• ELEMENT MATRIX,

• ELEMENT PRODUCT,

• ELEMENT SPARSE.

A constraint that allows for expressing simple array equations.

3.7.15 HAssigning and scheduling tasks that run in parallel à

[3 CONS]

• DIFFN,
• GEOST,

• GEOST TIME.

Consider a set of tasks defined by a set of subtasks, where each subtask has the
following attributes:

• A start telling when the subtask starts.

• A duration giving the duration of the subtask.

• A deadline indicating the date by which the subtask must be finished.

• A person indicating which person performs the subtask.
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Both the start and the person correspond to decision variables, while the duration and
the deadline are integers. Since all subtasks of a same task must run in parallel, their
starts, durations and deadlines are identical. Since a person can perform at most one
task at each timepoint, persons assigned to the subtasks of a same task must all be
distinct. We also assume that a subtask cannot be preempted.

As an instance of this pattern, consider the problem of scheduling surgical opera-
tions in a hospital. Each surgery corresponds to a task that requires a number of persons
with specific skills; these persons will all work together during the operation (e.g., typ-
ically an anaesthetist, a surgeon and one or several nurses). Moreover, each person has
his own calendar defining his unavailability. On the one hand, let us assume we have
two anaesthetists, two surgeons and four nurses, labelled from 1 to 8. Each of them has
the following unavailability over the time horizon [0, 24]:

• The first anaesthetist is not available during the time periods [0, 1], [5, 6], and
[12, 16].

• The second anaesthetist is not available during the time periods [0, 2], [6, 6],
[15, 15], and [22, 22].

• The first surgeon is not available during the time periods [0, 1], [8, 9], and
[13, 14].

• The second surgeon is not available during the time periods [5, 5], and [20, 21].

• The four nurses are all not available during the time periods [0, 0], [7, 7], [12, 12],
and [22, 22].

On the other hand, let us suppose we have to schedule five surgery tasks, each of them
requiring a specific team:

• Task t1 needs one anaesthetist, one surgeon and two nurses during two consecu-
tive time slots.

• Task t2 needs one anaesthetist, one surgeon and one nurse during four consecu-
tive time slots.

• Task t3 needs one anaesthetist, two surgeons and two nurses during three con-
secutive time slots.

• Task t4 needs one anaesthetist, one surgeon and three nurses during two consec-
utive time slots.

• Task t5 needs one anaesthetist, one surgeon and one nurse during six consecutive
time slots.

Moreover, tasks t1, t2, t3, t4 and t5 must be respectively completed no later than time-
point 12, 15, 24, 24 and 24. The problem is modelled by using a two-dimensional
GEOST constraint, where the first and second dimensions respectively correspond to
the time and resource axes. For each person required by a task we create a rectangle
of length corresponding to the necessary duration and of height 1 (since it requires one
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person). The coordinates of the lower left point of the rectangle correspond to the start
of the corresponding task as well as to the person that will be assigned to the subtask
(i.e., a value between 1 and 2 for an anaesthetist, a value between 3 and 4 for a surgeon,
and a value between 5 and 8 for a nurse). Both the start and the person correspond to
a domain variable. Each unavailability period of an anaesthetist, a surgeon and a nurse
is modelled by introducing a fixed rectangle (i.e., its coordinates are set to the start of
the unavailability period and to the person to which the unavailability belongs; its du-
ration is set to the duration of the unavailability period) that prevent tasks overlapping
the corresponding time period for a specific person. This leads to the following GEOST
constraint,
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GEOST(2,

〈 oid− 1 sid− 2 x− 〈o1, a1〉, oid− 2 sid− 2 x− 〈o1, s1〉,
oid− 3 sid− 2 x− 〈o1, n11〉, oid− 4 sid− 2 x− 〈o1, n12〉,
oid− 5 sid− 4 x− 〈o2, a2〉, oid− 6 sid− 4 x− 〈o2, s2〉,
oid− 7 sid− 4 x− 〈o2, n2〉, oid− 8 sid− 3 x− 〈o3, a3〉,
oid− 9 sid− 3 x− 〈o3, s31〉, oid− 10 sid− 3 x− 〈o3, s32〉,
oid− 11 sid− 3 x− 〈o3, n31〉, oid− 12 sid− 3 x− 〈o3, n32〉,
oid− 13 sid− 2 x− 〈o4, a4〉, oid− 14 sid− 2 x− 〈o4, s4〉,
oid− 15 sid− 2 x− 〈o4, n41〉, oid− 16 sid− 2 x− 〈o4, n42〉,
oid− 17 sid− 2 x− 〈o4, n43〉, oid− 18 sid− 6 x− 〈o5, a5〉,
oid− 19 sid− 6 x− 〈o5, s5〉, oid− 20 sid− 6 x− 〈o5, n5〉,
oid− 21 sid− 2 x− 〈0, 1〉, oid− 22 sid− 2 x− 〈5, 1〉,
oid− 23 sid− 5 x− 〈12, 1〉, oid− 24 sid− 3 x− 〈0, 2〉,
oid− 25 sid− 1 x− 〈6, 2〉, oid− 26 sid− 1 x− 〈15, 2〉,
oid− 27 sid− 1 x− 〈22, 2〉, oid− 28 sid− 2 x− 〈0, 3〉,
oid− 29 sid− 2 x− 〈8, 3〉, oid− 30 sid− 2 x− 〈13, 3〉,
oid− 31 sid− 1 x− 〈5, 4〉, oid− 32 sid− 2 x− 〈20, 4〉,
oid− 33 sid− 1 x− 〈0, 5〉, oid− 34 sid− 1 x− 〈7, 5〉,
oid− 35 sid− 1 x− 〈12, 5〉, oid− 36 sid− 1 x− 〈22, 5〉,
oid− 37 sid− 1 x− 〈0, 6〉, oid− 38 sid− 1 x− 〈7, 6〉,
oid− 39 sid− 1 x− 〈12, 6〉, oid− 40 sid− 1 x− 〈22, 6〉,
oid− 41 sid− 1 x− 〈0, 7〉, oid− 42 sid− 1 x− 〈7, 7〉,
oid− 43 sid− 1 x− 〈12, 7〉, oid− 44 sid− 1 x− 〈22, 7〉,
oid− 45 sid− 1 x− 〈0, 8〉, oid− 46 sid− 1 x− 〈7, 8〉,
oid− 47 sid− 1 x− 〈12, 8〉, oid− 48 sid− 1 x− 〈22, 8〉〉,
〈sid− 1 t− 〈0, 0〉 l− 〈1, 1〉, sid− 2 t− 〈0, 0〉 l− 〈2, 1〉,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉, sid− 4 t− 〈0, 0〉 l− 〈4, 1〉,
sid− 5 t− 〈0, 0〉 l− 〈5, 1〉, sid− 6 t− 〈0, 0〉 l− 〈6, 1〉〉).

number of dimensions of the placement space: time and resources
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Figure 3.2: A solution to the surgery scheduling problem using four nurses where the
start and the latest completion time of each task are respectively shown in bold and in
red; a solution using only 3 nurses can be obtained by starting task t4 at instant 13 and
by assigning it to the second anaesthetist rather than to the first one.
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A deadline constraint for a surgery starting at o and of duration d is modelled by
a precedence constraint of the form o + d ≤ deadline . This leads to the five con-
straints o1 + 2 ≤ 12, o2 + 4 ≤ 15, o3 + 3 ≤ 24, o4 + 2 ≤ 24, and o5 + 6 ≤ 24.
Finally, we break symmetry on the assignment variables corresponding to a group
of similar persons. In the example, the four nurses are similar since (1) they all
have exactly the same unavailability periods, and since (2) no task requires a spe-
cific nurse. For each task using more than one nurse (i.e., tasks t1, t3, and t4) this
leads to a chain of strict inequalities, i.e., n11 < n12, n31 < n32, and n41 < n42 <
n43. Figure 3.2 depicts a solution to the problem corresponding to the assignment
tasks origin anaesthetist surgeon nurse
t1 o1 = 10 a1 = 1 s1 = 3 n11 = 5, n12 = 6
t2 o2 = 8 a2 = 2 s2 = 4 n2 = 7
t3 o3 = 2 a3 = 1 s31 = 3, s32 = 4 n31 = 5, n32 = 6
t4 o4 = 17 a4 = 1 s4 = 4 n41 = 5, n42 = 6, n43 = 7
t5 o5 = 16 a5 = 2 s5 = 3 n5 = 8

The entry corresponding to the keyword relaxation dimension shows how to ex-
press relaxation in the context of over-constrained problems where we have too many
surgeries to schedule with respect to the number of anaesthetists, surgeons and nurses
and to their unavailability periods.

3.7.16 HAssignment à [32 CONS]

• ALL BALANCE,

• ASSIGN AND COUNTS,

• ASSIGN AND NVALUES,

• BALANCE,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BALANCE PARTITION,

• BIN PACKING,

• BIN PACKING CAPA,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY LOW UP,

• GLOBAL CARDINALITY WITH COSTS,

• INCREASING GLOBAL CARDINALITY,

• INDEXED SUM,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• K ALLDIFFERENT,

• MAX NVALUE,

• MIN NVALUE,

• MIN SIZE SET OF CONSECUTIVE VAR,

• MINIMUM WEIGHT ALLDIFFERENT,

• OPEN GLOBAL CARDINALITY,

• OPEN GLOBAL CARDINALITY LOW UP,

• ORDERED GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SUM OF WEIGHTS OF DISTINCT VALUES,

• SYMMETRIC CARDINALITY,

• SYMMETRIC GCC,

• WEIGHTED PARTIAL ALLDIFF.
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A constraint related to assignment problems (i.e., K ALLDIFFERENT), or a con-
straint putting a restriction on all items that are assigned to the same equivalence
class or on all equivalence classes that are actually used. Usually an equiva-
lence class corresponds to a single value (see, e.g., the BALANCE, BIN PACKING,
GLOBAL CARDINALITY, and SUM OF WEIGHTS OF DISTINCT VALUES constraints),
to an interval of consecutive values (see, e.g., the BALANCE INTERVAL,
INTERVAL AND COUNT, and INTERVAL AND SUM constraints) or to all values that
are congruent modulo a given number (see, e.g., the BALANCE MODULO con-
straint). The restriction on all items that are assigned to the same equivalence
class can be, for example, a constraint on the number of items (see, e.g., the

CARDINALITY ATLEAST, CARDINALITY ATMOST, GLOBAL CARDINALITY, and
GLOBAL CARDINALITY LOW UP constraints) or a constraint on the sum of a specific
attribute (see, e.g., the BIN PACKING, and INTERVAL AND SUM constraints).

3.7.17 HAssignment dimension à [12 CONS]

• ASSIGN AND COUNTS (attribute bin of ITEMS collection),

• ASSIGN AND NVALUES (attribute bin of ITEMS collection),

• BIN PACKING (attribute bin of ITEMS collection),

• BIN PACKING CAPA (attribute bin of ITEMS collection),

• CALENDAR (attribute machine of INSTANTS collection),

• COLOURED CUMULATIVES (attribute machine of TASKS collection),

• CUMULATIVES (attribute machine of TASKS collection),

• DIFFN (attribute ori of ORTHOTOPE collection for which siz = 1),

• GEOST (attribute x of OBJECTS collection for which l = 1),

• GEOST TIME (attribute x of OBJECTS collection for which l = 1),

• INTERVAL AND COUNT (attribute origin of TASKS collection),

• INTERVAL AND SUM (attribute origin of TASKS collection).

A constraint for handling placement problems involving orthotopes, where one of
the dimensions of the placement space is so called an assignment dimension (i.e., one
of the attributes of a collection passed as argument indicates the assignment dimension
— the attribute is shown in parenthesis for each constraint). In order to illustrate the
notion of assignment dimension let us first introduce three typical examples described
in Figure 3.3:

• Part (A) of Figure 3.3 considers a scheduling problem where we have both to as-
sign a task to a machine and to fix its start to a time-point, in such a way that two
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tasks that overlap in time are not assigned to the same machine. In this context
the different potential machines where tasks can be assigned is called an assign-
ment dimension. This problem can be directly modelled by a CUMULATIVES, a
DIFFN or a GEOST constraint. The corresponding three ground instances encod-
ing the example are (attributes related to the assignment dimension are shown in
bold and red):

– CUMULATIVES(
〈machine− 1 origin− 2 duration− 2 end− 4 height− 1,
machine− 3 origin− 4 duration− 3 end− 7 height− 1,
machine− 1 origin− 7 duration− 1 end− 8 height− 1〉,
〈id− 1 capacity− 1,
id− 2 capacity− 1,
id− 3 capacity− 1〉)

– DIFFN(
〈orth− 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 1 end− 2〉,
orth− 〈ori− 4 siz− 3 end− 7, ori− 3 siz− 1 end− 4〉,
orth− 〈ori− 7 siz− 1 end− 8, ori− 1 siz− 1 end− 2〉〉)

– GEOST(2, 〈oid− 1 sid− 1 x− 〈2,1〉,
oid− 2 sid− 2 x− 〈4,3〉,
oid− 3 sid− 3 x− 〈7,1〉〉
〈sid− 1 t− 〈0,0〉 l− 〈2,1〉,
sid− 2 t− 〈0,0〉 l− 〈3,1〉,
sid− 3 t− 〈0,0〉 l− 〈1,1〉〉)

• Part (B) of Figure 3.3 considers a placement problem where we have both to
assign a rectangle to a rectangular piece and to locate it within the selected rect-
angular piece. In this context the different potential rectangular pieces where
rectangles can be placed is also called an assignment dimension. Note that in
such placement problems the size of an object in an assignment dimension is
always equal to one. This problem can be directly modelled by a DIFFN or a
GEOST constraint. The corresponding two ground instances encoding the exam-
ple are (attributes related to the assignment dimension are shown in bold and
red):

– DIFFN(〈orth− 〈ori− 2 siz− 1 end− 3,
ori− 2 siz− 2 end− 4,
ori− 2 siz− 2 end− 4〉,

orth− 〈ori− 1 siz− 1 end− 2,
ori− 3 siz− 3 end− 6,
ori− 1 siz− 2 end− 3〉,

orth− 〈ori− 2 siz− 1 end− 3,
ori− 6 siz− 1 end− 7,
ori− 1 siz− 3 end− 4〉〉)

– GEOST(3, 〈oid− 1 sid− 1 x− 〈2, 2, 2〉,
oid− 2 sid− 2 x− 〈1, 3, 1〉,
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oid− 3 sid− 3 x− 〈2, 6, 1〉〉
〈sid− 1 t− 〈0, 0, 0〉 l− 〈1, 2, 2〉,
sid− 2 t− 〈0, 0, 0〉 l− 〈1, 3, 2〉,
sid− 3 t− 〈0, 0, 0〉 l− 〈1, 1, 3〉〉)

• Part (C) of Figure 3.3 considers a placement problem where we have both to
assign a box to a container and to place it within the selected container. In
this context the different potential containers where boxes can be packed is also
called an assignment dimension. Note that in such placement problems the size
of an object in an assignment dimension is always equal to one. This problem can
be directly modelled by a DIFFN or a GEOST constraint. The corresponding two
ground instances encoding the example are (attributes related to the assignment
dimension are shown in bold and red):

– DIFFN(〈orth− 〈ori− 1 siz− 1 end− 2,
ori− 1 siz− 1 end− 2,
ori− 1 siz− 2 end− 3,
ori− 1 siz− 1 end− 2〉,

orth− 〈ori− 1 siz− 1 end− 2,
ori− 1 siz− 1 end− 2,
ori− 1 siz− 1 end− 2,
ori− 2 siz− 1 end− 3〉,

orth− 〈ori− 2 siz− 1 end− 3,
ori− 1 siz− 2 end− 3,
ori− 1 siz− 2 end− 3,
ori− 1 siz− 1 end− 2〉〉)

– GEOST(4, 〈oid− 1 sid− 1 x− 〈1, 1, 1, 1〉,
oid− 2 sid− 2 x− 〈1, 1, 1, 2〉,
oid− 3 sid− 3 x− 〈2, 1, 1, 1〉〉
〈sid− 1 t− 〈0, 0, 0, 0〉 l− 〈1, 1, 2, 1〉,
sid− 2 t− 〈0, 0, 0, 0〉 l− 〈1, 1, 1, 1〉,
sid− 3 t− 〈0, 0, 0, 0〉 l− 〈1, 2, 2, 1〉〉)

In summary, within the context of placement problems that use a constraint like DIFFN
or GEOST, the coordinate of an object in the assignment dimension corresponds to
the resource to which the object is assigned. Note that the size of an object in the
assignment dimension is always set to 1. This stems from the fact that an object is
assigned to a single resource.

Using constraints like COLOURED CUMULATIVES, CUMULATIVES, DIFFN, GEOST
or GEOST TIME allows to model directly with a single global constraint such problems
without knowing in advance to which machine, to which rectangular piece, to which
container, a task, a rectangle, a box will be assigned. For each object the potential val-
ues of its assignment variable provide the machines, the rectangular pieces, the con-
tainers to which the object can possibly be assigned. Note that this allows to avoid 0-1
variables for modelling such problems.
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Figure 3.3: Three illustrations of the notion of assignment dimension where the as-
signment dimension is shown in red

Within constraints like INTERVAL AND COUNT or INTERVAL AND SUM the con-
cept of assignment dimension is extended from the fact that a variable is assigned a
value to the fact that a variable is assigned an interval (i.e., a value in an interval).

3.7.18 HAssignment to the same set of values à [9 CONS]

• BIN PACKING,
• BIN PACKING CAPA,
• COLOURED CUMULATIVES,
• CUMULATIVES,
• DIFFN,

• ELEM,

• ELEMENT,

• GEOST,

• GEOST TIME.

Given several mutually disjoint finite sets of values S1,S2, . . . ,Sm (m > 1) such
that S1 ∪ S2 ∪ · · · ∪ Sm = {1, 2, . . . , p}, as well as a set of variables V1, V2, . . . , Vn,
the assignment to the same set of values subproblem consists of assigning all variables
V1, V2, . . . , Vn values that belong to the same set Si (1 ≤ i ≤ m). As we will see later
on, this subproblem arises naturally in many resource assignment problems where an
additional constraint between variables V1, V2, . . . , Vn also has to hold. The subprob-
lem can be modelled as a conjunction of ELEMENT constraints of the form:

ELEMENT(V1, 〈set of val1, set of val2, . . . , set of valp〉,SET INDEX ) ∧
ELEMENT(V2, 〈set of val1, set of val2, . . . , set of valp〉,SET INDEX ) ∧
. . .
ELEMENT(Vn, 〈set of val1, set of val2, . . . , set of valp〉,SET INDEX ),

where set of val i = j if and only if i ∈ Sj (i.e., set of val i corresponds to the index
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of the set that contains value i). The k-th ELEMENT constraint expresses that vari-
able Vk is assigned a value in set SSET INDEX . Since all ELEMENT constraints share
the same third argument this forces all variables V1, V2, . . . , Vn to be assigned a value
within the same set. Note that this conjunction of ELEMENT constraints corresponds
to a Berge-acyclic constraint network. Consequently, one can achieve arc-consistency
on this subproblem provided that arc-consistency is enforced on each ELEMENT con-
straint.

As an example, consider the four sets of values S1 = {3, 4, 8}, S2 = {1, 5},
S3 = {6, 7}, and S4 = {2, 9}, as well as four variables w, x, y and z that all must be
assigned values that belong to the same set Ss (1 ≤ s ≤ 4). This leads to the following
conjunction of ELEMENT constraints:

ELEMENT(w, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s) ∧
ELEMENT(x, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s) ∧
ELEMENT(y, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s) ∧
ELEMENT(z, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, s).
The first entry of the table 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉 is set to 2 since value 1 belongs

to S2. Similarly, the second entry of the table is set of 4 since value 2 belongs to S4.
The same logic is used for building up the other entries of the table.

A generalisation of this subproblem consists in lifting the restriction that the sets
of values S1,S2, . . . ,Sm are mutually disjoint. The only change to adapt the previous
model is to replace within each ELEMENT constraint each value val i (1 ≤ i ≤ p) by
a value variable Val i (i.e., each value of a value variable represents a set containing
i), where j ∈ dom(Val i) if and only if i ∈ Sj . Distinct ELEMENT constraints will
get distinct value variables. As an example, consider the previous four sets of values
where we add value 2 to S1 and value 5 to S3. We now have the sets S1 = {2, 3, 4, 8},
S2 = {1, 5}, S3 = {5, 6, 7}, and S4 = {2, 9} where value 2 occurs both in S1 and
S4, and value 5 appears both in S2 and S3. This leads to the following conjunction of
constraints:

IN(a1, 〈1, 4〉) ∧ IN(b1, 〈2, 3〉) ∧ ELEMENT(w, 〈2, a1, 1, 1, b1, 3, 3, 1, 4〉, s) ∧
IN(a2, 〈1, 4〉) ∧ IN(b2, 〈2, 3〉) ∧ ELEMENT(x, 〈2, a2, 1, 1, b2, 3, 3, 1, 4〉, s) ∧
IN(a3, 〈1, 4〉) ∧ IN(b3, 〈2, 3〉) ∧ ELEMENT(y, 〈2, a3, 1, 1, b3, 3, 3, 1, 4〉, s) ∧
IN(a4, 〈1, 4〉) ∧ IN(b4, 〈2, 3〉) ∧ ELEMENT(z, 〈2, a4, 1, 1, b4, 3, 3, 1, 4〉, s).
The domains of the variables ai (1 ≤ i ≤ 4) associated with the second entry of

the table7 of the ELEMENT constraints is set to 1 and 4 since value 2 belongs to S1 and
to S4. Similarly, the domain of variables bi (1 ≤ i ≤ 4) associated with the fifth entry
is set to 2 and 3 since value 5 belongs to S2 and S3. Note that, since variables a1, a2,
a3, a4, b1, b2, b3, b4 are distinct, the corresponding constraint network is still Berge-
acyclic. We now provide an alternative model where the ith entry of the table of the kth

(1 ≤ k ≤ n) ELEMENT constraint corresponds to a variable Ski for which the initial
domain is the set of values that belong to Si (1 ≤ i ≤ m). We have a conjunction of
ELEMENT constraints of the form:

ELEMENT(SET INDEX , 〈S11, S12, . . . , S1m〉, V1) ∧
ELEMENT(SET INDEX , 〈S21, S22, . . . , S2m〉, V2) ∧
. . .

7The table corresponds to the second argument of the ELEMENT constraint.
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ELEMENT(SET INDEX , 〈Sn1, Sn2, . . . , Snm〉, Vn),
where SET INDEX is a variable ranging from 1 to m designating the selected set.
This model perhaps seems more natural. However unlike the first model, when the sets
S1,S2, . . . ,Sm are mutually disjoint, it enforces using variables instead of integers in
the table of each ELEMENT constraint. Like the first model, it is Berge-acyclic.

Now that we have presented two dual models for the assignment to the same
set of values subproblem, we introduce the resource assignment with groups pat-
tern, which uses several instances of the subproblem. We consider a set of tasks
t1, t2, . . . , tq (q ≥ 1) tasks, where each task ti (1 ≤ i ≤ q) is decomposed into
si subtasks tij (1 ≤ j ≤ si). All subtasks that belong to one and the same task
should be assigned the same group, where groups are defined by the finite sets of val-
ues S1,S2, . . . ,Sm (m > 1) introduced early on. For this purpose an assignment
variable and a group variable are respectively associated with each subtask and each
task. In addition, we also have a resource constraint involving all subtasks. This re-
source constraint has an assignment dimension corresponding to the different resources
where subtasks can potentially be assigned. To each resource corresponds a value of
S1 ∪ S2 ∪ · · · ∪ Sm = {1, 2, . . . , p}. Depending on the kind of resource constraint we
have (e.g., BIN PACKING, CUMULATIVES, DIFFN, GEOST), each subtask has additional
attributes that characterise it. For example, if we have a BIN PACKING constraint then,
in addition to the assignment dimension that corresponds to the bin where a subtask
will be assigned, we also have a weight attribute that describes how much space a sub-
task uses in a bin. Then the BIN PACKING constraint expresses that the total weight of
the subtasks in each bin does not exceed a given fixed capacity.
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other subtask attributes
(some may be common)

assignment variables

group variables

grouping constraints (expressed with ELEMENT constraints):
all subtasks of a task have to be assigned a same group

resource constraints (expressed, for example, with BIN PACKING

CUMULATIVES, DIFFN or GEOST constraints): all subtasks share some
common resource which has a limited capacity

Figure 3.4: Illustration of the constraint network associated with the resource assign-
ment with groups pattern

Figure 3.4 illustrates the constraint network associated with the resource assign-
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ment with groups pattern. Lower circles represent the group variables associated with
the different tasks (three tasks in the example), while all the other circles represent
the attributes of the different subtasks (i.e., vertically aligned circles correspond to the
attributes of a given subtask). All circles that are associated with the same task are
coloured with the same colour. As said before, each subtask has an attribute that gives
the resource to which the resource will be assigned (called assignment variables in Fig-
ure 3.4) and other attributes that depend of the resource constraint we are considering
(called other subtask attributes in the Figure). Each blue rounded box corresponds to
a group constraint which enforces all subtasks of a given task to be assigned the same
group (i.e., within this blue box, each line segment represents an ELEMENT constraint
of the assignment to the same set of values subproblem). Finally, the pink rounded box
represents the resource constraint that involves all subtasks.

Before illustrating the resource assignment with groups pattern on a particular re-
source constraint, we first point out a potential weakness that is inherent to this con-
straint network, no matter what kind of resource constraint we use. When pruning the
assignment variables, the resource constraint will ignore the groups (since the resource
constraint is not aware of the ELEMENT constraints) and will therefore miss some filter-
ing. Consequently one may complete the constraint network by some global necessary
conditions. When fixing variables it may be a good idea to fix all variables that are
attached to one task before considering the next task. While fixing the variables of a
task one may first assign its group variable, and second fix the variables of its subtasks;
again we may prefer to fix all variables of a subtask before considering the next subtask.
The idea behind this heuristic is to try to avoid the creation of infeasible subproblems
during search.

t21

t31

t11

t13

t12 t22

t32

1 2 3 4 5 6 7 8 9

2 4 1 1 2 3 3 1 4

≤ 5

assignment dimension

groups of bins:
• group 1 = {3, 4, 8} • group 2 = {1, 5}
• group 3 = {6, 7} • group 4 = {2, 9}

Figure 3.5: Illustration of the resource assignment with groups pattern in the context
of a BIN PACKING resource constraint (subtasks of the same colour are assigned to the
same group of bins)

Figure 3.5 illustrates the resource assignment with groups pattern when the re-
source constraint corresponds to a BIN PACKING constraint. As in Figure 3.4, we have
three tasks t1, t2 and t3 such that:

• Three subtasks t11, t12 and t13 are associated with task t1. They have a respective
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weight of 2, 3 and 2 and are coloured in green in Figure 3.5.

• Two subtasks t21 and t22 of respective weight 2 and 3 are associated with task
t2. They are coloured in yellow.

• Two subtasks t31 and t32 of respective weight 2 and 1 are associated with task
t3. They are coloured in orange.

We consider 9 bins that are partitioned into four groups of bins S1 = {3, 4, 8} (coloured
in light blue in Figure 3.5), S2 = {1, 5} (coloured in light green), S3 = {6, 7}
(coloured in light brown), and S4 = {2, 9} (coloured in light violet), and enforce
that all subtasks that are associated with the same task are assigned the same group of
bins. In addition, the sum of the weights of the subtasks that are assigned the same
bin should not exceed the capacity of the bins, 5 in our example. Within the solution
depicted by Figure 3.5, all constraints are satisfied since:

1. For each task, all its subtasks are assigned the same group of bins (i.e., all sub-
tasks that have the same colour are assigned bins with the same colour).

2. The capacity constraint of each bin is respected (i.e., the overall capacity of five
is never exceeded).

The conjunction of constraints corresponding to this solution is:
ELEMENT(4, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 1) ∧
ELEMENT(8, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 1) ∧
ELEMENT(4, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 1) ∧
ELEMENT(2, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
ELEMENT(9, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
ELEMENT(2, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
ELEMENT(9, 〈2, 4, 1, 1, 2, 3, 3, 1, 4〉, 4) ∧
BIN PACKING(5, 〈bin− 4 weight− 2, bin− 8 weight− 3, bin− 4 weight− 2,

bin− 2 weight− 2, bin− 9 weight− 3,
bin− 2 weight− 2, bin− 9 weight− 1〉).

For each subtask we have one ELEMENT constraint expressing that all subtasks of
a given task are assigned the same group of bins. Finally we have one BIN PACKING
constraint expressing the capacity condition.

We now quote two concrete examples of the resource assignment with groups pat-
tern:

• Given, (1) a set of jobs where each job is decomposed into a set of tasks, each
of them requiring an amount of memory for its execution, as well as (2) a set
of potential machines, each of them having a given available memory, organised
into clusters, the problem is to:

– Assign all tasks to machines in such a way that tasks from the same job are
assigned the same cluster.

– Fulfil the available memory constraint of each machine (i.e., the sum of the
required memory of all tasks that are assigned a given machine does not
exceed the machine available memory).
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This concrete problem corresponds to the example presented in Figure 3.5.

• Given, (1) a set of maintenance activities where each maintenance activity is
decomposed into a set of subactivities, each of them requiring a specific skill
and a given duration, as well as (2) a set of technicians, each of them having its
own home base location and its own working time window, the problem is to:

– Assign all maintenance subactivities to technicians in such a way that sub-
activities from the same activity are assigned technicians that have the same
home base location (i.e., each subactivity should be assigned a single tech-
nician).

– Fulfil both the working time window of each technician, and the fact that
subactivities that are assigned the same technician should not overlap (i.e.,
subactivities must be assigned a starting time and preemption is not al-
lowed).

In this problem we replace the BIN PACKING constraint by a
CUMULATIVES(TASKS, MACHINES,≤) constraint. To each item of the TASKS

collection corresponds a subactivity, such that:

– Its machine attribute designates the potential technicians that can take care
of this subactivity.

– Its origin attribute corresponds to the timepoint where the subactivity will
actually start.

– Its duration attribute is set to the duration of the corresponding subactiv-
ity.

– Its end attribute is equal to origin + duration.

– Its height attribute is set to one.

In addition to the subactivities, we also introduce for each technician two fixed
dummy tasks for preventing assigning subactivities outside its time window. To
each item of the MACHINES collection corresponds a technician, such that:

– Its id attribute is a fixed integer that uniquely identifies the technician.

– Its capacity attribute is set to one since it cannot perform more than one
subactivity at any timepoint.
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3.7.19 HAt least à [3 CONS]

• ATLEAST,
• CARDINALITY ATLEAST,

• OPEN ATLEAST.

A constraint enforcing that one or several values occur a minimum number of time
within a given collection of domain variables.

3.7.20 HAt most à [5 CONS]

• ATMOST,
• CARDINALITY ATMOST,
• CARDINALITY ATMOST PARTITION,

• MULTI INTER DISTANCE,

• OPEN ATMOST.

A constraint enforcing that one or several values occur a maximum number of time
within a given collection of domain variables.

3.7.21 HAutomaton à [147 CONS]

• ALL EQUAL EXCEPT 0,

• ALL EQUAL PEAK,

• ALL EQUAL PEAK MAX,

• ALL EQUAL VALLEY,

• ALL EQUAL VALLEY MIN,

• ALLDIFFERENT,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT ON INTERSECTION,

• ALLDIFFERENT SAME VALUE,

• AMONG,

• AMONG DIFF 0,

• AMONG INTERVAL,

• AMONG LOW UP,

• AMONG MODULO,



186 3. DESCRIPTION OF THE CATALOGUE

• AND,

• ARITH,

• ARITH OR,

• ARITH SLIDING,

• ASSIGN AND COUNTS,

• ATLEAST,

• ATMOST,

• BALANCE,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BETWEEN MIN MAX,

• BIG PEAK,

• BIG VALLEY,

• BIN PACKING,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CHANGE,

• CHANGE CONTINUITY,

• CHANGE PAIR,

• CHANGE VECTORS,

• CIRCULAR CHANGE,

• CLAUSE AND,

• CLAUSE OR,

• COND LEX COST,

• COND LEX GREATER,

• COND LEX GREATEREQ,

• COND LEX LESS,

• COND LEX LESSEQ,

• CONSECUTIVE GROUPS OF ONES,

• COUNT,

• COUNTS,

• CUMULATIVE,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DECREASING,

• DECREASING PEAK,

• DECREASING VALLEY,

• DEEPEST VALLEY,

• DIFFER FROM AT LEAST K POS,

• DISJOINT,

• DISTANCE CHANGE,

• DOMAIN CONSTRAINT,

• ELEM,

• ELEM FROM TO,

• ELEMENT,

• ELEMENTN,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT MATRIX,

• ELEMENT SPARSE,

• EQUIVALENT,

• EXACTLY,

• FIRST VALUE DIFF 0,

• FULL GROUP,

• GLOBAL CARDINALITY,

• GLOBAL CONTIGUITY,

• GROUP,

• GROUP SKIP ISOLATED ITEM,

• HIGHEST PEAK,

• IMPLY,

• IN,

• IN INTERVAL,

• IN SAME PARTITION,

• INCREASING,

• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INCREASING PEAK,

• INCREASING VALLEY,

• INFLEXION,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• INVERSE,

• ITH POS DIFFERENT FROM 0,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• LEX BETWEEN,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LONGEST CHANGE,



3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 187

• LONGEST DECREASING SEQUENCE,

• LONGEST INCREASING SEQUENCE,

• MAX DECREASING SLOPE,

• MAX INCREASING SLOPE,

• MAX NVALUE,

• MAXIMUM,

• MIN DECREASING SLOPE,

• MIN DIST BETWEEN INFLEXION,

• MIN INCREASING SLOPE,

• MIN N,

• MIN NVALUE,

• MIN SIZE FULL ZERO STRETCH,

• MIN SURF PEAK,

• MIN WIDTH PEAK,

• MIN WIDTH PLATEAU,

• MIN WIDTH VALLEY,

• MINIMUM,

• MINIMUM EXCEPT 0,

• MINIMUM GREATER THAN,

• NAND,

• NEXT ELEMENT,

• NO PEAK,

• NO VALLEY,

• NOR,

• NOT ALL EQUAL,

• NOT IN,

• NVALUE,

• OPEN MAXIMUM,

• OPEN MINIMUM,

• OR,

• PATTERN,

• PEAK,

• SAME,

• SEQUENCE FOLDING,

• SLIDING CARD SKIP0,

• SMOOTH,

• STAGE ELEMENT,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• STRICTLY DECREASING,

• STRICTLY INCREASING,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH DO NOT OVERLAP,

• USED BY,

• VALLEY,

• XOR.

A constraint for which the catalogue provides a deterministic automaton for the
ground case. This automaton can usually be used for deriving mechanically a filtering
algorithm for the general case. We have the following three types of deterministic
automata:

• Deterministic automata without counters and without array of counters,

• Deterministic automata with counters but without array of counters,

• Deterministic automata with array of counters and possibly with counters.

Figure 3.6 shows three automata respectively associated with the
GLOBAL CONTIGUITY, the EXACTLY and the ALLDIFFERENT constraints. These
automata correspond to the three types we described above.
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Figure 3.6: Examples of automata where an initial state is indicated by an arc coming
from no state and an accepting state is denoted graphically by a double circle

3.7.22 HAutomaton with array of counters à [25 CONS]

• ALLDIFFERENT,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT ON INTERSECTION,

• ALLDIFFERENT SAME VALUE,

• ASSIGN AND COUNTS,

• BALANCE,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BIN PACKING,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CUMULATIVE,

• DISJOINT,

• GLOBAL CARDINALITY,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• INVERSE,

• MAX NVALUE,

• MIN N,

• MIN NVALUE,

• NVALUE,

• SAME,

• USED BY.

A constraint for which the catalogue provides a deterministic automaton with array
of counters and possibly with counters.
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3.7.23 HAutomaton with counters à [59 CONS]

• ALL EQUAL EXCEPT 0,

• ALL EQUAL PEAK,

• ALL EQUAL PEAK MAX,

• ALL EQUAL VALLEY,

• ALL EQUAL VALLEY MIN,

• AMONG,

• AMONG DIFF 0,

• AMONG INTERVAL,

• AMONG LOW UP,

• AMONG MODULO,

• ARITH SLIDING,

• ATLEAST,

• ATMOST,

• BIG PEAK,

• BIG VALLEY,

• CHANGE,

• CHANGE CONTINUITY,

• CHANGE PAIR,

• CHANGE VECTORS,

• CIRCULAR CHANGE,

• COUNT,

• COUNTS,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DECREASING PEAK,

• DECREASING VALLEY,

• DEEPEST VALLEY,

• DIFFER FROM AT LEAST K POS,

• DISTANCE CHANGE,

• EQUILIBRIUM,

• EXACTLY,

• FIRST VALUE DIFF 0,

• FULL GROUP,

• GROUP,

• GROUP SKIP ISOLATED ITEM,

• HIGHEST PEAK,

• INCREASING PEAK,

• INCREASING VALLEY,

• INFLEXION,

• ITH POS DIFFERENT FROM 0,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• LONGEST CHANGE,

• LONGEST DECREASING SEQUENCE,

• LONGEST INCREASING SEQUENCE,

• MAX DECREASING SLOPE,

• MAX INCREASING SLOPE,

• MIN DECREASING SLOPE,

• MIN DIST BETWEEN INFLEXION,

• MIN INCREASING SLOPE,

• MIN SIZE FULL ZERO STRETCH,

• MIN SURF PEAK,

• MIN WIDTH PEAK,

• MIN WIDTH PLATEAU,

• MIN WIDTH VALLEY,

• PEAK,

• SLIDING CARD SKIP0,

• SMOOTH,

• VALLEY.

A constraint for which the catalogue provides a deterministic automaton with coun-
ters but without array of counters.
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3.7.24 HAutomaton with same input symbol à [39 CONS]

• ALL EQUAL PEAK,

• ALL EQUAL PEAK MAX,

• ALL EQUAL VALLEY,

• ALL EQUAL VALLEY MIN,

• CHANGE CONTINUITY (NB PERIOD CHANGE),

• CHANGE CONTINUITY (NB PERIOD CONTINUITY),

• CHANGE CONTINUITY (MIN SIZE CHANGE),

• CHANGE CONTINUITY (MIN SIZE CONTINUITY),

• DECREASING PEAK,

• DECREASING VALLEY,

• DEEPEST VALLEY,

• FULL GROUP (NGROUP),

• FULL GROUP (MIN SIZE),

• FULL GROUP (MAX SIZE),

• FULL GROUP (MIN DIST),

• FULL GROUP (MAX DIST),

• FULL GROUP (NVAL),

• GLOBAL CONTIGUITY,

• GROUP (NGROUP),

• GROUP (MIN SIZE),

• GROUP (MIN DIST),

• GROUP SKIP ISOLATED ITEM (NGROUP),

• GROUP SKIP ISOLATED ITEM (MIN SIZE),

• GROUP SKIP ISOLATED ITEM (MAX SIZE),

• HIGHEST PEAK,

• INCREASING PEAK,

• INCREASING VALLEY,

• INFLEXION,

• LONGEST DECREASING SEQUENCE,

• LONGEST INCREASING SEQUENCE,

• MIN DIST BETWEEN INFLEXION,

• MIN SIZE FULL ZERO STRETCH,

• MIN SURF PEAK,

• MIN WIDTH PEAK,

• MIN WIDTH VALLEY,

• NO PEAK,

• NO VALLEY,

• PEAK,

• VALLEY.

A constraint for which the catalogue provides an automaton belonging to the fol-
lowing category:

• Symbols of the alphabet are split in two categories: neutral ones and non-neutral
ones.

• Non-neutral symbols correspond to symbols occurring on transitions between
two distinct states, while neutral symbols correspond to all the other symbols of
the alphabet.

• Self-loops labelled by a neutral symbol do not modify any counter.

• Ignoring transitions labelled by neutral symbols, every state has its incoming
transitions labelled by the same non-neutral symbol.

• Ignoring transitions labelled by neutral symbols, outgoing transitions of a state
are not labelled by the symbol associated with its incoming non-loop transitions.

For such automata we define the semantics of a state s as the regular expression asso-
ciated with the language fragment obtained from entering state s to just before leaving
state s.

As an example, consider the VALLEY constraint and its automaton depicted by Fig-
ure 3.7. The alphabet A corresponds to the set of symbols {<,=, >} from which <
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s : stationary/increasing mode ({< | =}∗)
u : decreasing mode (> {> | =}∗)

STATE SEMANTICS

N = Cs{C ← 0} u

VARi = VARi+1

VARi < VARi+1

VARi > VARi+1

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1,
{C ← C + 1}

Figure 3.7: Semantics of the states of the automaton of the VALLEY constraint (an
accepting state is denoted graphically by a double circle)

and > are non-neutral symbols (i.e., the symbols associated with the transitions be-
tween states s and u), and = is a neutral symbol. First there is no counter modification
on all self-loops. If we remove the self-loops carrying the neutral symbol = we have
that:

• All incoming transitions in state s are labelled by the non-symbol <, and all
outgoing transitions from state s are not labelled by <.

• All incoming transitions in state u are labelled by the non-symbol >, and all
outgoing transitions from state u are not labelled by >.

The corresponding state semantics is given by the upper-leftmost box.

3.7.25 HAutomaton without counters à [60 CONS]

• AND,

• ARITH,

• ARITH OR,

• BETWEEN MIN MAX,

• CLAUSE AND,

• CLAUSE OR,

• COND LEX COST,

• CONSECUTIVE GROUPS OF ONES,

• DECREASING,

• DOMAIN CONSTRAINT,

• ELEM,

• ELEM FROM TO,

• ELEMENT,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT MATRIX,
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• ELEMENT SPARSE,

• ELEMENTN,

• EQUIVALENT,

• GLOBAL CONTIGUITY,

• IMPLY,

• IN,

• IN INTERVAL,

• IN SAME PARTITION,

• INCREASING,

• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• LEX BETWEEN,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• MAXIMUM,

• MINIMUM,

• MINIMUM EXCEPT 0,

• MINIMUM GREATER THAN,

• NAND,

• NEXT ELEMENT,

• NO PEAK,

• NO VALLEY,

• NOR,

• NOT ALL EQUAL,

• NOT IN,

• OPEN MAXIMUM,

• OPEN MINIMUM,

• OR,

• PATTERN,

• SEQUENCE FOLDING,

• STAGE ELEMENT,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• STRICTLY DECREASING,

• STRICTLY INCREASING,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH DO NOT OVERLAP,

• XOR.

A constraint for which the catalogue provides a deterministic automaton without
counters and without array of counters. Note that the filtering algorithm [317] and the
reformulation [39] that were initially done in the context of deterministic automata can
also be used for non-deterministic automata. All these constraints are also annotated
with the keyword reified automaton constraint.
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3.7.26 HAutoref à [1 CONS]

• GLOBAL CARDINALITY.

A constraint that allows for modelling the autoref problem with a single constraint.
The autoref problem is a generalisation of the problem of finding a magic serie and
can be defined in the following way. Given an integer n > 0 and an integer m ≥ 0,
the problem is to find a non-empty finite series S = (s0, s1, . . . , sn, sn+1) such that
(1) there are si occurrences of i in S for each integer i ranging from 0 to n, and
(2) sn+1 = m. This leads to the following model:

GLOBAL CARDINALITY



〈
var− s0, var− s1, . . . , var− sn, var−m

〉
,〈 val− 0 noccurrence− s0,

val− 1 noccurrence− s1,
...

val− n noccurrence− sn

〉


23, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 5 and 23, 3,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 5 are the two unique
solutions for n = 27 and m = 5.

3.7.27 HBalanced assignment à [8 CONS]

• ALL BALANCE,

• BALANCE,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BALANCE PARTITION,

• DEVIATION,

• MAXIMUM,

• SPREAD.

A constraint to obtain a balanced assignment over a set of domain variables. Given
a set of domain variables {x1, x2, . . . , xn}, some classical balance criteria reported in
[379] are:

• The maximum value, i.e., the maximum value over xi (i ∈ [1, n]) can be mod-
elled with a MAXIMUM constraint.

• The maximum deviation, i.e., the maximum value over xi −
∑
j∈[1,n] xj

n (i ∈
[1, n]).
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• The total deviation, i.e.,
∑
i∈[1,n]

∣∣∣xi − ∑
j∈[1,n] xj

n

∣∣∣ can be modelled with a
DEVIATION constraint [382, 380].

• The total quadratic deviation, i.e,
∑
i∈[1,n]

(
xi −

∑
j∈[1,n] xj

n

)2
can be modelled

with a SPREAD constraint [318, 381].

3.7.28 HBalanced tree à [1 CONS]

• TREE RANGE.

A constraint that allows for expressing that we want to cover a digraph by one (or
more) balanced tree. A balanced tree is a tree where no leaf is much farther away than
a given threshold from the root than any other leaf. The distance between a leaf and
the root of a tree is the number of vertices on the path from the root to the leaf.

3.7.29 HBerge-acyclic constraint network à [40 CONS]

• AMONG,

• AND,

• ARITH,

• ARITH OR,

• CHANGE,

• CHANGE VECTORS,

• CLAUSE AND,

• CLAUSE OR,

• COND LEX COST,

• COND LEX GREATER,
• COND LEX GREATEREQ,
• COND LEX LESS,
• COND LEX LESSEQ,
• CONSECUTIVE GROUPS OF ONES,
• ELEMENTN,
• EQUIVALENT,
• GLOBAL CONTIGUITY,
• IMPLY,
• IN INTERVAL,
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• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• LEX BETWEEN,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• NAND,

• NOR,

• OR,

• PATTERN,

• SMOOTH,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH DO NOT OVERLAP,

• XOR.

A constraint for which the decomposition associated with its usually counter-free
deterministic automaton8 is Berge-acyclic. Arc-consistency for a Berge-acyclic con-
straint network is achieved by making each constraint of the corresponding network
arc-consistent [25]. A constraint network for which the corresponding intersection
graph does not contain any cycle and such that, for any pair of constraints, the two sets
of involved variables share at most one variable is Berge-acyclic, where Berge-acyclic
is defined by the following two conditions:

1. There is no more than one shared variable between any pair of constraints,

2. The hypergraph corresponding to the constraint network does not contain any
cycle. Within [64, page 150] a cycle of an hypergraph H is defined as “Let
H be an hypergraph on a finite set X . A cycle of length k (k ≥ 2) is a se-
quence (x1, E1, x2, E2, x3, . . . , Ek, x1) such that (1) E1, E2, . . . , Ek are dis-
tinct edges of H , (2) x1, x2, . . . , xk are distinct vertices of H , (3) xi, xi+1 ∈ Ei
(i = 1, 2, . . . , k − 1), (4) xk, x1 ∈ Ek.”

The intersection graph of a constraint network is built in the following way: to each
vertex corresponds a constraint and there is an edge between two vertices if and only if
the sets of variables involved in the two corresponding constraints intersect.

Parts (A), (B), (C) and (D) of Figure 3.8 provide four examples of constraint net-
works, while parts (E), (F), (G) and (F) give their corresponding intersection graphs.

1. The constraint network corresponding to part (A) is Berge-acyclic since its cor-
responding intersection graph (E) does not contain any cycle and since there is
no more than one shared variable between any pair of constraints.

2. The constraint network corresponding to part (B) is not Berge-acyclic since its
hypergraph (B) contains a cycle.

3. The constraint network corresponding to (C) is also not Berge-acyclic since its
third and fourth constraints share more than one variable.

8All the above constraints, except AMONG, CHANGE, and SMOOTH have a deterministic counter-free
automaton. The AMONG constraint has an automaton involving one counter and a single state, see Fig-
ure 5.61, while the CHANGE and the SMOOTH constraints have a counter-free non deterministic automaton,
see Figures 5.162 and 5.738.
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Figure 3.8: (A) and (D): Berge-acyclic constraint networks; (B) and (C): non Berge-
acyclic constraint networks; (E), (F), (G), (H): corresponding intersection graphs.

4. Finally, the constraint network corresponding to (D) is Berge acyclic, even
though its intersection graph (H) has a cycle, since its hypergraph (D) does not
contain any cycle and since there is no more than one shared variable between
any pair of constraints.

If we execute the filtering algorithm of each constraint of a Berge-acyclic constraint
network N in an appropriate order then each constraint needs only to be waken twice
in order to reach the fix-point. A static ordering for waking the constraints ofN can be
determined as follows:

• Consider the intersection graph GN associated with the constraint network N .
We perform a topological sort on GN , which always first selects in the remaining
part of GN a vertex (i.e., a constraint) which has only a single neighbour. Let
C1, C2, . . . , Cn be the constraints successively removed by the topological sort.

• Then, the static ordering for reaching a fix-point is given by the sequence
C1, C2, . . . , Cn−1, Cn, Cn−1, . . . , C2, C1, where each constraint is woken at
most twice. This can be done by using the notion of propagator group [258].
This facility allows the user of a solver controlling the order of execution of a
group of constraints. Propagator groups are useful, both to guaranty the theoret-
ical worst case complexity of a decomposition, and for accelerating convergence
to the fix-point in practice.

If we consider the Berge-acyclic constraint network given by Part (D) of Figure 3.8
an appropriate order for waking the constraints could be, for example, CTR1, CTR4,
CTR2, CTR3, CTR2, CTR4, CTR1.

For heuristics that try creating a Berge-acyclic constraint network see also the key-
word heuristics and Berge-acyclic constraint network.
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3.7.30 HBinary constraint à [26 CONS]

• ABS VALUE,

• DIVISIBLE,

• DIVISIBLE OR,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT SPARSE,

• EQ,

• EQ CST,

• EQ SET,

• GEQ,

• GEQ CST,

• GT,

• IN SAME PARTITION,

• LEQ,

• LEQ CST,

• LT,

• MULTIPLE,

• NEQ,

• NEQ CST,

• OPPOSITE SIGN,

• IN INTERVAL REIFIED,

• SAME SIGN,

• SIGN OF,

• STAGE ELEMENT,

• SUM SET,

• ZERO OR NOT ZERO.

A constraint involving only two variables.

3.7.31 HBioinformatics à [3 CONS]

• ALL DIFFER FROM AT LEAST K POS,
• SEQUENCE FOLDING,

• STABLE COMPATIBILITY.

Denotes that, for a given constraint, either there is a reference to its uses in Bioin-
formatics, or it was inspired by a problem from the area of Bioinformatics.
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3.7.32 HBipartite à [29 CONS]

• ALLDIFFERENT ON INTERSECTION,

• ALLPERM,

• AMONG LOW UP,

• AMONG VAR,

• ARITH OR,

• ASSIGN AND COUNTS,

• ASSIGN AND NVALUES,

• BIN PACKING,

• BIPARTITE,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CARDINALITY ATMOST PARTITION,

• CHANGE,

• CHANGE CONTINUITY,

• CHANGE PAIR,

• CHANGE PARTITION,

• COMMON,

• COMMON INTERVAL,

• COMMON MODULO,

• COMMON PARTITION,

• CORRESPONDENCE,

• COUNTS,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DECREASING,

• INVERSE WITHIN RANGE,

• LEX EQUAL,

• TWO ORTH DO NOT OVERLAP,

• USES.

Denotes that a constraint is defined by one graph constraint for which the final
graph is bipartite.

3.7.33 HBipartite matching à [15 CONS]

• ALLDIFFERENT,

• ALLDIFFERENT BETWEEN SETS,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT CST,

• ATLEAST NVALUE,

• CORRESPONDENCE,

• DISJOINT,

• INVERSE,

• LEX ALLDIFFERENT,

• SAME,

• SOFT ALLDIFFERENT VAR,

• SOFT SAME VAR,

• SOFT USED BY VAR,

• SYMMETRIC CARDINALITY,

• USED BY.

Denotes that, for a given constraint, a bipartite matching algorithm can be used
within its filtering algorithm. A bipartite matching is a subgraph that pairs every vertex
of a bipartite graph with exactly one other vertex. A bipartite graph is a graph for
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(A) (B)

Figure 3.9: (A) A bipartite graph and (B) one of its bipartite matching

which the set of vertices can be partitioned in two parts such that no two vertices in the
same part are joined by an edge. Part (A) of Figure 3.9 shows a bipartite graph with a
possible division of the vertices in black and white, while part (B) depicts with a thick
line a bipartite matching of this graph.

A used generalisation so called degree-matching of a graph is a spanning sugraph
where every vertex is associated with the bound degree of the matched edges.

3.7.34 HBipartite matching in convex bipartite graphs à [2 CONS]

• ALLDIFFERENT, • ALLDIFFERENT CST.

Denotes that, for a given constraint, a bipartite matching algorithm using Glover’s
rule for constructing a maximum matching of a convex bipartite graph can be used.
Given a convex bipartite graph G = (U, V,E) where U = {u1, u2, . . . , un} and
V = {v1, v2, . . . , vn}, Glover [205] showed how to efficiently compute a maximum
matching in such a graph:

1. First start with the empty matching.

2. Second for each vertex vj of V , (j = 1, 2, . . . ,m), if vj has still a free neighbour
in U , then add to the current matching the edge (ui, vj) for which ui is free and
αi = max{j : (xi, yj) ∈ E, yj ∈ V } is as small as possible.
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3.7.35 HBoolean channel à [1 CONS]

• DOMAIN CONSTRAINT.

A constraint that allows for making the link between a set of 0-1 variables
B1, B2, . . . , Bn and a domain variable V . It forces a condition of the form V = i ⇔
Bi = 1.

3.7.36 HBoolean constraint à [9 CONS]

• AND,
• CLAUSE AND,
• CLAUSE OR,
• EQUIVALENT,
• IMPLY,

• NAND,

• NOR,

• OR,

• XOR.

A Boolean constraint is a constraint of the form v = f(v1, . . . , vn) (n ≥ 2) where
v, v1, . . . , vn are 0-1 variables and where f(v1, . . . , vn) is a logical expression involv-
ing connectors, such as ¬, ∨, or ∧.

3.7.37 HBorder à [1 CONS]

• PERIOD.

A constraint that can be related to the notion of border, which we define now. Given
a sequence s = urv, r is a prefix of swhen u is empty, r is a suffix of swhen v is empty,
r is a proper factor of s when r 6= s. A border of a non-empty sequence s is a proper
factor of s, which is both a prefix and a suffix of s. We have that the smallest period of
a sequence s is equal to the size of s minus the length of the longest border of s.
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3.7.38 HBound-consistency à [19 CONS]

• ALLDIFFERENT,

• ALL MIN DIST,

• ATMOST1,

• ATMOST NVALUE,

• NVALUE,

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY LOW UP,

• INCREASING SUM,

• K ALLDIFFERENT,

• MULTI INTER DISTANCE,

• SAME,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SLIDING SUM,

• SOFT ALL EQUAL MAX VAR,

• SOFT ALL EQUAL MIN CTR,

• SORT,

• SUM FREE,

• SUM OF INCREMENTS,

• USED BY.

Denotes that, for a given constraint, there is a filtering algorithm or a reformulation
in term of other constraints that ensures bound-consistency for its domain variables.9 A
filtering algorithm or a reformulation ensure bound-consistency for a given constraint
ctr using distinct domain variables if and only if for every domain variable V of ctr:

• There exists at least one solution to ctr such that V = V and every other domain
variable W of ctr is assigned to a value located in its range [W,W ],

• There exists at least one solution to ctr such that V = V and every other domain
variable W of ctr is assigned to a value located in its range [W,W ].

This consistency is called bound(Z) consistency in [65]. One of its interest is that
it sometimes gives the opportunity to come up with a filtering algorithm that has a
lower complexity than the algorithm that achieves arc-consistency. Discarding holes
from the domain variables usually leads to graphs with a specific structure for which
one can take advantage in order to derive more efficient graph algorithms. Filtering
algorithms that achieve bound-consistency can also be used in a pre-processing phase
before applying a more costly filtering algorithm that achieves arc-consistency.

Note that there is a second definition of bound-consistency, called bound(D) con-
sistency in [65], where the range [W,W ] is replaced by the domain of the variable W .
However within the context of global constraints most filtering algorithms do not refer
to this second definition.

Finally, within the context of constraints involving only set variables,
bound-consistency is defined in the following way. A constraint ctr defined on dis-
tinct set variables is bound-consistent if and only if for every pair (V, v) such that V is
a set variable of ctr and v an integer value, if v ∈ V then v belongs to the set assigned
to V in all solutions to ctr and if v ∈ V \ V then v belongs to the set assigned to V in
at least one solution and is excluded from this set in at least one solution.

9In the context of the NVALUE constraint, bound-consistency is only achieved if and only if, the min-
imum of the variable that denotes the number of distinct values is not constrained at all. In the context
of the K ALLDIFFERENT constraint, bound-consistency is only achieved when we have two overlapping
ALLDIFFERENT constraints, see [80] for more details.
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3.7.39 HBusiness rules à [3 CONS]

• CYCLE,
• DIFFN,

• GEOST.

Denotes that a dedicated language was introduced within an argument of a global
constraint for directly specifying a specific type of business rules:

• The CYCLE constraint was extended in order to accept rules specifying forbidden
sequences of vertices within each cycle [93].

• The DIFFN constraint was extended in order to accept calendar rules specifying
the way tasks can be interrupted or not on each resource [26]. This was done
since many real scheduling problems have not only to consider disjunctive and
assignment constraints, but also operational rules expressing how tasks can be
interrupted.

• The GEOST constraint was extended in order to directly accept a great variety of
packing and placement rules [107].

3.7.40 HCentered cyclic(1) constraint network(1) à [9 CONS]

• BETWEEN MIN MAX,
• DOMAIN CONSTRAINT,
• IN,
• MAXIMUM,
• MINIMUM,

• MINIMUM EXCEPT 0,

• NOT IN,

• OPEN MAXIMUM,

• OPEN MINIMUM.

A constraint network corresponding to the pattern depicted by Figure 3.10. Cir-
cles depict variables, while arcs are represented by a set of variables. Grey circles
correspond to optional variables. All pairs of constraints have at most one variable in
common.
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. . . . . . . . .

Figure 3.10: Hypergraph associated with a centered cyclic(1) constraint network(1)

3.7.41 HCentered cyclic(2) constraint network(1) à [8 CONS]

• ELEM,

• ELEMENT,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT SPARSE,

• IN SAME PARTITION,

• MINIMUM GREATER THAN,

• STAGE ELEMENT.

. . . . . . . . .

Figure 3.11: Hypergraph associated with a centered cyclic(2) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 3.11. Cir-
cles depict variables, while arcs are represented by a set of variables. Grey circles
correspond to optional variables.
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3.7.42 HCentered cyclic(3) constraint network(1) à [2 CONS]

• ELEMENT MATRIX, • NEXT ELEMENT.

. . . . . . . . .

Figure 3.12: Hypergraph associated with a centered cyclic(3) constraint network(1)

A constraint network corresponding to the pattern depicted by Figure 3.12. Cir-
cles depict variables, while arcs are represented by a set of variables. Grey circles
correspond to optional variables.

3.7.43 HChannel routing à [1 CONS]

• CONNECT POINTS.

A constraint that can be used for modelling channel routing problems. Channel
routing consists of creating a layout in a rectangular region of a VLSI chip in order to
link together the terminals of different modules of the chip. Connections are usually
made by wire segments on two different layers: horizontal wire segments on the first
layer are placed along lines called tracks, while vertical wire segments on the second
layer connect terminals to the horizontal wire segments, with vias at the intersection.
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3.7.44 HChannelling constraint à [9 CONS]

• CALENDAR,
• DOMAIN CONSTRAINT,
• INVERSE,
• INVERSE EXCEPT LOOP,
• INVERSE OFFSET,

• INVERSE SET,

• INVERSE WITHIN RANGE,

• LINK SET TO BOOLEANS,

• SAME.

Constraints that allow for linking two models of the same problem [223]. Usually
channelling constraints show up in the following context:

• When a problem can be modelled by using different types of variables (e.g., 0-1
variables, domain variables, set variables),

• When a problem can be modelled by using two distinct matrices of variables
representing the same information redundantly,

• When, in a problem, the roles of the variables and the values can be interchanged.
This is typically the case when we have a bijection between a set of variables and
the values they can take.

• When, in a problem, we use two time coordinates systems (e.g., see CALENDAR).

3.7.45 HCircuit à [7 CONS]

• BALANCE CYCLE,
• CIRCUIT,
• CUTSET,
• CYCLE,

• PROPER CIRCUIT,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT LOOP.

A constraint such that its initial or its final graph corresponds to zero
(e.g., CUTSET), one (e.g., CIRCUIT) or several (see, e.g., the CYCLE, and
SYMMETRIC ALLDIFFERENT constraints) vertex-disjoint circuits.
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3.7.46 HCircular sliding cyclic(1) constraint network(2) à [1 CONS]

• CIRCULAR CHANGE.

A constraint network corresponding to the pattern depicted by Figure 3.13. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.13: Hypergraph corresponding to a circular sliding cyclic(1) constraint net-
work(2), where the two red circles correspond to the same variable

3.7.47 HCluster à [1 CONS]

• CIRCUIT CLUSTER.

A constraint that partitions the vertices of an initial graph into several clusters.
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3.7.48 HColoured à [5 CONS]

• ASSIGN AND COUNTS,
• COLOURED CUMULATIVE,
• COLOURED CUMULATIVES,

• CYCLE CARD ON PATH,

• INTERVAL AND COUNT.

A constraint with a collection where one of the attributes is a colour.

3.7.49 HCompulsory part à [9 CONS]

• COLOURED CUMULATIVE,
• COLOURED CUMULATIVES,
• CUMULATIVE,
• CUMULATIVE CONVEX,
• CUMULATIVE PRODUCT,

• CUMULATIVE TWO D,

• CUMULATIVES,

• DIFFN,

• DISJUNCTIVE.

A constraint for which the filtering algorithm may use the notion of compulsory
part. The notion of compulsory part was introduced by A. Lahrichi within the context
of cumulative scheduling problems [259], [261], [260] as well as within the context of
rectangles placement problems [262]. Within these two contexts, the compulsory part
respectively corresponds to the intersection of all feasible instances of a task or to the
intersection of all feasible instances of a rectangle.

Figure 3.14 illustrates the notion of compulsory part in the context of scheduling
and placement problems. The first, second and third rows respectively corresponds
to the CUMULATIVE [1], the CUMULATIVE TRAPEZE [330, 331] and the DIFFN [50]
constraints. The first, second and third columns respectively correspond to the shape
of the object for which we compute the compulsory part, to the extreme positions
of the object and to the corresponding compulsory part. When both, the shape of
an object is convex and the domain of its origin is also convex, we do not need to
consider all feasible instances of the object to compute its compulsory part. We only
need to position the object to the extreme positions of its domain and to compute the
intersection to get its compulsory part [50].

• This is the case of the CUMULATIVE constraint where a task is positioned to its
earliest and latest starts smin and smax (see the first row and second column of
Figure 3.14).
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Figure 3.14: Illustration of the notion of compulsory part

• This is also the case of the DIFFN constraint where an orthotope is positioned to
its 2 ·n extreme positions, where n is the number of dimensions of the placement
space (see the third row and second column of Figure 3.14, where the origin
of the rectangle is fixed to the extreme positions (sxmin , symin ), (sxmax , symin ),
(sxmin

, symax
), and (sxmax

, symax
)).

• But this is not the case of the CUMULATIVE TRAPEZE constraint with a task that
has a valley, i.e. a task for which a resource consumption decrease is followed
by a resource consumption increase. In addition of computing the intersection
between the two extreme positions Imin and Imax of a task, we must also consider
the valleys to further reduce Imin ∩ Imax as explained now [331, page 250]. The
end of a valley is the lowest rightmost point of a valley. We must remove from
Imin ∩ Imax all parts that are located both (1) between the earliest start and latest
end of the valley end, (2) and on top of the valley. Figure 3.15 illustrates this
point for the task used in the second row and first column of Figure 3.14.
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valley end

s e
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Imin Imax

Imin ∩ Imax
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(B)

eminsmax

(C)

Figure 3.15: Illustrating the computation of the compulsory part of a task with a valley:
(A) the task shape and its valley end in red, (B) in cyan the intersection between the
task positioned at its earliest start (in dashed) and its latest start (in dotted); in pink the
part located (1) between the earliest and latest positions of the valley end, and (2) on
top of the valley, (C) the compulsory part of the task, i.e., Imin ∩ Imax from which we
remove the pink part on top of the valley.

3.7.50 HConditional constraint à [2 CONS]

• SIZE MAX SEQ ALLDIFFERENT,

• SIZE MAX STARTING SEQ ALLDIFFERENT.

A constraint that allows for expressing that some constraints can be enforced during
the enumeration phase.

3.7.51 HConfiguration problem à [1 CONS]

• ELEMENT PRODUCT.

A constraint that was used for modelling configuration problems. Within the con-
text of configuration problems [411], it is crucial to identify all variable-value pairs
which do not participate to any solution. This stems from the fact that one wants typi-
cally to avoid proposing invalid choices to the user of such configuration systems.

Note also that open constraints are also useful in the context of configuration prob-
lems.
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3.7.52 HConnected component à [21 CONS]

• ALLDIFFERENT ON INTERSECTION,

• BALANCE CYCLE,

• BALANCE PATH,

• BALANCE TREE,

• BINARY TREE,

• CHANGE CONTINUITY,

• CONNECTED,

• CYCLE,

• CYCLE CARD ON PATH,

• CYCLE RESOURCE,

• GLOBAL CONTIGUITY,

• GROUP,

• K CUT,

• MAP,

• NVALUE ON INTERSECTION,

• PATH,

• PROPER FOREST,

• TEMPORAL PATH,

• TREE,

• TREE RANGE,

• TREE RESOURCE.

Denotes that a constraint uses in its definition a graph property (e.g., MAX NCC,
MIN NCC, NCC) constraining the connected components of its associated final
graph.

3.7.53 HConsecutive loops are connected à [3 CONS]

• GROUP,
• STRETCH PATH,

• STRETCH PATH PARTITION.

Denotes that the graph constraints of a global constraint use only the PATH and
the LOOP arc generators and that their final graphs do not contain consecutive vertices
that are not connected together by an arc. Moreover all vertices of their final graphs
have a loop.
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3.7.54 HConsecutive values à [3 CONS]

• MAX SIZE SET OF CONSECUTIVE VAR,
• MIN SIZE SET OF CONSECUTIVE VAR,

• NSET OF CONSECUTIVE VALUES.

A constraint for which the definition involves the notion of consecutive values as-
signed to the variables of a collection of domain variables.

3.7.55 HConstraint between two collections of variables à [36 CONS]

• ALLDIFFERENT ON INTERSECTION,

• COMMON,

• COMMON INTERVAL,

• COMMON MODULO,

• COMMON PARTITION,

• DISJOINT,

• INCOMPARABLE,

• INVERSE WITHIN RANGE,

• INCOMPARABLE,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LEX LESSEQ ALLPERM,

• SAME,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SAME INTERSECTION,

• SAME INTERVAL,

• SAME MODULO,

• SAME PARTITION,

• SOFT SAME INTERVAL VAR,

• SOFT SAME MODULO VAR,

• SOFT SAME PARTITION VAR,

• SOFT SAME VAR,

• SOFT USED BY INTERVAL VAR,

• SOFT USED BY MODULO VAR,

• SOFT USED BY PARTITION VAR,

• SOFT USED BY VAR,

• SORT,

• USES,

• USED BY,

• USED BY INTERVAL,

• USED BY MODULO,

• USED BY PARTITION.

A constraint involving only two collections of domain variables in its arguments.
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3.7.56 H Constraint between three collections of vari-
ables à [2 CONS]

• CORRESPONDENCE, • SORT PERMUTATION.

A constraint involving only three collections of domain variables in its arguments.

3.7.57 HConstraint involving set variables à [32 CONS]

• ALLDIFFERENT BETWEEN SETS,

• ATMOST1,

• BIPARTITE,

• CLIQUE,

• CONNECTED,

• DAG,

• DISJ,

• DOM REACHABILITY,

• EQ SET,

• GRAPH ISOMORPHISM,

• IN SET,

• INVERSE SET,

• K CUT,

• LINK SET TO BOOLEANS,

• OPEN ALLDIFFERENT,

• OPEN AMONG,

• OPEN ATLEAST,

• OPEN ATMOST,

• OPEN GLOBAL CARDINALITY,

• OPEN GLOBAL CARDINALITY LOW UP,

• PATH FROM TO,

• PROPER FOREST,

• ROOTS,

• SET VALUE PRECEDE,

• STRONGLY CONNECTED,

• SUBGRAPH ISOMORPHISM,

• SUM FREE,

• SUM SET,

• SYMMETRIC,

• SYMMETRIC CARDINALITY,

• SYMMETRIC GCC,

• TOUR.

A constraint involving set variables in its arguments.
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3.7.58 HConstraint on the intersection à [4 CONS]

• COMMON,

• ALLDIFFERENT ON INTERSECTION,

• NVALUE ON INTERSECTION,

• SAME INTERSECTION.

Denotes that a constraint involving two collections of variables imposes a restric-
tion on the values that occur in both collections.

3.7.59 HConstructive disjunction à [5 CONS]

• CASE,
• DISJUNCTIVE,
• DIFFN,

• GEOST,

• TWO ORTH DO NOT OVERLAP.

A constraint for which a filtering algorithm uses constructive disjunction. Con-
structive disjunction [431, 454] is a technique for handling in an active way a set of
disjunctive constraints. It consists to try out each alternative of a disjunction and then
to remove values that were pruned in all alternatives. Table 3.10 illustrates this tech-
nique in the context of a non-overlapping constraint between two rectangles (i.e., a
special case of the TWO ORTH DO NOT OVERLAP constraint). The first rectangle R1

has a width of 3 and a height of 2, while the second rectangle R2 has a width of 2 and
a height of 5. The coordinates (x1, y1) of the lower leftmost corner of R1 have to be
respectively located within intervals [3, 5] and [6, 7]. Similarly the coordinates (x2, y2)
of the lower leftmost corner of R2 have to be located within [2, 4] and [3, 4].

• In the context of the CASE constraint, constructive disjunction is applied on each
sink node of the dag describing the set of solutions (i.e., we remove values that
are removed in all the sink nodes).

• In the context of the DISJUNCTIVE (respectively DIFFN) constraint, constructive
disjunction can be applied on each pair of tasks (respectively objects). However,
as described in the Algorithm slots of these two constraints, more specific and
efficient filtering algorithms exist for both constraints.

• In the context of the GEOST constraint, constructive disjunction is applied on the
different potential values of the shape variable of an object in order to prune its
coordinates.
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Table 3.10: Illustrating constructive disjunction in the context of a non-overlapping
constraint between two rectangles.

Hypothesis regarding the respective position of R1 and R2

R2 before R1: R2 after R1: R2 below R1: R2 on top of R1:
X2 + 2 ≤ X1 X1 + 3 ≤ X2 Y2 + 5 ≤ Y1 Y1 + 2 ≤ Y2
[2, 4] + 2 ≤ [3, 5] [3, 5] + 3 ≤ [2, 4] [3, 4] + 5 ≤ [6, 7] [6, 7] + 2 ≤ [3, 4]
[2,3] + 2 ≤ [4, 5] contradiction contradiction contradiction

Removed values from each variable according to each hypothesis
X1 : {3} X1 : {3, 4, 5} X1 : {3, 4, 5} X1 : {3, 4, 5}
X2 : {4} X2 : {2, 3, 4} X2 : {2, 3, 4} X2 : {2, 3, 4}
Y1 : ∅ Y1 : {6, 7} Y1 : {6, 7} Y1 : {6, 7}
Y2 : ∅ Y2 : {3, 4} Y2 : {3, 4} Y2 : {3, 4}

Values finally removed: value 3 from X1 and value 4 from X2

3.7.60 HContact à [2 CONS]

• ORTHS ARE CONNECTED, • TWO ORTH ARE IN CONTACT.

A constraint enforcing that some orthotopes touch each other. Part (A) of Fig-
ure 3.16 shows two orthotopes that are in contact while parts (B) and (C) give two
examples of orthotopes that are not in contact.

(A) (B) (C)

Figure 3.16: Illustration of the notion of contact: (A) two rectangles in contact,
(B), (C) two rectangles not in contact
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3.7.61 HContractible à [195 CONS]

• ALL DIFFER FROM AT LEAST K POS (contractible wrt VECTORS),
• ALL DIFFER FROM EXACTLY K POS (contractible wrt VECTORS),
• ALL EQUAL (contractible wrt VARIABLES),
• ALL INCOMPARABLE (contractible wrt VECTORS),
• ALL MIN DIST (contractible wrt VARIABLES),
• ALLDIFFERENT (contractible wrt VARIABLES),
• ALLDIFFERENT BETWEEN SETS (contractible wrt VARIABLES),
• ALLDIFFERENT CST (contractible wrt VARIABLES),
• ALLDIFFERENT EXCEPT 0 (contractible wrt VARIABLES),
• ALLDIFFERENT INTERVAL (contractible wrt VARIABLES),
• ALLDIFFERENT MODULO (contractible wrt VARIABLES),
• ALLDIFFERENT ON INTERSECTION (contractible wrt VARIABLES1),
• ALLDIFFERENT ON INTERSECTION (contractible wrt VARIABLES2),
• ALLDIFFERENT PARTITION (contractible wrt VARIABLES),
• ALLPERM (suffix-contractible wrt MATRIX.vec),
• AMONG (contractible wrt VARIABLES when NVAR = 0),
• AMONG (contractible wrt VARIABLES when NVAR = |VARIABLES|),
• AMONG DIFF 0 (contractible wrt VARIABLES when NVAR = 0),
• AMONG DIFF 0 (contractible wrt VARIABLES when NVAR = |VARIABLES|),
• AMONG INTERVAL (contractible wrt VARIABLES when NVAR = 0),
• AMONG INTERVAL (contractible wrt VARIABLES when NVAR = |VARIABLES|),
• AMONG LOW UP (contractible wrt VARIABLES when UP = 0),
• AMONG LOW UP (contractible wrt VARIABLES when UP = |VARIABLES|),
• AMONG MODULO (contractible wrt VARIABLES when NVAR = 0),
• AMONG MODULO (contractible wrt VARIABLES when NVAR = |VARIABLES|),
• AMONG SEQ (contractible wrt VARIABLES when UP = 0),
• AMONG SEQ (contractible wrt VARIABLES when SEQ = 1),
• AMONG SEQ (prefix-contractible wrt VARIABLES),
• AMONG SEQ (suffix-contractible wrt VARIABLES),
• AMONG VAR (contractible wrt VARIABLES when NVAR = 0),
• AMONG VAR (contractible wrt VARIABLES when NVAR = |VARIABLES|),
• ARITH (contractible wrt VARIABLES),
• ARITH OR (contractible wrt [VARIABLES1, VARIABLES2]),
• ARITH SLIDING (contractible wrt VARIABLES when RELOP ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0),
• ARITH SLIDING (suffix-contractible wrt VARIABLES),
• ASSIGN AND COUNTS (contractible wrt ITEMS when RELOP ∈ [<,≤]),
• ASSIGN AND NVALUES (contractible wrt ITEMS when RELOP ∈ [<,≤]),
• ATMOST (contractible wrt VARIABLES),
• ATMOST1 (contractible wrt SETS),
• ATMOST NVALUE (contractible wrt VARIABLES),
• ATMOST NVECTOR (contractible wrt VECTORS),
• BIN PACKING (contractible wrt ITEMS),
• BIN PACKING CAPA (contractible wrt ITEMS),
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• CALENDAR (contractible wrt INSTANTS),
• CHANGE (contractible wrt VARIABLES when CTR ∈ [6=, <,≥, >,≤] and NCHANGE = 0),
• CHANGE (contractible wrt VARIABLES when CTR ∈ [=, <,≥, >,≤] and

NCHANGE = |VARIABLES− 1|),
• COLOURED CUMULATIVE (contractible wrt TASKS),
• COLOURED CUMULATIVES (contractible wrt TASKS),
• COMPARE AND COUNT (contractible wrt [VARIABLES1, VARIABLES2] when COUNT ∈ [<,≤]),
• CONTAINS SBOXES (suffix-contractible wrt OBJECTS),
• COUNT (contractible wrt VARIABLES when RELOP ∈ [<,≤]),
• COUNTS (contractible wrt VARIABLES when RELOP ∈ [<,≤]),
• COVERS SBOXES (suffix-contractible wrt OBJECTS),
• CUMULATIVE (contractible wrt TASKS),
• CUMULATIVE CONVEX (contractible wrt TASKS),
• CUMULATIVE PRODUCT (contractible wrt TASKS),
• CUMULATIVE TWO D (contractible wrt RECTANGLES),
• CUMULATIVE WITH LEVEL OF PRIORITY (contractible wrt TASKS),
• CUMULATIVES (contractible wrt TASKS when RELOP ∈ [≤] and minval(TASKS.height) ≥ 0),
• DECREASING (contractible wrt VARIABLES),
• DIFFN (contractible wrt ORTHOTOPES),
• DIFFN COLUMN (contractible wrt ORTHOTOPES),
• DIFFN INCLUDE (contractible wrt ORTHOTOPES),
• DISJOINT (contractible wrt VARIABLES1),
• DISJOINT (contractible wrt VARIABLES2),
• DISJOINT SBOXES (suffix-contractible wrt OBJECTS),
• DISJOINT TASKS (contractible wrt TASKS1),
• DISJOINT TASKS (contractible wrt TASKS2),
• DISJUNCTIVE (contractible wrt TASKS),
• DISJUNCTIVE OR SAME END (contractible wrt TASKS),
• DISJUNCTIVE OR SAME START (contractible wrt TASKS),
• DOMAIN (contractible wrt VARIABLES),
• EQUAL SBOXES (suffix-contractible wrt OBJECTS),
• GLOBAL CARDINALITY (contractible wrt VALUES),
• GLOBAL CARDINALITY LOW UP (contractible wrt VALUES),
• GLOBAL CONTIGUITY (contractible wrt VARIABLES),
• GOLOMB (contractible wrt VARIABLES),
• INCREASING (contractible wrt VARIABLES),
• INSIDE SBOXES (suffix-contractible wrt OBJECTS),
• INT VALUE PRECEDE (suffix-contractible wrt VARIABLES),
• INT VALUE PRECEDE CHAIN (contractible wrt VALUES),
• INT VALUE PRECEDE CHAIN (suffix-contractible wrt VARIABLES),
• INTERVAL AND COUNT (contractible wrt COLOURS),
• INTERVAL AND COUNT (contractible wrt TASKS),
• INTERVAL AND SUM (contractible wrt TASKS),
• K ALLDIFFERENT (contractible wrt VARS),
• K DISJOINT (contractible wrt SETS),
• K SAME (contractible wrt SETS),
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• K SAME INTERVAL (contractible wrt SETS),
• K SAME MODULO (contractible wrt SETS),
• K SAME PARTITION (contractible wrt SETS),
• K USED BY (contractible wrt SETS),
• K USED BY INTERVAL (contractible wrt SETS),
• K USED BY MODULO (contractible wrt SETS),
• K USED BY PARTITION (contractible wrt SETS),
• LEX ALLDIFFERENT (contractible wrt VECTORS),
• LEX BETWEEN (suffix-contractible wrt [LOWER BOUND, VECTOR, UPPER BOUND BOUND]),
• LEX CHAIN LESS (contractible wrt VECTORS),
• LEX CHAIN LESSEQ (contractible wrt VECTORS),
• LEX CHAIN LESSEQ (suffix-contractible wrt VECTORS.vec),
• LEX EQUAL (contractible wrt [VECTOR1, VECTOR2]),
• LEX GREATEREQ (suffix-contractible wrt [VECTOR1, VECTOR2]),
• LEX LESSEQ (suffix-contractible wrt [VECTOR1, VECTOR2]),
• LEX LESSEQ ALLPERM (suffix-contractible wrt [VECTOR1, VECTOR2]),
• MAX OCC OF CONSECUTIVE TUPLES OF VALUES (contractible wrt VECTORS when MAX = 1),
• MAX OCC OF SORTED TUPLES OF VALUES (contractible wrt VECTORS when MAX = 1),
• MAX OCC OF TUPLES OF VALUES (contractible wrt VECTORS when MAX = 1),
• MEET SBOXES (suffix-contractible wrt OBJECTS),
• MULTI INTER DISTANCE (contractible wrt VARIABLES),
• MULTI GLOBAL CONTIGUITY (contractible wrt VARIABLES),
• NAND (contractible wrt VARIABLES when VAR = 0),
• NEQUIVALENCE (contractible wrt VARIABLES when NEQUIV = 1 and |VARIABLES| > 0),
• NEQUIVALENCE (contractible wrt VARIABLES when NEQUIV = |VARIABLES|),
• NINTERVAL (contractible wrt VARIABLES when NVAL = 1 and |VARIABLES| > 0),
• NINTERVAL (contractible wrt VARIABLES when NVAL = |VARIABLES|),
• NO PEAK (contractible wrt VARIABLES),
• NO VALLEY (contractible wrt VARIABLES),
• NON OVERLAP SBOXES (suffix-contractible wrt OBJECTS),
• NOR (contractible wrt VARIABLES when VAR = 1),
• NOT IN (contractible wrt VALUES),
• NPAIR (contractible wrt PAIRS when NPAIRS = 1 and |PAIRS| > 0),
• NPAIR (contractible wrt PAIRS when NPAIRS = |PAIRS|),
• NVALUE (contractible wrt VARIABLES when NVAL = 1 and |VARIABLES| > 0),
• NVALUE (contractible wrt VARIABLES when NVAL = |VARIABLES|),
• NVALUE ON INTERSECTION (contractible wrt VARIABLES1 when NVAL = 0),
• NVALUE ON INTERSECTION (contractible wrt VARIABLES2 when NVAL = 0),
• NVALUES (contractible wrt VARIABLES when RELOP ∈ [<,≤]),
• NVALUES (contractible wrt VARIABLES when RELOP ∈ [=] and LIMIT = 1 and |VARIABLES| > 0),
• NVALUES (contractible wrt VARIABLES when RELOP ∈ [=] and LIMIT = |VARIABLES|),
• NVALUES EXCEPT 0 (contractible wrt VARIABLES when RELOP ∈ [<,≤]),
• NVECTOR (contractible wrt VECTORS when NVEC = 1 and |VECTORS| > 0),
• NVECTOR (contractible wrt VECTORS when NVEC = |VECTORS|,
• NVECTORS (contractible wrt VECTORS when RELOP ∈ [<,≤]),
• OPEN ALLDIFFERENT (suffix-contractible wrt VARIABLES),
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• OPEN AMONG (suffix-contractible wrt VARIABLES when NVAR = 0),
• OPEN ATMOST (suffix-contractible wrt VARIABLES),
• OR (contractible wrt VARIABLES when VAR = 0),
• ORDERED ATMOST NVECTOR (contractible wrt VECTORS),
• ORDERED GLOBAL CARDINALITY (contractible wrt VALUES),
• ORDERED NVECTOR (contractible wrt VECTORS when NVEC = 1 and |VECTORS| > 0),
• ORDERED NVECTOR (contractible wrt VECTORS when NVEC = |VECTORS|),
• ORTH LINK ORI SIZ END (contractible wrt ORTHOTOPE),
• OVERLAP SBOXES (suffix-contractible wrt OBJECTS),
• PATTERN (prefix-contractible wrt VARIABLES),
• PATTERN (suffix-contractible wrt VARIABLES),
• PEAK (contractible wrt VARIABLES when N = 0),
• PERIOD (contractible wrt VARIABLES when CTR ∈ [=] and PERIOD = 1),
• PERIOD (prefix-contractible wrt VARIABLES),
• PERIOD (suffix-contractible wrt VARIABLES),
• PERIOD EXCEPT 0 (contractible wrt VARIABLES when CTR ∈ [=] and PERIOD = 1),
• PERIOD EXCEPT 0 (prefix-contractible wrt VARIABLES),
• PERIOD EXCEPT 0 (suffix-contractible wrt VARIABLES),
• PERIOD VECTORS (prefix-contractible wrt VARIABLES),
• PERIOD VECTORS (suffix-contractible wrt VARIABLES),
• PRODUCT CTR (contractible wrt VARIABLES when CTR ∈ [<,≤] and

minval(VARIABLES.var) > 0),
• RANGE CTR (contractible wrt VARIABLES when CTR ∈ [<,≤]),
• SAME AND GLOBAL CARDINALITY (contractible wrt VALUES),
• SAME AND GLOBAL CARDINALITY LOW UP (contractible wrt VALUES),
• SCALAR PRODUCT (contractible wrt LINEARTERM when CTR ∈ [<,≤],

minval(LINEARTERM.coeff) ≥ 0 and minval(LINEARTERM.var) ≥ 0),
• SET VALUE PRECEDE (suffix-contractible wrt VARIABLES),
• SLIDING DISTRIBUTION (contractible wrt VARIABLES when SEQ = 1),
• SLIDING DISTRIBUTION (prefix-contractible wrt VARIABLES),
• SLIDING DISTRIBUTION (suffix-contractible wrt VARIABLES),
• SLIDING DISTRIBUTION (contractible wrt VALUES),
• SLIDING SUM (contractible wrt VARIABLES when SEQ = 1),
• SLIDING SUM (prefix-contractible wrt VARIABLES),
• SLIDING SUM (suffix-contractible wrt VARIABLES),
• SLIDING TIME WINDOW (contractible wrt TASKS),
• SLIDING TIME WINDOW FROM START (contractible wrt TASKS),
• SLIDING TIME WINDOW SUM (contractible wrt TASKS),
• SMOOTH (contractible wrt VARIABLES when NCHANGE = 0),
• SMOOTH (contractible wrt VARIABLES when NCHANGE = |VARIABLES| − 1),
• SOFT ALLDIFFERENT CTR (contractible wrt VARIABLES),
• SOFT ALLDIFFERENT VAR (contractible wrt VARIABLES),
• STRICTLY DECREASING (contractible wrt VARIABLES),
• STRICTLY INCREASING (contractible wrt VARIABLES),
• SUM CTR (contractible wrt VARIABLES when CTR ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0),
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• SUM CTR (contractible wrt VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0),

• SUM CUBES CTR (contractible wrt VARIABLES when CTR ∈ [<,≤] and
minval(VARIABLES.var) ≥ 0),

• SUM CUBES CTR (contractible wrt VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0),

• SUM POWERS4 CTR (VARIABLES) when CTR ∈ [<,≤],
• SUM POWERS5 CTR (contractible wrt VARIABLES when CTR ∈ [<,≤] and

minval(VARIABLES.var) ≥ 0),
• SUM POWERS5 CTR (contractible wrt VARIABLES when CTR ∈ [≥, >] and

maxval(VARIABLES.var) ≤ 0),
• SUM POWERS6 CTR (VARIABLES) when CTR ∈ [<,≤],
• SUM OF INCREMENTS (prefix-contractible wrt VARIABLES),
• SUM OF INCREMENTS (suffix-contractible wrt VARIABLES),
• SUM SQUARES CTR (VARIABLES) when CTR ∈ [<,≤],
• TWIN (contractible wrt PAIRS),
• USED BY (VARIABLES2),
• USED BY INTERVAL (contractible wrt VARIABLES2),
• USED BY MODULO (contractible wrt VARIABLES2),
• USED BY PARTITION (contractible wrt VARIABLES2),
• USES (contractible wrt VARIABLES2),
• VALLEY (contractible wrt VARIABLES when N = 0),
• VEC EQ TUPLE (contractible wrt [VARIABLES, TUPLE]).

A contractible constraint is a constraint for which, given any satisfied ground in-
stance, one can remove any item from one of its collection arguments, without affecting
that the resulting constraint still holds, assuming all its restrictions hold. A typical ex-
ample of a contractible constraint is the ALLDIFFERENT constraint: given any ground
satisfied instance, e.g., ALLDIFFERENT(〈3, 8, 1〉), we can remove any value from its
unique argument without affecting that the resulting constraint still holds. We gener-
alise slightly the original definition of contractibility introduced by [283] in the fol-
lowing ways:

• The sequence of variables is replaced by a collection. Consequently,
variables are replaced by items. For example, in the context of the
CUMULATIVE(TASKS, LIMIT) constraint, we can remove any task from TASKS

from any satisfied instance without affecting that the resulting constraint still
holds (e.g., if the resource limit LIMIT is not exceeded at any point in time, this
still is the case if we remove any task, i.e., since task heights are restricted to be
non negative).

• Since the constraint may have more than one argument, one has to explicitly
specify the argument from which one may remove items.

• Items cannot only be removed from the end of a collection like in [283],
but also from the beginning or from any part. Allowing to remove items
from the beginning is called prefix-contractibility, while permitting to re-
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move items from the end is called suffix-contractibility. Removing items
from any part is just called contractibility. As an example, consider the
AMONG SEQ(LOW, UP, SEQ, VARIABLES, VALUES) constraint which forces all se-
quences of SEQ consecutive variables of the collection VARIABLES to be assigned
at least LOW and at most UP values from VALUES. The constraint AMONG SEQ
is not contractible w.r.t. the collection VARIABLES, since removing an item in
the middle of VARIABLES creates a new sequence for which the restriction with
respect to LOW and UP may not hold. However, if we restrict ourselves to remov-
ing just a prefix or suffix from VARIABLES, then the corresponding AMONG SEQ
constraint still holds, since no new sequence is created.

• A constraint may be contractible only if certain restrictions apply to some of
its arguments. This is done by explicitly providing a list of restrictions, each
restriction corresponding to one of the restrictions described in Section 2.2.3.
We call this conditional contractibility. Given a source and a target constraint
(i.e., the target constraint corresponds to the source constraint from which we
remove some items in some arguments) all arguments of the target constraint
should be identical to the arguments of the source constraint, except:

– Argument corresponding to a collection from which we remove items.

– Argument arg occurring in the list of conditional restrictions with of re-
striction of the form arg = f(|c|), where c is an argument corresponding
to a collection from which we remove items and f a function.

In addition, all restrictions from the list of restrictions should apply both to the
source and target constraints.

We now provide two examples of conditional contractibility with respect to the
AMONG(NVAR, VARIABLES, VALUES) constraint, which forces NVAR to be the
number of variables of the collection VARIABLES that are assigned a value in
VALUES.

– In general AMONG is not contractible since removing an item from
VARIABLES may change the value of NVAR. However, given a ground sat-
isfied instance for which NVAR is set to 0, we can remove any item from
VARIABLES without affecting that the constraint still holds. In this context,
the two arguments NVAR and VALUES are left unchanged within the source
and the target constraint.
As an illustration, consider the source constraint
AMONG(0, 〈2, 4, 2〉, 〈1, 5〉) and the target constraint
AMONG(0, 〈2, 2〉, 〈1, 5〉). Since NVAR is set to 0 both in the source
and the target constraint and since VALUES is set to the same list
of values both in the source and the target constraint, we have that
AMONG(0, 〈2, 4, 2〉, 〈1, 5〉) implies AMONG(0, 〈2, 2〉, 〈1, 5〉).

– Similarly, when NVAR is equal to |VARIABLES|, all variables are assigned
a value in VALUES. In this context, we can remove any variable from
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VARIABLES to get a new constraint that still holds, provided that the re-
striction NVAR = |VARIABLES| still holds. In this example only the ar-
gument VALUES is left unchanged between the source and the target con-
straint. NVAR changes since it occurs in a restriction of the form NVAR =
|VARIABLES| in the list of conditional restrictions.
As an illustration, consider the source constraint
AMONG(3, 〈2, 4, 2〉, 〈0, 2, 4, 6, 8〉) and the target constraint
AMONG(2, 〈4, 2〉, 〈0, 2, 4, 6, 8〉). Since NVAR is set to the number of
items of the VARIABLES collection both in the source and the target con-
straint, and since VALUES is set to the same list of values both in the source
and the target constraint, we have that AMONG(3, 〈2, 4, 2〉, 〈0, 2, 4, 6, 8〉)
implies AMONG(2, 〈4, 2〉, 〈0, 2, 4, 6, 8〉).

• Finally, a last extension corresponds to the fact the sequence of variables from
which we remove elements may be replaced by several collections. In this con-
text, items are removed simultaneously from all collections from exactly the same
set of positions. A set of collections is either defined by a list of collections, or
by a collection and one of its attributes, which is itself a collection.

As a first example, consider the LEX GREATEREQ(VECTOR1, VECTOR2) con-
straint, which given two vectors each defined by a collection of vari-
ables of the same length, forces that VECTOR1 is lexicographically greater
than or equal to VECTOR2. We have that LEX GREATEREQ is suf-
fix-contractible with respect to VECTOR1 and VECTOR2. This means that
we can remove the k (1 ≤ k ≤ |VECTOR1|) last items from col-
lections VECTOR1 and VECTOR2. Note that the k items should be re-
moved from both collections simultaneously. As an illustration, consider
the source constraint LEX GREATEREQ(〈5, 2, 8, 9〉, 〈5, 2, 6, 2〉) and the tar-
get constraint LEX GREATEREQ(〈5, 2, 8〉, 〈5, 2, 6〉). Since LEX GREATEREQ
is suffix-contractible with respect to the two collections VECTOR1 and
VECTOR2, we have that LEX GREATEREQ(〈5, 2, 8, 9〉, 〈5, 2, 6, 2〉) implies
LEX GREATEREQ(〈5, 2, 8〉, 〈5, 2, 6〉).

As a second example, consider the LEX CHAIN LESSEQ(VECTORS) con-
straint, which given a collection of vectors each of them defined by a col-
lection of variables of the same length, forces the ith vector to be lex-
icographically less than or equal to the (i + 1)th vector (1 ≤ i <
|VECTORS|). We have that LEX CHAIN LESSEQ is suffix-contractible with re-
spect to VECTORS.vec. This means that we can remove the k last compo-
nents of each vectors of the VECTORS collection. As in the previous ex-
ample the k items should be removed from all collections simultaneously.
As an illustration, consider the source constraint LEX CHAIN LESSEQ(〈vec −
〈5, 2, 3, 9〉, vec − 〈5, 2, 6, 2〉, vec − 〈5, 2, 6, 2〉〉) and the target constraint
LEX CHAIN LESSEQ(〈vec − 〈5, 2, 3〉, vec − 〈5, 2, 6〉, vec − 〈5, 2, 6〉〉). Since
LEX CHAIN LESSEQ is suffix-contractible with respect to VECTORS.vec, we
have that LEX CHAIN LESSEQ(〈vec − 〈5, 2, 3, 9〉, vec − 〈5, 2, 6, 2〉, vec −
〈5, 2, 6, 2〉〉) implies LEX CHAIN LESSEQ(〈vec−〈5, 2, 3〉, vec−〈5, 2, 6〉, vec−
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〈5, 2, 6〉〉).

The keyword extensible introduces a dual notion, where items can be added to a collec-
tion that is passed as an argument of a satisfied global constraint without affecting the
fact that the resulting constraint is satisfied. Contractibility is a more common property
than extensibility.

3.7.62 HConvex à [2 CONS]

• CUMULATIVE CONVEX, • GLOBAL CONTIGUITY.

A constraint involving the notion of convexity. A subset S of the plane is called
convex if and only if for any pair of points p, q of this subset the corresponding line
segment is contained in S. Part (A) of Figure 3.17 gives an example of convex set,
while part (B) depicts an example of non-convex set.

p

q

(A)

p

q

(B)

Figure 3.17: (A) A convex set and (B) a non-convex set
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3.7.63 HConvex bipartite graph à [3 CONS]

• ALLDIFFERENT,
• ALLDIFFERENT CST,

• NVALUE.

Denotes that, for a given constraint, its filtering algorithm can take advantage of
having a convex bipartite graph. A bipartite graph G = (U, V,E) is called convex
according to its second set of vertices V if there is an ordering on V such that, for
any vertex u of U , the neighbours of u form an interval in the previous ordering. Some
graph algorithms or some problems become simpler in the context of a convex bipartite
graph.

3.7.64 HConvex hull relaxation à [1 CONS]

• SUM.

Given a non-convex set S,R is a convex outer approximation of S if:

• R is convex,

• If s ∈ S, then s ∈ R.

Given a non-convex set S,R is the convex hull of S if:

• R is a convex outer approximation of S,

• For every T where T is a convex outer approximation of S,R ⊆ T .

Part (A) of Figure 3.18 depicts a non-convex set, while part (B) gives its corresponding
convex hull.

(A) (B)

Figure 3.18: (B) Convex hull of a (A) non-convex set
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Within the context of linear programming the convex hull relaxation of a
non-convex set S corresponds to the set of linear constraints characterising the con-
vex hull of S.

3.7.65 HConway packing problem à [2 CONS]

• DIFFN, • GEOST.

Denotes that a constraint can be used for solving the Conway packing problem,
which consists of placing 6 orthotopes of size 4× 2× 1, 6 orthotopes of size 3× 2× 2
and 5 unit cubes within a 5× 5× 5 cube. Figure 3.19 shows a solution to the Conway
packing problem.

Figure 3.19: A solution to the Conway packing problem
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3.7.66 HCore à [11 CONS]

• ALLDIFFERENT,

• CUMULATIVE,

• CYCLE,

• DIFFN,

• DISJUNCTIVE,

• ELEMENT (see also ELEM for the usage),

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY WITH COSTS,

• MINIMUM WEIGHT ALLDIFFERENT,

• NVALUE,

• SORT.

Denotes that a global constraint is an important constraint. In fact many constraints
can been seen as variations or extensions around one of the following notions:

• The notion of all different forces a set of domain variables to be as-
signed distinct values. Given a set of domain variables {v1, v2, . . . , vn},
the ALLDIFFERENT(〈v1, v2, . . . , vn〉) imposes such a condition. For ex-
ample, the ground instance ALLDIFFERENT(〈3, 8, 2, 1〉) is satisfied, while
ALLDIFFERENT(〈1, 8, 2, 1〉) is not, since value 1 is assigned twice.

• The notion of functional dependency states that a domain variable depends di-
rectly of another domain variable. A functional dependency can either be defined
in intention or in extension.

– On the one hand, functional dependencies defined by intension are
usually associated with numerical constraints such as, for example,
ABS VALUE(y, x) which forces the condition y = |x|. They can also be
associated with global constraints that mention a characteristic that is com-
puted from one or several collections of variables. This is the case, for
example, for the NVALUE(y, 〈x1, x2, . . . , xn〉) constraint which forces y to
be equal to the number of distinct values assigned to x1, x2, . . . , xn.

– On the other hand, functional dependencies defined by extension are more
general since they allow representing any kind of functional dependency.
The ELEMENT(x, t, y) constraint allows expressing that a variable y is de-
termined by a variable x via a table of integers t, i.e., y = t[x]. For ex-
ample, the ground instance ELEMENT(2, 〈3, 8, 3, 1〉, 8) is satisfied since 8
is equal to the second entry of the table 3, 8, 3, 1. Typical usages of the
ELEMENT constraint are, for example:

∗ Representing a numerical constraint that is not available in a solver,
e.g. a non-linear constraint like y = x3 (see first item of the Usage
slot of the ELEM constraint).

∗ Expressing the link between a discrete choice and its corresponding
choice (see second item of the Usage slot of the ELEM constraint).

Both, the ELEMENT and the ALLDIFFERENT constraints, are the most commonly
used global constraints. Many core global constraints can be seen as an extension of
the ALLDIFFERENT(〈x1, x2, . . . , xn〉) constraint along one of the two following lines:
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ALLDIFFERENT(〈3, 2, 4, 1〉)
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Figure 3.20: Three counting based generalisations of the ALLDIFFERENT constraint:
the NVALUE, the CYCLE and the GLOBAL CARDINALITY (i.e., GCC) constraints; the
same example ALLDIFFERENT(〈3, 2, 4, 1〉) is reinterpreted with respect to the three
generalisations
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• In the first line we replace the fact that each value should not be used more than
once by some more involved counting constraints like:

– Counting the total number of actually used distinct values like the
NVALUE(y, 〈x1, x2, . . . , xn〉) constraint which forces y to be be equal to
the number of distinct values assigned to x1, x2, . . . , xn. When y is set to
the total number of variables, i.e. y = n, NVALUE(n, 〈x1, x2, . . . , xn〉) and
ALLDIFFERENT(〈x1, x2, . . . , xn〉) are equivalent.

– Counting the number of cycles of a permutation, i.e. we assume that
the values assigned to variables x1, x2, . . . , xn belong to interval [1, n],
like the CYCLE(y, 〈x1, x2, . . . , xn〉) constraint. When (1) y is uncon-
strained, i.e. it can take any value in [1, n], and when (2) all vari-
ables x1, x2, . . . , xn belong to [1, n], CYCLE(y, 〈x1, x2, . . . , xn〉) and
ALLDIFFERENT(〈x1, x2, . . . , xn〉) are equivalent.

– Counting the number of occurrences of each assigned value like
the GLOBAL CARDINALITY(〈x1, x2, . . . , xn〉, 〈v1 o1, v2 o2, . . . , vm om〉)
constraint, which forces each value vi (1 ≤ i ≤ m) to be assigned
to exactly oi variables of x1, x2, . . . , xn. When (1) all the occur-
rence variables o1, o2, . . . , om are 0-1 variables, and when (2) all vari-
ables x1, x2, . . . , xn can only be assigned values in {v1, v2, . . . , vm},
GLOBAL CARDINALITY(〈x1, x2, . . . , xn〉, 〈v1 o1, v2 o2, . . . , vm om〉) and
ALLDIFFERENT(〈x1, x2, . . . , xn〉) are equivalent. When in addition
(3) m = n and oi = 1 for all i we have a bijection between variables
and values.

• In the second line we generalise the disequality between two variables in some
way like:

– We replace the disequality between two variables by a non-overlapping
condition between two tasks where a task ti is defined by its origin oi and
its duration di. The disequality between two variables is changed to a dis-
junction stating that a task ends before the start of another task or vice versa.
This leads to the DISJUNCTIVE(〈o1 d1, o2 d2, . . . , on dn〉) constraint.

– We replace the disequality between two variables by a non-overlapping
condition between two orthotopes where each orthotope orthi is defined by
the coordinates of its origin and by its sizes. Two orthotopes do not overlap
if there exists at least one dimension where their projections do not overlap,
i.e. the disequality between two variables is changed to a disjunction with a
number of alternatives that is equal to two times the number of dimensions.
This leads to the DIFFN constraint.

– We replace
∗ a variable of the ALLDIFFERENT constraint by a task with a start, a

duration, an end and a height attributes, and
∗ the disequality between two variables by the condition that the sum

of the heights of the tasks that overlap a given time point should not
exceed a given limit.
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This leads to the CUMULATIVE constraint.

3.7.67 HCostas arrays à [1 CONS]

• ALLDIFFERENT.

A constraint that allows for expressing the Costas arrays problem. A Costas array
is a permutation p1, p2, . . . , pn of n integers 1, 2, . . . , n such that ∀δ ∈ [1, n− 2],∀i ∈
[1, n − δ − 1],∀j ∈ [i + 1, n − δ] : pi − pi+δ 6= pj − pj+δ . A. Vellino compares
in [441] three approaches respectively using Prolog, Pascal and CHIP for solving
the Costas arrays problem. In fact the weaker formulation ∀δ ∈ [1, bn−12 c],∀i ∈
[1, n− δ− 1],∀j ∈ [i+ 1, n− δ] : pi − pi+δ 6= pj − pj+δ was shown to be equivalent
to the original one in [119].

3.7.68 HCost filtering constraint à [5 CONS]

• COND LEX COST,
• GLOBAL CARDINALITY WITH COSTS,
• MINIMUM WEIGHT ALLDIFFERENT,

• SUM OF WEIGHTS OF DISTINCT VALUES,

• WEIGHTED PARTIAL ALLDIFF.

A constraint that has a set of decision variables as well as a cost variable and for
which there exists a filtering algorithm that restricts the state variables from the mini-
mum or maximum value of the cost variable.
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3.7.69 HCost matrix à [2 CONS]

• GLOBAL CARDINALITY WITH COSTS, • MINIMUM WEIGHT ALLDIFFERENT.

A constraint for which a first argument corresponds to a collection of variables
Vars, a second argument to a cost matrix M, and a third argument to a cost variable C.
Let Vals denotes the set of values that can be assigned to the variables of Vars. The
cost matrix defines for each pair v, u (v ∈ Vars, u ∈ Vals) an elementary cost, which
is used for computing C when value u is assigned to variable v.

3.7.70 HCounting constraint à [39 CONS]

• AMONG,

• AMONG DIFF 0,

• AMONG INTERVAL,

• AMONG LOW UP,

• AMONG MODULO,

• AMONG VAR,

• ATLEAST NVALUE,

• ATLEAST NVECTOR,

• ATMOST NVALUE,

• ATMOST NVECTOR,

• COUNT,

• COUNTS,

• DISCREPANCY,

• EXACTLY,

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY LOW UP,

• INCREASING NVALUE,

• INCREASING NVALUE CHAIN,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• MAX NVALUE,

• MIN NVALUE,

• NCLASS,

• NEQUIVALENCE,

• NINTERVAL,

• NPAIR,

• NVALUE,

• NVALUE ON INTERSECTION,

• NVALUES,

• NVALUES EXCEPT 0,

• NVECTOR,

• NVECTORS,

• OPEN AMONG,

• OPEN GLOBAL CARDINALITY,

• OPEN GLOBAL CARDINALITY LOW UP,

• ORDERED ATLEAST NVECTOR,

• ORDERED ATMOST NVECTOR,

• ORDERED NVECTOR,

• ROOTS.

A constraint restricting the number of occurrences of some values (respectively
some pairs of values) within a given collection of domain variables (respectively pairs
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of domain variables).

3.7.71 HCumulative longest hole problems à [1 CONS]

• CUMULATIVE.

A constraint that can use some filtering based on the longest closed and open hole
problems [41]. We follow the presentation from the previous paper. Before presenting
the longest closed open hole scheduling problems, let us first introduce some nota-
tion related to the CUMULATIVE(TASKS, LIMIT) constraint that will be used within the
context of the longest closed and open hole problems.

Here, TASKS is a collection of tasks, and for a task t ∈ TASKS, t.origin,
t.duration and t.height denote respectively its start, duration and height, while
LIMIT ∈ Z+ is the height of the resource. The constraint is equivalent to finding
an assignment s : TASKS.origin → Z+10 that solves the cumulative placement of
TASKS of maximum height LIMIT, i.e.:

∀i ∈ Z : σs(i) = LIMIT− P (TASKS, i) ≥ 0

where the coverage P (TASKS, i) by TASKS of instant i ∈ Z is:

P (TASKS, i) =
∑

t∈TASKS|t.origin≤i<t.origin+t.duration

t.height

We are now in position to define the longest closed and open hole problems. Given
a quantity σ ∈ Z+ of slack (i.e. the difference between the available space and the
total area of the tasks to place), the longest closed hole problem is to find the largest
integer lcmax LIMIT

σ (TASKS) for which there exists a cumulative placement s of a subset
of tasks TASKS′ ⊆ TASKS of maximum height LIMIT, such that the resource area that
is not occupied by s on interval [0, lcmax LIMIT

σ ) does not exceed the maximum allowed
slack value σ:

lcmax LIMIT
σ −1∑
i=0

σs(i) ≤ σ.

The longest open hole problem is to find the largest integer lmax LIMIT
σ (TASKS) for

which there exists a cumulative placement s of a subset of tasks TASKS′ ⊆ TASKS of
10Without loss of generality we assume the earliest start of each task to be greater than or equal to 0.
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maximum height LIMIT and an interval [i′, i′ + lmax LIMIT
σ ) ⊂ Z of length lmax LIMIT

σ ,
such that the resource area that is not occupied by s on [i′, i′ + lmax LIMIT

σ ) does not
exceed the maximum allowed slack value σ:

i′+lmax LIMIT
σ −1∑

i=i′

σs(i) ≤ σ.

As an example, consider seven tasks of respective size 11 × 11, 9 × 9, 8 × 8,
7 × 7, 6 × 6, 4 × 4, 2 × 2. Part (A) of Figure 3.21 provides a cumulative placement
corresponding to the longest open hole problem according to LIMIT = 11 and σ = 0.
The longest open hole lmax 11

0 ({11× 11, 9× 9, 8× 8, 7× 7, 6× 6, 4× 4, 2× 2}) = 17
since:

• The task 8 × 8 cannot contribute since a gap of 3 cannot be filled by the unique
candidate the task 2× 2.

• The task 6×6 can also not contribute since a gap of 5 cannot be completely filled
by the candidates 4× 4 and 2× 2.

The longest close hole lcmax 11
0 ({11×11, 9×9, 8×8, 7×7, 6×6, 4×4, 2×2}) = 15:

it corresponds to the longest time interval on which the resource is saturated by the
illustrated placement and such that one bound of the interval does not intersect any
tasks.

Second, consider a task of size 3×2. Part (B) of Figure 3.21 provides a cumulative
placement corresponding to the longest open hole problem according to ε = 11 and
σ = 20. The longest open hole lmax 11

20({3× 2}) = 2.

6 × 6
7 × 7

4 × 4

11 × 11
9 × 9

2

8 × 8

lcmax11
0 = 15

lmax11
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L
IM
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1
1

(A)

3 × 2

σ
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=
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Figure 3.21: Two examples for illustrating the longest open hole problem: (A) a first
instance with seven tasks of size 11× 11, 9× 9, 8× 8, 7× 7, 6× 6, 4× 4, 2× 2 with a
slack σ = 0 and a gap of 11, (B) a second instance with a single task of size 3× 2 with
a slack σ = 20 and a gap of 11.

Figure 3.22 provides examples of the longest closed hole when we have 15 squares
of sizes 1, 2, . . . , 15 and a zero slack. Parts (A), (B),. . . ,(O) respectively give a solution
achieving the longest closed hole for a gap of 1, 2, . . . , 15. For comparison, Figure 3.23
provides the same examples of the longest open hole with zero slack.
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Figure 3.22: Given 15 tasks of sizes 1 × 1, 2 × 2, . . . , 15 × 15 and a slack σ = 0,
examples of longest closed holes (in red) for a gap of 1, 2, . . . , 15
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Figure 3.23: Given 15 tasks of sizes 1 × 1, 2 × 2, . . . , 15 × 15 and a slack σ = 0,
examples of longest open holes (in red) for a gap of 1, 2, . . . , 15
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3.7.72 HCycle à [4 CONS]

• BALANCE CYCLE,

• CYCLE,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT LOOP.

A constraint that can be used for restricting the number of cycles of a permu-
tation (i.e., CYCLE), or for restricting the size of the cycles of a permutation (i.e.,
SYMMETRIC ALLDIFFERENT, SYMMETRIC ALLDIFFERENT LOOP), or for restricting
the difference between the largest and the smallest cycle (i.e., BALANCE CYCLE).

3.7.73 HCyclic à [4 CONS]

• CIRCULAR CHANGE,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• STRETCH CIRCUIT.

A constraint that involves a kind of cyclicity in its definition. It either uses the arc
generator CIRCUIT or an arc constraint involving mod .

3.7.74 HData constraint à [18 CONS]

• ELEM,

• ELEM FROM TO,

• ELEMENT,

• ELEMENTN,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT MATRIX,

• ELEMENT PRODUCT,

• ELEMENT SPARSE,

• ELEMENTS,

• ELEMENTS ALLDIFFERENT,

• ELEMENTS SPARSE,

• IN RELATION,

• ITH POS DIFFERENT FROM 0,
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• NEXT ELEMENT,

• NEXT GREATER ELEMENT,

• STAGE ELEMENT,

• SUM.

In the literature also known as ad-hoc constraints. A constraint that allows for rep-
resenting an access to an element of a data structure (e.g., a table, a matrix, a relation)
or to compute a value from a given data structure.

3.7.75 HDeadlock breaking à [1 CONS]

• CUTSET.

A constraint that was used within the application area of deadlock breaking.

3.7.76 HDecomposition à [48 CONS]

• ALL MIN DIST,

• ALL DIFFER FROM AT LEAST K POS,

• ALL DIFFER FROM AT MOST K POS,

• ALL DIFFER FROM EXACTLY K POS,

• ALL INCOMPARABLE,

• AMONG SEQ,

• ARITH,

• ARITH OR,

• ARITH SLIDING,

• DECREASING,

• DIFFN,

• DIFFN COLUMN,

• DIFFN INCLUDE,
• DISJ,
• DISJUNCTIVE,
• DISJUNCTIVE OR SAME END,
• DISJUNCTIVE OR SAME START,
• DOMAIN CONSTRAINT,
• GEOST,
• GEOST TIME,
• INCREASING,
• K ALLDIFFERENT,
• K DISJOINT,
• K SAME,
• K SAME INTERVAL,
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• K SAME MODULO,

• K SAME PARTITION,

• K USED BY,

• K USED BY INTERVAL,

• K USED BY MODULO,

• K USED BY PARTITION,

• LEX ALLDIFFERENT,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LINK SET TO BOOLEANS,

• ORTH LINK ORI SIZ END,

• PRECEDENCE,

• ROOTS,

• SEQUENCE FOLDING,

• SLIDING DISTRIBUTION,

• SLIDING SUM,

• STRICTLY DECREASING,

• STRICTLY INCREASING,

• SYMMETRIC CARDINALITY,

• SYMMETRIC GCC,

• VISIBLE.

A constraint for which the catalogue provides a description in terms of a conjunc-
tion of more elementary constraints. This is the case when the constraint is described
by one or several graph constraints that all satisfy the following property: the descrip-
tion uses the NARC graph property and forces all arcs of the initial graph to belong
to the final graph. Most of the time we have only a single graph constraint. But some
constraints (e.g., DIFFN) use more than one. Note that the arc constraint can sometimes
be a logical expression involving several constraints (e.g., DOMAIN CONSTRAINT).

3.7.77 HDecomposition-based violation measure à [2 CONS]

• SOFT ALLDIFFERENT CTR, • SOFT ALL EQUAL MIN CTR.

A soft constraint associated with a constraint that can be described in terms of a
conjunction of more elementary constraints for which the violation cost is the number
of violated elementary constraints.
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3.7.78 HDemand profile à [3 CONS]

• CUMULATIVES,
• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP.

A constraint that allows for representing problems where one has to allocate re-
sources in order to cover a given demand. A profile specifies for each instant the
minimum, and possibly maximum, required demand.

3.7.79 HDegree of diversity of a set of solutions à [3 CONS]

• LEX CHAIN GREATER,
• LEX CHAIN LESS,

• SOFT ALLDIFFERENT CTR.

A constraint that allows finding a set of solutions with a certain degree of diver-
sity. As an example, consider the problem of finding 9 diverse solutions for the 10-
queens problem. For this purpose we create a 10 by 9 matrix M of domain vari-
ables taking their values in interval [0, 9]. Each row of M corresponds to a solu-
tion to the 10-queens problem. We assume that the variables ofM are assigned row
by row, and that within a given row, they are assigned from the first to the last col-
umn. Moreover values are tried in increasing order. We first post for each row ofM
the 3 ALLDIFFERENT constraints related to the 10-queens problem (see Figure 5.32
for an illustration of the 3 ALLDIFFERENT constraints). With a LEX CHAIN LESS
constraint, we lexicographically order the first two variables of each row of M in
order to enforce that the first two variables of any pair of solutions are always dis-
tinct. We then impose a SOFT ALLDIFFERENT CTR constraint on the variables of each
column of M. Let Ci denotes the corresponding cost variable associated with the
SOFT ALLDIFFERENT CTR constraint of the i-th column ofM (i.e., the first argument
of the SOFT ALLDIFFERENT CTR constraint). We put a maximum limit (e.g., 3 in our
example) on these cost variables. We also impose that the sum of these cost variables
should not exceed a given maximum value (e.g., 8 in our example). Finally, in order to
balance the diversity over consecutive variables we state that the sum of two consecu-
tive cost variables should not exceed a given threshold (e.g., 2 in our example). As one
of the possible results we get the following nine solutions depicted below.
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• S1 = 〈0, 2, 5, 7, 9, 4, 8, 1, 3, 6〉,

• S2 = 〈0, 3, 5, 8, 2, 9, 7, 1, 4, 6〉,

• S3 = 〈1, 3, 7, 2, 8, 5, 9, 0, 6, 4〉,

• S4 = 〈2, 4, 8, 3, 9, 6, 1, 5, 7, 0〉,

• S5 = 〈3, 6, 9, 1, 4, 7, 0, 2, 5, 8〉,

• S6 = 〈5, 9, 2, 6, 3, 1, 8, 4, 0, 7〉,

• S7 = 〈6, 8, 1, 5, 0, 2, 4, 7, 9, 3〉,

• S8 = 〈8, 1, 4, 9, 7, 0, 3, 6, 2, 5〉,

• S9 = 〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉.

The costs associated with the SOFT ALLDIFFERENT CTR constraints of columns
1, 2, . . . , 10 are respectively equal to 1, 1, 1, 0, 1, 0, 1, 1, 1, and 1. The different types
of constraints between the previous 9 solutions are illustrated by Figure 3.24. The nine
diverse solutions S1, S2, . . . , S9 are shown by Figure 3.25. Figure 3.26 depicts the
distribution of all the queens of the nine solutions on a unique chessboard.



3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 239

S1

S2

S3

S4

S5

S6

S7

S8

S9

1 1 1 0 1 0 1 1 1 1

0 2 5 7 9 4 8 1 3 6

0 3 5 8 2 9 7 1 4 6

1 3 7 2 8 5 9 0 6 4

2 4 8 3 9 6 1 5 7 0

3 6 9 1 4 7 0 2 5 8

5 9 2 6 3 1 8 4 0 7

6 8 1 5 0 2 4 7 9 3

8 1 4 9 7 0 3 6 2 5

9 5 0 4 1 8 6 3 7 2

constraint network

diversity distribution constraints:

1 + 1 + 1 + 0 + 1 + 0 + 1 + 1 + 1 + 1 ≤ 8

1 + 1 ≤ 2

1 + 1 ≤ 2

1 + 0 ≤ 2

0 + 1 ≤ 2

1 + 0 ≤ 2

0 + 1 ≤ 2

1 + 1 ≤ 2

1 + 1 ≤ 2

1 + 1 ≤ 2

diversity on last column:
SOFT ALLDIFF CTR(1, 〈6, 6, 4, 0, 8, 7, 3, 5, 2〉)

queen constraints of last row:

ALLDIFFERENT CST(〈9, 5 + 1, 0 + 2, 4 + 3, 1 + 4, 8 + 5, 6 + 6, 3 + 7, 7 + 8, 2 + 9〉)
ALLDIFFERENT(〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉)
ALLDIFFERENT CST(〈9 + 9, 5 + 8, 0 + 7, 4 + 6, 1 + 5, 8 + 4, 6 + 3, 3 + 2, 7 + 1, 2〉)

diversity of initial part of solutions:

LEX CHAIN LESS

〈 vec− 〈0, 2〉, vec− 〈0, 3〉, vec− 〈1, 3〉,
vec− 〈2, 4〉, vec− 〈3, 6〉, vec− 〈5, 9〉,
vec− 〈6, 8〉, vec− 〈8, 1〉, vec− 〈9, 5〉

〉

Figure 3.24: Constraint network associated with the problem of finding 9 diverse
solutions for the 10-queens problem where variables are fixed to the solutions cor-
responding to S1 = 〈0, 2, 5, 7, 9, 4, 8, 1, 3, 6〉, S2 = 〈0, 3, 5, 8, 2, 9, 7, 1, 4, 6〉, . . . ,
S9 = 〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉, and where each type of constraint (hyperedge) is drawn
with its own colour

Approaches for finding diverse and similar solutions based on the Hamming dis-
tances between each pair of solutions are presented by E. Hebrard et al. [215].
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S9 = 〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉

Figure 3.25: Nine diverse solutions to the 10-queens problem
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9

Q S1 = 〈0, 2, 5, 7, 9, 4, 8, 1, 3, 6〉
Q S2 = 〈0, 3, 5, 8, 2, 9, 7, 1, 4, 6〉
Q S3 = 〈1, 3, 7, 2, 8, 5, 9, 0, 6, 4〉
Q S4 = 〈2, 4, 8, 3, 9, 6, 1, 5, 7, 0〉
Q S5 = 〈3, 6, 9, 1, 4, 7, 0, 2, 5, 8〉
Q S6 = 〈5, 9, 2, 6, 3, 1, 8, 4, 0, 7〉
Q S7 = 〈6, 8, 1, 5, 0, 2, 4, 7, 9, 3〉
Q S8 = 〈8, 1, 4, 9, 7, 0, 3, 6, 2, 5〉
Q S9 = 〈9, 5, 0, 4, 1, 8, 6, 3, 7, 2〉

Figure 3.26: Distribution of the queens on the chessboard of the nine diverse solutions
depicted by Figure 3.25 to the 10-queens problem: a red queen means two queens
from two different solutions that are placed on a same cell, non-red queens of a same
colour are queens that belong to a same solution; out of the 10 · 10 cells of the original
chessboard, 9 · 10− 2 · 8 = 74 cells are occupied by a single queen, 8 by two queens,
and 18 by no queen at all.
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3.7.80 HDerived collection à [30 CONS]

• ASSIGN AND COUNTS,

• CORRESPONDENCE,

• CUMULATIVE TWO D,

• CUMULATIVE WITH LEVEL OF PRIORITY,

• CUMULATIVES,

• CYCLE RESOURCE,

• DOMAIN CONSTRAINT,

• ELEMENT,

• ELEMENT MATRIX,

• ELEMENT SPARSE,

• ELEMENTS SPARSE,

• GOLOMB,

• IN,

• IN INTERVAL,

• IN RELATION,

• IN SAME PARTITION,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LINK SET TO BOOLEANS,

• MINIMUM GREATER THAN,

• NEXT ELEMENT,

• NEXT GREATER ELEMENT,

• NOT IN,

• SLIDING TIME WINDOW FROM START,

• SORT PERMUTATION,

• TRACK,

• TREE RESOURCE,

• TWO LAYER EDGE CROSSING.

A constraint that uses one or several derived collections. Derived collections were
introduced in Section 2.3.2 on page 51.

3.7.81 HDFS-bottleneck à [18 CONS]

• ALLDIFFERENT (filtering DFS-bottleneck),

• BALANCE CYCLE (filtering and reformulation DFS-bottleneck),

• BALANCE PATH (filtering and reformulation DFS-bottleneck),

• BALANCE TREE (filtering and reformulation DFS-bottleneck),

• BIPARTITE (filtering and reformulation DFS-bottleneck),

• CIRCUIT (filtering and reformulation DFS-bottleneck),

• CYCLE (filtering and reformulation DFS-bottleneck),

• CONNECTED (filtering and reformulation DFS-bottleneck),

• DERANGEMENT (filtering DFS-bottleneck),

• GLOBAL CARDINALITY (filtering DFS-bottleneck),

• GLOBAL CARDINALITY LOW UP (filtering DFS-bottleneck),

• MAP (filtering and reformulation DFS-bottleneck),
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• PATH (filtering and reformulation DFS-bottleneck),

• PROPER CIRCUIT (filtering and reformulation DFS-bottleneck),

• SAME (filtering DFS-bottleneck),

• TOUR (filtering and reformulation DFS-bottleneck),

• TREE (filtering and reformulation DFS-bottleneck),

• USED BY (filtering DFS-bottleneck).

reformulation DFS-bottleneck A constraint on a graph for which a depth-first search
based procedure is normally required for checking whether a ground instance
is satisfied or not, e.g., a connectivity constraint. The reformulation of such a
constraint as a conjunction of other constraints is usually not easy. A possibility,
when each node has a single successor in the ground case, is to use an ELEMENT
constraint to express the link between a node and its successor at the price of
using a large number of ELEMENT constraints (e.g., see the Reformulation slot
of the CYCLE constraint).

filtering DFS-bottleneck A constraint for which a depth-first search based algorithm
usually constitutes a bottleneck of its filtering algorithm. This is a pity, espe-
cially on dense graphs11, where most of the invocations of the filtering algorithm
do not usually bring any new deductions. Motivated by this fact, randomised
filtering algorithms were introduced in [243] and [246] in the context of the
GLOBAL CARDINALITY LOW UP and ALLDIFFERENT constraints. A second
approach is to come up with a probabilistic analysis for predicting whether trig-
gering a given filtering algorithm can produce new deductions. This was done
for the bound-consistency algorithm of the ALLDIFFERENT constraint in [89].

11A common implementation trick relies on the fact that, quite often on dense graphs, a depth-first search
algorithm develops a path (rather than a tree) visiting all vertices, such that one can directly reach (i.e., with a
single arc) the first node of the path from the last one (i.e., we have a single strongly connected component).
In this context the trick is to stop the depth-first search algorithm as soon as the last node of the path is
reached, in order to avoid scanning through all remaining arcs of the graph. When this is the case the
complexity of the DFS goes from O(m) down to O(n) where n is the number of vertices and where m is
the number of arcs of the graph.
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3.7.82 HDifference à [2 CONS]

• GOLOMB, • SUM OF INCREMENTS.

Denotes that the definition of a constraint involves one or several differences be-
tween pairs of variables.

3.7.83 HDifference between pairs of variables à [2 CONS]

• LEX ALLDIFFERENT, • LEX ALLDIFFERENT EXCEPT 0.

A constraint that allows expressing that a set of pairs of variables are different.
Two pairs of variables (X1, Y1) and (X2, Y2) are different if and only if X1 6= X2

or Y1 6= Y2. Constraint LEX ALLDIFFERENT EXCEPT 0 ignores pairs for which both
components are assigned value 0.

3.7.84 HDirected acyclic graph à [1 CONS]

• CUTSET.

A constraint that forces the final graph to be a directed acyclic graph. A directed
acyclic graph is a digraph with no path starting and ending at the same vertex.
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3.7.85 HDisequality à [25 CONS]

• ALL DIFFER FROM AT LEAST K POS,

• ALL DIFFER FROM AT MOST K POS,

• ALL DIFFER FROM EXACTLY K POS,

• ALLDIFFERENT,

• ALLDIFFERENT BETWEEN SETS,

• ALLDIFFERENT CST,

• ALLDIFFERENT CONSECUTIVE VALUES,

• DISJOINT,

• ELEMENTS ALLDIFFERENT,

• GOLOMB,

• K ALLDIFFERENT,

• K DISJOINT,

• LEX DIFFERENT,

• NEQ CST,

• NOT ALL EQUAL,

• NOT IN,

• OPEN ALLDIFFERENT,

• PERMUTATION,

• ROOTS,

• SIZE MAX STARTING SEQ ALLDIFFERENT,

• SIZE MAX SEQ ALLDIFFERENT,

• SOFT ALLDIFFERENT CTR,

• SOFT ALLDIFFERENT VAR,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT LOOP.

Denotes that a disequality between two domain variables, one domain variable and
a fixed value, or two set variables is used within the definition of a constraint. De-
notes also that the notion of disequality can be used within the informal definition of a
constraint. This is the case, for example, for the relaxation of the ALLDIFFERENT con-
straint (i.e., SOFT ALLDIFFERENT CTR, SOFT ALLDIFFERENT VAR), which do not
strictly enforce a disequality.
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3.7.86 HDisjunction à [12 CONS]

• CASE,

• ARITH OR,

• CLAUSE OR,

• DIFFN,

• DISJUNCTIVE,

• DISJUNCTIVE OR SAME END,

• DISJUNCTIVE OR SAME START,

• ELEMENT,

• ELEM,

• GEOST,

• GEOST TIME,

• OR.

Denotes that a constraint can be used for modelling some kind of disjunction.

3.7.87 HDomain channel à [1 CONS]

• DOMAIN CONSTRAINT.

A constraint that allows for making the link between a domain variable V and a set
of 0-1 variables B1, B2, . . . , Bn. It enforces a condition of the form V = i⇔ Bi = 1.

3.7.88 HDomain definition à [6 CONS]

• ARITH,

• DOMAIN,

• IN,

• IN INTERVAL,

• IN INTERVALS,

• NOT IN.

A constraint that is used for defining the initial domain of one or several domain
variables or for removing some values from the domain of one or several domain vari-
ables.
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3.7.89 HDominating queens à [1 CONS]

• NVALUE.

A constraint that can be used for modelling the dominating queens problem. Place
a number of queens on an n by n chessboard in such a way that all squares are either
attacked by a queen or are occupied by a queen. A queen can attack all squares located
on the same column, on the same row or on the same diagonal. Values of the minimum
number of queens for n less than or equal to 120 are reported in [310]. Most of them
are in fact either equal to bn+1

2 c or to bn+1
2 c + 1. Values n = 3 and n = 11 are the

only two values below 120 for which the previous assertion is not true since we only
need in these two cases bn2 c queens.

3.7.90 HDomination à [6 CONS]

• ATLEAST NVECTOR,

• ATMOST NVECTOR,

• NVALUE,

• NVECTOR,

• NVECTORS,

• SUM OF WEIGHTS OF DISTINCT VALUES.

A constraint that can be used for expressing directly the fact that we search for a
dominating set in an undirected graph. Given an undirected graph G = (V,E) where
V is a finite set of vertices and E a finite set of unordered pairs of distinct elements
from V , a set S is a dominating set if for every vertex u ∈ V − S there exists a vertex
v ∈ S such that u is adjacent to v. Part (A) of Figure 3.27 gives an undirected graph
G, while part (B) depicts a dominating set S = {e, f, g} in G.
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Figure 3.27: (A) A graph and (B) one of its dominating set S = {e, f, g}
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3.7.91 HDual model à [5 CONS]

• INVERSE,
• INVERSE EXCEPT LOOP,
• INVERSE OFFSET,

• INVERSE SET,

• INVERSE WITHIN RANGE.

A constraint that can be used as a channelling constraint in a problem where the
roles of the variables and the values can be interchanged. This is the case, for example,
when we have a bijection between a set of variables and the values they can take.

3.7.92 HDuplicated variables à [8 CONS]

• GLOBAL CARDINALITY,

• K ALLDIFFERENT,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• SCALAR PRODUCT,

• STRETCH CIRCUIT.

A constraint for which the situation where the same variable can occur more than
once was considered in order to derive a better filtering algorithm or to prove a com-
plexity result for achieving arc-consistency. Also in the case of the STRETCH CIRCUIT
constraint, a constraint for which the reformulation duplicates some variables.

3.7.93 HDynamic programming à [5 CONS]
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• AMONG SEQ,
• CHANGE,
• CUMULATIVE,

• STRETCH CIRCUIT,

• STRETCH PATH.

A constraint for which a filtering algorithm uses dynamic programming. Note that
dynamic programming was also used by M. A. Trick within the context of linear con-
straints [419].

3.7.94 HEmpty intersection à [2 CONS]

• DISJOINT, • K DISJOINT.

A constraint which forces an empty intersection between two sets of variables.

3.7.95 HEntailment à [6 CONS]

• ALLDIFFERENT,

• AMONG LOW UP,

• GLOBAL CARDINALITY LOW UP,

• MAXIMUM,

• MINIMUM,

• NOT IN.

Denotes that the catalogue mentions a sufficient condition for the entailment of
a constraint. Consider a constraint C(V1, V2, . . . , Vn) and the potential sets of val-
ues dom(V1), dom(V2), . . . , dom(Vn) that can respectively be assigned to the dis-
tinct domain variables V1, V2, . . . , Vn. The constraint C(V1, V2, . . . , Vn) is entailed
if and only if C(V1, V2, . . . , Vn) holds whatever values val1 ∈ dom(V1), val2 ∈
dom(V2), . . . , valn ∈ dom(Vn) will respectively be assigned variables V1, V2, . . . , Vn.
A satisfied constraint for which all variables are already fixed is trivially entailed.



3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 251

Entailment is usually not considered as very important when designing a filtering
algorithm, even though it can sometimes save waking again and again a constraint that
will for sure be satisfied. Failure to detect entailment can leads to a memory leak if the
constraint system is supposed to reclaim memory for entailed constraints for which it
is no more possible to backtrack over the point where the constraint was posted. From
a modelling point of view, entailment detection is mandatory for coming up with the
reified version of a constraint (see also reified automaton constraint).

3.7.96 HEquality à [1 CONS]

• EQ SET.

Denotes that the notion of equality can be used within the informal definition of a
constraint.

3.7.97 HEquality between multisets à [4 CONS]

• K SAME,

• SAME,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP.

A constraint that can be used for modelling an equality constraint between two
multisets.
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3.7.98 HEquivalence à [21 CONS]

• ATLEAST NVALUE,

• ATLEAST NVECTOR,

• ATMOST NVALUE,

• ATMOST NVECTOR,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BALANCE PARTITION,

• BALANCE,

• INCREASING NVALUE,

• MAX NVALUE,

• MIN NVALUE,

• NCLASS,

• NEQUIVALENCE,

• NINTERVAL,

• NOT ALL EQUAL,

• NPAIR,

• NVALUE,

• NVALUES,

• NVECTOR,

• NVECTORS,

• SOFT ALLDIFFERENT VAR.

Denotes that a constraint is defined by a graph constraint for which the final graph
is reflexive, symmetric and transitive.

3.7.99 HEuler knight à [4 CONS]

• ALLDIFFERENT,

• CIRCUIT,

• CYCLE,

• TOUR.

Denotes that a constraint can be used for modelling some parts of the Euler knight
problem. The Euler knight problem consists of finding a sequence of moves on a chess-
board by a knight such that each square of the board is visited exactly once. While a
natural model uses an undirected graph together with the TOUR constraint, the problem
is usually modeled with a directed graph that does not require set variables.
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3.7.100 HExcluded à [1 CONS]

• NOT IN.

A constraint that prevents certain values to be taken by a variable.

3.7.101 HExtensible à [57 CONS]

• ALL DIFFER FROM AT LEAST K POS (extensible wrt VECTORS.vec),

• AND (extensible wrt VARIABLES when VAR = 0),

• ASSIGN AND COUNTS (extensible wrt ITEMS when RELOP ∈ [≥, >]),

• ASSIGN AND NVALUES (extensible wrt ITEMS when RELOP ∈ [≥, >]),

• ATLEAST (extensible wrt VARIABLES),

• ATLEAST NVALUE (extensible wrt VARIABLES),

• ATLEAST NVECTOR (extensible wrt VECTORS),

• BETWEEN MIN MAX (extensible wrt VARIABLES),

• CLAUSE AND (extensible wrt POSVARS when VAR = 0),

• CLAUSE AND (extensible wrt NEGVARS when VAR = 0),

• CLAUSE OR (extensible wrt POSVARS when VAR = 1),

• CLAUSE OR (extensible wrt NEGVARS when VAR = 1),

• COMPARE AND COUNT (extensible wrt [VARIABLES1, VARIABLES2] when COUNT ∈ [≥, >]),

• COUNT (extensible wrt VARIABLES when RELOP ∈ [≥, >]),

• COUNTS (extensible wrt VARIABLES when RELOP ∈ [≥, >]),

• DIFFER FROM AT LEAST K POS (extensible wrt [VARIABLES1, VARIABLES2]),

• ELEMENT (suffix-extensible wrt TABLE),

• ELEMENT PRODUCT (suffix-extensible wrt TABLE),

• ELEMENTN (suffix-extensible wrt TABLE),

• IN (extensible wrt VALUES),

• IN INTERVALS (extensible wrt INTERVALS),

• IN RELATION (extensible wrt TUPLES OF VALS),

• IN SAME PARTITION (extensible wrt PARTITIONS),

• ITH POS DIFFERENT FROM 0 (suffix-extensible wrt VARIABLES),

• LEX ALLDIFFERENT (extensible wrt VECTORS.vec),

• LEX CHAIN LESS (suffix-extensible wrt VECTORS.vec),

• LEX DIFFERENT (extensible wrt [VECTOR1, VECTOR2]),
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• LEX GREATER (suffix-extensible wrt [VECTOR1, VECTOR2]),

• LEX LESS (suffix-extensible wrt [VECTOR1, VECTOR2]),

• NAND (extensible wrt VARIABLES when VAR = 1),

• NCLASS (extensible wrt VARIABLES when NCLASS = |PARTITIONS|),
• NEQUIVALENCE (extensible wrt VARIABLES when NEQUIV = M),

• NOR (extensible wrt VARIABLES when VAR = 0),

• NOT ALL EQUAL (extensible wrt VARIABLES),

• NVALUES (extensible wrt VARIABLES when RELOP ∈ [≥, >]),

• NVALUES EXCEPT 0 (extensible wrt VARIABLES when RELOP ∈ [≥, >]),

• NVECTORS (extensible wrt VECTORS when RELOP ∈ [≥, >]),

• OPEN ATLEAST (suffix-extensible wrt VARIABLES),

• OR (extensible wrt VARIABLES when VAR = 1),

• RANGE CTR (extensible wrt VARIABLES when CTR ∈ [≥, >]),

• SCALAR PRODUCT (extensible wrt LINEARTERM when CTR ∈ [≥, >],
minval(LINEARTERM.coeff) ≥ 0 and minval(LINEARTERM.var) ≥ 0),

• SOME EQUAL (extensible wrt VARIABLES),

• STAGE ELEMENT (suffix-extensible wrt TABLE),

• SUM CTR (extensible wrt VARIABLES when CTR ∈ [≥, >] and minval(VARIABLES.var) ≥ 0),

• SUM CTR (extensible wrt VARIABLES when CTR ∈ [<,≤] and maxval(VARIABLES.var) ≤ 0),

• SUM CUBES CTR (extensible wrt VARIABLESwhen CTR ∈ [≥, >] and minval(VARIABLES.var) ≥
0),

• SUM CUBES CTR (extensible wrt VARIABLESwhen CTR ∈ [<,≤] and maxval(VARIABLES.var) ≤
0),

• SUM POWERS4 CTR (extensible wrt VARIABLES when CTR ∈ [≥, >],

• SUM POWERS5 CTR (extensible wrt VARIABLES when CTR ∈ [≥, >] and
minval(VARIABLES.var) ≥ 0),

• SUM POWERS5 CTR (extensible wrt VARIABLES when CTR ∈ [<,≤] and
maxval(VARIABLES.var) ≤ 0),

• SUM POWERS6 CTR (extensible wrt VARIABLES when CTR ∈ [≥, >],

• SUM SQUARES CTR (extensible wrt VARIABLES when CTR ∈ [≥, >],

• USED BY (extensible wrt VARIABLES1),

• USED BY INTERVAL (extensible wrt VARIABLES1),

• USED BY MODULO (extensible wrt VARIABLES1),

• USED BY PARTITION (extensible wrt VARIABLES1),

• USES (extensible wrt VARIABLES1).

An extensible constraint is a constraint for which, given any satisfied ground in-
stance (i.e., a source constraint), one can add any item without affecting that the
resulting constraint (i.e., a target constraint) still holds, assuming all its restrictions
holds. All the extensions of contractibility described at the corresponding keyword
entry apply also for extensibility. In particular we also have the restricted notions of
prefix-extensible and suffix-extensible constraints, which respectively means that items
are added before the first item of a collection or after the last item. As for contractibility,
extensibility may also be conditioned by a list of restrictions. Finally extensibility may
involve more than one collection. In this context, items are added simultaneously to all
collections from exactly the same set of positions. We now present different examples
of extensible constraints, starting from a very simple one.
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• As a first example, consider the ATLEAST(N, VARIABLES, VALUE) constraint,
which forces at least N variables of the VARIABLES collection to be assigned
value VALUE. We have that ATLEAST is extensible with respect to VARIABLES,
since adding a variable to an already satisfied instance of ATLEAST preserves the
fact the new constraint is satisfied.

As an illustration consider the source constraint ATLEAST(2, 〈4, 2, 4, 5〉, 4)
and the target constraint ATLEAST(2, 〈4, 2, 4, 5, 0, 4〉, 4). Since the first ar-
gument N is set to the same value, both in the source and the target con-
straint, and since the third VALUE is also set to the same value both in the
source and the target constraint, we have that ATLEAST(2, 〈4, 2, 4, 5〉, 4) implies
ATLEAST(2, 〈4, 2, 4, 5, 0, 4〉, 4).

• As a second example, consider the ELEMENT(INDEX, TABLE, VALUE) constraint,
which forces VALUE to equal the INDEXth item of TABLE. We have that ELEMENT
is suffix-extensible with respect to TABLE, since adding new elements at the end
of TABLE for an already satisfied instance of ELEMENT preserves the fact the new
constraint is satisfied.

As an illustration consider the source constraint ELEMENT(3, 〈6, 9, 2, 9〉, 2) and
the target constraint ELEMENT(3, 〈6, 9, 2, 9, 8, 0, 2〉, 2). Since the first argument
INDEX is set to the same value, both in the source and the target constraint,
and since the third argument VALUE is also set to the same value both in the
source and the target constraint, we have that ELEMENT(3, 〈6, 9, 2, 9〉, 2) implies
ELEMENT(3, 〈6, 9, 2, 9, 8, 0, 2〉, 2).

• As a third example, consider the AND(VAR, VARIABLES) constraint, which forces
VAR to equal 1 if all variables of VARIABLES are set to 1, and 0 otherwise. We
have that AND is extensible with respect to VARIABLES when VAR is equal to 0.
This stems from the fact that, given a satisfied instance of AND where VAR = 0,
adding any new variable to VARIABLES preserves the fact the new constraint is
satisfied. As an illustration consider the source constraint AND(0, 〈1, 0, 1〉) and
the target constraint AND(0, 〈1, 0, 0, 1〉). Since the first argument VAR is set to
0, both in the source and the target constraint, we have that AND(0, 〈1, 0, 1〉)
implies AND(0, 〈1, 0, 0, 1〉).

• As a fourth example, consider the LEX GREATER(VECTOR1, VECTOR2) con-
straint, which forces VECTOR1 to be lexicographically strictly greater than
VECTOR2. We have that LEX GREATER is suffix-extensible with respect to
VECTOR1 and VECTOR2. This means that, given a satisfied instance of
LEX GREATER, adding k items at the end of its first argument VECTOR1 and
adding k other items at the end of its second argument VECTOR2 preserves the
fact the new constraint is satisfied.

As an illustration consider the source constraint LEX GREATER(〈5, 2, 7, 1〉,
〈5, 2, 6, 2〉) and the target constraint LEX GREATER(〈5, 2, 7, 1, 0〉,
〈5, 2, 6, 2, 9〉). We have that LEX GREATER(〈5, 2, 7, 1〉, 〈5, 2, 6, 2〉) implies
LEX GREATER(〈5, 2, 7, 1, 0〉, 〈5, 2, 6, 2, 9〉).
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• As a fifth example, consider the LEX CHAIN LESS(VECTORS) constraint, which
given a collection of vectors each of which defined by a collection of variables
of the same length, forces the ith vector to be lexicographically strictly less than
the (i + 1)th vector (1 ≤ i < |VECTORS|). We have that LEX CHAIN LESS is
suffix-extensible with respect to VECTORS.vec. This means that, given a satis-
fied instance of LEX CHAIN LESS, adding k items at the end of all collections
simultaneously preserves the fact the new constraint is satisfied.

As an illustration consider the source constraint LEX CHAIN LESS(〈vec −
〈5, 2, 3, 9〉, vec − 〈5, 2, 6, 2〉, vec − 〈5, 2, 6, 3〉) and the target constraint
LEX CHAIN LESS(〈vec−〈5, 2, 3, 9, 9〉, vec−〈5, 2, 6, 2, 8〉, vec−〈5, 2, 6, 3, 7〉).
Since each vector of the source constraint is a prefix of the vector located at the
same position in the target constraint the source constraint implies the target con-
straint.

The keyword contractible introduces a dual notion, where items can be removed
from a collection that is passed as an argument of a satisfied global constraint without
affecting the fact that the resulting constraint is satisfied. Contractibility is a more
common property than extensibility.

3.7.102 HExtension à [1 CONS]

• IN RELATION.

A constraint that is defined by explicitly providing all its solutions.
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3.7.103 HFacilities location problem à [2 CONS]

• CYCLE OR ACCESSIBILITY, • SUM OF WEIGHTS OF DISTINCT VALUES.

A constraint that allows for modelling a facilities location problem. In a facilities
location problem one has to select a subset of locations from a given initial set so that
a given set of conditions holds.

3.7.104 HFloor planning problem à [4 CONS]

• DIFFN,

• GEOST,

• LEX CHAIN GREATER,

• LEX CHAIN LESS.

A constraint that can be used for the floor planning problem. The floor planning
problem [326, 418, 281, 120, 289] involves various type of spaces, such as the place-
ment space itself (i.e., the floor), the rooms to place within the placement space, and the
circulation between the rooms. The placement space can be located on a single level
or on several levels. Very often the placement space corresponds to a single rectangle
and all rooms are rectangles with their borders parallel to the contour of the placement
space. Circulation typically corresponds to corridors or stairs that respectively allow
to access from one room to another room or from one level to another level. Within the
context of floor planning three main classes of constraints have been identified [290],
namely dimensional topological and implicit constraints:

• A dimensional constraint usually restricts the length, the width or the surface
of a single space. Ratio constraints enforce aesthetic proportions between the
length and the width of a single space or constraint the surfaces of two closely
related spaces such as the toilets and the shower. Dimensional constraints can be
expressed by reducing the domain of some variable or by stating some arithmetic
constraints between two variables.

• A topological constraint imposes a condition between two spaces. Typical topo-
logical constraints are:

– Adjacency constraints with a minimum contact between a room and a cor-
ridor or another room allow expressing that there must be enough place to
put a door between two given spaces. In the context of staircases one has
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to enforce that fact that the first and last stairs are completely accessible.
When a corridor is made up from two parts, one also has to enforce that the
two parts are fully in contact.

– Adjacency with the contour constraints between a room and a specified (or
not) side of the contour allow expressing the orientation of a room (or just
that a room must have some window).

– Relative positioning constraints between two specified rooms allow, for
example, expressing the fact that a room is located to the north of another
room.

– Minimum and maximum distance constraints between two rooms allow ex-
pressing the proximity between two given rooms.

Topological constraints occur naturally in the preliminary design phase in archi-
tecture and can typically be expressed by using reified or global constraints.

• An implicit constraint puts a global condition that is inherent to floor planning
problems between all the spaces of the floor. We typically have:

– Inclusion of each room and circulation within the contour.

– Partitioning of the placement space (i.e., no wasted space is permitted).
This is usually a hard constraint which requires specific propagation in or-
der to prevent the creation of wasted space.

– Non-overlapping between rooms.

– Symmetry breaking constraints between identical rooms imposes, for ex-
ample, a lexicographic order between their respective lower leftmost cor-
ners.

Such constraints can typically be expressed by using global constraints, such as
DIFFN, GEOST, or LEX CHAIN LESS.

Finally, in order to allocate as much surface as possible to the rooms, one wants some-
times to minimise the total circulation area between the different rooms.

In order to illustrate these constraints we now consider an example of floor planning
problem taken from R. Maculet PhD thesis [281] involving 11 spaces. Constraints on
the dimensions of these space are:

• The floor where to place everything has a size of 12 by 10 meters.

• The living has a surface between 33 and 42 square meters and a minimum size
of 4 by 4.

• The kitchen has a surface between 9 and 15 square meters and a minimum size
of 3 by 3.

• The shower has a surface between 6 and 9 square meters and a minimum size of
2 by 2.
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Figure 3.28: A solution to Maculet floor planning problem that minimises the total
area of the corridors

• The toilet has a surface between 1 and 2 square meters and a minimum size of 1
by 1.

• The first and second parts of the corridor have both a surface between 1 and 12
square meters and a minimum size of 1 by 1.

• The first, second and third rooms have all a surface between 11 and 15 square
meters and a minimum size of 3 by 3.

• The fourth room has a surface between 15 and 20 square meters and a minimum
size of 3 by 3.

Topological constraints between spaces are:

• The living is located on the south-west contour. The kitchen, the first, second and
third rooms are either located on the south or on the north contour. The fourth
room is on the south contour.

• All spaces, except the kitchen, are adjacent to one of the corridors with at least
1 meter of full contact.

• The kitchen is adjacent to the living and to the shower.

• The toilet is adjacent to the kitchen or to the shower.

• The first and the second parts of the corridor are adjacent and fully in contact.

Finally no wasted space is permitted. Figure 3.28 presents a solution to the correspond-
ing floor planning problem that minimises the area of the two corridors.
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3.7.105 HFlow à [17 CONS]

• ALL BALANCE,

• ALLDIFFERENT,

• AMONG SEQ,

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY LOW UP,

• GLOBAL CARDINALITY LOW UP NO LOOP,

• GLOBAL CARDINALITY NO LOOP,

• OPEN ALLDIFFERENT,

• OPEN GLOBAL CARDINALITY,

• OPEN GLOBAL CARDINALITY LOW UP,

• SAME,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SLIDING SUM,

• SYMMETRIC CARDINALITY,

• SYMMETRIC GCC,

• USED BY.

A constraint for which there is a filtering algorithm based on an algorithm that
finds a feasible flow in a graph. The graph is usually constructed12 from the variables
of the constraint as well as from their potential values. The usual game is to come up
with a flow model such that there exists a one to one correspondence between feasible
flows in the flow model and solutions to the constraint, so that detecting arcs that
cannot carry any flow in any feasible flow will lead removing some values from the
domains of some variables. The next sections provide standard flow models for the
ALLDIFFERENT, the OPEN ALLDIFFERENT, the GLOBAL CARDINALITY LOW UP,
the GLOBAL CARDINALITY LOW UP NO LOOP, the USED BY, the SAME, and the
SAME AND GLOBAL CARDINALITY LOW UP constraints.

A. Flow models for the ALLDIFFERENT and the OPEN ALLDIFFERENT constraints

Figure 3.29 presents flow models for the ALLDIFFERENT and the
OPEN ALLDIFFERENT constraints. Blue arcs represent feasible flows respec-
tively corresponding to the solutions ALLDIFFERENT(〈x1 = 1, x2 = 2, x3 =
3, x4 = 4, x5 = 5〉) and OPEN ALLDIFFERENT({1,2,3,5}, 〈x1 = 1, x2 = 2, x3 =
3, x4 = 3, x5 = 4〉), while red arcs correspond to arcs that cannot carry any flow
if the constraint has a solution. Tables 3.11 and 3.12 respectively provide the initial
domains of the variables we assume for the ALLDIFFERENT and OPEN ALLDIFFERENT
constraints.

• Within the context of the ALLDIFFERENT constraint the assignments x3 = 1,
x3 = 2 and x4 = 2 are forbidden since values 1 and 2 must already be assigned
to variables x1 and x2. Finally the assignments x4 = 3 and x5 = 3 are also
forbidden since values 1, 2 and 3 must be assigned to variables x1, x2 and x3.

• Within the context of the OPEN ALLDIFFERENT constraint, the assignment x4 =
3 does not matter at all since the position of x4 within 〈x1 = 1, x2 = 2, x3 =
3, x4 = 3, x5 = 4〉 (i.e., position 4) does not belong to the set of variables

12Sometimes it is also constructed from the reformulation of a global constraint in term of a conjunction
of linear constraints. This is the case, for example, for the AMONG SEQ and the SLIDING SUM global
constraints.
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Table 3.11: Domains of the variables for the ALLDIFFERENT constraint of Figure 3.29.

i dom(xi) i dom(xi) i dom(xi)

1 {1, 2} 3 {1, 2, 3} 5 {3, 4, 5, 6}
2 {1, 2} 4 {2, 3, 4, 5}

Table 3.12: Domains of the variables for the OPEN ALLDIFFERENT constraint of Fig-
ure 3.29. The lower and upper bounds of the set variable corresponding to the first
argument of the OPEN ALLDIFFERENT constraint are respectively equal to set of vari-
ables positions {1, 2, 3, 5}, and {1, 2, 3, 4, 5}, where {1,2,3, 4,5} is a shortcut for
denoting both bounds.

i dom(xi) i dom(xi) i dom(xi)

1 {1, 2} 3 {1, 2, 3} 5 {3, 4}
2 {1, 2} 4 {2, 3}

positions {1, 2, 3, 5}. We can only prune according to those variables that for
sure should be assigned distinct values. Consequently x3 = 1 and x3 = 2 are
forbidden since values 1 and 2 must already be assigned to x1 and x2. Finally
the assignment x5 = 3 is also forbidden since values 1, 2 and 3 must be assigned
to x1, x2 and x3.

B. Flow models for the GLOBAL CARDINALITY LOW UP and the
GLOBAL CARDINALITY LOW UP NO LOOP constraints

Figure 3.30 presents flow models for the GLOBAL CARDINALITY LOW UP and the
GLOBAL CARDINALITY LOW UP NO LOOP constraints. Blue arcs represent feasible

Table 3.13: Domains of the variables and minimum and maximum number of oc-
currences of each value for the GLOBAL CARDINALITY LOW UP constraint of Fig-
ure 3.30.

i dom(xi) i dom(xi) i [omini, omax i] i [omini, omax i]

1 {1, 2} 5 {1, 2, 3} 1 [1, 2] 5 [0, 2]
2 {1, 2} 6 {2, 3, 4, 5} 2 [1, 2]
3 {1, 2} 7 {3, 5} 3 [1, 1]
4 {1, 2} 4 [0, 2]
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Figure 3.29: Flow models for the ALLDIFFERENT and the OPEN ALLDIFFERENT con-
straints described in Tables 3.11 and 3.12: in both cases a first layer consists of the
variables of the constraint and a second layer corresponds to the values that can be
assigned to the variables; each arc has a lower and upper capacity regarding the flow it
can carry; all variables xi (with i ∈ [1, 5]) such that the minimum capacity of the arc
from s to xi is equal to 1 must be assigned distinct values.

flows respectively corresponding to the solutions GLOBAL CARDINALITY LOW UP
(〈x1 = 1, x2 = 1, x3 = 2, x4 = 2, x5 = 3, x6 = 5, x7 = 5〉, 〈val−1 omin−1 omax−
2, val− 2 omin− 1 omax− 2, val− 3 omin− 1 omax− 1, val− 4 omin− 0 omax−
2, val − 5 omin − 0 omax − 2〉) and GLOBAL CARDINALITY LOW UP NO LOOP
(2, 2, 〈x1 = 1, x2 = 2, x3 = 2, x4 = 2, x5 = 1, x6 = 4, x7 = 3〉, 〈val − 1 omin −
1 omax− 2, val− 2 omin− 2 omax− 3, val− 3 omin− 1 omax− 1, val− 4 omin−
1 omax−2, val−5 omin−0 omax−2〉), while red arcs correspond to arcs that cannot
carry any flow if the constraint has a solution:

• Within the context of the GLOBAL CARDINALITY LOW UP constraint variables
x1, x2, x3 and x4 take their values within the set {1, 2}. Since each value in
{1, 2} can be used at most 2 times, variables different from x1, x2, x3, x4 cannot
be assigned a value in {1, 2}. Consequently, x5 6= 1, x5 6= 2 and x6 6= 2. Since
value 3 is the only remaining value for variable x5, and since value 3 can be
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assigned to at most one variable, the assignments x6 6= 3 and x7 6= 3 are also
forbidden.

• – On the one hand we should have exactly two assignments of the form
xi = i (i ∈ [1, 7]), since the first and second arguments of the constraint
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x1, x2, x3,
x4, x5, x6, x7

〉
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Blue arcs correspond to the feasible
flow associated with solution x1 = 1,

x2 = 2, x3 = 2, x4 = 2, x5 = 1, x6 = 4,
and x7 = 3, while red arcs cannot carry
any flow in a solution (an arc from node
xi to node loop means that xi = i)

Figure 3.30: Flow models for the GLOBAL CARDINALITY LOW UP and the
GLOBAL CARDINALITY LOW UP NO LOOP constraints described in Tables 3.13
and 3.14: in both cases a first layer consists of the variables of the constraint and a
second layer corresponds to the values that can be assigned to the variables (in the
second model, the loop node represents an anonymous value i corresponding to as-
signments of the form xi = i); each arc has a lower and upper capacity regarding the
flow it can carry; arcs entering a node associated with a variable must carry a flow of
1 since each variable must be assigned a single value, while arcs exiting a node asso-
ciated with a value have a capacity set accordingly the last argument of the constraint
(i.e., the collection of values VALUES).
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Table 3.14: Domains of the variables and minimum and maximum number of occur-
rences of each value for the GLOBAL CARDINALITY LOW UP NO LOOP constraint of
Figure 3.30; to the entry named loop corresponds the interval [MINLOOP, MAXLOOP]
where MINLOOP and MAXLOOP respectively correspond to the first and second argu-
ments of the GLOBAL CARDINALITY LOW UP NO LOOP constraint.

i dom(xi) i dom(xi) i [omini, omax i] i [omini, omax i]

1 {1, 2} 5 {1, 2} loop [2, 2] 4 [1, 2]
2 {1, 2} 6 {2, 4, 5} 1 [1, 2] 5 [0, 2]
3 {1, 2} 7 {3, 4, 5} 2 [2, 3]
4 {1, 2, 3} 3 [1, 1]

GLOBAL CARDINALITY LOW UP NO LOOP are both set to two. Since the
two variables x1 and x2 are the only variables such that i ∈ dom(xi) we
must have x1 = 1 and x2 = 2, i.e. x1 6= 2 and x2 6= 1.

– On the other hand, since we should have at least 1 + 2 + 1 + 1 = 5 as-
signments of the form xi = j (i 6= j, j ∈ [1, 4]) and since only 5 variables
xi (with i ∈ [3, 7]) can be assigned a value j in [1, 4] with i 6= j, these
variables should not be assigned a value outside interval [1, 4], i.e. x6 6= 5
and x7 6= 5.

C. Flow models for the USED BY and the SAME constraints

Figure 3.31 presents flow models for the USED BY and the SAME con-
straints. Blue arcs represent feasible flows respectively corresponding to the
solutions USED BY(〈x1 = 2, x2 = 4, x3 = 6〉, 〈y1 = 2, y2 = 4〉) and
SAME(〈x1 = 2, x2 = 4, x3 = 5〉, 〈y1 = 2, y2 = 4, y3 = 5〉), while red arcs
correspond to arcs that cannot carry any flow if the constraint has a solution. Within
the context of the SAME constraint, the assignment x1 = 1 is forbidden since
1 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3). Consequently x1 = 2 and, since y1 is the
only variable of {y1, y2, y3} that can be assigned value 2, the assignment y1 = 3 is
forbidden. Now since 3 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3) the assignment x2 = 3 is
also forbidden. Finally x3 = 6 is forbidden since 6 /∈ dom(y1)∪dom(y2)∪dom(y3).
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Figure 3.31: Flow models for the USED BY and the SAME constraints described in
Tables 3.15 and 3.16: in both cases a first layer consists of the variables xi of the
first argument of both constraints, a second layer corresponds to the values that can be
assigned to the variables xi and yi (i.e., the first and second arguments), and a third
layer consists of the variables yi of the second argument of both constraints; there is
an arc from a variable xi (resp. yi) to a value v if, and only if, value v can be assigned
to variable xi (resp. yi); each arc has a lower and upper capacity regarding the flow
it can carry; since for both constraints each value assigned to a variable of the second
argument must also correspond to a value assigned to a variable of the first argument
the arcs exiting the yi must carry a flow of 1.

Table 3.15: Domains of the variables for the USED BY constraint of Figure 3.31.

i dom(xi) i dom(yi)

1 {1, 2} 1 {2, 3}
2 {3, 4} 2 {4, 5}
3 {4, 5, 6}
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Table 3.16: Domains of the variables for the SAME constraint of Figure 3.31.

i dom(xi) i dom(yi)

1 {1, 2} 1 {2, 3}
2 {3, 4} 2 {4, 5}
3 {4, 5, 6} 3 {4, 5}
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Table 3.17: Domains of the variables and minimum and maximum number of occur-
rences of each value for the SAME AND GLOBAL CARDINALITY LOW UP constraint
of Figure 3.32.

i dom(xi) i dom(yi) i [omini, omax i] i [omini, omax i]

1 {1, 2} 1 {2, 3} 1 [0, 1] 4 [2, 3]
2 {3, 4} 2 {4, 5} 2 [1, 2] 5 [0, 2]
3 {4, 5, 6} 3 {4, 5} 3 [0, 3] 6 [0, 1]

D. Flow model for the SAME AND GLOBAL CARDINALITY LOW UP constraint

Figure 3.32 presents a flow model for the SAME AND GLOBAL CARDINALITY LOW UP
constraint. Blue arcs represent the feasible flow corresponding to the solution
SAME AND GLOBAL CARDINALITY LOW UP (〈x1 = 2, x2 = 4, x3 = 4〉, 〈y1 =
2, y2 = 4, y3 = 4〉, 〈val − 1 omin − 0 omax − 1, val − 2 omin − 1 omax −
2, val − 3 omin − 0 omax − 3, val − 4 omin − 2 omax − 3, val − 5 omin −
0 omax − 2, val − 6 omin − 0 omax − 1〉), while red arcs correspond to arcs that
cannot carry any flow if the constraint has a solution. The assignment x1 = 1
is forbidden since 1 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3). Consequently x1 = 2
and, since y1 is the only variable of {y1, y2, y3} that can be assigned value 2, the
assignment y1 = 3 is forbidden. Now since 3 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3)
the assignment x2 = 3 is also forbidden. The assignment x3 = 6 is forbidden since
6 /∈ dom(y1) ∪ dom(y2) ∪ dom(y3). Finally x3 = 5, y2 = 5 and y3 = 5 are also
forbidden since value 4 must be assigned to at least two variables.
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s x2

x3

x1 2
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4

5

6

1 1

2

3

4

5

6

y1

y2

y3

t

[0, 1]

[1, 2]

[0, 3]

[2, 3]

[0, 2]

[0, 1]

[3, 3]

[1, 1] [0, 1] [0, 1] [1, 1]

∥∥∥∥∥∥∥∥∥
x1 ∈ [1, 2], x2 ∈ [3, 4], x3 ∈ [4, 6],
y1 ∈ [2, 3], y2 ∈ [4, 5], y3 ∈ [4, 5],

SAME AND GCC

 〈x1, x2, x3〉,
〈y1, y2, y3〉,

〈1 0 1, 2 1 2, 3 0 3, 4 2 3, 5 0 2, 6 0 1〉



Blue arcs correspond to the feasible flow associated with the
solution x1 = 2, x2 = 4, x3 = 4, y1 = 2, y2 = 4, y3 = 4,

while red arcs cannot carry any flow in a solution.

Figure 3.32: Flow model for the SAME AND GLOBAL CARDINALITY LOW UP con-
straint described in Table 3.17: in both cases a first layer consists of the variables xi of
the first argument of the constraint, a second (resp. third) layer corresponds to the val-
ues that can be assigned to the variables xi (resp. yi), and a fourth layer consists of the
variables yi of the second argument of the constraint; each arc has a lower and upper
capacity regarding the flow it can carry; values are duplicated in two layers in order to
model the minimum and maximum number of occurrences of each value; there is an
arc from a variable xi (resp. yi) to a value v if, and only if, value v can be assigned to
variable xi (resp. yi); since each variable xi (resp. yi) must be assigned a value the arcs
exiting s (resp. entering t) must carry a flow of 1.
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3.7.106 HFrequency allocation problem à [1 CONS]

• ALL MIN DIST.

A constraint that was used for modelling frequency allocation problems.

3.7.107 HFunctional dependency á [144 CONS]

• ABS VALUE (intension, first argument),

• ALL BALANCE (intension, first argument),

• ALLDIFFERENT SAME VALUE (intension, first argument),

• AMONG (intension, first argument),

• AMONG DIFF 0 (intension, first argument),

• AMONG INTERVAL (intension, first argument),

• AMONG MODULO (intension, first argument),

• AMONG VAR (intension, first argument),

• AND (intension, first argument),

• BALANCE (intension, first argument),

• BALANCE CYCLE (intension, first argument),

• BALANCE INTERVAL (intension, first argument),

• BALANCE MODULO (intension, first argument),

• BALANCE PARTITION (intension, first argument),

• BALANCE PATH (intension, first argument),

• BALANCE TREE (intension, first argument),

• BIG PEAK (intension, first argument),

• BIG VALLEY (intension, first argument),

• BINARY TREE (intension, first argument),

• CARDINALITY ATLEAST (intension, first argument),

• CARDINALITY ATMOST (intension, first argument),

• CARDINALITY ATMOST PARTITION (intension, first argument),

• CASE (extension),

• CHANGE (intension, first argument),

• CHANGE CONTINUITY (intension, first,second,. . . ,eighth argument),

• CHANGE PAIR (intension, first argument),

• CHANGE PARTITION (intension, first argument),
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• CHANGE VECTORS (intension, first argument),

• CIRCULAR CHANGE (intension, first argument),

• CLIQUE (intension, first argument),

• COLORED MATRIX (intension, third attribute of fifth argument, third attribute of sixth argument),

• COMMON (intension, first, second argument),

• COMMON INTERVAL (intension, first, second argument),

• COMMON MODULO (intension, first, second argument),

• COMMON PARTITION (intension, first, second argument),

• CONNECT POINTS (intension, fourth argument),

• CROSSING (intension, first argument),

• CYCLE (intension, first argument),

• CYCLE OR ACCESSIBILITY (intension, second argument),

• CYCLIC CHANGE (intension, first argument),

• CYCLIC CHANGE JOKER (intension, first argument),

• DEEPEST VALLEY (intension, first argument),

• DIFFER FROM EXACTLY K POS (intension, first argument),

• DISCREPANCY (intension, second argument),

• DISTANCE (intension, third argument),

• DISTANCE BETWEEN (intension, first argument),

• DISTANCE CHANGE (intension, first argument),

• ELEM (extension, second attribute of first argument),

• ELEMENT (extension, third argument),

• ELEMENT PRODUCT (extension, fourth argument),

• ELEMENTS (extension, second attribute of first argument),

• ELEMENTS ALLDIFFERENT (extension, second attribute of first argument),

• EQ (intension, first, second argument),

• EQ CST (intension, first, second, and third argument),

• EQUIVALENT (intension, first argument),

• EXACTLY (intension, first argument),

• FIRST VALUE DIFF 0 (intension, first argument),

• GCD (intension, third argument),

• GLOBAL CARDINALITY (intension, second attribute of second argument),

• GLOBAL CARDINALITY NO LOOP (intension, first argument as well as second attribute of third ar-
gument),

• GLOBAL CARDINALITY WITH COSTS (intension, second attribute of second argument and fourth
argument),

• GRAPH CROSSING (intension, first argument),

• GROUP (intension, first, second,. . . ,sixth argument),

• GROUP SKIP ISOLATED ITEM (intension, first, second,. . . ,fourth argument),

• HIGHEST PEAK (intension, first argument),

• IMPLY (intension, first argument),

• INCREASING NVALUE (intension, second argument),
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• INCREASING SUM (intension, first argument),

• INFLEXION (intension, first argument),

• INVERSE (intension, second and third attributes of first argument),

• INVERSE EXCEPT LOOP (intension, second and third attributes of first argument),

• INVERSE OFFSET (intension, second and third attributes of third argument),

• LENGTH FIRST SEQUENCE (intension, first argument),

• LENGTH LAST SEQUENCE (intension, first argument),

• LONGEST CHANGE (intension, first argument),

• LONGEST DECREASING SEQUENCE (intension, first argument),

• LONGEST INCREASING SEQUENCE (intension, first argument),

• MAP (intension, first, second argument),

• MAX DECREASING SLOPE (intension, first argument),

• MAX INCREASING SLOPE (intension, first argument),

• MAX N (intension, first argument),

• MAX NVALUE (intension, first argument),

• MAX SIZE SET OF CONSECUTIVE VAR (intension, first argument),

• MAX OCC OF CONSECUTIVE TUPLES OF VALUES (intension, first argument),

• MAX OCC OF SORTED TUPLES OF VALUES (intension, first argument),

• MAX OCC OF TUPLES OF VALUES (intension, first argument),

• MAXIMUM (intension, first argument),

• MAXIMUM MODULO (intension, first argument),

• MIN DECREASING SLOPE (intension, first argument),

• MIN INCREASING SLOPE (intension, first argument),

• MIN N (intension, first argument),

• MIN NVALUE (intension, first argument),

• MIN SIZE SET OF CONSECUTIVE VAR (intension, first argument),

• MIN SURF PEAK, (intension, first argument),

• MIN WIDTH PEAK, (intension, first argument),

• MIN WIDTH PLATEAU, (intension, first argument),

• MIN WIDTH VALLEY, (intension, first argument),

• MINIMUM (intension, first argument),

• MINIMUM EXCEPT 0 (intension, first argument),

• MINIMUM MODULO (intension, first argument),

• MINIMUM WEIGHT ALLDIFFERENT (intension, third argument),

• MULTIPLE (intension, third argument),

• NAND (intension, first argument),

• NCLASS (intension, first argument),

• NEQUIVALENCE (intension, first argument),

• NINTERVAL (intension, first argument),

• NOR (intension, first argument),

• NPAIR (intension, first argument),

• NSET OF CONSECUTIVE VALUES (intension, first argument),
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• NUMBER DIGIT (intension, first argument),

• NVALUE (intension, first argument),

• NVALUE ON INTERSECTION (intension, first argument),

• NVECTOR (intension, first argument),

• NVISIBLE FROM END (intension, first argument),

• NVISIBLE FROM START (intension, first argument),

• OPEN AMONG (intension, second argument),

• OR (intension, first argument),

• ORCHARD (intension, first argument),

• ORDERED NVECTOR (intension, first argument),

• ORTH LINK ORI SIZ END (intension, first, second and third attributes of first argument),

• PATH (intension, first argument),

• PEAK (intension, first argument),

• PERIOD (intension, first argument),

• PERIOD EXCEPT 0 (intension, first argument),

• PERIOD VECTORS (intension, first argument),

• POWER (intension, third argument),

• PROPER FOREST (intension, first argument),

• REMAINDER (intension, third argument),

• SIGN OF (intension, first argument),

• SIZE MAX SEQ ALLDIFFERENT (intension, first argument),

• SIZE MAX STARTING SEQ ALLDIFFERENT (intension, first argument),

• SMOOTH (intension, first argument),

• STAGE ELEMENT (extension, second attribute of first argument),

• SORT (intension, second argument),

• SORT PERMUTATION (intension, second, third argument),

• SUM (intension, fourth argument),

• SUM OF WEIGHTS OF DISTINCT VALUES (intension, third argument),

• TEMPORAL PATH (intension, first argument),

• TREE (intension, first argument),

• TREE RANGE (intension, first, second argument),

• TWO LAYER EDGE CROSSING (intension, first argument),

• VALLEY (intension, first argument),

• WEIGHTED PARTIAL ALLDIFF (intension, fourth argument),

• XOR (intension, first argument).

A constraint that allows for representing a functional dependency between possi-
bly several domain variables and a single domain variable. A sequence of variables
X1, X2, . . . , Xn is said to functionally determine another variable Y if and only if
each potential tuple of values of X1, X2, . . . , Xn is associated with exactly one po-
tential value of Y (i.e., Y is a function of X1, X2, . . . , Xn). For each constraint we
indicate whether its functional dependency is defined in intention or in extension. We
also indicate which variable var is determined by the functional dependency. Within
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the Arg. properties slot of a constraint that mentions the functional dependency key-
word, we also mention which variables determine var.

Finally, the keyword Pure functional dependency provides the list of constraints
that are only defined by one or several functional dependencies. For example, the
NVALUE(n, 〈v1, v2, . . . , vm) constraint is only defined in term of a functional depen-
dency (i.e., n is equal to the number of distinct values in v1, v2, . . . , vm), while the
TREE(n, 〈node1,node2, . . . ,nodem) constraint is not only defined in term of a func-
tional dependency since, in addition of counting trees, it also enforces no cycle in the
corresponding graph.

3.7.108 HGeometrical constraint à [32 CONS]

• CONNECT POINTS,

• CONTAINS SBOXES,

• COVEREDBY SBOXES,

• COVERS SBOXES,

• CROSSING,

• CUMULATIVE TWO D,

• CYCLE OR ACCESSIBILITY,

• DIFFN,

• DIFFN COLUMN,

• DIFFN INCLUDE,

• DISJOINT SBOXES,

• EQUAL SBOXES,

• GEOST,

• GEOST TIME,

• GRAPH CROSSING,

• INSIDE SBOXES,

• MEET SBOXES,

• NON OVERLAP SBOXES.

• ORCHARD,

• ORTH ON THE GROUND,

• ORTH ON TOP OF ORTH,

• ORTHS ARE CONNECTED,

• OVERLAP SBOXES,

• PLACE IN PYRAMID,

• POLYOMINO,

• SEQUENCE FOLDING,

• TWO LAYER EDGE CROSSING,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH COLUMN,

• TWO ORTH DO NOT OVERLAP,

• TWO ORTH INCLUDE,

• VISIBLE.

A constraint between geometrical objects (e.g., points, line segments, rectangles,
orthotopes) or a constraint selecting a subset of points so that a given geometrical prop-
erty holds (e.g., distance).
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3.7.109 HGlue matrix à [41 CONS]

• AMONG,

• CHANGE CONTINUITY (NB PERIOD CHANGE),

• CHANGE CONTINUITY (NB PERIOD CONTINUITY),

• CHANGE CONTINUITY (MIN SIZE CHANGE),

• CHANGE CONTINUITY (MIN SIZE CONTINUITY),

• CHANGE CONTINUITY (MAX SIZE CHANGE),

• CHANGE CONTINUITY (MAX SIZE CONTINUITY),

• CHANGE CONTINUITY (NB CHANGE),

• CHANGE CONTINUITY (NB CONTINUITY),

• DEEPEST VALLEY,

• EXACTLY,

• FULL GROUP (NGROUP),

• FULL GROUP (NVAL),

• GROUP (NGROUP),

• GROUP (MIN SIZE),

• GROUP (MAX SIZE),

• GROUP (MIN DIST),

• GROUP (MAX DIST),

• GROUP (NVAL),

• GROUP SKIP ISOLATED ITEM (NGROUP),

• GROUP SKIP ISOLATED ITEM (MIN SIZE),

• GROUP SKIP ISOLATED ITEM (MAX SIZE),

• GROUP SKIP ISOLATED ITEM (NVAL),

• HIGHEST PEAK,

• INFLEXION,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• LONGEST CHANGE,

• LONGEST DECREASING SEQUENCE,

• LONGEST INCREASING SEQUENCE,

• MAXIMUM,

• MAX DECREASING SLOPE,

• MAX INCREASING SLOPE,

• MIN DECREASING SLOPE,

• MIN INCREASING SLOPE,

• MIN WIDTH PEAK,

• MIN WIDTH VALLEY,

• MINIMUM,

• PEAK,

• SMOOTH,

• VALLEY.

A reversible constraint for which the catalogue provides an automaton with coun-
ters and a glue matrix [38]. A glue matrix is indexed by the states of the automaton
associated with the considered constraint as well as by the states of the automaton as-
sociated with the reverse of the considered constraint. In the following we assume that
the signature constraint involves a consecutive variables of the sequence of variables
of the reversible constraint (the signature constraint encodes the mapping of the se-
quence of variables of the constraint to symbols of the alphabet of the automaton). We
consider a sequence of variables and a prefix and suffix of this sequence such that the
prefix and suffix have a− 1 variables in common. Let −→q (resp.←−q ) be the state of the
automaton associated with the constraint (resp. the reverse constraint) upon reading the
prefix (resp. the reverse of the suffix). The entry of the glue matrix corresponding to
the state pair (−→q ,←−q ) provides a function for computing the result associated with the
sequence from the counters values associated with the prefix and the reverse suffix.

As an example consider the PEAK(N, VARIABLES), which holds if N is equal to the
number of peaks of the sequence of variables VARIABLES. A peak corresponds to an
increase between consecutive variables followed by a decrease between consecutive
variables. Figure 3.33 gives the corresponding automaton that returns the number of
peak of a sequence where, to each pair of consecutive variables (VARi, VARi+1) cor-
responds a signature variable Si passed to the automaton. The following signature
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constraint links VARi, VARi+1 and Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi =
VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

N = Cs{C ← 0} u

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1

VARi = VARi+1

VARi < VARi+1

VARi > VARi+1,
{C ← C + 1}

s u

s
−→
C +

←−
C −→

C +
←−
C

u −→
C +

←−
C

−→
C + 1 +

←−
C

−→
C and

←−
C resp. represent the counter value C at the end of a prefix and at the end of the cor-

responding reverse suffix that partitions the sequence VARIABLES.

Figure 3.33: Automaton of the PEAK constraint and its glue matrix (an accepting state
is denoted graphically by a double circle)

Figure 3.34 illustrates the use of the glue matrix of the PEAK constraint on the
sequence 1, 1, 4, 8, 6, 2, 7, 1 decomposed in a prefix 1, 1, 4, 8 and a suffix 8, 6, 2, 7, 1
that overlap by one position, one position since the arity of the signature constraint
is equal to two. Since the automaton of the PEAK constraint ends up in state u when
applied to the prefix and to the reverse suffix we use the lower rightmost entry of the
glue matrix to link the total number of peaks of the sequence 1, 1, 4, 8, 6, 2, 7, 1 with
the number of peaks of the prefix 1, 1, 4, 8 and the suffix 8, 6, 2, 7, 1.
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PEAK(N = 2, 〈1, 1, 4, 8, 6, 2, 7, 1〉)
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glue matrix entry associated with the state pair (u, u):

N =
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C3 + 1 +

←−
C4 = 0 + 1 + 1 = 2

Figure 3.34: Illustrating the use of the state pair (u, u) of the glue matrix for linking N

with the counters variables obtained after reading the prefix 1, 1, 4, 8 and corresponding
suffix 8, 6, 2, 7, 1 of the sequence 1, 1, 4, 8, 6, 2, 7, 1; note that the suffix 8, 6, 2, 7, 1 (in
pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for
i = 0) and the evolution (for i > 0) of the state of the automaton and of its counter C
upon reading the prefix 1, 1, 4, 8 (resp. the suffix 1, 7, 2, 6, 8).
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3.7.110 HGolomb ruler à [2 CONS]

• ALLDIFFERENT, • GOLOMB.

A constraint that allows for expressing the Golomb ruler problem. A Golomb ruler
is a set of integers (marks) a1 < · · · < ak such that all the differences ai − aj (i > j)
are distinct.

3.7.111 HGraph colouring à [3 CONS]

• ALLDIFFERENT,
• INT VALUE PRECEDE CHAIN,

• K ALLDIFFERENT.

A constraint that can be used for the graph colouring problem. The graph colouring
problem is to colour with a restricted number of colours the vertices of a given undi-
rected graph in such a way that adjacent vertices are coloured with distinct colours.

3.7.112 HGraph constraint à [40 CONS]

• BALANCE CYCLE,

• BALANCE PATH,

• BALANCE TREE,

• BINARY TREE,

• BIPARTITE,

• CIRCUIT,

• CIRCUIT CLUSTER,

• CLIQUE,

• CONNECTED,

• CUTSET,

• CYCLE,

• CYCLE CARD ON PATH,

• CYCLE OR ACCESSIBILITY,

• CYCLE RESOURCE,

• DAG,

• DERANGEMENT,
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• DOM REACHABILITY,

• GRAPH CROSSING,

• GRAPH ISOMORPHISM,

• INVERSE,

• INVERSE EXCEPT LOOP,

• INVERSE OFFSET,

• INVERSE WITHIN RANGE,

• K CUT,

• MAP,

• PATH,

• PATH FROM TO,

• PROPER CIRCUIT,

• PROPER FOREST,

• STABLE COMPATIBILITY,

• STRONGLY CONNECTED,

• SUBGRAPH ISOMORPHISM,

• SYMMETRIC,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT LOOP,

• TEMPORAL PATH,

• TOUR,

• TREE,

• TREE RANGE,

• TREE RESOURCE.

A constraint that selects a subgraph from a given initial graph so that this subgraph
satisfies a given property and/or belong to a specific graph class.

3.7.113 HGraph partitioning constraint à [18 CONS]

• BALANCE CYCLE,

• BALANCE PATH,

• BALANCE TREE,

• BINARY TREE,

• CIRCUIT,

• CYCLE,

• CYCLE CARD ON PATH,

• CYCLE RESOURCE,

• GRAPH CROSSING,

• MAP,

• PATH,

• PROPER CIRCUIT,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT LOOP,

• TEMPORAL PATH,

• TREE,

• TREE RANGE,

• TREE RESOURCE.

A constraint that partitions the vertices of a given initial graph and that keeps a
single successor for each vertex so that each partition corresponds to a specific pattern.
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3.7.114 HGuillotine cut à [2 CONS]

• DIFFN COLUMN, • TWO ORTH COLUMN.

A constraint that can enforce some kind of guillotine cut. In a lot of cutting prob-
lems the stock sheet as well as the pieces to be cut are all shaped as rectangles. In a
guillotine cutting pattern all cuts must go from one edge of the rectangle corresponding
to the stock sheet to the opposite edge.

3.7.115 HHall interval à [2 CONS]

• ALLDIFFERENT, • GLOBAL CARDINALITY.

A constraint for which some filtering algorithms take advantage of Hall intervals.
Given a set of domain variables, a Hall set is a set of values H = {v1, v2, . . . , vh}
such that there are h variables whose domains are contained in H . A Hall interval is
a Hall set that consists of an interval of values (and can therefore be specified by its
endpoints).

3.7.116 HHamiltonian à [2 CONS]

• CIRCUIT, • TOUR.

A constraint enforcing to cover a graph with one Hamiltonian circuit or cycle. This
corresponds to finding a circuit (respectively a cycle) passing all the vertices exactly
once of a given digraph (respectively undirected graph).
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3.7.117 HHeuristics à [5 CONS]

• ALLDIFFERENT,
• DISCREPANCY,
• INVERSE,

• INVERSE OFFSET,

• INVERSE WITHIN RANGE.

A constraint that was introduced for expressing a heuristic or a constraint
(ALLDIFFERENT) for which an algorithm that evaluate the number of solutions was
proposed.

Remark: when we do not have good bounds on the cost variable of a constrained
optimisation problem, skewed binary search was introduced in [389] in order to take
advantage of the fact that it is usually easier to improve the current solution cost’s than
to prove that a problem is not feasible.

3.7.118 HHeuristics and Berge-acyclic constraint network à

Consider a conjunction C of constraints such that:

1. The constraint network N corresponding to the conjunction C is not Berge-
acyclic.

2. The filtering algorithms associated with the different constraints of the conjunc-
tion C all achieve arc-consistency.

In this context, one can design a heuristic that fix enough variables, but not all, so that
the remaining constraint network N becomes Berge-acyclic.13 This can be achieved
by fixing the variables in such a way that some constraints get entailed even though
they still mention some variables that are not yet fixed. Let us illustrate that idea on a
matrix model where we have a R×K matrixM of domain variables taking a value in
interval [1, V ]. Assume that:

• On each row ofM we have a constraint that can be described in term of a coun-
ter-free automaton.

• On each column of M we have a GLOBAL CARDINALITY LOW UP constraint
that only imposes a minimum number of occurrences for each value in [1, V ]
(i.e., the maximum number of occurrences is not constrained at all).

13The point is that, as soon as the constraint network becomes Berge-acyclic no search is needed any more
to check that there is a solution, provided we achieve arc-consistency on the remaining constraints. This
stems from [143], which itself is a consequence of [183].
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Note that arc-consistency can be achieved for such constraints. For this constraint pat-
tern, an assignment strategy that systematically tries creating a Berge-acyclic constraint
network can be achieved as follows. Fix some variables so that K − 1 column con-
straints (i.e., GLOBAL CARDINALITY LOW UP constraints) get entailed. If this is the
case the remaining constraint network consists of R rows constraints and of a single
column constraint.
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Figure 3.35: (A) Initial constraint network for aR = 3 byK = 4 matrix (with column
constraints C1, C2, C3, C4 and row constraints C5, C6, C7) and (B) corresponding
intersection graph; (C) Berge-acyclic constraint network after the entailment of the
column constraintsC2,C3 andC4 and (D) corresponding cycle-free intersection graph.

As illustrated by Figure 3.35, this typically corresponds to a Berge-acyclic con-
straint network. Let us now finally explain how to assign values to a subset of variables
of a GLOBAL CARDINALITY LOW UP constraint that only restricts the minimum num-
ber of occurrences of certain values so that it becomes entailed. As an example, let us
consider a GLOBAL CARDINALITY LOW UP constraint involving 10 variables which
forces at least three occurrences of value 1 and one occurrence of value 2. A heuristic
needs only fixing 4 variables out of the 10 variables to values 1, 1, 1 and 2 so that the
corresponding GLOBAL CARDINALITY LOW UP gets entailed. A typical instance of
this pattern corresponds to nurse scheduling problems where:

• Each row of M corresponds to the timetable of a person over K consecutive
days. Using a counter free automaton the corresponding row constraint encodes
all legal rules of a valid schedule.

• Each column ofM describes the request for a minimum number of services on a
given day. Types of work (i.e., values in [1, V ]) can be, for example, interpreted
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as a morning shift, an afternoon shift, a night shift or a day off.

The heuristic first addresses the coverage constraints only (i.e., the
GLOBAL CARDINALITY LOW UP constraints). It seeks to assign enough nurses
to given shifts on given day to satisfy all but one coverage constraints. Once this is
done, the remaining variables can be labelled without search.

3.7.119 HHeuristics and lexicographical ordering à [8 CONS]

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ.

Using a constraint that imposes a lexicographical ordering between vectors of vari-
ables may influence the heuristic used for fixing the variables. In particular it may be
a very bad idea to systematically fix the less significant components before the most
significant components.

3.7.120 HHeuristics for two-dimensional rectangle placement prob-
lems à [2 CONS]

• DIFFN, • GEOST.

A constraint for which one of the following heuristics was used in the context of
two-dimensional rectangles placement problems where rectangles should not overlap.
For easy instances involving non-overlapping constraints where there is enough room,
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a standard heuristic where one fixes each rectangle successively by trying out its possi-
ble values for its x-coordinate and its y-coordinate will do the job. However, for more
difficult problems a less aggressive heuristic is usually required, especially when the
filtering algorithms attached to the constraints are weak. The paradox is that less ag-
gressive heuristics sometimes do not find rapidly a first solution to easy instances since
they may potentially artificially create infeasible subproblems.

Dual strategy for rectangle placement problems with no slack

When the available space is equal to the total area of the rectangles to place (i.e., we
have no slack) this is a two-phase search procedure originally introduced in [1] where
we first fix all the x-coordinates and then, in the second phase, all the y-coordinates.
The intuitions behind this heuristic are:

• To systematically fill the placement space from right to left in order to avoid
creating small holes that cannot be filled.

• To decrease the combinatorial aspect of the problem by focussing first on all
x-coordinates. This stems from the fact that it is usually easy to extend a partial
solution, where all x-coordinates are fixed, to a full solution.

Fixing the x-coordinates is done by:

• First, compute the minimum minx over the minimum values of the
x-coordinates of the rectangles for which the x-coordinate is not already fixed.

• Second, create a choice point and, in each branch:

– Fix the x-coordinate of a rectangle R for which the x-coordinates is not al-
ready fixed to valueminx. Usually rectangles are considered by decreasing
height (and decreasing width in case of tie).

– On backtracking, enforce that the x-coordinate of rectangle R is strictly
greater than minx.

• Third, fail when all branches issued from a choice point have been tried (since
otherwise we would create a hole at position minx because, on the x axis all
rectangles that could start at position minx were delayed after minx; in order
to not cut valid choices, this third part assumes that the minimum value of the
x-coordinate of each rectangle is pruned with respect to the compulsory part
profile of the corresponding CUMULATIVE constraint.).

Since, as we said early on, it is usually easy to extend a partial solution, where all
x-coordinates are fixed, to a full solution where all y-coordinates are also fixed, the
search strategy used for fixing the y-coordinates is usually not so important, at least
when strong filtering algorithms are used [41].
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Strategy that gradually creates a compulsory part

This is a four-phase search procedure that can be used even when the slack is not equal
to zero. We first gradually restrict all the x-coordinates and then, in the second phase,
all y-coordinates without fixing them immediately. Then in the third phase we fix all
the x-coordinates by trying each value (or by making a binary search). Finally in the
last phase we fix all the y-coordinates as in the third phase. The intuitions behind this
heuristic are:

• To restrict the x-coordinate of each rectangle R in order to just create some
compulsory part for R on the x axis. The hope is that it will trigger the fil-
tering algorithm associated with the CUMULATIVE constraint involved by the
non-overlapping constraint, even though the starts of the rectangles on the x axis
are not yet completely fixed.

• Again, as in the previous heuristic, to decrease the combinatorial aspect of the
problem by first focussing on all x-coordinates.

Restricting gradually the x-coordinates in phase one is done by partitioning the
domain of the x-coordinate of each rectangle R into intervals whose sizes induce a
compulsory part on the x axis for rectangle R. To achieve this, the size of an interval
has to be less than or equal to the size of rectangle R on the x axis. Picking the best
fraction of the size of a rectangle on the x axis depends on the problem as well as on the
filtering algorithms behind the scene. Within the context of the smallest rectangle area
problem [401] and of the SICStus implementation of DISJOINT2 and CUMULATIVE
H. Simonis and B. O’Sullivan have shown empirically that the best fraction was located
within interval [0.2, 0.3]. Restricting the y-coordinates in phase two can be done in a
way similar to restricting the x-coordinates in phase one.

3.7.121 HHungarian method for the assignment problem à [1 CONS]

• MINIMUM WEIGHT ALLDIFFERENT.

A constraint that can use the Hungarian method for the assignment problem [254]
in order to evaluate the minimum or maximum value of one of its argument. Given n
persons, n tasks and a corresponding n by n cost matrix, the assignment problem is the
search for an assignment of persons to tasks so that the sum of the costs is maximised.

http://www.sics.se/sicstus/
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3.7.122 HHybrid-consistency à [2 CONS]

• PROPER FOREST, • ROOTS.

Denotes that, for a given constraint involving both domain and set variables, there
is a filtering algorithm that ensures hybrid-consistency. A constraint ctr defined on the
distinct domain variables V d1 , . . . , V

d
n and the distinct set variables V sn+1, . . . , V

s
m is

hybrid-consistent if and only if:

• For every pair (V d, v) such that V d is a domain variable of ctr and v ∈
dom(V d), there exists at least one solution to ctr in which V d is assigned the
value v.

• For every pair (V s, v) such that V s is a set variable of ctr, if v ∈ V s then v
belongs to the set assigned to V s in all solutions to ctr and if v ∈ V s \ V s then
v belongs to the set assigned to V s in at least one solution and is excluded from
this set in at least one solution.

3.7.123 HHypergraph à [8 CONS]

• AMONG SEQ,

• ARITH SLIDING,

• ORCHARD,

• RELAXED SLIDING SUM,

• SIZE MAX SEQ ALLDIFFERENT,

• SIZE MAX STARTING SEQ ALLDIFFERENT,

• SLIDING DISTRIBUTION,

• SLIDING SUM.

Denotes that a constraint uses in its definition at least one arc constraint involving
more than two vertices.
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3.7.124 HIncluded à [2 CONS]

• IN, • IN SET.

Enforces that a domain or a set variable take a value within a list of values (possibly
a single value).

3.7.125 HInclusion à [8 CONS]

• K USED BY,

• K USED BY INTERVAL,

• K USED BY MODULO,

• USED BY,

• USED BY INTERVAL,

• USED BY MODULO,

• USED BY PARTITION,

• USES.

Denotes that a constraint can model the inclusion of one multiset within an-
other multiset. Usually we consider multiset of values (e.g., USED BY) but this
can also be multisets of equivalence classes (see, e.g., the USED BY INTERVAL,
USED BY MODULO, and USED BY PARTITION constraints).

3.7.126 HIncompatible pairs of values à [1 CONS]

• ALLDIFFERENT PARTITION.

A constraint that is related to the fact that some pairs of values are incompatible
(i.e., the two values of each pair of values cannot simultaneously be part of a solution).
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3.7.127 HIndistinguishable values à [3 CONS]

• INT VALUE PRECEDE,
• INT VALUE PRECEDE CHAIN,

• SET VALUE PRECEDE.

A constraint that can be used for breaking symmetries of indistinguishable val-
ues [268]. Indistinguishable values in a solution to a problem can be swapped to con-
struct another solution to the same problem.

3.7.128 HInterval à [16 CONS]

• ALLDIFFERENT INTERVAL,

• AMONG INTERVAL,

• BALANCE INTERVAL,

• COMMON INTERVAL,

• DOMAIN,

• IN INTERVAL,

• IN INTERVALS,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• K SAME INTERVAL,

• K USED BY INTERVAL,

• NINTERVAL,

• SAME INTERVAL,

• SOFT SAME INTERVAL VAR,

• SOFT USED BY INTERVAL VAR,

• USED BY INTERVAL.

Denotes that a constraint puts a restriction related to a set of fixed intervals (or on
one fixed interval).
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3.7.129 HInvolution à [2 CONS]

• SYMMETRIC ALLDIFFERENT LOOP, • SYMMETRIC ALLDIFFERENT.

Denotes that a constraint can directly model permutations of order 2.

3.7.130 HJoker value à [14 CONS]

• ALL EQUAL EXCEPT 0,

• ALLDIFFERENT EXCEPT 0,

• AMONG DIFF 0,

• CONNECT POINTS,

• CYCLIC CHANGE JOKER,

• FIRST VALUE DIFF 0,

• ITH POS DIFFERENT FROM 0,

• LEX ALLDIFFERENT EXCEPT 0,

• MINIMUM EXCEPT 0,

• MIN SIZE FULL ZERO STRETCH,

• NVALUES EXCEPT 0,

• PERIOD EXCEPT 0,

• SYMMETRIC ALLDIFFERENT EXCEPT 0,

• WEIGHTED PARTIAL ALLDIFF.

Denotes that, for some variables of a given constraint, there exists specific values
that have a special meaning: for instance they can be assigned without breaking the
constraint. As an example consider the ALLDIFFERENT EXCEPT 0 constraint, which
forces a set of variables to take distinct values, except those variables that are assigned
to 0.
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3.7.131 HKlee’s measure problem à [1 CONS]

• DIFFN.

Denotes that, checking the feasibility of a ground instance of a constraint, is related
to the Klee’s measure problem: given a collection of axis-aligned multi-dimensional
boxes, how quickly can one compute the volume of their unions.

3.7.132 HLabelling by increasing cost à [2 CONS]

• ELEM,

• ELEMENT.

Some optimisation problems involve minimising a cost c consisting of a sum of
elementary costs c1, c2, . . . , cn, where each elementary cost ci (1 ≤ i ≤ n) is directly
linked to the value assigned to a decision variable vi. Without loss of generality we
assume that each decision variable will be assigned a value between 1 and m. The link
between a decision variable vi and its corresponding cost ci is usually expressed by
a constraint of the form ELEMENT(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci) stating that ci = j ⇒
ci = ci,j . During search, while enumerating on the different values of a decision
variable vi, we would like to try out values of vi so that the corresponding cost ci
increases. This means we want to use a permutation σ1, σ2, . . . , σm of 1, 2, . . . ,m such
that ci,σ1

≤ ci,σ2
≤ · · · ≤ ci,σm . Note that such permutation can be obtained by sorting

the costs ci,1, ci,2, . . . , ci,m by increasing order and by collecting the position σj where
item ci,j is located in the sorted list. Assuming that we perform arc-consistency on
the ELEMENT, we now describe three different ways to obtain the effect we want to
achieve:

• A first direct way is to use a built in facility that, given variable vi and the corre-
sponding list of values σ1, σ2, . . . , σm introduced before, creates a choice point
and tries to successively assign values σ1, σ2, . . . , σm to vi. Note that, once vi is
fixed there is no need to enumerate on the corresponding elementary cost vari-
able ci since, by propagation, ELEMENT(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci) will fix ci.
Consequently the cost variables do not need to be passed to the search procedure.

• A second indirect way, used when we want to only rely on a standard built in
that creates a choice point and tries to assign values to a variable in increasing
value order, is to introduce an extra variable ui. The idea is to link variable ui to
variable vi in such a way that, when we try to assign values in increasing value
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order to variable ui, both variables vi and ci get fixed and, in addition, values
of ci are increasing. This can be modelled by introducing the following two
ELEMENT constraints:

1. ELEMENT(ui, 〈σ1, σ2, . . . , σm〉, vi)
2. ELEMENT(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci)

The effect of a dedicated built in that tries to assign values to a variable accord-
ing to an explicit list of values is achieved by introducing the first ELEMENT
constraint. Again, once ui is fixed the first ELEMENT constraint will fix variable
vi. Then the second ELEMENT constraint will also fix variable ci. Consequently,
both the cost and the decision variables do not need to be passed to the search
procedure, i.e., we just need to pass the newly introduced variables ui.

• Finally, we can first label on the cost variable ci in increasing
value order. If the costs ci,1, ci,2, . . . , ci,m are all distinct then the
ELEMENT(vi, 〈ci,1, ci,2, . . . , ci,m〉, ci) constraint will fix vi by propagation
since we assume ELEMENT to perform arc-consistency. Otherwise, when the
costs ci,1, ci,2, . . . , ci,m are not all distinct, we also need to label the decision
variable vi.

ELEMENT(v, 〈5, 6, 2, 9, 9〉, c)

MEMBER(v, [3, 1, 2, 4, 5])

v = 3 v = 1 v = 2 v = 4 v = 5

c = 2 c = 5 c = 6 c = 9 c = 9

(A)

ELEMENT(v, 〈5, 6, 2, 9, 9〉, c)
ELEMENT(u, 〈3, 1, 2, 4, 5〉, v)

INDOMAIN(u)

u = 1 u = 2 u = 3 u = 4 u = 5

v = 3 v = 1 v = 2 v = 4 v = 5

c = 2 c = 5 c = 6 c = 9 c = 9

(B)

ELEMENT(v, 〈5, 6, 2, 9, 9〉, c)

INDOMAIN(c)

c = 2 c = 5 c = 6 c = 9

v = 3 v = 1 v = 2 v ∈ {4, 5}
INDOMAIN(v)

v = 4 v = 5

(C)

Figure 3.36: Given a decision variable v and a corresponding cost variable c linked by
the ELEMENT(v, 〈5, 6, 2, 9, 9〉, c) constraint, illustration of three ways for labelling by
increasing cost: part (A) labels directly on the decision variable v using an appropri-
ate order so that successive values of c are increasing; part (B) introduces a variable u
linked to v by the ELEMENT(u, 〈3, 1, 2, 4, 5〉, v) constraint and labels on u by increas-
ing value order; part (C) labels first on the cost variable c by increasing value order,
and then on variable v.

Figure 3.36 illustrates the three ways of labelling previously introduced. The prim-
itive member(var , list values) creates a choice point and tries to successively assign
variable var an integer value from the list list values with respect to their ordering.
The primitive indomain(var) also creates a choice point and tries to successively as-
sign variable var an integer value of its domain, by increasing value order.
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3.7.133 HLatin square à [1 CONS]

• K ALLDIFFERENT.

1

3

3

1

(A)

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(B)

Figure 3.37: A partially filled Latin square and a possible completion

A constraint that can be used for modelling the Latin square completion problem.
A Latin square of order n is an n × n array in which n distinct numbers in [1, n]
are arranged so that each number occurs once in each row and column. The Latin
square completion problem is to complete a partially filled Latin square. Part (A) of
Figure 3.37 gives a partially filled Latin square, while part (B) provides a possible
completion. The Latin square completion problem is a pattern that occurs in some
applications such that dynamic wavelength routing or sport timetabling.

3.7.134 HLexicographic order à [18 CONS]

• ALLPERM,

• COND LEX COST,

• COND LEX GREATER,

• COND LEX GREATEREQ,

• COND LEX LESS,

• COND LEX LESSEQ,

• LEX2,

• LEX BETWEEN,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LEX LESSEQ ALLPERM,

• STRICT LEX2.

A constraint involving a lexicographic ordering relation in its definition.
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3.7.135 HLimited discrepancy search à [1 CONS]

• DISCREPANCY.

A constraint for simulating limited discrepancy search [204]. Limited discrepancy
search is useful for problems for which there is a successor ordering heuristic that usu-
ally leads directly to a solution. It consists of systematically searching all paths that
differ from the heuristic path in at most a very small number of discrepancies. Fig-
ure 3.38 illustrates the successive search steps (B), (C), (D), (E) and (F) on the search
tree depicted by part (A). We successively explore the subtree of (A) corresponding to
a discrepancy of 0, 1, 2, 3 and 4. The number on each leave indicates the total number
of discrepancies to reach a leave.

3.7.136 HLinear programming à [18 CONS]

• ALLDIFFERENT,

• AMONG SEQ,

• CIRCUIT,

• CUMULATIVE,

• DISJUNCTIVE,

• DOMAIN CONSTRAINT,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• GLOBAL CARDINALITY LOW UP,

• K ALLDIFFERENT,

• K CUT,

• LINK SET TO BOOLEANS,

• PATH FROM TO,

• REGULAR,

• SLIDING SUM,

• STRONGLY CONNECTED,

• SUM,

• TOUR.

A constraint for which a reference provides a linear relaxation (see, e.g., the
ALLDIFFERENT, the CIRCUIT, the CUMULATIVE, the SUM, and the REGULAR [134]
constraints) or a constraint for which the flow model was derived by reformulating
the constraint as a linear program (see, e.g., the AMONG SEQ and the SLIDING SUM
constraints), or a constraint that was also proposed within the context of linear pro-
gramming (see, e.g., the CIRCUIT, and DOMAIN CONSTRAINT constraints). In the
context of linear programming the book of John N. Hooker [226] provides a significant
set of relaxations for a number of global constraints.
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(A) Full search tree
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(B) Subtree with a discrepancy of 0

+1 +1 +1 +1 +1 +1 +1 +1
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(C) Subtree with a discrepancy of 1

+1 +1 +1 +1 +1 +1 +1 +1
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+1 +1

+1

2 2 2 2 2 20 1 1 1 3 1 3 3 3 4

(D) Subtree with a discrepancy of 2

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1

+1 +1

+1

3 3 3 30 1 1 2 1 2 2 1 2 2 2 4

(E) Subtree with a discrepancy of 3

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1

+1 +1

+1

40 1 1 2 1 2 2 3 1 2 2 3 2 3 3

(F) Subtree with a discrepancy of 4

Figure 3.38: Illustration of limited discrepancy search
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3.7.137 HLine segments intersection à [3 CONS]

• CROSSING,
• GRAPH CROSSING,

• TWO LAYER EDGE CROSSING.

A constraint on the number of line segment intersections.

3.7.138 HLogic à [17 CONS]

• CONTAINS SBOXES,

• COVEREDBY SBOXES,

• COVERS SBOXES,

• DISJOINT SBOXES,

• EQUAL SBOXES,

• GEOST,

• GEOST TIME,

• INSIDE SBOXES,

• MEET SBOXES,

• NON OVERLAP SBOXES,

• ORTH ON TOP OF ORTH,

• OVERLAP SBOXES,

• PLACE IN PYRAMID,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH COLUMN,

• TWO ORTH DO NOT OVERLAP,

• TWO ORTH INCLUDE.

A constraint which can be defined with first order logic formula encoded in the
dedicated language introduced in [107].
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3.7.139 HLogigraphe à [1 CONS]

• CONSECUTIVE GROUPS OF ONES.

A constraint which can be used for modelling the logigraphe problem. The logi-
graphe problem, see Figure 3.39 for an instance taken from [328, page 36], consists
of colouring a board of squares in black or white, so that each row and each column
contains a specific number of sequences of black squares of given size. A sequence of
integers s1, s2, . . . , sm (p ≥ 1) enforces:

• a first block of s1 consecutive black squares,

• a second block of s2 consecutive black squares,

• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

• a last block of sp consecutive black squares.

Each block of consecutive black squares must be separated by at least one white square.
Finally, white squares may possibly precede (respectively follow) the first (respectively
the last) block of black squares. The logigraphe problem is NP-complete [422].

2

1, 1, 1, 1

1, 1, 1, 1

1, 3, 1

1, 1, 1, 1

2, 3

6

7

2, 4

1, 1, 1, 1

1, 3, 1, 4, 3, 3, 3, 1, 3, 1,
4 1 3 2 11, 1, 2, 3, 1,

1 1 1 1 1

(A) (B)

Figure 3.39: Part (A): an instance of a logigraphe and the initial deductions achieved
after posting the constraints, Part (B): the corresponding unique solution.

Part (A) of Figure 3.39 shows an instance of a logigraphe and the correspond-
ing initial deductions achieved after posting the CONSECUTIVE GROUPS OF ONES
constraints associated with each row and each column. We assume that
each constraint achieves arc-consistency, which is actually the case when the
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CONSECUTIVE GROUPS OF ONES constraint is represented as a counter free automa-
ton. A white or black square indicates an initial deduction (i.e., setting a variable to 0
or to 1). Part (B) of Figure 3.39 provides the unique solution found after developing
three choices,14 assuming that variables are assigned from the uppermost to the lower-
most row. Within a given row, variables are assigned from the leftmost to the rightmost
column. Value 0 is tried first before value 1. Seven additional choices are required for
proving that this solution is unique. Figure 3.40 displays the corresponding search tree.
Within this figure, a variable Vi,j (1 ≤ i, j ≤ 10) denotes the 0-1 variable associated
with the ith row and the jth column of the board.

V1,1

V5,1

V6,4 V6,3

V6,4

0 1

0 1

0 110

10

fail

fail failsolution

failfail

Figure 3.40: Search tree developed for the logigraphe instance of Figure 3.39 (vari-
ables that are fixed by propagation were removed from the search tree)

14Each time we try to assign a value to a not yet fixed variable, the number of choices is incremented by 1
just before making the assignment.
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3.7.140 HMagic hexagon à [2 CONS]

• ALLDIFFERENT, • GLOBAL CARDINALITY WITH COSTS.

A constraint that can be used for modelling some parts of the magic hexagon prob-
lem. The magic hexagon problem, see Figure 3.41 for an example, consists of find-
ing an arrangement of n hexagons, where an integer from 1 to n is assigned to each
hexagon so that (1) each integer from 1 to n occurs exactly once, (2) the sum of the
numbers along any straight line is the same.

18

11

9

17

1

6

14

3

7

5

8

15

19

2

4

13

16

12

10

Figure 3.41: A magic hexagon of order 3 filled by integers 1 through 19 where the
sum of the integers in each row of cells, in all three directions, is 38

3.7.141 HMagic series à [1 CONS]

• GLOBAL CARDINALITY.

A constraint that allows for modelling the magic series problem with a single con-
straint. A non-empty finite sequence S = (s0, s1, . . . , sn) is magic if and only if there
are si occurrences of i in S for each integer i ranging from 0 to n. 3, 2, 1, 1, 0, 0, 0 is
an example of such a magic series for n = 6.
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3.7.142 HMagic square à [2 CONS]

• ALLDIFFERENT, • GLOBAL CARDINALITY WITH COSTS.

A constraint that can be used for modelling some parts of the magic square problem.
The magic square problem consists in filling an n by n square with n2 distinct integers
so that the sum of each row and column and of both main diagonals be the same.

3.7.143 HMatching à [4 CONS]

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT EXCEPT 0,

• SYMMETRIC ALLDIFFERENT LOOP,

• TOUR.

A constraint that allows for expressing that we want to find a perfect matching on
a graph with an even number of vertices. A perfect matching on a graph G with n
vertices is a set of n/2 edges of G such that no two edges have a vertex in common.

A used generalisation so called degree-matching of a graph is a spanning sugraph
where every vertex is associated with the bound degree of the matched edges.

3.7.144 HMatrix à [5 CONS]

• ALLPERM,
• COLORED MATRIX,
• ELEMENT MATRIX,

• LEX2,

• STRICT LEX2.

A constraint on a matrix of domain variables (see, e.g., the ALLPERM,
COLORED MATRIX, LEX2, and STRICT LEX2 constraints) or a constraint that allows
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for representing the access to an element of a matrix (see, e.g., the ELEMENT MATRIX
constraint).

3.7.145 HMatrix model à [4 CONS]

• ALLPERM,

• COLORED MATRIX,

• LEX2,

• STRICT LEX2.

A constraint on a matrix of domain variables. A matrix model is a model involving
one matrix of domain variables.

3.7.146 HMatrix symmetry à [13 CONS]

• ALLPERM,

• INCREASING GLOBAL CARDINALITY,

• LEX2,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LEX LESSEQ ALLPERM,

• STRICT LEX2.

A constraint that can be used for breaking certain types of symmetries within a
matrix of domain variables.
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3.7.147 HMaximum à [6 CONS]

• MAX INDEX,

• MAX N,

• MAX NVALUE,

• MAX SIZE SET OF CONSECUTIVE VAR,

• MAXIMUM,

• MAXIMUM MODULO.

A constraint for which the definition involves the notion of maximum.

3.7.148 HMaximum clique à [4 CONS]

• ALL MIN DIST,

• ALLDIFFERENT,

• CLIQUE,

• DISJUNCTIVE.

A constraint (i.e., CLIQUE) that can be used for searching for a maximum clique in a
graph, or a constraint (i.e., ALL MIN DIST, ALLDIFFERENT, DISJUNCTIVE) that can be
stated by extracting a large clique [97] from a specific graph of elementary constraints.

A maximum clique is a clique of maximum size, a clique being a subset of vertices
such that each vertex is connected to all other vertices of the clique.

3.7.149 HMaximum number of occurrences à [1 CONS]

• MAX NVALUE.

A constraint that restricts the maximum number of times that a given value is taken.
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3.7.150 Hmaxint à [4 CONS]

• DEEPEST VALLEY,

• MIN N,

• MINIMUM,

• MINIMUM MODULO.

A constraint that uses maxint in its definition in terms of graph properties or in
terms of automata. maxint is the largest integer that can be represented on a machine.

3.7.151 HMetro à [1 CONS]

• LEQ CST.

A constraint that can be used for modelling the metro problem, i.e., finding the
shortest distance from a given metro station to all other stations of the network.

Given an undirected graph G = (V,E), with a non-negative distance attached to
each edge of E, a conjunction of LEQ CST constraints was used by H. Simonis in
order to illustrate how propagation for such a conjunction simulates a naı̈ve version of
Dijsktra algorithm for computing the shortest distance from a given vertex vs of V to all
other vertices. The potential source of inefficiency comes from the fact that, depending
on the scheduling policy of the underlying constraint engine, an inequality constraint
can be reconsidered several times before reaching the fixed point. The problem was
modelled in the following way:

• To each vertex vi ∈ V we associate a distance variable Di, which represents the
domain range of the distance between vertex vi and vertex vs.

• To each edge (vi, vj) ∈ E we impose two inequality constraints Di ≤ Dj + di,j
and Dj ≤ Di + di,j , where di,j corresponds to the distance attached to edge
(vi, vj). This restricts the maximum difference between the distances variables
associated with the two extremities of edge (vi, vj).

• Finally, we set the distance variable attached to vertex vs to 0. Propagating the
inequalities constraints by using arc-consistency enforces the maximum value of
each distance variable Di to be equal to the shortest distance from vertex vi to
vs when the fixed point is reached.
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Figure 3.42: A metro map composed of four lines (a blue, a pink, a green and a yellow
line) and the corresponding minimum and maximum values of the distance variables
attached to each station, under the assumptions (1) that the distance attached to each
connection is equal to 1 and (2) that we compute the shortest path from station i (in
red); the font size used for displaying the bounds of a distance variable is inversely
proportional to the length of the shortest path to station i.

Figure 3.42 illustrates this problem on a metro map composed of four lines and 18
stations respectively labelled by a, b, . . . , r. Its assumes that the distance associated
with each connection is equal to 1. The figure displays the status (i.e., the minimum
and maximum values) of the distance variables under the assumption that we want
to compute the shortest path from station i. The inequalities constraints between the
distance variables Da, Db, . . . , Dr corresponding to this metro map are:

• (constraints attached to the connections of the blue metro line)

– Da ≤ Db + 1,

– Db ≤ Dc + 1,

– Dc ≤ Dd + 1,

– Dd ≤ De + 1,

– De ≤ Df + 1,

– Df ≤ Da + 1,

– Db ≤ Da + 1,

– Dc ≤ Db + 1,

– Dd ≤ Dc + 1,

– De ≤ Dd + 1,

– Df ≤ De + 1,

– Da ≤ Df + 1.
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• (constraints attached to the connections of the pink metro line)

– Dg ≤ Df + 1,

– Df ≤ Dh + 1,

– Dh ≤ Dc + 1,

– Dc ≤ Di + 1,

– Di ≤ Dj + 1,

– Df ≤ Dg + 1,

– Dh ≤ Df + 1,

– Dc ≤ Dh + 1,

– Di ≤ Dc + 1,

– Dj ≤ Di + 1.

• (constraints attached to the connections of the green metro line)

– Dp ≤ Dq + 1,

– Dq ≤ Dr + 1,

– Dr ≤ Da + 1,

– Da ≤ Dh + 1,

– Dh ≤ Dd + 1,

– Dq ≤ Dp + 1,

– Dr ≤ Dq + 1,

– Da ≤ Dr + 1,

– Dh ≤ Da + 1,

– Dd ≤ Dh + 1.

• (constraints attached to the connections of the yellow metro line)

– Dk ≤ Dl + 1,

– Dl ≤ Dm + 1,

– Dm ≤ Da + 1,

– Da ≤ Dn + 1,

– Dn ≤ Do + 1,

– Do ≤ Di + 1,

– Dl ≤ Dk + 1,

– Dm ≤ Dl + 1,

– Da ≤ Dm + 1,

– Dn ≤ Da + 1,

– Do ≤ Dn + 1,

– Di ≤ Do + 1.

3.7.152 HMinimum à [12 CONS]

• MIN INDEX,

• MIN N,

• MIN NVALUE,

• MIN SIZE SET OF CONSECUTIVE VAR,

• MINIMUM,

• MINIMUM EXCEPT 0,
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• MINIMUM GREATER THAN,

• MINIMUM MODULO,

• NEXT ELEMENT,

• NEXT GREATER ELEMENT,

• OPEN MAXIMUM,

• OPEN MINIMUM.

A constraint for which the definition involves the notion of minimum.

3.7.153 HMinimum cost flow à [2 CONS]

• SOFT ALLDIFFERENT CTR, • SOFT SAME VAR.

A constraint for which there is a filtering algorithm based on an algorithm that
finds a minimum cost flow in a graph. This graph is usually constructed from the
variables of the constraint as well as from their potential values. Figure 3.43 illustrates
the minimum cost flow model used for the SOFT SAME VAR constraint. The demand
and the capacity of the arcs are depicted by an interval on top of the corresponding arcs.
The weight is given after that interval: a weight of 0 (respectively 1) is depicted by a
dotted (respectively plain) arc. Weights of 1 are assigned to arcs linking two values
since they model the correction of a discrepancy between variables x1, x2, x3 and
variables y1, y2, y3. Blue arcs represent the feasible flow corresponding to the solution
SOFT SAME VAR(2, 〈1, 3, 3〉, 〈2, 2, 3〉).

s x2

x1

x3

1

3

2 y2

y1

y3

t

[1, 1], 0 [0, 1], 0 [0, 3], 1 [0, 1], 0 [1, 1], 0

Figure 3.43: Minimum cost flow model for the SOFT SAME VAR constraint described
in Table 3.18
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Table 3.18: Domains of the variables for the SOFT SAME VAR constraint of Fig-
ure 3.43.

i dom(xi) i dom(yi)

1 {1, 2} 1 {2}
2 {2, 3} 2 {2}
3 {1, 3} 3 {2, 3}

3.7.154 HMinimum task duration à [7 CONS]

• COLOURED CUMULATIVE,
• COLOURED CUMULATIVES,
• CUMULATIVE,
• CUMULATIVE PRODUCT,

• CUMULATIVES,

• DISJUNCTIVE,

• TASKS INTERSECTION.

A constraint involving one or several collections of tasks, where each task has an
origin o, a duration d and an end e linked by the constraint e = o+d. From now on we
assume that bound-consistency was achieved on constraint e = o + d. Assuming that
the minimum duration of the task is always equal to the minimum value d is not quite
true and can weaken reasoning as illustrated by the following examples:

• Using interval [o, o+ d[ as the compulsory part of the task is an underestimation
of the compulsory part when the quantity o + d is strictly less than the earliest
end e of the task. To avoid that underestimation one should always use [o, e[
when the duration of the task is not fixed. The problem is that, depending where
the task starts, its duration is not necessarily equal to its minimum value as the
task has to finish at least at time e.

• Using the smallest duration d for computing the minimum intersection of the task
with a fixed interval under the hypothesis that the task starts at a given instant
may also leads to an underestimation for the same reason. Figure 3.44 shows
how the minimum duration of a task varies with respect to the origin of the task
and to constraint e = o+ d.
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Figure 3.44: The two cases (A) and (B) showing how the minimum duration of a task
varies wrt its origin o and to constraint e = o+ d
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3.7.155 HMinimum feedback vertex set à [1 CONS]

• CUTSET.

Denotes that a constraint is related to the minimum feedback vertex set problem:
given a connected graph G = (V,E), find out a minimum cardinality subset V ′ of V
such that the graph G′ induced by V \ V ′ does not contain any cycle. A survey on the
feedback vertex set problem is given in [176].

3.7.156 HMinimum hitting set cardinality à [1 CONS]

• NVALUE.

Denotes that, by reduction to the problem of finding the cardinality of a minimum
hitting set, deciding whether a constraint has a solution or not, or getting a sharp lower
bound for one of its arguments, was shown to be NP-hard. The cardinality of a mini-
mum hitting set problem can be described as follows: given a collection C of subsets
of a set S, find the minimum cardinality of S′ ⊆ S such that S′ contains at least one
element from each subset in C.

3.7.157 HMinimum number of occurrences à [1 CONS]

• MIN NVALUE.

A constraint that restricts the minimum number of times that a given value is taken.
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3.7.158 HModulo à [12 CONS]

• ALLDIFFERENT MODULO,

• AMONG MODULO,

• BALANCE MODULO,

• COMMON MODULO,

• K SAME MODULO,

• K USED BY MODULO,

• MAXIMUM MODULO,

• MINIMUM MODULO,

• SAME MODULO,

• SOFT SAME MODULO VAR,

• SOFT USED BY MODULO VAR,

• USED BY MODULO.

Denotes that the arc constraint associated with a given constraint mentions the func-
tion mod .

3.7.159 HMulti-site employee scheduling with calendar con-
straints à [3 CONS]

• CALENDAR,
• DIFFN,

• GEOST.

An international software company located in France and Germany has offices in
Paris, Lyon and Marseille as well as in Berlin, Hamburg and Munich. Four types of ac-
tivities are performed by its employees, namely (1) software development, (2) software
deployment, (3) software training courses, and (4) business trips. Software develop-
ments tasks and training courses are performed within company’s offices, while soft-
ware deployment and business trips are done at customer’s sites. Scheduling activities
to employees is typically done on a yearly basis from Jan. 1 of current year to Apr. 30 of
next year. Considering the first four months of the next year is done in order to absorb
eventual overload and to anticipate the effect of Christmas and winter vacations. With-
out loss of generality we assume that our planning period is from Jan. 1, 2010 to Apr. 30,
2011. The level of granularity is the individual day. Since employees are located on
different home sites, one has to consider the following holidays:

• Public holidays that do not fall on a weekend (i.e., a Saturday or a Sunday) are
listed below.

– France: Jan. 1, Apr. 5, May 13, May 24, July 14, Nov. 1, Nov. 11 in 2010, and
Apr. 25 in 2011.
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– Germany: Jan. 1, Apr. 2, Apr. 5, May 13, May 24 in 2010, and Apr. 22, Apr. 25
in 2011.

• In the context of Germany, regional holidays related to the federal state where
a home site is situated. For Munich (Bavaria) we have the following additional
days off, that all fall outside a weekend: Jan. 6, June 3, Nov. 1 in 2010 and Jan. 6 in
2011.

• Each home site is closed for a known fixed period of nine consecutive days that
is located during summer school vacations. In addition each employee has five
consecutive days off, a priori known, crossing winter school vacation. Sum-
mer and winter school vacations are linked to the country and the area where a
home site is located. Regarding school vacations, France is partitioned in three
zones, while Germany is divided in 16 federal states. Paris, Lyon and Marseille
are located in distinct zones, while Berlin, Hamburg and Munich are situated in
different federal states. Summer vacations periods are:

– From July 3, 2010 to Sept. 1, 2010 in Paris, Lyon and Marseille.

– From July 7, 2010 to Aug. 21, 2010 in Berlin.

– From July 8, 2010 to Aug. 18, 2010 in Hamburg.

– From Aug. 2, 2010 to Sept. 13, 2010 in Munich.

Winter vacations periods are:

– From Feb. 20, 2010 to Mar. 7, 2010 and from Feb. 13, 2011 to Feb. 27, 2011 in
Paris.

– From Feb. 14, 2010 to Feb. 28, 2010 and from Feb. 27, 2011 to Mar. 13, 2011
in Lyon.

– From Feb. 7, 2010 to Feb. 21, 2010 and from Feb. 20 2011 to Mar. 7, 2011 in
Marseille.

– From Feb. 1, 2010 to Feb. 6, 2010 and from Jan. 31, 2011 to Feb. 5, 2011 in
Berlin.

– Jan. 29, 2010 and Jan. 31, 2011 in Hamburg.

– From Feb. 15, 2010 to Feb. 20, 2010 and from Mar. 7, 2011 to Mar. 11, 2011 in
Munich.

The goal is to schedule a given set of known tasks to employees in such a way that
each employee has 30 days off in 2010, some of them corresponding to the mandatory
public and regional holidays depending of the home site of an employee. Each task
has:

1. A type (i.e., software development, software deployment, software training
courses, and business trips).

2. An earliest start in 2010.
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3. A latest end in 2010. Tasks which cannot be allocated with respect to their 2010
time windows must be scheduled in early 2011, i.e., from Jan. 1, 2011 to Apr. 30,
2011.

4. A duration.

5. A number of required employees.

6. A list of home sites qualified to perform the task.

Business trips, training courses and software deployment cannot be interrupted at
all, while software development tasks cannot be interrupted by summer vacation. Busi-
ness trips have to start on a Monday or a Tuesday since the general company policy is
to prevent people staying abroad during weekends. Each task has to be allocated to em-
ployees, which are all based on the same home site, in such a way that the same set of
employees takes care of the task from its start towards its completion. Each employee
has:

1. A home site (i.e., Paris, Lyon, Marseille, Berlin, Hamburg or Munich).

2. A five days period of winter 2010 vacation.

3. A five days period of winter 2011 vacation.

4. A list of task types (i.e., software development, software deployment, software
training courses, business trips) it can handle.

Finally, each home site has a nine days period of summer 2010 vacation where the
home site is closed down.

3.7.160 HMultiset à [6 CONS]

• K SAME,

• K USED BY,

• SAME,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP,

• USED BY.

A constraint using domain variables that can be used for modelling some constraint
between multisets.
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3.7.161 HMultiset ordering à [4 CONS]

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ.

Similar constraints exist also within the context of multisets.

3.7.162 HNo cycle à [1 CONS]

• PROPER FOREST.

A constraint enforcing the fact that an undirected graph has no cycle.

3.7.163 HNo loop à [32 CONS]

• ALL DIFFER FROM AT LEAST K POS,

• ALL DIFFER FROM AT MOST K POS,

• ALL DIFFER FROM EXACTLY K POS,

• ALLDIFFERENT ON INTERSECTION,

• ALL INCOMPARABLE,

• AMONG LOW UP,

• AMONG VAR,

• ARITH OR,

• ASSIGN AND COUNTS,

• ASSIGN AND NVALUES,

• BIN PACKING,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST PARTITION,

• CARDINALITY ATMOST,

• CHANGE CONTINUITY,

• CHANGE PAIR,

• CHANGE PARTITION,

• CHANGE,

• COMMON INTERVAL,

• COMMON MODULO,

• COMMON PARTITION,

• COMMON,
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• CORRESPONDENCE,

• COUNTS,

• CROSSING,

• CUTSET,

• CYCLIC CHANGE JOKER,

• CYCLIC CHANGE,

• DECREASING,

• INVERSE WITHIN RANGE,

• LEX EQUAL,

• TWO ORTH DO NOT OVERLAP,

• USES.

Denotes a constraint defined by a graph constraint for which the final graph does
not have any loop.

3.7.164 Hn-Amazons à [4 CONS]

• ALLDIFFERENT,

• ALLDIFFERENT CST,

• INVERSE,

• SMOOTH.

A constraint that can be used for modelling the n-Amazons problem. Place n Ama-
zons on an n by n chessboard in such a way that no Amazon attacks another. We
say that two columns (respectively two rows) of a chessboard are almost adjacent if
and only if the two columns (respectively the two rows) are separated by a single col-
umn (respectively a single row). Two Amazons attack each other if at least one of the
following conditions holds:

1. They are located on the same column, on the same row or on the same diagonal.

2. They are located either on adjacent columns and on almost adjacent rows, or on
almost adjacent columns and on adjacent rows.

As shown by these conditions, an Amazon combines the movements of a queen and
of a knight. Figure 3.45 illustrates the movements of an Amazon. The n-Amazons
problem has no solution when n is smaller than 10.

We now show how to model the n-Amazons problem with six global constraints.
We start from the model that is used for the n-queens problem. We associate to the ith

column of the chessboard a domain variable Xi that gives the row number where the
corresponding queen is located.

• The fact that two Amazons should not be located on the same column, on the
same row or on the same diagonal can be modelled as the conjunction of three
ALLDIFFERENT constraints:
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Figure 3.45: Illustration of the moves of an Amazon: moves labelled by 1 correspond
to queen’s moves, while moves labelled by 2 correspond to knight’s moves

– ALLDIFFERENT(X1, X2 + 1, . . . , Xn + n − 1) for the upper-left to low-
er-right diagonals,

– ALLDIFFERENT(X1, X2, . . . , Xn) for the rows,

– ALLDIFFERENT(X1 + n − 1, X2 + n − 2, . . . , Xn) for the lower-right to
upper-left diagonals.

• The fact that two Amazons cannot both be located on adjacent columns and on
almost adjacent rows can be modelled by disequality constraints of the form
|Xi −Xi+1| 6= 2 (1 ≤ i ≤ n− 1).

• Similarly, the fact that two Amazons cannot both be located on almost adjacent
columns and on adjacent rows can be modelled by disequality constraints of the
form |Xi−Xi+2| 6= 1 (1 ≤ i ≤ n−2). For a reason that will become clear later
on, we rewrite this set of disequalities as |X2·i+1−X2·i+3| 6= 1 (0 ≤ i ≤ bn−32 c)
and |X2·i −X2·i+2| 6= 1 (1 ≤ i ≤ bn−22 c).

If we combine the constraints of the form |Xi − Xi+1| 6= 2 (1 ≤ i ≤ n − 1)
with the three ALLDIFFERENT constraints we get the conjunction of constraints
Xi − Xi+1 6= 0 ∧ |Xi − Xi+1| 6= 1 ∧ |Xi − Xi+1| 6= 2 (1 ≤ i ≤ n − 1).
This conjunction of three disequalities can be expressed as a single inequality of
the form |Xi − Xi+1| > 2 (1 ≤ i ≤ n − 1). Furthermore all these inequal-
ities can be combined into a single SMOOTH constraint of the form SMOOTH(n −
1, 2, 〈X1, X2, . . . , Xn〉).15 Similarly we get the constraints |X2·i+1 − X2·i+3| > 2
(0 ≤ i ≤ bn−32 c) and |X2·i − X2·i+2| > 2 (1 ≤ i ≤ bn−22 c). Again we obtain two
SMOOTH constraints of the form SMOOTH(bn−12 c, 2, 〈X1, X3, . . . , Xn−1+nmod 2〉)
and SMOOTH(bn−22 c, 2, 〈X2, X4, . . . , Xn−nmod 2〉).

Finally, the INVERSE constraint can also be used as a channelling constraint if we
want to create an additional variable for each row. This may be the case, for example,

15Since we enforce for all pairs of consecutive variables Xi, Xi+1 (1 ≤ i ≤ n − 1) the constraint
|Xi − Xi+1| > 2, the name SMOOTH seems odd. However the name SMOOTH stands from the situation
where the number of inequalities constraints should be minimised.



3.7. KEYWORDS ATTACHED TO THE GLOBAL CONSTRAINTS 313

if we want to have a heuristic for selecting first the column or the row that has the
smallest number of possibilities.
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Figure 3.46: The unique solution to the 10-Amazons problem (modulo symmetries)

Figure 3.46 shows the unique solution, modulo symmetries, to the n-Amazons
problem for n = 10. We have the following conjunction of constraints:

• ALLDIFFERENT CST (〈var−X1 cst− 0, var−X2 cst− 1,
var−X3 cst− 2, var−X4 cst− 3, var−X5 cst− 4,
var−X6 cst− 5, var−X7 cst− 6, var−X8 cst− 7,
var−X9 cst− 8, var−X10 cst− 9〉),

• ALLDIFFERENT(〈X1, X2, X3, X4, X5, X6, X7, X8, X9, X10〉),

• ALLDIFFERENT CST (〈var−X1 cst− 9, var−X2 cst− 8,
var−X3 cst− 7, var−X4 cst− 6, var−X5 cst− 5,
var−X6 cst− 4, var−X7 cst− 3, var−X8 cst− 2,
var−X9 cst− 1, var−X10 cst− 0〉),

• SMOOTH(〈9, 2, 〈X1, X2, X3, X4, X5, X6, X7, X8, X9, X10〉),

• SMOOTH(〈4, 2, 〈X1, X3, X5, X7, X9〉),

• SMOOTH(〈4, 2, 〈X2, X4, X6, X8, X10〉).
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3.7.165 Hn-queens à [3 CONS]

• ALLDIFFERENT,
• ALLDIFFERENT CST,

• INVERSE.

A constraint that can be used for modelling the n-queen problem. Place n queens
on an n by n chessboard in such a way that no queen attacks another. Two queens
attack each other if they are located on the same column, on the same row or on the
same diagonal. A constructive method for arbitrary n > 3 was first given in [171]. An
effective heuristic for the n-queen problem was given in [240]. It consists of starting
to place the queens in the centre of the chessboard so that they eliminate the maximum
number of potential positions.

3.7.166 HNon-deterministic automaton à [3 CONS]

• AMONG,
• CHANGE,

• SMOOTH.

A constraint for which the catalogue provides a non-deterministic automaton with-
out counters and without array of counters. For the mentioned constraints it turn out
that non-determinism is due to the fact that we introduce transitions labelled by the
potential values of a counting variable to a single accepting state (i.e., see Figures 5.63,
5.162, and 5.738).
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3.7.167 HNon-overlapping à [9 CONS]

• DIFFN,
• DISJOINT TASKS,
• GEOST,
• GEOST TIME,
• ORTH ON TOP OF ORTH,

• ORTHS ARE CONNECTED,

• PLACE IN PYRAMID,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH DO NOT OVERLAP.

A constraint that forces a collection of geometrical objets to not pairwise overlap.

3.7.168 HNumber of changes à [8 CONS]

• CHANGE,

• CHANGE PAIR,

• CHANGE PARTITION,

• CHANGE VECTORS,

• CIRCULAR CHANGE,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• SMOOTH.

A constraint restricting the number of times that a given binary constraint holds on
consecutive items of a given collection.

3.7.169 HNumber of distinct equivalence classes à [13 CONS]

• ATLEAST NVALUE,

• ATLEAST NVECTOR,

• ATMOST NVALUE,

• ATMOST NVECTOR,

• INCREASING NVALUE,

• NCLASS,

• NEQUIVALENCE,

• NINTERVAL,

• NPAIR,

• NVALUE,
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• NVALUES,
• NVECTOR,

• NVECTORS.

A constraint on the number of distinct equivalence classes assigned to a collection
of domain variables.

3.7.170 HNumber of distinct values à [11 CONS]

• ATLEAST NVALUE,

• ATMOST NVALUE,

• ASSIGN AND NVALUES,

• COLOURED CUMULATIVE,

• COLOURED CUMULATIVES,

• INCREASING NVALUE,

• INCREASING NVALUE CHAIN,

• NVALUE,

• NVALUE ON INTERSECTION,

• NVALUES,

• NVALUES EXCEPT 0.

A constraint on the number of distinct values assigned to one or several set of
variables.

3.7.171 HObscure à [9 CONS]

• CONTAINS SBOXES,
• COVEREDBY SBOXES,
• COVERS SBOXES,
• DISJOINT SBOXES,
• EQUAL SBOXES,

• INSIDE SBOXES,

• MEET SBOXES,

• OVERLAP SBOXES,

• TWO LAYER EDGE CROSSING.

A constraint for which a better description is needed
(i.e., TWO LAYER EDGE CROSSING), or a constraint for which the definition
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needs to be checked: the eight topological relations of RCC-8 should be mutually
incompatible, which is not the case with the current logic based definitions.

3.7.172 HOne succ à [21 CONS]

• ALLDIFFERENT,

• ALLDIFFERENT BETWEEN SETS,

• ALLDIFFERENT CST,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT PARTITION,

• BALANCE CYCLE,

• BALANCE PATH,

• BALANCE TREE,

• BINARY TREE,

• CIRCUIT,

• CIRCUIT CLUSTER,

• CYCLE,

• CYCLE CARD ON PATH,

• DERANGEMENT,

• MINIMUM WEIGHT ALLDIFFERENT,

• PATH,

• PERMUTATION,

• PROPER CIRCUIT,

• TREE.

Denotes that a constraint is defined by a single graph constraint such that:

• All the vertices of its initial graph belong to the final graph,

• All the vertices of its final graph have exactly one successor.



318 3. DESCRIPTION OF THE CATALOGUE

3.7.173 HOpen automaton constraint à [2 CONS]

• OPEN MAXIMUM, • OPEN MINIMUM.

A constraint for which the set of solutions can be recognised by a so called open
automaton. An open automaton is a finite deterministic automaton taking as input a
sequence of variables V1 V2 . . . Vn as well as a sequence of 0-1 variablesB1 B2 . . . Bn.
A variable Bi (1 ≤ i ≤ n) set to value 0 means that the corresponding variable Vi is
removed from the sequence of variables V1 V2 . . . Vn.

Consider a constraint C for which we already have a finite deterministic automaton
A that only accepts the set of solutions to C. Constructing the finite deterministic
automatonA′ that only recognises the set of solutions to the open version of constraint
C can be done in a systematic way from the automatonA. First, to each transition ofA
we add the fact the corresponding Boolean variable must also be equal to 1. Second, to
each state of A we add a loop transition for which the corresponding Boolean variable
Bi (1 ≤ i ≤ n) must be equal to 0 (since variable Vi is ignored, we stay within the
same state). Figure 3.47 illustrates this construction in the context of the MINIMUM
constraint and of its open counterpart, the OPEN MINIMUM constraint.

s

t

MIN < VARi

MIN = VARi

MIN < VARi

MIN = VARi

s

t

Bi = 1 ∧ MIN < VARiBi = 0

Bi = 1 ∧ MIN = VARi

Bi = 1 ∧ MIN < VARiBi = 0

Bi = 1 ∧ MIN = VARi

(A) (B)

Figure 3.47: Constructing the (B) automaton of the
OPEN MINIMUM(MIN, 〈VAR1 B1, VAR2 B2, . . . , VARn Bn〉) constraint from the (A) au-
tomaton of the MINIMUM(MIN, 〈VAR1, VAR2, . . . , VARn〉) constraint (an accepting state
is denoted graphically by a double circle)
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3.7.174 HOpen constraint à [9 CONS]

• OPEN ALLDIFFERENT,

• OPEN AMONG,

• OPEN ATLEAST,

• OPEN ATMOST,

• OPEN GLOBAL CARDINALITY,

• OPEN GLOBAL CARDINALITY LOW UP,

• OPEN MAXIMUM,

• OPEN MINIMUM,

• SIZE MAX STARTING SEQ ALLDIFFERENT.

A constraint from which all its variables are not completely known when the con-
straint is posted [438]. In many situations, such as configuration, planning, or schedul-
ing of process dependant activities, the variables of a constraint are not completely
known initially when the constraint is posted. Instead, they are revealed during the
search process [23, 172, 173]. In practice, an additional argument of the constraint
(a set variable or a set of 0-1 variables) provides the initial set of potential variables
(the lower bound in the context of a set variable). In Bartak’s model [23], an open
constraint admits a sequence of domain variables V1 V2 . . . Vm (m ≥ 1) as well as an
additional variable C which gives the index of the last variable that effectively belongs
to the constraint (i.e., variables VC+1, VC+2, . . . , Vm are discarded). This is the case,
for example, for the SIZE MAX STARTING SEQ ALLDIFFERENT constraint.

Within the context of open constraints, the notion of contractibility was introduced
in [283] in order to characterise a global constraint for which any pruning rule that
removes a value from one of its variable (or which enforces any type of condition) can
be reused in the context of the corresponding open global constraint (i.e., the pruning
rule still makes valid deductions in the context of the open case). Intuitively, many
global constraints which impose a kind of at most condition are contractible, while
this is typically not the case for global constraints which enforce a kind of at least
condition.

See also the keywords open automaton constraint, contractible, and extensible.
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3.7.175 HOrder constraint à [47 CONS]

• ALLPERM,

• COND LEX COST,

• COND LEX GREATER,

• COND LEX GREATEREQ,

• COND LEX LESS,

• COND LEX LESSEQ,

• DECREASING,

• INCREASING,

• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INCREASING NVALUE CHAIN,

• INCREASING SUM,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• LEX2,

• LEX BETWEEN,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LEX LESSEQ ALLPERM,

• MAX INDEX,

• MAX N,

• MAXIMUM,

• MAXIMUM MODULO,

• MIN INDEX,

• MIN N,

• MINIMUM,

• MINIMUM EXCEPT 0,

• MINIMUM GREATER THAN,

• MINIMUM MODULO,

• NEXT GREATER ELEMENT,

• OPEN MAXIMUM,

• OPEN MINIMUM,

• ORDERED ATLEAST NVECTOR,

• ORDERED ATMOST NVECTOR,

• ORDERED GLOBAL CARDINALITY,

• ORDERED NVECTOR,

• PRECEDENCE,

• SET VALUE PRECEDE,

• STRICT LEX2,

• STRICTLY DECREASING,

• STRICTLY INCREASING.

A constraint involving an ordering relation in its definition. An ordering relation
R on a set S is a relation such that, for every a, b, c ∈ S:

• a R b or b R a,

• If a R b and b R c, then a R c,

• If a R b and b R a then a = b.
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3.7.176 HOrthotope à [12 CONS]

• DIFFN,

• DIFFN COLUMN,

• DIFFN INCLUDE,

• ORTH LINK ORI SIZ END,

• ORTH ON THE GROUND,

• ORTH ON TOP OF ORTH,

• ORTHS ARE CONNECTED,

• PLACE IN PYRAMID,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH COLUMN,

• TWO ORTH DO NOT OVERLAP,

• TWO ORTH INCLUDE.

(line-segment)
n = 1

(rectangle)
n = 2

(parallelepiped)
n = 3

initial
position

final
position

n = 4

(moving parallelepiped)

Figure 3.48: Illustration of the notion of orthotope for various number of dimensions
n

A constraint involving orthotopes. An orthotope corresponds to the generalisation
of the rectangle and box to the n-dimensional case. In addition its sides are parallel
to the axes of the placement space. Figure 3.48 illustrates the notion of orthotope for
n = 1, 2, 3 and 4. A collection usually named ORTHOTOPE, declared as ORTHOTOPE −
collection(ori − dvar, siz − dvar, end − dvar), defines for each dimension d
(with d ∈ [1, n]) the coordinate of its lower corner, the size and the coordinate of its
upper corner in dimension d. Figure 3.49 illustrates the representation of an orthotope
for n = 2.
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y

〈
ori− 4 siz− 4 end− 8,
ori− 3 siz− 2 end− 5

〉rectangle R :

Figure 3.49: Representation of an orthotope when the number of dimensions n = 2 in
term of the collection ORTHOTOPE−collection(ori−dvar, siz−dvar, end−dvar)
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3.7.177 HOverlapping alldifferent à [1 CONS]

• K ALLDIFFERENT.

A constraint expressing several ALLDIFFERENT constraints having some variables
in common.

3.7.178 HPair à [3 CONS]

• CHANGE PAIR,
• NPAIR,

• TWIN.

A constraint involving a collection of pairs of variables.

3.7.179 HPacking almost squares à [2 CONS]

• DIFFN, • GEOST.

Denotes that a constraint can be used for solving the packing almost squares prob-
lem: tile a rectangle for which sides are consecutive integers by rectangles of size
1 × 2, 2 × 3, . . . , n × (n + 1) which can be rotated by 90 degrees. The problem is
described in http://www.stetson.edu/˜efriedma/almost/. Since there does not al-
ways exist a tiling, one can also consider a variant where the goal is to find the rectangle
with minimal area. Figure 3.50 provides a solution for n = 26 found by H. Simonis.

http://www.stetson.edu/~efriedma/almost/
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Figure 3.50: A solution to the packing almost squares problem for n = 26; the width
and the height of each not too small rectangle are respectively shown on the lowest and
leftmost borders of the rectangle.

3.7.180 HPallet loading à [2 CONS]

• DIFFN, • GEOST.

A constraint that can be used for modelling the pallet loading problem. The pallet
loading problem consists of packing a maximum number of identical rectangular boxes
onto a rectangular pallet in such a way that boxes are placed with their edges parallel
to the edges of the pallet. The problem often arises in distribution, when many boxes
must be shipped and an increase of the number of boxes on a pallet saves costs. Even
though the complexity of the problem is not yet known [303], many solutions have
been developed over the past years:

• Exact algorithms based on tree search procedures extend a partial solution by
positioning a new box according to different heuristics. One of the most used
heuristics is the so called G4 heuristic [384] which recursively divides the place-
ment space into four huge rectangles. Beside the use of an appropriate heuristic,
the key point is the use of upper bounds on the maximum number of boxes that
can be packed. Some bounds like the Barnes [20] and the Keber [248] bounds
consider the geometric structure of the problem. Some other bounds are obtained
by solving a linear programming problem [233].

• Approximate algorithms are based on constructive methods (i.e., methods that
either divide the pallet into blocks or methods that divide the pallet in a recursive
way) or metaheuristics based on genetic algorithms or tabu search [7].

Both in the context of exact and approximates algorithms, the problem is usually first
normalised in order to reduce the set of possible solutions [153, 154].
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3.7.181 HPartition à [14 CONS]

• ALLDIFFERENT PARTITION,

• BALANCE PARTITION,

• CARDINALITY ATMOST PARTITION,

• CHANGE PARTITION,

• COMMON PARTITION,

• IN SAME PARTITION,

• K SAME PARTITION,

• K USED BY PARTITION,

• NCLASS,

• SAME PARTITION,

• STRETCH PATH PARTITION,

• SOFT SAME PARTITION VAR,

• SOFT USED BY PARTITION VAR,

• USED BY PARTITION.

A constraint involving in one of its argument a partitioning of a given finite set of
integers.

3.7.182 HPath à [4 CONS]

• BALANCE PATH,

• PATH,

• PATH FROM TO,

• TEMPORAL PATH.

A constraint allowing for expressing that we search for one or several ver-
tex-disjoint simple paths. Within a digraph a simple path is a set of links that are
traversed in the same direction and such that each vertex of the simple path is visited
exactly once.
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3.7.183 HPartridge à [2 CONS]

• DIFFN, • GEOST.

Denotes that a constraint can be used for solving the Partridge problem: the Par-
tridge problem consists of tiling a square of size n·(n+1)

2 by n·(n+1)
2 squares of respec-

tive size

• 1 square of size 1,

• 2 squares of size 2,

• . . . ,

• n squares of size n.

It was initially proposed by R. Wainwright and is based on the identity 1 · 12 + 2 ·
22 + · · · + n · n2 = (n·(n+1)

2 )2. The problem is described in http://mathpuzzle.

com/partridge.html. Part (A) of Figure 3.51 gives a solution for n = 12 found with
GEOST [2], while Part (B) provides a solution for n = 13 found by S. Hougardy [230].
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Figure 3.51: (A) a solution to the Partridge problem for n = 12, and (B) a solution for
n = 13

http://mathpuzzle.com/partridge.html
http://mathpuzzle.com/partridge.html
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3.7.184 HPattern sequencing à [1 CONS]

• CUMULATIVE CONVEX.

A constraint allowing for expressing the pattern sequencing problem as a single
global constraint. The pattern sequencing problem [177] can be described as follows:
given a 0-1 matrix in which each column j (1 ≤ j ≤ p) corresponds to a product
required by the customers and each row i (1 ≤ i ≤ c) corresponds to the order of a
particular customer (The entry cij is equal to 1 if and only if customer i has ordered
some quantity of product j.), the objective is to find a permutation of the products such
that the maximum number of open orders at any point in the sequence is minimised.
Order i is open at point k in the production sequence if there is a product required
in order i that appears at or before position k in the sequence and also a product that
appears at or after position k in the sequence.

3.7.185 HPentomino à [3 CONS]

• DIFFN,

• GEOST,

• POLYOMINO,

• REGULAR.

A constraint (i.e., POLYOMINO) that can be used to model a pentomino. A pen-
tomino is an arrangement of five unit squares that are joined along their edges.

Also denotes a constraint (i.e., DIFFN, GEOST, REGULAR) that can be used for solv-
ing tiling problems involving pentominoes. For example, the GEOST and REGULAR
constraints where respectively used in [42] and in [257] to solve such tiling problems.

Figure 3.52 presents a tiling of a rectangle with distinct pentominoes.
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Figure 3.52: Tiling a rectangle with pentominoes
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3.7.186 HPeriodic à [3 CONS]

• PERIOD,
• PERIOD EXCEPT 0,

• PERIOD VECTORS.

A constraint that can be used for modelling the fact that we are looking for a se-
quence that has some kind of periodicity.

3.7.187 HPermutation à [27 CONS]

• ALLDIFFERENT,

• ALLDIFFERENT CONSECUTIVE VALUES,

• BALANCE CYCLE,

• CHANGE CONTINUITY,

• CIRCUIT,

• CIRCUIT CLUSTER,

• CORRESPONDENCE,

• CYCLE,

• CYCLE CARD ON PATH,

• DERANGEMENT,

• ELEMENTS ALLDIFFERENT,

• INVERSE,

• K ALLDIFFERENT,

• K SAME,

• K SAME INTERVAL,

• K SAME MODULO,

• K SAME PARTITION,

• PROPER CIRCUIT,

• SAME,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SAME INTERVAL,

• SAME MODULO,

• SAME PARTITION,

• SORT,

• SORT PERMUTATION,

• SYMMETRIC ALLDIFFERENT.

A constraint that can be used for modelling a permutation or a specific type or
characteristic of a permutation. A permutation is a rearrangement of elements, where
none are changed, added or lost.
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3.7.188 HPermutation channel à [1 CONS]

• INVERSE.

A constraint that allows for modelling the link between a permutation and its in-
verse permutation. A permutation is a rearrangement of n distinct integers between 1
and n, where none are changed, added or lost. An inverse permutation is a permutation
in which each number and the number of its position are swapped.

3.7.189 HPhi-tree à [2 CONS]

• DISJUNCTIVE, • CUMULATIVE.

A constraint for which one of its filtering algorithms uses a balanced binary tree
in order to efficiently evaluate the maximum or minimum value of a formula over
all possible subsets of tasks Ω of a given set of tasks Φ. Φ-trees were introduced
by P. Vilı́m, first in the context of unary resources in [443] and in [444, pages 37–
40], and later on in the context of cumulative resources [446, 445]. Without loss of
generality, let us sketch the main idea behind a Φ-tree in the context of a cumulative
resource of capacity C. For this purpose we follow the description given in [446].
Given a set of tasks Φ where each task has an earliest possible start, a latest possible
end, a duration and a resource consumption, assume we need to evaluate the earliest
completion time over all tasks of Φ under the hypothesis that we should not exceed the
maximum resource capacity C. Let us first introduce some notations:

• Ω denotes any non-empty subset of tasks of Φ.

• estΩ is the minimum over the earliest starts of the tasks in Ω .

• eΩ is the sum of the surfaces (i.e., the product of the duration by the resource
consumption) of the tasks in Ω .

A common estimation of the earliest completion time over all tasks of Φ is
maxΩ⊆Φ

{
estΩ +

⌈
eΩ

C

⌉}
which can be rewritten as

⌈
maxΩ⊆Φ{CestΩ+eΩ}

C

⌉
. The nu-

merator of the last fraction is called the energy envelope of the set of tasks Φ and the
purpose of a Φ-tree is to evaluate this quantity efficiently. For a node n, let L(n) de-
notes the set of leaves of the sub-tree rooted at n. The leaves of the Φ-tree correspond
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energy envelope = max(20 + 33, 73) = 73
sum surfaces = 48

energy envelope = max(17 + 3, 18) = 20
sum surfaces = 15

energy envelope = max(65 + 8, 53) = 73
sum surfaces = 33

energy envelope
= 5 · 1 + 12 = 17
surface1 = 12
earliest start1 = 1

energy envelope
= 5 · 3 + 3 = 18
surface2 = 3
earliest start2 = 3

energy envelope
= 5 · 8 + 25 = 65
surface3 = 25
earliest start3 = 8

energy envelope
= 5 · 9 + 8 = 53
surface4 = 8
earliest start4 = 9

tasks 1, 2, 3, 4

tasks 1, 2 tasks 3, 4

task 1 task 2

task 3 task 4

Figure 3.53: Example of Φ-tree associated with four tasks of respective duration and
resource consumption 3× 4, 1× 3, 5× 5, 2× 4 and of respective earliest start 1, 3, 8,
9 under the assumption that the maximum capacity of the cumulative resource is equal
to 5

to the tasks of Φ sorted from left to right by increasing earliest start. Each node n of the
Φ-tree records both, the sum of the surfaces of the tasks in L(n), as well as the energy
envelope of the tasks in L(n). The sum of the surfaces associated with a non-leave
node n of the tree corresponds to the sum of the surfaces of the children of n, while the
energy envelope of n is equal to the maximum between on the one hand, the energy
envelop of its right child and on the other hand the sum of the energy envelop of its
left child and the recorded sum of surfaces of its right child (see [446] for a justifica-
tion of these recursive formulae). Figure 3.53 illustrates the construction of a Φ-tree
associated with four given tasks.
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3.7.190 HPhylogeny à [1 CONS]

• STABLE COMPATIBILITY.

A constraint inspired by the area of phylogeny. Phylogeny is concerned by the
classification of organism based on genetic connections between species.

3.7.191 HPick-up delivery à [1 CONS]

• CYCLE.

A constraint that was used for modelling a pick-up delivery problem. In a pick-up
delivery problem, vehicles have to transport loads from origins to destinations without
any transhipment at intermediate locations.

3.7.192 HPlanarity test à [1 CONS]

• CIRCUIT.

A constraint that can use the planarity test in its filtering algorithm. The planarity
test determines whether a graph can be embedded in the plane.
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3.7.193 HPolygon à [1 CONS]

• DIFFN.

A constraint that can be generalised to handle polygons.

3.7.194 HPositioning constraint à [4 CONS]

• DIFFN COLUMN,

• DIFFN INCLUDE,

• TWO ORTH COLUMN,

• TWO ORTH INCLUDE.

A constraint restricting the relative positioning of two or more geometrical objects.

3.7.195 HPredefined constraint à [72 CONS]

• ABS VALUE,

• ATMOST1,

• BIN PACKING CAPA,

• CALENDAR,

• COLORED MATRIX,

• COMPARE AND COUNT,

• CONSECUTIVE VALUES,

• CUMULATIVE TWO D,

• DISTANCE,

• DIVISIBLE,

• DIVISIBLE OR,

• DOM REACHABILITY,

• DOMAIN,

• EQ,

• EQ CST,

• EQ SET,

• EQUILIBRIUM,

• GCD,

• GEOST,

• GEOST TIME,

• GEQ,

• GEQ CST,
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• GRAPH ISOMORPHISM,

• GT,

• IN INTERVAL REIFIED,

• IN INTERVALS,

• IN SET,

• INCOMPARABLE,

• INCREASING SUM,

• LEQ,

• LEQ CST,

• LEX2,

• LEX ALLDIFFERENT EXCEPT 0,

• LEX LESSEQ ALLPERM,

• LT,

• MAX OCC OF CONSECUTIVE TUPLES OF VALUES,

• MAX OCC OF SORTED TUPLES OF VALUES,

• MAX OCC OF TUPLES OF VALUES,

• MULTI GLOBAL CONTIGUITY,

• MULTI INTER DISTANCE,

• MULTIPLE,

• NEQ,

• NEQ CST,

• NUMBER DIGIT,

• OPPOSITE SIGN,

• ORDER,

• PERIOD,

• PERIOD EXCEPT 0,

• PERIOD VECTORS,

• POWER,

• PROPER CIRCUIT,

• REMAINDER,

• SAME SIGN,

• SCALAR PRODUCT,

• SET VALUE PRECEDE,

• SIGN OF,

• SOFT CUMULATIVE,

• STRICT LEX2,

• SUBGRAPH ISOMORPHISM,

• SUM CUBES CTR,

• SUM FREE,

• SUM OF INCREMENTS,

• SUM POWERS4 CTR,

• SUM POWERS5 CTR,

• SUM POWERS6 CTR,

• SUM SQUARES CTR,

• SYMMETRIC ALLDIFFERENT EXCEPT 0,

• TASKS INTERSECTION,

• TWIN,

• VISIBLE,

• ZERO OR NOT ZERO,

• ZERO OR NOT ZERO VECTORS.

A constraint for which the meaning is not explicitly described in terms of graph
properties or in terms of automata or in terms of first order logic.
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3.7.196 HPreferences à [5 CONS]

• COND LEX COST,
• COND LEX GREATER,
• COND LEX GREATEREQ,

• COND LEX LESS,

• COND LEX LESSEQ.

A constraint that can be used for modelling preferences.

3.7.197 HProducer-consumer à [2 CONS]

• CUMULATIVE, • CUMULATIVES.

A constraint that can be used for modelling problems where a first set of tasks
produces a non-renewable resource, while a second set of tasks consumes this resource
so that a limit on the minimum or the maximum stock at each instant is imposed.

Parts (A) and (B) of Figure 3.54 describes the simplest variant of the produc-
er-consumer problem [399] where no negative stock is allowed. Given an initial stock,
a first set of tasks (i.e., producers) add instantaneously their respective productions to
the stock (when they are finished), and a second set of tasks (i.e., consumers) take in-
stantaneously from the stock (when they start) the amount of non-renewable resource
they need. The problem is to schedule these tasks (i.e., fix the end of the producers and
fix the start of the consumers) and to fix for each task the quantity it produces or con-
sumes, so that no negative stock occurs. Part (A) of Figure 3.54 describes an instance
of such problem where we respectively have 2 producers and 3 consumers. Part (B)
depicts the corresponding cumulative view of the problem. At each timepoint the dif-
ference between the top line and the top of the cumulated profile gives the amount of
available stock at that timepoint.

A fundamental problem with the previous variant of the producer-consumer prob-
lem is that it does not allow to handle the fact that a resource is produced or used
gradually. Parts (C) and (D) of Figure 3.54 describes a second variant where this is in
fact possible. This is achieved by replacing the rectangle associated with a producer
by a task with a decreasing height. At a given instant the cumulated quantity produced
by a producer is the difference between the height of that task at its starting time and
the height of that task at the considered instant. Conversely a consumer is modelled
by a task with an increasing height. At a particular timepoint the cumulated quantity
used by a consumer task is the difference between the height of that task at its end
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Figure 3.54: Producer-consumer models (A,C) and corresponding CUMULATIVE
views (B,D) enforcing that, at any point in time, we do not have any negative stock,
i.e. at any point in time we do not consume more that we have produced so far;
(E) CUMULATIVE constraint associated with (B)

and the height of that task at the considered instant. Part (C) of Figure 3.54 describes
an instance of such problem where, again, we respectively have 2 producers and 3
consumers. Part (D) depicts the corresponding cumulative view of the problem. As be-
fore, at each timepoint the difference between the top line and the top of the cumulated
profile gives the amount of available stock at that timepoint.
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3.7.198 HProduct à [2 CONS]

• CUMULATIVE PRODUCT, • PRODUCT CTR.

A constraint involving a product in its definition.

3.7.199 HProgram verification à [1 CONS]

• CUTSET.

A constraint that was used within the application area of program verification.

3.7.200 HProximity constraint à [3 CONS]

• ALLDIFFERENT SAME VALUE,
• DISTANCE BETWEEN,

• DISTANCE CHANGE.

A constraint restricting the distance between two collections of variables according
to some measure.
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3.7.201 HPure functional dependency à [114 CONS]

• ALL BALANCE,

• ABS VALUE,

• AMONG,

• AMONG DIFF 0,

• AMONG INTERVAL,

• AMONG MODULO,

• AMONG VAR,

• AND,

• BALANCE,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BALANCE PARTITION,

• BIG PEAK,

• BIG VALLEY,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CARDINALITY ATMOST PARTITION,

• CHANGE,

• CHANGE PAIR,

• CHANGE PARTITION,

• CHANGE VECTORS,

• CIRCULAR CHANGE,

• COLORED MATRIX,

• COMMON,

• COMMON INTERVAL,

• COMMON MODULO,

• COMMON PARTITION,

• CROSSING,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DEEPEST VALLEY,

• DIFFER FROM EXACTLY K POS,

• DISCREPANCY,

• DISTANCE,

• DISTANCE BETWEEN,

• DISTANCE CHANGE,

• ELEM ,

• ELEMENT,

• ELEMENT PRODUCT,

• ELEMENTS,

• EQ,

• EQ CST,

• EQUIVALENT,

• EXACTLY,

• FULL GROUP,

• GCD,

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY NO LOOP,

• GLOBAL CARDINALITY WITH COSTS,

• GRAPH CROSSING,

• GROUP,

• HIGHEST PEAK,

• INFLEXION,

• IMPLY,

• INVERSE,

• INVERSE EXCEPT LOOP,

• INVERSE OFFSET,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• LONGEST CHANGE,

• LONGEST DECREASING SEQUENCE,

• LONGEST INCREASING SEQUENCE,

• MAP,

• MAX DECREASING SLOPE,

• MAX INCREASING SLOPE,

• MAX N,

• MAX NVALUE,

• MAX SIZE SET OF CONSECUTIVE VAR,

• MAXIMUM,

• MAXIMUM MODULO,

• MIN DECREASING SLOPE,

• MIN INCREASING SLOPE,

• MIN N,

• MIN NVALUE,

• MIN SIZE SET OF CONSECUTIVE VAR,

• MIN SURF PEAK,

• MIN WIDTH PEAK,

• MIN WIDTH PLATEAU,

• MIN WIDTH VALLEY,

• MINIMUM,

• MINIMUM EXCEPT 0,
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• MINIMUM MODULO,

• NAND,

• NCLASS,

• NEQUIVALENCE,

• NINTERVAL,

• NOR,

• NPAIR,

• NSET OF CONSECUTIVE VALUES,

• NUMBER DIGIT,

• NVALUE,

• NVALUE ON INTERSECTION,

• NVECTOR,

• NVISIBLE FROM END,

• NVISIBLE FROM START,

• OR,

• ORCHARD,

• ORTH LINK ORI SIZ END,

• PEAK,

• PERIOD,

• PERIOD EXCEPT 0,

• PERIOD VECTORS,

• POWER,

• REMAINDER,

• SIGN OF,

• SIZE MAX SEQ ALLDIFFERENT,

• SIZE MAX STARTING SEQ ALLDIFFERENT,

• SMOOTH,

• SORT,

• STAGE ELEMENT,

• SUM OF WEIGHTS OF DISTINCT VALUES,

• TWO LAYER EDGE CROSSING,

• VALLEY,

• XOR.

A constraint for which the meaning is completely captured by one or more func-
tional dependancies. The negation of such constraints can be directly expressed as a
disjunction between the different functional dependancies. We illustrate this point on
different examples:

• The negation of the NVALUE(n, 〈v1, v2, . . . , vm〉) constraint is defined by
NVALUE(p, 〈v1, v2, . . . , vm〉) ∧ n 6= p.

• The negation of the COMMON(n1, n2, 〈u1, u2, . . . , up〉, 〈v1, v2, . . . , vq〉) con-
straint is defined by COMMON(m1,m2, 〈u1, u2, . . . , up〉, 〈v1, v2, . . . , vq〉) ∧
(n1 6= m1 ∨ n2 6= m2).

• The negation of the ELEMENTS(〈index− i1 value− u1, index− i2 value−
u2, . . . , index− in value− un〉, 〈index− 1 value− v1, index− 2 value−
v2, . . . , index−n value− vn〉) constraint is defined by ELEMENTS(〈index−
i1 value−w1, index−i2 value−w2, . . . , index−in value−wn〉, 〈index−
1 value − v1, index − 2 value − v2, . . . , index − n value − vn〉) ∧ (u1 6=
w1 ∨ u2 6= w2 ∨ · · · ∨ un 6= wn).

• The negation of the SORT(〈u1, u2, . . . , un〉, 〈v1, v2, . . . , vn〉) con-
straint is defined by SORT(〈u1, u2, . . . , un〉, 〈w1, w2, . . . , wn〉) ∧
LEX DIFFERENT(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉).
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3.7.202 HQuadtree à [2 CONS]

• CUMULATIVE TWO D, • DIFFN.

Denotes that, for a given constraint, a quadtree can be used within its filtering algo-
rithm. A quadtree is a hierarchical data structure based on the recursive decomposition
of space. Figure 3.55 illustrates the representation of a two-dimensional binary region
(A) with a quadtree (C). A region is subdivided into quadrants, subquadrants, and so
on (B), until blocks consist entirely of 1s or entirely of 0s.

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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(C)

Figure 3.55: (A) A region, (B) its subdivision in maximal blocks, (C) and the corre-
sponding quadtree
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3.7.203 HRange à [1 CONS]

• RANGE CTR.

An arithmetic constraint involving a difference between a maximum and a mini-
mum value.

3.7.204 HRank à [2 CONS]

• MAX N, • MIN N.

A positioning constraint according to an ordering relation.

3.7.205 HRCC8 à [8 CONS]

• CONTAINS SBOXES,

• COVEREDBY SBOXES,

• COVERS SBOXES,

• DISJOINT SBOXES,

• EQUAL SBOXES,

• INSIDE SBOXES,

• MEET SBOXES,

• OVERLAP SBOXES.

Region Connection Calculus (i.e., RCC-8) [349] provides eight topological rela-
tions (i.e., disjoint, meet, overlap, equal, covers, coveredby, contains, inside) between
two fixed objects such that any two fixed objects are in one and exactly one of these
topological relations. Figure 3.56 illustrates the meaning of each topological relation.
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A B
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A

B

overlap(A,B)

Figure 3.56: The eight topological relations of RCC-8 (non-overlapping parts of rect-
angles A and B are coloured in pink, while overlapping parts are coloured in red)

3.7.206 HRectangle clique partition à [1 CONS]

• NVECTOR.

Denotes that, by reduction to the rectangle clique partition problem, deciding
whether a constraint has a solution or not was shown to be NP-hard. The rectangle
clique partition problem can be described as follows: given a rectangle graph, can
its set of vertices be partitioned into k subsets of vertices such that all corresponding
induced subgraphs correspond to cliques? A rectangle graph is a graph that can be
associated with a set of fixed rectangles whose sides are parallel to the axes of the
placement space: to each rectangle corresponds a vertex of the rectangle graph, while

to each pair of intersecting rectangles corresponds an edge.

3.7.207 HRegret based heuristics à [4 CONS]

• ELEM,

• ELEMENT,

• GLOBAL CARDINALITY WITH COSTS,

• SUM CTR.

Assume you have a discrete optimisation problem where the sum of some cost
variables should be minimised, and where the cost variables typically have holes in
their domains. In this context a regret based heuristic first selects among the not yet
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fixed cost variables, the one with the largest difference between its second smallest
value and its smallest value. The idea is to consider first a variable that would cause
the biggest increase in cost if it could not be assigned its minimum value.

3.7.208 HRegret based heuristics in matrix problems à [2 CONS]

• GLOBAL CARDINALITY WITH COSTS, • SUM CTR.

Assume you have a discrete optimisation problem involving a matrixM of deci-
sion variables such that there is a cost variable attached to each row ofM. Moreover
assume that the cost associated with each row corresponds to a sum of elementary costs
connected with each decision variable of the same row (e.g., we have a SUM CTR or a
GLOBAL CARDINALITY WITH COSTS constraint on each row ofM). Now, suppose
we want to use a heuristic for fixing the decision variables of matrixM row by row.
In this context a question is which row to select first. Since the cost variable cr asso-
ciated with a row r corresponds to a sum of elementary costs, it is very unlikely that
the cost variable cr has a hole in its domain. Consequently, we cannot any more use
a conventional regret based heuristic which relies on the fact that we have holes in the
domains of the cost variables. We still want to use the idea of finding the variable that
would potentially cause the biggest increase in cost in the worst case, i.e. if it would
have to be assigned to its maximum value. For this purpose we consider the variable
for which the difference between its largest value and its smallest value is maximal. In
our context we select the row r for which the corresponding cost variable maximises
such difference. First we enumerate in increasing value order on the cost variable as-
sociated with row r. Second we fix all decision variables of row r using, for example,
the heuristic described in labelling by increasing cost. Using such cost based heuristics
has both some advantage and some drawback:

• The big potential advantage is that, if we can find a first solution at all, then this
solution should have a rather small overall cost.

• The potential drawback is that, depending on how strong the row constraints
propagate from the maximum total cost associated with a row back to the deci-
sion variables of the row, it may be very difficult to find a feasible solution (since
assigning the cost variable of a row to its minimum value potentially creates an
infeasible problem for which we need to develop a large search tree).
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3.7.209 HReified automaton constraint à [60 CONS]

• AND,

• ARITH,

• ARITH OR,

• BETWEEN MIN MAX,

• CLAUSE AND,

• CLAUSE OR,

• COND LEX COST,

• CONSECUTIVE GROUPS OF ONES,

• DECREASING,

• DOMAIN CONSTRAINT,

• ELEM,

• ELEM FROM TO,

• ELEMENT,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT MATRIX,

• ELEMENT SPARSE,

• ELEMENTN,

• EQUIVALENT,

• GLOBAL CONTIGUITY,

• IMPLY,

• IN,

• IN INTERVAL,

• IN SAME PARTITION,

• INCREASING,

• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• LEX BETWEEN,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• MAXIMUM,

• MINIMUM,

• MINIMUM EXCEPT 0,

• MINIMUM GREATER THAN,

• NAND,

• NEXT ELEMENT,

• NO PEAK,

• NO VALLEY,

• NOR,

• NOT ALL EQUAL,

• NOT IN,

• OPEN MAXIMUM,

• OPEN MINIMUM,

• OR,

• PATTERN,

• SEQUENCE FOLDING,

• STAGE ELEMENT,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• STRICTLY DECREASING,

• STRICTLY INCREASING,

• TWO ORTH ARE IN CONTACT,

• TWO ORTH DO NOT OVERLAP,

• XOR.

A constraint C(V1, V2, . . . , Vn) for which the reified version can be mechanically
constructed from the finite deterministic automaton AC that only accepts the set of so-
lutions to constraint C. This is done by deriving from AC a so called reified automaton
AC¬C by:

• First, adding a 0-1 variable B in front of the sequence of variables
V1, V2, . . . , Vn. This new sequence of variables will be passed to the reified
automaton AC¬C .
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• Second, constructing from AC the automaton A¬C that only recognises
non-solutions to constraint C.

• Third, building from the two automata AC and A¬C the automaton AC¬C . This is
done by:

1. Creating the initial state s of AC¬C .

2. Adding a transition labelled by value 1 from s to the initial state of AC .

3. Adding a transition labelled by value 0 from s to the initial state of A¬C .
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(A) (B) (C)

Figure 3.57: (A) The automaton for recognising the solutions to the
GLOBAL CONTIGUITY constraint; (B) the automaton for recognising the non-
solutions to the GLOBAL CONTIGUITY constraint; (C) the automaton for the reified
GLOBAL CONTIGUITY constraint; within an automaton an initial state is indicated by
an arc coming from no state and an accepting state is denoted graphically by a double
circle.

Figure 3.57 illustrates the construction of a reified automaton in the context of the
GLOBAL CONTIGUITY constraint. Part (A) recalls the automaton that only recognises
the solutions to the GLOBAL CONTIGUITY constraint. Assuming the same alphabet
{0, 1}, Part (B) provides the automaton that only recognises the non-solutions to the
GLOBAL CONTIGUITY constraint. Finally, Part (C) depicts the reified automaton con-
structed from the two automata given in parts (A) and (B).
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3.7.210 HReified constraint à [1 CONS]

• IN INTERVAL REIFIED (reified version of IN INTERVAL).

The reified version CR of a given constraint C, where CR has as arguments all
arguments ofC plus one extra 0-1 variable. This 0-1 variable is set to 1 when constraint
C holds, and 0 otherwise. Note that constraint CR inherits from all restrictions of
constraint C (i.e., incorrect parameters for constraint C are also incorrect for constraint
CR). Within the context of linear programming the extra 0-1 variable is often called
an indicator variable.

It was shown in [36] how to reify a global constraint by reformulating it as a con-
junction of pure functional dependency constraints together with a constraint that can
be easily reified (e.g., an automaton with or without counter, or a Boolean combination
of linear arithmetic equalities and inequalities and 0-1 variables).

3.7.211 HRelation à [3 CONS]

• IN RELATION,
• SYMMETRIC CARDINALITY,

• SYMMETRIC GCC.

A constraint that allows for representing the access to an element of a relation or to
model a relation. A relation is a subset of the product of several finite sets.

3.7.212 HRelaxation à [20 CONS]

• ALLDIFFERENT EXCEPT 0,

• DIFFN,

• GEOST,

• RELAXED SLIDING SUM,

• SOFT ALLDIFFERENT CTR,

• SOFT ALLDIFFERENT VAR,

• SOFT ALL EQUAL MAX VAR,

• SOFT ALL EQUAL MIN CTR,
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• SOFT ALL EQUAL MIN VAR,

• SOFT CUMULATIVE,

• SOFT SAME INTERVAL VAR,

• SOFT SAME MODULO VAR,

• SOFT SAME PARTITION VAR,

• SOFT SAME VAR,

• SOFT USED BY INTERVAL VAR,

• SOFT USED BY MODULO VAR,

• SOFT USED BY PARTITION VAR,

• SOFT USED BY VAR,

• SUM OF WEIGHTS OF DISTINCT VALUES,

• WEIGHTED PARTIAL ALLDIFF.

Denotes that a constraint allows for specifying a partial degree of satisfaction. For
the constraints DIFFN and GEOST see the keyword Relaxation dimension.

3.7.213 HRelaxation dimension à [2 CONS]

• DIFFN, • GEOST.

A constraint that allows the modelling of constraint relaxation in the context
of placement problems. This is achieved by adding an extra dimension to the place-
ment space where objects that are really considered are in the foreground, while objects
that are discarded are rejected into the background. As a concrete example, consider
a slight modification of the data of the task assignment and scheduling problem that is
described at the keyword entry assigning and scheduling tasks that run in parallel. In
this problem the four nurses are all not available during the time periods [0, 0], [7, 7],
[12, 12] and [22, 22]. We now rather consider the following unavailability periods [0, 0],
[8, 8], [12, 12] and [22, 22]. Under this new hypothesis we cannot anymore schedule all
the five surgery tasks t1, t2, t3, t4 and t5, i.e., we get a no solution answer if we use the
model described in assigning and scheduling tasks that run in parallel. In this model we
are using a two-dimensional GEOST constraint, where the first and second dimensions
respectively correspond to the time and resource axes. Now, in order to permit relax-
ation, we introduce a third dimension, a relaxation dimension. The idea is to map each
task to a parallelepiped for which the size in the relaxation dimension is equal to one.
In addition, the coordinate of a parallelepiped in the relaxation dimension is a variable
taking its value in the interval [1, n], where n represents the number of operations to
schedule (i.e., for each surgery task ti (1 ≤ i ≤ n = 5) we create a coordinate variable
ri where r stands for relaxation. Then, all parallelepipeds for which the coordinate
in the relaxation dimension is set to 1 correspond to surgery tasks that are effectively
scheduled, while all other parallelepipeds represent surgery tasks that are discarded. On
the one hand, this model allows the direct expression of relaxation right from the be-
ginning without introducing any extra soft constraint and without dynamically adding
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any constraint during search. On the other hand, a disadvantage is that the model does
not directly consider an optimisation criterion like, for example, the maximum number
of tasks effectively scheduled, or the sum of the durations of the tasks effectively done;
this can be modelled using extra constraints but this does not provide sharp bounds
on the optimisation criterion. Nevertheless, this gives a compact model, especially in
the context where additional constraints complicate the computation of a sharp bound.
Going back to the example described at the keyword entry assigning and scheduling
tasks that run in parallel, we get the following three-dimensional GEOST constraint:
GEOST(3,

〈 oid− 1 sid− 2 x− 〈o1, a1, r1〉, oid− 2 sid− 2 x− 〈o1, s1, r1〉,
oid− 3 sid− 2 x− 〈o1, n11, r1〉, oid− 4 sid− 2 x− 〈o1, n12, r1〉,
oid− 5 sid− 4 x− 〈o2, a2, r2〉, oid− 6 sid− 4 x− 〈o2, s2, r2〉,
oid− 7 sid− 4 x− 〈o2, n2, r2〉, oid− 8 sid− 3 x− 〈o3, a3, r3〉,
oid− 9 sid− 3 x− 〈o3, s31, r3〉, oid− 10 sid− 3 x− 〈o3, s32, r3〉,
oid− 11 sid− 3 x− 〈o3, n31, r3〉, oid− 12 sid− 3 x− 〈o3, n32, r3〉,
oid− 13 sid− 2 x− 〈o4, a4, r4〉, oid− 14 sid− 2 x− 〈o4, s4, r4〉,
oid− 15 sid− 2 x− 〈o4, n41, r4〉, oid− 16 sid− 2 x− 〈o4, n42, r4〉,
oid− 17 sid− 2 x− 〈o4, n43, r4〉, oid− 18 sid− 6 x− 〈o5, a5, r5〉,
oid− 19 sid− 6 x− 〈o5, s5, r5〉, oid− 20 sid− 6 x− 〈o5, n5, r5〉,
oid− 21 sid− 2 x− 〈0, 1, 1〉, oid− 22 sid− 2 x− 〈5, 1, 1〉,
oid− 23 sid− 5 x− 〈12, 1, 1〉, oid− 24 sid− 3 x− 〈0, 2, 1〉,
oid− 25 sid− 1 x− 〈6, 2, 1〉, oid− 26 sid− 1 x− 〈15, 2, 1〉,
oid− 27 sid− 1 x− 〈22, 2, 1〉, oid− 28 sid− 2 x− 〈0, 3, 1〉,
oid− 29 sid− 2 x− 〈8, 3, 1〉, oid− 30 sid− 2 x− 〈13, 3, 1〉,
oid− 31 sid− 1 x− 〈5, 4, 1〉, oid− 32 sid− 2 x− 〈20, 4, 1〉,
oid− 33 sid− 1 x− 〈0, 5, 1〉, oid− 34 sid− 1 x− 〈7, 5, 1〉,
oid− 35 sid− 1 x− 〈12, 5, 1〉, oid− 36 sid− 1 x− 〈22, 5, 1〉,
oid− 37 sid− 1 x− 〈0, 6, 1〉, oid− 38 sid− 1 x− 〈7, 6, 1〉,
oid− 39 sid− 1 x− 〈12, 6, 1〉, oid− 40 sid− 1 x− 〈22, 6, 1〉,
oid− 41 sid− 1 x− 〈0, 7, 1〉, oid− 42 sid− 1 x− 〈7, 7, 1〉,
oid− 43 sid− 1 x− 〈12, 7, 1〉, oid− 44 sid− 1 x− 〈22, 7, 1〉,
oid− 45 sid− 1 x− 〈0, 8, 1〉, oid− 46 sid− 1 x− 〈7, 8, 1〉,
oid− 47 sid− 1 x− 〈12, 8, 1〉, oid− 48 sid− 1 x− 〈22, 8, 1〉〉,
〈sid− 1 t− 〈0, 0, 0〉 l− 〈1, 1, 1〉, sid− 2 t− 〈0, 0, 0〉 l− 〈2, 1, 1〉,
sid− 3 t− 〈0, 0, 0〉 l− 〈3, 1, 1〉, sid− 4 t− 〈0, 0, 0〉 l− 〈4, 1, 1〉,
sid− 5 t− 〈0, 0, 0〉 l− 〈5, 1, 1〉, sid− 6 t− 〈0, 0, 0〉 l− 〈6, 1, 1〉〉).

number of dimensions of the placement space: time, resources and relaxation
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Figure 3.58 depicts a solution to the problem corresponding to the assignment
tasks origin relaxation anaesthetist surgeon nurse
t1 o1 = 9 r1 = 1 a1 = 1 s1 = 4 n11 = 5, n12 = 6
t2 o2 = 0 r2 = 2 a2 = 2 s2 = 4 n2 = 8
t3 o3 = 2 r3 = 1 a3 = 1 s31 = 3, s32 = 4 n31 = 5, n32 = 6
t4 o4 = 17 r4 = 1 a4 = 1 s4 = 4 n41 = 5, n42 = 6, n43 = 7
t5 o5 = 16 r5 = 1 a5 = 2 s5 = 3 n5 = 8

During search, the relaxation variables r1, r2, r3, r4, r5 are first set to value one
(i.e., the corresponding operations are scheduled) and then, upon backtracking, as-
signed to any value greater than one (i.e., there is no backtrack on the values that are
greater than one since we just want to reject an operation into the background).
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• operations effectively scheduled (in the foreground of the relaxation dimension): t1, t3, t4, t5
• operations ignored (into the background of the relaxation dimension, i.e. ri > 1): t2
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Figure 3.58: A partial solution to the surgery scheduling problem that maximises the
number of operations actually performed where only operation t2 is not scheduled

3.7.214 HResource constraint à [19 CONS]

• BIN PACKING,

• BIN PACKING CAPA,

• COLOURED CUMULATIVE,

• COLOURED CUMULATIVES,

• CUMULATIVE,

• CUMULATIVE CONVEX,

• CUMULATIVE PRODUCT,

• CUMULATIVE WITH LEVEL OF PRIORITY,

• CUMULATIVES,

• CYCLE RESOURCE,

• DISJ,

• DISJUNCTIVE,

• DISJUNCTIVE OR SAME END,

• DISJUNCTIVE OR SAME START,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• SOFT CUMULATIVE,

• TRACK,

• TREE RESOURCE.

A constraint restricting the utilisation of a resource. The utilisation of a resource is
computed from all items that are assigned to that resource.
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3.7.215 HReverse of a constraint à [31 CONS]

• AMONG,

• CHANGE CONTINUITY with CTR ∈ {=, 6=},
• CHANGE CONTINUITY with CTR ∈ {<} (CHANGE CONTINUITY with CTR ∈ {>}),
• CHANGE CONTINUITY with CTR ∈ {≤} (CHANGE CONTINUITY with CTR ∈ {≥}),
• DEEPEST VALLEY,

• EXACTLY,

• FULL GROUP,

• GROUP,

• GROUP SKIP ISOLATED ITEM,

• HIGHEST PEAK,

• INFLEXION,

• LENGTH FIRST SEQUENCE (LENGTH LAST SEQUENCE),

• LONGEST CHANGE with CTR ∈ {=, 6=},
• LONGEST DECREASING SEQUENCE (LONGEST INCREASING SEQUENCE),

• MAXIMUM,

• MAX DECREASING SLOPE (MAX INCREASING SLOPE),

• MIN DECREASING SLOPE (MIN INCREASING SLOPE),

• MIN SURF PEAK,

• MIN WIDTH PEAK,

• MIN WIDTH PLATEAU,

• MIN WIDTH VALLEY,

• MINIMUM,

• PEAK,

• SMOOTH,

• VALLEY.

A constraint which has a reverse constraint, where the reverse is defined in the
following way. Consider two constraints ctr(col , r1, . . . , rn) and ctr′(col , r1, . . . , rn)
for which, in both cases, the argument col is a collection of items that functionally
determines all the other arguments r1, . . . , rn.

The constraint ctr′ is the reverse constraint of constraint ctr if, for any collection
of items col , we have the equivalence ctr(col , r1, . . . , rn) ⇔ ctr′(colrev , r1, . . . , rn),
where colrev denotes the collection col where the items of the collection are reversed.
When constraints ctr and ctr′ are identical we say that constraint ctr is its own reverse.

The previous enumeration provides the list of reversible constraints where, for each
reversible constraint, we give its reverse only when it is different from the original
constraint.

Note that if a constraint can be represented by a counter deterministic automaton
with a single counter that is only incremented and for which all states are accepting,
then by computing the reverse automaton, the corresponding reverse constraint can
be mechanically obtained. However note that the reverse automaton may be non-
deterministic and may contain ε transitions [297]. Figure 3.59 gives an automaton
counting the number of occurrences of words 001 in a sequence and its reverse automa-
ton. Figure 3.60 provides an automaton with one counter and its reverse automaton that
has a different number of states.
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Figure 3.59: (A) Counter automaton returning the number of occurrences N of word
001 in a sequence, and (B) its reverse counter automaton (returning the number of
occurrences N of word 100 in a sequence)
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Figure 3.60: (A) Counter automaton, and (B) its reverse counter automaton which has a
different number of states (an accepting state is denoted graphically by a double circle)

3.7.216 HRun of a permutation à [1 CONS]

• CHANGE CONTINUITY.

A constraint that can be used for putting a restriction on the size of the longest
run of a permutation. A run is a maximal increasing contiguous subsequence in a
permutation.
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3.7.217 HSAT à [3 CONS]

• ALLDIFFERENT,
• AMONG,

• DIFFN.

A constraint for which a reference provides a reformulation in SAT. Encoding for
the ALLDIFFERENT and the AMONG constraints were respectively provided in [201]
and in [16]. Based on Fekete et al. model of the multi-dimensional orthogonal pack-
ing problem [175], an encoding for the DIFFN constraint when all the sizes of all the
orthotopes are fixed was described in [209].

3.7.218 HScalar product à [1 CONS]

• GLOBAL CARDINALITY WITH COSTS.

A constraint that can be used for modelling a scalar product constraint.

3.7.219 HSequence à [52 CONS]

• ALL EQUAL PEAK,

• ALL EQUAL PEAK MAX,

• ALL EQUAL VALLEY,

• ALL EQUAL VALLEY MIN,

• AMONG SEQ,

• ARITH SLIDING,

• BIG PEAK,

• BIG VALLEY,

• CHANGE CONTINUITY,

• CYCLE CARD ON PATH,

• DECREASING PEAK,

• DECREASING VALLEY,

• DEEPEST VALLEY,

• FULL GROUP,

• GLOBAL CONTIGUITY,

• GROUP,
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• GROUP SKIP ISOLATED ITEM,

• HIGHEST PEAK,

• INCREASING PEAK,

• INCREASING VALLEY,

• INFLEXION,

• LONGEST DECREASING SEQUENCE,

• LONGEST INCREASING SEQUENCE,

• NO PEAK,

• NO VALLEY,

• NVISIBLE FROM END,

• NVISIBLE FROM START,

• MAX DECREASING SLOPE,

• MAX INCREASING SLOPE,

• MIN DECREASING SLOPE,

• MIN DIST BETWEEN INFLEXION,

• MIN INCREASING SLOPE,

• MIN SIZE FULL ZERO STRETCH,

• MIN SURF PEAK,

• MIN WIDTH PEAK,

• MIN WIDTH PLATEAU,

• MIN WIDTH VALLEY,

• MULTI GLOBAL CONTIGUITY,

• PEAK,

• PERIOD,

• PERIOD EXCEPT 0,

• PERIOD VECTORS,

• RELAXED SLIDING SUM,

• SEQUENCE FOLDING,

• SIZE MAX SEQ ALLDIFFERENT,

• SIZE MAX STARTING SEQ ALLDIFFERENT,

• SLIDING CARD SKIP0,

• SLIDING DISTRIBUTION,

• SLIDING SUM,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• VALLEY.

Constrains consecutive variables (possibly not all) of a given collection of domain
variables or consecutive vertices of a simple path or a simple circuit. Also a constraint
restricting a variable (when fixed to 0 the variable may be omitted) according to con-
secutive variables of a given collection of domain variables.

3.7.220 HSequence dependent set-up à [5 CONS]

• DIFFN,
• DISJUNCTIVE,
• ELEM,

• ELEMENT,

• TEMPORAL PATH.

Denotes that a constraint can be used for modelling sequence dependent set-up
between pairs of tasks. Given,

• a collection of n tasks T , where each task ti ∈ T (1 ≤ i ≤ n) has an origin
oi, a duration di, an end ei (oi + di = ei) and a machine mi to which it will be
assigned,



352 3. DESCRIPTION OF THE CATALOGUE

• and a n by n matrixM of positive integers δij i, j ∈ [1, n] where row i denotes
the ith row of matrixM,

we want to express that δij enforces a minimum distance between the completion of
task ti ∈ T and the start of task tj ∈ T (i 6= j) under the hypotheses that (a) both
tasks are assigned the same machine (i.e., mi = mj) and that (b) task tj immediately
follows task ti (i.e., there is no task tk ∈ T (k /∈ {i, j}) such that mk = mi ∧ ei ≤
ok ∧ ek ≤ oj). In addition, tasks assigned to the same machine should not overlap (i.e.,
∀i ∈ [1, n],∀j 6= i ∈ [1, n] such that mi = mj we have ei ≤ oj ∨ ej ≤ oi). We show
how to model the previous sequence dependent set-up constraint under the hypothesis
that we have a single machine. Without loss of generality we assume that δii = 0 for
all i ∈ [1, n].

In a first phase we create for each task ti ∈ T (1 ≤ i ≤ n) three additional
variables si, gi and ci that respectively correspond to:

• The successor variable si ∈ [1, n] allows to get the immediate successor of task
ti. On the one hand, the assignment si = i denotes that task ti has no immediate
successor (i.e., task ti is the last task running on machine mi), on the other hand,
si = j (j 6= i) denotes that task tj is the immediate successor of task ti.

• The gap variable gi represents the size of the gap between the end of task ti and
the start of its immediate successor (the gap is equal to 0 when task ti has no
immediate successor).

• The extended completion variable ci represents the sum of the end of task ti and
the corresponding gap variable gi (i.e., ci = ei + gi).

In a second phase we post for each task ti ∈ T (1 ≤ i ≤ n) the following con-
straints:

• An ELEMENT(si, row i, gi) constraint to make the link between the successor
variable si and the gap variable gi.

• A SUM CTR(〈ei, gi〉,=, ci) constraint.

Finally in a third phase we create a collection of nodes NODES where each item
corresponds to a task ti ∈ T (1 ≤ i ≤ n) and has an index attribute set to i, a succ

attribute set to si, a start attribute set to oi and an end attribute set to ci. We post
a TEMPORAL PATH(1, NODES) constraint for linking the successor variables, the start
variables and the extended completion variables associated with the different tasks. The
first argument of the TEMPORAL PATH constraint forces a single path corresponding to
the succession of the different tasks on the unique machine.
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3.7.221 HSequencing with release times and deadlines à [5 CONS]

• CUMULATIVE,
• CUMULATIVES,
• DIFFN,

• DISJ,

• DISJUNCTIVE.

Denotes that, by reduction to sequencing with release times and deadlines, deciding
whether a constraint has a solution or not was shown to be NP-hard. The sequencing
with release times and deadlines problem can be described as follows: given a set of
non-overlapping tasks and, for each task a length, a release time and a deadline the
question is to find a schedule that satisfies all release time constraints and meets all the
deadlines.

3.7.222 HSet channel à [2 CONS]

• INVERSE SET, • LINK SET TO BOOLEANS.

A channelling constraint involving one or several set variables.

3.7.223 HSet packing à [1 CONS]

• K ALLDIFFERENT.

Denotes that, by reduction to set packing, deciding whether a constraint has a so-
lution or not was shown to be NP-hard. The set packing problem can be described as
follows: given a collection C of n finite sets, and a positive integer m ≤ n, does C
contain m disjoint sets?
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3.7.224 HShikaku à [2 CONS]

• DIFFN, • GEOST.

Denotes that a constraint can be used for solving the Shikaku puzzle. Given a
rectangular grid, where exactly n cells contain an integer value, the problem is to tile
that grid by n rectangles in such a way that the surface of each rectangle is equal to the
single integer it contains.
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Figure 3.61: (A) An example of a Shikaku puzzle and (B) its corresponding unique
solution

Parts (A) and (B) of Figure 3.61 respectively show a small instance of such a puzzle
and its corresponding unique solution taken from the Nikoli website https://member.

nikoli.com/index.html.

3.7.225 HScheduling constraint à [20 CONS]

• ALL MIN DIST,

• CALENDAR,

• COLOURED CUMULATIVE,

• COLOURED CUMULATIVES,

• CUMULATIVE,

• CUMULATIVE CONVEX,

• CUMULATIVE PRODUCT,

• CUMULATIVE WITH LEVEL OF PRIORITY,

https://member.nikoli.com/index.html
https://member.nikoli.com/index.html
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• CUMULATIVES,

• DISJOINT TASKS,

• DISJ,

• DISJUNCTIVE,

• DISJUNCTIVE OR SAME END,

• DISJUNCTIVE OR SAME START,

• MULTI INTER DISTANCE,

• PERIOD,

• PERIOD EXCEPT 0,

• SHIFT,

• SOFT CUMULATIVE,

• TASKS INTERSECTION.

A constraint useful for the area of scheduling. Scheduling is concerned with the
allocation or assignment of resources (e.g., manpower, machines, money), over time,
to a set of tasks.

3.7.226 HScheduling with machine choice, calendars and preemp-
tion à [4 CONS]

• CALENDAR,

• CUMULATIVES,

• DIFFN,

• GEOST.

A set of constraints that can be used for modelling a scheduling problem where:

• We have tasks that have both to be assigned to machine and time.

• Each task has a fixed duration.

• Machines can run at most one task at a given instant.

• Each machine has its own fixed unavailability periods (i.e., a calendar of unavail-
ability periods).

• An unavailability period that allows (respectively forbids) a task to be interrupted
and resumed just after is called crossable (respectively non-crossable). A task
that can be (respectively cannot be) interrupted by a crossable unavailability pe-
riod is called resumable (respectively non-resumable).

• We have a precedence constraint between specific pairs of tasks. Each prece-
dence forces that a given task ends before the start of another given task.

This model illustrates the use of two time coordinates systems:
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• The first coordinate system, so called the virtual coordinate system, does not
consider at all the crossable unavailability periods associated with the differ-
ent machines. Since resumable tasks can be preempted by machine crossable
unavailability, all resource scheduling constraints (i.e., DIFFN, GEOST) are ex-
pressed within this first coordinate system. This stands from the fact that re-
source scheduling constraints like DIFFN or GEOST do not support preemption.

• The second coordinate system, so called the real coordinate system, considers
all timepoints whether they correspond or not to crossable unavailability peri-
ods. All temporal constraints (i.e., precedence constraints represented by LEQ
constraints in this model) are expressed with respect to this second coordinate
system.

Consequently, each task has a start and an end that are expressed within the virtual
coordinate system as well as within the real coordinate system.

• Each task, whether it is resumable or not, is passed to the resource scheduling
constraints as well as to the precedence constraints. In addition, we represent
each non-crossable unavailability period as a fixed task that is also passed to the
resource scheduling constraints.

• The CALENDAR constraint ensures the link between variables (i.e., the start and
the end of the tasks no matter whether they are resumable or not) expressed in
these two coordinate systems with respect to the crossable unavailability periods.

We now provide the corresponding detailed model. Given:

1. A set of machinesM = {m1,m2, . . . ,mp}, where each machine has a list of
fixed unavailability periods. An unavailability ui is defined by the following
attributes:

(a) The crossable flag ci tells whether unavailability ui is crossable (ci = 1)
or not (ci = 0).

(b) The machine ri indicates the machine (i.e., a value in [1, p]) to which un-
availability ui corresponds (i.e., since different machines may have differ-
ent unavailability periods).

(c) The start si of the unavailability ui which indicates the first unavailable
timepoint of the unavailability.

(d) The end ei of the unavailability ui which gives the last unavailable time-
point of the unavailability.

2. A set of tasks T = {t1, t2, . . . , tn}, where each task ti (with i ∈ [1, n]) has the
following attributes which are all domain variables except the resumable flag and
the virtual duration:

(a) The resumable flag ri tells whether task ti is resumable (ri = 1) or not
(ri = 0).
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(b) The machine mi indicates the machine (i.e., a value in [1, p]) to which task
ti will be assigned.

(c) The virtual start vsi gives the start of task ti in the virtual coordinate sys-
tem.

(d) The virtual duration vd i corresponds to the duration of task ti without
counting the eventual unavailability periods crossed by task ti.

(e) The virtual end vei provides the end of task ti in the virtual coordinate
system. We have that vsi + vd i = vei.

(f) The real start rsi gives the start of task ti in the real coordinate system.

(g) The real duration rd i corresponds to the duration of task ti including
the eventual unavailability periods crossed by task ti. When task ti is
non-resumable (i.e., ri = 0) its real duration is equal to its virtual dura-
tion (i.e., rd i = vd i).

(h) The real end rei indicates the end of task ti in the real coordinate system.
We have that rsi + rd i = rei.

The link between the virtual starts (respectively virtual ends) and the real
starts (respectively real ends) of the different tasks of T is ensured by a
CALENDAR(INSTANTS, MACHINES) constraint. More precisely, for each task ti (with
i ∈ [1, n]), no matter whether it is resumable or not, we create the following items for
the collection INSTANTS:〈

machine−mi virtual− vsi ireal− rsi flagend− 0
〉
,〈

machine−mi virtual− vei ireal− rei flagend− 1
〉
.

The first item links the virtual and the real start of task ti, while the second item relates
the virtual and real ends. For each machine mi (with i ∈ [1, p]) and its corresponding
list of crossable unavailability periods, denoted crossable unavailability i, we create
the following item of the collection MACHINES:〈

id− i cal− crossable unavailability i
〉
.

To express the resource constraint, i.e., the fact that two tasks assigned to the same
machine should not overlap in time, we use a GEOST(2, OBJECTS, SBOXES) constraint.
For each task ti (with i ∈ [1, n]) we create one item for the OBJECTS collection as well
as one item for the SBOXES collection:〈

oid− i sid− i x− 〈mi, vsi〉
〉
,〈

sid− i t− 〈0, 0〉 l− 〈1, vd i〉
〉
.

The first item corresponds to an object with i as unique identifier, with a rectangular
shape identifier i and withmi, vsi as the coordinates of its lower left corner. The second
item corresponds to a rectangular shape with i as unique identifier, 〈0, 0〉 as shift offset
with respect to its lower left corner, and 〈1, vd i〉 as the sizes of the rectangular shape.

Similarly, to express that each task does not overlap a non-crossable unavailability
period, we create for each non-crossable unavailability period i one item for the
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OBJECTS collection as well as one item for the SBOXES collection:〈
oid− n+ i sid− n+ i x− 〈ri, si〉

〉
,〈

sid− n+ i t− 〈0, 0〉 l− 〈1, ei − si + 1〉
〉
.

Finally, a precedence constraint between two distinct tasks ti and tj (with i, j ∈
[1, n]) is modelled by an inequality constraint between the real end of task ti and the
real start of task tj , namely rei ≤ rsj . Figure 3.62 provides a toy example of such
problem with:

• Four machines, numbered from 1 to 4, where:

– Machine m1 has two crossable unavailability periods respectively corre-
sponding to intervals [2, 2] and [6, 7].

– Machine m2 has two crossable unavailability periods respectively corre-
sponding to intervals [2, 2] and [6, 7], as well as one non-crossable unavail-
ability period corresponding to interval [3, 3].

– Machine m3 has a single non-crossable unavailability corresponding to in-
terval [6, 8].

– Machine m4 has a single crossable unavailability period corresponding to
interval [3, 4].

• Five tasks, numbered from 1 to 5, where:

– Task t1 is a non-resumable task that has a virtual duration of 3.
– Task t2 is a resumable task that has a virtual duration of 2.
– Task t3 is a non-resumable task that has a virtual duration of 3.
– Task t4 is a resumable task that has a virtual duration of 5.
– Task t5 is a resumable task that has a virtual duration of 2.

• Finally, (1) all five tasks should not overlap, (2) task t3 should precedes task t2
and (3) task t1 should precedes task t5.

A survey on machine scheduling problems with unavailability constraints both in
the deterministic and stochastic cases can be found in [377]. Unavailability can have
multiple causes such as:

• In the context of production scheduling, machine unavailability corresponds to
accepted orders that were already scheduled for a given date. This can typically
corresponds to unavailability periods at the beginning of the planning horizon.
Preemptive maintenance can also be another cause of machine unavailability.

• In the context of timetabling, unavailability periods may come from work regu-
lation which enforces not to work in a continuous way more than a given limit.
Unavailability periods may also come from scheduled meetings during the work-
ing day.

• In the context of distributed computing where cpu time is donated for performing
huge tasks, machines are typically partially available [148].
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Figure 3.62: Illustration of the scheduling problem with crossable and non-crossable
unavailability periods as well as with resumable and non-resumable tasks: part (A)
gives the real time coordinate system where all precedence constraints are stated, while
part (B) provides the virtual time coordinate system – from which all crossable unavail-
ability periods are removed – where the non-overlapping constraint is stated

3.7.227 HShared table à [3 CONS]

• CASE,
• ELEMENTS,

• ELEMENTS SPARSE.

A constraint for which the same table is shared by several ELEMENT constraints.
Within the context of the CASE constraint, the same directed acyclic graph can be
shared by several tuples of variables. This happen, for example, when the CASE con-
straint is used for encoding all the transitions of an automaton [39].

Within the context of planning, the idea of reusing the same constraint for encod-
ing the transitions of an automaton16 was proposed under the name slice encoding by
C. Pralet and G. Verfaillie in [332]. The motivation behind was to avoid to completely
unfold the behaviour of the automaton (i.e., the successive triggered transitions) over
the full planning horizon. From an implementation point of view, this encoding re-
quires the possibility to reset the domains of the variables to some initial state.

16Even though the original work was not presented in the context of automata, it can be partly reinterpreted
as the encoding of an automaton.
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3.7.228 HSchur number à [1 CONS]

• SUM FREE.

Denotes that a constraint was used for solving Schur problems. Given a
non-negative integer k, the Schur number S(k) is the largest integer n for which the set
{1, 2, . . . , n} can be partitioned into k sets S1, S2, . . . , Sk such that ∀i ∈ [1, k] : i ∈
Si ⇒ i+ i /∈ Si.

3.7.229 HSLAM problem à [1 CONS]

• NVECTOR.

Denotes that a constraint was used in the context of the simultaneous localisation
and map building (SLAM) problem. Given a mobile autonomous robot that, for some
reason do not has a direct way to perform self-location (for example, do not has a
GPS), the problem is to dynamically build a map and locate its trajectory on that map
from a set of partial snapshots of its environment. Within the context of constraint
programming this problem is described in [237, 117].

3.7.230 HSliding cyclic(1) constraint network(1) à [7 CONS]

• DECREASING,
• INCREASING,
• NO PEAK,
• NO VALLEY,

• NOT ALL EQUAL,

• STRICTLY DECREASING,

• STRICTLY INCREASING.
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A constraint network corresponding to the pattern depicted by Figure 3.63. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.63: Hypergraph associated with a sliding cyclic(1) constraint network(1)

3.7.231 HSliding cyclic(1) constraint network(2) à [20 CONS]

• ALL EQUAL PEAK,

• ALL EQUAL PEAK MAX,

• ALL EQUAL VALLEY,

• ALL EQUAL VALLEY MIN,

• CHANGE,

• CHANGE CONTINUITY,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DECREASING PEAK,

• DECREASING VALLEY,

• DEEPEST VALLEY,

• HIGHEST PEAK,

• INCREASING PEAK,

• INCREASING VALLEY,

• INFLEXION,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• PEAK,

• SMOOTH,

• VALLEY.

A constraint network corresponding to the pattern depicted by Figure 3.64. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.64: Hypergraph associated with a sliding cyclic(1) constraint network(2)
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3.7.232 HSliding cyclic(1) constraint network(3) à [3 CONS]

• CHANGE CONTINUITY,
• LONGEST CHANGE,

• MIN DIST BETWEEN INFLEXION.

A constraint network corresponding to the pattern depicted by Figure 3.65. Circles
depict variables, while arcs are represented by a set of variables.

Figure 3.65: Hypergraph associated with a sliding cyclic(1) constraint network(3)

3.7.233 HSliding cyclic(2) constraint network(2) à [2 CONS]

• CHANGE PAIR, • DISTANCE CHANGE.

Figure 3.66: Hypergraph associated with a sliding cyclic(2) constraint network(2)

A constraint network corresponding to the pattern depicted by Figure 3.66. Circles
depict variables, while arcs are represented by a set of variables.
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3.7.234 HSliding sequence constraint à [17 CONS]

• AMONG SEQ,

• ARITH SLIDING,

• CYCLE CARD ON PATH,

• ELEMENTN,

• PATTERN,

• RELAXED SLIDING SUM,

• SLIDING CARD SKIP0,

• SLIDING DISTRIBUTION,

• SIZE MAX SEQ ALLDIFFERENT,

• SIZE MAX STARTING SEQ ALLDIFFERENT,

• SLIDING SUM,

• SLIDING TIME WINDOW,

• SLIDING TIME WINDOW FROM START,

• SLIDING TIME WINDOW SUM,

• STRETCH CIRCUIT,

• STRETCH PATH,

• STRETCH PATH PARTITION.

A constraint enforcing a condition on sliding sequences of domain variables that
partially overlap or a constraint computing a quantity from a set of sliding sequences.
These sliding sequences can be either initially given or dynamically constructed. In the
latter case they can correspond, for example, to adjacent vertices of a path that has to
be built.
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3.7.235 HSmallest square for packing consecutive dominoes à

[2 CONS]

• DIFFN, • GEOST.

Find the smallest square S where one can place n rectangles of respective size
1 × 2, 2 × 4, . . . , n × 2 · n so that they do not overlap and so that their borders are
parallel to the borders of S. Each rectangle can be rotated by 90 degrees. The problem
is described in http://www.stetson.edu/˜efriedma/domino/. Figure 3.67 gives a
solution for n = 22 found by H. Simonis.
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Figure 3.67: A solution to the smallest square for packing consecutive dominoes prob-
lem for n = 22

http://www.stetson.edu/~efriedma/domino/
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3.7.236 HSmallest rectangle area à [2 CONS]

• DIFFN, • GEOST.

Denotes that a constraint can be used for finding the smallest rectangle area where
one can pack a given set of rectangles (or squares). A first example of such packing
problem attributed to S. W. Golomb is to find the smallest square that can contain the
set of consecutive squares from 1× 1 up to n× n so that these squares do not overlap
each other. A program using the DIFFN constraint was used to construct such a table
for n ∈ {1, 2, . . . , 25, 27, 29, 30} in [31]. New optimal solutions for this problem were
found in [401] for n = 26, 31, 35. Figure 3.68 gives the solution found for n = 35
by H. Simonis and B. O’Sullivan. Algorithms and lower bounds for solving the same
problem can also be respectively found in [99] and in [253].
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Figure 3.68: Smallest square (of size 123) for packing squares of size 1, 2, . . . , 35

In his paper (i.e., [253]), Richard E. Korf also considers the problem of finding the
minimum-area rectangle that can contain the set of consecutive squares from 1× 1 up
to n × n and solve it up to n = 25. In 2008 this value was improved up to n = 27 by
H. Simonis and B. O’Sullivan [401]. Figure 3.69 gives the solution found for n = 27
by H. Simonis and B. O’Sullivan.
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Figure 3.69: Rectangle with the smallest surface (of size 148×47) for packing squares
of size 1, 2, . . . , 27

3.7.237 HSmallest square for packing rectangles with distinct
sizes à [2 CONS]

• DIFFN, • GEOST.

Denotes that a constraint can be used for finding the smallest square where one can
pack n rectangles for which all the 2 · n sizes are distinct integer values. The problem
is described in http://www.stetson.edu/˜efriedma/mathmagic/0899.html. Fig-
ures 3.70, 3.71 and 3.72 present the smallest square (not necessarily optimal) found
with GEOST for respectively placing 9, 10, 11, 12, 13 and 14 rectangles of distinct
sizes.

172

15
3

4

14

16

5

12

6

7

13

10

8

9

11

24

2
4

2

19

18
3

4

17

5

16

6

15

7

14 12

8

9

13

10

11

28

2
8

Figure 3.70: (Left) Tiling a square of size 24 with 9 rectangles of distinct sizes 1× 18,
17× 2, 15× 3, 4× 14, 16× 5, 12× 6, 7× 13, 10× 8, 9× 11; (Right) Tiling a square
of size 28 with 10 rectangles of distinct sizes 1 × 20, 2 × 19, 18 × 3, 4 × 17, 5 × 16,
6× 15, 7× 14, 12× 8, 9× 13, 10× 11.

http://www.stetson.edu/~efriedma/mathmagic/0899.html
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Figure 3.71: (Left) Tiling a square of size 32 with 11 rectangles of distinct sizes 1×22,
21 × 2, 3 × 20, 18 × 4, 19 × 5, 16 × 6, 7 × 17, 8 × 15, 14 × 9, 13 × 10, 12 × 11;
(Right) Tiling a square of size 37 with 12 rectangles of distinct sizes 1 × 24, 2 × 23,
3× 22, 4× 21, 5× 20, 6× 19, 7× 18, 8× 17, 9× 16, 15× 10, 11× 14, 12× 13.
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Figure 3.72: (Left) Tiling a square of size 41 with 13 rectangles of distinct sizes 1×26,
2 × 25, 3 × 24, 4 × 23, 5 × 22, 21 × 6, 20 × 7, 19 × 8, 18 × 9, 17 × 10, 11 × 16,
15× 12, 13× 14; (Right) Tiling a square of size 46 with 14 rectangles of distinct sizes
1× 28, 2× 27, 3× 26, 4× 25, 5× 24, 6× 23, 7× 22, 8× 21, 20× 9, 19× 10, 18× 11,
17× 12, 16× 13, 15× 14.
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3.7.238 HSoft constraint à [17 CONS]

• OPEN ALLDIFFERENT,

• RELAXED SLIDING SUM,

• SOFT ALLDIFFERENT CTR,

• SOFT ALLDIFFERENT VAR,

• SOFT ALL EQUAL MAX VAR,

• SOFT ALL EQUAL MIN CTR,

• SOFT ALL EQUAL MIN VAR,

• SOFT CUMULATIVE,

• SOFT SAME INTERVAL VAR,

• SOFT SAME MODULO VAR,

• SOFT SAME PARTITION VAR,

• SOFT SAME VAR,

• SOFT USED BY INTERVAL VAR,

• SOFT USED BY MODULO VAR,

• SOFT USED BY PARTITION VAR,

• SOFT USED BY VAR,

• WEIGHTED PARTIAL ALLDIFF.

A constraint that is a relaxed form of one other constraint.

3.7.239 HSort à [2 CONS]

• SORT, • SORT PERMUTATION.

A constraint involving the notion of sorting in its definition.

3.7.240 HSort based reformulation à [31 CONS]

• ALL MIN DIST,

• ALLDIFFERENT,

• ALLDIFFERENT CONSECUTIVE VALUES,

• ALLDIFFERENT CST,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT PARTITION,

• ALLDIFFERENT SAME VALUE,

• ALLPERM,
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• CONSECUTIVE VALUES,

• DERANGEMENT,

• DISJUNCTIVE,

• K SAME,

• K SAME INTERVAL,

• K SAME MODULO,

• K SAME PARTITION,

• K USED BY,

• K USED BY INTERVAL,

• K USED BY MODULO,

• K USED BY PARTITION,

• PERMUTATION,

• SAME,

• SAME INTERVAL,

• SAME MODULO,

• SAME PARTITION,

• SOME EQUAL,

• USED BY,

• USED BY INTERVAL,

• USED BY MODULO,

• USED BY PARTITION.

A constraint using the SORT constraint in one of its reformulation.

3.7.241 HSparse functional dependency à [3 CONS]

• CASE,
• ELEMENT SPARSE,

• ELEMENTS SPARSE.

A constraint that allows for representing a functional dependency between two do-
main variables, where both variables have a restricted number of values. A variable X
is said to functionally determine another variable Y if and only if each potential value
of X is associated with exactly one potential value of Y .
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3.7.242 HSparse table à [2 CONS]

• ELEMENT SPARSE, • ELEMENTS SPARSE.

An ELEMENT constraint for which the table is sparse.

3.7.243 HSport timetabling à [2 CONS]

• SYMMETRIC ALLDIFFERENT, • SYMMETRIC ALLDIFFERENT EXCEPT 0.

A constraint used for creating sports schedules.

3.7.244 HSquared squares à [3 CONS]

• CUMULATIVE,
• DIFFN,

• GEOST.

A constraint that can be used for modelling the squared squares prob-
lem [137] [440] (also called the perfect squared squares problem [156]): a perfect
squared square of order n is a square that can be tiled with n smaller squares such that
each of the smaller squares has a different integer size. It is called simple if it does not
contain a subset of at least two squares, corresponding to a square or to a rectangle.
Duijvestijn has shown in 1962 that no instances exist with less than 21 squares [156].
A single solution depicted by Figure 3.73 exists with 21 squares, where the squares
have sizes 2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50 and
must be packed into a square of size 112.

A catalogue of such simple squared squares of orders 21 through 25 is provided
in [94]. The following table contains all the problem instances from the previous
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Figure 3.73: A simple perfect squared square of order 21

catalogue. The different fields respectively give the problem number, the number of
squares, the size of the master square and a list of the square sizes. Problems 166 and
167, 168 and 169, 182 and 183 are identical, but have two non-isomorphic solutions.
A much bigger table can be found at the following link http://www.squaring.net/.

When the size of the squares is known four constraint programming approach are
respectively reported in [1], in [427], in [398], in [42] and in [41].

1 21 112 2,4,6,7,8,9,11,15,16,17,18,19,24,25,27,29,33,35,37,42,50
2 22 110 2,3,4,6,7,8,12,13,14,15,16,17,18,21,22,23,24,26,27,28,50,60
3 22 110 1,2,3,4,6,8,9,12,14,16,17,18,19,21,22,23,24,26,27,28,50,60
4 22 139 1,2,3,4,7,8,10,17,18,20,21,22,24,27,28,29,30,31,32,38,59,80
5 22 147 1,3,4,5,8,9,17,20,21,23,25,26,29,31,32,40,43,44,47,48,52,55
6 22 147 2,4,8,10,11,12,15,19,21,22,23,25,26,32,34,37,41,43,45,47,55,59
7 22 154 2,5,9,11,16,17,19,21,22,24,26,30,31,33,35,36,41,46,47,50,52,61
8 22 172 1,2,3,4,9,11,13,16,17,18,19,22,24,33,36,38,39,42,44,53,75,97
9 22 192 4,8,9,10,12,14,17,19,26,28,31,35,36,37,41,47,49,57,59,62,71,86

10 23 110 1,2,3,4,5,7,8,10,12,13,14,15,16,19,21,28,29,31,32,37,38,41,44
11 23 139 1,2,7,8,12,13,14,15,16,18,19,20,21,22,24,26,27,28,32,33,38,59,80
12 23 140 1,2,3,4,5,8,10,13,16,19,20,23,27,28,29,31,33,38,42,45,48,53,54
13 23 140 2,3,4,7,8,9,12,15,16,18,22,23,24,26,28,30,33,36,43,44,47,50,60
14 23 145 1,2,3,4,6,8,9,12,15,20,22,24,25,26,27,29,30,31,32,34,36,61,84
15 23 180 2,4,8,10,11,12,15,19,21,22,23,25,26,32,33,34,37,41,43,45,47,88,92
16 23 188 2,4,8,10,11,12,15,19,21,22,23,25,26,32,33,34,37,45,47,49,51,92,96
17 23 208 1,3,4,9,10,11,12,16,17,18,22,23,24,40,41,60,62,65,67,70,71,73,75
18 23 215 1,3,4,9,10,11,12,16,17,18,22,23,24,40,41,60,66,68,70,71,74,76,79
19 23 228 2,7,9,10,15,16,17,18,22,23,25,28,36,39,42,56,57,68,69,72,73,87,99
20 23 257 2,3,9,11,14,15,17,20,22,24,28,29,32,33,49,55,57,60,63,66,79,123,134
21 23 332 1,15,17,24,26,30,31,38,47,48,49,50,53,56,58,68,83,89,91,112,120,123,129
22 24 120 3,4,5,6,8,9,10,12,13,14,15,16,17,19,20,23,25,32,33,34,40,41,46,47

http://www.squaring.net/
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23 24 186 2,3,4,7,8,9,12,15,16,18,22,23,24,26,28,30,33,36,43,46,47,60,90,96
24 24 194 2,3,7,9,10,16,17,18,19,20,23,25,28,34,36,37,42,53,54,61,65,68,69,72
25 24 195 2,4,7,10,11,16,17,18,21,26,27,30,39,41,42,45,47,49,52,53,54,61,63,80
26 24 196 1,2,5,10,11,15,17,18,20,21,24,26,29,31,32,34,36,40,44,47,48,51,91,105
27 24 201 1,3,4,6,9,10,11,12,17,18,20,21,22,23,26,38,40,46,50,52,53,58,98,103
28 24 201 1,4,5,8,9,10,11,15,16,18,19,20,22,24,26,39,42,44,49,52,54,56,93,108
29 24 203 1,2,5,10,11,15,17,18,20,21,24,26,29,31,32,34,36,40,44,48,54,58,98,105
30 24 247 3,5,6,9,12,14,19,23,24,25,28,32,34,36,40,45,46,48,56,62,63,66,111,136
31 24 253 2,4,5,9,13,18,20,23,24,27,28,31,38,40,44,50,61,70,72,77,79,86,88,104
32 24 255 3,5,10,11,16,17,20,22,23,25,26,27,28,32,41,44,52,53,59,63,65,74,118,137
33 24 288 2,7,9,10,15,16,17,18,22,23,25,28,36,39,42,56,57,60,68,72,73,87,129,159
34 24 288 1,5,7,8,9,14,17,20,21,26,30,32,34,36,48,51,54,59,64,69,72,93,123,165
35 24 290 2,3,8,9,11,12,14,17,21,30,31,33,40,42,45,48,59,61,63,65,82,84,124,166
36 24 292 1,2,3,8,12,15,16,17,20,22,24,26,29,33,44,54,57,60,63,67,73,102,117,175
37 24 304 3,5,7,11,12,17,20,22,25,29,35,47,48,55,56,57,69,72,76,92,96,100,116,132
38 24 304 3,4,7,12,16,20,23,24,27,28,30,32,33,36,37,44,53,57,72,76,85,99,129,175
39 24 314 2,4,11,12,16,17,18,19,28,29,40,44,47,59,62,64,65,78,79,96,97,105,113,139
40 24 316 3,9,10,12,13,14,15,23,24,33,36,37,48,52,54,55,57,65,66,78,79,93,144,172
41 24 326 1,6,10,11,14,15,18,24,29,32,43,44,53,56,63,65,71,80,83,101,104,106,119,142
42 24 423 2,9,15,17,27,29,31,32,33,36,47,49,50,60,62,77,105,114,123,127,128,132,168,186
43 24 435 1,2,8,10,13,19,23,33,44,45,56,74,76,78,80,88,93,100,112,131,142,143,150,192
44 24 435 3,5,9,11,12,21,24,27,30,44,45,50,54,55,63,95,101,112,117,123,134,140,178,200
45 24 459 8,9,10,11,16,30,36,38,45,55,57,65,68,84,95,98,100,116,117,126,135,144,180,198
46 24 459 4,6,9,10,17,21,23,25,31,33,36,38,45,50,83,115,117,126,133,135,144,146,180,198
47 24 479 5,6,17,23,24,26,28,29,35,43,44,52,60,68,77,86,130,140,150,155,160,164,174,175
48 25 147 3,4,5,6,8,9,10,12,13,14,15,16,17,19,20,23,25,27,32,33,34,40,41,73,74
49 25 208 1,2,3,4,5,7,8,11,12,17,18,24,26,28,29,30,36,39,44,45,50,59,60,89,119
50 25 213 3,5,6,7,13,16,17,20,21,23,24,25,26,28,31,35,36,47,49,56,58,74,76,81,90
51 25 215 1,4,6,7,11,15,24,26,27,33,37,39,40,41,42,43,45,47,51,55,60,62,63,69,83
52 25 216 1,2,3,4,5,7,8,11,16,17,18,19,25,30,32,33,39,41,45,49,54,59,64,103,113
53 25 236 1,2,4,9,11,12,13,14,15,16,19,24,38,40,44,46,47,48,59,64,65,70,81,85,107
54 25 242 1,3,6,7,9,13,14,16,17,19,23,25,26,28,30,31,47,51,54,57,60,64,67,111,131
55 25 244 1,2,4,5,7,10,15,17,19,20,21,22,26,27,30,37,40,41,45,65,66,68,70,110,134
56 25 252 4,7,10,11,12,13,23,25,29,31,32,34,36,37,38,40,42,44,62,67,68,71,77,108,113
57 25 253 2,4,5,6,9,10,12,14,20,24,27,35,36,37,38,42,43,45,50,54,63,66,70,120,133
58 25 260 1,4,6,7,10,15,24,26,27,28,29,31,33,34,37,38,44,65,70,71,77,78,83,100,112
59 25 264 3,7,8,12,16,18,19,20,22,24,26,31,34,37,38,40,42,53,54,61,64,69,70,130,134
60 25 264 3,8,12,13,16,18,20,21,22,24,26,29,34,38,40,42,43,47,54,59,64,70,71,130,134
61 25 264 1,3,4,6,9,10,11,12,16,17,18,20,21,22,39,42,54,56,61,66,68,69,73,129,135
62 25 265 1,3,4,6,9,10,11,12,16,17,18,20,21,22,39,42,54,56,62,66,68,69,74,130,135
63 25 273 1,4,8,10,11,12,17,19,21,22,27,29,30,33,37,43,52,62,65,86,88,89,91,96,120
64 25 273 1,6,9,14,16,17,18,21,22,23,25,31,32,38,44,46,48,50,54,62,65,68,78,133,140
65 25 275 2,3,7,13,17,24,25,31,33,34,35,37,41,49,51,53,55,60,68,71,74,81,94,100,107
66 25 276 1,5,8,9,11,18,19,21,30,36,41,44,45,46,47,51,53,58,63,69,71,84,87,105,120
67 25 280 5,6,11,17,18,20,21,24,27,28,32,34,41,42,50,53,54,55,68,78,85,88,95,97,117
68 25 280 2,3,7,8,14,18,30,36,37,39,44,50,52,54,56,60,63,64,65,72,75,78,79,96,106
69 25 284 1,2,11,12,14,16,18,19,23,26,29,37,38,39,40,42,59,68,69,77,78,97,106,109,110
70 25 286 1,4,5,7,10,12,15,16,20,23,28,30,32,33,35,37,53,54,64,68,74,79,80,133,153
71 25 289 2,3,5,8,13,14,17,20,21,32,36,41,50,52,60,61,62,68,74,76,83,87,100,102,104
72 25 289 2,3,4,5,7,12,16,17,19,21,23,25,29,31,32,44,57,64,65,68,72,76,84,140,149
73 25 290 1,2,10,11,13,14,15,17,18,28,29,34,36,38,50,56,60,69,77,80,85,91,94,111,119
74 25 293 5,6,11,17,18,20,21,24,27,28,32,34,41,42,50,54,55,66,68,78,85,88,95,110,130
75 25 297 2,7,8,9,10,15,16,17,18,23,25,26,28,36,38,43,53,60,61,68,69,77,99,137,160
76 25 308 1,3,4,7,10,12,13,23,25,34,37,38,39,43,44,45,62,77,79,85,87,108,113,115,116
77 25 308 1,5,6,7,8,9,13,16,19,28,33,36,38,43,45,48,70,71,73,84,86,102,104,120,133
78 25 309 7,8,14,16,23,24,25,26,31,33,34,39,48,56,59,60,62,70,76,82,92,100,101,108,117
79 25 311 2,7,8,9,10,15,16,17,18,23,25,26,28,36,38,43,53,60,61,68,83,91,99,151,160
80 25 314 1,6,7,11,16,22,26,29,32,36,38,44,51,53,64,69,70,73,74,75,85,87,101,116,128
81 25 316 1,3,9,12,21,26,30,33,34,35,38,39,40,41,53,56,59,69,79,85,96,103,111,117,120
82 25 317 1,5,6,7,8,9,16,17,19,32,37,40,42,47,49,52,59,75,81,92,94,110,112,113,126
83 25 320 2,7,8,9,12,14,15,21,23,35,38,44,46,49,53,54,56,63,96,101,103,105,108,112,116
84 25 320 3,8,9,11,17,18,22,25,26,27,29,30,31,33,35,49,51,67,72,73,80,85,95,152,168
85 25 320 1,4,6,7,8,13,14,16,24,28,30,33,34,38,41,42,57,60,69,78,81,90,92,150,170
86 25 320 3,4,6,8,9,14,15,16,24,28,30,31,34,38,39,42,59,60,71,78,79,90,92,150,170
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87 25 322 3,4,8,9,10,16,18,20,22,23,24,28,31,38,44,47,64,65,68,76,80,81,97,144,178
88 25 322 3,4,8,10,15,16,18,19,20,22,24,28,35,38,44,53,59,64,68,76,80,85,93,144,178
89 25 323 2,3,4,7,10,13,15,18,23,32,34,35,36,42,46,50,57,60,66,72,78,87,98,159,164
90 25 323 3,8,9,11,17,18,22,25,26,27,29,30,31,33,35,49,51,67,72,73,83,88,95,155,168
91 25 323 2,6,9,11,13,14,18,19,20,23,27,28,29,42,46,48,60,64,72,74,79,82,98,146,177
92 25 325 3,5,6,11,12,13,18,23,25,28,32,37,40,43,45,46,51,79,92,99,103,108,112,114,134
93 25 326 1,4,8,10,12,16,21,22,24,27,28,35,36,37,38,46,49,68,70,75,88,90,93,158,168
94 25 327 2,9,10,12,13,16,19,21,23,26,36,44,46,52,55,61,62,74,84,87,100,103,104,120,140
95 25 328 2,3,4,7,8,10,14,17,26,27,28,36,38,40,42,45,53,58,73,74,79,94,102,152,176
96 25 334 1,4,8,10,12,16,21,22,24,27,28,35,36,37,38,46,49,68,75,78,88,93,98,166,168
97 25 336 2,3,4,7,8,10,14,17,26,27,28,36,38,40,45,50,53,58,73,74,79,94,110,152,184
98 25 338 1,4,8,10,12,16,19,22,24,25,28,36,37,38,39,46,53,68,70,73,94,96,101,164,174
99 25 338 4,5,8,10,12,15,16,21,22,24,28,33,36,38,43,46,57,68,70,77,94,96,97,164,174

100 25 340 1,4,5,6,11,13,16,17,22,24,44,46,50,51,52,53,61,64,66,79,84,85,92,169,171
101 25 344 2,3,8,11,14,17,19,21,23,25,27,36,39,44,48,53,56,71,77,83,86,89,98,169,175
102 25 359 7,8,9,10,14,17,18,23,25,27,29,31,40,41,43,46,69,74,82,85,90,98,102,172,187
103 25 361 2,6,7,8,9,14,20,22,26,27,32,34,36,47,49,56,66,67,74,82,89,98,107,156,205
104 25 363 1,4,6,12,13,20,21,25,26,27,28,32,37,41,45,53,58,64,69,91,97,102,106,155,208
105 25 364 2,3,4,6,8,9,13,14,16,19,23,24,28,29,52,57,64,75,82,91,98,100,109,173,191
106 25 367 1,4,6,12,13,20,21,25,26,27,28,32,37,41,49,53,58,64,69,91,97,102,110,155,212
107 25 368 1,6,15,16,17,18,22,25,31,33,39,42,45,46,47,48,51,69,72,88,91,96,112,160,208
108 25 371 1,2,7,8,20,21,22,24,26,28,30,38,43,46,50,51,64,65,70,90,95,102,109,160,211
109 25 373 3,6,7,8,15,17,22,23,31,32,35,41,43,60,62,68,79,87,104,105,114,120,121,138,148
110 25 378 2,3,10,17,18,20,21,22,24,27,31,38,41,48,51,56,68,78,80,85,87,96,117,165,213
111 25 378 1,2,7,13,15,17,18,25,27,29,30,31,42,43,46,56,61,68,73,93,100,105,112,161,217
112 25 380 4,7,17,18,19,20,21,26,31,33,35,40,45,48,49,60,67,73,79,81,87,107,113,186,194
113 25 380 4,5,6,9,13,15,16,17,22,24,33,38,44,49,50,56,60,67,82,84,95,108,121,177,203
114 25 381 12,13,21,23,25,27,35,36,42,45,54,57,59,60,79,82,84,85,92,95,96,100,110,111,186
115 25 384 1,4,8,9,11,12,19,21,27,32,35,44,45,46,47,51,60,67,84,89,96,108,120,180,204
116 25 384 1,4,8,9,11,12,15,17,19,25,26,31,32,37,44,57,60,81,84,96,99,108,120,180,204
117 25 384 3,5,7,11,12,17,20,22,25,29,35,47,48,55,56,57,69,72,76,80,96,100,116,172,212
118 25 385 1,2,7,13,15,17,18,25,27,29,30,31,43,46,49,56,61,68,73,93,100,105,119,161,224
119 25 392 4,7,8,15,23,26,29,30,31,32,34,43,48,55,56,68,77,88,98,106,116,135,141,151,153
120 25 392 10,12,14,16,19,21,25,27,31,35,39,41,51,52,54,55,73,92,98,115,121,123,129,148,171
121 25 392 1,4,5,8,11,14,16,21,22,24,27,28,30,31,52,64,81,83,96,97,98,99,114,195,197
122 25 393 4,8,16,20,23,24,25,27,29,37,44,45,50,53,64,66,68,69,73,85,91,101,116,186,207
123 25 396 1,4,5,14,16,32,35,36,46,47,48,49,68,69,73,93,94,97,99,104,110,111,125,126,160
124 25 396 1,4,5,8,11,14,16,21,22,24,27,28,30,31,52,64,81,83,98,99,100,101,114,197,199
125 25 396 3,8,9,11,14,16,17,18,31,32,41,45,48,56,60,66,73,75,81,82,98,99,117,180,216
126 25 398 2,6,7,11,15,17,23,28,29,39,44,46,53,56,58,65,68,99,100,119,120,134,144,145,154
127 25 400 3,6,21,23,24,26,29,35,37,40,41,47,53,55,64,76,79,81,99,100,121,122,137,142,179
128 25 404 3,6,7,14,17,20,21,26,28,31,32,39,46,53,54,68,71,80,88,92,100,111,113,199,205
129 25 404 4,7,10,11,12,13,16,18,20,23,25,28,29,32,47,62,70,88,93,96,101,114,127,189,215
130 25 408 2,3,7,13,16,18,20,27,30,33,41,43,46,52,54,57,72,79,84,100,105,108,116,195,213
131 25 412 3,11,12,15,21,26,32,39,43,47,54,60,68,73,83,85,86,87,89,99,114,129,139,144,169
132 25 413 5,7,17,20,34,38,39,48,56,57,59,60,64,65,70,72,75,81,105,106,110,125,148,153,155
133 25 416 2,4,7,11,13,24,25,30,35,37,39,40,44,58,62,65,82,104,112,120,128,135,143,153,169
134 25 416 1,2,3,8,12,15,16,17,20,22,24,26,29,31,64,75,85,88,91,94,98,104,133,179,237
135 25 421 1,2,4,5,7,9,12,16,20,22,23,35,38,48,56,83,94,104,116,118,128,140,150,153,177
136 25 421 5,11,12,17,18,20,23,26,29,36,38,40,44,51,55,59,72,92,97,102,105,107,117,199,222
137 25 422 2,4,7,13,16,18,20,23,28,29,38,43,46,51,59,68,74,79,86,93,100,111,132,179,243
138 25 425 3,4,5,9,10,12,13,14,16,19,20,31,46,48,56,79,102,104,116,126,128,140,142,157,181
139 25 441 5,6,7,16,18,23,24,27,38,39,47,51,52,62,66,72,80,84,92,101,102,118,120,219,222
140 25 454 1,2,11,17,29,34,35,46,48,51,53,55,63,69,79,87,88,91,109,134,136,143,150,161,184
141 25 456 5,7,10,11,13,15,18,19,31,49,50,52,59,60,63,72,77,115,128,129,135,142,148,179,193
142 25 465 6,9,13,14,19,21,24,25,31,32,53,56,64,73,74,82,91,111,125,127,137,139,153,173,201
143 25 472 7,9,13,15,26,34,35,44,47,51,58,61,65,81,87,103,104,115,118,123,128,133,136,148,221
144 25 477 3,5,12,16,19,22,25,26,37,41,49,72,76,77,82,86,87,115,117,135,141,149,167,169,193
145 25 492 2,9,15,17,27,29,31,32,33,36,47,49,50,60,62,69,77,105,114,123,127,128,132,237,255
146 25 492 3,5,9,11,12,21,24,27,30,44,45,50,54,55,57,63,95,101,112,117,123,134,140,235,257
147 25 503 4,15,16,19,22,23,25,27,33,34,50,62,67,87,88,93,100,113,135,143,149,157,167,179,211
148 25 506 1,7,24,26,33,35,40,45,47,51,55,69,87,90,93,96,117,125,134,145,146,147,160,162,199
149 25 507 2,3,7,11,13,15,28,34,43,50,57,64,80,83,86,89,107,115,116,127,149,163,175,183,217
150 25 512 1,7,8,9,10,15,22,32,34,46,51,65,69,71,91,105,109,111,136,139,152,157,173,200,203
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151 25 512 1,6,7,8,9,13,17,19,35,45,47,57,62,73,88,93,104,107,128,130,151,163,184,198,221
152 25 513 6,9,10,17,19,24,28,29,37,39,64,65,68,81,98,99,102,115,145,147,153,159,165,189,201
153 25 517 5,6,7,16,20,24,28,33,38,43,63,71,80,83,86,92,98,122,132,148,164,166,173,180,205
154 25 524 9,12,20,21,33,35,37,39,54,55,61,62,87,90,98,101,125,132,135,141,145,159,163,164,220
155 25 527 11,12,13,14,19,30,41,47,50,52,59,68,71,81,94,97,107,132,147,151,155,169,175,183,197
156 25 528 2,9,15,17,27,29,31,32,33,36,47,49,50,60,62,69,77,123,127,128,132,141,150,255,273
157 25 529 9,12,20,21,33,35,37,39,54,55,61,62,87,90,98,101,125,132,140,141,145,159,163,169,225
158 25 531 6,9,10,17,19,24,29,31,39,40,67,68,71,84,101,102,105,118,151,153,159,165,171,195,207
159 25 532 16,18,26,27,33,39,41,50,51,55,69,71,84,87,91,94,132,133,141,143,164,168,169,173,195
160 25 534 11,13,15,17,18,27,38,44,49,52,60,61,68,81,87,94,107,135,149,153,159,171,174,189,210
161 25 535 2,8,26,27,36,41,45,57,62,77,88,95,97,99,101,102,109,114,117,118,141,147,168,192,226
162 25 536 1,8,21,30,31,32,33,41,44,46,49,55,57,61,84,91,113,134,137,139,150,155,176,205,247
163 25 536 3,5,9,11,12,21,24,27,30,44,45,50,54,55,57,63,95,117,123,134,140,145,156,257,279
164 25 540 1,7,8,9,10,14,19,34,36,51,58,69,81,83,97,109,111,115,136,149,152,167,183,208,221
165 25 540 6,13,15,25,28,36,43,47,55,57,58,59,60,65,82,89,91,107,124,127,144,163,183,233,250
166 25 540 8,9,10,11,16,30,36,38,45,55,57,65,68,81,84,95,98,100,116,117,126,135,144,261,279
167 25 540 8,9,10,11,16,30,36,38,45,55,57,65,68,81,84,95,98,100,116,117,126,135,144,261,279
168 25 540 4,6,9,10,17,21,23,25,31,33,36,38,45,50,81,83,115,117,126,133,135,144,146,261,279
169 25 540 4,6,9,10,17,21,23,25,31,33,36,38,45,50,81,83,115,117,126,133,135,144,146,261,279
170 25 541 3,4,11,13,16,17,21,25,26,44,46,64,75,86,87,97,106,109,133,141,165,185,191,215,217
171 25 541 3,5,27,32,33,37,47,50,53,56,57,69,71,78,97,98,109,111,126,144,165,169,183,189,232
172 25 544 1,7,24,26,33,35,40,45,47,51,55,69,87,90,93,96,117,125,134,145,147,184,198,199,200
173 25 544 6,8,20,21,23,41,42,48,59,61,77,80,81,85,90,92,93,102,115,132,139,168,198,207,244
174 25 547 3,5,16,22,26,27,35,47,49,59,67,71,72,85,87,102,103,111,137,144,150,197,200,203,207
175 25 549 4,10,14,24,26,31,34,36,38,40,43,48,59,63,74,89,97,105,117,124,136,152,156,241,308
176 25 550 1,2,5,13,19,20,25,30,39,43,58,59,73,75,76,90,95,103,116,128,130,132,172,262,288
177 25 550 1,11,16,23,24,27,29,36,41,43,44,47,59,70,71,80,99,103,111,116,128,156,167,227,323
178 25 551 3,5,24,25,26,30,35,36,39,40,42,57,68,76,94,109,120,128,152,162,166,175,176,200,223
179 25 552 5,17,18,22,25,27,32,33,39,59,62,87,91,100,102,111,112,135,137,149,165,168,183,201,204
180 25 552 1,3,4,7,8,9,10,15,18,19,21,41,52,54,73,93,95,123,125,136,138,153,168,261,291
181 25 556 6,8,10,13,19,25,32,37,49,54,58,76,84,91,92,100,107,128,145,156,165,185,195,205,206
182 25 556 3,12,13,15,19,23,27,34,35,39,42,45,48,52,53,87,140,145,158,166,171,184,189,201,227
183 25 556 3,12,13,15,19,23,27,34,35,39,42,45,48,52,53,87,140,145,158,166,171,184,189,201,227
184 25 556 1,5,7,8,9,10,12,14,20,27,31,43,47,50,74,93,97,121,125,139,143,153,167,264,292
185 25 562 2,3,5,8,13,19,20,29,33,47,53,54,64,65,76,93,119,123,142,157,161,180,184,221,259
186 25 570 3,9,10,33,36,38,40,42,50,51,60,69,72,75,77,90,113,140,141,151,152,189,200,229,230
187 25 575 4,6,14,16,31,39,63,69,74,81,88,103,107,111,115,120,131,132,133,147,156,159,164,198,218
188 25 576 1,4,9,11,15,19,22,34,36,53,60,76,82,84,104,126,127,128,153,156,165,174,183,219,237
189 25 576 8,9,10,11,16,30,36,38,45,55,57,65,68,81,84,95,98,100,116,135,144,153,162,279,297
190 25 576 4,6,9,10,17,21,23,25,31,33,36,38,45,50,81,83,115,133,135,144,146,153,162,279,297
191 25 580 2,5,7,10,12,13,19,21,22,29,36,40,61,65,74,101,135,139,161,179,183,192,205,209,236
192 25 580 5,6,11,13,16,17,21,25,34,44,54,68,80,88,100,112,120,135,142,145,170,173,195,215,265
193 25 580 11,12,16,17,29,32,39,41,53,55,59,60,68,70,81,84,92,124,125,128,129,156,171,280,300
194 25 593 13,14,15,35,48,51,55,67,73,79,83,91,94,105,109,116,119,124,133,150,171,173,196,217,226
195 25 595 4,13,18,19,22,35,40,48,58,61,62,77,78,82,83,86,118,149,163,168,187,192,202,206,240
196 25 601 7,8,25,34,41,42,46,48,54,55,62,70,71,74,98,103,116,143,168,169,190,192,193,218,240
197 25 603 7,11,12,14,21,25,32,40,52,56,60,67,68,81,91,92,132,144,149,163,177,191,196,235,263
198 25 603 13,23,26,27,35,44,45,49,53,54,57,66,75,99,101,110,122,126,144,158,175,180,189,234,270
199 25 607 6,8,10,13,19,25,32,37,49,54,58,76,84,91,92,100,107,128,156,185,196,205,206,216,246
200 25 609 9,14,15,17,32,45,47,58,67,74,76,79,80,83,97,111,125,126,150,170,186,188,215,224,235
201 25 611 1,10,22,26,32,41,45,54,57,61,62,66,85,86,87,95,97,101,119,132,136,167,176,268,343
202 25 614 15,22,24,31,33,49,53,54,57,60,63,68,74,81,83,104,109,151,155,163,167,217,229,230,234
203 25 634 15,17,24,26,33,43,44,54,57,60,63,73,79,81,88,109,119,160,161,172,173,227,234,235,239
204 25 643 2,9,21,29,38,40,41,42,58,62,67,76,82,83,85,96,104,166,172,186,192,201,207,250,270
205 25 644 7,9,13,18,19,22,31,49,53,61,66,68,71,87,93,94,119,164,178,192,199,206,227,239,253
206 25 655 10,14,15,21,25,26,31,40,51,53,54,57,65,83,84,86,151,152,173,193,194,215,216,246,288
207 25 661 5,7,17,18,23,31,36,38,41,64,73,77,83,84,102,106,111,161,175,196,203,210,238,248,262
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3.7.245 HStatistics à [2 CONS]

• DEVIATION, • SPREAD.

A constraint representing a function in statistics usually used for obtaining a bal-
anced assignment.

3.7.246 HStrip packing à [2 CONS]

• DIFFN, • GEOST.

A constraint that can be used to model the strip packing problem: Given a set of
rectangles pack them into an open ended strip of given width in order to minimise the
total overall height. Borders of the rectangles to pack should be parallel to the borders
of the strip and rectangles should not overlap. Some variants of strip packing allow to
rotate rectangles from 90 degrees. Benchmarks with known optima can be obtained
from Hopper’s PhD thesis [229].

3.7.247 HStrong articulation point à [1 CONS]

• TREE.

A constraint for which the filtering algorithm uses the notion of strong articulation
point. A strong articulation point of a strongly connected digraph G is a vertex such
that if we remove it, G is broken into at least two strongly connected components.
Figure 3.74 illustrates the notion of strong articulation point on the digraph depicted
by part (A). The vertex labelled by 3 is a strong articulation point since its removal
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creates the three strongly connected components depicted by part (B) (i.e., the first,
second and third strongly connected components correspond respectively to the sets
of vertices {1, 4}, {2} and {5}). From an algorithmic point of view, it was shown
in [234] how to compute all the strong articulation points of a digraph G in linear time
with respect to the number of arcs of G.
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Figure 3.74: (A) A connected digraph, (B) its three strongly connected components
scc1, scc2 and scc3 when its unique strong articulation point (i.e., the vertex labelled
by 3) is removed

3.7.248 HStrong bridge à [2 CONS]

• CIRCUIT, • CYCLE.

A constraint for which the filtering algorithm may use the notion of strong bridge
(i.e., enforce arcs corresponding to strong bridges to be part of the solution in order to
avoid creating too many strongly connected components). A strong bridge of a strongly
connected digraph G is an arc such that, if we remove it, G is broken into at least two
strongly connected components. Figure 3.75 illustrates the notion of strong bridge on
the digraph depicted by part (A). The arc from the vertex labelled by 2 to the vertex
labelled by 1 is a strong bridge since its removal creates the three strongly connected
components depicted by part (B) (i.e., the first, second and third strongly connected
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components correspond respectively to the sets of vertices {1, 3, 4}, {2} and {5}). The
other strong bridges of the digraph depicted by part (A) are the arcs 1→ 3 and 5→ 2.
From an algorithmic point of view, it was shown in [234] how to compute all the strong
bridges of a digraph G in linear time with respect to the number of arcs of G.
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Figure 3.75: (A) A connected digraph, (B) its three strongly connected components
scc1, scc2 and scc3 when one of its strong bridge, the arc 2→ 1, is removed

3.7.249 HStrongly connected component à [25 CONS]

• ATLEAST NVALUE,
• ATLEAST NVECTOR,
• ATMOST NVALUE,
• ATMOST NVECTOR,
• BALANCE CYCLE,
• CIRCUIT CLUSTER,
• CONNECT POINTS,
• CYCLE,
• CYCLE OR ACCESSIBILITY,
• CYCLE RESOURCE,
• GROUP SKIP ISOLATED ITEM,
• INCREASING NVALUE,
• NCLASS,

• NEQUIVALENCE,
• NINTERVAL,
• NPAIR,
• NSET OF CONSECUTIVE VALUES,
• NVALUE,
• NVALUES,
• NVALUES EXCEPT 0,
• NVECTOR,
• NVECTORS,
• POLYOMINO,
• SOFT ALLDIFFERENT VAR,
• STRONGLY CONNECTED.
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Denotes that a constraint restricts the strongly connected components of its associ-
ated final graph. This is usually done by using a graph property like MAX NSCC,
MIN NSCC or NSCC.

3.7.250 HSubset sum à [1 CONS]

• WEIGHTED PARTIAL ALLDIFF.

Denotes that, by reduction to subset sum, deciding whether a constraint has a so-
lution or not was shown to be NP-hard. The subset sum problem can be described as
follows: given a finite set of integers in Z+ and an integer s in Z+, does any subset
sum equal exactly s?

3.7.251 HSudoku à [2 CONS]

• ALLDIFFERENT, • K ALLDIFFERENT.

A constraint that can be used for modelling the Sudoku puzzle problem. A Sudoku
square is an 9 × 9 array in which 9 distinct numbers in [1, 9] are arranged so that the
following two conditions hold:

• Each number occurs once in each row and column.

• The numbers in each major 3× 3 block are distinct.

The Sudoku puzzle problem is to complete a partially filled board in order to get
a Sudoku square. Part (A) of Figure 3.76 gives a partially filled Sudoku board, while
part (B) provides its unique possible completion.
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Figure 3.76: (A) A partially filled Sudoku square and (B) its unique completion

3.7.252 HSum à [13 CONS]

• INCREASING SUM,

• SCALAR PRODUCT,

• SLIDING SUM,

• SLIDING TIME WINDOW SUM,

• SUM,

• SUM CTR,

• SUM OF INCREMENTS,

• SUM SET,

• SUM CUBES CTR,

• SUM POWERS4 CTR,

• SUM POWERS5 CTR,

• SUM POWERS6 CTR,

• SUM SQUARES CTR.

A constraint involving one or several sums.

3.7.253 HSweep à [7 CONS]

• CUMULATIVES,
• DIFFN,
• GEOST,
• GEOST TIME,

• SOFT ALL EQUAL MIN VAR,

• SPREAD,

• VISIBLE.

A constraint for which the filtering algorithm may use a sweep algorithm. A sweep
algorithm [333, pages 10–11] solves a problem by moving an imaginary object (usually
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a line, a plane or sometime a point). The object does not move continuously, but
only at particular points where we actually do something. A sweep algorithm uses the
following two data structures:

• A data structure called the sweep status, which contains information related to
the current position of the object that moves,

• A data structure named the event point series, which holds the events to process.

The algorithm initialises the sweep status for the initial position of the imaginary object.
Then the object jumps from one event to the next event; each event is handled by
updating the status of the sweep.

A first typical application reported in [34] of the idea of sweep within the context
of constraint programming is to aggregate several constraints that have two variables
in common in order to perform more deduction. Let:

• X and Y be two distinct variables,

• C1(V11, . . . , V1n1
), . . . , Cm(Vm1, . . . , Vmnm) be a set of m constraints such that

all constraints mention X and Y.

The sweep algorithm tries to adjust the minimum value of X with respect to the con-
junction of the previous constraints by moving a sweep-line from the minimum value
of X to its maximum value. It accumulates within the sweep-line status the values
to be currently removed from the domain of Y. If, for the current position ∆ of the
sweep-line, all values of Y have to be removed, then the algorithm removes value ∆
from the domain of X. The events to process correspond to the starts and ends of for-
bidden two-dimensional regions with respect to constraints C1, . . . , Cm and variables
X and Y. Forbidden regions are a way to represent constraints C1, . . . , Cm that is suited
for this sweep algorithm. A forbidden region of the constraint Ci with respect to
the variables X and Y is an ordered pair ([F−x , F

+
x ], [F−y , F

+
y ]) of intervals such that:

∀x ∈ [F−x , F
+
x ],∀y ∈ [F−y , F

+
y ] : Ci(Vi1, . . . , Vini) has no solution in which X = x

and Y = y.
Figure 3.77 shows five constraints and their respective forbidden regions (in pink)

with respect to two given variables X and Y and their domains. The first constraint
requires that X, Y and R be pairwise distinct. Constraints (B,C) are usual arithmetic
constraints.17 Constraint (D) can be interpreted as requiring that two rectangles of
respective origins (X, Y) and (T, U) and sizes (2, 4) and (3, 2) do not overlap. Finally,
constraint (E) is a parity constraint of the sum of X and Y.

We illustrate the use of the sweep algorithm on a concrete example. Assume that
we want to find out the minimum value of variable X with respect to the conjunction
of the five constraints that were introduced by Figure 3.77, that is versus the following

17Within the context of continuous variables, Chabertet al. [115] shows how to compute a forbidden region
that contains a given unfeasible point for numerical constraints with arbitrary mathematical expressions.
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Figure 3.77: Examples of forbidden regions (in pink) according to the two variables X
and Y (X ∈ [0, 4], Y ∈ [0, 4]) for five constraints

conjunction of constraints:

X ∈ 0..4, Y ∈ 0..4, R ∈ 0..9, T ∈ 0..2, U ∈ 0..3
ALLDIFFERENT(〈X, Y, R〉) (A)
|X− Y| > 2 (B)
X + 2Y− 1 < S (C)
X + 1 < T ∨ T + 2 < X ∨ Y + 3 < U ∨ U + 1 < Y (D)
(X + Y) mod 2 = 2 (E)

Figure 3.78 shows the content of the sweep-line status (i.e., the forbidden values
for Y according the current position of the sweep-line) for different positions of the
sweep-line. More precisely, the sweep-line status can be viewed as an array (see the
rightmost part of Figure 3.78) which records for each possible value of Y the number
of forbidden regions that currently intersect the sweep-line (see the leftmost part of
Figure 3.78 where these forbidden regions are coloured in red). The smallest possible
value of X is 4, since this is the first position of the sweep-line where the sweep-line
status contains a value of Y which is not forbidden (i.e., X = 4, Y = 0 is not covered by
any forbidden region).

A second similar application of the idea of sweep in the context of the cardinality
operator [430], where all constraints have at least two variables in common, is reported
in [33]. As before, each constraint C of the cardinality operator is defined by its for-
bidden regions with respect to a pair of variables (X, Y) that occur in every constraint.
In addition to that, a constraint C is also defined by its safe regions, where a safe region
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Figure 3.78: Sweep-line status while sweeping through the potential values of variable
X (i.e., values from 0 to 4) until a potentially feasible point X = 4, Y = 4 wrt the five
constraints (A), (B), (C), (D) and (E) is found; the sweep-line status (i.e., the rightmost
column) records for a potential value v of variable X and for each potential value w of
variable Y how many constraints are violated when both X = v and Y = w.

is the set of assignments to the pair (X, Y) located in a rectangle such that the constraint
always holds, no matter which values are taken by the other variables of C. Then
the extended sweep algorithm filters the pair of variables (X, Y) right from the begin-
ning according to the minimum and maximum number of constraints of the cardinality
operator that have to hold.

A third typical application reported in [42] and in [107] of the idea of sweep within
the context of multi-dimensional placement problems (for example, the DIFFN and the
GEOST constraints) for filtering each coordinate of the origin of an object o to place
is as follows. To adjust the minimum (respectively maximum) value of a coordinate
of the origin we perform a recursive traversal of the placement space in increasing
(respectively decreasing) lexicographic order and skips infeasible points that are lo-
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cated in a multi-dimensional forbidden set. Each multi-dimensional forbidden set is
computed from a constraint where object o occurs (for example, a non-overlapping
constraint in the context of the DIFFN and the GEOST constraints). Figure 3.80 illus-
trates the k-dimensional lexicographic sweep algorithm in the context of k = 2 and
of five non-overlapping rectangles ri (i ∈ [1, 5]) of respective sizes (wi, hi) where
w1 = 2, h1 = 1, w2 = 3, h2 = 1, w3 = 1, h3 = 1, w4 = 1, h4 = 3, w5 = 5,
h5 = 4. For each rectangle ri we consider the coordinates of its lower leftmost corner
with abscissa xi and ordinate yi such that x1 ∈ [1, 4], y1 ∈ [2, 4], x2 = 4, y2 = 6,
x3 ∈ [2, 4], y3 ∈ [8, 9], x4 = 7, y4 = 1, x5 ∈ [1, 8] and y5 ∈ [1, 6] ∪ [8, 8]. We focus
on the filtering of the minimum value of the abscissa of rectangle r5 (i.e., variable x5).

• Since rectangle r5 should not overlap rectangles r1, r2, r3 and r4 we can compute
for each non-overlapping constraint a set of forbidden points for the origin of
r5. Given two non-overlapping rectangles ri and rj of respective origins (xi, yi)
and (xj , yj) and of respective sizes (wi, hi) and (wj , hj), there is one non-empty
forbidden region for the origin of ri of the form ([xj−wi+1, xj+wj−1], [yj−
hi + 1, yj + hj − 1]) when both xj −wi + 1 ≤ xj +wj − 1 and yj − hi + 1 ≤
yj +hj − 1 hold, and no forbidden region otherwise [34]. Figure 3.79 illustrates
the four possible cases leading to a non-empty forbidden region.

– Since r5 should not overlap r1 the points of the forbidden region ([4− 5 +
1, 1 + 2 − 1], [4 − 4 + 1, 2 + 1 − 1]), i.e. ([0, 2], [1, 2]), are forbidden for
the origin of r5.

– Since r5 should not overlap r2 the points of the forbidden region ([4− 5 +
1, 4 + 3 − 1], [6 − 4 + 1, 6 + 1 − 1]), i.e. ([0, 6], [3, 6]), are forbidden for
the origin of r5.

– Since r5 should not overlap r3 the points of the forbidden region ([4− 5 +
1, 2 + 1 − 1], [9 − 4 + 1, 8 + 1 − 1]), i.e. ([0, 2], [6, 8]), are forbidden for
the origin of r5.

– Since r5 should not overlap r4 the points of the forbidden region ([7− 5 +
1, 7 + 1− 1], [1− 4 + 1, 1 + 3− 1]), i.e. ([3, 7], [−2, 3]), are forbidden for
the origin of r5.

Since y5 6= 7 the points of the forbidden region ([1, 8], [7, 7]) are also forbidden
for the origin of r5.

• In Part (A) we represent the extreme positions of rectangles r1 to r4: for example,
the leftmost lower corner of rectangle r1 can only be fixed at positions (1, 2),
(1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3) and (4, 4)
from which positions (1, 2), (1, 4), (4, 2) and (4, 4) are the extreme positions.
Since we prune the abscissa of the coordinate of the origin of r5 the abscissa and
ordinate dimensions of the placement space correspond respectively to the outer
and to the inner dimensions of the placement space: the sweep-point first moves
along the inner dimension before jumping on the outer dimension.

• Part (B) represents the first step of the sweep-point algorithm. We start the traver-
sal of the placement space at the extreme point c = (1, 1), i.e. the extreme
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leftmost lower coordinate of the origin of rectangle r5. Since the sweep-point
belongs to the forbidden region associated with the non-overlapping constraint
between r5 and r1, i.e. the red box with the dash border, we compute the first
point outside the forbidden region along the inner sweep dimension. As a con-
sequence the sweep-point moves to the next position (1, 3).

• The process is repeated in Parts (C) to (H) until we finally find a position for
the sweep-point that does not belong to any forbidden region derived from the
constraints where rectangle r5 is involved (i.e., point (3, 8) in Part (I)).
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Figure 3.79: Given two rectangles r1 and r2 that should not overlap, interpretation
of a non-empty forbidden region for the origin of r1 wrt r2: four cases (A), (B), (C)
and (D) depending of the size of r2 versus the size of placement domain of r2; a point
belongs to the forbidden region if and only if all compulsory parts of r2 are intersected
by r1 (i.e., since all points of the compulsory part are occupied) and if all frontier parts
of r2 are completely covered by r1 (i.e., since at least one point of the frontier part is
occupied).
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Figure 3.80: Illustration of the sweep point algorithm for adjusting the minimum value
of the abscissa of rectangle r5 (within the placement space, the grey area represents
forbidden placement for the origin of r5 due to the domain of y5)
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The worst case complexity of the k-dimensional lexicographic sweep algorithm
depends on the maximum number of jumps of the sweep point. Figure 3.81 shows for
k = 2 an example where the number of jumps turns out to be proportional to n2 where
n is the number of forbidden regions. We conjecture that we get a similar scheme,
i.e. O(nk) maximum number of jumps, as k increases. However from a practical point
of view, experiments have shown that we dont get such bad behavior for small values
of k, i.e. up to k = 7, which turns out to be enough for many packing problems.
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Figure 3.81: Illustration of a configuration in two dimensions leading to a quadratic
number of jumps of the sweep-point: (A) the goal is to filter the minimum value ab-
scissa of the origin of the cyan square so that it does not overlap all the seven pink
rectangles; (B), (C), (D), (E) first, second, third and fourth steps for saturating the in-
ner sweep dimension, (F) first feasible position of the sweep point of coordinates (5, 1)
in blue; note that the forbidden regions for the origin of the cyan square correspond
exactly to the fixed pink rectangles since the cyan square has a size of 1.
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3.7.254 HSymmetric à [11 CONS]

• ALL DIFFER FROM AT LEAST K POS,

• ALL DIFFER FROM AT MOST K POS,

• ALL DIFFER FROM EXACTLY K POS,

• ALL INCOMPARABLE,

• BIPARTITE,

• CLIQUE,

• CONNECT POINTS,

• CONNECTED,

• INVERSE WITHIN RANGE,

• PROPER FOREST,

• SYMMETRIC.

Denotes that a constraint is defined by a graph constraint for which the final graph
is symmetric. A digraph is symmetric if and only if, if there is an arc from a vertex u
to a vertex v, there is also an arc from v to u.

3.7.255 HSymmetry à [24 CONS]

• ALLPERM,

• INCREASING GLOBAL CARDINALITY,

• INCREASING NVALUE,

• INCREASING SUM,

• INT VALUE PRECEDE,

• INT VALUE PRECEDE CHAIN,

• GEOST,

• LEX2,

• LEX BETWEEN,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LEX LESSEQ ALLPERM,

• ORDERED ATLEAST NVECTOR,

• ORDERED ATMOST NVECTOR,

• ORDERED NVECTOR,

• SET VALUE PRECEDE,

• STRICT LEX2,

• SUBGRAPH ISOMORPHISM.

A constraint that can be used for breaking certain types of symmetries (i.e.,
ALLPERM,INT VALUE PRECEDE,. . . , STRICT LEX2) or for identifying certain sym-
metries (i.e., SUBGRAPH ISOMORPHISM).
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3.7.256 HSystem of constraints à [31 CONS]

• ALL DIFFER FROM AT LEAST K POS (system of DIFFER FROM AT LEAST K POS),

• ALL DIFFER FROM AT MOST K POS (system of DIFFER FROM AT MOST K POS),

• ALL DIFFER FROM EXACTLY K POS (system of DIFFER FROM EXACTLY K POS),

• ALL INCOMPARABLE (system of INCOMPARABLE),

• ALLDIFFERENT (system of NEQ),

• ALLPERM (system of LEX LESSEQ ALLPERM),

• AMONG SEQ (system of AMONG LOW UP),

• COLORED MATRIX (system of GLOBAL CARDINALITY),

• ELEMENTS (system of ELEM or of ELEMENT sharing the same table),

• ELEMENTS SPARSE (system of ELEMENT SPARSE sharing the same table),

• GLOBAL CARDINALITY (system of AMONG),

• K ALLDIFFERENT (system of ALLDIFFERENT),

• K DISJOINT (system of DISJOINT),

• K SAME (system of SAME),

• K SAME INTERVAL (system of SAME INTERVAL),

• K SAME MODULO (system of SAME MODULO),

• K SAME PARTITION (system of SAME PARTITION),

• K USED BY (system of USED BY),

• K USED BY INTERVAL (system of USED BY INTERVAL),

• K USED BY MODULO (system of USED BY MODULO),

• K USED BY PARTITION (system of USED BY PARTITION),

• LEX2 (system of LEX CHAIN LESSEQ),

• LEX BETWEEN (system of LEX LESSEQ),

• LEX CHAIN GREATER (system of LEX GREATER),

• LEX CHAIN GREATEREQ (system of LEX GREATEREQ),

• LEX CHAIN LESSEQ (system of LEX LESSEQ),

• LEX CHAIN LESS (system of LEX LESS),

• LEX ALLDIFFERENT (system of LEX DIFFERENT),

• SLIDING DISTRIBUTION (system of GLOBAL CARDINALITY LOW UP),

• SLIDING SUM (system of SUM CTR),

• STRICT LEX2 (system of LEX CHAIN LESS).

Denotes that a constraint is defined as the conjunction of several identical global
constraints that have some variables in common.
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3.7.257 HTable à [15 CONS]

• ELEM,

• ELEM FROM TO,

• ELEMENT,

• ELEMENTN,

• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT PRODUCT,

• ELEMENT SPARSE,

• ELEMENTS,

• ELEMENTS ALLDIFFERENT,

• ELEMENTS SPARSE,

• ITH POS DIFFERENT FROM 0,

• NEXT ELEMENT,

• NEXT GREATER ELEMENT,

• STAGE ELEMENT.

A constraint that allows for representing the access to an element of a table.

3.7.258 HTemporal constraint à [17 CONS]

• CALENDAR,

• COLOURED CUMULATIVE,

• COLOURED CUMULATIVES,

• CUMULATIVE,

• CUMULATIVE CONVEX,

• CUMULATIVE PRODUCT,

• CUMULATIVE WITH LEVEL OF PRIORITY,

• CUMULATIVES,

• DISJOINT TASKS,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• SHIFT,

• SLIDING TIME WINDOW,

• SLIDING TIME WINDOW FROM START,

• SLIDING TIME WINDOW SUM,

• SOFT CUMULATIVE,

• TRACK.

A constraint involving the notion of time.
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3.7.259 HTernary constraint à [5 CONS]

• DISTANCE,
• ELEMENT MATRIX,
• GCD,

• POWER,

• REMAINDER.

A constraint involving only three variables.

3.7.260 HTimetabling constraint à [32 CONS]

• CHANGE,

• CHANGE CONTINUITY,

• CHANGE PAIR,

• CHANGE PARTITION,

• CIRCULAR CHANGE,

• COLORED MATRIX,

• CUMULATIVES,

• CYCLIC CHANGE,

• CYCLIC CHANGE JOKER,

• DIFFN,

• FULL GROUP,

• GEOST,

• GEOST TIME,

• GROUP,

• GROUP SKIP ISOLATED ITEM,

• INTERVAL AND COUNT,

• INTERVAL AND SUM,

• LONGEST CHANGE,

• PATTERN,

• PERIOD,

• PERIOD EXCEPT 0,

• SHIFT,

• SLIDING CARD SKIP0,

• SMOOTH,

• STRETCH CIRCUIT,

• STRETCH PATH,

• STRETCH PATH PARTITION,

• SYMMETRIC ALLDIFFERENT,

• SYMMETRIC ALLDIFFERENT EXCEPT 0,

• SYMMETRIC CARDINALITY,

• SYMMETRIC GCC,

• TRACK.

A constraint that can occur in timetabling problems.
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3.7.261 HTime window à [1 CONS]

• SLIDING TIME WINDOW SUM.

A constraint involving one or several date ranges.

3.7.262 HTouch à [2 CONS]

• ORTHS ARE CONNECTED, • TWO ORTH ARE IN CONTACT.

A constraint enforcing that some orthotopes touch each other (see Contact).

3.7.263 HTree à [9 CONS]

• BALANCE PATH,
• BALANCE TREE,
• BINARY TREE,
• PATH,
• PROPER FOREST,

• STABLE COMPATIBILITY,

• TREE,

• TREE RANGE,

• TREE RESOURCE.

According to the context, the keyword tree has the following meaning:

• In the context of a digraph, a constraint that partitions the vertices of a given
initial digraph and that keeps a single successor for each vertex so that each
partition corresponds to one tree. Each vertex points to its father or to itself if it
corresponds to the root of a tree.
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• In the context of an undirected graph a constraint that partitions the vertices of a
given initial undirected graph in a set of connected components with no cycles.

3.7.264 HTuple à [2 CONS]

• IN RELATION, • VEC EQ TUPLE.

A constraint involving a tuple. A tuple is an element of a relation, where a relation
is a subset of the product of several finite sets.

3.7.265 HTwo-dimensional orthogonal packing à [2 CONS]

• DIFFN, • GEOST.

A constraint that can be used to model the two-dimensional orthogonal packing
problem. Given a set of rectangles pack them into a rectangular placement space.
Borders of the rectangles should be parallel to the borders of the placement space and
rectangles should not overlap. Some variants of strip packing allow to rotate rectan-
gles from 90 degrees. Benchmarks can be obtained from a generator described in the
following paper [126].
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3.7.266 HUnary constraint à [5 CONS]

• IN,
• IN INTERVAL,
• IN INTERVALS,

• NOT IN,

• SUM FREE.

A constraint involving only one variable.

3.7.267 HUndirected graph à [2 CONS]

• PROPER FOREST, • TOUR.

A constraint that deals with an undirected graph. An undirected graph is a graph
whose edges consist of unordered pairs of vertices.

3.7.268 HValue constraint à [80 CONS]

• ALL BALANCE,

• ALL EQUAL,

• ALL EQUAL EXCEPT 0,

• ALL MIN DIST,

• ALLDIFFERENT,

• ALLDIFFERENT CST,

• ALLDIFFERENT CONSECUTIVE VALUES,

• ALLDIFFERENT EXCEPT 0,

• ALLDIFFERENT INTERVAL,

• ALLDIFFERENT MODULO,

• ALLDIFFERENT ON INTERSECTION,
• ALLDIFFERENT PARTITION,
• AMONG,
• AMONG DIFF 0,
• AMONG INTERVAL,
• AMONG LOW UP,
• AMONG MODULO,
• ARITH,
• ARITH OR,
• ATLEAST,
• ATMOST,
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• BALANCE,

• BALANCE INTERVAL,

• BALANCE MODULO,

• BALANCE PARTITION,

• CARDINALITY ATLEAST,

• CARDINALITY ATMOST,

• CARDINALITY ATMOST PARTITION,

• CONSECUTIVE VALUES,

• COUNT,

• COUNTS,

• DIFFER FROM AT LEAST K POS,

• DIFFER FROM AT MOST K POS,

• DIFFER FROM EXACTLY K POS,

• DISCREPANCY,

• DISJOINT,

• DOMAIN,

• EXACTLY,

• GLOBAL CARDINALITY,

• GLOBAL CARDINALITY LOW UP,

• GLOBAL CARDINALITY LOW UP NO LOOP,

• GLOBAL CARDINALITY NO LOOP,

• IN,

• IN INTERVAL,

• IN INTERVAL REIFIED,

• IN INTERVALS,

• IN SAME PARTITION,

• IN SET,

• INCREASING GLOBAL CARDINALITY,

• K ALLDIFFERENT,

• K DISJOINT,

• LENGTH FIRST SEQUENCE,

• LENGTH LAST SEQUENCE,

• LINK SET TO BOOLEANS,

• MAX NVALUE,

• MAX SIZE SET OF CONSECUTIVE VAR,

• MIN NVALUE,

• MIN SIZE SET OF CONSECUTIVE VAR,

• MULTI INTER DISTANCE,

• NOT ALL EQUAL,

• NOT IN,

• NSET OF CONSECUTIVE VALUES,

• OPEN ALLDIFFERENT,

• OPEN AMONG,

• OPEN ATLEAST,

• OPEN ATMOST,

• OPEN GLOBAL CARDINALITY,

• OPEN GLOBAL CARDINALITY LOW UP,

• ORDERED GLOBAL CARDINALITY,

• PERMUTATION,

• ROOTS,

• SAME AND GLOBAL CARDINALITY,

• SAME AND GLOBAL CARDINALITY LOW UP,

• SOFT ALLDIFFERENT CTR,

• SOFT ALLDIFFERENT VAR,

• SOFT ALL EQUAL MAX VAR,

• SOFT ALL EQUAL MIN CTR,

• SOFT ALL EQUAL MIN VAR,

• SOME EQUAL,

• VEC EQ TUPLE.

A constraint that puts a restriction on how values can be assigned to usually one
or several collections of variables, or possibly one or two variables. These variables
usually correspond to domain variables but can sometimes be set variables.
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3.7.269 HValue partitioning constraint à [14 CONS]

• ATLEAST NVALUE,

• ATLEAST NVECTOR,

• ATMOST NVALUE,

• ATMOST NVECTOR,

• INCREASING NVALUE,

• NCLASS,

• NEQUIVALENCE,

• NINTERVAL,

• NPAIR,

• NVALUE,

• NVALUES,

• NVALUES EXCEPT 0,

• NVECTOR,

• NVECTORS.

A constraint involving a partitioning of values in its definition.

3.7.270 HValue precedence à [3 CONS]

• INT VALUE PRECEDE,
• INT VALUE PRECEDE CHAIN,

• SET VALUE PRECEDE.

A constraint that allows for expressing symmetries between values that are assigned
to variables: given a solution, values can be uniformly interchanged in order to ob-
tain a new solution. This is the case, for example, in graph colouring problems or
in bin-packing problems when all bins are identical (e.g., see the BIN PACKING con-
straint):

• For graph coloring problems, a variable and a value correspond respectively to a
vertex, and to a colour used for coloring a vertex.

• For bin packing problems, a variable and a value correspond respectively to an
item to pack, and to the bin where the item is assigned.

To break such symmetry we can order the values in such a way that the first occurrence
of the ith value occurs before the first occurrence of the (i+ 1)th value.
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3.7.271 HVariable-based violation measure à [11 CONS]

• SOFT ALLDIFFERENT VAR,

• SOFT ALL EQUAL MAX VAR,

• SOFT ALL EQUAL MIN VAR,

• SOFT SAME INTERVAL VAR,

• SOFT SAME MODULO VAR,

• SOFT SAME PARTITION VAR,

• SOFT SAME VAR,

• SOFT USED BY INTERVAL VAR,

• SOFT USED BY MODULO VAR,

• SOFT USED BY PARTITION VAR,

• SOFT USED BY VAR.

A soft constraint for which the violation cost is the minimum number of variables
to assign differently in order to get back to a solution.

3.7.272 HVariable indexing à [7 CONS]

• ELEM,
• ELEM FROM TO,
• ELEMENT,
• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT SPARSE,

• INDEXED SUM.

A constraint where one or several variables are used as an index into an array.

3.7.273 HVariable subscript à [7 CONS]

• ELEM,
• ELEM FROM TO,
• ELEMENT,
• ELEMENT GREATEREQ,

• ELEMENT LESSEQ,

• ELEMENT PRODUCT,

• INDEXED SUM.
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A constraint that can be used to model one or several variables that have a variable
subscript.

3.7.274 HVector à [40 CONS]

• ALL DIFFER FROM AT LEAST K POS,

• ALL DIFFER FROM EXACTLY K POS,

• ALL INCOMPARABLE,

• ALLPERM,

• ATLEAST NVECTOR,

• ATMOST NVECTOR,

• CHANGE VECTORS,

• COND LEX COST,

• COND LEX GREATER,

• COND LEX GREATEREQ,

• COND LEX LESS,

• COND LEX LESSEQ,

• DIFFER FROM AT LEAST K POS,

• DIFFER FROM AT MOST K POS,

• DIFFER FROM EXACTLY K POS,

• INCOMPARABLE,

• LEX ALLDIFFERENT,

• LEX ALLDIFFERENT EXCEPT 0,

• LEX BETWEEN,

• LEX CHAIN GREATER,

• LEX CHAIN GREATEREQ,

• LEX CHAIN LESS,

• LEX CHAIN LESSEQ,

• LEX DIFFERENT,

• LEX EQUAL,

• LEX GREATER,

• LEX GREATEREQ,

• LEX LESS,

• LEX LESSEQ,

• LEX LESSEQ ALLPERM,

• MAX OCC OF CONSECUTIVE TUPLES OF VALUES,

• MAX OCC OF SORTED TUPLES OF VALUES,

• MAX OCC OF TUPLES OF VALUES,

• NVECTOR,

• NVECTORS,

• ORDERED ATLEAST NVECTOR,

• ORDERED ATMOST NVECTOR,

• ORDERED NVECTOR,

• PERIOD VECTORS,

• ZERO OR NOT ZERO VECTORS.

Denotes that one (or more) argument of a constraint corresponds to a collection of
vectors that all have the same number of components.
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3.7.275 HVpartition à [1 CONS]

• GROUP.

Denotes that a constraint is defined by two graph constraints C1 and C2 such that:

• The two graph constraints have the same initial graph Gi,

• Each vertex of the initial graph Gi belongs to exactly one of the final graphs
associated with C1 and C2.

3.7.276 HWeighted assignment à [4 CONS]

• GLOBAL CARDINALITY WITH COSTS,

• MINIMUM WEIGHT ALLDIFFERENT,

• SUM OF WEIGHTS OF DISTINCT VALUES,

• WEIGHTED PARTIAL ALLDIFF.

A constraint expressing an assignment problem such that a cost can be computed
from each solution.

3.7.277 HWorkload covering à [1 CONS]

• CUMULATIVES.

A constraint that can be used for modelling problems where a first set of tasks T1
has to cover a second set of tasks T2. Each task of T1 and T2 is defined by an origin, a
duration and a height. At each point in time t the sum of the heights of the tasks of the
first set T1 that overlap t has to be greater than or equal to the sum of the heights of the
tasks of the second set T2 that also overlap t.
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3.7.278 HZebra puzzle à [4 CONS]

• ALLDIFFERENT,

• ELEM,

• ELEMENT,

• INVERSE.

A constraint that can be used for modelling the zebra puzzle problem. Here is the
first known publication of that puzzle quoted in italic from Life International, Decem-
ber 17, 1962:

1. There are five houses.

2. The Englishman lives in the red house.

3. The Spaniard owns the dog.

4. Coffee is drunk in the green house.

5. The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.

7. The Old Gold smoker owns snails.

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

11. The man who smokes Chesterfields lives in the house next to the man with the
fox.

12. Kools are smoked in the house next to the house where the horse is kept.

13. The Lucky Strike smoker drinks orange juice.

14. The Japanese smokes Parliaments.

15. The Norwegian lives next to the blue house.

Now, who drinks water? Who owns the zebra?
In the interest of clarity, it must be added that each of the five houses is painted a
different colour, and their inhabitants are of different national extractions, own different
pets, drink different beverages and smoke different brands of American cigarettes. In
statement 6, right refers to the reader’s right.

A first model involves ELEMENT constraints with variables in their tables (i.e., the
table of an ELEMENT constraint corresponds to its second argument). It consists of
creating for each house i (1 ≤ i ≤ 5) five variables Ci, Ni, Ai, Di, Bi respectively
corresponding to the colour of house i, the nationality of the person leaving in house
i, the preferred pet of the person leaving in house i, the preferred beverage of the
person leaving in house i, the preferred brand of American cigarettes of the person
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leaving in house i. We first state the following five ALLDIFFERENT constraints on
these variables for expressing that colours, nationalities, pets, beverages, and brands of
American cigarettes are distinct:

• ALLDIFFERENT(〈C1, C2, C3, C4, C5〉),

• ALLDIFFERENT(〈N1, N2, N3, N4, N5〉),

• ALLDIFFERENT(〈A1, A2, A3, A4, A5〉),

• ALLDIFFERENT(〈D1, D2, D3, D4, D5〉),

• ALLDIFFERENT(〈B1, B2, B3, B4, B5〉).

Now note that most statements link two specific attributes (e.g., The Englishman
lives in the red house). Consequently, in order to ease the encoding of such statements
in term of constraints, we will first create for each attribute a variable that indicates
the house where an attribute occurs. For example, for the statement The Englishman
lives in the red house we will create two variables which respectively indicate in which
house the Englishman lives and which house is red. We now create all the variables
attached to each class of attributes.

For each possible colour c ∈ {red , green, ivory , yellow , blue} we create a variable
Ic that corresponds to the index of the house having this colour. For each variable Ic,
an ELEMENT constraint links it to the variables C1, C2, C3, C4, C5 giving the colour of
each house:

• Red = 1, Green = 2, Ivory = 3, Yellow = 4, Blue = 5,

• ELEMENT(Ired , 〈C1, C2, C3, C4, C5〉,Red),

• ELEMENT(Igreen , 〈C1, C2, C3, C4, C5〉,Green),

• ELEMENT(Iivory , 〈C1, C2, C3, C4, C5〉, Ivory),

• ELEMENT(Iyellow , 〈C1, C2, C3, C4, C5〉,Yellow),

• ELEMENT(Iblue , 〈C1, C2, C3, C4, C5〉,Blue).

Note that we can replace the five previous ELEMENT constraints by the following
INVERSE constraint:

• INVERSE


〈 index− 1 succ− C1 pred− Ired ,

index− 2 succ− C2 pred− Igreen ,
index− 3 succ− C3 pred− Iivory ,
index− 4 succ− C4 pred− Iyellow ,
index− 5 succ− C5 pred− Iblue

〉
For each possible nationality n ∈ {englishman, spaniard , ukrainian,norwegian,

japanese} we create a variable In that corresponds to the index of the house where the
person with this nationality lives. For each variable In, an ELEMENT constraint links it
to the variables N1, N2, N3, N4, N5 giving the nationality associated with each house:
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• Englishman = 1, Spaniard = 2, Ukrainian = 3, Norwegian = 4,
Japanese = 5,

• ELEMENT(Ienglishman , 〈N1, N2, N3, N4, N5〉,Englishman),

• ELEMENT(Ispaniard , 〈N1, N2, N3, N4, N5〉,Spaniard),

• ELEMENT(Iukrainian , 〈N1, N2, N3, N4, N5〉,Ukrainian),

• ELEMENT(Inorwegian , 〈N1, N2, N3, N4, N5〉,Norwegian),

• ELEMENT(Ijapanese , 〈N1, N2, N3, N4, N5〉, Japanese).

Again we can replace the five previous ELEMENT constraints by the following INVERSE
constraint:

• INVERSE


〈 index− 1 succ−N1 pred− Ienglishman ,

index− 2 succ−N2 pred− Ispaniard ,
index− 3 succ−N3 pred− Iukrainian ,
index− 4 succ−N4 pred− Inorwegian ,
index− 5 succ−N5 pred− Ijapanese

〉
For each possible preferred pet a ∈ {dog , snail , fox , horse, zebra} we create a

variable Ia that corresponds to the index of the house where the person that prefers
this pet lives. For each variable Ia, an ELEMENT constraint links it to the variables
A1, A2, A3, A4, A5 giving the preferred pet of each house:

• Dog = 1, Snail = 2, Fox = 3, Horse = 4, Zebra = 5,

• ELEMENT(Idog , 〈A1, A2, A3, A4, A5〉,Dog),

• ELEMENT(Isnail , 〈A1, A2, A3, A4, A5〉,Snail),

• ELEMENT(Ifox , 〈A1, A2, A3, A4, A5〉,Fox ),

• ELEMENT(Ihorse , 〈A1, A2, A3, A4, A5〉,Horse),

• ELEMENT(Izebra , 〈A1, A2, A3, A4, A5〉,Zebra).

Again we can replace the five previous ELEMENT constraints by the following INVERSE
constraint:

• INVERSE


〈 index− 1 succ−A1 pred− Idog ,

index− 2 succ−A2 pred− Isnail ,
index− 3 succ−A3 pred− Ifox ,
index− 4 succ−A4 pred− Ihorse ,
index− 5 succ−A5 pred− Izebra

〉
For each possible preferred beverage d ∈ {coffee, tea,milk , orange juice,water}

we create a variable Id that corresponds to the index of the house where the person that
prefers this beverage lives. For each variable Id, an ELEMENT constraint links it to the
variables D1, D2, D3, D4, D5 giving the preferred beverage of each house:
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• Coffee = 1, Tea = 2, Milk = 3, Orange juice = 4, Water = 5,

• ELEMENT(Icoffee , 〈D1, D2, D3, D4, D5〉,Coffee),

• ELEMENT(Itea , 〈D1, D2, D3, D4, D5〉,Tea),

• ELEMENT(Imilk , 〈D1, D2, D3, D4, D5〉,Milk),

• ELEMENT(Iorange juice , 〈D1, D2, D3, D4, D5〉,Orange juice),

• ELEMENT(Iwater , 〈D1, D2, D3, D4, D5〉,Water).

Again we can replace the five previous ELEMENT constraints by the following INVERSE
constraint:

• INVERSE


〈 index− 1 succ−D1 pred− Icoffee ,

index− 2 succ−D2 pred− Itea ,
index− 3 succ−D3 pred− Imilk ,
index− 4 succ−D4 pred− Iorange juice ,
index− 5 succ−D5 pred− Iwater

〉
For each possible preferred brand of American cigarettes b ∈ {old gold , kool ,

chesterfield , lucky strike, parliament} we create a variable Ib that corresponds to the
index of the house where the person that prefers this brand lives. For each variable Ib,
an ELEMENT constraint links it to the variablesB1, B2, B3, B4, B5 giving the preferred
brand of American cigarettes of each house:

• Old gold = 1, Kool = 2, Chesterfield = 3, Lucky strike = 4, Parliament =
5,

• ELEMENT(Iold gold , 〈B1, B2, B3, B4, B5〉, Old gold),

• ELEMENT(Ikool , 〈B1, B2, B3, B4, B5〉,Kool),

• ELEMENT(Ichesterfield , 〈B1, B2, B3, B4, B5〉, Chesterfield),

• ELEMENT(Ilucky strike , 〈B1, B2, B3, B4, B5〉, Lucky strike),

• ELEMENT(Iparliament , 〈B1, B2, B3, B4, B5〉, Parliament).

Again we can replace the five previous ELEMENT constraints by the following INVERSE
constraint:

• INVERSE


〈 index− 1 succ−B1 pred− Iold gold ,

index− 2 succ−B2 pred− Ikool ,
index− 3 succ−B3 pred− Ichesterfield ,
index− 4 succ−B4 pred− Ilucky strike ,
index− 5 succ−B5 pred− Iparliament

〉
Finally we state one constraint for each statement from 2 to 15:

• Ienglishman = Ired (the Englishman lives in the red house).
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• Ispaniard = Idog (the Spaniard owns the dog).

• Icoffee = Igreen (coffee is drunk in the green house).

• Iukrainian = Itea (the Ukrainian drinks tea).

• Igreen = Iivory + 1 (the green house is immediately to the right of the ivory
house).

• Iold gold = Isnail (the Old Gold smoker owns snails).

• Ikool = Iyellow (kools are smoked in the yellow house).

• Imilk = 3 (milk is drunk in the middle house).

• Inorwegian = 1 (the Norwegian lives in the first house).

• |Ichesterfield − Ifox | = 1 (the man who smokes Chesterfields lives in the house
next to the man with the fox).

• |Ikool − Ihorse | = 1 (kools are smoked in the house next to the house where the
horse is kept).

• Ilucky strike = Iorange juice (the Lucky Strike smoker drinks orange juice).

• Ijapanese = Iparliament (the Japanese smokes Parliaments).

• |Inorwegian − Iblue | = 1 (the Norwegian lives next to the blue house).

Now note that variables Ci, Ni, Ai, Di, Bi (1 ≤ i ≤ 5) do not occur at all within
the constraints encoding statements 2 to 15. Consequently they can be removed, as long
as we replace the five ALLDIFFERENT constraints on these variables by the following
ALLDIFFERENT constraints:

• ALLDIFFERENT(〈Ired , Igreen , Iivory , Iyellow , Iblue〉),

• ALLDIFFERENT(〈Ienglishman , Ispaniard , Iukrainian , Inorwegian , Ijapanese〉),

• ALLDIFFERENT(〈Idog , Isnail , Ifox , Ihorse , Izebra〉),

• ALLDIFFERENT(〈Icoffee , Itea , Imilk , Iorange juice , Iwater 〉),

• ALLDIFFERENT(〈Iold gold , Ikool , Ichesterfield , Ilucky strike , Iparliament〉).

In our experience, when confronted for the first time to this puzzle, a lot of people
come up with the model that associates to each house i (1 ≤ i ≤ 5) five variables Ci,
Ni, Ai, Di, Bi that describe the attributes of the person living in house i. However it is
difficult to directly express the constraints according to these variables and the second
model which associates to each attribute a variable that gives the corresponding house
is more convenient for expressing the constraints.
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3.7.279 HZero-duration task [10 CONS]

• COLOURED CUMULATIVE,

• COLOURED CUMULATIVES,

• CUMULATIVE,

• CUMULATIVE PRODUCT,

• CUMULATIVE WITH LEVEL OF PRIORITY,

• CUMULATIVES,

• DISJUNCTIVE,

• DISJUNCTIVE OR SAME END,

• DISJUNCTIVE OR SAME START,

• TASKS INTERSECTION.

A resource scheduling constraint that accepts tasks which can potentially have a
duration equal to zero. Zero-duration tasks can be used for modelling over-constrained
resource scheduling problems where, due to some resource limitations, some tasks have
to be discarded. This can be expressed by creating for each task i a duration variable
Di with values 0 and di in its initial domain, where di is the effective duration of task i
when it is not discarded. Then, depending on the relaxation cost Ci associated with the
fact that task i is not considered, a reified constraint of the form Di = 0 ⇔ Ci = αi
(αi > 0) is created. The initial domain of the cost variable Ci is set to 0 and αi, where
αi is the cost associated with the decision of discarding task i. Then all the relaxation
costs associated with the different tasks have to be aggregated together, i.e., typically
by taking the sum or the maximum of the relaxation costs of the different tasks. On the
one hand, the overall advantage of the approach is that it does not require developing
any specific algorithm. On the other hand, the disadvantage is the lack of bounds on the
overall relaxation cost that can sometimes be compensated by a specific enumeration
heuristic.
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4.1 Differences from the 2000 report

This section summarises the main differences with the SICS report [27] as well as of
the corresponding article [28]. The main differences are listed below:

• We have both simplified and extended the way to generate the vertices of the
initial graph and we have introduced a new way of defining set of vertices. We
have also removed the CLIQUE(MAX) set of vertices generator since it cannot
in general be evaluated in polynomial time. Therefore, we have modified the
description of the constraints ASSIGN AND COUNTS, ASSIGN AND NVALUES,
INTERVAL AND COUNT, INTERVAL AND SUM, BIN PACKING, CUMULATIVE,
CUMULATIVES, COLOURED CUMULATIVE, COLOURED CUMULATIVES,
CUMULATIVE TWO D, which all used this feature.

• We have introduced the new arc generators PATH 1 and PATH N , which al-
low for specifying an n-ary constraint for which n is not fixed.
The SIZE MAX STARTING SEQ ALLDIFFERENT and the
SIZE MAX SEQ ALLDIFFERENT are examples of global constraints that use
these arc generators in order to generate a set of sliding
ALLDIFFERENT constraints.

• In addition to traditional domain variables we have introduced float,
set and multiset variables as well as several global constraints mention-
ing float and set variables (for example, the CHOQUET [231] and the
ALLDIFFERENT BETWEEN SETS constraints). This decision was initially mo-
tivated by the fact that several constraint systems and articles mention global
constraints dealing with these types of variables. Later on, we realised that set
variables also greatly simplify the interface of existing global constraints. This
was especially true for those global constraints that explicitly deal with a graph,
like CLIQUE or CUTSET. In this context, using a set variable for catching the
successors of a vertex is quite natural. This is especially true when a vertex of
the final graph can have more than one successor since it allows for avoiding a
lot of 0-1 variables.
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• We have introduced the possibility of using more than one graph constraint for
defining a given global constraint (for example, the CUMULATIVE or the SORT
constraints). Therefore we have removed the notion of dual graph, which was
initially introduced in the original report. In this context, we now use two graph
constraints, for example, CHANGE CONTINUITY.

• On the one hand, we have introduced the following new graph parameters:

– MAX DRG,

– MAX OD,

– MIN DRG,

– MIN ID,

– MIN OD,

– NTREE,

– PATH FROM TO,

– PROD,

– RANGE,

– RANGE DRG,

– RANGE NCC,

– SUM,

– SUM WEIGHT ARC.

On the other hand, we have removed the following graph parameters:

– NCC(COMP, val),

– NSCC(COMP, val),

– NTREE(ATTR, COMP, val),

– NSOURCE EQ NSINK,

– NSOURCE GREATEREQ NSINK.

Finally, MAX IN DEGREE has been renamed MAX ID.

• We have introduced an iterator over the items of a collection in order to spec-
ify in a generic way a set of similar elementary constraints or a set of similar
graph properties. This was required for describing some global constraints such
as GLOBAL CARDINALITY, CYCLE RESOURCE or STRETCH. All these global
constraints mention a condition involving some limit depending on the specific
values that are actually used. For example, the GLOBAL CARDINALITY con-
straint forces each value v to be respectively used at least atleastv and at most
atmostv times. This iterator was also necessary in the context of graph cover-
ing constraints where one wants to cover a digraph with some patterns. Each
pattern consists of one resource and several tasks. One can now attach spe-
cific constraints to the different resources. Both the CYCLE RESOURCE and the
TREE RESOURCE constraints illustrate this point.
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• We have added some standard existing global constraints that were obviously
missing from the previous report. This was the case, for example, of the
ELEMENT constraint.

• In order to make clear the notion of family of global constraints we have com-
puted for each global constraint a signature, which summarises its structure.
Each signature was inserted into the index so that one can retrieve all the global
constraints sharing the same structure.

• We have generalised some existing global constraints. For example, the
CHANGE PAIR constraint extends the CHANGE constraint. Finally we have intro-
duced some novel global constraints like DISJOINT TASKS or SYMMETRIC GCC.

• We have defined the rules for specifying arc constraints.

4.2 Differences from the 2005 report
The second edition has more than 1300 pages of new content. The slots describing
explicitly the meaning of a global constraint (e.g., the slots Graph model and Au-
tomaton) were moved to the last part of the description. This was motivated by the
fact that most users want first to get the informal description of a global constraint
(e.g., the slots Purpose and Example). Effort was not only devoted to the introduction
of new constraints but also to a better description of multiple aspects like:

• The slot Symmetries describes a set of mapping that preserve the solution to a
constraint (see Section 2.2.5).

• The slot Reformulation provides reformulation of a global constraint as a con-
junction of constraints (see Section 2.5).

• The slot Systems gives links to concrete constraint systems.

• The slots See also and Keywords were redesigned in order to respectively indi-
cate why we point to a given constraint (see Section 2.6) and to group together
keywords by meta-keywords (see Section 3.6).

• In addition to the slots Graph model and Automaton that respectively describe
the meaning of a global constraint in terms of graph properties and automaton,
we have introduced the slot Logic in order to describe some geometrical con-
straints with first order formulae (see keyword Logic).

• Finally, an evaluator was provided for most global constraints.
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4.3 Graph invariants
Within the scope of the graph-based description this section shows how to use implied
constraints, which are systematically linked to the description of a global constraint.
This usually occurs in the following context:

• Quite often, it happens that one wants to enforce the final graph to satisfy more
than one graph property. In this context, these graph properties involve several
graph parameters that cannot vary independently.

EXAMPLE: As a practical example, consider the GROUP constraint and its first graph
constraint. It involves the four graph parameters NCC, MIN NCC, MAX NCC and
NVERTEX, which respectively correspond to the number of connected components,
the number of vertices of the smallest connected component, the number of vertices of the
largest connected component and the number of vertices of the final graph. In this example
the number of connected components of the final graph cannot vary independently from
the size of the smallest connected component. The same remark applies also for the size
of the largest connected component. Having a graph invariant that directly relates the four
graph parameters can dramatically improve the propagation.

• Even though the description of a global constraint involves a single graph param-
eter C, we can introduce the number of vertices, NVERTEX, and the number
of arcs, NARC, of the final digraph. In this context, we can take advantage of
graph invariants linking C, NARC and NVERTEX.

• It also happens that we enforce two graph constraints GC1 and GC2 that have the
same initial graph G. In this context we consider the following situations:

– Each arc of G belongs to one of the final graphs associated with GC1 or
with GC2 (but not to both). An example of such global constraint is the
CHANGE CONTINUITY constraint. Within the graph invariants this situa-
tion is denoted by apartition.

– Each vertex of G belongs to one of the final graphs associated with GC1
or with GC2 (but not to both). An example of such global constraint is the
GROUP constraint. Within the graph invariants this situation is denoted by
vpartition.

In these situations the graph properties associated with the two graph constraints
are also not independent.

In practice the graphs associated with global constraints have a regular structure
that comes from the initial graph or from the property of the arc constraints. So, in ad-
dition to graph invariants that hold for any graph, we want also tighter graph invariants
that hold for specific graph classes. The next section introduces the graph classes we
consider, while the two other sections give the graph invariants on one and two graphs.

4.3.1 Graph classes
By definition, a graph invariant has to hold for any digraph. For example, we have
the graph invariant NARC ≤ NVERTEX2, which relates the number of arcs
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and the number of vertices of any digraph. This invariant is sharp since the equal-
ity is reached for a clique. However, by considering the structure of a digraph, we
can get sharper invariants. For example, if our digraph is a subset of an elemen-
tary path (e.g., we use the PATH arc generator depicted by Figure 2.8) we have that
NARC ≤ NVERTEX − 1, which is a tighter bound of the maximum number of
arcs since NVERTEX−1 < NVERTEX2. For this reason, we consider recurring
graph classes that show up for different global constraints of the catalogue. Beside the
graph classes that were introduced in Section 2.3.2 we also have the following classes
relating several graph constraints:

• apartition: constraint defined by two graph constraints having the same initial
graph, where each arc of the initial graph belongs to one of the final graphs (but
not to both).

• vpartition: constraint defined by two graph constraints having the same initial
graph, where each vertex of the initial graph belongs to one of the final graphs
(but not to both).

In addition, we also consider graph constraints such that their final graphs is a
subset of the graph generated by the arc generators:

• CHAIN ,

• CIRCUIT ,

• CLIQUE ,

• CLIQUE(Comparison)

• GRID ,

• LOOP ,

• PATH ,

• PRODUCT ,

• PRODUCT (Comparison),

• SYMMETRIC PRODUCT ,

• SYMMETRIC PRODUCT (Comparison),

where Comparison is one of the following comparison operators ≤, ≥, <, >, =, 6=.

4.3.2 Format of an invariant

As we previously saw, we have graph invariants that hold for any digraph as well as
tighter graph invariants for specific graph classes. As a consequence, we partition the
database in groups of graph invariants. A group of graph invariants corresponds to
several invariants such that all invariants relate the same subset of graph parameters
and such that all invariants are variations of the first invariant of the group taking into
accounts the graph class. Therefore, the first invariant of a group has no precondition,
while all other invariants have a non-empty precondition that characterises the graph
class for which they hold.
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EXAMPLE: As a first example consider the group of invariants denoted by Proposition 68,
which relate the number of arcs NARC with the number of vertices of the smallest and
largest connected component (i.e., MIN NCC and MAX NCC).

MIN NCC 6= MAX NCC⇒ NARC ≥MIN NCC + MAX NCC− 2+

(MIN NCC = 1)

equivalence : MIN NCC 6= MAX NCC⇒

NARC ≥MIN NCC2 + MAX NCC2

On the one hand, since the first rule has no precondition it corresponds to a general
graph invariant. On the other hand the second rule specifies a tighter condition (since
MIN NCC2+MAX NCC2 is greater than or equal to MIN NCC+MAX NCC−
2+(MIN NCC = 1)), which only holds for a final graph that is reflexive, symmetric and
transitive.

EXAMPLE: As a second example, consider the following group of invariants correspond-
ing to Proposition 51, which relate the number of arcs NARC to the number of vertices
NVERTEX according to the arc generator (see Figure 2.8) used for generating the initial
digraph:

NARC ≤ NVERTEX2

arc gen = CIRCUIT : NARC ≤ NVERTEX

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2

arc gen = CLIQUE(≤) : NARC ≤
NVERTEX · (NVERTEX + 1)

2

arc gen = CLIQUE(≥) : NARC ≤
NVERTEX · (NVERTEX + 1)

2

arc gen = CLIQUE(<) : NARC ≤
NVERTEX · (NVERTEX− 1)

2

arc gen = CLIQUE(>) : NARC ≤
NVERTEX · (NVERTEX− 1)

2

arc gen = CLIQUE(6=) : NARC ≤ NVERTEX2 −NVERTEX

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX

arc gen = PATH : NARC ≤ NVERTEX− 1

4.3.3 Using the database of invariants
The purpose of this section is to provide a set of graph invariants, each invariant relating
a given set of graph parameters. Once we have these graph invariants we can use them
systematically by applying the following steps:

• For a given graph constraint we extract all the graph parameters occurring in
its description. This can be done automatically by scanning the corresponding
graph properties. Let GP denote this subset of graph parameters. For each graph
parameter gp of GP we check if we have a graph property of the form gp = var
where var is a domain variable. If this is the case we record the pair (gp, var);
if not, we create a new domain variable var and also record the pair (gp, var).

• We then search for all groups of graph invariants involving a subset of the pre-
vious graph parameters GP . For each selected group we filter out those graph
invariants for which the preconditions are not compatible with the graph class
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of the graph constraint under consideration. In each group we finally keep those
invariants that have the maximum number of preconditions (i.e., the most spe-
cialised graph invariants).

• Finally we state all the previous collected graph invariants as implied constraints.
This is achieved by using the variables associated with each graph parameter.

EXAMPLE: We continue with the example of the GROUP constraint and its first graph
constraint. The steps for creating the implied constraints are:

• We first extract the graph parameters NCC, MIN NCC, MAX NCC and
NVERTEX from the first graph constraint of the GROUP constraint. Since
all the graph properties attached to the previous graph parameters have the form
gc = var we extract the corresponding domain variables and get the following
pairs (NCC, NGROUP), (MIN NCC, MIN SIZE), (MAX NCC, MAX SIZE) and
(NVERTEX, NVAL).

• We search for all groups of graph invariants involving the graph parameters NCC,
MIN NCC, MAX NCC and NVERTEX and filter out the irrelevant graph
invariants that cannot be applied on the graph class associated with the GROUP con-
straint.

• We state all the previous invariants by substituting each graph parameter by its corre-
sponding variable, which leads to a set of implied constraints.

4.3.4 The database of graph invariants
For each combination of graph parameters we give the number of graph invariants we
currently have. The items are sorted first in increasing number of graph parameters
of the invariant, second in alphabetic order on the name of the parameters. All graph
invariants assume a digraph for which each vertex has at least one arc. For some propo-
sitions, a figure depicts the corresponding final graph, that minimises or maximises a
given graph parameter. The propositions of this section and their corresponding proofs
use the notations introduced in Section 2.3.2 on page 68.

• Graph invariants involving one graph parameter of a final graph:

– MAX NCC: 1 (see Proposition 1),

– MAX NSCC: 2 (see Propositions 2 and 3),

– MIN NCC: 1 (see Proposition 4),

– MIN NSCC: 2 (see Propositions 5 and 6),

– NARC: 1 (see Proposition 7),

– NCC: 2 (see Propositions 8 and 9),

– NSCC: 1 (see Proposition 10),

– NSINK: 1 (see Proposition 11),

– NSOURCE: 1 (see Proposition 12),

– NVERTEX: 1 (see Proposition 13).

• Graph invariants involving two graph parameters of a final graph:
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– MAX NCC, MAX NSCC: 2 (see Propositions 14 and 15),

– MAX NCC, MIN NCC: 2 (see Propositions 16 and 17),

– MAX NCC, NARC: 2 (see Propositions 18 and 19),

– MAX NCC, NSINK: 2 (see Propositions 20 and 21),

– MAX NCC, NSOURCE: 2 (see Propositions 22 and 23),

– MAX NCC, NVERTEX: 2 (see Propositions 24 and 25),

– MAX NSCC, MIN NSCC: 2 (see Propositions 26 and 27),

– MAX NSCC, NARC: 2 (see Propositions 28 and 29),

– MAX NSCC, NVERTEX: 2 (see Propositions 30 and 31),

– MIN NCC, MIN NSCC: 2 (see Propositions 32 and 33),

– MIN NCC, NARC: 2 (see Propositions 34 and 35),

– MIN NCC, NCC: 1 (see Proposition 36),

– MIN NCC, NVERTEX: 3 (see Propositions 37, 38 and 39),

– MIN NSCC, NARC: 2 (see Propositions 40 and 41),

– MIN NSCC, NVERTEX: 2 (see Propositions 42 and 43),

– NARC, NCC: 2 (see Propositions 44 and 45),

– NARC, NSCC: 2 (see Propositions 46 and 47),

– NARC, NSINK: 1 (see Proposition 48),

– NARC, NSOURCE: 1 (see Proposition 49),

– NARC, NVERTEX: 4 (see Propositions 50, 51, 52 and 53),

– NCC, NSCC: 2 (see Propositions 54 and 55),

– NCC, NVERTEX: 3 (see Propositions 56 and 57 and 58),

– NSCC, NSINK: 1 (see Proposition 59),

– NSCC, NSOURCE: 1 (see Proposition 60),

– NSCC, NVERTEX: 3 (see Propositions 61, 62 and 63),

– NSINK, NVERTEX: 2 (see Propositions 64 and 65),

– NSOURCE, NVERTEX: 2 (see Propositions 66 and 67).

• Graph invariants involving three graph parameters of a final graph:

– MAX NCC, MIN NCC, NARC: 1 (see Proposition 68),

– MAX NCC, MIN NCC, NCC: 1 (see Proposition 69),

– MAX NCC, MIN NCC, NVERTEX: 5 (see Propositions 70, 71, 72, 73 and 74),

– MAX NCC, NARC, NCC: 2 (see Propositions 75 and 76),

– MAX NCC, NARC, NVERTEX: 2 (see Propositions 77 and 78),

– MAX NCC, NCC, NSINK: 1 (see Proposition 79),

– MAX NCC, NCC, NSOURCE: 1 (see Proposition 80),

– MAX NCC, NCC, NVERTEX: 2 (see Propositions 81 and 82),

– MAX NSCC, MIN NSCC, NARC: 1 (see Proposition 83),

– MAX NSCC, MIN NSCC, NSCC: 1 (see Proposition 84),

– MAX NSCC, MIN NSCC, NVERTEX: 2 (see Propositions 85 and 86),

– MAX NSCC, NCC, NVERTEX: 1 (see Proposition 87),

– MAX NSCC, NSCC, NVERTEX: 2 (see Propositions 88 and 89),
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– MIN NCC, NARC, NVERTEX: 2 (see Propositions 90 and 91),

– MIN NCC, NCC, NVERTEX: 2 (see Propositions 92 and 93),

– MIN NSCC, NARC, NVERTEX: 1 (see Proposition 94),

– MIN NSCC, NCC, NVERTEX: 1 (see Proposition 95),

– MIN NSCC, NSCC, NVERTEX: 2 (see Propositions 96 and 97),

– NARC, NCC, NVERTEX: 2 (see Propositions 98 and 99),

– NARC, NSCC, NVERTEX: 4 (see Propositions 100, 101, 102 and 103),

– NARC, NSINK, NVERTEX: 2 (see Propositions 104 and 105),

– NARC, NSOURCE, NVERTEX: 2 (see Propositions 106 and 107),

– NSCC, NSINK, NSOURCE: 1 (see Proposition 108),

– NSINK, NSOURCE, NVERTEX: 1 (see Proposition 109).

• Graph invariants involving four graph parameters of a final graph:

– MAX NCC, MIN NCC, NARC, NCC: 2 (see Propositions 110 and 111),

– MAX NCC, MIN NCC, NCC, NVERTEX: 2 (see Propositions 112 and 113),

– MAX NCC, NCC, NSINK, NSOURCE: 1 (see Proposition 114),

– MAX NSCC, MIN NSCC, NARC, NSCC: 2 (see Propositions 115 and 116),

– MAX NSCC, MIN NSCC, NSCC, NVERTEX: 2 (see Propositions 117
and 118),

– MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 119),

– NARC, NCC, NSCC, NVERTEX: 2 (see Propositions 120 and 121),

– NARC, NSINK, NSOURCE, NVERTEX: 1 (see Proposition 122).

• Graph invariants involving five graph parameters of a final graph:

– MAX NCC, MIN NCC, NARC, NCC, NVERTEX: 1 (see Proposition 123),

– MIN NCC, NARC, NCC, NSCC, NVERTEX: 1 (see Proposition 124).

• Graph invariants relating two parameters of two final graphs:

– MAX NCC1, MIN NCC1: 1 (see Proposition 125),

– MAX NCC2, MIN NCC2: 1 (see Proposition 126),

– MAX NCC1, NCC2: 1 (see Proposition 127),

– MAX NCC2, NCC1: 1 (see Proposition 128),

– MIN NCC1, NCC2: 1 (see Proposition 129),

– MIN NCC2, NCC1: 1 (see Proposition 130),

– NARC1, NARC2: 1 (see Proposition 131),

– NCC1, NCC2: 2 (see Propositions 132 and 133),

– NVERTEX1, NVERTEX2: 1 (see Proposition 134).

• Graph invariants relating three parameters of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2: 3 (see Propositions 135, 136 and 137),

– MAX NCC2,MIN NCC2,MIN NCC1: 3 (see Propositions 138, 139 and 140),

– MAX NCC1,MIN NCC1,NVERTEX2: 1 (see Proposition 141),

– MAX NCC2,MIN NCC2,NVERTEX1: 1 (see Proposition 142),
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– MIN NCC1,NARC2,NCC1: 1 (see Proposition 143),

– MIN NCC2,NARC1,NCC2: 1 (see Proposition 144).

• Graph invariants relating four parameters of two final graphs:

– MAX NCC1,MIN NCC1,MIN NCC2,NCC1: 2 (see Propositions 145 and
146),

– MAX NCC2,MIN NCC2,MIN NCC1,NCC2: 2 (see Propositions 147 and
148),

– MAX NCC1,MIN NCC1,MIN NCC2,NVERTEX2: 1 (see Proposition
149),

– MAX NCC2,MIN NCC2,MIN NCC1,NVERTEX1: 1 (see Proposition
150).

• Graph invariants relating five parameters of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1: 7 (see Propo-
sitions 151, 152, 153, 154, 155, 156 and 157).

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2: 7 (see Propo-
sitions 158, 159, 160, 161, 162, 163 and 164).

• Graph invariants relating six parameters of two final graphs:

– MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2: 2
(see Propositions 165 and 166).
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Graph invariants involving one parameter of a final graph

MAX NCC

Proposition 1.
no loop : MAX NCC 6= 1 (4.1)

Proof. Since we do not have any loop, a non-empty connected component has at least two
vertices.

MAX NSCC

Proposition 2.
acyclic : MAX NSCC ≤ 1 (4.2)

Proof. Since we do not have any circuit, a non-empty strongly connected component consists
of a single vertex.

Proposition 3.
no loop : MAX NSCC 6= 1 (4.3)

Proof. Since we do not have any loop, a non-empty strongly connected component has at least
two vertices.

MIN NCC

Proposition 4.
no loop : MIN NCC 6= 1 (4.4)

Proof. Since we do not have any loop, a non-empty connected component has at least two
vertices.

MIN NSCC

Proposition 5.
acyclic : MIN NSCC ≤ 1 (4.5)

Proof. Since we do not have any circuit, a non-empty strongly connected component consists
of a single vertex.

Proposition 6.
no loop : MIN NSCC 6= 1 (4.6)

Proof. Since we do not have any loop, a non-empty strongly connected component has at least
two vertices.

NARC

Proposition 7.
one succ : NARC = NVERTEXINITIAL (4.7)

Proof. By definition of one succ.
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NCC

Proposition 8.
no loop : 2 ·NCC ≤ NVERTEXINITIAL (4.8)

Proof. By definition of no loop, each connected component has at least two vertices.

Proposition 9.

consecutive loops are connected : 2 ·NCC ≤ NVERTEXINITIAL + 1 (4.9)

Proof. By definition of consecutive loops are connected.

NSCC

Proposition 10.
no loop : 2 ·NSCC ≤ NVERTEXINITIAL (4.10)

Proof. By definition of no loop, each strongly connected component has at least two vertices.

NSINK

Proposition 11.
symmetric : NSINK = 0 (4.11)

Proof. Since we do not have any isolated vertex.

NSOURCE

Proposition 12.
symmetric : NSOURCE = 0 (4.12)

Proof. Since we do not have any isolated vertex.

NVERTEX

Proposition 13.

one succ : NVERTEX = NVERTEXINITIAL (4.13)

Proof. By definition of one succ.
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Graph invariants involving two parameters of a final graph

MAX NCC, MAX NSCC

Proposition 14.
MAX NCC = 0⇔MAX NSCC = 0 (4.14)

Proof. By definition of MAX NCC and of MAX NSCC.

Proposition 15.
MAX NSCC ≤MAX NCC (4.15)

Proof. MAX NSCC is a lower bound of the size of the largest connected component since
the largest strongly connected component is for sure included within a connected component.

MAX NCC, MIN NCC

Proposition 16.
MAX NCC = 0⇔MIN NCC = 0 (4.16)

Proof. By definition of MAX NCC and of MIN NCC.

Proposition 17.
MIN NCC ≤MAX NCC (4.17)

Proof. By definition of MIN NCC and of MAX NCC.

MAX NCC, NARC

Proposition 18.
MAX NCC = 0⇔ NARC = 0 (4.18)

Proof. By definition of MAX NCC and of NARC.

Proposition 19.

MAX NCC > 0⇒ NARC ≥ max(1,MAX NCC− 1) (4.19)

symmetric : MAX NCC > 0⇒ NARC ≥ max(1, 2 ·MAX NCC− 2) (4.20)

equivalence : NARC ≥MAX NCC2 (4.21)

arc gen = PATH : NARC ≥MAX NCC− 1 (4.22)

Proof.
(4.19) MAX NCC−1 arcs are needed to connect MAX NCC vertices that belong to a given
connected component containing at least two vertices. And one arc is required for a connected
component containing a single vertex.
(4.20) Similarly, when the graph is symmetric, 2 ·MAX NCC − 2 arcs are needed to con-
nect MAX NCC vertices that belong to a given connected component containing at least two
vertices.
(4.21) Finally, when the graph is reflexive, symmetric and transitive, MAX NCC2 arcs are
needed to connect MAX NCC vertices that belong to a given connected component.
(4.22) When the initial graph corresponds to a path, the minimum number of arcs of a connected
component involving n vertices is equal to n− 1.
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MAX NCC, NSINK

Proposition 20.
MAX NCC = 0⇒ NSINK = 0 (4.23)

Proof. By definition of MAX NCC and of NSINK.

Proposition 21.
NSINK ≥ 1⇒MAX NCC ≥ 2 (4.24)

Proof. Since we do not have any isolated vertex a sink is connected to at least one other vertex.
Therefore, if the graph has a sink, there exists at least one connected component with at least two
vertices.

MAX NCC, NSOURCE

Proposition 22.
MAX NCC = 0⇒ NSOURCE = 0 (4.25)

Proof. By definition of MAX NCC and of NSOURCE.

Proposition 23.
NSOURCE ≥ 1⇒MAX NCC ≥ 2 (4.26)

Proof. Since we do not have any isolated vertex a source is connected to at least one other
vertex. Therefore, if the graph has a source, there exists at least one connected component with
at least two vertices.

MAX NCC, NVERTEX

Proposition 24.
MAX NCC = 0⇔ NVERTEX = 0 (4.27)

Proof. By definition of MAX NCC and of NVERTEX.

Proposition 25.
NVERTEX ≥MAX NCC (4.28)

Proof. By definition of MAX NCC.

MAX NSCC, MIN NSCC

Proposition 26.
MAX NSCC = 0⇔MIN NSCC = 0 (4.29)

Proof. By definition of MAX NSCC and of MIN NSCC.

Proposition 27.
MIN NSCC ≤MAX NSCC (4.30)

Proof. By definition of MIN NSCC and of MAX NSCC.
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MAX NSCC, NARC

Proposition 28.
MAX NSCC = 0⇔ NARC = 0 (4.31)

Proof. By definition of MAX NSCC and of NARC.

Proposition 29.
NARC ≥MAX NSCC (4.32)

symmetric : NARC ≥ 2 ·MAX NSCC (4.33)

equivalence : NARC ≥MAX NSCC2 (4.34)

Proof. (4.32) In a strongly connected component at least one arc has to leave each vertex. Since
we have at least one strongly connected component of MAX NSCC vertices this leads to the
previous inequality.

MAX NSCC, NVERTEX

Proposition 30.
MAX NSCC = 0⇔ NVERTEX = 0 (4.35)

Proof. By definition of MAX NSCC and of NVERTEX.

Proposition 31.
NVERTEX ≥MAX NSCC (4.36)

Proof. By definition of MAX NSCC.

MIN NCC, MIN NSCC

Proposition 32.
MIN NCC = 0⇔MIN NSCC = 0 (4.37)

Proof. By definition of MIN NCC and of MIN NSCC.

Proposition 33.
MIN NCC ≥MIN NSCC (4.38)

Proof. By construction MIN NCC is an upper bound of the number of vertices of the smallest
strongly connected component.
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MIN NCC, NARC

Proposition 34.
MIN NCC = 0⇔ NARC = 0 (4.39)

Proof. By definition of MIN NCC and of NARC.

Proposition 35.

MIN NCC > 0⇒ NARC ≥ max(1,MIN NCC− 1) (4.40)

symmetric : MIN NCC > 0⇒ NARC ≥ max(1, 2 ·MIN NCC− 2) (4.41)

equivalence : NARC ≥MIN NCC2 (4.42)

arc gen = PATH : NARC ≥MIN NCC− 1 (4.43)

Proof. Similar to Proposition 19.

MIN NCC, NCC

Proposition 36.

consecutive loops are connected : (MIN NCC+1)·NCC ≤ NVERTEXINITIAL+1
(4.44)

Proof. By definition of consecutive loops are connected.

MIN NCC, NVERTEX

Proposition 37.
MIN NCC = 0⇔ NVERTEX = 0 (4.45)

Proof. By definition of MIN NCC and of NVERTEX.

Proposition 38.
NVERTEX ≥MIN NCC (4.46)

Proof. By definition of MIN NCC.

Proposition 39.

MIN NCC /∈
[
min

(⌊
NVERTEX

2

⌋
,

⌊
NVERTEXINITIAL − 1

2

⌋)
+ 1,NVERTEX− 1

]
(4.47)

Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX.
On the other hand, if NCC > 1, we have that MIN NCC + MIN NCC ≤
NVERTEX and that MIN NCC + MIN NCC + 1 ≤ NVERTEXINITIAL, which
by isolating MIN NCC and by grouping the two inequalities leads to MIN NCC ≤
min

(⌊
NVERTEX

2

⌋
,
⌊
NVERTEXINITIAL−1

2

⌋)
. The result follows.
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MIN NSCC, NARC

Proposition 40.
MIN NSCC = 0⇔ NARC = 0 (4.48)

Proof. By definition of MIN NSCC and of NARC.

Proposition 41.
NARC ≥MIN NSCC (4.49)

symmetric : NARC ≥ 2 ·MIN NSCC (4.50)

equivalence : NARC ≥MIN NSCC2 (4.51)

Proof. Similar to Proposition 29.

MIN NSCC, NVERTEX

Proposition 42.
MIN NSCC = 0⇔ NVERTEX = 0 (4.52)

Proof. By definition of MIN NSCC and of NVERTEX.

Proposition 43.
NVERTEX ≥MIN NSCC (4.53)

Proof. By definition of MIN NSCC.

NARC, NCC

Proposition 44.
NARC = 0⇔ NCC = 0 (4.54)

Proof. By definition of NARC and of NCC.

Proposition 45.
NARC ≥ NCC (4.55)

Proof. Each connected component contains at least one arc (since, by hypothesis, each vertex
has at least one arc).

NARC, NSCC

Proposition 46.
NARC = 0⇔ NSCC = 0 (4.56)

Proof. By definition of NARC and of NSCC.

Proposition 47.
NARC ≥ NSCC (4.57)

no loop : NARC ≥ 2 ·NSCC (4.58)

Proof. 4.57 (respectively 4.58) holds since each strongly connected component contains at least
one (respectively two) arc(s).



4.3. GRAPH INVARIANTS 425

NARC, NSINK

Proposition 48.
NARC ≥ NSINK (4.59)

Proof. Since isolated vertices are not allowed, each sink has a distinct ingoing arc.

NARC, NSOURCE

Proposition 49.
NARC ≥ NSOURCE (4.60)

Proof. Since isolated vertices are not allowed, each source has a distinct outgoing arc.

NARC, NVERTEX

Proposition 50.
NARC = 0⇔ NVERTEX = 0 (4.61)

Proof. By definition of NARC and of NVERTEX.

Proposition 51.
NARC ≤ NVERTEX2 (4.62)

arc gen = CIRCUIT : NARC ≤ NVERTEX (4.63)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 (4.64)

arc gen = CLIQUE(≤) : NARC ≤ NVERTEX · (NVERTEX + 1)

2
(4.65)

arc gen = CLIQUE(≥) : NARC ≤ NVERTEX · (NVERTEX + 1)

2
(4.66)

arc gen = CLIQUE(<) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(4.67)

arc gen = CLIQUE(>) : NARC ≤ NVERTEX · (NVERTEX− 1)

2
(4.68)

arc gen = CLIQUE(6=) : NARC ≤ NVERTEX2 −NVERTEX (4.69)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX (4.70)

arc gen = PATH : NARC ≤ NVERTEX− 1 (4.71)

Proof. 4.62 holds since each vertex of a digraph can have at most NVERTEX successors.
The next items correspond to the maximum number of arcs that can be achieved according to a
specific arc generator.

Note that, when the equality is reached in 4.62, the corresponding extreme graph is
in fact the graph initially generated. The same observation holds for inequalities 4.63
to 4.71. As a consequence all U -arcs have to be turned into T -arcs.

Proposition 52.
2 ·NARC ≥ NVERTEX (4.72)

Proof. By induction on the number of vertices of a graph G:

1. If NVERTEX(G) is equal to 1 or 2 Proposition 52 holds.
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2. Assume that NVERTEX(G) ≥ 3.

• Assume there exists a vertex v such that, if we remove v, we do not create any
isolated vertex in the remaining graph. We have NARC(G) ≥ NARC(G −
v) + 1. Thus 2 · NARC(G) ≥ 2 · NARC(G − v) + 1. Since by induction
hypothesis 2 ·NARC(G−v) ≥ NVERTEX(G−v) = NVERTEX(G)−1
the result holds.

• Otherwise, all the connected components of G are reduced to two elements with
only one arc. We remove one of such connected component (v, w).
Thus NARC(G) = NARC(G − {v, w}) + 1. As by induction hypothesis,
2 ·NARC(G−{v, w}) ≥ NVERTEX(G−{v, w}) = NVERTEX(G)−2
the result holds.

Note that, when the equality is reached in 52, the corresponding extreme graph is
in fact a perfect matching of the graph. As a consequence all U -arcs that do not belong
to any perfect matching have to be turned into F -arcs.

Proposition 53.
arc gen = LOOP : NARC = NVERTEX (4.73)

Proof. From the definition of LOOP .

NCC, NSCC

Proposition 54.
NCC = 0⇔ NSCC = 0 (4.74)

Proof. By definition of NCC and of NSCC.

Proposition 55.
NCC ≤ NSCC (4.75)

Proof. Holds since each connected component contains at least one strongly connected compo-
nent.

Note that, when the equality is reached in 55, each connected component of the cor-
responding extreme graph is strongly connected. As a consequence all sink vertices of
the graph induced by the T -vertices and the T -arcs should have at least one successor.
NCC, NVERTEX

Proposition 56.
NCC = 0⇔ NVERTEX = 0 (4.76)

Proof. By definition of NCC and of NVERTEX.

Proposition 57.
NCC ≤ NVERTEX (4.77)

no loop : 2 ·NCC ≤ NVERTEX (4.78)

Proof. 4.77 (respectively 4.78) holds since each connected component contains at least one
(respectively two) vertex.
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Note that, when the equality is reached in 4.77, the corresponding extreme graph
does not contain any arc between two distinct vertices. As a consequence any U -arc
between two distinct vertices is turned into a F -vertex.

Proposition 58.

vpartition ∧ consecutive loops are connected :

NVERTEX ≤ NVERTEXINITIAL − (NCC− 1)
(4.79)

Proof. Holds since between two “consecutive” connected components of the initial graph there
is at least one vertex that is missing.

NSCC, NSINK

Proposition 59.
NSCC ≥ NSINK + 1 (4.80)

Proof. Since each sink cannot belong to a circuit and since no isolated vertex is allowed at least
one extra non-sink vertex is required the result follows.

NSCC, NSOURCE

Proposition 60.
NSCC ≥ NSOURCE + 1 (4.81)

Proof. Since each source cannot belong to a circuit and since no isolated vertex is allowed at
least one extra non-source vertex is required the result follows.

NSCC, NVERTEX

Proposition 61.
NSCC = 0⇔ NVERTEX = 0 (4.82)

Proof. By definition of NSCC and of NVERTEX.

Proposition 62.
NSCC ≤ NVERTEX (4.83)

Proof. Proposition 62 holds since each strongly connected component contains at least one
vertex.

Proposition 63.
acyclic : NSCC = NVERTEX (4.84)

Proof. In a directed acyclic graph we have that each vertex corresponds to a strongly connected
component involving only that vertex.



428 4. FURTHER TOPICS

NSINK, NVERTEX

Proposition 64.
NVERTEX = 0⇒ NSINK = 0 (4.85)

Proof. By definition of NVERTEX and of NSINK.

Proposition 65.

NVERTEX > 0⇒ NSINK < NVERTEX (4.86)

Proof. Holds since each sink must have a predecessor that cannot be a sink and since each
vertex has at least one arc.

NSOURCE, NVERTEX

Proposition 66.
NVERTEX = 0⇒ NSOURCE = 0 (4.87)

Proof. By definition of NVERTEX and of NSOURCE.

Proposition 67.

NVERTEX > 0⇒ NSOURCE < NVERTEX (4.88)

Proof. Holds since each source must have a successor that cannot be a source and since each
vertex has at least one arc.
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Graph invariants involving three parameters of a final graph

MAX NCC, MIN NCC, NARC

Proposition 68.

MIN NCC 6= MAX NCC⇒
NARC ≥MIN NCC + MAX NCC− 2 + (MIN NCC = 1)

(4.89)

equivalence : MIN NCC 6= MAX NCC⇒

NARC ≥MIN NCC2 + MAX NCC2
(4.90)

Proof. (4.89) n − 1 arcs are needed to connect n (n > 1) vertices that all belong to a
given connected component. Since we have two connected components, which respectively
have MIN NCC and MAX NCC vertices, this leads to the previous inequality. When
MIN NCC is equal to one we need an extra arc.

MAX NCC, MIN NCC, NCC

Proposition 69.
MIN NCC 6= MAX NCC⇒ NCC ≥ 2 (4.91)

Proof. If MIN NCC and MAX NCC are different then they correspond for sure to at least
two distinct connected components.

MAX NCC, MIN NCC, NVERTEX

Proposition 70.

MIN NCC 6= MAX NCC⇒ NVERTEX ≥MIN NCC + MAX NCC (4.92)

Proof. Since we have at least two distinct connected components, which respectively have
MIN NCC and MAX NCC vertices, this leads to the previous inequality.

Proposition 71.

MAX NCC ≤ max(MIN NCC,NVERTEX−max(1,MIN NCC)) (4.93)

Proof. On the one hand, if NCC ≤ 1, we have that MAX NCC ≤ MIN NCC. On
the other hand, if NCC > 1, we have that NVERTEX ≥ max(1,MIN NCC) +
MAX NCC (i.e., MAX NCC ≤ NVERTEX − max(1,MIN NCC)). The result
is obtained by taking the maximum value of the right-hand sides of the two inequalities.

Proposition 72.

MIN NCC /∈ [NVERTEX−max(1,MAX NCC) + 1,NVERTEX− 1] (4.94)

Proof. On the one hand, if NCC ≤ 1, we have that MIN NCC ≥ NVERTEX.
On the other hand, if NCC > 1, we have that MIN NCC + max(1,MAX NCC) ≤
NVERTEX (i.e., MIN NCC ≤ NVERTEX−max(1,MAX NCC)). The result fol-
lows.

Proposition 73.

NVERTEX /∈ [MIN NCC + 1,MIN NCC + MAX NCC− 1] (4.95)
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Proof. On the one hand, if NCC ≤ 1, we have that NVERTEX ≤ MIN NCC. On the
other hand, if NCC > 1, we have that NVERTEX ≥MIN NCC+MAX NCC. Since
MIN NCC ≤MIN NCC + MAX NCC the result follows.

Proposition 74.

ifMIN NCC > 0

then kinf =

⌊
NVERTEX + MIN NCC

MIN NCC

⌋
else kinf = 1

ifMAX NCC > 0

then ksup1
=

⌊
NVERTEX− 1

MAX NCC

⌋
else ksup1

= NVERTEX

ifMAX NCC <MIN NCC

then ksup2
=

⌊
MIN NCC− 2

MAX NCC−MIN NCC

⌋
else ksup2

= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup ] : NVERTEX /∈ [k ·MAX NCC + 1, (k + 1) ·MIN NCC− 1]
(4.96)

Proof. We make the proof for k ∈ N (the interval [kinf , ksup ] is only used for restricting
the number of intervals to check). We have that NVERTEX ∈ [k · MIN NCC, k ·
MAX NCC]. A forbidden interval [k · MAX NCC + 1, (k + 1) · MIN NCC − 1]
corresponds to an interval between the end of interval [k ·MIN NCC, k ·MAX NCC] and
the start of the next interval [(k+ 1) ·MIN NCC, (k+ 1) ·MAX NCC]. Since all intervals
[i ·MIN NCC, i ·MAX NCC] (i < k) end before k ·MAX NCC and since all intervals
[j ·MIN NCC, j ·MAX NCC] (j > k) start after (k+ 1) ·MIN NCC, they do not use
any value in [k ·MAX NCC + 1, (k + 1) ·MIN NCC− 1].

MAX NCC, NARC, NCC

Proposition 75.
NARC ≤ NCC ·MAX NCC2 (4.97)

arc gen = PATH : NARC ≤ NCC · (MAX NCC− 1) (4.98)

Proof. On the one hand, (4.97) holds since the maximum number of arcs is achieved by
taking NCC connected components where each connected component is a clique involving
MAX NCC vertices. On the other hand, (4.98) holds since a tree of n vertices has n − 1
arcs.

Proposition 76.
NARC ≥MAX NCC + NCC− 2 (4.99)

Proof. The minimum number of arcs is achieved by taking one connected component with
MAX NCC vertices and MAX NCC−1 arcs as well as NCC−1 connected components
with a single vertex and a loop.
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MAX NCC, NARC, NVERTEX

Proposition 77.

NARC ≤MAX NCC2·
⌊

NVERTEX

max(1,MAX NCC)

⌋
+(NVERTEXmod max(1,MAX NCC))2

(4.100)

⌊
NVERTEX
MAX NCC

⌋
connected components, each of them

involving MAX NCC vertices
A connected component with
NVERTEX mod MAX NCC vertices

Figure 4.1: Illustration of Proposition 77. A graph that achieves the maximum number of arcs
according to the size of the largest connected component as well as to a fixed number of vertices
(MAX NCC = 3, NVERTEX = 11, NARC = 32 ·

⌊
11

max(1,3)

⌋
+ (11 mod max(1, 3))2 = 31)

Proof. If MAX NCC = 0 we get NARC ≤ 0 which holds since the set of vertices is
empty. We now assume that MAX NCC > 0. We first begin with the following claim:
let G be a graph such that V (G) − NCC(G,MAX NCC(G)) ∗ MAX NCC(G) ≥
MAX NCC(G), then there exists a graph G′ such that V (G′) = V (G),
MAX NCC(G′) = MAX NCC(G), NCC(G′,MAX NCC(G′)) =
NCC(G,MAX NCC(G)) + 1 and |E(G)| ≤ |E(G′)|.

Proof of the claim
Let (Ci)i∈[n] be the connected components of G on less than MAX NCC(G) vertices
and such that |Ci| ≥ |Ci+1|. By hypothesis there exists k ≤ n such that |

⋃k−1
i=1 Ci| <

MAX NCC(G) and |
⋃k
i=1 Ci| ≥MAX NCC(G).

• Either |
⋃k
i=1 Ci| = MAX NCC(G), and then with G′ such that G′ restricted to the⋃k

i=1 Ci be a complete graph and G′ restricted to V (G) −
⋃k
i=1 Ci being exactly G

restricted to V (G)−
⋃k
i=1 Ci we obtain the claim.

• Or |
⋃k
i=1 Ci| > MAX NCC(G). Then Ck = C1

k ] C2
k such that

|(
⋃k−1
i=1 Ci) ∪ C

1
k | = MAX NCC(G) and |C2

k | < |C1| (notice that k ≥ 2).
Then with G′ such that G′ restricted to (

⋃k−1
i=1 Ci) ∪ C

1
k is a complete graph and G′ re-

stricted to V (G)−((
⋃k−1
i=1 Ci)∪C

1
k) is exactlyG restricted to V (G)−((

⋃k−1
i=1 Ci)∪C

1
k)

we obtain the claim.

End of proof of the claim
We prove by induction on r(G) =

⌊
NVERTEX(G)
MAX NCC(G)

⌋
− NCC(G,MAX NCC(G)),

where G is any graph. For r(G) = 0 the result holds (see Prop 44). Otherwise, since r(G) > 0
we have that V (G)−NCC(G,MAX NCC(G))∗MAX NCC(G) ≥MAX NCC(G),
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by the previous claim there exists G′ with the same number of vertices and the same number of
vertices in the largest connected component, such that r(G′) = r(G) − 1. Consequently the
result holds by induction.

Proposition 78.

NARC ≥MAX NCC− 1 +

⌊
NVERTEX−MAX NCC + 1

2

⌋
(4.101)

Proof. Let G be a graph, let X be a maximal size connected component of G, then we have
G = G[X] ⊕ G[V (G) − X]. On the one hand, as G[X] is connected, by setting NCC = 1
in 4.143 of Proposition 99, we have |E(G[X]) ≥ |X| − 1, on the other hand, by Proposition 52,

|E(G[V (G)−X])| ≥
⌈
|V (G)−X|

2

⌉
. Thus the result follows.

MAX NCC, NCC, NSINK

Proposition 79.
NSINK ≤ NCC ·max(0,MAX NCC− 1) (4.102)

Proof. Since a connected component contains at most MAX NCC vertices and since it does
not contain any isolated vertex a connected component involves at most MAX NCC−1 sinks.
Thus the result follows.

MAX NCC, NCC, NSOURCE

Proposition 80.

NSOURCE ≤ NCC ·max(0,MAX NCC− 1) (4.103)

Proof. Similar to Proposition 79.

MAX NCC, NCC, NVERTEX

Proposition 81.
NVERTEX ≤ NCC ·MAX NCC (4.104)

Proof. The number of vertices is less than or equal to the number of connected components
multiplied by the largest number of vertices in a connected component.

Proposition 82.

NVERTEX ≥MAX NCC + max(0,NCC− 1) (4.105)

no loop : NVERTEX ≥MAX NCC + max(0, 2 ·NCC− 2) (4.106)

Proof. (4.105) The minimum number of vertices according to a fixed number of connected
components NCC such that one of the connected components contains MAX NCC vertices
is obtained as follows: we get MAX NCC vertices from the connected component involving
MAX NCC vertices and one vertex for each remaining connected component.
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MAX NSCC, MIN NSCC, NARC

Proposition 83.

MIN NSCC 6= MAX NSCC⇒ NARC ≥MIN NSCC+MAX NSCC (4.107)

equivalence : MIN NSCC 6= MAX NSCC⇒

NARC ≥MIN NSCC2 + MAX NSCC2
(4.108)

Proof. (4.107) In a strongly connected component at least one arc has to leave each arc.
Since we have two strongly connected components, which respectively have MIN NSCC
and MAX NSCC vertices, this leads to the previous inequality.

MAX NSCC, MIN NSCC, NSCC

Proposition 84.

MIN NSCC 6= MAX NSCC⇒ NSCC ≥ 2 (4.109)

Proof. Follows from the definitions of MIN NSCC and of MAX NSCC.

MAX NSCC, MIN NSCC, NVERTEX

Proposition 85.

MIN NSCC 6= MAX NSCC⇒ NVERTEX ≥MIN NSCC + MAX NSCC
(4.110)

Proof. Since we have at least two distinct strongly connected components, which respectively
have MIN NSCC and MAX NSCC vertices, this leads to the previous inequality.

Proposition 86.

ifMIN NSCC > 0

then kinf =

⌊
NVERTEX + MIN NSCC

MIN NSCC

⌋
else kinf = 1

ifMAX NSCC > 0

then ksup1
=

⌊
NVERTEX− 1

MAX NSCC

⌋
else ksup1

= NVERTEX

ifMAX NSCC <MIN NSCC

then ksup2
=

⌊
MIN NSCC− 2

MAX NSCC−MIN NSCC

⌋
else ksup2

= NVERTEX

ksup = min(ksup1
, ksup2

)

∀k ∈ [kinf , ksup ] : NVERTEX /∈ [k ·MAX NSCC + 1, (k + 1) ·MIN NSCC− 1]
(4.111)

Proof. Similar to Proposition 74.
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MAX NSCC, NCC, NVERTEX

Proposition 87.
NVERTEX ≤ NCC ·MAX NSCC (4.112)

Proof. The largest number of vertices is obtained by putting within each connected component
the number of vertices of the largest strongly connected component.

MAX NSCC, NSCC, NVERTEX

Proposition 88.
NVERTEX ≤ NSCC ·MAX NSCC (4.113)

Proof. Since each strongly connected component contains at most MAX NSCC vertices the
total number of vertices is less than or equal to NSCC ·MAX NSCC.

Proposition 89.

NVERTEX ≥MAX NSCC + max(0,NSCC− 1) (4.114)

no loop : NVERTEX ≥MAX NSCC + max(0, 2 ·NSCC− 2) (4.115)

Proof. (4.114) The minimum number of vertices according to a fixed number of strongly con-
nected components NSCC such that one of them contains MAX NSCC vertices is equal to
MAX NSCC + max(0,NSCC− 1).

MIN NCC, NARC, NVERTEX

Proposition 90.

NARC ≤MIN NCC2 + (NVERTEX−MIN NCC)2 (4.116)

arc gen = CIRCUIT : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(4.117)

arc gen = CHAIN : NARC ≤ NVERTEX− 2 · (MIN NCC < NVERTEX)
(4.118)

arc gen = CLIQUE(≤) : NARC ≤ MIN NCC · (MIN NCC + 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC + 1)

2

(4.119)

arc gen = CLIQUE(≥) : NARC ≤ MIN NCC · (MIN NCC + 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC + 1)

2

(4.120)

arc gen = CLIQUE(<) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(4.121)

arc gen = CLIQUE(>) : NARC ≤ MIN NCC · (MIN NCC− 1)

2
+

(NVERTEX−MIN NCC) · (NVERTEX−MIN NCC− 1)

2

(4.122)
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arc gen = CLIQUE( 6=) : NARC ≤MIN NCC2 −MIN NCC+

(NVERTEX−MIN NCC)2 − (NVERTEX−MIN NCC)
(4.123)

arc gen = CYCLE : NARC ≤ NVERTEX− 4 · (MIN NCC < NVERTEX)
(4.124)

arc gen = PATH : NARC ≤ max(0,MIN NCC− 1)+

max(0,NVERTEX−MIN NCC− 1)
(4.125)

Proof. (4.116) The maximum number of vertices according to a fixed number of vertices
NVERTEX and to the fact there is a connected component with MIN NCC vertices is
obtained by:

• Building a connected component with MIN NCC vertices and creating an arc between
each pair of vertices.

• Building a connected component with all the NVERTEX −MIN NCC remaining
vertices and creating an arc between each pair of vertices.

Proposition 91.

MIN NCC > 1⇒

NARC ≥
⌊
NVERTEX

MIN NCC

⌋
· (MIN NCC− 1) + NVERTEX mod MIN NCC

(4.126)

Proof. Achieving the minimum number of arcs with a fixed number of vertices and with a min-
imum number of vertices greater than or equal to one in each connected component is achieved
in the following way:

• Since the minimum number of arcs of a connected component of n vertices is n − 1,
splitting a connected component into k parts that all have more than one vertex saves
k−1 arcs. Therefore we build a maximum number of connected components. Since each
connected component has at least MIN NCC vertices we get

⌊
NVERTEX
MIN NCC

⌋
connected

components.

• Since we cannot build a connected component with the rest of the vertices
(i.e., NVERTEX mod MIN NCC vertices left) we have to incorporate them in the
previous connected components and this costs one arc for each vertex.

When MIN NCC = 1, note that Proposition 52 provides a lower bound on the number of
arcs.



436 4. FURTHER TOPICS

MIN NCC, NCC, NVERTEX

Proposition 92.
NVERTEX ≥ NCC ·MIN NCC (4.127)

Proof. The smallest number of vertices is obtained by taking all connected components to their
minimum number of vertices MIN NCC.

Proposition 93.
NVERTEX >MIN NCC⇒ NCC ≥ 2 (4.128)

Proof. If all vertices do not fit within the smallest connected component then we have at least
two connected components.

MIN NSCC, NARC, NVERTEX

Proposition 94.

NARC ≤ NVERTEX2 + MIN NSCC2 −NVERTEX ·MIN NSCC (4.129)

Proof. Achieving the maximum number of arcs, provided that we have at least one strongly
connected component with MIN NSCC vertices, is done by:

• Building a first strongly connected component C1 with MIN NSCC vertices and adding
an arc between each pair of vertices of C1.

• Building a second strongly connected component C2 with NVERTEX −
MIN NSCC vertices and adding an arc between each pair of vertices of C2.

Finally, we add an arc from every vertex of C1 to every vertex of C2. This leads to a total
number of arcs of MIN NSCC2 + (NVERTEX −MIN NSCC)2 + MIN NSCC ·
(NVERTEX−MIN NSCC).

MIN NSCC, NCC, NVERTEX

Proposition 95.
NVERTEX ≥ NCC ·MIN NSCC (4.130)

Proof. The smallest number of vertices is obtained by putting within each connected component
the number of vertices of the smallest strongly connected component.

MIN NSCC, NSCC, NVERTEX

Proposition 96.
NVERTEX ≥ NSCC ·MIN NSCC (4.131)

Proof. Since each strongly connected component contains at least MIN NSCC vertices the
total number of vertices is greater than or equal to NSCC ·MIN NSCC.

Proposition 97.

NVERTEX >MIN NSCC⇒ NSCC ≥ 2 (4.132)

Proof. If all vertices do not fit within the smallest strongly connected component then we have
at least two strongly connected components.
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NARC, NCC, NVERTEX

Proposition 98.

NARC ≤ (NVERTEX−NCC + 1)2 + NCC− 1 (4.133)

arc gen = CIRCUIT : NARC ≤ NVERTEX−NCC + 1− (NCC 6= 1) (4.134)

arc gen = CHAIN : NARC ≤ 2 ·NVERTEX− 2 ·NCC (4.135)

arc gen = CLIQUE(≤) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC + 2)

2

(4.136)

arc gen = CLIQUE(≥) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC + 2)

2

(4.137)

arc gen = CLIQUE(<) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC)

2

(4.138)

arc gen = CLIQUE(>) : NARC ≤ NCC− 1+

(NVERTEX−NCC + 1) · (NVERTEX−NCC)

2

(4.139)

arc gen = CLIQUE( 6=) : NARC ≤ max(0,NCC− 1)+

(NVERTEX−NCC + 1)2 − (NVERTEX−NCC + 1)
(4.140)

arc gen = CYCLE : NARC ≤ 2 ·NVERTEX− 2 ·NCC + 2 · (NCC = 1) (4.141)

arc gen = PATH : NARC = NVERTEX−NCC (4.142)

NCC− 1 connected components

NVERTEX− NCC + 1
vertices

Figure 4.2: Illustration of Proposition 98. A graph that achieves the maximum number of arcs
according to a fixed number of connected components as well as to a fixed number of vertices
(NCC = 5, NVERTEX = 7, NARC = (7− 5 + 1)2 + 5− 1 = 13)

Proof. (4.133) We proceed by induction on T (G) = NVERTEX(G)−|X|− (NCC(G)−
1), where X is any connected component of G of maximum cardinality. For T (G) = 0 then
either NCC(G) = 1 and thus the formula is clearly true, or all the connected components ofG,
but possibly X , are reduced to one element. Since isolated vertices are not allowed, the formula
holds.

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X ,
with more than one vertex. Let y ∈ Y and let G′ be the graph such that V (G′) = V (G) and
E(G′) is defined by:
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• For all Z connected components of G distinct from X and Y we have G′[Z] = G[Z].

• With X ′ = X ∪ {y} and Y ′ = Y − {y}, we have G′[Y ′] = G[Y ′] and E(G′[X ′]) =
E(G[X]) ∪ (

⋃
x∈X′{(x, y), (y, x)}).

Clearly |E(G′)|−|E(G)| ≥ 2 · |X|+1−(2 · |Y |−1) and sinceX is of maximal cardinality the
difference is strictly positive. Now as NVERTEX(G′) = NVERTEX(G), NCC(G′) =
NCC(G) and as T (G′) = T (G)− 1 the result holds by induction hypothesis.

Proposition 99.
NARC ≥ NVERTEX−NCC (4.143)

equivalence : NCC > 0⇒
NARC ≥ (NVERTEX mod NCC) ·

(⌊
NVERTEX

NCC

⌋
+ 1
)2

+

(NCC−NVERTEX mod NCC) ·
⌊
NVERTEX

NCC

⌋2 (4.144)

Proof. (4.143) By induction of the number of vertices. The formula holds for one vertex. Let
G a graph with n+ 1 vertices (n ≥ 1). First assume there exists x in G such that G− x has the
same number of connected components than G. Since NARC(G) ≥ NARC(G − x) + 1,
and by induction hypothesis NARC(G − x) ≥ NVERTEX(G − x) −NCC(G − x) the
result holds. Otherwise all connected components ofG are reduced to one vertex and the formula
holds.

NARC, NSCC, NVERTEX

Proposition 100.

NARC ≤ (NVERTEX−NSCC+1)·NVERTEX+
NSCC · (NSCC− 1)

2
(4.145)

equivalence : NARC ≤ NSCC− 1 + (NVERTEX−NSCC + 1)2 (4.146)

NSCC− 1 strongly
connected components

NVERTEX− NSCC + 1
vertices

Figure 4.3: Illustration of Proposition 100(4.145). A graph that achieves the maximum number
of arcs according to a fixed number of strongly connected components as well as to a fixed
number of vertices (NSCC = 5, NVERTEX = 6, NARC = (6− 5 + 1) · 6 + 5·(5−1)

2
= 22)

Proof. For proving 4.145, it is easier to rewrite the formula as NARC ≤ (NVERTEX −
(NSCC− 1))2 + (NCC− 1) · (NVERTEX− (NSCC− 1)) + NSCC·(NSCC−1)

2
. We

proceed by induction on T (G) = NVERTEX(G) − |X| − (NSCC(G) − 1), where X is
any strongly connected component of G of maximum cardinality.
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For T (G) = 0 then either NSCC(G) = 1 and thus the formula is clearly true, or all
the strongly connected components of G, but possibly X , are reduced to one element. Since
the maximum number of arcs in a directed acyclic graph of n vertices is n·(n+1)

2
, and as the

subgraph of G induced by all the strongly connected components of G excepted X is acyclic,
the formula clearly holds.

Assume that T (G) ≥ 1, let (Xi)i∈I be the family of strongly connected components of G,
and let Gr be the reduced graph of G induced by (Xi)i∈I (that is V (Gr) = I and ∀i1, i2 ∈ I ,
(i1, i2) ∈ E(Gr) if and only if ∃x1 ∈ Xi1 , ∃x2 ∈ Xi2 such that (x1, x2) ∈ E). Consider G′

such that V (G′) = V (G) and E(G′) is defined by:

• For all strongly connected components Z of G we have G′[Z] = G[Z].

• For σ be any topological sort of Gr , ∀xi ∈ Xi, ∀xj ∈ Xj , (xi, xj) ∈ E(G′) whenever
i is less than j with respect to σ.

Notice that G′ satisfies the following properties: T (G′) = T (G), V (G′) = V (G),
NSCC(G′) = NSCC(G), E(G) ⊆ E(G′), (Xi)i∈I is still the family of strongly con-
nected components of G′, and moreover, for every i ∈ I and every xi ∈ Xi we have that xi
is connected to any vertex outside Xi, that is the number of arcs incident to xi and incident to
vertices outside Xi is exactly |V (G′)| − |Xi|.

Now, as T (G′) ≥ 1, there exists Y , a strongly connected component of G′ distinct from X ,
with more than one vertex. Let y ∈ Y and let G′′ be the graph such that V (G′′) = V (G′) and
E(G′′) is defined by:

• G′′[V (G)− {y}] = G′[V (G)− {y}].
• With X ′ = X ∪ {y}, we have G′′[Y ′] = G′[Y ′] and E(G′′[X ′]) = E(G′[X]) ∪

(
⋃
x∈X′{(x, y), (y, x)}).

• Assume that X = Xj for j ∈ I . Then ∀i ∈ I − {j}, ∀xi ∈ Xi, (xi, y) ∈ E(G′′)
whenever i is less than j with respect to σ and (y, xi) ∈ E(G′′) whenever j is less than
i with respect to σ.

Clearly |E(G′′)| − |E(G′)| ≥ 2|X|+ 1 + |V (G′)| − |X| − (2 · |Y | − 1 + |V (G′)| − |Y |) =
|X| − |Y | + 2 and since X is of maximal cardinality the difference is strictly positive. As
E(G) ⊆ E(G′), |E(G′′)| − |E(G)| is also strictly positive. Now as NVERTEX(G′′) =
NVERTEX(G′) = NVERTEX(G), NSCC(G′′) = NSCC(G′) = NSCC(G) and as
T (G′′) = T (G′)− 1 = T (G)− 1 the result holds by induction hypothesis.

Proposition 101.

NARC ≥ NVERTEX−
⌊
NSCC− 1

2

⌋
(4.147)

equivalence : NSCC > 0⇒
NARC ≥ (NVERTEX mod NSCC) ·

(⌊
NVERTEX

NSCC

⌋
+ 1
)2

+

(NSCC−NVERTEX mod NSCC) ·
⌊
NVERTEX

NSCC

⌋2 (4.148)

Proof. For proving part 4.147 of Proposition 101 we proceed by induction on NSCC(G). If
NSCC(G) = 1 then, we have NARC(G) ≥ NVERTEX(G) (i.e., for one vertex this is
true since every vertex has at least one arc, otherwise every vertex v has an arc arriving on v as
well as an arc starting from v, thus we have NARC ≥ 2·NVERTEX

2
). If NSCC(G) > 1

let X be a strongly connected component of G. Then NARC(G) ≥ NARC(G[V (G) −
X]) + NARC(G[X]). By induction hypothesis NARC(G[V (G) −X]) ≥ |V (G) −X| −
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2 ·
⌊
NSCC
2

⌋
strongly

connected components
NVERTEX− 2 ·

⌊
NSCC
2

⌋
vertices

Figure 4.4: Illustration of Proposition 4.147. A graph that achieves the minimum number of
arcs according to a fixed number of strongly connected components as well as to a fixed number
of vertices (NSCC = 7, NVERTEX = 10, NARC = 10−

⌊
7
2

⌋
= 7)

⌊
NSCC(G[V (G)−X])−1

2

⌋
, thus NARC(G[V (G)−X]) ≥ |V (G)−X| −

⌊
(NSCC(G)−1)−1

2

⌋
.

Since NARC(G[X]) ≥ |X| we obtain NARC(G) ≥ |V (G)| −
⌊

(NSCC(G)−1)−1
2

⌋
, and

thus the result holds.

Proposition 102.

equivalence : NVERTEX > 0⇒ NSCC ≥
⌈
NVERTEX2

NARC

⌉
(4.149)

Proof. As shown in [68], a lower bound for the minimum number of equivalence classes
(e.g., strongly connected components) is the independence number of the graph and the
right-hand side of Proposition 102 corresponds to a lower bound of the independence number
proposed by Turán [421].

Proposition 103.

equivalence : NVERTEX > 0⇒ NSCC ≥


2 ·NVERTEX− NARC−NVERTEX

dNARC−NVERTEX
NVERTEX e⌈

NARC−NVERTEX
NVERTEX

⌉
+ 1


(4.150)

Proof. See [211] and [174].

NARC, NSINK, NVERTEX

Proposition 104.

NARC ≤ (NVERTEX−NSINK) ·NVERTEX (4.151)

Proof. The maximum number of arcs is achieved by the following pattern: for all non-sink
vertices we have an arc to all vertices.

Proposition 105.

NARC ≥ NSINK +max(0,NVERTEX− 2 ·NSINK) (4.152)

Proof. Recall that for x ∈ V (G), we have that d+
G(x) + d−G(x) ≥ 1. If x is a sink then

d−G(x) ≥ 1, consequently NARC(G) ≥ NSINK(G). If x is not a sink then d+
G(x) ≥ 1,

consequently NARC(G) ≥ |V (G)| −NSINK(G).
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(A)

NSINK vertices

NVERTEX− NSINK
vertices

2 · NSINK vertices

(B)

max(0, NVERTEX− 2 · NSINK)
vertices

Figure 4.5: Illustration of Proposition 105. Two graphs that achieve the minimum number of
arcs according to a fixed number of sinks as well as to a fixed number of vertices: (A) NSINK =
3, NVERTEX = 5, NARC = 3 + max(0, 5 − 2 · 3) = 3; (B) NSINK = 3, NVERTEX = 9, NARC =
3 + max(0, 9− 2 · 3) = 6.

NARC, NSOURCE, NVERTEX

Proposition 106.

NARC ≤ (NVERTEX−NSOURCE) ·NVERTEX (4.153)

Proof. The maximum number of arcs is achieved by the following pattern: for all non-source
vertices we have an arc from all vertices.

Proposition 107.

NARC ≥ NSOURCE +max(0,NVERTEX− 2 ·NSOURCE) (4.154)

(A)

NSOURCE vertices

NVERTEX− NSOURCE
vertices

2 · NSOURCE vertices

(B)

max(0, NVERTEX− 2 · NSOURCE)
vertices

Figure 4.6: Illustration of Proposition 107. Two graphs that achieve the minimum num-
ber of arcs according to a fixed number of sources as well as to a fixed number of vertices:
(A) NSOURCE = 3, NVERTEX = 5, NARC = 3 + max(0, 5 − 2 · 3) = 3; (B) NSOURCE =
3, NVERTEX = 9, NARC = 3 + max(0, 9− 2 · 3) = 6.

Proof. Similar to Proposition 105.
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NSCC, NSINK, NSOURCE

Proposition 108.
NSCC ≥ NSINK + NSOURCE (4.155)

Proof. Since sinks and sources cannot belong to a circuit and since they cannot coincide (i.e.,
because isolated vertices are not allowed) the result follows.

NSINK, NSOURCE, NVERTEX

Proposition 109.
NVERTEX ≥ NSINK + NSOURCE (4.156)

Proof. No vertex can be both a source and a sink (isolated vertices are removed).
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Graph invariants involving four parameters of a final graph

MAX NCC, MIN NCC, NARC, NCC

Proposition 110. Let α denote max(0,NCC− 1).

NARC ≤ α ·MAX NCC2 + MIN NCC2 (4.157)

arc gen = CIRCUIT : NARC ≤ α ·MAX NCC + MIN NCC (4.158)

arc gen = CHAIN : NARC ≤ α · (2 ·MAX NCC−2) + 2 ·MIN NCC−2 (4.159)

arc gen ∈ {CLIQUE(≤),CLIQUE(≥)} : NARC ≤
α · MAX NCC·(MAX NCC+1)

2
+ MIN NCC·(MIN NCC+1)

2
(4.160)

arc gen ∈ {CLIQUE(<),CLIQUE(>)} : NARC ≤
α · MAX NCC·(MAX NCC−1)

2
+ MIN NCC·(MIN NCC−1)

2
(4.161)

arc gen = CLIQUE(6=) : NARC ≤MIN NCC2 −MIN NCC+

α · (MAX NCC2 −MAX NCC) (4.162)

arc gen = CYCLE : NARC ≤ 2 · α ·MAX NCC + 2 ·MIN NCC (4.163)

arc gen = PATH : NARC ≤ α · (MAX NCC− 1) + MIN NCC− 1 (4.164)

Proof. We construct NCC − 1 connected components with MAX NCC vertices and one
connected component with MIN NCC vertices. n2 corresponds to the maximum number of
arcs in a connected component. n, 2·n−2, n·(n+1)

2
, n·(n+1)

2
, n·(n−1)

2
, n·(n−1)

2
, n2−n, 2·n and

n − 1 respectively correspond to the maximum number of arcs in a connected component of n
vertices according to the fact that we use the arc generator CIRCUIT , CHAIN , CLIQUE(≤)
CLIQUE(≥) CLIQUE(<) CLIQUE(>) CLIQUE( 6=) CYCLE or PATH .

Proposition 111.

NCC > 0⇒ NARC ≥ (NCC−1)·max(1,MIN NCC−1)+max(1,MAX NCC−1)
(4.165)

arc gen = PATH : NARC ≥ max(0,NCC−1) ·(MIN NCC−1)+MAX NCC−1
(4.166)

Proof. (4.165) We construct NCC− 1 connected components with MIN NCC vertices and
one connected component with MAX NCC vertices. The quantity max(1, n−1) corresponds
to the minimum number of arcs in a connected component of n (n > 0) vertices.
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MAX NCC, MIN NCC, NCC, NVERTEX

Proposition 112.

NVERTEX ≤ max(0,NCC− 1) ·MAX NCC + MIN NCC (4.167)

Proof. Derived from the definitions of MIN NCC and MAX NCC.

Proposition 113.

NVERTEX ≥ max(0,NCC− 1) ·MIN NCC + MAX NCC (4.168)

Proof. Derived from the definitions of MIN NCC and MAX NCC.

MAX NCC, NARC, NSOURCE, NVERTEX

Proposition 114.

NSINK + NSOURCE ≤ NCC ·max(0,MAX NCC− 1) (4.169)

Proof. Since a connected component contains at most MAX NCC vertices and since it does
not contain any isolated vertex and since a same vertex cannot be both a sink and a source a
connected component involves at most MAX NCC − 1 sinks and sources all together. Thus
the result follows.

MAX NSCC, MIN NSCC, NARC, NSCC

Proposition 115.

NARC ≤ max(0,NSCC− 1) ·MAX NSCC2 + MIN NSCC2 +

max(0,NSCC− 1) ·MIN NSCC ·MAX NSCC +

MAX NSCC2 · max(0,NSCC−2)·max(0,NSCC−1)
2

(4.170)

Proof. We assume that we have at least two strongly connected components (the case with one
being obvious). Let (SCCi)i∈[NCC(G)] be the family of strongly connected components of G.
Then |E(G)| ≤

∑
i∈[NCC(G)] |E(G[SCCi])| + k, where k is the number of arcs between the

distinct strongly connected components of G. For any strongly connected component SCCi the
number of arcs it has with the other strongly connected components is bounded by |SCCi| ·
(|V (G)− SCCi|). Consequently, k ≤ 1

2
·
∑
i∈[NCC(G)] |SCCi| · (|V (G)− SCCi|). W.l.o.g.

we assume |SCC1| = MIN NCC. Then we get k ≤ 1
2
· (MIN NCC · (NCC − 1) ·

MAX NCC + MAX NCC · ((NCC− 2) ·MAX NCC + MIN NCC)).

Proposition 116.

NARC ≥ max(0,NSCC− 1) ·MIN NSCC + MAX NSCC (4.171)

Proof. Let (SCCi)i∈[NCC(G)] be the family of strongly connected components of G, as
|E(G)| ≥

∑
i∈[NCC(G)] |E(G[SCCi])|, we obtain the result since in a strongly connected

graph the number of edges is at least its number of vertices.
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MAX NSCC, MIN NSCC, NSCC, NVERTEX

Proposition 117.

NVERTEX ≤ max(0,NSCC− 1) ·MAX NSCC + MIN NSCC (4.172)

Proof. Derived from the definitions of MIN NSCC and MAX NSCC.

Proposition 118.

NVERTEX ≥ max(0,NSCC− 1) ·MIN NSCC + MAX NSCC (4.173)

Proof. Derived from the definitions of MIN NSCC and MAX NSCC.

MIN NCC, NARC, NCC, NVERTEX

Proposition 119. Let α, β and γ respectively denote max(0,NCC − 1), NVERTEX −
α ·MIN NCC and MIN NCC.

NARC ≤ α · γ2 + β2 (4.174)

arc gen ∈ {CLIQUE(≤),CLIQUE(≥)} : NARC ≤ α · γ · (γ + 1)

2
+
β · (β + 1)

2
(4.175)

arc gen ∈ {CLIQUE(<),CLIQUE(>)} : NARC ≤ α · γ · (γ − 1)

2
+
β · (β − 1)

2
(4.176)

arc gen = CLIQUE( 6=) : NARC ≤ α · γ · (γ − 1) + β · (β − 1) (4.177)

NCC− 1 connected components,
each of them consisting of
MIN NCC vertices

One connected component with
NVERTEX− (NCC− 1) · MIN NCC
vertices

Figure 4.7: Illustration of Proposition 119(4.174). Graph that achieves the maximum num-
ber of arcs according to a minimum number of vertices in a connected component, to a num-
ber of connected components, as well as to a fixed number of vertices (MIN NCC = 2, NCC =
5, NVERTEX = 11, NARC = (11− (5− 1) · 2)2 + (5− 1) · 22 = 25)

Proof. For proving inequality 4.174 we proceed by induction on the number of vertices of G.
First note that if all the connected components are reduced to one element the result is obvious.
Thus we assume that the number of vertices in the maximal sized connected component of G
is at least 2. Let x be an element of the maximal sized connected component of G. Then,
G − x satisfies α(G − x) = α(G), γ(G − x) = γ(G) and β(G − x) = β(G) − 1. Since
by induction hypothesis |E(G − x)| ≤ α(G − x) · γ(G − x)2 + β(G − x)2, and since the
number of arcs of G incident to x is at most 2 · (β(G) − 1) + 1, we have that |E(G)| ≤
α(G) · γ(G)2 + (β(G)− 1)2 + 2 · (β(G)− 1) + 1. And thus the result follows.
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NARC, NCC, NSCC, NVERTEX

Proposition 120.

NARC ≤ NCC− 1 + (NVERTEX−NSCC + 1) · (NVERTEX−NCC + 1)

+
(NSCC−NCC + 1) · (NSCC−NCC)

2
(4.178)

NCC− 1 connected
components

NCC− 1 strongly
connected components

One connected component

NSCC− NCC strongly
connected components

One strongly connected
component with NVERTEX
−NSCC + 1 vertices

Figure 4.8: Illustration of Proposition 120. A graph that achieves the maximum number of arcs
according to a fixed number of connected components, to a fixed number of strongly connected
components as well as to a fixed number of vertices (NCC = 3, NSCC = 6, NVERTEX = 7, NARC =
3− 1 + (7− 6 + 1) · (7− 3 + 1) + (6−3+1)·(6−3)

2
= 18)

Proof. We proceed by induction on T (G) = NVERTEX(G) − |X| − (NCC(G) − 1),
where X is any connected component of G of maximum cardinality. For T (G) = 0 then
either NCC(G) = 1 and thus the formula is clearly true, by Proposition 4.145 or all the
connected components of G, but possibly X , are reduced to one element. Since isolated
vertices are not allowed, again by Proposition 4.145 applied on G[X], the formula holds in-
deed NVERTEX(G[X]) = NVERTEX(G) − (NCC(G) − 1) and NSCC(G[X]) =
NSCC(G)− (NCC(G)− 1).

Assume that T (G) ≥ 1. Then there exists Y , a connected component of G distinct from X ,
with more than one vertex.

• Firstly assume that G[Y ] is strongly connected. Let y ∈ Y and let G′ be the graph such
that V (G′) = V (G) and E(G′) is defined by:

– For all Z connected components of G distinct from X and Y we have G′[Z] =
G[Z].

– With X ′ = X ∪ (Y − {y}) and Y ′ = {y}, we have E(G′[Y ′]) = {(y, y)},
E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈ Y − {y}, x ∈ X} ∪ {(z, t) : z, t ∈
Y − {y}}.

Clearly we have that |E(G′)| − |E(G)| ≥ (|Y | − 1) · |X| − 2 · (|Y | − 1) and since
|X| ≥ |Y | ≥ 2, the difference is positive or null. Now as NVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) (since
G′[Y −{y}] is strongly connected becauseE(G′[Y −{y}]) = {(z, t) : z, t ∈ Y −{y}}
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and since the reduced graph of the strongly connected components ofG′[X ′] is exactly the
reduced graph of the strongly connected components of G[X] to which a unique source
has been added) and as T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

• Secondly assume that G[Y ] is not strongly connected. Let Z ⊂ Y such that Z is a
strongly connected component of G[Y ] corresponding to a source in the reduced graph
of the strongly connected components of G[Y ]. Let G′ be the graph such that V (G′) =
V (G) and E(G′) is defined by:

– For all W connected components of G distinct from X and Y we have G′[W ] =
G[W ].

– With X ′ = X ∪Z and Y ′ = Y −Z, we have E(G′[Y ′]) = E(G[Y ′]) if |Y ′| > 1
and E(G′[Y ′]) = {(y, y)} if Y ′ = {y}. E(G′[X ′]) = E(G[X]) ∪ {(z, x) : z ∈
Z, x ∈ X}.

Clearly we have that |E(G′)| − |E(G)| ≥ |Z| · |X| − |Z| · (|Y | − |Z|) and since
|X| > |Y | − |Z|, the difference is strictly positive. Now as NVERTEX(G′) =
NVERTEX(G), NCC(G′) = NCC(G), NSCC(G′) = NSCC(G) and as
T (G′) ≤ T (G)− 1, the result holds by induction hypothesis.

Proposition 121.

NARC ≥ NVERTEX−max(0,min(NCC,NSCC−NCC)) (4.179)

Proof. We prove that the invariant is valid for any digraphG. First notice that for an operational
behaviour, since we cannot assume that Proposition 55 (i.e., NCC(G) ≤ NSCC(G)) was
already triggered, we use the max operator. But since any strongly connected component is con-
nected, then NSCC(G)−NCC(G) is never negative. Consequently we only show by induc-
tion on NSCC(G) that NARC(G) ≥ NVERTEX(G) − min(NCC(G),NSCC(G) −
NCC(G)). To begin notice that if X is a strongly (non void) connected component then ei-
ther NARC(G[X]) ≥ |X| or NARC(G[X]) = 0 and in this latter case we have that both
|X| = 1 and X is strictly included in a connected component of G (recall that isolated vertices
are not allowed). Thus we can directly assume that NSCC(G) = k > 1.

First, consider that there exists a connected component of G, say X , which is also strongly
connected. Let G′ = G − X , consequently we have NSCC(G′) = NSCC(G) −
1, NCC(G′) = NCC(G) − 1, NVERTEX(G′) = NVERTEX(G) − |X|, and
NARC(G) ≥ |X| + NARC(G′). Then NARC(G) ≥ |X| + NVERTEX(G′) −
min(NCC(G′),NSCC(G′) − NCC(G′)) and thus NARC(G) ≥ NVERTEX(G) −
min(NCC(G)− 1,NSCC(G)−NCC(G)), which immediately gives the result.

Second consider that any strongly connected component is strictly included in a con-
nected component of G. Then, either there exists a strongly connected component X
such that |X| ≥ 2. Let G′ = G − X , consequently we have NSCC(G′) =
NSCC(G)−1, NCC(G′) = NCC(G), NVERTEX(G′) = NVERTEX(G)−|X|, and
NARC(G) ≥ |X|+1+NARC(G′). Then NARC(G) ≥ |X|+1+NVERTEX(G′)−
min(NCC(G′),NSCC(G′) − NCC(G′)) and thus NARC(G) ≥ NVERTEX(G) +
1 − min(NCC(G),NSCC(G) − NCC(G) + 1), which immediately gives the result. Or,
all the strongly connected components are reduced to one element, so we have NSCC(G) =
NVERTEX(G), and thus we obtain that NVERTEX(G)−min(NCC(G),NSCC(G)−
NCC(G)) = min(NCC(G),NVERTEX(G)−NCC(G)), which gives the result by, for
example, Proposition 99 (4.143).

This bound is tight: take, for example, any circuit.
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NARC, NSINK, NSOURCE, NVERTEX

Proposition 122.

NARC ≤ NVERTEX2 −NVERTEX ·NSOURCE

−NVERTEX ·NSINK + NSOURCE ·NSINK

(4.180)

Proof. Since the maximum number of arcs of a digraph is NVERTEX2, and since:

• No vertex can have a source as a successor we lose NVERTEX ·NSOURCE arcs,

• No sink can have a successor we lose NVERTEX ·NSINK arcs.

In these two sets of arcs we count twice the arcs from the sinks to the sources, so we finally get
a maximum number of arcs corresponding to the right-hand side of the inequality to prove.
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Graph invariants involving five parameters of a final graph

MAX NCC, MIN NCC, NARC, NCC, NVERTEX

Proposition 123.
Let:

• ∆ = NVERTEX−NCC ·MIN NCC,

• δ = b ∆
max(1,MAX NCC−MIN NCC)

c,

• r = ∆ mod max(1,MAX NCC−MIN NCC),

• ε = (r > 0).

∆ = 0 ∨ (MAX NCC 6= MIN NCC ∧ δ + ε ≤ NCC) (4.181)

NARC ≤ (NCC− δ − ε) ·MIN NCC2 + ε · (MIN NCC + r)2 + δ ·MAX NCC2

(4.182)

Proposition 123 is currently a conjecture.
MIN NCC, NARC, NCC, NSCC, NVERTEX

Proposition 124.

NARC ≤(NCC− 1) ·max(1, (MIN NCC− 1))+

(NVERTEX−NSCC + 1) · (NVERTEX−NCC + 1)+

(NSCC−NCC + 1) · (NSCC−NCC)

2

(4.183)

Proposition 124 is currently a conjecture.
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Graph invariants relating two parameters of two final graphs

MAX NCC1, MIN NCC1

Proposition 125.

vpartition ∧ consecutive loops are connected :

MIN NCC1 /∈ [NVERTEXINITIAL −MAX NCC1,MAX NCC1 − 1]
(4.184)

Proof. We show that the conjunction MIN NCC1 ≥ NVERTEXINITIAL−MAX NCC1

and MIN NCC1 ≤MAX NCC1 − 1 leads to a contradiction.
Since MIN NCC1 ≤MAX NCC1−1 we have that MIN NCC1 6= MAX NCC1

and the minimum required size for the different groups is MIN NCC1 + 1 +MAX NCC1.
This minimum required size should not exceed the number of vertices NVERTEXINITIAL

of the initial graph. But since, by hypothesis, MIN NCC1 ≥ NVERTEXINITIAL −
MAX NCC1, this is impossible.

MAX NCC2, MIN NCC2

Proposition 126.

vpartition ∧ consecutive loops are connected :

MIN NCC2 /∈ [NVERTEXINITIAL −MAX NCC2,MAX NCC2 − 1]
(4.185)

Proof. Similar to Proposition 125.

MAX NCC1, NCC2

Proposition 127.

vpartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (4.186)

apartition : MAX NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (4.187)

Proof. (4.186) Since we have the precondition vpartition, we know that each vertex of the
initial graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the largest connected component of the first final graph cannot contain
all the vertices of the initial graph, then the second final graph has at least one connected
component.

2. On the other hand, if the second final graph has at least one connected component then the
largest connected component of the first final graph cannot be equal to the initial graph.

(4.187) holds for a similar reason.

MAX NCC2, NCC1

Proposition 128.

vpartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (4.188)

apartition : MAX NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (4.189)

Proof. Similar to Proposition 127.
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MIN NCC1, NCC2

Proposition 129.

vpartition : MIN NCC1 < NVERTEXINITIAL ⇔ NCC2 > 0 (4.190)

Proof. Since we have the precondition vpartition, we know that each vertex of the initial
graph belongs to the first or to the second final graphs (but not to both).

1. On the one hand, if the smallest connected component of the first final graph cannot
contain all the vertices of the initial graph, then the second final graph has at least one
connected component.

2. On the other hand, if the second final graph has at least one connected component then the
smallest connected component of the first final graph cannot be equal to the initial graph.

MIN NCC2, NCC1

Proposition 130.

vpartition : MIN NCC2 < NVERTEXINITIAL ⇔ NCC1 > 0 (4.191)

Proof. Similar to Proposition 129.

NARC1, NARC2

Proposition 131.

apartition ∧ arc gen = PATH : NARC1 + NARC2 = NVERTEXINITIAL − 1
(4.192)

Proof. Holds since each arc of the initial graph belongs to one of the two final graphs and since
the initial graph has NVERTEXINITIAL − 1 arcs.

NCC1, NCC2

Proposition 132.

apartition ∧ arc gen = PATH : |NCC1 −NCC2| ≤ 1 (4.193)

vpartition ∧ consecutive loops are connected : |NCC1 −NCC2| ≤ 1 (4.194)

Proof. Holds because the two initial graphs correspond to a path and because consecutive con-
nected components do not come from the same graph constraint.

Proposition 133.

apartition ∧ arc gen = PATH : NCC1 + NCC2 < NVERTEXINITIAL (4.195)

Proof. Holds because the initial graph is a path.

NVERTEX1, NVERTEX2

Proposition 134.

vpartition : NVERTEX1 + NVERTEX2 = NVERTEXINITIAL (4.196)

Proof. By definition of vpartition each vertex of the initial graph belongs to one of the two
final graphs (but not to both).
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Graph invariants relating three parameters of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2

Proposition 135.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1)+

max(2,MIN NCC2)− 2 > NVERTEXINITIAL ⇒MIN NCC1 = MAX NCC1

(4.197)

Proof. The quantity max(2,MIN NCC1) + max(3,MIN NCC1 + 1,MAX NCC1) +
max(2,MIN NCC2)− 2 corresponds to the minimum number of variables needed for build-
ing two non-empty connected components of respective size MIN NCC1 and MAX NCC1

such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than
the total number of variables we have that MIN NCC1 = MAX NCC1.

Proposition 136.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1)+

max(1,MIN NCC2) > NVERTEXINITIAL ⇒MIN NCC1 = MAX NCC1

(4.198)

Proof. The quantity max(1,MIN NCC1) + max(2,MIN NCC1 + 1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective size MIN NCC1 and MAX NCC1

such that MAX NCC1 is strictly greater than MIN NCC1. If this quantity is greater than
the total number of variables we have that MIN NCC1 = MAX NCC1.

Proposition 137.

vpartition ∧ consecutive loops are connected :

MIN NCC2 /∈
[

max

(
NVERTEXINITIAL −MAX NCC1 −MIN NCC1 + 1,⌊
NVERTEXINITIAL −MAX NCC1 + 2

2

⌋)
,

NVERTEXINITIAL −MAX NCC1 − 1

]
(4.199)

Proof. A value v is not a possible number of vertices for the smallest connected component of
type 2 if the following two conditions hold:

• v + MAX NCC1 does not allow to cover all the vertices of the initial graph: we need
at least one extra connected component of type 1 or 2.

• If we add an additional connected component of type 1 or 2 we exceed the number of
vertices of the initial graph.
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MAX NCC2, MIN NCC2, MIN NCC1

Proposition 138.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(3,MIN NCC2 + 1,MAX NCC2)+

max(2,MIN NCC1)− 2 > NVERTEXINITIAL ⇒MIN NCC2 = MAX NCC2

(4.200)

Proof. Similar to Proposition 135.

Proposition 139.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(2,MIN NCC2 + 1,MAX NCC2)+

max(1,MIN NCC1) > NVERTEXINITIAL ⇒MIN NCC2 = MAX NCC2

(4.201)

Proof. Similar to Proposition 136.

Proposition 140.

vpartition ∧ consecutive loops are connected :

MIN NCC1 /∈
[

max

(
NVERTEXINITIAL −MAX NCC2 −MIN NCC2 + 1,⌊
NVERTEXINITIAL −MAX NCC2 + 2

2

⌋)
,

NVERTEXINITIAL −MAX NCC2 − 1

]
(4.202)

Proof. Similar to Proposition 137.

MAX NCC1, MIN NCC1, NVERTEX2

Proposition 141.

vpartition : MIN NCC1 = MAX NCC1 ∧MIN NCC1 mod 2 = 0⇒
NVERTEX2 mod 2 = NVERTEXINITIAL mod 2

(4.203)

Proof. If the number of vertices of the first graph is even then the number of vertices of the
second graph has the same parity as the number of vertices of the initial graph (since a vertex of
the initial graph belongs either to the first graph, either to the second graph (but not to both).

MAX NCC2, MIN NCC2, NVERTEX1

Proposition 142.

vpartition : MIN NCC2 = MAX NCC2 ∧MIN NCC2 mod 2 = 0⇒
NVERTEX1 mod 2 = NVERTEXINITIAL mod 2

(4.204)

Proof. Similar to Proposition 141.
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MIN NCC1, NARC2, NCC1

Proposition 143.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC1 = 1⇔MIN NCC1 + NARC2 = NVERTEXINITIAL

(4.205)

Proof. When MIN NCC1 +NARC2 = NVERTEXINITIAL there is no more room for an
extra connected component for the first final graph.

MIN NCC1, NARC2, NCC1

Proposition 144.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

NCC2 = 1⇔MIN NCC2 + NARC1 = NVERTEXINITIAL

(4.206)

Proof. Similar to Proposition 143.
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Graph invariants relating four parameters of two final graphs

MAX NCC1, MIN NCC1, MIN NCC2, NCC1

Proposition 145.

apartition ∧ arc gen = PATH :

max(2,MIN NCC1) + max(2,MAX NCC1) + max(2,MIN NCC2)− 2 >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(4.207)

Proof. The quantity max(2,MIN NCC1) + max(2,MAX NCC1) +
max(2,MIN NCC2) − 2 corresponds to the minimum number of variables needed
for building two non-empty connected components of respective size MIN NCC1 and
MAX NCC1. If this quantity is greater than the total number of variables we have that
NCC1 ≤ 1.

Proposition 146.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC1) + max(1,MAX NCC1) + max(1,MIN NCC2) >

NVERTEXINITIAL ⇒ NCC1 ≤ 1

(4.208)

Proof. The quantity max(1,MIN NCC1) + max(1,MAX NCC1) +
max(1,MIN NCC2) corresponds to the minimum number of variables needed for building
two non-empty connected components of respective size MIN NCC1 and MAX NCC1. If
this quantity is greater than the total number of variables we have that NCC1 ≤ 1.

MAX NCC2, MIN NCC2, MIN NCC1, NCC2

Proposition 147.

apartition ∧ arc gen = PATH :

max(2,MIN NCC2) + max(2,MAX NCC2) + max(2,MIN NCC1)− 2 >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(4.209)

Proof. Similar to Proposition 145.

Proposition 148.

vpartition ∧ consecutive loops are connected :

max(1,MIN NCC2) + max(1,MAX NCC2) + max(1,MIN NCC1) >

NVERTEXINITIAL ⇒ NCC2 ≤ 1

(4.210)

Proof. Similar to Proposition 146.
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MAX NCC1, MIN NCC1, MIN NCC2, NVERTEX2

Proposition 149.

vpartition ∧ consecutive loops are connected :

MIN NCC2 /∈
[⌊

NVERTEX2

2

⌋
+ 1,

NVERTEXINITIAL −MIN NCC1 −MAX NCC1 − 1

]
(4.211)

Proof. First, note that, when NCC2 > 1, we have that MIN NCC2 ≤
⌊
NVERTEX2

2

⌋
.

Second, note that, when NCC2 ≤ 1, we have that MIN NCC2 ≥ NVERTEXINITIAL −
MIN NCC1−MAX NCC1. Since NCC2 has to have at least one value the result follows.

MAX NCC2, MIN NCC2, MIN NCC1, NVERTEX1

Proposition 150.

vpartition ∧ consecutive loops are connected :

MIN NCC1 /∈
[⌊

NVERTEX1

2

⌋
+ 1,

NVERTEXINITIAL −MIN NCC2 −MAX NCC2 − 1

]
(4.212)

Proof. Similar to Proposition 149.
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Graph invariants relating five parameters of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1

Proposition 151.

vpartition ∧ consecutive loops are connected :

MIN NCC1 ·max(0,NCC1 − 1) + MAX NCC1+

MIN NCC2 ·max(0,NCC1 − 2) + MAX NCC2 ≤ NVERTEXINITIAL

(4.213)

Proof. The left-hand side of 151 corresponds to the minimum number of vertices of the two
final graphs provided that we build the smallest possible connected components.

Proposition 152.

vpartition ∧ consecutive loops are connected :

NCC1 ≤ (MAX NCC1 > 0) +

⌊
α

β

⌋
+
(
αmod β ≥ max(1,MIN NCC1)

)
{
• α = max(0,NVERTEXINITIAL −max(1,MAX NCC1)−max(1,MAX NCC2)),
• β = max(1,MIN NCC1) + max(1,MIN NCC2).

(4.214)

Proof. The maximum number of connected components is achieved by building non-empty
groups as small as possible, except for two groups of respective size max(1,MAX NCC1)
and max(1,MAX NCC2), which have to be built.

Proposition 153.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ·max(0,NCC1 − 1) + MIN NCC1+

MAX NCC2 ·NCC1 + MIN NCC2 ≥ NVERTEXINITIAL

(4.215)

Proof. The left-hand side of 153 corresponds to the maximum number of vertices of the two
final graphs provided that we build the largest possible connected components.

Proposition 154.

vpartition ∧ consecutive loops are connected :

NCC1 ≥ (MAX NCC2 < NVERTEXINITIAL) +

⌊
α

β

⌋
+
(
αmod β >MAX NCC2

)
{
• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2,

• β = max(1,MAX NCC1) + max(1,MAX NCC2).

(4.216)

Proof. The minimum number of connected components is achieved by taking the groups as
large as possible except for two groups of respective size MIN NCC2 and MIN NCC1,
which have to be built.
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Proposition 155.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ≤ max(MIN NCC2,NVERTEXINITIAL − α), with :

• α = MIN NCC1 ·max(0,NCC1 − 1) + MAX NCC1+

MIN NCC2 + MIN NCC2 ·max(0,NCC1 − 3)

(4.217)

Proof. If NCC1 ≤ 1 we have that MAX NCC2 ≤ MIN NCC2. Otherwise, when
NCC1 > 1, we have that MIN NCC1 · max(0,NCC1 − 1) + MAX NCC1 +
MIN NCC2+MAX NCC2+MIN NCC2·max(0,NCC1−3) ≤ NVERTEXINITIAL.
NCC1 − 3 comes from the fact that we build the minimum number of connected components
in the second final graph (i.e., NCC1 − 1 connected components) and that we have already
built two connected components of respective size MIN NCC2 and MAX NCC2. By iso-
lating MAX NCC2 in the previous expression and by grouping the two inequalities the result
follows.

Proposition 156.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≤ (MAX NCC1 > 0) +

⌊
α

β

⌋
+ ((αmod β) + 1 ≥MIN NCC1), with :{

• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 + MIN NCC2 − 2.

(4.218)

Graph G1

Initial graph

Graph G2

MAX NCC1 MIN NCC1

too small
connected
component

MAX NCC2 MIN NCC2

Figure 4.9: Illustration of Proposition 156. Configuration achieving the maximum number
of connected components for G1 according to the size of the smallest and largest connected
components of G1 and G2 and to an initial number of vertices (MAX NCC1 = 4, MAX NCC2 =
5, MIN NCC1 = 3, MIN NCC2 = 4, NVERTEXINITIAL = 14, α = max(0, 14− 4− 5 + 1) = 6, β =
max(2, 3 + 4− 2) = 5, NCC1 = (4 > 0) +

⌊
6
5

⌋
+ (((6 mod 5) + 1) ≥ 3) = 2); since the two

rightmost vertices of graph G1 correspond to a too small connected component, they will have
to be dispatched in the other connected components of graph G1.

Proof. The maximum number of connected components of G1 is achieved by:

• Building a first connected component of G1 involving MAX NCC1 vertices,

• Building a first connected component of G2 involving MAX NCC2 vertices,
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• Building alternatively a connected component of G1 and a connected component of G2

involving respectively MIN NCC1 and MIN NCC2 vertices,

• Finally, if this is possible, building a connected component of G1 involving
MIN NCC1 vertices.

Proposition 157.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC1 ≥ (MIN NCC1 > 0) +

⌊
α

β

⌋
+ ((αmod β) + 1 >MAX NCC2), with :{

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 + MAX NCC2 − 2.

(4.219)

Graph G1

Initial graph

Graph G2

MIN NCC1 MAX NCC1

MIN NCC2 MAX NCC2 MAX NCC2

Figure 4.10: Illustration of Proposition 157. Configuration achieving the minimum number
of connected components for G1 according to the size of the smallest and largest connected
components of G1 and G2 and to an initial number of vertices (MAX NCC1 = 4, MAX NCC2 =
5, MIN NCC1 = 3, MIN NCC2 = 4, NVERTEXINITIAL = 18, α = max(0, 18 − 3 − 4 + 1) =
12, β = max(2, 4 + 5− 2) = 7, NCC1 = (3 > 0) +

⌊
12
7

⌋
+ (((12 mod 7) + 1) > 5) = 3)

Proof. The minimum number of connected components of G1 is achieved by:

• Building a first connected component of G2 involving MIN NCC2 vertices,

• Building a first connected component of G1 involving MIN NCC1 vertices,

• Building alternatively a connected component of G2 and a connected component of G1

involving respectively MAX NCC2 and MAX NCC1 vertices,

• Finally, if this is possible, building a connected component of G2 involving
MAX NCC2 vertices and a connected component of G1 with the remaining vertices.
Note that these remaining vertices cannot be incorporated in the connected components
previously built.
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MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2

Proposition 158.

vpartition ∧ consecutive loops are connected :

MIN NCC2 ·max(0,NCC2 − 1) + MAX NCC2+

MIN NCC1 ·max(0,NCC2 − 2) + MAX NCC1 ≤ NVERTEXINITIAL

(4.220)

Proof. Similar to Proposition 151.

Proposition 159.

vpartition ∧ consecutive loops are connected :

NCC2 ≤ (MAX NCC2 > 0) +

⌊
α

β

⌋
+
(
αmod β ≥ max(1,MIN NCC2)

)
{
• α = max(0,NVERTEXINITIAL −max(1,MAX NCC2)−max(1,MAX NCC1)),
• β = max(1,MIN NCC2) + max(1,MIN NCC1).

(4.221)

Proof. Similar to Proposition 152.

Proposition 160.

vpartition ∧ consecutive loops are connected :

MAX NCC2 ·max(0,NCC2 − 1) + MIN NCC2+

MAX NCC1 ·NCC2 + MIN NCC1 ≥ NVERTEXINITIAL

(4.222)

Proof. Similar to Proposition 153.

Proposition 161.

vpartition ∧ consecutive loops are connected :

NCC2 ≥ (MAX NCC1 < NVERTEXINITIAL) +

⌊
α

β

⌋
+
(
αmod β >MAX NCC1

)
{
• α = max(0,NVERTEXINITIAL −MIN NCC2 −MIN NCC1,

• β = max(1,MAX NCC2) + max(1,MAX NCC1).

(4.223)

Proof. Similar to Proposition 154.

Proposition 162.

vpartition ∧ consecutive loops are connected :

MAX NCC1 ≤ max(MIN NCC1,NVERTEXINITIAL − α), with :

• α = MIN NCC2 ·max(0,NCC2 − 1) + MAX NCC2+

MIN NCC1 + MIN NCC1 ·max(0,NCC2 − 3)

(4.224)

Proof. Similar to Proposition 155.
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Proposition 163.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≤ (MAX NCC2 > 0) +

⌊
α

β

⌋
+ ((αmod β) + 1 ≥MIN NCC2), with :{

• α = max(0,NVERTEXINITIAL −MAX NCC1 −MAX NCC2 + 1),
• β = MIN NCC1 + MIN NCC2 − 2.

(4.225)

Proof. Similar to Proposition 156.

Proposition 164.

apartition ∧ arc gen = PATH ∧MIN NCC1 > 1 ∧MIN NCC2 > 1 :

NCC2 ≥ (MIN NCC2 > 0) +

⌊
α

β

⌋
+ ((αmod β) + 1 >MAX NCC1, with :{

• α = max(0,NVERTEXINITIAL −MIN NCC1 −MIN NCC2 + 1),
• β = MAX NCC1 + MAX NCC2 − 2.

(4.226)

Proof. Similar to Proposition 157.
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Graph invariants relating six parameters of two final graphs

MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, NCC2

Proposition 165.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MIN NCC1 + MAX NCC1+

β ·MIN NCC2 + MAX NCC2 ≤ NVERTEXINITIAL + NCC1 + NCC2 − 1, with :{
• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(4.227)

Proof. Let CC(G1) = {CC1
a : a ∈ [NCC1]} and CC(G2) = {CC2

a : a ∈ [NCC2]} be
respectively the set of connected components of the first and the second final graphs. Since the
initial graph is a path, and since each arc of the initial graph belongs to the first or to the second
final graphs (but not to both), there exists (Ai)i∈[NCC1+NCC2] and there exists j ∈ [2] such that
Ai ∈ CC(G1+(j mod 2)), for i mod 2 = 0 and Ai ∈ CC(G1+((j+1) mod 2)) for i mod 2 = 1
and Ai ∩Ai+1 6= ∅ for i ∈ [NCC1 + NCC2 − 1].
By inclusion-exclusion principle, since Ai ∩ Aj = ∅ whenever j 6= i + 1, we obtain
NVERTEXINITIAL = Σa∈[NCC1]|CC1

a| + Σa∈[NCC2]|CC2
a| − Σi∈[NCC1+NCC2−1]|Ai ∩

Ai+1|. Since |Ai ∩ Ai+1| is equal to 1 for every well defined i, we obtain Σa∈[NCC1]|CC1
a|+

Σa∈[NCC2]|CC2
a| = NVERTEXINITIAL + NCC1 + NCC2− 1.

Since α · MIN NCC1 + MAX NCC1 + β · MIN NCC2 + MAX NCC2 ≤
Σa∈[NCC1]|CC1

a|+ Σa∈[NCC2]|CC2
a| the result follows.

Proposition 166.

apartition ∧ arc gen = PATH ∧NVERTEXINITIAL > 0 :

α ·MAX NCC1 + MIN NCC1+

β ·MAX NCC2 + MIN NCC2 ≥ NVERTEXINITIAL + NCC1 + NCC2 − 1, with :{
• α = max(0,NCC1 − 1),
• β = max(0,NCC2 − 1).

(4.228)

Proof. Similar to Proposition 165.
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4.4 Functional dependency invariants
This section provides invariants relating functionally dependent constraints arguments.

4.4.1 Functional dependency invariants involving two constraints
Proposition 167. Given the constraints

• INFLEXION(NINF, VARIABLES),

• NVALUE(NVAL, VARIABLES):

NVAL = 1⇒ NINF = 0 (4.229)

Proof. Since a single value leads to a plateau.

Proposition 168. Given the constraints

• LENGTH FIRST SEQUENCE(LEN, VARIABLES),

• PEAK(P, VARIABLES):

2 · P ≤ |VARIABLES| − LEN (4.230)

Proof. Beside a first sequence with a small value, we alternate between large and small values
in order to maximise the number of peaks.

Proposition 169. Given the constraints

• LENGTH FIRST SEQUENCE(LEN, VARIABLES),

• VALLEY(V, VARIABLES):

2 · V ≤ |VARIABLES| − LEN (4.231)

Proof. Beside a first sequence with a large value, we alternate between small and large values
in order to maximise the number of valleys.

Proposition 170. Given the constraints

• LENGTH LAST SEQUENCE(LEN, VARIABLES),

• PEAK(P, VARIABLES):

2 · P ≤ |VARIABLES| − LEN (4.232)

Proof. Beside a last sequence with a small value, we alternate between large and small values
in order to maximise the number of peaks.

Proposition 171. Given the constraints

• LENGTH LAST SEQUENCE(LEN, VARIABLES),

• VALLEY(V, VARIABLES):

2 · V ≤ |VARIABLES| − LEN (4.233)

Proof. Beside a last sequence with a large value, we alternate between small and large values
in order to maximise the number of valleys.

Proposition 172. Given the constraints

• LONGEST DECREASING SEQUENCE(L, VARIABLES),



464 4. FURTHER TOPICS

• MAX DECREASING SLOPE(MAX, VARIABLES):

L ≥ MAX (4.234)

Proof. By definition of the LONGEST DECREASING SEQUENCE and
MAX DECREASING SLOPE constraints.

Proposition 173. Given the constraints

• LONGEST INCREASING SEQUENCE(L, VARIABLES),

• MAX INCREASING SLOPE(MAX, VARIABLES):

L ≥ MAX (4.235)

Proof. By definition of the LONGEST INCREASING SEQUENCE and MAX INCREASING SLOPE

constraints.

Proposition 174. Given the constraints

• MAX DECREASING SLOPE(MAX, VARIABLES),

• MIN DECREASING SLOPE(MIN, VARIABLES):

MAX ≥ MIN (4.236)

Proof. By definition of the MAX DECREASING SLOPE and MIN DECREASING SLOPE con-
straints.

Proposition 175. Given the constraints

• MAX INCREASING SLOPE(MAX, VARIABLES),

• MIN INCREASING SLOPE(MIN, VARIABLES):

MAX ≥ MIN (4.237)

Proof. By definition of the MAX INCREASING SLOPE and MIN INCREASING SLOPE con-
straints.

Proposition 176. Given the constraints

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES):

MAX ≥ MIN (4.238)

Proof. By definition of the MAXIMUM and the MINIMUM constraints.

Proposition 177. Given the constraints

• MAXIMUM(MAX, VARIABLES),

• SUM CTR(VARIABLES,=, SUM):

SUM ≤ |VARIABLES| · MAX (4.239)

Proof. By definition of the MAXIMUM and SUM CTR constraints.

Proposition 178. Given the constraints

• MINIMUM(MIN, VARIABLES),

• SUM CTR(VARIABLES,=, SUM):
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SUM ≥ |VARIABLES| · MIN (4.240)

Proof. By definition of the MINIMUM and SUM CTR constraints.

Proposition 179. Given the constraints

• MIN WIDTH PEAK(MIN WIDTH, VARIABLES),

• PEAK(P, VARIABLES):

P · MIN WIDTH ≤ |VARIABLES| (4.241)

Proof. Cumulated minimum width of the different peaks cannot exceed size of sequence.

Proposition 180. Given the constraints

• MIN WIDTH PEAK(MIN WIDTH, VARIABLES),

• PEAK(P, VARIABLES):

The automaton depicted by Figure 4.11 provides a necessary condition.

dec

{
S ← 0,
F ← |VARIABLES|

}
inc

VARi ≥ VARi+1,
{cond} VARi < VARi+1,

{cond , S ← S + 1, F ← i}

VARi ≤ VARi+1,
{cond}

VARi > VARi+1,
{cond}

Figure 4.11: Automaton for a redundant constraint between the PEAK(P, VARIABLES)
and the MIN WIDTH PEAK(MIN WIDTH, VARIABLES) constraints when P > 0 and
MIN WIDTH > 0, where cond is the condition |VARIABLES| − i > max(0,max(P −
max(S − 1, 0), 0) − 1) · (MIN WIDTH + 1) + (max(P − max(S − 1, 0), 0) ≥ 1) ·
(MIN WIDTH −max(i − F, 0)), and where i, S and F respectively stand for the index
of the current pairs (i ∈ [1, |VARIABLES| − 1]), the number of start of potential peaks
already encountered, the position of the start of the last potential peak encountered;
the quantity max(S − 1, 0) denotes the number of peaks already encountered, while
the quantity max(P − max(S − 1, 0), 0) denotes the minimum number of peaks that
remain to done from position i.

Proof. The condition associated with each transition of the automaton checks that there is
enough space between the current position and the end of the sequence to place the remaining
minimum number of required peaks.

Proposition 181. Given the constraints

• MIN WIDTH VALLEY(MIN WIDTH, VARIABLES),

• VALLEY(V, VARIABLES):

V · MIN WIDTH ≤ |VARIABLES| (4.242)

Proof. Cumulated minimum width of the different valleys cannot exceed size of sequence.
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Proposition 182. Given the constraints

• MIN WIDTH VALLEY(MIN WIDTH, VARIABLES),

• VALLEY(V, VARIABLES):

The automaton depicted by Figure 4.12 provides a necessary condition.

inc

{
S ← 0,
F ← |VARIABLES|

}
dec

VARi ≤ VARi+1,
{cond} VARi > VARi+1,

{cond , S ← S + 1, F ← i}

VARi ≥ VARi+1,
{cond}

VARi < VARi+1,
{cond}

Figure 4.12: Automaton for a redundant constraint between the
VALLEY(V, VARIABLES) and the MIN WIDTH VALLEY(MIN WIDTH, VARIABLES)
constraints when V > 0 and MIN WIDTH > 0, where cond is the condition
|VARIABLES|− i > max(0,max(V−max(S−1, 0), 0)−1) ·MIN WIDTH+ (max(V−
max(S − 1, 0), 0) ≥ 1) · (MIN WIDTH − max(i − F, 0)), and where i, S and F
respectively stand for the index of the current pairs (i ∈ [1, |VARIABLES| − 1]), the
number of start of potential valleys already encountered, the position of the start of the
last potential valley encountered; the quantity max(S − 1, 0) denotes the number of
valleys already encountered, while the quantity max(V − max(S − 1, 0), 0) denotes
the minimum number of valleys that remain to done from position i.

Proof. The condition associated with each transition of the automaton checks that there is
enough space between the current position and the end of the sequence to place the remaining
minimum number of required valleys.

Proposition 183. Given the constraints

• NVALUE(NVAL, VARIABLES),

• NVISIBLE FROM END(N, VARIABLES):

NVAL ≥ N (4.243)

Proof. Since stairs visible from the end are located at different altitudes.

Proposition 184. Given the constraints

• NVALUE(NVAL, VARIABLES),

• NVISIBLE FROM START(N, VARIABLES):

NVAL ≥ N (4.244)

Proof. Since stairs visible from the start are located at different altitudes.

Proposition 185. Given the constraints

• PEAK(P, VARIABLES),
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• VALLEY(V, VARIABLES):

|P− V| ≤ 1 (4.245)

Proof. Since peaks and valleys can only alternate.

Proposition 186. Given the constraints

• PEAK(P, VARIABLES),

• VALLEY(V, VARIABLES),

with P > V, the automaton depicted by Figure 4.13 provides a necessary condition.

P = C
V = P− 1

s{C ← 0} u v

VARi = VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{C ← C + 1}

VARi ≥ VARi+1

VARi < VARi+1

Figure 4.13: Automaton for a redundant constraint for the conjunction
PEAK(P, VARIABLES) ∧ VALLEY(V, VARIABLES) ∧ P > V (we have both to start
with a peak and to finish with a peak)

Proof. Since peaks and valleys can only alternate and since having more peaks than valleys
enforces to start and end on a peak.

Proposition 187. Given the constraints

• PEAK(P, VARIABLES),

• VALLEY(V, VARIABLES),

with V > P the automaton depicted by Figure 4.14 provides a necessary condition.

V = C
P = V− 1

s{C ← 0} u v

VARi = VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{C ← C + 1}

VARi ≤ VARi+1

VARi > VARi+1

Figure 4.14: Automaton for a redundant constraint for the conjunction
VALLEY(V, VARIABLES) ∧ PEAK(P, VARIABLES) ∧ V > P (we have both to start
with a valley and to finish with a valley)



468 4. FURTHER TOPICS

Proof. Since valleys and peaks can only alternate and since having more valleys than peaks
enforces to start and end on a valley.

4.4.2 Functional dependency invariants involving three constraints
Proposition 188. Given the constraints

• INFLEXION(I, VARIABLES),

• PEAK(P, VARIABLES),

• VALLEY(V, VARIABLES):

I = P + V (4.246)

Proof. By definition of the INFLEXION, PEAK and VALLEY constraints.

Proposition 189. Given the constraints

• LENGTH FIRST SEQUENCE(LEN FIRST, VARIABLES),

• LENGTH LAST SEQUENCE(LEN LAST, VARIABLES),

• NVALUE(NVAL, VARIABLES):

NVAL > 1⇒ LEN FIRST + LEN LAST + NVAL− 2 ≤ |VARIABLES| (4.247)

Proof. Since we have at least two distinct values the first and last sequences do not overlap.
Since we have at least NVAL distinct values we have at least NVAL−2 additional values excluding
the first and last sequences, which use at most two distinct values.

Proposition 190. Given the constraints

• LONGEST DECREASING SEQUENCE(L, VARIABLES),

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES):

MAX− MIN ≥ L (4.248)

Proof. By definition of the LONGEST DECREASING SEQUENCE constraint.

Proposition 191. Given the constraints

• LONGEST INCREASING SEQUENCE(L, VARIABLES),

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES):

MAX− MIN ≥ L (4.249)

Proof. By definition of the LONGEST INCREASING SEQUENCE constraint.

Proposition 192. Given the constraints

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES),

• NVALUE(NVAL, VARIABLES):

NVAL ≤ MAX− MIN + 1 (4.250)
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Proof. Since taking all values between MIN and MAX gives the maximum number of distinct
values.

Proposition 193. Given the constraints

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES),

• NVALUE(NVAL, VARIABLES):

MAX > MIN⇒ NVAL > 1 (4.251)

Proof. Since at least two distinct values if MIN and MAX are distinct.

Proposition 194. Given the constraints

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES),

• SUM CTR(VARIABLES,=, SUM):

SUM ≥ (|VARIABLES| − 1) · MIN + MAX (4.252)

Proof. Since also has to use the maximum value at least once in the sum.

Proposition 195. Given the constraints

• MAXIMUM(MAX, VARIABLES),

• MINIMUM(MIN, VARIABLES),

• SUM CTR(VARIABLES,=, SUM):

SUM ≤ (|VARIABLES| − 1) · MAX + MIN (4.253)

Proof. Since also has to use the minimum value at least once in the sum.

4.4.3 Functional dependency invariants involving four constraints
Proposition 196. Given the constraints

• LENGTH FIRST SEQUENCE(LEN FIRST, VARIABLES),

• LENGTH LAST SEQUENCE(LEN LAST, VARIABLES),

• NVALUE(NVAL, VARIABLES),

• PEAK(P, VARIABLES):

NVAL > 1⇒ 2 · P ≤ |VARIABLES| −max(1, LEN FIRST)−max(1, LEN LAST) + 1 (4.254)

Proof. Beside the first and the last sequence with a small value, we alternate between large and
small values.

Proposition 197. Given the constraints

• LENGTH FIRST SEQUENCE(LEN FIRST, VARIABLES),

• LENGTH LAST SEQUENCE(LEN LAST, VARIABLES),

• NVALUE(NVAL, VARIABLES),

• VALLEY(V, VARIABLES):

NVAL > 1⇒ 2 · V ≤ |VARIABLES| −max(1, LEN FIRST)−max(1, LEN LAST) + 1 (4.255)

Proof. Beside the first and the last sequence with a large value, we alternate between small and
large values.
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4.5 The electronic version of the catalogue

4.5.1 Prolog facts describing a constraint

An electronic version of the catalogue containing every global constraint of the cata-
logue is given in Appendix B. In addition the entry “Utilities” contains a set of shared
utilities used for evaluating the constraints. This electronic version was used for gen-
erating the LATEX file of this catalogue, the figures associated with the graph-based
description and a filtering algorithm for some of the constraints that use the automa-
ton-based description. Within the electronic version, each constraint is described in
terms of meta-data. A typical entry is:

ctr_date(minimum, [’20000128’,’20030820’,’20040530’,
’20041230’,’20060811’,’20090416’]).

ctr_origin(minimum, ’\\index{CHIP|indexuse}CHIP’, []).

ctr_arguments(minimum, [’MIN’-dvar, ’VARIABLES’-collection(var-dvar)]).

ctr_exchangeable(minimum,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_synonyms(minimum, [min]).

ctr_restrictions(minimum, [size(’VARIABLES’)>0, required(’VARIABLES’,var)]).

ctr_typical(minimum, [size(’VARIABLES’) > 1, range(’VARIABLES’ˆvar) > 1]).

ctr_pure_functional_dependency(minimum, []).
ctr_functional_dependency(minimum, 1, [2]).

ctr_aggregate(minimum, [], [min, union]).

ctr_graph(minimum,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey #\/ variables1ˆvar<variables2ˆvar],
[’ORDER’(0,’MAXINT’,var)=’MIN’],
[]).
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ctr_example(minimum,
[minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]]),
minimum(7,[[var-8],[var-8],[var-7],[var-8],[var-7]])]).

ctr_cond_imply(minimum, deepest_valley,
[first(’VARIABLES’ˆvar) > ’MIN’,
last(’VARIABLES’ˆvar) > ’MIN’], [], id).

ctr_see_also(minimum,
[link(’generalisation’, minimum_modulo,

’%e replaced by %e’, [variable, variable mod constant]),
link(’specialisation’, min_n,

’minimum or order %e replaced by absolute minimum’, [n]),
link(’comparison swapped’, maximum, ’’, []),
link(’common keyword’, maximum, ’%k’, [’order constraint’]),
link(’soft variant’, open_minimum, ’%k’, [’open constraint’]),
link(’soft variant’, minimum_except_0, ’value %e is ignored’, [0]),
link(’implies’, between_min_max, ’’, []),
link(’implies’, in, ’’, []),
link(’implied by’, and, ’’, [])]).

ctr_key_words(minimum,[’order constraint’ ,
’minimum’ ,
’maxint’ ,
’automaton’ ,
’automaton without counters’ ,
’reified automaton constraint’ ,
’centered cyclic(1) constraint network(1)’,
’arc-consistency’ ]).

ctr_persons(minimum,[’Beldiceanu N.’]).

ctr_eval(minimum, [builtin(minimum_b), automaton(minimum_a)]).

minimum_b(MIN, VARIABLES) :-
check_type(dvar, MIN), collection(VARIABLES, [dvar]),
length(VARIABLES, N), N > 0,
get_attr1(VARIABLES, VARS), minimum(MIN, VARS).

minimum_a(MIN, VARIABLES) :- % 0: MIN<VAR, 1: MIN=VAR, 2: MIN>VAR
minimum_signature(VARIABLES, SIGNATURE, MIN),
automaton(SIGNATURE, _, SIGNATURE,

[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,1,t),arc(t,0,t)],
[],[],[]).

minimum_signature([], [], _).
minimum_signature([[var-VAR]|VARs], [S|Ss], MIN) :-

S in 0..2,
MIN #< VAR #<=> S #= 0, MIN #= VAR #<=> S #= 1, MIN #> VAR #<=> S #= 2,
minimum_signature(VARs, Ss, MIN).

ctr_sol(minimum,2,0,2,9,[0-5,1-3,2-1]).
ctr_sol(minimum,3,0,3,64,[0-37,1-19,2-7,3-1]).
ctr_sol(minimum,4,0,4,625,[0-369,1-175,2-65,3-15,4-1]).
ctr_sol(minimum,5,0,5,7776,[0-4651,1-2101,2-781,3-211,4-31,5-1]).
ctr_sol(minimum,6,0,6,117649,[0-70993,1-31031,2-11529,3-3367,

4-665,5-63,6-1]).
ctr_sol(minimum,7,0,7,2097152,[0-1273609,1-543607,2-201811,3-61741,

4-14197,5-2059,6-127,7-1]).
ctr_sol(minimum,8,0,8,43046721,[0-26269505,1-11012415,2-4085185,

3-1288991,4-325089,5-58975,6-6305,7-255,
8-1]).

and consists of the following Prolog facts, where CONSTRAINT NAME is the name of the
constraint under consideration. The facts are organised in the following 20 items:
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• Items 1, 2, 3, 4, 16 and 17 provide general information about a global constraint,

• Items 5, 6, 7 and 8 describe the arguments of a global constraint.

• Items 9 and 10 give properties of the arguments of a global constraint, e.g. func-
tional dependency, contractibility.

• Item 11 describes symmetries of a global constraint, i.e. list of mappings
(e.g., permutation of arguments) that preserve the solutions to a global constraint.

• Items 12 and 13 describes the meaning of a global constraint in terms of a
graph-based representation.

• Item 14 provides one or several ground instances which hold.

• Item 18 gives the list of available evaluators of a global constraint.

• Item 19 provides the number of solutions to the constraint under various assump-
tions on the number of variables and on their initial domains.

• Item 20 describes the meaning of a global constraint in terms of a set of first
order logic formulae.

Items 1, 2, 6 and 14 are mandatory, while all other items are optional. We now give the
different items:

1. ctr date( CONSTRAINT NAME, LIST OF DATES OF MODIFICATIONS )

• LIST OF DATES OF MODIFICATIONS is a list of dates when the description of the
constraint was modified.

2. ctr origin( CONSTRAINT NAME, STRING, LIST OF CONSTRAINTS NAMES )

• STRING is a string denoting the origin of the constraint.
LIST OF CONSTRAINTS NAMES is a possibly empty list of constraint names
related to the origin of the constraint.

3. ctr usual name( CONSTRAINT NAME, USUAL NAME )

• When, for some reason, the constraint name used in the catalogue does not corre-
spond to the usual name of the constraint, USUAL NAME provides the usual name
of the constraint. This stems from the fact that each entry of the catalogue should
have a distinct name. This is the case, for example, for the STRETCH PATH and the
STRETCH CIRCUIT constraints which are both usually called STRETCH.

4. ctr synonyms( CONSTRAINT NAME, LIST OF SYNONYMS )

• LIST OF SYNONYMS is a list of synonyms for the constraint. This stems from
the fact that, quite often, different authors use a different name for the same
constraint. This is the case, for example, for the ALLDIFFERENT and the
SYMMETRIC ALLDIFFERENT constraints.
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5. ctr types( CONSTRAINT NAME, LIST OF TYPES DECLARATIONS )

• LIST OF TYPES DECLARATIONS is a list of elements of the form name-type, where
name is the name of a new type and type the type itself (usually a collection). Basic
and compound data types were respectively introduced in sections 2.2.1 and 2.2.2
on page 14. This field is only used when we need to declare a new type that will
be used for specifying the type of the arguments of the constraint. This is the case,
for example, when one argument of the constraint is a collection for which the type
of one attribute is also a collection. This is the case, for example, for the DIFFN

constraint where the unique argument ORTHOTOPES is a collection of ORTHOTOPE;
ORTHOTOPE refers to a new type declared in LIST OF TYPES DECLARATIONS.

6. ctr arguments( CONSTRAINT NAME, LIST OF ARGUMENTS DECLARATIONS )

• LIST OF ARGUMENTS DECLARATIONS is a list of elements of the form arg-type,
where arg is the name of an argument of the constraint and type the type of the
argument. Basic and compound data types were respectively introduced in sec-
tions 2.2.1 and 2.2.2 on page 14.

7. ctr restrictions( CONSTRAINT NAME, LIST OF RESTRICTIONS )

• LIST OF RESTRICTIONS is a list of restrictions on the different arguments of the
constraint. Possible restrictions were described in Section 2.2.3 on page 17.

8. ctr typical( CONSTRAINT NAME, LIST OF RESTRICTIONS )

• LIST OF RESTRICTIONS is a list of typical restrictions on the different arguments
of the constraint, i.e. even though these restrictions are not mandatory they usually
hold. Possible restrictions were described in Section 2.2.3 on page 17.

9. ctr pure functional dependency( CONSTRAINT NAME, LIST OF RESTRICTIONS )

• Indicate that, under the assumption that all restrictions described by
LIST OF RESTRICTIONS hold, at least one of the arguments of the con-
straint is functionally determined by the other arguments. Possible restrictions
were described in Section 2.2.3 on page 17. Which argument ARG is de-
termined by which subset of arguments LIST ARGS is described by the fact
ctr functional dependency( CONSTRAINT NAME, ARG, LIST ARGS )
where arguments are denoted by their positions within the constraint.

10. ctr aggregate( CONSTRAINT NAME, LIST OF RESTRICTIONS, ARG AGGREGATION )

Denotes that, given two instances of the constraint that both satisfy all restrictions de-
scribed by LIST OF RESTRICTIONS, we can combine (i.e., aggregate) these two instances
in order to obtain an implied constraint, which has the same name as the first two con-
straints. We use ARG AGGREGATION in order to obtain the arguments of the implied con-
straint as described in the keyword Aggregate.

11. ctr exchangeable( CONSTRAINT NAME, LIST OF SYMMETRIES )

• LIST OF SYMMETRIES is a list of mappings preserving the solutions to the con-
straint. Possible mappings were described in Section 2.2.5 on page 27.
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12. ctr derived collections( CONSTRAINT NAME, LIST OF DERIVED COLLECTIONS )

• LIST OF DERIVED COLLECTIONS is a list of derived collections. Derived collec-
tions are collections that are computed from the arguments of the constraint and
are used in the graph-based description. Derived collections were described in Sec-
tion 2.3.2 on page 51.

13. ctr graph( CONSTRAINT NAME, LIST OF ARC INPUT, ARC ARITY,

ARC GENERATORS, ARC CONSTRAINTS, GRAPH PROPERTIES )

• LIST OF ARC INPUT is a list of collections used for creating the vertices of the
initial graph. This was described at page 80 of Section 2.3.3.

• ARC ARITY is the number of vertices of an arc. Arc arity was explained at page 82
of Section 2.3.3.

• ARC GENERATORS is a list of arc generators. Arc generators were introduced at page
80 of Section 2.3.3.

• ARC CONSTRAINTS is a list of arc constraints. Arc constraints were defined in Sec-
tion 2.3.2 on page 57.

• GRAPH PROPERTIES is a list of graph properties. Graph properties were described
in Section 2.3.2 on page 68.

14. ctr example( CONSTRAINT NAME, LIST OF EXAMPLES )

• LIST OF EXAMPLES is a list of examples (usually one). Each example corresponds
to a ground instance for which the constraint holds.

15. ctr cond imply( CONSTRAINT NAME, IMPLIED CONSTRAINT,

LIST OF RESTRICTIONS CTR, LIST OF RESTRICTIONS IMPLIED CTR, MATCHING )

IMPLIED CONSTRAINT is a constraint implied by CONSTRAINT NAME provided that

• the list of restrictions LIST OF RESTRICTIONS CTR holds for the constraint
CONSTRAINT NAME, and

• the list of restrictions LIST OF RESTRICTIONS IMPLIED CTR holds for the con-
straint IMPLIED CONSTRAINT.

MATCHING describes how to create the arguments of IMPLIED CONSTRAINT from the ar-
guments of CONSTRAINT NAME. Note that some arguments of IMPLIED CONSTRAINTmay
not be explicitly mentioned since they correspond to existentially quantified variables.

16. ctr see also( CONSTRAINT NAME, LIST OF CONSTRAINTS )

• LIST OF CONSTRAINTS is a list of constraints that are related in some
way to the constraint. Each element of the list is a fact of the form
link(TYPE OF LINK, CONSTRAINT, STRING, SYMBOLS), where:

– TYPE OF LINK is a semantic link that explains why we refer to CONSTRAINT.
Semantic links were described in Section 2.6 on page 94.

– CONSTRAINT is the name of the constraint that is linked to CONSTRAINT NAME.
– STRING is a string providing contextual explanation.
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– SYMBOLS is a list of symbols (e.g., keywords, constraint names, mathematical
expressions) that are inserted in STRING.

17. ctr key words( CONSTRAINT NAME, LIST OF KEYWORDS )

• LIST OF KEYWORDS is a list of keywords associated with the constraint. Keywords
may be linked to the meaning of the constraint, to a typical pattern where the con-
straint can be applied or to a specific problem where the constraint is useful. All
keywords used in the catalogue are listed in alphabetic order in Section 3.7 on page
161. Each keyword has an entry explaining its meaning and providing the list of
global constraints using that keyword.

18. ctr eval( CONSTRAINT NAME, LIST OF EVALUATORS )

• For many of the constraints of the catalogue one or several evaluators are provided.
Each evaluator is explicitly described in LIST OF EVALUATORS by an element of
the form method(predicate name), where predicate name is the name of the
Prolog predicate to call in order to evaluate the constraint,1, and method can be one
of the following keywords:

– builtin when the corresponding evaluator uses a SICStus built-in. This is
the case, for example, for the ALLDIFFERENT constraint.

– reformulation when the corresponding evaluator reformulates the con-
straints in terms of a conjunction of constraints of the catalogue and/or in term
of a conjunction of reified constraints. This is the case, for example, for the
TREE constraint.

– automaton when the corresponding evaluator is based on an automaton that
describes the set of solutions accepted by the constraint. The evaluator cor-
responds to the Prolog code that creates the signature constraints as well as
the automata (usually one) associated with the constraint. A fact of the form
automaton/9 lists the states and the transitions of the automata used for
describing the set of solutions accepted by the constraint. It follows the de-
scription provided in Section 2.4.2 on page 92. The PATTERN constraint is an
example of constraint for which an automaton is provided.

– logic when the corresponding evaluator is based on a first order logic formula
that describes the meaning of the constraint. This is the case, for example, for
the MEET SBOXES constraint.

– checker when the corresponding evaluator only accepts ground instances of
the constraint. This is the case, for example, for the CYCLE constraint.

19. ctr sol( CONSTRAINT NAME, SIZE, MINVAL, MAXVAL, NSOL, ARG NSOL )

• SIZE is the number of variables of the collection of variables.

• MINVAL is the smallest value of the variables of the sequence of variables.

• MAXVAL is the largest value of the variables of the sequence of variables.

• NSOL is the total number of solutions to the constraint, assuming a collection with
SIZE items and all variables within interval [MINVAL, MAXVAL].

1Note that this predicate name should be different from existing SICStus built-ins

http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
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• ARG NSOL is a list, which for each value that can be assigned to an argument of
the constraint, gives the corresponding number of solutions assuming we have a
collection with SIZE items, and that all variables of the collection are assigned a
value in interval [MINVAL, MAXVAL].

20. ctr logic( CONSTRAINT NAME, LIST OF FIRST ORDER LOGIC FORMULAE )

• LIST OF FIRST ORDER LOGIC FORMULAE is a list of first order logical formulae
that describe the meaning of the constraint [107].

4.5.2 XML schema associated with a global constraint
In this section we describe an XML schema associated with the global constraint cata-
logue. We present the motivation for this schema, how it integrates with the description
of the constraint in the catalogue, and how the schema information is updated when the
catalogue is modified.

Related work

There have been a number of approaches to defining an exchange format for constraint
models.

The seminal OPL language [428] provides a modelling language for constraint pro-
grams, which is linked to Ilog’s solver products. Its use an exchange format is limited
by its proprietary background. MiniZinc [304] is a subset of the Zinc modelling lan-
guage intended to be compiled to multiple solver implementations. First, a model in
FlatZinc is generated from the MiniZinc model, removing all iteration (respectively re-
cursion). The flat model can then be compiled into different solver implementations,
currently Mercury, ECLiPSe and Gecode. The development of new back-ends is fa-
cilitated by the co-development of the Cadmium [410] term-rewriting system, which
can parse and transform FlatZinc code.

The work most closely related to our format probably is the XML format used for
the CSP solver competitions [425]. We reviewed an earlier draft version before gener-
ating our own schema for the catalogue, the 2007 version (for the 2008 competition)
is described in [307]. It is intended as a solver independent format, which can be used
by all participants of the competition. As a design choice, the authors decided not to
fully structure the format, e.g. to use string values to hold structured information. In
order to understand the actual meaning of the model, these strings need to be parsed
and analysed as well. This may have size advantages for CSP data given in extensional
form, but makes it more complex to check validity of a data file.

Key features

The following list summarises the core features of our XML format and the associated
schema:

language independent The underlying description of the constraint in the catalogue
is provided as Prolog facts. These may be difficult/tedious to read in other pro-

http://eclipseclp.org/
http://www.gecode.org/
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gramming languages. The use of XML as an exchange format allows use with
most programming languages via provided XML parsers.

machine readable, precise format The format is precisely defined, using XML
schema data types throughout, so that validity of a model can be checked with
standard XML tools.

one-to-one match with the data format used for the catalog The internal structure
of the schema follows the data format for the constraints in the rest of the cat-
alogue. This minimises the need for relearning, once the basic format of the
catalogue description has been understood.

detailed description of the allowed format for arguments For each global con-
straint, the allowed format of the argument is specified in great detail. As the
complexity of global constraints increases, this becomes more and more impor-
tant to simplify the generation of valid problem files.

automated generation of schema from the catalogue data files The schema is auto-
matically generated from the catalogue data files by the simple generator pro-
gram. This keeps the schema up-to-date with changes of the catalogue, and
reduces the task of schema maintenance.

generation of examples for each constraint Example XML files based on the exam-
ples in the catalogue can be generated automatically, so that a link to these ex-
amples can be added to each catalogue entry.

generation of diagrams describing schema for each constraint At the same time,
graph structures of the schema for each constraint can be automatically gener-
ated using the graphviz [193] tool. This can help a human user to produce XML
data for a particular constraint without reading the details of the schema.

Structure of schema

Model The top-level element for the schema is model, which contains an optional
variables element and a required constraints element.

Variables The variables element consists of a non-empty sequence of variable ele-
ments, each describing a single variable which may occur in some of the constraints.
Each variable has some attributes, an required id, an optional name and a required ex-
ternal. The id is an XML schema ID used to refer to the variable in the constraints of
the model, the name is a string which describes the variable to the user, and external
is a “yes”/“no” string which states if the variable is visible outside the model.

The domains of variables are not described as part of the variables section, special
unary constraints (e.g., IN INTERVAL) are used in the constraint section instead.
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constraints The constraints element consists of one or more elements representing
constraints in the catalogue. The constraints can be stated in any order, with the under-
standing that the order may influence the sequence in which they are introduced to the
solver.

For each constraint in the catalogue, a specific element with the same name is
described in the schema. This imposes restrictions on the names of constraints in the
catalogue, only alphanumerical names (with underscores) should be used.

Each constraint has attributes id (type ID), a name (type string) and an optional de-
scription (type string). The name and description can be used to include user-readable
information about the constraint, for example, for debugging or explanations.

For each introduced element, a sequence of arguments is defined to define the ar-
guments of the constraints in the same order as described in the catalogue. Each of the
arguments has a specific type, which is defined in accordance with the catalogue def-
inition. The argument names can be reused throughout the catalogue, as long as they
are unique within each constraint. Arguments can have atomic values (i.e., consist of a
single value), or they may be collection elements.

collection Roughly, collections correspond to lists in Prolog. Collections can be
empty, or must contain entries of the same type. Collections can be nested as required.

item Items correspond to terms in Prolog. Items have named arguments, for which
the same rules apply as for the arguments of constraints. The different arguments of an
item can be of different type.

Generating schema from the catalogue

There are two programs which can be used to build the schema description from the
data describing the catalogue. They should be run whenever a description of a con-
straint in the catalogue has been changed.

schema.ecl The ECLiPSe [11] program schema.ecl can be used to re-generate the
schema when the catalogue description has been modified. The query schema. pro-
duces the schema from descriptions in the src directory, the query top. produces exam-
ple files for each constraint in the xml directory.

The predicate handle table defines which of the restrictions in the constraint de-
scription are included as part of the schema information. Many of the more complex
rules cannot be easily checked by the schema, an entry in handle table says to ignore
the restriction for the moment.

schema dot.ecl The program schema dot.ecl can be used to generate graphviz dot
files from the schema file schema.xsd. The generated files are placed in the images
directory, and a dot command to produce .png and .eps output is run in the same
directory. The pixel based png files are intended for use in web pages, the scalable
eps files can be used in LATEX files producing postscript or pdf documents.

http://eclipseclp.org/
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There are some predicates in schema dot.ecl which control the format of the gen-
erated graph. They are:

• The predicate range style controls the display of range information, and op-
tional/required choices for attributes.

• The predicate type shape defines the shape and colour of the different elements
in the schema for a constraint.

• The predicate match builtin provides an abbreviated element name for some of
the predefined element types in the schema. This is required as the graphs should
not become too big to fit onto a single A4 page in the output.

Conclusion

We have described the rationale and details for an XML schema attached to the global
constraint catalogue. It allows to describe models using the constraints of the catalogue
as flat XML files, which are a good exchange format for generating and/or parsing
constraint data.
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5.146 ELEMENT SPARSE . . . . . . . . . . . . . . . . . . . . . . . . 1222
5.147 ELEMENTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228
5.148 ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
5.149 ELEMENTS ALLDIFFERENT . . . . . . . . . . . . . . . . . . . 1236
5.150 ELEMENTS SPARSE . . . . . . . . . . . . . . . . . . . . . . . 1242
5.151 EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
5.152 EQ CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248
5.153 EQ SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
5.154 EQUAL SBOXES . . . . . . . . . . . . . . . . . . . . . . . . . 1252
5.155 EQUILIBRIUM . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
5.156 EQUIVALENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
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5.157 EXACTLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
5.158 FIRST VALUE DIFF 0 . . . . . . . . . . . . . . . . . . . . . . 1272
5.159 FULL GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . 1278
5.160 GCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288
5.161 GEOST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
5.162 GEOST TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
5.163 GEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
5.164 GEQ CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
5.165 GLOBAL CARDINALITY . . . . . . . . . . . . . . . . . . . . . 1304
5.166 GLOBAL CARDINALITY LOW UP . . . . . . . . . . . . . . . . 1318
5.167 GLOBAL CARDINALITY LOW UP NO LOOP . . . . . . . . . . 1322
5.168 GLOBAL CARDINALITY NO LOOP . . . . . . . . . . . . . . . 1326
5.169 GLOBAL CARDINALITY WITH COSTS . . . . . . . . . . . . . 1330
5.170 GLOBAL CONTIGUITY . . . . . . . . . . . . . . . . . . . . . . 1338
5.171 GOLOMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344
5.172 GRAPH CROSSING . . . . . . . . . . . . . . . . . . . . . . . . 1348
5.173 GRAPH ISOMORPHISM . . . . . . . . . . . . . . . . . . . . . 1352
5.174 GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356
5.175 GROUP SKIP ISOLATED ITEM . . . . . . . . . . . . . . . . . 1370
5.176 GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1380
5.177 HIGHEST PEAK . . . . . . . . . . . . . . . . . . . . . . . . . 1382
5.178 IMPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1388
5.179 IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
5.180 IN INTERVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398
5.181 IN INTERVAL REIFIED . . . . . . . . . . . . . . . . . . . . . . 1402
5.182 IN INTERVALS . . . . . . . . . . . . . . . . . . . . . . . . . . 1406
5.183 IN RELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408
5.184 IN SAME PARTITION . . . . . . . . . . . . . . . . . . . . . . 1412
5.185 IN SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416
5.186 INCOMPARABLE . . . . . . . . . . . . . . . . . . . . . . . . . 1418
5.187 INCREASING . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420
5.188 INCREASING GLOBAL CARDINALITY . . . . . . . . . . . . . 1426
5.189 INCREASING NVALUE . . . . . . . . . . . . . . . . . . . . . . 1432
5.190 INCREASING NVALUE CHAIN . . . . . . . . . . . . . . . . . . 1440
5.191 INCREASING PEAK . . . . . . . . . . . . . . . . . . . . . . . 1446
5.192 INCREASING SUM . . . . . . . . . . . . . . . . . . . . . . . . 1450
5.193 INCREASING VALLEY . . . . . . . . . . . . . . . . . . . . . . 1456
5.194 INDEXED SUM . . . . . . . . . . . . . . . . . . . . . . . . . . 1460
5.195 INFLEXION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464
5.196 INSIDE SBOXES . . . . . . . . . . . . . . . . . . . . . . . . . 1472
5.197 INT VALUE PRECEDE . . . . . . . . . . . . . . . . . . . . . . 1476
5.198 INT VALUE PRECEDE CHAIN . . . . . . . . . . . . . . . . . . 1480
5.199 INTERVAL AND COUNT . . . . . . . . . . . . . . . . . . . . . 1486
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5.200 INTERVAL AND SUM . . . . . . . . . . . . . . . . . . . . . . . 1492
5.201 INVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1498
5.202 INVERSE EXCEPT LOOP . . . . . . . . . . . . . . . . . . . . 1506
5.203 INVERSE OFFSET . . . . . . . . . . . . . . . . . . . . . . . . 1508
5.204 INVERSE SET . . . . . . . . . . . . . . . . . . . . . . . . . . . 1512
5.205 INVERSE WITHIN RANGE . . . . . . . . . . . . . . . . . . . . 1516
5.206 ITH POS DIFFERENT FROM 0 . . . . . . . . . . . . . . . . . 1520
5.207 K ALLDIFFERENT . . . . . . . . . . . . . . . . . . . . . . . . 1522
5.208 K CUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530
5.209 K DISJOINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532
5.210 K SAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1536
5.211 K SAME INTERVAL . . . . . . . . . . . . . . . . . . . . . . . 1540
5.212 K SAME MODULO . . . . . . . . . . . . . . . . . . . . . . . . 1544
5.213 K SAME PARTITION . . . . . . . . . . . . . . . . . . . . . . . 1548
5.214 K USED BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552
5.215 K USED BY INTERVAL . . . . . . . . . . . . . . . . . . . . . . 1556
5.216 K USED BY MODULO . . . . . . . . . . . . . . . . . . . . . . 1560
5.217 K USED BY PARTITION . . . . . . . . . . . . . . . . . . . . . 1564
5.218 LENGTH FIRST SEQUENCE . . . . . . . . . . . . . . . . . . . 1568
5.219 LENGTH LAST SEQUENCE . . . . . . . . . . . . . . . . . . . 1574
5.220 LEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1580
5.221 LEQ CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1582
5.222 LEX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584
5.223 LEX ALLDIFFERENT . . . . . . . . . . . . . . . . . . . . . . . 1586
5.224 LEX ALLDIFFERENT EXCEPT 0 . . . . . . . . . . . . . . . . 1590
5.225 LEX BETWEEN . . . . . . . . . . . . . . . . . . . . . . . . . . 1592
5.226 LEX CHAIN GREATER . . . . . . . . . . . . . . . . . . . . . . 1596
5.227 LEX CHAIN GREATEREQ . . . . . . . . . . . . . . . . . . . . 1600
5.228 LEX CHAIN LESS . . . . . . . . . . . . . . . . . . . . . . . . 1604
5.229 LEX CHAIN LESSEQ . . . . . . . . . . . . . . . . . . . . . . . 1608
5.230 LEX DIFFERENT . . . . . . . . . . . . . . . . . . . . . . . . . 1612
5.231 LEX EQUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1616
5.232 LEX GREATER . . . . . . . . . . . . . . . . . . . . . . . . . . 1620
5.233 LEX GREATEREQ . . . . . . . . . . . . . . . . . . . . . . . . 1626
5.234 LEX LESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632
5.235 LEX LESSEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638
5.236 LEX LESSEQ ALLPERM . . . . . . . . . . . . . . . . . . . . . 1644
5.237 LINK SET TO BOOLEANS . . . . . . . . . . . . . . . . . . . . 1646
5.238 LONGEST CHANGE . . . . . . . . . . . . . . . . . . . . . . . 1650
5.239 LONGEST DECREASING SEQUENCE . . . . . . . . . . . . . . 1654
5.240 LONGEST INCREASING SEQUENCE . . . . . . . . . . . . . . 1660
5.241 LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666
5.242 MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668
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5.243 MAX DECREASING SLOPE . . . . . . . . . . . . . . . . . . . 1672
5.244 MAX INCREASING SLOPE . . . . . . . . . . . . . . . . . . . . 1678
5.245 MAX INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . 1684
5.246 MAX N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686
5.247 MAX NVALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . 1690
5.248 MAX OCC OF CONSECUTIVE TUPLES OF VALUES . . . . . . 1698
5.249 MAX OCC OF SORTED TUPLES OF VALUES . . . . . . . . . . 1700
5.250 MAX OCC OF TUPLES OF VALUES . . . . . . . . . . . . . . . 1702
5.251 MAX SIZE SET OF CONSECUTIVE VAR . . . . . . . . . . . . 1704
5.252 MAXIMUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1710
5.253 MAXIMUM MODULO . . . . . . . . . . . . . . . . . . . . . . . 1720
5.254 MEET SBOXES . . . . . . . . . . . . . . . . . . . . . . . . . . 1722
5.255 MIN DECREASING SLOPE . . . . . . . . . . . . . . . . . . . . 1726
5.256 MIN DIST BETWEEN INFLEXION . . . . . . . . . . . . . . . . 1732
5.257 MIN INCREASING SLOPE . . . . . . . . . . . . . . . . . . . . 1740
5.258 MIN INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1746
5.259 MIN N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1750
5.260 MIN NVALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . 1754
5.261 MIN SIZE FULL ZERO STRETCH . . . . . . . . . . . . . . . . 1762
5.262 MIN SIZE SET OF CONSECUTIVE VAR . . . . . . . . . . . . . 1768
5.263 MIN SURF PEAK . . . . . . . . . . . . . . . . . . . . . . . . . 1774
5.264 MIN WIDTH PEAK . . . . . . . . . . . . . . . . . . . . . . . . 1778
5.265 MIN WIDTH PLATEAU . . . . . . . . . . . . . . . . . . . . . . 1786
5.266 MIN WIDTH VALLEY . . . . . . . . . . . . . . . . . . . . . . 1790
5.267 MINIMUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1798
5.268 MINIMUM EXCEPT 0 . . . . . . . . . . . . . . . . . . . . . . 1808
5.269 MINIMUM GREATER THAN . . . . . . . . . . . . . . . . . . . 1812
5.270 MINIMUM MODULO . . . . . . . . . . . . . . . . . . . . . . . 1818
5.271 MINIMUM WEIGHT ALLDIFFERENT . . . . . . . . . . . . . . 1820
5.272 MULTI GLOBAL CONTIGUITY . . . . . . . . . . . . . . . . . 1826
5.273 MULTI INTER DISTANCE . . . . . . . . . . . . . . . . . . . . 1830
5.274 MULTIPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1832
5.275 NAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1834
5.276 NCLASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1840
5.277 NEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1844
5.278 NEQ CST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1846
5.279 NEQUIVALENCE . . . . . . . . . . . . . . . . . . . . . . . . . 1848
5.280 NEXT ELEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 1852
5.281 NEXT GREATER ELEMENT . . . . . . . . . . . . . . . . . . . 1856
5.282 NINTERVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1860
5.283 NO PEAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1864
5.284 NO VALLEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1868
5.285 NON OVERLAP SBOXES . . . . . . . . . . . . . . . . . . . . . 1872
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5.286 NOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876
5.287 NOT ALL EQUAL . . . . . . . . . . . . . . . . . . . . . . . . . 1882
5.288 NOT IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1888
5.289 NPAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1892
5.290 NSET OF CONSECUTIVE VALUES . . . . . . . . . . . . . . . 1896
5.291 NUMBER DIGIT . . . . . . . . . . . . . . . . . . . . . . . . . 1902
5.292 NVALUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1904
5.293 NVALUE ON INTERSECTION . . . . . . . . . . . . . . . . . . 1920
5.294 NVALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1924
5.295 NVALUES EXCEPT 0 . . . . . . . . . . . . . . . . . . . . . . . 1928
5.296 NVECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1932
5.297 NVECTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1936
5.298 NVISIBLE FROM END . . . . . . . . . . . . . . . . . . . . . . 1940
5.299 NVISIBLE FROM START . . . . . . . . . . . . . . . . . . . . . 1946
5.300 OPEN ALLDIFFERENT . . . . . . . . . . . . . . . . . . . . . . 1952
5.301 OPEN AMONG . . . . . . . . . . . . . . . . . . . . . . . . . . 1956
5.302 OPEN ATLEAST . . . . . . . . . . . . . . . . . . . . . . . . . 1960
5.303 OPEN ATMOST . . . . . . . . . . . . . . . . . . . . . . . . . . 1962
5.304 OPEN GLOBAL CARDINALITY . . . . . . . . . . . . . . . . . 1964
5.305 OPEN GLOBAL CARDINALITY LOW UP . . . . . . . . . . . . 1968
5.306 OPEN MAXIMUM . . . . . . . . . . . . . . . . . . . . . . . . . 1972
5.307 OPEN MINIMUM . . . . . . . . . . . . . . . . . . . . . . . . . 1974
5.308 OPPOSITE SIGN . . . . . . . . . . . . . . . . . . . . . . . . . 1978
5.309 OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1980
5.310 ORCHARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1986
5.311 ORDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1990
5.312 ORDERED ATLEAST NVECTOR . . . . . . . . . . . . . . . . . 1992
5.313 ORDERED ATMOST NVECTOR . . . . . . . . . . . . . . . . . 1996
5.314 ORDERED GLOBAL CARDINALITY . . . . . . . . . . . . . . . 2000
5.315 ORDERED NVECTOR . . . . . . . . . . . . . . . . . . . . . . . 2004
5.316 ORTH LINK ORI SIZ END . . . . . . . . . . . . . . . . . . . . 2008
5.317 ORTH ON THE GROUND . . . . . . . . . . . . . . . . . . . . . 2012
5.318 ORTH ON TOP OF ORTH . . . . . . . . . . . . . . . . . . . . 2014
5.319 ORTHS ARE CONNECTED . . . . . . . . . . . . . . . . . . . . 2018
5.320 OVERLAP SBOXES . . . . . . . . . . . . . . . . . . . . . . . . 2022
5.321 PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2026
5.322 PATH FROM TO . . . . . . . . . . . . . . . . . . . . . . . . . 2034
5.323 PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2038
5.324 PEAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2042
5.325 PERIOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2050
5.326 PERIOD EXCEPT 0 . . . . . . . . . . . . . . . . . . . . . . . . 2052
5.327 PERIOD VECTORS . . . . . . . . . . . . . . . . . . . . . . . . 2054
5.328 PERMUTATION . . . . . . . . . . . . . . . . . . . . . . . . . . 2056
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5.329 PLACE IN PYRAMID . . . . . . . . . . . . . . . . . . . . . . . 2062
5.330 POLYOMINO . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066
5.331 POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2070
5.332 PRECEDENCE . . . . . . . . . . . . . . . . . . . . . . . . . . 2072
5.333 PRODUCT CTR . . . . . . . . . . . . . . . . . . . . . . . . . . 2074
5.334 PROPER CIRCUIT . . . . . . . . . . . . . . . . . . . . . . . . 2076
5.335 PROPER FOREST . . . . . . . . . . . . . . . . . . . . . . . . . 2080
5.336 RANGE CTR . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084
5.337 RELAXED SLIDING SUM . . . . . . . . . . . . . . . . . . . . 2088
5.338 REMAINDER . . . . . . . . . . . . . . . . . . . . . . . . . . . 2092
5.339 ROOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2094
5.340 SAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2098
5.341 SAME AND GLOBAL CARDINALITY . . . . . . . . . . . . . . 2106
5.342 SAME AND GLOBAL CARDINALITY LOW UP . . . . . . . . . 2110
5.343 SAME INTERSECTION . . . . . . . . . . . . . . . . . . . . . . 2116
5.344 SAME INTERVAL . . . . . . . . . . . . . . . . . . . . . . . . . 2118
5.345 SAME MODULO . . . . . . . . . . . . . . . . . . . . . . . . . 2122
5.346 SAME PARTITION . . . . . . . . . . . . . . . . . . . . . . . . 2126
5.347 SAME REMAINDER . . . . . . . . . . . . . . . . . . . . . . . 2130
5.348 SAME SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2132
5.349 SCALAR PRODUCT . . . . . . . . . . . . . . . . . . . . . . . . 2134
5.350 SEQUENCE FOLDING . . . . . . . . . . . . . . . . . . . . . . 2136
5.351 SET VALUE PRECEDE . . . . . . . . . . . . . . . . . . . . . . 2142
5.352 SHIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2144
5.353 SIGN OF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2150
5.354 SIZE MAX SEQ ALLDIFFERENT . . . . . . . . . . . . . . . . 2152
5.355 SIZE MAX STARTING SEQ ALLDIFFERENT . . . . . . . . . . 2158
5.356 SLIDING CARD SKIP0 . . . . . . . . . . . . . . . . . . . . . . 2164
5.357 SLIDING DISTRIBUTION . . . . . . . . . . . . . . . . . . . . 2168
5.358 SLIDING SUM . . . . . . . . . . . . . . . . . . . . . . . . . . 2172
5.359 SLIDING TIME WINDOW . . . . . . . . . . . . . . . . . . . . 2176
5.360 SLIDING TIME WINDOW FROM START . . . . . . . . . . . . 2180
5.361 SLIDING TIME WINDOW SUM . . . . . . . . . . . . . . . . . 2184
5.362 SMOOTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2190
5.363 SOFT ALL EQUAL MAX VAR . . . . . . . . . . . . . . . . . . 2196
5.364 SOFT ALL EQUAL MIN CTR . . . . . . . . . . . . . . . . . . 2202
5.365 SOFT ALL EQUAL MIN VAR . . . . . . . . . . . . . . . . . . 2206
5.366 SOFT ALLDIFFERENT CTR . . . . . . . . . . . . . . . . . . . 2214
5.367 SOFT ALLDIFFERENT VAR . . . . . . . . . . . . . . . . . . . 2222
5.368 SOFT CUMULATIVE . . . . . . . . . . . . . . . . . . . . . . . 2228
5.369 SOFT SAME INTERVAL VAR . . . . . . . . . . . . . . . . . . 2232
5.370 SOFT SAME MODULO VAR . . . . . . . . . . . . . . . . . . . 2236
5.371 SOFT SAME PARTITION VAR . . . . . . . . . . . . . . . . . . 2240
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5.372 SOFT SAME VAR . . . . . . . . . . . . . . . . . . . . . . . . . 2244
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5.1 ABS VALUE

I B DESCRIPTION LINKS

Origin Arithmetic.

Constraint ABS VALUE(Y, X)

Usual name ABS

Synonym ABSOLUTE VALUE.

Arguments Y : dvar

X : dvar

Restriction Y ≥ 0

Purpose Enforce the fact that the first variable is equal to the absolute value of the second variable.

Example (8,−8)

The ABS VALUE constraint holds since 8 is equal to | − 8|.

All solutions Figure 5.1 gives all solutions to the following non ground instance of the ABS VALUE

constraint: Y ∈ [1, 6], X ∈ [−2, 3], ABS VALUE(Y, X).

¬ (2,−2)
 (1,−1)
® (1, 1)
¯ (2, 2)
° (3, 3)

Figure 5.1: All solutions corresponding to the non ground example of the ABS VALUE
constraint of the All solutions slot

Arg. properties Functional dependency: Y determined by X.

Systems ABS in Choco, ABS in Gecode.

See also implied by: EQ.

implies: GEQ, ZERO OR NOT ZERO.

implies (if swap arguments): OPPOSITE SIGN, ZERO OR NOT ZERO.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/


ABS VALUE 493

Keywords constraint arguments: binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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5.2 ALL BALANCE

I B J DESCRIPTION LINKS

Origin derived from BALANCE in [77]

Constraint ALL BALANCE(BALANCE, VARIABLES, M)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions BALANCE ≥ 0
BALANCE ≤ |VARIABLES|
required(VARIABLES, var)
VARIABLES.var ≥ 1
VARIABLES.var ≤ M

M ≥ 1
M ≤ |VARIABLES|

Purpose
BALANCE is equal to the difference between the number of occurrence of the value that
occurs the most and the value that occurs the least within the collection of variables
VARIABLES, where we consider the number of occurrences of each value in [1, M].

Example (2, 〈3, 1, 2, 1, 1〉 , 3)
(3, 〈3, 1, 2, 1, 1〉 , 4)

1. In the first example, values 1, 2 and M = 3 are respectively used 3, 1 and 1 times.
The corresponding ALL BALANCE constraint holds since its first argument BALANCE
is assigned to the difference between the maximum and minimum number of the
previous occurrences (i.e., 3− 1).

2. In the first example, values 1, 2, 3 and M = 4 are respectively used 3, 1, 1 and 0
times. The corresponding ALL BALANCE constraint holds since its first argument
BALANCE is assigned to the difference between the maximum and minimum number
of the previous occurrences (i.e., 3− 0).

1 2 3

1
1
1

2 3

2

1 2 3 4

1
1
1

2 3

3

All solutions Figure 5.2 gives all solutions to the following non ground instance of the ALL BALANCE

constraint: BALANCE ∈ {0,3}, V1 ∈ [0, 5], V2 ∈ [2, 6], V3 ∈ [0, 1], V4 ∈ [1, 2],
ALL BALANCE(BALANCE, 〈V1, V2, V3, V4〉, 4).

Typical BALANCE ≤ 2 + |VARIABLES|/10
|VARIABLES| > 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ (3, 〈1,2,1,1〉, 4)
 (3, 〈1,3,1,1〉, 4)
® (3, 〈1,4,1,1〉, 4)
¯ (3, 〈2,2,1,2〉, 4)
° (0, 〈3,4,1,2〉, 4)
± (0, 〈4,3,1,2〉, 4)

1 2 3 4

1
1
1

2

3

¬

1 2 3 4

1
1
1

3

3



1 2 3 4

1
1
1

4

3

®

1 2 3 4

1 2
2
2

3

¯

1 2 3 4

1 2 3 4

0

°

1 2 3 4

1 2 3 4

0

±

Figure 5.2: All solutions corresponding to the non ground example of the
ALL BALANCE constraint of the All solutions slot

Typical model nval(VARIABLES.var) > 2

Arg. properties Functional dependency: BALANCE determined by VARIABLES and M.

Usage An application of the ALL BALANCE constraint is to enforce a balanced assignment of
values, no matter how many distinct values will be used. In this case one will push down
the maximum value of the first argument of the ALL BALANCE constraint.

• On the one hand the ALL BALANCE constraint should be used on problems where
only consecutive values are used. This is the case, for example, in some resource
assignment problems where we know in advance that all resources will be employed.

• On the other hand the BALANCE constraint should be used on problems for which,
due to some constraints, not all consecutive values will be assigned. This is the
case, for example, for some frequency assignment problems where, due to some
interference, all used values are not necessarily consecutive.

Algorithm When the lower bound of the BALANCE argument is unconstrained, a flow-based polynomial
filtering algorithm for the ALL BALANCE constraint achieving arc-consistency is described
in [77].

Reformulation An efficient reformulation of the ALL BALANCE constraint is provided in [77]. It is based
on the following ingredients:

• First, a GLOBAL CARDINALITY(VARIABLES, 〈1 o1, 2 o2, . . . , M oM〉) constraint is
stated for exposing the number of occurrences o1, o2, . . . , oM of values 1, 2, . . . , M
within the values assigned to VARIABLES.

• Second, a MINIMUM(min, 〈o1, o2, . . . , oM〉) and a MAXIMUM(max ,
〈o1, o2, . . . , oM〉) constraints on variables o1, o2, . . . , oM are stated to get the
corresponding smallest and largest values min and max . Then, to express the link
with BALANCE, the constraint BALANCE = max −min is stated.

• Third, the following necessary conditions are used:

(i) M ·max − (M− 1) · BALANCE ≤ |VARIABLES|,
(ii) M ·min + (M− 1) · BALANCE ≥ |VARIABLES|,


Typical model
Typical condition on the sample of a problem.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.



496 ALL BALANCE

(iii) BALANCE 6= 1 +
⌊
|VARIABLES|

M

⌋
−
⌈
|VARIABLES|

M

⌉
.

In the same paper [77], it is also shown how to generate stronger necessary condi-
tions.

See also related: BALANCE (ignore unused values).

Keywords application area: assignment.

constraint arguments: pure functional dependency.

constraint type: value constraint.

filtering: flow.

modelling: balanced assignment, functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.3 ALL DIFFER FROM AT LEAST K POS

I B J DESCRIPTION LINKS GRAPH

Origin Inspired by [188].

Constraint ALL DIFFER FROM AT LEAST K POS(K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 1
|VECTOR| ≥ K

K ≥ 0
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose Enforce all pairs of distinct vectors of the VECTORS collection to differ from at least K
positions.

Example (2, 〈vec− 〈2, 5, 2, 0〉 , vec− 〈3, 6, 2, 1〉 , vec− 〈3, 6, 1, 0〉〉)

The ALL DIFFER FROM AT LEAST K POS constraint holds since:

• The first and second vectors differ from 3 positions, which is greater than or equal to
K = 2.

• The first and third vectors differ from 3 positions, which is greater than or equal to
K = 2.

• The second and third vectors differ from 2 positions, which is greater than or equal
to K = 2.

Typical K > 0
|VECTORS| > 1

Symmetries • Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

Arg. properties • Contractible wrt. VECTORS.

• Extensible wrt. VECTORS.vec (add items at same position).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also implied by: ALL DIFFER FROM EXACTLY K POS (≥ K replaced by = K).

part of system of constraints: DIFFER FROM AT LEAST K POS.

used in graph description: DIFFER FROM AT LEAST K POS.

Keywords application area: bioinformatics.

characteristic of a constraint: disequality, vector.

constraint type: system of constraints, decomposition.

final graph structure: no loop, symmetric.

Cond. implications ALL DIFFER FROM AT LEAST K POS(K, VECTORS)
with K ≤ |VECTORS|

implies ATLEAST NVECTOR(NVEC, VECTORS).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VECTORS

Arc generator CLIQUE( 6=) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) DIFFER FROM AT LEAST K POS(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ |VECTORS| − |VECTORS|

Graph class • NO LOOP

• SYMMETRIC

Graph model The Arc constraint(s) slot uses the DIFFER FROM AT LEAST K POS constraint defined in
this catalogue.

Parts (A) and (B) of Figure 5.3 respectively show the initial and final graph associated with
the Example slot. Since we use the NARC graph property, the arcs of the final graph are
stressed in bold. The previous constraint holds since exactly 3 · (3− 1) = 6 arc constraints
hold.

VECTORS

1

2

3

NARC=6

1:2
  5
  2
  0

2:3
  6
  2
  1

3:3
  6
  1
  0

(A) (B)

Figure 5.3: Initial and final graph of the ALL DIFFER FROM AT LEAST K POS con-
straint

Signature Since we use the CLIQUE(6=) arc generator on the items of the VECTORS collection, the
expression |VECTORS| · |VECTORS| − |VECTORS| corresponds to the maximum number of
arcs of the final graph. Therefore we can rewrite the graph property NARC = |VECTORS|·
|VECTORS| − |VECTORS| to NARC ≥ |VECTORS| · |VECTORS| − |VECTORS|. This leads to
simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.4 ALL DIFFER FROM AT MOST K POS

I B J DESCRIPTION LINKS GRAPH

Origin Inspired by ALL DIFFER FROM AT LEAST K POS.

Constraint ALL DIFFER FROM AT MOST K POS(K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 1
|VECTOR| ≥ K

K ≥ 0
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose Enforce all pairs of distinct vectors of the VECTORS collection to differ from at most K
positions.

Example (2, 〈vec− 〈0, 3, 0, 6〉 , vec− 〈0, 3, 4, 1〉 , vec− 〈0, 3, 4, 6〉〉)

The ALL DIFFER FROM AT MOST K POS constraint holds since:

• The first and second vectors differ from 2 positions, which is less than or equal to
K = 2.

• The first and third vectors differ from 1 position, which is less than or equal to K = 2.

• The second and third vectors differ from 1 position, which is less than or equal to
K = 2.

Typical K > 0
K < |VECTOR|
|VECTORS| > 1

Symmetries • Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

Arg. properties • Contractible wrt. VECTORS.

• Contractible wrt. VECTORS.vec (remove items from same position).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also implied by: ALL DIFFER FROM EXACTLY K POS (≤ K replaced by = K).

part of system of constraints: DIFFER FROM AT MOST K POS.

used in graph description: DIFFER FROM AT MOST K POS.

Keywords characteristic of a constraint: disequality, vector.

constraint type: system of constraints, decomposition.

final graph structure: no loop, symmetric.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator CLIQUE( 6=) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) DIFFER FROM AT MOST K POS(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ |VECTORS| − |VECTORS|

Graph class • NO LOOP

• SYMMETRIC

Graph model The Arc constraint(s) slot uses the DIFFER FROM AT MOST K POS constraint defined in
this catalogue.

Parts (A) and (B) of Figure 5.4 respectively show the initial and final graph associated with
the Example slot. Since we use the NARC graph property, the arcs of the final graph are
stressed in bold. The previous constraint holds since exactly 3 · (3− 1) = 6 arc constraints
hold.

VECTORS

1

2

3

NARC=6

1:0
  3
  0
  6

2:0
  3
  4
  1

3:0
  3
  4
  6

(A) (B)

Figure 5.4: Initial and final graph of the ALL DIFFER FROM AT MOST K POS con-
straint

Signature Since we use the CLIQUE(6=) arc generator on the items of the VECTORS collection, the
expression |VECTORS| · |VECTORS| − |VECTORS| corresponds to the maximum number of
arcs of the final graph. Therefore we can rewrite the graph property NARC = |VECTORS|·
|VECTORS| − |VECTORS| to NARC ≥ |VECTORS| · |VECTORS| − |VECTORS|. This leads to
simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.5 ALL DIFFER FROM EXACTLY K POS

I B J DESCRIPTION LINKS GRAPH

Origin Inspired by ALL DIFFER FROM AT LEAST K POS.

Constraint ALL DIFFER FROM EXACTLY K POS(K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 1
|VECTOR| ≥ K

K ≥ 0
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose Enforce all pairs of distinct vectors of the VECTORS collection to differ from exactly K

positions. Enforce K = 0 when |VECTORS| < 2.

Example (2, 〈vec− 〈0, 3, 0, 6〉 , vec− 〈0, 3, 4, 1〉 , vec− 〈9, 3, 4, 6〉〉)

The ALL DIFFER FROM EXACTLY K POS constraint holds since:

• The first and second vectors differ from 2 positions, which is equal to K = 2.

• The first and third vectors differ from 2 positions, which is equal to K = 2.

• The second and third vectors differ from 2 positions, which is equal to K = 2.

All solutions Consider the following colouring problem where we have to colour each block of a
parquet so that in any pair of rows (respectively columns) exactly two adjacent blocks
are coloured with the same colour (pink or cyan). The problem is known under
the name parquets anallagmatiques in [280]. To model this problem we post two
ALL DIFFER FROM EXACTLY K POS constraints: a first one for the rows and a second
one for the columns. To break some symmetry (1) we fix X11 to 0 since values 0
and 1 are interchangeable, and (2) we order lexicographically the rows by enforcing a
LEX CHAIN LESSEQ constraint. Finally to limit the number of solutions we restrictX12 to
1. Figure 5.5 provides the six solutions to the previous problem.

X11 ∈ [0, 1], X12 ∈ [0, 1], X13 ∈ [0, 1], X14 ∈ [0, 1],
X21 ∈ [0, 1], X22 ∈ [0, 1], X23 ∈ [0, 1], X24 ∈ [0, 1],
X31 ∈ [0, 1], X32 ∈ [0, 1], X33 ∈ [0, 1], X34 ∈ [0, 1],
X41 ∈ [0, 1], X42 ∈ [0, 1], X43 ∈ [0, 1], X44 ∈ [0, 1],
X11 = 0,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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LEX CHAIN LESSEQ


〈 〈X11, X12, X13, X14〉,
〈X21, X22, X33, X24〉,
〈X31, X32, X33, X34〉,
〈X41, X42, X43, X44〉

〉,

ALL DIFFER FROM EXACTLY K POS


〈

2,

〈X11, X12, X13, X14〉,
〈X21, X22, X33, X24〉,
〈X31, X32, X33, X34〉,
〈X41, X42, X43, X44〉

〉,

ALL DIFFER FROM EXACTLY K POS


〈

2,

〈X11, X21, X31, X41〉,
〈X12, X22, X32, X42〉,
〈X13, X23, X33, X43〉,
〈X14, X24, X34, X44〉

〉,

X12 = 1.

¬  ®

¯ ° ±

¬ (〈〈0,1,0,0〉, 〈0,1,1,1〉, 〈1,1,0,1〉, 〈1,1,1,0〉〉)
 (〈〈0,1,0,0〉, 〈1,0,0,0〉, 〈1,1,0,1〉, 〈1,1,1,0〉〉)
® (〈〈0,1,0,1〉, 〈0,1,1,0〉, 〈1,1,0,0〉, 〈1,1,1,1〉〉)
¯ (〈〈0,1,0,1〉, 〈1,0,0,1〉, 〈1,1,0,0〉, 〈1,1,1,1〉〉)
° (〈〈0,1,1,0〉, 〈1,0,1,0〉, 〈1,1,0,0〉, 〈1,1,1,1〉〉)
± (〈〈0,1,1,1〉, 〈1,0,1,1〉, 〈1,1,0,1〉, 〈1,1,1,0〉〉)

Figure 5.5: Parquet flooring such that for every pair of rows and for every pair of
columns we have exactly two adjacent blocks with the same colour (to every variable
corresponds a block for which the value is mapped to a colour, pink for 0 and cyan for
1)

Typical K > 0
K < |VECTOR|
|VECTORS| > 1

Symmetries • Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. VECTORS.

See also implies: ALL DIFFER FROM AT LEAST K POS (= K replaced by ≥ K),
ALL DIFFER FROM AT MOST K POS (= K replaced by ≤ K).

part of system of constraints: DIFFER FROM EXACTLY K POS.

used in graph description: DIFFER FROM EXACTLY K POS.

Keywords characteristic of a constraint: disequality, vector.

constraint type: system of constraints, decomposition.

final graph structure: no loop, symmetric.

Cond. implications ALL DIFFER FROM EXACTLY K POS(K, VECTORS)
with K ≤ |VECTORS|

implies ATLEAST NVECTOR(NVEC, VECTORS).


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VECTORS

Arc generator CLIQUE(6=) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) DIFFER FROM EXACTLY K POS(K, vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ |VECTORS| − |VECTORS|

Graph class • NO LOOP

• SYMMETRIC

Graph model The Arc constraint(s) slot uses the DIFFER FROM EXACTLY K POS constraint defined in
this catalogue.

Parts (A) and (B) of Figure 5.6 respectively show the initial and final graph associated with
the Example slot. Since we use the NARC graph property, the arcs of the final graph are
stressed in bold. The previous constraint holds since exactly 3 · (3− 1) = 6 arc constraints
hold.

VECTORS

1

2

3

NARC=6

1:0
  3
  0
  6

2:0
  3
  4
  1

3:9
  3
  4
  6

(A) (B)

Figure 5.6: Initial and final graph of the ALL DIFFER FROM EXACTLY K POS con-
straint

Signature Since we use the CLIQUE( 6=) arc generator on the items of the VECTORS collection, the
expression |VECTORS| · |VECTORS| − |VECTORS| corresponds to the maximum number of
arcs of the final graph. Therefore we can rewrite the graph property NARC = |VECTORS|·
|VECTORS| − |VECTORS| to NARC ≥ |VECTORS| · |VECTORS| − |VECTORS|. This leads to
simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.6 ALL EQUAL

I B J DESCRIPTION LINKS GRAPH

Origin Derived from SOFT ALL EQUAL MIN CTR

Constraint ALL EQUAL(VARIABLES)

Synonym REL.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 0

Purpose Enforce all variables of the collection VARIABLES to take the same value.

Example (〈5, 5, 5, 5〉)

The ALL EQUAL constraint holds since all its variables are fixed to value 5.

All solutions Figure 5.7 gives all solutions to the following non ground instance of the ALL EQUAL

constraint: V1 ∈ [0, 6], V2 ∈ [0, 2], V3 ∈ [0, 2], V4 ∈ [1, 4], ALL EQUAL(〈V1, V2, V3, V4〉).

¬ (〈1, 1, 1, 1〉)
 (〈2, 2, 2, 2〉)

Figure 5.7: All solutions corresponding to the non ground example of the ALL EQUAL
constraint of the All solutions slot

Typical |VARIABLES| > 2
minval(VARIABLES.var) 6= 0

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Contractible wrt. VARIABLES.

Counting


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Solutions 3 4 5 6 7 8 9

Number of solutions for ALL EQUAL: domains 0..n
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Systems ATMOSTNVALUE in Choco, REL in Gecode, ALL EQUAL in MiniZinc.

See also generalisation: NVALUE (a variable counting the number of distinct values is introduced).

implies: ALL EQUAL EXCEPT 0, CONSECUTIVE VALUES, DECREASING, INCREASING,
MULTI GLOBAL CONTIGUITY.

negation: NOT ALL EQUAL.

soft variant: SOFT ALL EQUAL MAX VAR,
SOFT ALL EQUAL MIN CTR (decomposition-based violation measure),
SOFT ALL EQUAL MIN VAR (variable-based violation measure).

specialisation: EQ (equality between just two variables).

Keywords constraint type: value constraint.

Cond. implications ALL EQUAL(VARIABLES)
with |VARIABLES| > 1

implies SOME EQUAL(VARIABLES).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#all_equal
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model We use the arc generator PATH in order to link consecutive variables of the collection
VARIABLES by a binary equality constraint.

Parts (A) and (B) of Figure 5.8 respectively show the initial and final graph of the Example
slot. Since we use the NARC graph property, the arcs of the final graph are stressed in
bold.

VARIABLES

1

2

3

4

NARC=3

1:5

2:5

3:5

4:5

(A) (B)

Figure 5.8: Initial and final graph of the ALL EQUAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.7 ALL EQUAL EXCEPT 0
I B J DESCRIPTION LINKS AUTOMATON

Origin Derived from ALL EQUAL

Constraint ALL EQUAL EXCEPT 0(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 0

Purpose Enforce all variables of the collection VARIABLES that are different from 0 to take the
same value.

Example (〈5, 0, 5, 5〉)

The ALL EQUAL EXCEPT 0 constraint holds since all its variables are fixed to val-
ues 0 or 5.

Typical |VARIABLES| > 1

Typical model ATLEAST(2, VARIABLES, 0)
nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var that are both different
from 0 can be swapped; all occurrences of a value of VARIABLES.var that is dif-
ferent from 0 can be renamed to any unused value that is also different from 0.

Arg. properties Contractible wrt. VARIABLES.

See also implied by: ALL EQUAL, GLOBAL CONTIGUITY.

Keywords characteristic of a constraint: joker value, automaton, automaton with counters.

constraint type: value constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Typical model
Typical conditions on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.9 depicts an automaton that only accepts all the solutions to the
ALL EQUAL EXCEPT 0 constraint. This automaton uses a counter in order to record the
value of the first non-zero variable VARi already encountered. To each variable VARi of the
collection VARIABLES corresponds a 0-1 signature variable Si. The following signature
constraint links VARi and Si: VARi 6= 0⇔ Si.

s{C ← 0}

t

VARi = 0

VARi 6= 0,
{C ← VARi}

VARi = 0
VARi 6= 0,
{C = VARi}

Figure 5.9: Automaton (with one counter) of the ALL EQUAL EXCEPT 0 constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.10: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the ALL EQUAL EXCEPT 0 constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.8 ALL EQUAL PEAK

I B J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK and ALL EQUAL.

Constraint ALL EQUAL PEAK(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vk and Vk > Vk+1.
Enforce all the peaks of the sequence VARIABLES to be assigned the same value, i.e. to
be located at the same altitude.

Example (〈1, 5, 5, 4, 3, 5, 2, 7〉)

The ALL EQUAL PEAK constraint holds since the two peaks, in bold, of the se-
quence 1 5 5 4 3 5 2 7 are located at the same altitude 5. Figure 5.11 depicts the solution
associated with the example.

1

5 5
4

3

5

2

7

first
peak

second
peak

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

6

7

8

Altitude = 5

1

5 5

4

3

5

2

7

variables

va
lu

es

Figure 5.11: Illustration of the Example slot: a sequence of eight variables V1, V2, V3,
V4, V5, V6, V7, V8 respectively fixed to values 1, 5, 5, 4, 3, 5, 2, 7 and its corresponding
two peaks, in red, both located at altitude 5

Note that the ALL EQUAL PEAK constraint does not enforce that the maximum value of
the sequence VARIABLES corresponds to the altitude of its peaks since, as shown by the


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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example, the sequence can ends up with an increasing subsequence that go beyond the
altitude of its peaks. It also does not enforce that the sequence VARIABLES contains at least
one peak.

All solutions Figure 5.12 gives all solutions to the following non ground instance of the
ALL EQUAL PEAK constraint: V1 ∈ {0, 5}, V2 ∈ [2, 3], V3 = 2, V4 ∈ [3, 4], V5 = 1,
ALL EQUAL PEAK(〈V1, V2, V3, V4, V5〉).

¬ (〈0, 2, 2,3, 1〉)
 (〈0, 2, 2,4, 1〉)
® (〈0,3, 2,3, 1〉)
¯ (〈5, 2, 2,3, 1〉)
° (〈5, 2, 2,4, 1〉)
± (〈5,3, 2,3, 1〉)
² (〈5, 3, 2,4, 1〉)

Figure 5.12: All solutions corresponding to the non ground example of the
ALL EQUAL PEAK constraint of the All solutions slot where each peak is coloured
in orange

Typical |VARIABLES| ≥ 5
range(VARIABLES.var) > 1
PEAK(VARIABLES.var) ≥ 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8 9
Solutions 9 64 625 7330 93947 1267790 17908059 266201992

Number of solutions for ALL EQUAL PEAK: domains 0..n


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for ALL EQUAL PEAK

See also implied by: ALL EQUAL PEAK MAX.

implies: DECREASING PEAK, INCREASING PEAK.

related: ALL EQUAL VALLEY, PEAK.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications • ALL EQUAL PEAK(VARIABLES)
with PEAK(VARIABLES.var) > 1

implies SOME EQUAL(VARIABLES).

• ALL EQUAL PEAK(VARIABLES)
with PEAK(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.13 depicts the automaton associated with the ALL EQUAL PEAK constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or decreasing mode ({= | >}∗)
i : increasing (before first potential peak) mode (< {< | =}∗)
j : decreasing (after a peak) mode (> {> | =}∗)
k : increasing (after a peak) mode (< {< | =}∗)

STATE SEMANTICS

s i

jk

{Altitude ← 0}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ← VARi}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude = VARi}

Figure 5.13: Automaton for the ALL EQUAL PEAK constraint (note the conditional
transition from state k to state j testing that the counter Altitude is equal to VARi for
enforcing that all peaks are located at the same altitude)

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.14: Hypergraph of the reformulation corresponding to the automaton of the
ALL EQUAL PEAK constraint where Ai stands for the value of the counter Altitude
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.9 ALL EQUAL PEAK MAX

I B J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK and ALL EQUAL.

Constraint ALL EQUAL PEAK MAX(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vk and Vk > Vk+1.
Enforce all the peaks of the sequence VARIABLES to be assigned the same value, i.e. to
be located at the same altitude corresponding to the maximum value of the sequence
VARIABLES.

Example (〈1, 5, 5, 4, 3, 5, 2, 5〉)

The ALL EQUAL PEAK MAX constraint holds since the two peaks, in bold, of the
sequence 1 5 5 4 3 5 2 5 are located at the same altitude 5 that is also the maximum
value of the sequence 1 5 5 4 3 5 2 5. Figure 5.15 depicts the solution associated with the
example.

1

5 5
4

3

5

2

5

Note that the ALL EQUAL PEAK MAX constraint does not enforce that the sequence
VARIABLES contains at least one peak.

Typical |VARIABLES| ≥ 5
range(VARIABLES.var) > 1
PEAK(VARIABLES.var) ≥ 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.



ALL EQUAL PEAK MAX 523
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Figure 5.15: Illustration of the Example slot: a sequence of eight variables V1, V2, V3,
V4, V5, V6, V7, V8 respectively fixed to values 1, 5, 5, 4, 3, 5, 2, 5 and its corresponding
two peaks, in red, both located at altitude 5 that also corresponds to the maximum value
of the sequence

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 605 6707 81648 1065542 14829903

Number of solutions for ALL EQUAL PEAK MAX: domains 0..n
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See also implied by: NO PEAK.

implies: ALL EQUAL PEAK.

related: ALL EQUAL VALLEY MIN, PEAK.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications • ALL EQUAL PEAK MAX(VARIABLES)
with PEAK(VARIABLES.var) > 1

implies SOME EQUAL(VARIABLES).

• ALL EQUAL PEAK MAX(VARIABLES)
with PEAK(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.16 depicts the automaton associated with the ALL EQUAL PEAK MAX constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a signature variable Si. The following signature constraint links VARi, VARi+1 and
Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or decreasing mode ({= | >}∗)
i : increasing (before first potential peak) mode (< {< | =}∗)
j : decreasing (after a peak) mode (> {> | =}∗)
k : increasing (after a peak) mode (< {< | =}∗)

STATE SEMANTICS

Altitude ≥ VAR|VARIABLES|

s i

jk

{Altitude ← VAR|VARIABLES|}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ← VARi}

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ≥ VARi}

VARi ≤ VARi+1,
{Altitude ≥ VARi}

VARi > VARi+1,
{Altitude = VARi}

Figure 5.16: Automaton for the ALL EQUAL PEAK MAX constraint; note the condi-
tional transition from state k to state j testing that the counter Altitude is equal to VARi
for enforcing that all peaks are located at the same altitude; the conditional transitions
from j to k and from k to k and the final check Altitude ≥ VAR|VARIABLES| enforce the
maximum value of the sequence VARIABLES to not exceed the altitude of the eventual
peaks.

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.17: Hypergraph of the reformulation corresponding to the automaton of
the ALL EQUAL PEAK MAX constraint where A stands for the value of the counter
Altitude (since all states of the automaton are accepting there is no restriction on the
last variable Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.10 ALL EQUAL VALLEY

I B J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY and ALL EQUAL.

Constraint ALL EQUAL VALLEY(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (1 < i ≤ k) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vk and Vk < Vk+1.
Enforce all the valleys of the sequence VARIABLES to be assigned the same value, i.e. to
be located at the same altitude.

Example (〈1, 5, 5, 4, 2, 2, 6, 2, 7〉)

The ALL EQUAL VALLEY constraint holds since the two valleys, in bold, of the se-
quence 1 5 5 4 2 2 6 2 7 are located at the same altitude 2. Figure 5.18 depicts the solution
associated with the example.

1

5 5
4

2 2

6

2

7

first
valley

second
valley

V1 V2 V3 V4 V5 V6 V7 V8 V9

1

3

4

5

6

7

8

Altitude = 2

1

5 5

4

2 2

6

2

7

variables
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lu

es

Figure 5.18: Illustration of the Example slot: a sequence of nine variables V1, V2,
V3, V4, V5, V6, V7, V8, V9 respectively fixed to values 1, 5, 5, 4, 2, 2, 6, 2, 7 and its
corresponding two valleys, in red, both located at altitude 2

Note that the ALL EQUAL VALLEY constraint does not enforce that the minimum value
of the sequence VARIABLES corresponds to the altitude of its valleys since, as shown by


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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the example, the sequence can starts with an increasing subsequence that start below the
altitude of its valleys. It also does not enforce that the sequence VARIABLES contains at
least one valley.

All solutions Figure 5.19 gives all solutions to the following non ground instance of the
ALL EQUAL VALLEY constraint: V1 ∈ {0, 5}, V2 ∈ [2, 3], V3 = 4, V4 ∈ [1, 2], V5 ∈ [4, 5],
ALL EQUAL VALLEY(〈V1, V2, V3, V4, V5〉).

¬ (〈0, 2, 4,1, 4〉)
 (〈0, 2, 4,1, 5〉)
® (〈0, 2, 4,2, 4〉)
¯ (〈0, 2, 4,2, 5〉)
° (〈0, 3, 4,1, 4〉)

± (〈0, 3, 4,1, 5〉)
² (〈0, 3, 4,2, 4〉)
³ (〈0, 3, 4,2, 5〉)
´ (〈5,2, 4,2, 4〉)
µ (〈5,2, 4,2, 5〉)

Figure 5.19: All solutions corresponding to the non ground example of the
ALL EQUAL VALLEY constraint of the All solutions slot where each valley is coloured
in orange

Typical |VARIABLES| ≥ 5
range(VARIABLES.var) > 1
VALLEY(VARIABLES.var) ≥ 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7330 93947 1267790 17908059

Number of solutions for ALL EQUAL VALLEY: domains 0..n


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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See also implied by: ALL EQUAL VALLEY MIN.

implies: DECREASING VALLEY, INCREASING VALLEY.

related: ALL EQUAL PEAK, VALLEY.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications • ALL EQUAL VALLEY(VARIABLES)
with VALLEY(VARIABLES.var) > 1

implies SOME EQUAL(VARIABLES).

• ALL EQUAL VALLEY(VARIABLES)
with VALLEY(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.20 depicts the automaton associated with the ALL EQUAL VALLEY constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or increasing mode ({= | >}∗)
i : decreasing (before first potential valley) mode (< {< | =}∗)
j : increasing (after a valley) mode (> {> | =}∗)
k : decreasing (after a valley) mode (< {< | =}∗)

STATE SEMANTICS

s i

jk

{Altitude ← 0}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ← VARi}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude = VARi}

Figure 5.20: Automaton for the ALL EQUAL VALLEY constraint (note the conditional
transition from state k to state j testing that the counter Altitude is equal to VARi for
enforcing that all valleys are located at the same altitude)

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.21: Hypergraph of the reformulation corresponding to the automaton of the
ALL EQUAL VALLEY constraint where Ai stands for the value of the counter Altitude
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.11 ALL EQUAL VALLEY MIN

I B J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY and ALL EQUAL.

Constraint ALL EQUAL VALLEY MIN(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (1 < i ≤ k) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vk and Vk < Vk+1.
Enforce all the valleys of the sequence VARIABLES to be assigned the same value, i.e. to
be located at the same altitude corresponding to the minimum value of the sequence
VARIABLES.

Example (〈2, 5, 5, 4, 2, 2, 6, 2, 7〉)

The ALL EQUAL VALLEY MIN constraint holds since the two valleys, in bold, of
the sequence 2 5 5 4 2 2 6 2 7 are located at the same altitude 2 that is also the minimum
value of the sequence 2 5 5 4 2 2 6 2 7. Figure 5.22 depicts the solution associated with
the example.

2

5 5
4

2 2

6

2

7

Note that the ALL EQUAL VALLEY MIN constraint does not enforce that the sequence
VARIABLES contains at least one valley.

Typical |VARIABLES| ≥ 5
range(VARIABLES.var) > 1
VALLEY(VARIABLES.var) ≥ 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Figure 5.22: Illustration of the Example slot: a sequence of nine variables V1, V2,
V3, V4, V5, V6, V7, V8, V9 respectively fixed to values 2, 5, 5, 4, 2, 2, 6, 2, 7 and its
corresponding two valleys, in red, both located at altitude 2 that also corresponds to the
minimum value of the sequence

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 605 6707 81648 1065542 14829903

Number of solutions for ALL EQUAL VALLEY MIN: domains 0..n
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See also implied by: NO VALLEY.

implies: ALL EQUAL VALLEY.

related: ALL EQUAL PEAK MAX, VALLEY.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications • ALL EQUAL VALLEY MIN(VARIABLES)
with VALLEY(VARIABLES.var) > 1

implies SOME EQUAL(VARIABLES).

• ALL EQUAL VALLEY MIN(VARIABLES)
with VALLEY(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.23 depicts the automaton associated with the ALL EQUAL VALLEY MIN con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi >
VARi+1 ⇔ Si = 2).

s : initial stationary or increasing mode ({= | >}∗)
i : decreasing (before first potential valley) mode (< {< | =}∗)
j : increasing (after a valley) mode (> {> | =}∗)
k : decreasing (after a valley) mode (< {< | =}∗)

STATE SEMANTICS

Altitude ≤ VAR|VARIABLES|

s i

jk

{Altitude ← VAR|VARIABLES|}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ← VARi}

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ≤ VARi}

VARi ≥ VARi+1,
{Altitude ≤ VARi}

VARi < VARi+1,
{Altitude = VARi}

Figure 5.23: Automaton for the ALL EQUAL VALLEY MIN constraint; note the condi-
tional transition from state k to state j testing that the counter Altitude is equal to VARi
for enforcing that all valleys are located at the same altitude; the conditional transitions
from j to k and from k to k and the final check Altitude ≤ VAR|VARIABLES| enforce the
minimum value of the sequence VARIABLES to not be located below the altitude of the
eventual valleys.
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Figure 5.24: Hypergraph of the reformulation corresponding to the automaton of
the ALL EQUAL VALLEY MIN constraint where A stands for the value of the counter
Altitude (since all states of the automaton are accepting there is no restriction on the
last variable Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.12 ALL INCOMPARABLE

I B J DESCRIPTION LINKS GRAPH

Origin Inspired by incomparable rectangles.

Constraint ALL INCOMPARABLE(VECTORS)

Synonym ALL INCOMPARABLES.

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 1
required(VECTORS, vec)
|VECTORS| ≥ 1
same size(VECTORS, vec)

Purpose

Enforce for each pair of distinct vectors of the VECTORS collection the fact that
they are incomparable. Two vectors VECTOR1 and VECTOR2 are incomparable if and
only, when the components of both vectors are ordered, and respectively denoted by
SVECTOR1 and SVECTOR2, we neither have SVECTOR1[i].var ≤ SVECTOR2[i].var
(for all i ∈ [1, |SVECTOR1|]) nor have SVECTOR2[i].var ≤ SVECTOR1[i].var (for all
i ∈ [1, |SVECTOR1|]).

Example


〈

vec− 〈1, 18〉 ,
vec− 〈2, 16〉 ,
vec− 〈3, 13〉 ,
vec− 〈4, 11〉 ,
vec− 〈5, 10〉 ,
vec− 〈6, 9〉 ,
vec− 〈7, 7〉

〉


The ALL INCOMPARABLE constraint holds since all distinct pairs of vectors are
incomparable as illustrated by Figure 5.25.

All solutions Figure 5.26 gives all solutions to the following non ground instance of the
ALL INCOMPARABLE constraint: U1 ∈ [1, 2], V1 ∈ [0, 5], U2 ∈ [3, 5], V2 ∈ [2, 3],
U3 ∈ [0, 6], V3 ∈ [2, 5], ALL INCOMPARABLE(〈〈U1, V1〉, 〈U2, V2〉, 〈U3, V3〉〉).

Typical |VECTOR| > 1
|VECTORS| > 1
|VECTORS| > |VECTOR|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬

¬

¬ vec− 〈1, 18〉
 vec− 〈2, 16〉
® vec− 〈3, 13〉
¯ vec− 〈4, 11〉
° vec− 〈5, 10〉
± vec− 〈6, 9〉
² vec− 〈7, 7〉

VECTORS

Figure 5.25: Illustrating the incomparability of vectors 〈1, 18〉, 〈2, 16〉, 〈3, 13〉, 〈4, 11〉,
〈5, 10〉, 〈6, 9〉, 〈7, 7〉: first to each vector we associate a rectangle whose sizes are the
components of the vector; second no matter whether we rotate a rectangle from 90◦ or
not, one rectangle can not be included in another rectangle.

¬ (〈〈1, 4〉, 〈3, 2〉, 〈0, 5〉〉)
 (〈〈1, 4〉, 〈3, 3〉, 〈0, 5〉〉)
® (〈〈1, 5〉, 〈3, 3〉, 〈2, 4〉〉)
¯ (〈〈1, 5〉, 〈3, 3〉, 〈4, 2〉〉)
° (〈〈1, 5〉, 〈4, 2〉, 〈3, 3〉〉)
± (〈〈2, 4〉, 〈3, 3〉, 〈0, 5〉〉)
² (〈〈2, 4〉, 〈3, 3〉, 〈1, 5〉〉)

Figure 5.26: All solutions corresponding to the non ground example of the
ALL INCOMPARABLE constraint of the All solutions slot

Symmetry Items of VECTORS are permutable.

Arg. properties Contractible wrt. VECTORS.

Usage Figure 5.27 illustrates the use of the ALL INCOMPARABLE constraint in the context of a
tiling problem.

See also implies: LEX ALLDIFFERENT.

part of system of constraints: INCOMPARABLE.

used in graph description: INCOMPARABLE.

Keywords characteristic of a constraint: vector.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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∀i ∈ [1, 7] : `i ∈ [1, 22], hi ∈ [1, 13]

∀i ∈ [1, 7] : xi ∈ [1, 22], xi + `i ≤ 23

∀i ∈ [1, 7] : yi ∈ [1, 13], yi + hi ≤ 14∑
i∈[1,7] `ihi = 22 · 13

ALL INC


〈 vec− 〈`1, h1〉,

vec− 〈`2, h2〉,
vec− 〈`3, h3〉,
vec− 〈`4, h4〉,
vec− 〈`5, h5〉,
vec− 〈`6, h6〉,
vec− 〈`7, h7〉

〉


DIFFN


〈 orth− 〈ori− x1 siz− `1, ori− y1 siz− h1〉,

orth− 〈ori− x2 siz− `2, ori− y2 siz− h2〉,
orth− 〈ori− x3 siz− `3, ori− y3 siz− h3〉,
orth− 〈ori− x4 siz− `4, ori− y4 siz− h4〉,
orth− 〈ori− x5 siz− `5, ori− y5 siz− h5〉,
orth− 〈ori− x6 siz− `6, ori− y6 siz− h6〉,
orth− 〈ori− x7 siz− `7, ori− y7 siz− h7〉

〉


16 × 2

4 × 11 5 × 10

18 × 1

7 × 7

13 × 3

6 × 9

22

1
3

Figure 5.27: Model and solution for tiling a rectangle of size 22×13 with 7 rectangles
of incomparable sizes, where ALL INC is a shortcut for ALL INCOMPARABLE; the
constraints

∑
i∈[1,7] `ihi = 22 · 13, ALL INCOMPARABLE, and DIFFN respectively

express the tiling of the 22× 13 big rectangle, the incomparability of the sizes of the 7
rectangles to place, and the non-overlap of the 7 rectangles.

constraint type: system of constraints, decomposition.

final graph structure: no loop, symmetric.

Cond. implications • ALL INCOMPARABLE(VECTORS)
with |VECTOR| = 2

implies K DISJOINT(SETS : VECTORS).

• ALL INCOMPARABLE(VECTORS)
with |VECTOR| = 2

implies TWIN(PAIRS : VECTORS).


Cond. implications
Conditional implications.
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Arc input(s) VECTORS

Arc generator CLIQUE(6=) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) INCOMPARABLE(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ |VECTORS| − |VECTORS|

Graph class • NO LOOP

• SYMMETRIC

Graph model The Arc constraint(s) slot uses the INCOMPARABLE constraint defined in this catalogue.

Parts (A) and (B) of Figure 5.28 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. The previous constraint holds since exactly 3 · (3− 1) = 6 arc
constraints hold.

VECTORS

1

2

3

4

5

6

7

NARC=42

1:1
  18

2:2
  16

3:3
  13

4:4
  11

5:5
  10

6:6
  9

7:7
  7

(A) (B)

Figure 5.28: Initial and final graph of the ALL INCOMPARABLE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



540 ALL MIN DIST

5.13 ALL MIN DIST

I B J DESCRIPTION LINKS GRAPH

Origin [354]

Constraint ALL MIN DIST(MINDIST, VARIABLES)

Synonyms MINIMUM DISTANCE, INTER DISTANCE.

Arguments MINDIST : int

VARIABLES : collection(var−dvar)

Restrictions MINDIST > 0
|VARIABLES| < 2 ∨ MINDIST <range(VARIABLES.var)
required(VARIABLES, var)

Purpose Enforce for each pair (vari, varj) of distinct variables of the collection VARIABLES that
|vari − varj | ≥ MINDIST.

Example (2, 〈5, 1, 9, 3〉)

The ALL MIN DIST constraint holds since the following expressions |5 − 1|, |5 − 9|,
|5 − 3|, |1 − 9|, |1 − 3|, |9 − 3| are all greater than or equal to the first argument
MINDIST = 2 of the ALL MIN DIST constraint.

0 2 4 6 7 8 101 3 5 9

≥ 2 ≥ 2 ≥ 2

All solutions Figure 5.29 gives all solutions to the following non ground instance of the
ALL MIN DIST constraint: V1 ∈ [0, 5], V2 ∈ [3, 9], V3 ∈ [5, 7], V4 ∈ [2, 10],
ALL MIN DIST(3, 〈V1, V2, V3, V4〉).

¬ (3, 〈0, 3, 6, 9〉)
 (3, 〈0, 3, 6, 10〉)
® (3, 〈0, 3, 7, 10〉)
¯ (3, 〈0, 4, 7, 10〉)
° (3, 〈0, 9, 6, 3〉)
± (3, 〈1, 4, 7, 10〉)

1 2 4 5 7 8 100 3 6 9

≥ 3 ≥ 3 ≥ 3
¬
° 1 2 4 5 7 8 90 3 6 10

≥ 3 ≥ 3 ≥ 3



1 2 4 5 6 8 90 3 7 10

≥ 3 ≥ 3 ≥ 3

®

1 2 3 5 6 8 90 4 7 10

≥ 3 ≥ 3 ≥ 3

¯

0 2 3 5 6 8 91 4 7 10

≥ 3 ≥ 3 ≥ 3

±

Figure 5.29: All solutions corresponding to the non ground example of the
ALL MIN DIST constraint of the All solutions slot


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical MINDIST > 1
|VARIABLES| > 1

Symmetries • MINDIST can be decreased to any value ≥ 1.

• Items of VARIABLES are permutable.

• Two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Usage The ALL MIN DIST constraint was initially created for handling frequency allocation prob-
lems. In [12] it is used for scheduling tasks that all have the same fixed duration in the
context of air traffic management in the terminal radar control area of airports.

Remark The ALL MIN DIST constraint can be modelled as a set of tasks that should not overlap. For
each variable var of the VARIABLES collection we create a task t where var and MINDIST

respectively correspond to the origin and the duration of t.

Some solvers use in a pre-processing phase, while stating constraints of the form |Xi −
Xj | ≥ Dij (where Xi and Xj are domain variables and Dij is a constant), an algo-
rithm for automatically extracting large cliques [97] from such inequalities in order to state
ALL MIN DIST constraints.

Algorithm K. Artiouchine and P. Baptiste came up with a cubic time complexity algorithm achieving
bound-consistency in [12, 13] based on the adaptation of a feasibility test algorithm from
M.R. Garey et al. [196]. Later on, C.-G. Quimper et al., proposed a quadratic algorithm
achieving the same level of consistency in [343].

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 8 24 120 720 5040 40320 362880

Number of solutions for ALL MIN DIST: domains 0..n


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 8 24 120 720 5040 40320 362880

Parameter
value

1 6 24 120 720 5040 40320 362880
2 2 - - - - - -

Solution count for ALL MIN DIST: domains 0..n

0.13 0.14 0.15 0.16 0.17
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size 6
size 7
size 8
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See also generalisation: DIFFN (line segment, of same length, replaced by orthotope),
DISJUNCTIVE (line segment, of same length, replaced by line segment),
MULTI INTER DISTANCE (LIMIT parameter introduced to specify capacity ≥1).

implies: ALLDIFFERENT INTERVAL, SOFT ALLDIFFERENT VAR.

related: DISTANCE.

specialisation: ALLDIFFERENT (line segment, of same length, replaced by variable).

Keywords application area: frequency allocation problem, air traffic management.

characteristic of a constraint: sort based reformulation.

constraint type: value constraint, decomposition, scheduling constraint.

filtering: bound-consistency.

final graph structure: acyclic.

problems: maximum clique.

Cond. implications ALL MIN DIST(MINDIST, VARIABLES)
implies SOFT ALL EQUAL MAX VAR(N, VARIABLES)

when N ≥ |VARIABLES| − 1.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≥ MINDIST

Graph property(ies) NARC= |VARIABLES| ∗ (|VARIABLES| − 1)/2

Graph class • ACYCLIC
• NO LOOP

Graph model We generate a clique with a minimum distance constraint between each pair of distinct
vertices and state that the number of arcs of the final graph should be equal to the number
of arcs of the initial graph.

Parts (A) and (B) of Figure 5.30 respectively show the initial and final graph associated
with the Example slot. The ALL MIN DIST constraint holds since all the arcs of the initial
graph belong to the final graph: all the minimum distance constraints are satisfied.

VARIABLES

1

2

3

4

NARC=6

1:5

2:1

3:9

4:3

(A) (B)

Figure 5.30: Initial and final graph of the ALL MIN DIST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.14 ALLDIFFERENT

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [267]

Constraint ALLDIFFERENT(VARIABLES)

Synonyms ALLDIFF, ALLDISTINCT, DISTINCT, BOUND ALLDIFFERENT, BOUND ALLDIFF,
BOUND DISTINCT, REL.

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values.

Example (〈5, 1, 9, 3〉)

The ALLDIFFERENT constraint holds since all the values 5, 1, 9 and 3 are distinct.

All solutions Figure 5.31 gives all solutions to the following non ground instance of the ALLDIFFERENT

constraint: V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [1, 6], V4 ∈ [2, 5], V5 ∈ [2, 3], V6 ∈ [1, 6],
ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6〉).

¬ (〈4, 2, 1, 5, 3, 6〉)
 (〈4, 2, 6, 5, 3, 1〉)
® (〈4, 3, 1, 5, 2, 6〉)
¯ (〈4, 3, 6, 5, 2, 1〉)

4

2
1

5

3

6

¬
4

2

6
5

3

1



4
3

1

5

2

6

®
4

3

6
5

2
1

¯

Figure 5.31: All solutions corresponding to the non ground example of the
ALLDIFFERENT constraint of the All solutions slot

Typical |VARIABLES| > 2

Symmetries • Items of VARIABLES are permutable.

• Two distinct values of VARIABLES.var can be swapped; a value of
VARIABLES.var can be renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. VARIABLES.

Usage The ALLDIFFERENT constraint occurs in most practical problems directly or indirectly. A
classical example is the n-queens chess puzzle problem: Place n queens on an n by n
chessboard in such a way that no queen attacks another. Two queens attack each other if
they are located on the same column, on the same row, or on the same diagonal. This can be
modelled as the conjunction of three ALLDIFFERENT constraints. We associate to column i
of the chessboard a domain variableXi that gives the row number where the corresponding
queen is located. The three ALLDIFFERENT constraints are:

• alldifferent(X1, X2 + 1, . . . , Xn + n− 1) for the descending diagonals,

• alldifferent(X1, X2, . . . , Xn) for the rows,

• alldifferent(X1 + n− 1, X2 + n− 2, . . . , Xn) for the ascending diagonals.

They are respectively depicted by parts (A), (C) and (D) of Figure 5.32. Figure 5.33
makes explicit the link between the two families of diagonals and the corresponding
ALLDIFFERENT constraints. Note that this model matches the checker introduced by Gauss
to test whether a permutation of row numbers is a solution or not to the 8 queens problem:
first add the numbers 1 up to 8 to the permutation and check that the resulting numbers
are distinct, second add the numbers 8 down to 1 and perform the same check [451, pages
165–166].
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Figure 5.32: Descending diagonals (A-B), rows (C) and ascending diagonals (D-E)

A second example taken from [15], where the bipartite graph associated with the
ALLDIFFERENT constraint is convex, is a ski assignment problem: “a set of skiers have
each specified the smallest and largest ski sizes they will accept from a given set of ski
sizes”. The task is to find a ski size for each skier.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Q

i j

Xi

j
−
i

Xj 6= Xi + (j − i)

j
−
i

Xj 6= Xi − (j − i)

j − i

∀i ∈ [1, n− 1], ∀j ∈ [i+ 1, n] we have :

(A)

ALLDIFFERENT(〈X1 + n− 1, . . . , Xn〉) :

⇒
∀i ∈ [1, n− 1], ∀j ∈ [i + 1, n] :
Xi + n− i 6= Xj + n− j,
i.e.Xj 6= Xi + (j − i)

ALLDIFFERENT(〈X1, . . . , Xn + n− 1〉) :

⇒
∀i ∈ [1, n− 1], ∀j ∈ [i + 1, n] :
Xi + i− 1 6= Xj + j − 1,
i.e.Xj 6= Xi − (j − i)

(B)

Figure 5.33: (A) For every pair of columns i, j (i < j), given the position Xi of the
queen on column i, we respectively have from the ascending and descending diago-
nals that Xj 6= Xi + (j − i) and Xj 6= Xi − (j − i) (B) Equivalence of the two
ALLDIFFERENT constraints respectively associated with the ascending and descend-
ing diagonals with the two families of disequalities (i.e., the orange and the red one)
depicted in Part (A)

Examples such as Costas arrays and Golomb rulers involve one or several ALLDIFFERENT

constraints on differences of variables.

Quite often, the ALLDIFFERENT constraint is also used in conjunction with several
ELEMENT constraints, especially in the context of assignment problems [226, pages 372–
374], or with several precedence constraints, especially in the context of symmetry break-
ing or scheduling problems [82]. How to handle an ALLDIFFERENT constraint together
with a linear inequality constraint, where the coefficients are assumed to be fixed to one, is
presented in [40].

Other examples involving several ALLDIFFERENT constraints sharing some variables can
be found in the Usage slot of the K ALLDIFFERENT constraint.

Remark Even if the ALLDIFFERENT constraint did not have this form, it was specified in AL-
ICE [266, 267] by asking for an injective correspondence f between variables and values:
x 6= y ⇒ f(x) 6= f(y). From an algorithmic point of view, the algorithm for computing
the cardinality of the maximum matching of a bipartite graph was not used in ALICE for
checking the feasibility of the ALLDIFFERENT constraint, even though the algorithm was
already known in 1976. This is because the goal of ALICE was to show that a general
system could be as efficient as dedicated algorithms. For this reason the concluding part
of [266] explicitly mentions that specialised algorithms should be discarded. On the one
hand, many people, especially from the OR community, have complained about such a
radical statement [375, page 28]. On the other hand, the motivation of such a statement
stands from the fact that a truly intelligent system should not rely on black-box algorithms,
but should rather be able to reconstruct them from some kind of first principles. How to
achieve this is still an open question.

Some solvers use, in a pre-processing phase before stating all constraints, an algorithm for
automatically extracting large cliques [97, 162] from a set of binary disequalities in order


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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to replace them by ALLDIFFERENT constraints.

W.-J. van Hoeve provides a survey about the ALLDIFFERENT constraint in [432].

For possible relaxation of the ALLDIFFERENT constraints see the
ALLDIFFERENT EXCEPT 0, the K ALLDIFFERENT (i.e., SOME DIFFERENT),
the SOFT ALLDIFFERENT CTR, the SOFT ALLDIFFERENT VAR and the
WEIGHTED PARTIAL ALLDIFF constraints, and Figure 2.4 of Section 2.1.5.

Within the context of linear programming, relaxations of the ALLDIFFERENT constraint are
described in [452] and in [226, pages 362–367].

Within the context of constraint-centered search heuristics, G. Pesant and A. Za-
narini [458] have proposed several estimators for evaluating the number of solutions of
an ALLDIFFERENT constraint (since counting the total number of maximum matchings of
the corresponding variable-value graph is #P-complete [424]). Faster, but less accurate es-
timators, based on upper bounds of the number of solutions were proposed three years later
by the same authors [459].

Given n variables taking their values within the interval [1, n], the total number of solutions
to the corresponding ALLDIFFERENT constraint corresponds to the sequence A000142 of
the On-Line Encyclopaedia of Integer Sequences [403].

Algorithm The first complete filtering algorithm was independently found by M.-C. Costa [132]
and J.-C. Régin [351]. This algorithm is based on a corollary of C. Berge that char-
acterises the edges of a graph that belong to a maximum matching but not to all [63,
page 120].1 Similarly, Dulmage-Mendelsohn decomposition [157] was also used recently
by [138, 139] to characterise such edges and prune the corresponding variables both for
the ALLDIFFERENT constraint and for other constraints like ALLDIFFERENT EXCEPT 0,
CORRESPONDENCE, INVERSE, SAME, USED BY, GLOBAL CARDINALITY LOW UP,
SOFT ALLDIFFERENT VAR, SOFT SAME VAR, SOFT USED BY VAR.2 Assuming that all
variables have no holes in their domains, M. Leconte came up with a filtering algo-
rithm [270] based on edge finding. A first bound-consistency algorithm was proposed
by Bleuzen-Guernalec et al. [85]. Later on, two different approaches were used to design
bound-consistency algorithms. Both approaches model the constraint as a bipartite graph.
The first identifies Hall intervals in this graph [335, 277] and the second applies the same
algorithm that is used to compute arc-consistency, but achieves a speedup by exploiting the
simpler structure [205] of the graph [292]. Ian P. Gent et al. discuss in [200] implemen-
tations issues behind the complete filtering algorithm and in particular the computation of
the strongly connected components of the residual graph (i.e., a graph constructed from
a maximum variable-value matching and from the possible values of the variables of the
ALLDIFFERENT constraint), which appears to be the main bottleneck in practice. Fig-
ures 2.1 and 2.2 of Section 2.1.3 illustrate the filtering of the ALLDIFFERENT constraint
with respect to arc-consistency and bound-consistency. The leftmost part of Figure 3.29
illustrates a flow model for the ALLDIFFERENT constraint where there is a one-to-one cor-
respondence between feasible flows in the flow model and solutions to the ALLDIFFERENT

constraint.

From a worst case complexity point of view, assuming that n is the number of variables
and m the sum of the domains sizes, we have the following complexity results:

1A similar result is in fact given in [320].
2Note that Dulmage-Mendelsohn decomposition [157] was also used in the context of geometric con-

straints [5, 90] for decomposing systems of equations.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

http://oeis.org/A000142
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• Complete filtering is achieved in O(m
√
n) by Régin’s algorithm [351].

• Range consistency is done in O(n2) by Leconte’s algorithm [270].

• Bound-consistency is performed in O(n logn) in [335, 292, 277]. If sort can be
achieved in linear time, typically when the ALLDIFFERENT constraint encodes a per-
mutation,3 the worst case complexity of the algorithms described in [292, 277] goes
down to O(n).

Within the context of explanations [239], the explanation of the filtering algorithm that
achieves arc-consistency for the ALLDIFFERENT constraint is described in [370, pages 60–
61]. Given the residual graph (i.e., a graph constructed from a maximum variable-value
matching and from the possible values of the variables of the ALLDIFFERENT constraint),
the removal of an arc starting from a vertex belonging to a strongly connected component
C1 to a distinct strongly connected component C2 is explained by all missing arcs starting
from a descendant component of C2 and ending in an ancestor component of C1 (i.e., since
the addition of any of these missing arcs would merge the strongly connected components
C1 and C2). Let us illustrate this on a concrete example. For this purpose assume we have
the following variables and the values that can potentially be assigned to each of them,
A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3, 4, 6}, D ∈ {3, 4}, E ∈ {5, 6}, F ∈ {5, 6},
G ∈ {6, 7, 8}, H ∈ {6, 7, 8}. Figure 5.34 represents the residual graph associated with
the maximum matching corresponding to the assignment A = 1, B = 2, C = 3, D = 4,
E = 5, F = 6, G = 7, H = 8. It has four strongly connected components containing
respectively vertices {A,B, 1, 2}, {C,D, 3, 4}, {E,F, 5, 6} and {G,H, 7, 8}. Arcs that
are between strongly connected components correspond to values that can be removed:

• The removal of value 2 from variable C is explained by the absence of the arcs
corresponding to the assignments A = 3, A = 4, B = 3 and B = 4 (since adding
any of these missing arcs would merge the blue and the pink strongly connected
components containing the vertices corresponding to value 2 and variable C).

• The removal of value 6 from variable C is explained by the absence of the arcs
corresponding to the assignments E = 3, E = 4, F = 3 and F = 4. Again
adding the corresponding arcs would merge the two strongly connected components
containing the vertices corresponding to value 6 and variable C.

• The removal of value 6 from variable G is explained by the absence of the arcs
corresponding to the assignments E = 7, E = 8, F = 7 and F = 8.

• The removal of value 6 from variable H is explained by the absence of the arcs
corresponding to the assignments E = 7, E = 8, F = 7 and F = 8.

An additional example for illustrating the generation of explanations for the
ALLDIFFERENT constraint when there are more values than variables is provided by Fig-
ure 2.3 of Section 2.1.4.

After applying bound-consistency the following property holds for all variables of an
ALLDIFFERENT constraint. Given a Hall interval [l, u], any variable V whose range
[V , V ] intersects [l, u] without being included in [l, u] has its minimum value V (respec-
tively maximum value V ) that is located before (respectively after) the Hall interval (i.e.,
V < l ≤ u < V ).

3In this context the total number of values that can be assigned to the variables of the ALLDIFFERENT
constraint is equal to the number of variables. Under this assumption sorting the variables on their minimum
or maximum values can be achieved in linear time.
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A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

Figure 5.34: Strongly connected components of the residual graph il-
lustrating the explanation of the removal of a value for the constraint
ALLDIFFERENT(〈A,B,C,D,E, F,G,H〉), A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3, 4, 6},
D ∈ {3, 4}, E ∈ {5, 6}, F ∈ {5, 6}, G ∈ {6, 7, 8}, H ∈ {6, 7, 8}: the explanation
why value 2 is removed from variableC corresponds to all missing arcs whose addition
would merge the blue and the pink strongly connected components (i.e., the missing
arcs corresponding to the assignments A = 3, A = 4, B = 3 and B = 4 that are
depicted by thick pink lines)

The ALLDIFFERENT constraint is entailed if and only if there is no value v that can be
assigned two distinct variables of the VARIABLES collection (i.e., the intersection of the
two sets of potential values of any pair of variables is empty).

Reformulation The ALLDIFFERENT constraint can be reformulated into a set of disequalities constraints.
This model neither preserves bound-consistency nor arc-consistency:

• On the one hand a model, involving linear constraints, preserving bound-consistency
was introduced in [78]. For each potential interval [l, u] of consecutive values this
model uses |VARIABLES| 0-1 variables B1,l,u, B2,l,u, . . . , B|VARIABLES|,l,u for mod-
elling that each variable of the collection VARIABLES is assigned a value within in-
terval [l, u] (i.e., ∀i ∈ [1, |VARIABLES|] : Bi,l,u ⇔ VARIABLES[i].var ∈ [l, u]),4

and an inequality constraint for enforcing the condition that the sum of the corre-
sponding 0-1 variables is less than or equal to the size u− l+ 1 of the corresponding
interval (i.e. B1,l,u +B2,l,u + · · ·+B|VARIABLES|,l,u ≤ u− l + 1).

• On the other hand, it was shown in [81] that there is no polynomial sized decompo-
sition that preserves arc-consistency.

Finally the ALLDIFFERENT(VARIABLES) constraint can also be reformu-
lated as the conjunction SORT(VARIABLES, SORTED VARIABLES) ∧
STRICTLY INCREASING(SORTED VARIABLES). Unlike the naive reformulation, i.e.,
a DISEQUALITY constraint between each pair of variables, the SORT-based reformulation
is linear in space.

4How to encode the reified constraint Bi,l,u ⇔ VARIABLES[i].var ∈ [l, u] with linear constraints is
described in the Reformulation slot of the IN INTERVAL REIFIED constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 6 24 120 720 5040 40320 362880 3628800 39916800

Number of solutions for ALLDIFFERENT: domains 0..n
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Counting
Information on the solution density.
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Systems ALLDIFFERENT in Choco, LINEAR in Gecode, ALLDIFFERENT in JaCoP, ALLDIFF in
JaCoP, ALLDISTINCT in JaCoP, ALL DIFFERENT in MiniZinc, ALL DIFFERENT in SIC-
Stus, ALL DISTINCT in SICStus.

Used in ALLDIFFERENT CONSECUTIVE VALUES, CIRCUIT CLUSTER, CORRESPONDENCE,
CUMULATIVE CONVEX, MAX OCC OF CONSECUTIVE TUPLES OF VALUES,
MAX OCC OF SORTED TUPLES OF VALUES, SIZE MAX SEQ ALLDIFFERENT,
SIZE MAX STARTING SEQ ALLDIFFERENT, SORT PERMUTATION.

See also common keyword: CIRCUIT, CIRCUIT CLUSTER, CYCLE,
DERANGEMENT (permutation), GOLOMB (all different), PROPER CIRCUIT (permutation),
SIZE MAX SEQ ALLDIFFERENT, SIZE MAX STARTING SEQ ALLDIFFERENT (all differ-
ent,disequality), SYMMETRIC ALLDIFFERENT (permutation).

cost variant: MINIMUM WEIGHT ALLDIFFERENT, WEIGHTED PARTIAL ALLDIFF.

generalisation: ALL MIN DIST (variable replaced by line segment, all
of the same size), ALLDIFFERENT BETWEEN SETS (variable replaced by
set variable), ALLDIFFERENT CST (variable replaced by variable + constant),
ALLDIFFERENT INTERVAL (variable replaced by variable/constant),
ALLDIFFERENT MODULO (variable replaced by variable mod constant),
ALLDIFFERENT PARTITION (variable replaced by variable ∈ partition),
DIFFN (variable replaced by orthotope), DISJUNCTIVE (variable replaced by task),
GLOBAL CARDINALITY (control the number of occurrence of each value with a counter
variable), GLOBAL CARDINALITY LOW UP (control the number of occurrence of
each value with an interval), LEX ALLDIFFERENT (variable replaced by vector),
NVALUE (count number of distinct values).


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#alldifferent
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/


554 ALLDIFFERENT

implied by: ALLDIFFERENT CONSECUTIVE VALUES, CIRCUIT, CYCLE,
STRICTLY DECREASING, STRICTLY INCREASING.

implies: ALLDIFFERENT EXCEPT 0, MULTI GLOBAL CONTIGUITY, NOT ALL EQUAL.

negation: SOME EQUAL.

part of system of constraints: NEQ.

shift of concept: ALLDIFFERENT ON INTERSECTION, ALLDIFFERENT SAME VALUE.

soft variant: ALLDIFFERENT EXCEPT 0 (value 0 can be used several times),
OPEN ALLDIFFERENT (open constraint), SOFT ALLDIFFERENT CTR (decomposition-
based violation measure), SOFT ALLDIFFERENT VAR (variable-based violation measure).

system of constraints: K ALLDIFFERENT.

used in reformulation: IN INTERVAL REIFIED (bound-consistency preserving reformula-
tion), SORT, STRICTLY INCREASING.

uses in its reformulation: CYCLE, ELEMENTS ALLDIFFERENT, SORT PERMUTATION.

Keywords characteristic of a constraint: core, all different, disequality, sort based reformulation,
automaton, automaton with array of counters.

combinatorial object: permutation.

constraint type: system of constraints, value constraint.

filtering: bipartite matching, bipartite matching in convex bipartite graphs, convex bipar-
tite graph, flow, Hall interval, arc-consistency, bound-consistency, SAT, DFS-bottleneck,
entailment.

final graph structure: one succ.

modelling exercises: n-Amazons, zebra puzzle.

problems: maximum clique, graph colouring.

puzzles: n-Amazons, n-queens, Costas arrays, Euler knight, Golomb ruler, magic hexagon,
magic square, zebra puzzle, Sudoku.

Cond. implications • ALLDIFFERENT(VARIABLES)
implies LEX ALLDIFFERENT(VECTORS : VARIABLES).

• ALLDIFFERENT(VARIABLES)
implies SOFT ALLDIFFERENT CTR(C, VARIABLES).

• ALLDIFFERENT(VARIABLES)
implies BALANCE(BALANCE, VARIABLES)

when BALANCE = 0.

• ALLDIFFERENT(VARIABLES)
implies SOFT ALL EQUAL MAX VAR(N, VARIABLES)

when N < |VARIABLES|.

• ALLDIFFERENT(VARIABLES)
implies SOFT ALL EQUAL MIN VAR(N, VARIABLES)

when N > |VARIABLES|.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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• ALLDIFFERENT(VARIABLES)
implies CHANGE(NCHANGE, VARIABLES, CTR)

when NCHANGE = |VARIABLES| − 1
and CTR ∈ [ 6=].

• ALLDIFFERENT(VARIABLES)
implies CIRCULAR CHANGE(NCHANGE, VARIABLES, CTR)

when NCHANGE = |VARIABLES|
and CTR ∈ [ 6=].

• ALLDIFFERENT(VARIABLES)
implies LONGEST CHANGE(SIZE, VARIABLES, CTR)

when SIZE = |VARIABLES|
and CTR ∈ [ 6=].

• ALLDIFFERENT(VARIABLES)
with |VARIABLES| > 0

implies LENGTH FIRST SEQUENCE(LEN, VARIABLES)
when LEN = 1.

• ALLDIFFERENT(VARIABLES)
with |VARIABLES| > 0

implies LENGTH LAST SEQUENCE(LEN, VARIABLES)
when LEN = 1.

• ALLDIFFERENT(VARIABLES)
with |VARIABLES| > 0

implies MIN NVALUE(MIN, VARIABLES)
when MIN = 1.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate a clique with an equality constraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one.

Parts (A) and (B) of Figure 5.35 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected component of the final graph. The ALLDIFFERENT holds
since all the strongly connected components have at most one vertex: a value is used at
most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5 2:1 3:9 4:3

(A) (B)

Figure 5.35: Initial and final graph of the ALLDIFFERENT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.36 depicts the automaton associated with the ALLDIFFERENT constraint. To each
item of the collection VARIABLES corresponds a signature variable Si that is equal to 1.
The automaton counts the number of occurrences of each value and finally imposes that
each value is taken at most one time.

ARITH(C,<, 2)

s{C[ ]← 0} 1,
{C[VARi]← C[VARi] + 1}

Figure 5.36: Automaton of the ALLDIFFERENT constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint ALLDIFFERENT(〈5, 1, 4, 8, 1〉) hold?

B. Does the constraint ALLDIFFERENT(〈8, 2, 4, 3〉) hold?

C. Does the constraint ALLDIFFERENT(〈0〉) hold?

aHint: go back to the definition of ALLDIFFERENT.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:
V1 ∈ [3, 5], V2 ∈ [3, 4], V3 ∈ [2, 7],
V4 ∈ [3, 4], V5 ∈ [2, 7],
ALLDIFFERENT(〈V1, V2, V3, 6, V4, V5〉).

aHint: identify infeasible values, enumerate solutions in lexicographic order.

EXERCISE 3 (finding all solutions)a

Give all the solutions to the constraint:
V1 ∈ [4, 6], V2 ∈ [1, 3], V3 ∈ [1, 4], V4 ∈ [1, 2],
V5 ∈ [4, 7], V6 ∈ [4, 6], V7 ∈ [1, 2],
ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6, V7〉).

aHint: focus on variables with smallest domain first, identify Hall intervals
for finding infeasible values, enumerate solutions in lexicographic order.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 4 (finding all solutions)a

Give all the solutions to the constraint:
V1 ∈ {1, 3}, V2 ∈ {1, 2, 3, 4},
V3 ∈ {1, 5}, V4 ∈ {1, 2, 3, 4, 5, 6},
V5 ∈ {3, 5},
ALLDIFFERENT(〈V1, V2, V3, V4, V5〉).

aHint: focus on variables with smallest domain first, identify Hall sets for
finding infeasible values, enumerate solutions in lexicographic order.

EXERCISE 5 (identifying infeasible values)a

Identify all variable-value pairs (Vi, val) (1 ≤ i ≤ 6), such that the
following constraint has no solution when variable Vi is assigned value
val :

V1 ∈ {1, 2, 4}, V2 ∈ {1, 2, 3, 4, 6}, V3 ∈ {1, 2, 6},
V4 ∈ [1, 6], V5 ∈ {1, 4, 6}, V6 ∈ {2, 4, 6},
ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6〉).

aHint: focus on variables with smallest domain first, identify Hall sets for
finding infeasible values.

EXERCISE 6 (identifying infeasible values and counting)a

A. Identify six variable-value pairs (Vi, val) (1 ≤ i ≤ 9), such that
the following conjunction of constraints has no solution when
variable Vi is assigned value val .

V1 ∈ [1, 7], V2 ∈ [1, 7], V3 ∈ [1, 7],
V4 ∈ [1, 4], V5 ∈ [1, 4], V6 ∈ [1, 4],
V7 ∈ [3, 6], V8 ∈ [3, 6], V9 ∈ [3, 6],
ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6〉),
ALLDIFFERENT(〈V1, V2, V3, V7, V8, V9〉).

B. Describe concisely the structure of the set of solutions and derive
the total number of solutions.

aHint: group together variables that belong to the same set of constraints and
reason on the number of distinct values assigned to such groups.
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EXERCISE 7 (variable-based degree of violation)a

Compute the variable-based degree of violationb of the following con-
straints:

A. ALLDIFFERENT(〈2, 2, 2, 2〉),

B. ALLDIFFERENT(〈3, 1, 5, 2, 7〉),

C. ALLDIFFERENT(〈5, 5, 0, 5, 5, 0, 7〉).

aHint: focus on the groups of variables that are assigned the same value.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in
order to satisfy the constraint.

EXERCISE 8 (preventing conflict around the tableab)

Provide a concise and efficient model for the following problem. Given a
set M of n men, a set W of n women, a set of pairs C where each pair
(m,w) ∈ C represents a conflict between the man m (m ∈ M) and the
woman w (w ∈ W), a rectangular table, the goal is to place on one side
of the table all the n men and on the opposite side all the n women in
such a way that two persons that are in conflict do not sit face to face.

aAdapted from the 2011 constraint programming exam at Polytechnique,
C. Dürr.

bHint: break some symmetry of the problem.
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EXERCISE 9 (identifying equalities from a clique of disequalitiesa)

[CONTEXT] Given an undirected graph G = (V, E), colour each vertex
v ∈ V in such a way that (1) two vertices that are linked by an edge
of the set of edges E are not assigned the same colour, and (2) no more
than m distinct colours are used to colour all the vertices of G. The goal
of the exercise is to find out necessary conditions for this problem that
go beyond the cardinality of a (maximum) clique.

A. [IDENTIFYING PAIRS OF VERTICES THAT SHOULD BE ASSIGNED
THE SAME COLOUR]

(a) Given the vertices of the following
graph G to colour with at most
three distinct colours, explain why
vertices v1 and v3 should be assi-
gned the same colour.

(b) For graph G provide all pairs of vertices that should be
assigned the same colour if no more than three distinct
colours have to be used.

B. [GENERALISING THE NECESSARY CONDITION]

Given a clique of n vertices C of the graph G, let VC denotes the
set of vertices that do not belong to C and that are all connected
to all vertices of C. Assuming that one should use at most m
distinct colours provide a necessary condition on the set VC .

aHint: restrict extra values wrt a clique of disequalities.

v1 v2 v3

v4 v5 v6

G

EXERCISE 10 (8-queens: unfeasibility of a partial solution a)

Consider the 8-queens problemb where we
start filling the chessboard in a systematic
way: we place a first queen in a1 and
a second queen in b3. Prove that it is
not possible to extend this partial assign-
ment to a complete solution.

aHint: consider each of the 4 remaining
positions on column c; extract information
from the conjunction of the three ALLDIFFERENT constraints that allows the
modelling of the n-queens problem.

bPlace 8 queens on an 8 by 8 chessboard in such a way that no queen attacks
another. Two queens attack each other if they are located on the same column,
on the same row, or on the same diagonal.

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8
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SOLUTION TO EXERCISE 1

A. No, since value 1 is used twice.

B. Yes, since all values 8, 2, 4 and 3 are distinct.

C. Yes, since value 0 is only used once.

SOLUTION TO EXERCISE 2

〈V1, V2, V3, V4, V5〉

¬ (〈5, 3, 2, 4, 7〉)
 (〈5, 3, 7, 4, 2〉)
® (〈5, 4, 2, 3, 7〉)
¯ (〈5, 4, 7, 3, 2〉)

the four solutions
Values 3 and 4 have
to be assigned to the
two variables V2 and
V4. Consequently,
V1, V3 and V5 are
different from 3 and
4.

Values 3, 4 and 5 have to be assigned to V1, V2 and V4. Value
6 is directly mentioned in the constraint. Consequently the two
remaining variables V3 and V5 can only be assigned values 2
and 7.
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SOLUTION TO EXERCISE 3

7
6 6 6 ¹

5 5 5 ¹

4 4 4 4 ¸

3 3 ·

2 2 2 2 ¶

1 1 1 1 ¶

V4 V7 V2 V3 V1 V6 V5

Hall
intervals 〈V1, V2, V3, V4, V5, V6, V7〉

¬ (〈5, 3, 4, 1, 7, 6, 2〉)
 (〈5, 3, 4, 2, 7, 6, 1〉)
® (〈6, 3, 4, 1, 7, 5, 2〉)
¯ (〈6, 3, 4, 2, 7, 5, 1〉)

the four solutions

Let us reorder the variables by increasing minimum value, and by in-
creasing maximum value in case of tie, for example, V4, V7, V2, V3, V1,
V6, V5.

¶ Since values 1 and 2 have to be assigned to V4 and V7 (interval
[1, 2] is a Hall intervala), they cannot be assigned to the other
variables and consequently V2 is fixed to 3.

· Since V2 is fixed to 3, V3 is fixed to 4.

¸ Since V3 is fixed to 4, V1 and V6 can only be assigned values 5 or
6 (interval [5, 6] is a Hall interval).

¹ Since values 5 and 6 cannot be assigned to V5, V5 is fixed to 7.

aGiven a set of domain variables, a Hall interval is an interval of values [`, u]
such that there are u− ` + 1 variables whose domains are contained in [`, u].
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SOLUTION TO EXERCISE 4

6
5 5 5 ¶

4 4
3 3 3 3 ¶

2 2
1 1 1 1 ¶

V1 V3 V5 V2 V4

Hall set
〈V1, V2, V3, V4, V5〉

¬ (〈1, 2, 5, 4, 3〉)
 (〈1, 2, 5, 6, 3〉)
® (〈1, 4, 5, 2, 3〉)
¯ (〈1, 4, 5, 6, 3〉)
° (〈3, 2, 1, 4, 5〉)
± (〈3, 2, 1, 6, 5〉)
² (〈3, 4, 1, 2, 5〉)
³ (〈3, 4, 1, 6, 5〉)

the eight solutions

Let us reorder the variables by increasing domain size, increasing
minimum, and increasing maximum in case of tie, i.e., V1, V3, V5,
V2, V4. Since values 1, 3 and 5 have to be assigned to V1, V3 and
V5 ({1, 3, 5} is a Hall seta), they cannot be assigned to the other
variables and consequently values 1, 3 and 5 are removed from V2

and V4 (see ¶).

aGiven a set of domain variables, a Hall set is a set of values H such
that there are |H| variables whose domains are contained in H.
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SOLUTION TO EXERCISE 5

V2 V4V1 V3 V5 V6

3

5

1

2

4

6

H
al

ls
et
H

1
=
{1
,2
,4
,6
}

(A) Initial domains

Vi

Vi

Vi

Vi

vj

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj ∈ Hall setHk
dom(Vi) ⊆ Hk

vj pruned
from dom(Vi)

V2V1 V3 V4 V5 V6

3

1

2

4

5

6

After filtering
wrt Hall setH1

H
al

ls
et
H

2
=
{3
}

(B)

V1 V2 V3 V4 V5 V6

1

2

3

4

5

6

After filtering
wrt Hall setH2(C)

1. In part (A) we first identify the Hall seta H1 = {1, 2, 4, 6}
which contains the domains of variables V1, V3, V5 and V6.

2. In part (B) we remove values 1, 2, 4 and 6 from those
variables for which the domain is not included within the
Hall set H1, namely V2 and V4, see ×.

3. After the previous filtering we identify in part (B) a new Hall
set H2 = {3} which contains the domain of V2.

4. Finally in part (C) we remove value 3 from those variables
for which the domain is not included within the Hall set H2,
namely V4, see ×.

aGiven a set of domain variables, a Hall set is a set of values H such
that there are |H| variables whose domains are contained in H.
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SOLUTION TO EXERCISE 6

A. (i) The cardinality of the union of the domains of
V1, V2, . . . , V9 is equal to 7. Since V1, V2 and V3 will be
assigned 3 distinct values, the remaining variables
V4, V5, . . . , V9 should not be assigned more than 7− 3 = 4
distinct values.

(ii) V4, V5, . . . , V9 can be partitioned in two sets {V4, V5, V6}
and {V7, V8, V9} which respectively correspond to the
variables that only belong to the first and to the second
ALLDIFFERENT. The first set will be assigned distinct values
in interval [1, 4], while the second set will be assigned
distinct values in interval [3, 6].

(iii) Since V4, V5, . . . , V9 should not be assigned more than 4
distinct values, the two values 3 and 4 that belong both to
[1, 4] and [3, 6] should be both assigned to {V4, V5, V6} and
to {V7, V8, V9}. Consequently values 3 and 4 cannot be
assigned to variables V1, V2 and V3.

B. As illustrated by the next figure, we have four families of
solutions ¬, , ® and ¯ where the three sets of variables
{V1, V2, V3}, {V4, V5, V6} and {V7, V8, V9} are assigned values
from three distinct set of values. This leads to a total number of
solutions of 4 · 3! · 3! · 3! = 864.

{1, 5,7}

{V1, V2, V3}

{2,3,4}

{V4, V5, V6}

{3,4, 6}

{V7, V8, V9}

¬

{1, 6,7}

{V1, V2, V3}

{2,3,4}

{V4, V5, V6}

{3,4, 5}

{V7, V8, V9}



{2, 5,7}

{V1, V2, V3}

{1,3,4}

{V4, V5, V6}

{3,4, 6}

{V7, V8, V9}

®

{2, 6,7}

{V1, V2, V3}

{1,3,4}

{V4, V5, V6}

{3,4, 5}

{V7, V8, V9}

¯
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SOLUTION TO EXERCISE 7

A. The degree of violation is equal to 3 since at least three
occurrences of value 2 (e.g. the three in red) out of the four
occurrences of value 2 need to be assigned differently (e.g., 3, 4, 5
in blue) in order to obtain a solution.

ALLDIFFERENT(〈2,
3,4,5

2,2,2〉)

B. The degree of violation is equal to 0 since the constraint holds,
i.e. no value needs to be assigned differently.

C. The degree of violation is equal to 4 since at least three
occurrences of value 5 and one occurrence of value 0 (e.g. the
three 5 and the 0 in red) need to be assigned differently (e.g., 1, 3,
6, 4 in blue) in order to obtain a solution.

ALLDIFFERENT(〈5,
1,3,6,4

5,0,5,5, 0, 7〉)

SOLUTION TO EXERCISE 8

Without loss of generality let us assume
that the sets M and W are both equal
to {1, 2, . . . , n}. We associate to each
woman w in W a variable Fw providing
the man which sits in front of w.a

¬ To prevent any conflict, the initial
domain of each variable
Fw (w ∈ W) is set to all the men
of M that are not in conflict with
woman w, i.e. the men m ∈M
such that (m,w) /∈ C.

 To enforce the fact that each
woman can only sit in front of a
single man we enforce an
ALLDIFFERENT(〈F1, F2, . . . , Fn〉)
constraint.

aNote that this model does not introduce
variables for the men, i.e. each man is a value
and each woman a variable. The model also
eliminates some symmetry, i.e., it does not
care where a woman sits.

AN INSTANCE
W = {Bea,Lea,Lili}
M = {Leo,Luis,Tom}
C = {(Luis,Bea),

(Tom,Bea),

(Luis,Lea),

(Leo,Lili)}

A SOLUTION
(red edges corres-
pond to conflicts)

Bea Lili Lea

Leo Luis Tom
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SOLUTION TO EXERCISE 9

A. [IDENTIFYING PAIRS OF VERTICES THAT SHOULD BE ASSIGNED
THE SAME COLOUR]

(a) Since we have to use at most 3
distinct colours, since v2 and v5

use two distinct colours, and
since v1 and v3 are both linked
to v2 and v5, we infer that
v1 and v3 both have to use
the third and last available colour.

(b) For a similar reason:

• v2 and v4 use the
same colour since
they are both lin-
ked to v1 and v5.

• v2 and v6 use the
same colour since
they are both lin-
ked to v3 and v5.

B. [GENERALISING THE NECESSARY CONDITION]

Since we should use at most m distinct
colours and since all vertices of the set
VC are linked to all vertices of the clique
C of n vertices, the set VC should use at
most m− n distinct colours. In the pre-
vious setting we had m = 3 and n = 2,
i.e., one unique colour for all elements
of VC . The figure on the right illustrates
the constraint generated wrt the clique C = {v2, v5}.

v1 v2 v3

v4 v5 v6

same colour

G

v1 v2 v3

v4 v5 v6

G

v1 v2 v3

v4 v5 v6

G

v1 v2 v3

v4 v5 v6

VC

C

ATMOST NVALUE(m− 2,VC)

G′
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SOLUTION TO EXERCISE 10

We do case reasoning depending on where we place the queen on the
third column. After placing the third queen we mark all cells that are
located on the same column, row, or diagonal of one of the three already
placed queens. Then we focus on the rows or columns for which no more
than three consecutive cells are still empty since it allows the conjunction
of constraints to prune the next row or column.

• [PLACING A QUEEN ON c5]

After marking all cells that are
located on a same column, row,
or diagonal than a1, b3, and c5
we get the chessboard shown
on the right.

Then we focus on row 8, which
contains only two consecutive free
cells. Since the eighth row must
contain one queen this queen will
be located at position d8 or e8. In
both cases the cell d7 will be
forbidden. By performing the
same reasoning on the sixth row
we also find out that the cell h7
is forbidden. As a result no
queen can be placed on row 7.

• [MOVING THE THIRD QUEEN

FROM c5 TO c6]

After marking all cells that are
located on a same column, row,
or diagonal than a1, b3, and c6
we get the chessboard shown
on the right.

We focus on row 5, which contains only three consecutive free
cells, see (D). Since row 5 must contain a queen, this queen
will be located at position f5, g5, or h5. In all three cases the
cell g4 will be forbidden. Similarly by considering the fourth
row, see (E), we find out that no queen can be placed on g5.
As a result no queen can be placed on column g.

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(A)

Q

Q

Q

Q Q

Q Q

a b c d e f g h

1

2

3

4

5

6

7

8

(B)

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(C)

Q

Q

Q

a b c d e f g h

1

2

3

4

5

6

7

8

Q Q Q

(D)
Q

Q

Q

a b c d e f g h

1

2

3

4

5

6

7

8

Q Q Q

(E)
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SOLUTION TO EXERCISE 10 (continued)

• [MOVING THE THIRD QUEEN FROM c6 TO c7]

After marking all cells that are located on a same column, row, or diagonal
than a1, b3, and c7 we get the chessboard shown in (F).
Since on column d only position d2 is free a queen ¬ is placed on d2 and
we mark with small red crosses the new forbidden positions, see (G). Then
on row 6 only position g6 is free. Consequently a queen  is placed on g6,
which forbids all remaining free positions on row 5.

• [MOVING THE THIRD QUEEN FROM c7 TO c8]

After marking all cells that are located on a same column, row, or diagonal
than a1, b3, and c8 we get the chessboard shown in (H).
Then we focus on row 5, see (I), which contains only two consecutive free
cells. Since the fifth row must contain one queen this queen will be located
at position g5 or h5. In both cases the cell g6 is forbidden.
By performing the same reasoning we also find out that cell h6 is forbidden.
Since on row 6 only position d6 is free, a queen ¬ is placed on d6 and we
mark with small blue crosses the new forbidden positions. Then on column f
only position f2 is free. Consequently a queen  is placed on f2 and we
mark with small green crosses the new forbidden positions. Now row 7 and
column e have only one free cell, namely h7 and e4 which are located on the
same diagonal. Consequently, we cannot place the last two queens on e4
and h7. Hence the first two queens cannot be placed on a1 and b3.

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(F)
Q

Q

Q

¬



a b c d e f g h

1
2
3
4
5
6
7
8

(G)

Q

Q

Q

a b c d e f g h

1
2
3
4
5
6
7
8

(H)

Q

Q

Q

a b c d e f g h

1

2

3

4

5

6

7

8

Q Q
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5.15 ALLDIFFERENT BETWEEN SETS

I B J DESCRIPTION LINKS GRAPH

Origin ILOG

Constraint ALLDIFFERENT BETWEEN SETS(VARIABLES)

Synonyms ALL NULL INTERSECT, ALLDIFF BETWEEN SETS, ALLDISTINCT BETWEEN SETS,
ALLDIFF ON SETS, ALLDISTINCT ON SETS, ALLDIFFERENT ON SETS.

Argument VARIABLES : collection(var−svar)

Restriction required(VARIABLES, var)

Purpose Enforce all sets of the collection VARIABLES to be distinct.

Example (〈var− {3, 5}, var− ∅, var− {3}, var− {3, 5, 7}〉)

The ALLDIFFERENT BETWEEN SETS constraint holds since all the sets {3, 5}, ∅,
{3} and {3, 5, 7} are distinct.

Typical |VARIABLES| > 2

Symmetry Items of VARIABLES are permutable.

Arg. properties Contractible wrt. VARIABLES.

Usage This constraint was available in some configuration library offered by Ilog.

Algorithm A filtering algorithm for the ALLDIFFERENT BETWEEN SETS is proposed by C.-G. Quim-
per and T. Walsh in [346] and a longer version is available in [347] and in [348].

See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables).

specialisation: ALLDIFFERENT (set variable replaced by variable).

used in graph description: EQ SET.

Keywords characteristic of a constraint: all different, disequality.

constraint arguments: constraint involving set variables.

filtering: bipartite matching.

final graph structure: one succ.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) EQ SET(variables1.var, variables2.var)

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate a clique with binary set equalities constraints between each pair of vertices
(including a vertex and itself) and state that the size of the largest strongly connected com-
ponent should not exceed 1.

Parts (A) and (B) of Figure 5.37 respectively show the initial and final graph as-
sociated with the Example slot. Since we use the MAX NSCC graph property
we show one of the largest strongly connected components of the final graph. The
ALLDIFFERENT BETWEEN SETS holds since all the strongly connected components have
at most one vertex.

(A)

VARIABLES

1

2

3

4

(B) MAX_NSCC=1

MAX_NSCC

1:{3,5} 2:{} 3:{3} 4:{3,5,7}

Figure 5.37: Initial and final graph of the ALLDIFFERENT BETWEEN SETS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.16 ALLDIFFERENT CONSECUTIVE VALUES

I B J DESCRIPTION LINKS GRAPH

Origin Derived from ALLDIFFERENT.

Constraint ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
ALLDIFFERENT(VARIABLES)

Purpose

Enforce (1) all variables of the collection VARIABLES to take distinct values and (2) con-
straint the difference between the largest and the smallest values of the VARIABLES col-
lection to be equal to the number of variables minus one (i.e., there is no holes at all
within the used values).

Example (〈5, 4, 3, 6〉)

The ALLDIFFERENT CONSECUTIVE VALUES constraint holds since (1) all the val-
ues 5, 4, 3 and 6 are distinct and since (2) all values between value 3 and value 6 are
actually used.

All solutions Figure 5.38 gives all solutions to the following non ground in-
stance of the ALLDIFFERENT CONSECUTIVE VALUES constraint: V1 ∈
{0, 1, 3, 4, 5, 6, 7, 8}, V2 ∈ [4, 5], V3 ∈ [3, 4], V4 ∈ [0, 7], V5 ∈ [3, 4],
ALLDIFFERENT CONSECUTIVE VALUES(〈V1, V2, V3, V4, V5〉).

¬ (〈1,5, 3, 2, 4〉)
 (〈1,5, 4, 2, 3〉)
® (〈6, 5, 3,2, 4〉)
¯ (〈6, 5,3,7, 4〉)

° (〈6, 5, 4,2, 3〉)
± (〈6, 5, 4,7,3〉)
² (〈7, 5,3, 6, 4〉)
³ (〈7, 5, 4, 6,3〉)

Figure 5.38: All solutions corresponding to the non ground example of the
ALLDIFFERENT CONSECUTIVE VALUES constraint of the All solutions slot, where
the smallest and largest values are respectively coloured in orange and red

Typical |VARIABLES| > 2

Symmetries • Items of VARIABLES are permutable.

• Two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 4 12 48 240 1440 10080 80640 725760 7257600

Number of solutions for ALLDIFFERENT CONSECUTIVE VALUES: domains 0..n
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Solution density for ALLDIFFERENT CONSECUTIVE VALUES


Counting
Information on the solution density.
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See also implied by: PERMUTATION.

implies: ALLDIFFERENT, CONSECUTIVE VALUES.

Keywords characteristic of a constraint: all different, disequality, sort based reformulation.

combinatorial object: permutation.

constraint type: value constraint.

Cond. implications • ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with minval(VARIABLES.var) ≤ 0
and maxval(VARIABLES.var) ≥ 0

implies AMONG DIFF 0(NVAR, VARIABLES)
when NVAR = |VARIABLES| − 1.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with minval(VARIABLES.var) > 0

implies AMONG DIFF 0(NVAR, VARIABLES)
when NVAR = |VARIABLES|.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with maxval(VARIABLES.var) < 0

implies AMONG DIFF 0(NVAR, VARIABLES)
when NVAR = |VARIABLES|.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
implies BALANCE(BALANCE, VARIABLES)

when BALANCE = 0.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with |VARIABLES| > 0

implies LENGTH FIRST SEQUENCE(LEN, VARIABLES)
when LEN = 1.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with |VARIABLES| > 0

implies LENGTH LAST SEQUENCE(LEN, VARIABLES)
when LEN = 1.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
implies MAX N(MAX, RANK, VARIABLES)

when MAX =maxval(VARIABLES.var)− RANK.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
implies MIN N(MIN, RANK, VARIABLES)

when MIN =minval(VARIABLES.var) + RANK.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with |VARIABLES| > 0

implies MIN NVALUE(MIN, VARIABLES)
when MIN = 1.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
with minval(VARIABLES.var) = 0

implies NINTERVAL(NVAL, VARIABLES, SIZE INTERVAL)
when NVAL = (|VARIABLES|+ SIZE INTERVAL− 1)/SIZE INTERVAL.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
implies RANGE CTR(VARIABLES, CTR, VARIABLES)

when CTR ∈ [≤]
and R = |VARIABLES|.

• ALLDIFFERENT CONSECUTIVE VALUES(VARIABLES)
implies SOFT ALLDIFFERENT CTR(C, VARIABLES).
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) = |VARIABLES| − 1
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5.17 ALLDIFFERENT CST

I B J DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint ALLDIFFERENT CST(VARIABLES)

Synonyms ALLDIFF CST, ALLDISTINCT CST.

Argument VARIABLES : collection(var−dvar, cst−int)

Restriction required(VARIABLES, [var, cst])

Purpose
For all pairs of items (VARIABLES[i], VARIABLES[j]) (i 6= j) of the collection
VARIABLES enforce VARIABLES[i].var + VARIABLES[i].cst 6= VARIABLES[j].var +
VARIABLES[j].cst.

Example


〈 var− 5 cst− 0,

var− 1 cst− 1,
var− 9 cst− 0,
var− 3 cst− 4

〉 
The ALLDIFFERENT CST constraint holds since all the expressions 5 + 0 = 5,
1 + 1 = 2, 9 + 0 = 9 and 3 + 4 = 7 correspond to distinct values.

All solutions Figure 5.39 gives all solutions to the following non ground instance of the
ALLDIFFERENT CST constraint: V1 ∈ [0, 2], V2 ∈ [4, 5], V3 = 4, V4 ∈ [0, 1],
ALLDIFFERENT CST(〈〈V1, 0〉, 〈V2, 1〉, 〈V3, 2〉, 〈V4, 3〉〉).

¬ (〈0+0, 4+1, 4+2, 0+3〉)
 (〈0+0, 4+1, 4+2, 1+3〉)
® (〈1+0, 4+1, 4+2, 0+3〉)

¯ (〈1+0, 4+1, 4+2, 1+3〉)
° (〈2+0, 4+1, 4+2, 0+3〉)
± (〈2+0, 4+1, 4+2, 1+3〉)

Figure 5.39: All solutions corresponding to the non ground example of the
ALLDIFFERENT CST constraint of the All solutions slot

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
2∗range(VARIABLES.var) < 3 ∗ |VARIABLES|
range(VARIABLES.cst) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.



ALLDIFFERENT CST 579

Symmetries • Items of VARIABLES are permutable.

• Attributes of VARIABLES are permutable w.r.t. permutation (var, cst) (permuta-
tion not necessarily applied to all items).

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

• One and the same constant can be added to the cst attribute of all items of
VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Usage The ALLDIFFERENT CST constraint was originally introduced in CHIP in order to express
the n-queen problem with 3 global constraints (see the Usage slot of the ALLDIFFERENT

constraint).

Algorithm See the filtering algorithms of the ALLDIFFERENT constraint.

Systems LINEAR in Gecode.

See also implies (items to collection): LEX ALLDIFFERENT.

specialisation: ALLDIFFERENT (variable + constant replaced by variable).

Keywords characteristic of a constraint: all different, disequality, sort based reformulation.

constraint type: value constraint.

filtering: bipartite matching, bipartite matching in convex bipartite graphs, convex bipartite
graph, arc-consistency.

final graph structure: one succ.

modelling exercises: n-Amazons.

puzzles: n-Amazons, n-queens.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.cosytec.com
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var + variables1.cst =
variables2.var + variables2.cst

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate a clique with an equality constraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one.

Parts (A) and (B) of Figure 5.40 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one
of the largest strongly connected components of the final graph. The ALLDIFFERENT CST

holds since all the strongly connected components have at most one vertex: a value is used
at most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:5,0 2:1,1 3:9,0 4:3,4

(A) (B)

Figure 5.40: Initial and final graph of the ALLDIFFERENT CST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



ALLDIFFERENT CST 581



582 ALLDIFFERENT EXCEPT 0

5.18 ALLDIFFERENT EXCEPT 0
I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ALLDIFFERENT.

Constraint ALLDIFFERENT EXCEPT 0(VARIABLES)

Synonyms ALLDIFF EXCEPT 0, ALLDISTINCT EXCEPT 0.

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose Enforce all variables of the collection VARIABLES to take distinct values, except those
variables that are assigned value 0.

Example (〈5, 0, 1, 9, 0, 3〉)

The ALLDIFFERENT EXCEPT 0 constraint holds since all the values (that are differ-
ent from 0) 5, 1, 9 and 3 are distinct.

All solutions Figure 5.41 gives all solutions to the following non ground instance of the
ALLDIFFERENT EXCEPT 0 constraint: V1 ∈ [0, 4], V2 ∈ [1, 2], V3 ∈ [1, 2], V4 ∈ [0, 1],
ALLDIFFERENT EXCEPT 0(〈V1, V2, V3, V4〉).

¬ (〈0, 1, 2,0〉)
 (〈0, 2, 1,0〉)
® (〈3, 1, 2,0〉)

¯ (〈3, 2, 1,0〉)
° (〈4, 1, 2,0〉)
± (〈4, 2, 1,0〉)

Figure 5.41: All solutions corresponding to the non ground example of the
ALLDIFFERENT EXCEPT 0 constraint of the All solutions slot

Typical |VARIABLES| > 2
ATLEAST(2, VARIABLES, 0)
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• Two distinct values of VARIABLES.var that are both different from 0 can be
swapped; a value of VARIABLES.var that is different from 0 can be renamed to
any unused value that is also different from 0.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. VARIABLES.

Usage Quite often it appears that, for some modelling reason, you create a joker value. You
do not want that normal constraints hold for variables that take this joker value. For this
purpose we modify the binary arc constraint in order to discard the vertices for which the
corresponding variables are assigned value 0. This will be effectively the case since all the
corresponding arcs constraints will not hold.

Algorithm An arc-consistency filtering algorithm for the ALLDIFFERENT EXCEPT 0 constraint is de-
scribed in [138]. The algorithm is based on the following ideas:

• First, one can map solutions to the ALLDIFFERENT EXCEPT 0 constraint to var-
perfect matchings5 in a bipartite graph derived from the domain of the variables of the
constraint in the following way: to each variable of the ALLDIFFERENT EXCEPT 0
constraint corresponds a variable and a joker vertices, while to each potential value
corresponds a value vertex; there is an edge between a variable vertex and a value
vertex if and only if that value belongs to the domain of the corresponding variable;
there is an edge between a variable vertex and its corresponding value vertex.

• Second, Dulmage-Mendelsohn decomposition [157] is used to characterise all edges
that do not belong to any var-perfect matching, and therefore prune the corresponding
variables.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 7 34 209 1546 13327 130922 1441729
Number of solutions for ALLDIFFERENT EXCEPT 0: domains 0..n

5A var-perfect matching is a maximum matching covering all vertices representing variables.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Systems ALL DIFFERENT in MiniZinc.

See also cost variant: WEIGHTED PARTIAL ALLDIFF.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#alldifferent_except_0
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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hard version: ALLDIFFERENT.

implied by: ALLDIFFERENT.

implies: MULTI GLOBAL CONTIGUITY.

Keywords characteristic of a constraint: joker value, all different, sort based reformulation, automa-
ton, automaton with array of counters.

constraint type: value constraint, relaxation.

filtering: bipartite matching, arc-consistency.

final graph structure: one succ.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph model The graph model is the same as the one used for the ALLDIFFERENT constraint, except that
we discard all variables that are assigned value 0.

Parts (A) and (B) of Figure 5.42 respectively show the initial and final graph associated with
the Example slot. Since we use the MAX NSCC graph property we show one of the
largest strongly connected components of the final graph. The ALLDIFFERENT EXCEPT 0
holds since all the strongly connected components have at most one vertex: a value different
from 0 is used at most once.

VARIABLES

1

2

3

4

5

6

MAX_NSCC=1

MAX_NSCC

1:5 3:1 4:9 6:3

(A) (B)

Figure 5.42: Initial and final graph of the ALLDIFFERENT EXCEPT 0 constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.43 depicts the automaton associated with the ALLDIFFERENT EXCEPT 0 con-
straint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature
variable Si. The following signature constraint links VARi and Si: VARi 6= 0 ⇔ Si. The
automaton counts the number of occurrences of each value different from 0 and finally
imposes that each non-zero value is taken at most one time.

ARITH(C,<, 2)

s{C[ ] = 0} VARi 6= 0,
{C[VARi] = C[VARi] + 1}

VARi = 0

Figure 5.43: Automaton of the ALLDIFFERENT EXCEPT 0 constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.19 ALLDIFFERENT INTERVAL

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ALLDIFFERENT.

Constraint ALLDIFFERENT INTERVAL(VARIABLES, SIZE INTERVAL)

Synonyms ALLDIFF INTERVAL, ALLDISTINCT INTERVAL.

Arguments VARIABLES : collection(var−dvar)
SIZE INTERVAL : int

Restrictions required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Enforce all variables of the collection VARIABLES to belong to distinct intervals. The
intervals are defined by [SIZE INTERVAL ·k, SIZE INTERVAL ·k+SIZE INTERVAL−1]
where k is an integer.

Example (〈2, 4, 10〉 , 3)

In the example, the second argument SIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Since the three variables of the
collection VARIABLES take values that are respectively located within the three following
distinct intervals [0, 2], [3, 5] and [9, 11], the ALLDIFFERENT INTERVAL constraint holds.

0 1 3 5 6 7 8 9 112 4 10

All solutions Figure 5.44 gives all solutions to the following non ground instance of the
ALLDIFFERENT INTERVAL constraint: V1 ∈ [0, 7], V2 ∈ [1, 2], V3 ∈ [2, 3], V4 ∈ [0, 9],
ALLDIFFERENT INTERVAL(〈V1, V2, V3, V4〉,3).

¬ (〈6, 1, 3, 9〉,3)
 (〈6, 2, 3, 9〉,3)
® (〈7, 1, 3, 9〉,3)
¯ (〈7, 2, 3, 9〉,3)

0 2 4 5 7 8 10 111 63 9

SIZE INTERVAL=3︷ ︸︸ ︷
¬

0 1 4 5 7 8 10 112 63 9


0 2 4 5 6 8 10 111 73 9
®

0 1 4 5 6 8 10 112 73 9
¯

Figure 5.44: All solutions corresponding to the non ground example of the
ALLDIFFERENT INTERVAL constraint of the All solutions slot

Typical |VARIABLES| > 1
SIZE INTERVAL > 1
SIZE INTERVAL < max(3,range(VARIABLES.var))


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES are permutable.

• A value of VARIABLES.var that belongs to the k-th interval, of size
SIZE INTERVAL, can be renamed to any unused value of the same interval.

• Two distinct values of VARIABLES.var that belong to two distinct intervals, of size
SIZE INTERVAL, can be swapped.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 10 24 120 720 5040 40320 362880

Number of solutions for ALLDIFFERENT INTERVAL: domains 0..n
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Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for ALLDIFFERENT INTERVAL

Length (n) 2 3 4 5 6 7 8
Total 10 24 120 720 5040 40320 362880

Parameter
value

1 6 24 120 720 5040 40320 362880
2 4 - - - - - -

Solution count for ALLDIFFERENT INTERVAL: domains 0..n
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See also implied by: ALL MIN DIST.

specialisation: ALLDIFFERENT (variable/constant replaced by variable).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: all different, sort based reformulation, automaton, automa-
ton with array of counters.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: one succ.

modelling: interval.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model Similar to the ALLDIFFERENT constraint, but we replace the binary equality constraint of
the ALLDIFFERENT constraint by the fact that two variables are respectively assigned to
two values that belong to the same interval. We generate a clique with a belong to the same
interval constraint between each pair of vertices (including a vertex and itself) and state
that the size of the largest strongly connected component should not exceed 1.

Parts (A) and (B) of Figure 5.45 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected component of the final graph.

VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:2 2:4 3:10

(A) (B)

Figure 5.45: Initial and final graph of the ALLDIFFERENT INTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.46 depicts the automaton associated with the ALLDIFFERENT INTERVAL con-
straint. To each item of the collection VARIABLES corresponds a signature variable Si that is
equal to 1. For each interval [SIZE INTERVAL·k, SIZE INTERVAL·k+SIZE INTERVAL−1]
of values the automaton counts the number of occurrences of its values and finally imposes
that the values of an interval are taken at most once.

ARITH(C,<, 2)

s{C[ ] = 0} 1,

{C[b VARi
SIZE INTERVAL

c] = C[b VARi
SIZE INTERVAL

c] + 1}

Figure 5.46: Automaton of the ALLDIFFERENT INTERVAL constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.20 ALLDIFFERENT MODULO

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ALLDIFFERENT.

Constraint ALLDIFFERENT MODULO(VARIABLES, M)

Synonyms ALLDIFF MODULO, ALLDISTINCT MODULO.

Arguments VARIABLES : collection(var−dvar)
M : int

Restrictions required(VARIABLES, var)
M > 0
M ≥ |VARIABLES|

Purpose Enforce all variables of the collection VARIABLES to have a distinct rest when divided
by M.

Example (〈25, 1, 14, 3〉 , 5)

The equivalence classes associated with values 25, 1, 14 and 3 are respectively
equal to 25 mod 5 = 0, 1 mod 5 = 1, 14 mod 5 = 4 and 3 mod 5 = 3. Since they are
distinct the ALLDIFFERENT MODULO constraint holds.

All solutions Figure 5.47 gives all solutions to the following non ground instance of the
ALLDIFFERENT MODULO constraint: V1 ∈ {0, 5}, V2 ∈ [2, 3], V3 ∈ [3, 4], V4 ∈ [1, 2],
V5 ∈ [6, 10], ALLDIFFERENT MODULO(〈V1, V2, V3, V4, V5〉,5).

¬ (〈00, 22, 33, 11, 94〉,5)
 (〈00, 22, 44, 11, 83〉,5)
® (〈00, 33, 44, 11, 72〉,5)
¯ (〈00, 33, 44, 22, 61〉,5)

° (〈50, 22, 33, 11, 94〉,5)
± (〈50, 22, 44, 11, 83〉,5)
² (〈50, 33, 44, 11, 72〉,5)
³ (〈50, 33, 44, 22, 61〉,5)

Figure 5.47: All solutions corresponding to the non ground example of the
ALLDIFFERENT MODULO constraint of the All solutions slot, where the indices (in
orange) correspond to the values modulo M = 5: all indices attached to a solution are
distinct.

Typical |VARIABLES| > 2
M > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES are permutable.

• A value u of VARIABLES.var can be renamed to any value v such that v is con-
gruent to u modulo M.

• Two distinct values u and v of VARIABLES.var such that umod M 6= vmod M can
be swapped.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 12 48 240 1440 10080 80640

Number of solutions for ALLDIFFERENT MODULO: domains 0..n
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10−2

10−1

Length

O
bs

er
ve

d
de

ns
ity

Solution density for ALLDIFFERENT MODULO


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for ALLDIFFERENT MODULO

Length (n) 2 3 4 5 6 7 8
Total 4 12 48 240 1440 10080 80640

Parameter
value

2 4 - - - - - -
3 - 12 - - - - -
4 - - 48 - - - -
5 - - - 240 - - -
6 - - - - 1440 - -
7 - - - - - 10080 -
8 - - - - - - 80640

Solution count for ALLDIFFERENT MODULO: domains 0..n
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See also implies: SOFT ALLDIFFERENT VAR.

specialisation: ALLDIFFERENT (variable mod constant replaced by variable).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: modulo, all different, sort based reformulation, automaton,
automaton with array of counters.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: one succ.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model Exploit the same model used for the ALLDIFFERENT constraint. We replace the binary
equality constraint by another equivalence relation depicted by the arc constraint. We gen-
erate a clique with a binary equality modulo M constraint between each pair of vertices
(including a vertex and itself) and state that the size of the largest strongly connected com-
ponent should not exceed 1.

Parts (A) and (B) of Figure 5.48 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected components of the final graph.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:25 2:1 3:14 4:3

(A) (B)

Figure 5.48: Initial and final graph of the ALLDIFFERENT MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.49 depicts the automaton associated with the ALLDIFFERENT MODULO con-
straint. To each item of the collection VARIABLES corresponds a signature variable Si
that is equal to 1. The automaton counts for each equivalence class the number of used
values and finally imposes that each equivalence class is used at most one time.

ARITH(C,<, 2)

s{C[ ] = 0} 1,
{C[VARi mod M ] = C[VARi mod M ] + 1}

Figure 5.49: Automaton of the ALLDIFFERENT MODULO constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.21 ALLDIFFERENT ON INTERSECTION

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from COMMON and ALLDIFFERENT.

Constraint ALLDIFFERENT ON INTERSECTION(VARIABLES1, VARIABLES2)

Synonyms ALLDIFF ON INTERSECTION, ALLDISTINCT ON INTERSECTION.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The values that both occur in the VARIABLES1 and VARIABLES2 collections have only
one occurrence.

Example (〈5, 9, 1, 5〉 , 〈2, 1, 6, 9, 6, 2〉)

The ALLDIFFERENT ON INTERSECTION constraint holds since the values 9 and 1
that both occur in 〈5, 9, 1, 5〉 as well as in 〈2, 1, 6, 9, 6, 2〉 have exactly one occurrence in
each collection.

All solutions Figure 5.50 gives all solutions to the following non ground instance of the
ALLDIFFERENT ON INTERSECTION constraint: U1 ∈ [2, 3], U2 ∈ [1, 2], V1 ∈ [2, 3],
V2 ∈ [2, 2], V3 ∈ [0, 1], ALLDIFFERENT ON INTERSECTION(〈U1, U2〉, 〈V1, V2, V3〉).

¬ (〈2, 1〉, 〈3,2, 0〉)
 (〈2,1〉, 〈3,2,1〉)
® (〈3, 1〉, 〈2, 2, 0〉)
¯ (〈3,1〉, 〈2, 2,1〉)

° (〈3, 1〉, 〈3, 2, 0〉)
± (〈3,1〉, 〈3, 2,1〉)
² (〈3,2〉, 〈3,2, 0〉)
³ (〈3,2〉, 〈3,2, 1〉)

Figure 5.50: All solutions corresponding to the non ground example of the
ALLDIFFERENT ON INTERSECTION constraint of the All solutions slot, where values
that occur in both collections are coloured in orange

Typical |VARIABLES1| > 1
|VARIABLES2| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Arg. properties • Contractible wrt. VARIABLES1.

• Contractible wrt. VARIABLES2.

See also common keyword: COMMON, NVALUE ON INTERSECTION (constraint on the intersec-
tion).

implied by: DISJOINT.

implies: SAME INTERSECTION.

root concept: ALLDIFFERENT.

Keywords characteristic of a constraint: all different, automaton, automaton with array of counters.

constraint arguments: constraint between two collections of variables.

constraint type: constraint on the intersection, value constraint.

final graph structure: connected component, acyclic, bipartite, no loop.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NCC≤ 2

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.51 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NCC graph property we show one of the
largest connected components of the final graph. The ALLDIFFERENT ON INTERSECTION

constraint holds since each connected component has at most two vertices. Note that all
the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the
final graph since there is no arc for which the associated equality constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

MAX_NCC=2

MAX_NCC

2:9

4:9

3:1

2:1

(A) (B)

Figure 5.51: Initial and final graph of the ALLDIFFERENT ON INTERSECTION con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.52 depicts the automaton associated with the ALLDIFFERENT ON INTERSECTION

constraint. To each variable VAR1i of the collection VARIABLES1 corresponds a signature
variable Si that is equal to 0. To each variable VAR2i of the collection VARIABLES2 corre-
sponds a signature variable Si+|VARIABLES1| that is equal to 1. The automaton first counts the
number of occurrences of each value assigned to the variables of the VARIABLES1 collec-
tion. It then counts the number of occurrences of each value assigned to the variables of
the VARIABLES2 collection. Finally, the automaton imposes that each value is not taken by
two variables of both collections.

ARITH OR(C,D,<, 2)

s

{
C[ ] = 0,
D[ ] = 0

}

t

0,
{C[VARi] = C[VARi] + 1}

1,
{D[VARi] = D[VARi] + 1}

1,
{D[VARi] = D[VARi] + 1}

Figure 5.52: Automaton of the ALLDIFFERENT ON INTERSECTION constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.22 ALLDIFFERENT PARTITION

I B J DESCRIPTION LINKS GRAPH

Origin Derived from ALLDIFFERENT.

Constraint ALLDIFFERENT PARTITION(VARIABLES, PARTITIONS)

Synonyms ALLDIFF PARTITION, ALLDISTINCT PARTITION.

Type VALUES : collection(val−int)

Arguments VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES| ≤ |PARTITIONS|
required(VARIABLES, var)
|PARTITIONS| ≥ 2
required(PARTITIONS, p)

Purpose Enforce all variables of the collection VARIABLES to take values that belong to distinct
partitions.

Example (〈6, 3, 4〉 , 〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉)

Since all variables take values that are located within distinct partitions the
ALLDIFFERENT PARTITION constraint holds.

Typical |VARIABLES| > 2

Symmetries • Items of VARIABLES are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• A value of VARIABLES.var can be renamed to any value that belongs to the same
partition of PARTITIONS.

• Two distinct values of VARIABLES.var that do not belong to the same partition of
PARTITIONS can be swapped.

Arg. properties Contractible wrt. VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also common keyword: IN SAME PARTITION (partition).

specialisation: ALLDIFFERENT (variable ∈ partition replaced by variable).

used in graph description: IN SAME PARTITION.

Keywords characteristic of a constraint: partition, all different, sort based reformulation.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: one succ.

modelling: incompatible pairs of values.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model Similar to the ALLDIFFERENT constraint, but we replace the binary equality constraint of
the ALLDIFFERENT constraint by the fact that two variables are respectively assigned to two
values that belong to the same partition. We generate a clique with a IN SAME PARTITION

constraint between each pair of vertices (including a vertex and itself) and state that the
size of the largest strongly connected component should not exceed 1.

Parts (A) and (B) of Figure 5.53 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected components of the final graph.

VARIABLES

1

2

3

MAX_NSCC=1

MAX_NSCC

1:6 2:3 3:4

(A) (B)

Figure 5.53: Initial and final graph of the ALLDIFFERENT PARTITION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.23 ALLDIFFERENT SAME VALUE

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ALLDIFFERENT.

Constraint ALLDIFFERENT SAME VALUE(NSAME, VARIABLES1, VARIABLES2)

Synonyms ALLDIFF SAME VALUE, ALLDISTINCT SAME VALUE.

Arguments NSAME : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions NSAME ≥ 0
NSAME ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
All the values assigned to the variables of the collection VARIABLES1 are pairwise
distinct. NSAME is equal to number of constraints of the form VARIABLES1[i].var =
VARIABLES2[i].var (1 ≤ i ≤ |VARIABLES1|) that hold.

Example (2, 〈7, 3, 1, 5〉 , 〈1, 3, 1, 7〉)

The ALLDIFFERENT SAME VALUE constraint holds since:

• All the values 7, 3, 1 and 5 are distinct,

• Among the four expressions 7 = 1, 3 = 3, 1 = 1 and 5 = 7 exactly 2 conditions
hold.

All solutions Figure 5.54 gives all solutions to the following non ground instance of the
ALLDIFFERENT SAME VALUE constraint: U1 ∈ [2, 4], U2 ∈ [1, 2], U3 ∈
[1, 4], U4 ∈ [2, 4], V1 ∈ [2, 3], V2 = 2, V3 ∈ [0, 1], V4 ∈ [0, 3],
ALLDIFFERENT SAME VALUE(3, 〈U1, U2, U3, U4〉, 〈V1, V2, V3, V4〉).

Typical NSAME < |VARIABLES1|
|VARIABLES1| > 2

Symmetries • Items of VARIABLES1 and VARIABLES2 are permutable (same permutation used).

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Arg. properties Functional dependency: NSAME determined by VARIABLES1 and VARIABLES2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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¬ (3, 〈3,2,1, 4〉, 〈3,2,1, 0〉)
 (3, 〈3,2,1, 4〉, 〈3,2,1, 1〉)
® (3, 〈3,2,1, 4〉, 〈3,2,1, 2〉)

¯ (3, 〈3,2,1, 4〉, 〈3,2,1, 3〉)
° (3, 〈4,2,1,3〉, 〈2,2,1,3〉)
± (3, 〈4,2,1,3〉, 〈3,2,1,3〉)

Figure 5.54: All solutions corresponding to the non ground example of the
ALLDIFFERENT SAME VALUE constraint of the All solutions slot, where identical val-
ues at a same position in both collections are coloured in orange

Usage When all variables of the second collection are initially bound to distinct values the
ALLDIFFERENT SAME VALUE constraint can be explained in the following way:

• We interpret the variables of the second collection as the previous solution to a prob-
lem where all variables have to be distinct.

• We interpret the variables of the first collection as the current solution to find, where
all variables should again be pairwise distinct.

The variable NSAME measures the distance of the current solution from the previous solu-
tion. This corresponds to the number of variables of VARIABLES2 that are assigned to the
same previous value.

See also root concept: ALLDIFFERENT.

Keywords characteristic of a constraint: sort based reformulation, automaton, automaton with array
of counters.

constraint type: proximity constraint.

modelling: functional dependency.

Cond. implications ALLDIFFERENT SAME VALUE(NSAME, VARIABLES1, VARIABLES2)
with 2 ∗ NSAME = |VARIABLES1|

implies DIFFER FROM EXACTLY K POS(K, VECTOR1, VECTOR2).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (CLIQUE ,LOOP ,=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) •MAX NSCC≤ 1
• NARC NO LOOP= NSAME

Graph model The arc generator PRODUCT (CLIQUE ,LOOP ,=) is used in order to generate all the
arcs of the initial graph:

• The arc generator CLIQUE creates all links between the items of the first collection
VARIABLES1,

• The arc generator LOOP creates a loop for each item of the second collection
VARIABLES2,

• Finally the arc generator PRODUCT (=) creates an arc between items located at
the same position in the collections VARIABLES1 and VARIABLES2.

Part (A) of Figure 5.55 gives the initial graph associated with the Example slot. Variables
of collection VARIABLES1 are coloured, while variables of collection VARIABLES2 are kept
in white. Part (B) represents the final graph associated with the Example slot. In this graph
each vertex constitutes a strongly connected component and the number of arcs that do not
correspond to a loop is equal to 2 (i.e., NSAME).

U1 U2

U3U4

V1 V2

V3V4

7 3

15

1 3

17

(A) (B)

Figure 5.55: (A) Initial and (B) final graph of the
ALLDIFFERENT SAME VALUE(2, 〈U1, U2, U3, U4〉, 〈V1, V2, V3, V4〉) constraint
with U1 = 7, U2 = 3, U3 = 1, U4 = 5 and V1 = 1, V2 = 3, V3 = 1, V4 = 7 (in
Part (B) arcs in red correspond to the arcs counted by the argument NSAME)


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.56 depicts the automaton associated with the ALLDIFFERENT SAME VALUE con-
straint. Let VAR1i and VAR2i respectively denote the ith variables of the VARIABLES1

and VARIABLES2 collections. To each pair of variables (VAR1i, VAR2i) corresponds a
signature variable Si. The following signature constraint links VAR1i, VAR2i and Si:
VAR1i = VAR2i ⇔ Si.

{
ARITH(C,<, 2)
NSAME = D

s

{
C[ ] = 0,
D = 0

} VAR1i = VAR2i,
{C[VAR1i] = C[VAR1i] + 1,
D = D + 1}

VAR1i 6= VAR2i,
{C[VAR1i] = C[VAR1i] + 1}

Figure 5.56: Automaton of the ALLDIFFERENT SAME VALUE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.24 ALLPERM

I B J DESCRIPTION LINKS GRAPH

Origin [179]

Constraint ALLPERM(MATRIX)

Synonyms ALL PERM, ALL PERMUTATIONS.

Type VECTOR : collection(var−dvar)

Argument MATRIX : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose
Given a matrixM of domain variables, enforces that the first row is lexicographically
less than or equal to all permutations of all other rows. Note that the components of a
given vector of the matrixM may be equal.

Example (〈vec− 〈1, 2, 3〉 , vec− 〈3, 1, 2〉〉)

The ALLPERM constraint holds since vector 〈1, 2, 3〉 is lexicographically less than
or equal to all the permutations of vector 〈3, 1, 2〉 (i.e., 〈1, 2, 3〉, 〈1, 3, 2〉, 〈2, 1, 3〉,
〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉).

All solutions Figure 5.57 gives all solutions to the following non ground instance of the ALLPERM con-
straint: U1 ∈ [1, 2], U2 ∈ [1, 2], U3 ∈ [1, 3], V1 ∈ [0, 1], V2 ∈ [1, 2], V3 ∈ [0, 2],
ALLPERM(〈〈U1, U2, U3〉, 〈V1, V2, V3〉〉).

¬ (〈〈1, 1, 1〉, 〈1, 1, 1〉〉)
 (〈〈1, 1, 1〉, 〈1, 1, 2〉〉)
® (〈〈1, 1, 1〉, 〈1, 2, 1〉〉)
¯ (〈〈1, 1, 1〉, 〈1, 2, 2〉〉)
° (〈〈1, 1, 2〉, 〈1, 1, 2〉〉)

± (〈〈1, 1, 2〉, 〈1, 2, 1〉〉)
² (〈〈1, 1, 2〉, 〈1, 2, 2〉〉)
³ (〈〈1, 1, 3〉, 〈1, 2, 2〉〉)
´ (〈〈1, 2, 1〉, 〈1, 2, 2〉〉)
µ (〈〈1, 2, 2〉, 〈1, 2, 2〉〉)

Figure 5.57: All solutions corresponding to the non ground example of the ALLPERM
constraint of the All solutions slot


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical |VECTOR| > 1
|MATRIX| > 1

Symmetry One and the same constant can be added to the var attribute of all items of MATRIX.vec.

Arg. properties Suffix-contractible wrt. MATRIX.vec (remove items from same position).

Usage A symmetry-breaking constraint.

See also common keyword: LEX2, LEX CHAIN LESSEQ (matrix symmetry,lexicographic
order), LEX LESSEQ (lexicographic order), LEX LESSEQ ALLPERM (matrix symme-
try,lexicographic order), STRICT LEX2 (lexicographic order).

part of system of constraints: LEX LESSEQ ALLPERM.

used in graph description: LEX LESSEQ ALLPERM.

Keywords characteristic of a constraint: sort based reformulation, vector.

constraint type: order constraint, system of constraints.

final graph structure: acyclic, bipartite.

modelling: matrix, matrix model.

symmetry: matrix symmetry, symmetry, lexicographic order.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) MATRIX

Arc generator CLIQUE(<) 7→collection(matrix1, matrix2)

Arc arity 2

Arc constraint(s) • matrix1.key = 1
• matrix2.key > 1
• LEX LESSEQ ALLPERM(matrix1.vec, matrix2.vec)

Graph property(ies) NARC= |MATRIX| − 1

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model We generate a graph with an arc constraint LEX LESSEQ ALLPERM between the vertex
corresponding to the first item of the MATRIX collection and the vertices associated with all
other items of the MATRIX collection. This is achieved by specifying that (1) an arc should
start from the first item (i.e., matrix1.key = 1) and (2) an arc should not end on the first
item (i.e., matrix2.key > 1). We finally state that all these arcs should belong to the
final graph. Parts (A) and (B) of Figure 5.58 respectively show the initial and final graph
associated with the Example slot.

MATRIX

1

2

NARC=1

1:1
  2
  3

2:3
  1
  2

(A) (B)

Figure 5.58: Initial and final graph of the ALLPERM constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.25 AMONG

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [47]

Constraint AMONG(NVAR, VARIABLES, VALUES)

Synonyms BETWEEN, COUNT.

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose NVAR is the number of variables of the collection VARIABLES that take their values in
VALUES.

Example (3, 〈4, 5, 5, 4, 1〉 , 〈1, 5, 8〉)

The AMONG constraint holds since exactly 3 values of the collection of variables
〈4, 5, 5, 4, 1〉 belong to the set of values {1, 5, 8}.

∈
V

A L U E S

VARIABLES

5 5
1

44

All solutions Figure 5.59 gives all solutions to the following non ground instance of the
AMONG constraint: V1 ∈ [1, 5], V2 ∈ [3, 9], V3 ∈ [5, 6], V4 ∈ [2, 3],
AMONG(3, 〈V1, V2, V3, V4〉, 〈2,4〉).

¬ (3, 〈2,4, 5,2〉, 〈2,4〉)
 (3, 〈2,4, 6,2〉, 〈2,4〉)
® (3, 〈4,4, 5,2〉, 〈2,4〉)
¯ (3, 〈4,4, 6,2〉, 〈2,4〉)

Figure 5.59: All solutions corresponding to the non ground example of the AMONG
constraint of the All solutions slot, where the number of variables assigned a value
from {2,4} is equal to NVAR = 3


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|

Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Functional dependency: NVAR determined by VARIABLES and VALUES.

• Contractible wrt. VARIABLES when NVAR = 0.

• Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), VALUES(sunion).

Remark A similar constraint called BETWEEN was introduced in CHIP in 1990.

The COMMON constraint can be seen as a generalisation of the AMONG constraint where
we allow the val attributes of the VALUES collection to be domain variables.

A generalisation of this constraint when the values of VALUES are not initially fixed is called
AMONG VAR.

When the variable NVAR (i.e., the first argument of the AMONG constraint) does not occur
in any other constraints of the problem, it may be operationally more efficient to replace
the AMONG constraint by an AMONG LOW UP constraint where NVAR is replaced by the
corresponding interval [NVAR, NVAR]. This stands for two reasons:

• First, by using an AMONG LOW UP constraint rather than an AMONG constraint, we
avoid the filtering algorithm related to NVAR.

• Second, unlike the AMONG constraint where we need to fix all its variables to get
entailment, the AMONG LOW UP constraint can be entailed before all its variables get
fixed. As a result, this potentially avoid unnecessary calls to its filtering algorithm.

It was shown in [116] that achieving bound-consistency for a conjunction of AMONG con-
straints where all sets of values are arbitrary intervals can be done in polynomial time.

Algorithm A filtering algorithm achieving arc-consistency was given by Bessière et al. in [67, 70].

Systems AMONG in Choco, COUNT in Gecode, AMONG in JaCoP, AMONG in MiniZinc.

See also common keyword: ARITH, ATLEAST, ATMOST (value constraint), COUNT (counting con-
straint), COUNTS (value constraint,counting constraint), DISCREPANCY, MAX NVALUE,
MIN NVALUE, NVALUE (counting constraint).

generalisation: AMONG VAR (constant replaced by variable).

implies: AMONG VAR, CARDINALITY ATMOST.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.cosytec.com
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#among
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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related: ROOTS (can be used for expressing AMONG), SLIDING CARD SKIP0 (counting
constraint on maximal sequences).

shift of concept: AMONG SEQ (variable replaced by interval and constraint applied
in a sliding way), COMMON.

soft variant: OPEN AMONG (open constraint).

specialisation: AMONG DIFF 0 (variable ∈ values replaced by variable differ-
ent from 0), AMONG INTERVAL (variable ∈ values replaced by variable ∈
interval), AMONG LOW UP (variable replaced by interval), AMONG MODULO (list
of values replaced by list of values v such that v mod QUOTIENT = REMAINDER),
EXACTLY (variable replaced by constant and values replaced by one single value).

system of constraints: GLOBAL CARDINALITY (count the number of occurrences of dif-
ferent values).

used in graph description: IN.

uses in its reformulation: COUNT.

Keywords characteristic of a constraint: automaton, automaton with counters, non-deterministic
automaton.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2), Berge-acyclic con-
straint network.

constraint type: value constraint, counting constraint.

filtering: glue matrix, arc-consistency, SAT.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) IN(variables.var, VALUES)

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to the unary constraint IN(variables.var, VALUES) de-
fined in this catalogue. Since this is a unary constraint we employ the SELF arc generator
in order to produce an initial graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.60 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 5.60: Initial and final graph of the AMONG constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



624 AMONG

Automaton Figure 5.61 depicts a first automaton that only accepts all the solutions to the AMONG con-
straint. This automaton uses a counter in order to record the number of satisfied constraints
of the form VARi ∈ VALUES already encountered. To each variable VARi of the collection
VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint
links VARi and Si: VARi ∈ VALUES ⇔ Si. The automaton counts the number of vari-
ables of the VARIABLES collection that take their values in VALUES and finally assigns this
number to NVAR.

NVAR = C

s{C ← 0}

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{C ← C + 1}

s

s
−→
C +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.61: Automaton (with one counter) of the AMONG constraint and its glue
matrix

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NVAR

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.62: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the AMONG constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic

We now describe a second counter free automaton that also only accepts all the solutions
to AMONG constraint. Without loss of generality, assume that the collection of variables
VARIABLES contains at least one variable (i.e., |VARIABLES| ≥ 1). Let n and D re-
spectively denote the number of variables of the collection VARIABLES, and the union
of the domains of the variables of VARIABLES. Clearly, the maximum number of vari-
ables of VARIABLES that are assigned a value in VALUES cannot exceed the quantity
m = min(n, NVAR). The m + 2 states of the automaton that only accepts all the solu-
tions to the AMONG constraint can be defined in the following way:

• We have an initial state labelled by s0.

• We have m intermediate states labelled by si (1 ≤ i ≤ m). The intermediate states
are indexed by the number of already encountered satisfied constraints of the form
VARk ∈ VALUES from the initial state s0 to the state si.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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• We have an accepting state labelled by sF .

Three classes of transitions are respectively defined in the following way:

1. There is a transition, labeled by j, (j ∈ D \ VALUES), from every state si, (i ∈
[0,m]), to itself.

2. There is a transition, labeled by j, (j ∈ VALUES), from every state si, (i ∈ [0,m −
1]), to the state si+1.

3. There is a transition, labelled by i, from every state si, (i ∈ [0,m]), to the accepting
state sF .

This leads to an automaton that has m · |D|+ |D \ VALUES|+m+ 1 transitions. Since the
maximum value ofm is equal to n, in the worst case we have n · |D|+ |D\VALUES|+n+1
transitions.

Figure 5.63 depicts a counter free non deterministic automaton associated with the AMONG

constraint under the hypothesis that (1) all variables of VARIABLES are assigned a value
in {0, 1, 2, 3}, (2) |VARIABLES| is equal to 3, (3) VALUES corresponds to odd values.
The sequence VAR1, VAR2, . . . , VAR|VARIABLES|, NVAR is passed to this automaton. A state
si (1 ≤ i ≤ 3) represents the fact that i odd values were already encountered, while sF
represents the accepting state. A transition from si (1 ≤ i ≤ 3) to sF is labelled by i and
represents the fact that we can only go in the accepting state from a state that is compatible
with the total number of odd values enforced by NVAR. Note that non determinism only
occurs if there is a non-empty intersection between the set of potential values that can be
assigned to the variables of VARIABLES and the potential value of the NVAR. While the
counter free non deterministic automaton depicted by Figure 5.63 has 5 states and 18 tran-
sitions, its minimum-state deterministic counterpart shown in Figure 5.64 has 7 states and
23 transitions.

The sequence of variables
VAR1 VAR2 VAR3 NVAR is
passed to the automaton

s0 s1

sF

s2 s3

0, 2

1, 3

0

0, 2

1, 3

1

0, 2

1, 3

2

0, 2

3

Figure 5.63: Counter free non deterministic automaton of the
AMONG(NVAR, 〈VAR1, VAR2, VAR3〉, 〈1, 3〉) constraint assuming VARi ∈ [0, 3]
(1 ≤ i ≤ 3), with initial state s0 and accepting state sF

We make the following final observation. Since the Symmetries slot of the AMONG con-
straint indicates that the variables of VARIABLES are permutable, and since all incoming
transitions to any state of the automaton depicted by Figure 5.63 are labelled with distinct
values, we can mechanically construct from this automaton a counter free deterministic au-
tomaton that takes as input the sequence NVAR, VAR3, VAR2, VAR1 rather than the sequence
VAR1, VAR2, VAR3, NVAR. This is achieved by respectively making sF and s0 the initial and
the accepting state, and by reversing each transition.
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The sequence of variables
VAR1 VAR2 VAR3 NVAR is
passed to the automaton

s0

s1

s2

s3

s4

s5

s6

2

0

1, 3

0

2

1, 3

0, 2

1

3

2

0

1, 3

0

2

1, 3

0, 2

3

Figure 5.64: Counter free minimum-state deterministic automaton of the
AMONG(NVAR, 〈VAR1, VAR2, VAR3〉, 〈1, 3〉) constraint assuming VARi ∈ [0, 3] (1 ≤ i ≤
3), with initial state s0 and accepting states s1, s3, s6
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5.26 AMONG DIFF 0
I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the automaton of NVALUE.

Constraint AMONG DIFF 0(NVAR, VARIABLES)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)

Purpose NVAR is the number of variables of the collection VARIABLES that take a value different
from 0.

Example (3, 〈0, 5, 5, 0, 1〉)
(0, 〈0, 0, 0, 0, 0〉)
(1, 〈0, 0, 0, 6, 0〉)

The first AMONG DIFF 0 constraint holds since exactly 3 values of the collection of
values 〈0, 5, 5, 0, 1〉 are different from 0.

All solutions Figure 5.65 gives all solutions to the following non ground instance of the
AMONG DIFF 0 constraint: V1 ∈ {0, 3}, V2 ∈ [0, 1], V3 ∈ [5, 6], V4 ∈ [0, 2],
AMONG DIFF 0(2, 〈V1, V2, V3, V4〉).

¬ (2, 〈0, 0,5,1〉)
 (2, 〈0, 0,5,2〉)
® (2, 〈0, 0,6,1〉)
¯ (2, 〈0, 0,6,2〉)

° (2, 〈0,1,5, 0〉)
± (2, 〈0,1,6, 0〉)
² (2, 〈3, 0,5, 0〉)
³ (2, 〈3, 0,6, 0〉)

Figure 5.65: All solutions corresponding to the non ground example of the
AMONG DIFF 0 constraint of the All solutions slot, where the number of variables
assigned a value different from zero is equal to NVAR = 2

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
ATLEAST(1, VARIABLES, 0)
2 ∗ AMONG DIFF 0(VARIABLES.var) > |VARIABLES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model ATLEAST(2, VARIABLES, 0)

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that is different from 0 can be re-
placed by any other value that is also different from 0.

Arg. properties • Functional dependency: NVAR determined by VARIABLES.

• Contractible wrt. VARIABLES when NVAR = 0.

• Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for AMONG DIFF 0: domains 0..n

2 3 4 5 6 7 8
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Solution density for AMONG DIFF 0


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0.9

1

1.1

1.2

Length
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Solution density for AMONG DIFF 0

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 1 1 1 1 1 1 1
1 4 9 16 25 36 49 64
2 4 27 96 250 540 1029 1792
3 - 27 256 1250 4320 12005 28672
4 - - 256 3125 19440 84035 286720
5 - - - 3125 46656 352947 1835008
6 - - - - 46656 823543 7340032
7 - - - - - 823543 16777216
8 - - - - - - 16777216

Solution count for AMONG DIFF 0: domains 0..n
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size 6
size 7
size 8
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size 8

See also common keyword: NVALUE (counting constraint).

generalisation: AMONG (variable 6= 0 replaced by variable ∈ values).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: joker value, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.



AMONG DIFF 0 633

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var 6= 0

Graph property(ies) NARC= NVAR

Graph model Since this is a unary constraint we employ the SELF arc generator in order to produce an
initial graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.66 respectively show the initial and final graph associated
with first example of the Example slot. Since we use the NARC graph property, the
loops of the final graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 5.66: Initial and final graph of the AMONG DIFF 0 constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.67 depicts the automaton associated with the AMONG DIFF 0 constraint. To each
variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The
following signature constraint links VARi and Si: VARi 6= 0 ⇔ Si. The automaton counts
the number of variables of the VARIABLES collection that take a value different from 0 and
finally assigns this number to NVAR.

NVAR = C

s{C ← 0}

VARi = 0

VARi 6= 0,
{C ← C + 1}

Figure 5.67: Automaton of the AMONG DIFF 0 constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NVAR

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.68: Hypergraph of the reformulation corresponding to the automaton
(with one counter) of the AMONG DIFF 0 constraint: since all states variables
Q0, Q1, . . . , Qn are fixed to the unique state s of the automaton, the transitions con-
straints share only the counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.27 AMONG INTERVAL

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from AMONG.

Constraint AMONG INTERVAL(NVAR, VARIABLES, LOW, UP)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
LOW : int

UP : int

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
LOW ≤ UP

Purpose NVAR is the number of variables of the collection VARIABLES taking a value that is lo-
cated within interval [LOW, UP].

Example (3, 〈4, 5, 8, 4, 1〉 , 3, 5)

The AMONG INTERVAL constraint holds since we have 3 values, namely 4, 5 and 4
that are situated within interval [3, 5].

∈

[ L O W , U P ]

VARIABLES

4
54

8 1

All solutions Figure 5.69 gives all solutions to the following non ground instance of the
AMONG INTERVAL constraint: V1 ∈ [2, 9], V2 ∈ [0, 1], V3 ∈ [5, 6], V4 ∈ [1, 2],
AMONG INTERVAL(3, 〈V1, V2, V3, V4〉,0,2).

¬ (3, 〈2,0, 5,1〉,0,2)
 (3, 〈2,0, 5,2〉,0,2)
® (3, 〈2,0, 6,1〉,0,2)
¯ (3, 〈2,0, 6,2〉,0,2)
° (3, 〈2,1, 5,1〉,0,2)
± (3, 〈2,1, 5,2〉,0,2)
² (3, 〈2,1, 6,1〉,0,2)
³ (3, 〈2,1, 6,2〉,0,2)

Figure 5.69: All solutions corresponding to the non ground example of the
AMONG INTERVAL constraint of the All solutions slot, where the number of variables
assigned a value in [LOW = 0, UP = 2] is equal to NVAR = 3


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
LOW < UP

LOW ≤maxval(VARIABLES.var)
UP ≥minval(VARIABLES.var)

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to [LOW, UP] (resp. does
not belong to [LOW, UP]) can be replaced by any other value in [LOW, UP]) (resp. not
in [LOW, UP]).

Arg. properties • Functional dependency: NVAR determined by VARIABLES, LOW and UP.

• Contractible wrt. VARIABLES when NVAR = 0.

• Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), LOW(id), UP(id).

Remark By giving explicitly all values of the interval [LOW, UP] the AMONG INTERVAL constraint
can be modelled with the AMONG constraint. However when LOW − UP + 1 is a large
quantity the AMONG INTERVAL constraint provides a more compact form.

See also generalisation: AMONG (variable in interval replaced by variable ∈ values).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: interval, functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • LOW ≤ variables.var
• variables.var ≤ UP

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to a unary constraint. For this reason we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.70 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

1:4 2:5 4:4

(A) (B)

Figure 5.70: Initial and final graph of the AMONG INTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.71 depicts the automaton associated with the AMONG INTERVAL constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.
The following signature constraint links VARi and Si: LOW ≤ VARi ∧ VARi ≤ UP ⇔ Si.
The automaton counts the number of variables of the VARIABLES collection that take their
values in [LOW, UP] and finally assigns this number to NVAR.

NVAR = C

s{C ← 0}

LOW > VARi ∨ VARi > UP

LOW ≤ VARi ∧ VARi ≤ UP,
{C ← C + 1}

Figure 5.71: Automaton of the AMONG INTERVAL constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NVAR

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.72: Hypergraph of the reformulation corresponding to the automaton
(with one counter) of the AMONG INTERVAL constraint: since all states variables
Q0, Q1, . . . , Qn are fixed to the unique state s of the automaton, the transitions con-
straints share only the counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.28 AMONG LOW UP

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [47]

Constraint AMONG LOW UP(LOW, UP, VARIABLES, VALUES)

Arguments LOW : int

UP : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ 0
UP ≤ |VARIABLES|
UP ≥ LOW

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Between LOW and UP variables of the VARIABLES collection are assigned a value of the
VALUES collection.

Example (1, 2, 〈9, 2, 4, 5〉 , 〈0, 2, 4, 6, 8〉)

The AMONG LOW UP constraint holds since between 1 and 2 values (i.e., in fact 2
values) of the collection of values 〈9, 2, 4, 5〉 belong to the set of values {0, 2, 4, 6, 8}.

∈

V
A L U E S

VARIABLES

2
4

9 5

All solutions Figure 5.73 gives all solutions to the following non ground instance of the
AMONG LOW UP constraint: V1 ∈ [1, 2], V2 ∈ [8, 9], V3 ∈ [5, 6], V4 ∈ [2, 3],
AMONG LOW UP(3,4, 〈V1, V2, V3, V4〉, 〈0,2,4,6,8〉).

Typical LOW < |VARIABLES|
UP > 0
LOW < UP

|VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|
LOW > 0 ∨ UP < |VARIABLES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ (3,4, 〈1,8,6,2〉, 〈0,2,4,6,8〉)
 (3,4, 〈2,8, 5,2〉, 〈0,2,4,6,8〉)
® (3,4, 〈2,8,6,2〉, 〈0,2,4,6,8〉)
¯ (3,4, 〈2,8,6, 3〉, 〈0,2,4,6,8〉)
° (3,4, 〈2, 9,6,2〉, 〈0,2,4,6,8〉)

Figure 5.73: All solutions corresponding to the non ground example of the
AMONG LOW UP constraint of the All solutions slot, where at least three variables
(LOW = 3, UP = 4) are assigned a value from {0,2,4,6,8}

Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• LOW can be decreased to any value ≥ 0.

• UP can be increased to any value ≤ |VARIABLES|.
• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.

does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Contractible wrt. VARIABLES when UP = 0.

• Contractible wrt. VARIABLES when UP = |VARIABLES|.
• Aggregate: LOW(+), UP(+), VARIABLES(union), VALUES(sunion).

Algorithm The AMONG LOW UP constraint is entailed if and only if the following two conditions
hold:

1. The number of variables of the VARIABLES collection assigned a value of the VALUES
collection is greater than or equal to LOW.

2. The number of variables of the VARIABLES collection that can potentially be assigned
a value of the VALUES collection is less than or equal to UP.

Used in AMONG SEQ, CYCLE CARD ON PATH, INTERVAL AND COUNT, SLIDING CARD SKIP0.

See also assignment dimension added: INTERVAL AND COUNT (assignment dimension corre-
sponding to intervals added).

generalisation: AMONG (interval replaced by variable), SLIDING CARD SKIP0 (full
sequence replaced by maximal sequences of non-zeros).

system of constraints: AMONG SEQ.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency, entailment.

final graph structure: acyclic, bipartite, no loop.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Cond. implications AMONG LOW UP(LOW, UP, VARIABLES, VALUES)
with distinct(VARIABLES, var)

implies AMONG LOW UP(LOW, UP, VALUES, VARIABLES).


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NARC≥ LOW

• NARC≤ UP

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Each arc constraint of the final graph corresponds to the fact that a variable is assigned to
a value that belong to the VALUES collection. The two graph properties restrict the total
number of arcs to the interval [LOW, UP].

Parts (A) and (B) of Figure 5.74 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

VALUES

1

12 345

234

NARC=2

2:2

2:2

3:4

3:4

(A) (B)

Figure 5.74: Initial and final graph of the AMONG LOW UP constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.75 depicts the automaton associated with the AMONG LOW UP constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable Si.
The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si. The automa-
ton counts the number of variables of the VARIABLES collection that take their values in
VALUES and finally checks that this number is within the interval [LOW, UP].

LOW ≤ C ∧ C ≤ UP

s{C ← 0}

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{C ← C + 1}

Figure 5.75: Automaton of the AMONG LOW UP constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

LOW ≤ Cn ∧ Cn ≤ UP

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.76: Hypergraph of the reformulation corresponding to the automaton
(with one counter) of the AMONG LOW UP constraint: since all states variables
Q0, Q1, . . . , Qn are fixed to the unique state s of the automaton, the transitions con-
straints share only the counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.29 AMONG MODULO

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from AMONG.

Constraint AMONG MODULO(NVAR, VARIABLES, REMAINDER, QUOTIENT)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
REMAINDER : int

QUOTIENT : int

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
REMAINDER ≥ 0
REMAINDER < QUOTIENT

QUOTIENT > 0

Purpose NVAR is the number of variables of the collection VARIABLES taking a value that is con-
gruent to REMAINDER modulo QUOTIENT.

Example (3, 〈4, 5, 8, 4, 1〉 , 0, 2)

In this example REMAINDER = 0 and QUOTIENT = 2 specifies that we count the number
of even values taken by the different variables. As a consequence the AMONG MODULO

constraint holds since exactly 3 values of the collection 〈4, 5, 8, 4, 1〉 are even.

e v e n

VARIABLES

4
84

5 1

All solutions Figure 5.77 gives all solutions to the following non ground instance of the
AMONG MODULO constraint: NVAR ∈ [3,4], V1 ∈ [1, 2], V2 ∈ [8, 9], V3 ∈ [5, 6],
V4 ∈ [2, 3], AMONG MODULO(NVAR, 〈V1, V2, V3, V4〉,1,2).

¬ (3, 〈1, 8,5,3〉,1,2)
 (3, 〈1,9,5, 2〉,1,2)
® (4, 〈1,9,5,3〉,1,2)
¯ (3, 〈1,9, 6,3〉,1,2)
° (3, 〈2,9,5,3〉,1,2)

Figure 5.77: All solutions corresponding to the non ground example of the
AMONG MODULO constraint of the All solutions slot, where the number of variables
assigned an odd value (REMAINDER = 1, QUOTIENT = 2) is constrained to be equal to
NVAR ∈ [3,4]


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
QUOTIENT > 1
QUOTIENT <maxval(VARIABLES.var)

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value u of VARIABLES.var such that u mod QUOTIENT =
REMAINDER (resp. umod QUOTIENT 6= REMAINDER) can be replaced by any other
value v such that v mod QUOTIENT = REMAINDER (resp. u mod QUOTIENT 6=
REMAINDER).

Arg. properties • Functional dependency: NVAR determined by VARIABLES, REMAINDER and
QUOTIENT.

• Contractible wrt. VARIABLES when NVAR = 0.

• Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), REMAINDER(id), QUOTIENT(id).

Remark By giving explicitly all values v that satisfy the equality v mod QUOTIENT = REMAINDER,
the AMONG MODULO constraint can be modelled with the AMONG constraint. However
the AMONG MODULO constraint provides a more compact form.

See also generalisation: AMONG (list of values v such that v mod QUOTIENT = REMAINDER re-
placed by list of values).

Keywords characteristic of a constraint: modulo, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var mod QUOTIENT = REMAINDER

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to a unary constraint. For this reason we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.78 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

1:4 3:8 4:4

(A) (B)

Figure 5.78: Initial and final graph of the AMONG MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.79 depicts the automaton associated with the AMONG MODULO constraint. To
each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable
Si. The following signature constraint links VARi and Si: VARi mod QUOTIENT =
REMAINDER⇔ Si.

NVAR = C

s{C ← 0}

VARi mod QUOTIENT 6= REMAINDER

VARi mod QUOTIENT = REMAINDER,
{C ← C + 1}

Figure 5.79: Automaton of the AMONG MODULO constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NVAR

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.80: Hypergraph of the reformulation corresponding to the automaton
(with one counter) of the AMONG MODULO constraint: since all states variables
Q0, Q1, . . . , Qn are fixed to the unique state s of the automaton, the transitions con-
straints share only the counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.30 AMONG SEQ

I B J DESCRIPTION LINKS GRAPH

Origin [47]

Constraint AMONG SEQ(LOW, UP, SEQ, VARIABLES, VALUES)

Synonym SEQUENCE.

Arguments LOW : int

UP : int

SEQ : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions LOW ≥ 0
LOW ≤ |VARIABLES|
UP ≥ LOW

SEQ > 0
SEQ ≥ LOW

SEQ ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose Constrains all sequences of SEQ consecutive variables of the collection VARIABLES to
take at least LOW values in VALUES and at most UP values in VALUES.

Example (1, 2, 4, 〈9, 2, 4, 5, 5, 7, 2〉 , 〈0, 2, 4, 6, 8〉)

The AMONG SEQ constraint holds since the different sequences of 4 consecutive
variables contains respectively 2, 2, 1 and 1 even numbers.

9 2 4 5 5 7 2

All solutions Figure 5.81 gives all solutions to the following non ground instance of the
AMONG SEQ constraint: V1 ∈ [1, 2], V2 ∈ [8, 9], V3 ∈ [5, 6], V4 ∈ [2, 3],
AMONG SEQ(0,1,2, 〈V1, V2, V3, V4〉, 〈0,2,4,6,8〉).

Typical LOW < SEQ

UP > 0
SEQ > 1
SEQ < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|
LOW > 0 ∨ UP < SEQ


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.



AMONG SEQ 651

¬ (0,1,2, 〈1,8, 5,2〉, 〈0,2,4,6,8〉)
 (0,1,2, 〈1,8, 5, 3〉, 〈0,2,4,6,8〉)
® (0,1,2, 〈1, 9, 5,2〉, 〈0,2,4,6,8〉)
¯ (0,1,2, 〈1, 9, 5, 3〉, 〈0,2,4,6,8〉)
° (0,1,2, 〈1, 9,6, 3〉, 〈0,2,4,6,8〉)
± (0,1,2, 〈2, 9, 5,2〉, 〈0,2,4,6,8〉)
² (0,1,2, 〈2, 9, 5, 3〉, 〈0,2,4,6,8〉)
³ (0,1,2, 〈2, 9,6, 3〉, 〈0,2,4,6,8〉)

Figure 5.81: All solutions corresponding to the non ground example of the
AMONG SEQ constraint of the All solutions slot, where each sequence of two con-
secutive variables (SEQ = 2) does not contain more than one occurrence (LOW = 0,
UP = 1) of values 0, 2, 4, 6, 8

Symmetries • Items of VARIABLES can be reversed.

• Items of VALUES are permutable.

• LOW can be decreased to any value ≥ 0.

• UP can be increased to any value ≤ SEQ.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Contractible wrt. VARIABLES when UP = 0.

• Contractible wrt. VARIABLES when SEQ = 1.

• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Usage The AMONG SEQ constraint occurs in many timetabling problems. As a typical example
taken from [437], consider, for example, a nurse-rostering problem where each nurse can
work at most 2 night shifts during every period of 7 consecutive days.

Algorithm Beldiceanu and Carlsson [32] have proposed a first incomplete filtering algorithm for the
AMONG SEQ constraint. Later on, W.-J. van Hoeve et al. proposed two filtering algo-
rithms [437] establishing arc-consistency as well as an incomplete filtering algorithm based
on dynamic programming concepts. In 2007 Brand et al. came up with a reformulation [96]
that provides a complete filtering algorithm. One year later, Maher et al. use a reformula-
tion in term of a linear program [284] where (1) each coefficient is an integer in {−1, 0, 1},
(2) each column has a block of consecutive 1’s or −1’s. From this reformulation they de-
rive a flow model that leads to an algorithm that achieves a complete filtering in O(n2)
along a branch of the search tree.

Systems SEQUENCE in Gecode, SEQUENCE in JaCoP.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
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See also generalisation: SLIDING DISTRIBUTION (single set of values replaced by individual val-
ues).

part of system of constraints: AMONG LOW UP.

root concept: AMONG.

used in graph description: AMONG LOW UP.

Keywords characteristic of a constraint: hypergraph.

combinatorial object: sequence.

constraint type: system of constraints, decomposition, sliding sequence constraint.

filtering: arc-consistency, linear programming, flow.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) AMONG LOW UP(LOW, UP,collection, VALUES)

Graph property(ies) NARC= |VARIABLES| − SEQ + 1

Graph model A constraint on sliding sequences of consecutive variables. Each vertex of the graph cor-
responds to a variable. Since they link SEQ variables, the arcs of the graph correspond to
hyperarcs. In order to link SEQ consecutive variables we use the arc generator PATH . The
constraint associated with an arc corresponds to the AMONG LOW UP constraint defined at
another entry of this catalogue.

Signature Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES
collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph property NARC =
|VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to
NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.31 AMONG VAR

I B J DESCRIPTION LINKS GRAPH

Origin Generalisation of AMONG

Constraint AMONG VAR(NVAR, VARIABLES, VALUES)

Arguments NVAR : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−dvar)

Restrictions NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)

Purpose NVAR is the number of variables of the collection VARIABLES that are equal to one of the
variables of the collection VALUES.

Example (3, 〈4, 5, 5, 4, 1〉 , 〈1, 5, 8, 1〉)

The AMONG VAR constraint holds since exactly 3 values of the collection of vari-
ables 〈4, 5, 5, 4, 1〉 occurs within the collection 〈1, 5, 8, 1〉.

∈
V

A L U E S

VARIABLES

5 5
1

44

All solutions Figure 5.82 gives all solutions to the following non ground instance of the AMONG VAR

constraint: NVAR ∈ [3,4], V1 ∈ [1, 2], V2 ∈ [8, 9], V3 ∈ [5, 6], V4 ∈ [2, 3],
AMONG VAR(NVAR, 〈V1, V2, V3, V4〉, 〈0,2,4,6,8〉).

¬ (3, 〈1,8,6,2〉, 〈0,2,4,6,8〉)
 (3, 〈2,8, 5,2〉, 〈0,2,4,6,8〉)
® (4, 〈2,8,6,2〉, 〈0,2,4,6,8〉)
¯ (3, 〈2,8,6, 3〉, 〈0,2,4,6,8〉)
° (3, 〈2, 9,6,2〉, 〈0,2,4,6,8〉)

Figure 5.82: All solutions corresponding to the non ground example of the
AMONG VAR constraint of the All solutions slot, where the number of variables as-
signed a value in {0,2,4,6,8} is equal to NVAR ∈ [3,4]

Typical |VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.



AMONG VAR 655

Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Functional dependency: NVAR determined by VARIABLES and VALUES.

• Contractible wrt. VARIABLES when NVAR = 0.

• Contractible wrt. VARIABLES when NVAR = |VARIABLES|.
• Aggregate: NVAR(+), VARIABLES(union), VALUES(union).

Systems AMONG in Choco, COUNT in Gecode, AMONGVAR in JaCoP.

See also implied by: AMONG.

related: COMMON.

specialisation: AMONG (variable replaced by constant within list of values VALUES).

uses in its reformulation: MIN N.

Keywords constraint arguments: pure functional dependency.

constraint type: counting constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NSOURCE= NVAR

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.83 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE graph property, the source vertices
of the final graph are stressed with a double circle. Since the final graph has only 3 sources
the variables NVAR is fixed to 3.

VARIABLES

VALUES

1

1234

2345

NSOURCE=3

2:5

2:5

3:5 5:1

1:1 4:1

(A) (B)

Figure 5.83: Initial and final graph of the AMONG VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.32 AND

I B J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint AND(VAR, VARIABLES)

Synonym REL.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = VAR1 ∧ VAR2 ∧ · · · ∧ VARn.

Example (0, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)
(0, 〈1, 0, 1〉)

All solutions Figure 5.84 gives all solutions to the following non ground instance of the AND constraint:
VAR ∈ [0,1], V1 ∈ [0, 1], V2 = 1, V3 ∈ [0, 1], V4 = 1, AND(VAR, 〈V1, V2, V3, V4〉).

¬ (0, 〈0, 1, 0, 1〉)
 (0, 〈0, 1, 1, 1〉)
® (0, 〈1, 1, 0, 1〉)
¯ (1, 〈1, 1, 1, 1〉)

Figure 5.84: All solutions corresponding to the non ground example of the AND con-
straint of the All solutions slot

Symmetry Items of VARIABLES are permutable.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.
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Arg. properties • Functional dependency: VAR determined by VARIABLES.

• Extensible wrt. VARIABLES when VAR = 0.

• Aggregate: VAR(∧), VARIABLES(union).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 8 16 32 64 128 256

Number of solutions for AND: domains 0..n

2 3 4 5 6 7 8

10−5

10−4

10−3

10−2

10−1

100

Length

O
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er
ve

d
de
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ity

Solution density for AND


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

Length

O
bs
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ve

d
de
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ity

Solution density for AND

Length (n) 2 3 4 5 6 7 8
Total 4 8 16 32 64 128 256

Parameter
value

0 3 7 15 31 63 127 255
1 1 1 1 1 1 1 1

Solution count for AND: domains 0..n
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0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
10−8
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ity

Solution density for AND

size 6
size 7
size 8

Systems REIFIEDAND in Choco, REL in Gecode, ANDBOOL in JaCoP, #/\ in SICStus.

See also common keyword: CLAUSE AND, EQUIVALENT, IMPLY, NAND, NOR, OR, XOR (Boolean


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/
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constraint).

implies: ATLEAST NVALUE, BETWEEN MIN MAX, MINIMUM,
SOFT ALL EQUAL MIN CTR.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Cond. implications • AND(VAR, VARIABLES)
with |VARIABLES| > 2

implies SOME EQUAL(VARIABLES).

• AND(VAR, VARIABLES)
with VAR = 0

implies NAND(VAR, VARIABLES)
when VAR = 1.

• AND(VAR, VARIABLES)
with VAR = 1

implies NAND(VAR, VARIABLES)
when VAR = 0.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.85 depicts a first deterministic automaton without counter associated with the AND

constraint. To the first argument VAR of the AND constraint corresponds the first signature
variable. To each variable VARi of the second argument VARIABLES of the AND constraint
corresponds the next signature variable. There is no signature constraint.

s

i

j

k

VAR = 0

VAR = 1

VARi = 1

VARi = 0

VARi = 1

VARi = 1

VARi = 0

Figure 5.85: Counter free automaton of the AND(VAR, 〈VAR1, VAR2, . . . , VARn〉) con-
straint (the transition i VARi=0−−−−→ k represents the fact that at least one variable VARi

should be set to 0 when VAR = 0, while the transition j VARi=1−−−−→ j represents the fact
that all VARi should be set to 1 when VAR = 1)

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {j, k}

VARn

Figure 5.86: Hypergraph of the reformulation corresponding to the automaton of the
AND constraint

Figure 5.87 depicts a second deterministic automaton with one counter associated with the
AND constraint, where the argument VAR is unified to the final value of the counter.

VAR = C

s{C ← 1} t

VARi = 1

VARi = 0,
{C ← 0}

VARi = 1

VARi = 0

Figure 5.87: Automaton (with one counter) of the AND constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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C0 = 1

Q0 = s

C1

Q1

VAR1 VAR2

Cn = VAR

Qn

VARn

Figure 5.88: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the AND constraint (since all states of the automaton are accepting there
is no restriction on the last variable Qn)
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5.33 ARITH

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the definition of several automata

Constraint ARITH(VARIABLES, RELOP, VALUE)

Synonym REL.

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

VALUE : int

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all variables var of the VARIABLES collection to have var RELOP VALUE.

Example (〈4, 5, 7, 4, 5〉 , <, 9)

The ARITH constraint holds since all values of the collection 〈4, 5, 7, 4, 5〉 are strictly less
than 9.

All solutions Figure 5.89 gives all solutions to the following non ground instance of the ARITH con-
straint: V1 ∈ [0, 5], V2 ∈ [2, 3], V3 ∈ [2, 4], V4 ∈ [1, 6], ARITH(〈V1, V2, V3, V4〉,≤,2).

¬ (〈0, 2, 2, 1〉,2)
 (〈0, 2, 2, 2〉,2)
® (〈1, 2, 2, 1〉,2)

¯ (〈1, 2, 2, 2〉,2)
° (〈2, 2, 2, 1〉,2)
± (〈2, 2, 2, 2〉,2)

Figure 5.89: All solutions corresponding to the non ground example of the ARITH
constraint of the All solutions slot

Typical |VARIABLES| > 1
RELOP ∈ [=]

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any value of
VARIABLES.var.

Arg. properties Contractible wrt. VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Systems EQ in Choco, NEQ in Choco, GEQ in Choco, GT in Choco, LEQ in Choco, LT in Choco,
REL in Gecode, #< in SICStus, #=< in SICStus, #> in SICStus, #>= in SICStus, #= in
SICStus, #\= in SICStus.

Used in ARITH SLIDING.

See also common keyword: AMONG, COUNT (value constraint).

generalisation: ARITH OR (variable RELOP VALUE replaced by variable RELOP VALUE
∨ variable RELOP VALUE).

system of constraints: ARITH SLIDING.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: decomposition, value constraint.

filtering: arc-consistency.

modelling: domain definition.

Cond. implications ARITH(VARIABLES, RELOP, VALUE)
with RELOP ∈ [<]
and minval(VARIABLES.var) ≥ 0

implies RANGE CTR(VARIABLES, CTR, R)
when CTR ∈ [<].


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var RELOP VALUE

Graph property(ies) NARC= |VARIABLES|

Graph model Parts (A) and (B) of Figure 5.90 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=5

1:4 2:5 3:7 4:4 5:5

(A) (B)

Figure 5.90: Initial and final graph of the ARITH constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.91 depicts the automaton associated with the ARITH constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi RELOP VALUE⇔ Si. The automaton enforces
for each variable VARi the condition VARi RELOP VALUE.

s VARi RELOP VALUE

Figure 5.91: Automaton of the ARITH constraint

Q0 = s Q1

S1 S2

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.92: Hypergraph of the reformulation corresponding to the automaton of the
ARITH constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.34 ARITH OR

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the definition of several automata

Constraint ARITH OR(VARIABLES1, VARIABLES2, RELOP, VALUE)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
RELOP : atom

VALUE : int

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all pairs of variables var1i, var2i of the VARIABLES1 and VARIABLES2

collections to have var1i RELOP VALUE ∨ var2i RELOP VALUE.

Example (〈0, 1, 0, 0, 1〉 , 〈0, 0, 0, 1, 0〉 ,=, 0)

The constraint ARITH OR holds since, for all pairs of variables var1i, var2i of the
VARIABLES1 and VARIABLES2 collections, there is at least one variable that is equal to 0.

All solutions Figure 5.93 gives all solutions to the following non ground instance of the ARITH OR con-
straint: U1 ∈ [3, 4], U2 ∈ [1, 2], U3 ∈ [1, 4], V1 ∈ [2, 3], V2 ∈ [2, 2], V3 ∈ [0, 1],
ARITH OR(〈U1, U2, U3〉, 〈V1, V2, V3〉,=,2)

¬ (〈3, 1, 2〉, 〈2, 2, 0〉,=,2)
 (〈3, 1, 2〉, 〈2, 2, 1〉,=,2)
® (〈3, 2, 2〉, 〈2, 2, 0〉,=,2)
¯ (〈3, 2, 2〉, 〈2, 2, 1〉,=,2)

° (〈4, 1, 2〉, 〈2, 2, 0〉,=,2)
± (〈4, 1, 2〉, 〈2, 2, 1〉,=,2)
² (〈4, 2, 2〉, 〈2, 2, 0〉,=,2)
³ (〈4, 2, 2〉, 〈2, 2, 1〉,=,2)

Figure 5.93: All solutions corresponding to the non ground example of the ARITH OR
constraint of the All solutions slot

Typical |VARIABLES1| > 0
RELOP ∈ [=]

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2)
(RELOP) (VALUE).

• Items of VARIABLES1 and VARIABLES2 are permutable (same permutation used).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. VARIABLES1 and VARIABLES2 (remove items from same position).

See also specialisation: ARITH (variable RELOP VALUE ∨ variable RELOP VALUE replaced by
variable RELOP VALUE).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: decomposition, value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: disjunction.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT (=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var RELOP VALUE ∨ variables2.var RELOP VALUE

Graph property(ies) NARC= |VARIABLES1|

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.94 respectively show the initial and final graphs associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES1

VARIABLES2

1

1

2

2

3

3

4

4

5

5

NARC=5

1:0

1:0

2:1

2:0

3:0

3:0

4:0

4:1

5:1

5:0

(A) (B)

Figure 5.94: Initial and final graph of the ARITH OR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.95 depicts the automaton associated with the ARITH OR constraint. Let VAR1i and
VAR2i be the ith variables of the VARIABLES1 and VARIABLES2 collections. To each pair
of variables (VAR1i, VAR2i) corresponds a signature variable Si. The following signature
constraint links VAR1i, VAR2i and Si: VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE ⇔
Si. The automaton enforces for each pair of variables VAR1i,VAR2i the condition
VAR1i RELOP VALUE ∨ VAR2i RELOP VALUE.

s
VAR1i RELOP VALUE ∨
VAR2i RELOP VALUE

Figure 5.95: Automaton of the ARITH OR constraint

Q0 = s Q1

S1 S2

Qn = s

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.96: Hypergraph of the reformulation corresponding to the automaton of the
ARITH OR constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.35 ARITH SLIDING

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used in the definition of some automaton

Constraint ARITH SLIDING(VARIABLES, RELOP, VALUE)

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

VALUE : int

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Enforce for all sequences of variables var1, var2, . . . , vari (1 ≤ i ≤ |VARIABLES|) of
the VARIABLES collection to have (var1 + var2 + · · ·+ vari) RELOP VALUE.

Example (〈0, 0, 1, 2, 0, 0,−3〉 , <, 4)

The ARITH SLIDING constraint holds since all the following seven inequalities hold:

• 0 < 4,

• 0 + 0 < 4,

• 0 + 0 + 1 < 4,

• 0 + 0 + 1 + 2 < 4,

• 0 + 0 + 1 + 2 + 0 < 4,

• 0 + 0 + 1 + 2 + 0 + 0 < 4,

• 0 + 0 + 1 + 2 + 0 + 0− 3 < 4.

All solutions Figure 5.97 gives all solutions to the following non ground instance of the ARITH SLIDING

constraint: V1 ∈ [0, 5], V2 ∈ [2, 3], V3 ∈ [0, 4], ARITH SLIDING(〈V1, V2, V3〉,≤,3).

¬ (〈0, 2, 0〉,≤,3)
 (〈0, 2, 1〉,≤,3)
® (〈0, 3, 0〉,≤,3)
¯ (〈1, 2, 0〉,≤,3)

Figure 5.97: All solutions corresponding to the non ground example of the
ARITH SLIDING constraint of the All solutions slot


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical |VARIABLES| > 1
RELOP ∈ [<,≥, >,≤]

Arg. properties • Contractible wrt. VARIABLES when RELOP ∈ [<,≤] and
minval(VARIABLES.var) ≥ 0.

• Suffix-contractible wrt. VARIABLES.

See also common keyword: SUM CTR (arithmetic constraint).

implies: SUM CTR.

part of system of constraints: ARITH.

used in graph description: ARITH.

Keywords characteristic of a constraint: hypergraph, automaton, automaton with counters.

combinatorial object: sequence.

constraint type: arithmetic constraint, decomposition, sliding sequence constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 1 7→collection

Arc arity ∗

Arc constraint(s) ARITH(collection, RELOP, VALUE)

Graph property(ies) NARC= |VARIABLES|
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Automaton Figure 5.98 depicts the automaton associated with the ARITH SLIDING constraint. To each
item of the collection VARIABLES corresponds a signature variable Si that is equal to 0.

T = 1 ∧ C RELOP VALUE

s

{
T ← 1,
C ← 0

}
t

0,
{C ← C + VARi} 0,{

C RELOP VALUE⇒
C ← C + VARi

}

0,{
C ¬RELOP VALUE⇒
T ← 0, C ← C + VARi

}

Figure 5.98: Automaton of the ARITH SLIDING constraint (T is initially set to 1 and
reset to 0 as soon as one of the sliding constraints does not hold)

T
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=
1
∧

C
n
R
E
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O
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E

C0 = 0

T0 = 1

Q0 = s

C1

T1

Q1

VAR1 VAR2

Cn

Tn

Qn ∈ {s, t}

VARn

Figure 5.99: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the ARITH SLIDING constraint (since all states of the automaton are
accepting there is no restriction on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.36 ASSIGN AND COUNTS

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint ASSIGN AND COUNTS(COLOURS, ITEMS, RELOP, LIMIT)

Arguments COLOURS : collection(val−int)
ITEMS : collection(bin−dvar, colour−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(COLOURS, val)
distinct(COLOURS, val)
required(ITEMS, [bin, colour])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific colour that may not be initially
fixed), and different bins, assign each item to a bin, so that the total number n of items
of colour COLOURS in each bin satisfies the condition n RELOP LIMIT.

Example


〈4〉 ,〈 bin− 1 colour− 4,

bin− 3 colour− 4,
bin− 1 colour− 4,
bin− 1 colour− 5

〉
,≤, 2


Figure 5.100 shows the solution associated with the example. The items and the
bins are respectively represented by little squares and by the different columns. Each little
square contains the value of the key attribute of the item to which it corresponds. The
items for which the colour attribute is equal to 4 are located under the thick line.

items assigned colour 4

items assigned a colour
different from colour 4

¬

®



¯

1 2 3 4 5

≤ 2

bins

¬ bin− 1 colour− 4
 bin− 3 colour− 4
® bin− 1 colour− 4
¯ bin− 1 colour− 5

ITEMS

Figure 5.100: Assignment of the items to the bins

The ASSIGN AND COUNTS constraint holds since for each used bin (i.e., namely bins 1
and 3) the number of assigned items for which the colour attribute is equal to 4 is less than
or equal to the limit 2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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All solutions Figure 5.101 gives all solutions to the following non ground instance of the
ASSIGN AND COUNTS constraint: B1 ∈ [1, 2], B2 ∈ [2, 3], B3 ∈ [2, 3],
B4 ∈ [3, 4], C1 ∈ [0, 1], C2 ∈ [0, 1], C3 ∈ [0, 0], C4 ∈ [0, 1],
ASSIGN AND COUNTS(〈0〉, 〈B1 C1, B2 C2, B3 C3, B4 C4〉,≥,3).

¬ (〈1 1, 3 0, 3 0, 3 0〉,≥,3)
 (〈2 0, 2 0, 2 0, 3 1〉,≥,3)
® (〈2 0, 2 0, 2 0, 4 1〉,≥,3)
¯ (〈2 1, 3 0, 3 0, 3 0〉,≥,3)

Figure 5.101: All solutions corresponding to the non ground example of the
ASSIGN AND COUNTS constraint of the All solutions slot, where items that are as-
signed colour 0 are shown in orange

Typical |COLOURS| > 0
|ITEMS| > 1
range(ITEMS.bin) > 1
RELOP ∈ [<,≤]
LIMIT > 0
LIMIT < |ITEMS|

Symmetries • Items of COLOURS are permutable.

• Items of ITEMS are permutable.

• All occurrences of two distinct values of ITEMS.bin can be swapped; all occur-
rences of a value of ITEMS.bin can be renamed to any unused value.

Arg. properties • Contractible wrt. ITEMS when RELOP ∈ [<,≤].

• Extensible wrt. ITEMS when RELOP ∈ [≥, >].

Usage Some persons have pointed out that it is impossible to use constraints such as AMONG,
ATLEAST, ATMOST, COUNT, or GLOBAL CARDINALITY if the set of variables is not ini-
tially known. For example, this is required in practice for some timetabling problems.

See also assignment dimension removed: COUNT, COUNTS.

used in graph description: COUNTS.

Keywords application area: assignment.

characteristic of a constraint: coloured, automaton, automaton with array of counters,
derived collection.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col(VALUES−collection(val−int), [item(val− COLOURS.val)])

Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− ITEMS.colour)]

) 
Constraint(s) on sets COUNTS(VALUES, variables, RELOP, LIMIT)

Graph model We enforce the COUNTS constraint on the colour of the items that are assigned to the same
bin.

Parts (A) and (B) of Figure 5.102 respectively show the initial and final graph associated
with the Example slot. The final graph consists of the following two connected compo-
nents:

• The connected component containing six vertices corresponds to the items that are
assigned to bin 1.

• The connected component containing two vertices corresponds to the items that are
assigned to bin 3.

ITEMS

ITEMS

1

1234

234

ITEMS

ITEMS

1:1,4

1:1,4 3:1,44:1,5

2:3,4

2:3,4

3:1,44:1,5

(A) (B)

Figure 5.102: Initial and final graph of the ASSIGN AND COUNTS constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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The ASSIGN AND COUNTS constraint holds since for each set of successors of the vertices
of the final graph no more than two items take colour 4.
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Automaton Figure 5.103 depicts the automaton associated with the ASSIGN AND COUNTS constraint.
To each colour attribute COLOURi of the collection ITEMS corresponds a 0-1 signature vari-
able Si. The following signature constraint links COLOURi and Si: COLOURi ∈ COLOURS⇔
Si. For all items of the collection ITEMS for which the colour attribute takes its value in
COLOURS, counts for each value assigned to the bin attribute its number of occurrences n,
and finally imposes the condition n RELOP LIMIT.

ARITH(C, RELOP, LIMIT)

s{C[ ]← 0} IN(COLOURi, COLOURS),
{C[BINi]← C[BINi] + 1}

NOT IN(COLOURi, COLOURS)

Figure 5.103: Automaton of the ASSIGN AND COUNTS constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.37 ASSIGN AND NVALUES

I B J DESCRIPTION LINKS GRAPH

Origin Derived from ASSIGN AND COUNTS and NVALUES.

Constraint ASSIGN AND NVALUES(ITEMS, RELOP, LIMIT)

Arguments ITEMS : collection(bin−dvar, value−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(ITEMS, [bin, value])
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose
Given several items (each of them having a specific value that may not be initially fixed),
and different bins, assign each item to a bin, so that the number n of distinct values in
each bin satisfies the condition n RELOP LIMIT.

Example


〈 bin− 2 value− 3,

bin− 1 value− 5,
bin− 2 value− 3,
bin− 2 value− 3,
bin− 2 value− 4

〉
,≤, 2


Figure 5.104 depicts the solution corresponding to the example.

 ¬

®

¯

°

1 2 3 4 5

≤ 2

no more than 2 distinct
values in a same bin

first value: 5 3

second value: 4

bins

¬ bin− 2 value− 3
 bin− 1 value− 5
® bin− 2 value− 3
¯ bin− 2 value− 3
° bin− 2 value− 4

ITEMS

Figure 5.104: An assignment with at most two distinct values in parallel (values 3 and
4 in bin 2 and value 5 in bin 1)

The ASSIGN AND NVALUES constraint holds since for each used bin (i.e., namely bins 1
and 2) the number of distinct colours of the corresponding assigned items is less than or
equal to the limit 2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.value) > 1
RELOP ∈ [<,≤]
LIMIT > 1
LIMIT < |ITEMS|

Symmetries • Items of ITEMS are permutable.

• All occurrences of two distinct values of ITEMS.bin can be swapped; all occur-
rences of a value of ITEMS.bin can be renamed to any unused value.

Arg. properties • Contractible wrt. ITEMS when RELOP ∈ [<,≤].

• Extensible wrt. ITEMS when RELOP ∈ [≥, >].

Usage Let us give two examples where the ASSIGN AND NVALUES constraint is useful:

• Quite often, in bin-packing problems, each item has a specific type, and one wants to
assign items of similar type to each bin.

• In a vehicle routing problem, one wants to restrict the number of towns visited by
each vehicle. Note that several customers may be located at the same town. In this
example, each bin would correspond to a vehicle, each item would correspond to a
visit to a customer, and the colour of an item would be the location of the correspond-
ing customer.

See also assignment dimension removed: NVALUE, NVALUES.

common keyword: NVALUES EXCEPT 0 (number of distinct values).

related: ROOTS.

used in graph description: NVALUES.

Keywords application area: assignment.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension, number of distinct values.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− ITEMS.value)]

) 
Constraint(s) on sets NVALUES(variables, RELOP, LIMIT)

Graph model We enforce the NVALUES constraint on the items that are assigned to the same bin.

Parts (A) and (B) of Figure 5.105 respectively show the initial and final graph associated
with the Example slot. The final graph consists of the following two connected compo-
nents:

• The connected component containing 8 vertices corresponds to the items that are
assigned to bin 2.

• The connected component containing 2 vertices corresponds to the items that are
assigned to bin 1.

ITEMS

ITEMS

1

12 345

2345

ITEMS

ITEMS

1:2,3

1:2,33:2,3 4:2,35:2,4

2:1,5

2:1,5

3:2,3 4:2,35:2,4

(A) (B)

Figure 5.105: Initial and final graph of the ASSIGN AND NVALUES constraint

The ASSIGN AND NVALUES constraint holds since for each set of successors of the vertices
of the final graph no more than two distinct values are used:

• The unique item assigned to bin 1 uses value 5.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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• Items assigned to bin 2 use values 3 and 4.
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5.38 ATLEAST

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint ATLEAST(N, VARIABLES, VALUE)

Synonym COUNT.

Arguments N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose At least N variables of the VARIABLES collection are assigned value VALUE.

Example (2, 〈4, 2, 4, 5〉 , 4)

The ATLEAST constraint holds since at least 2 values of the collection 〈4, 2, 4, 5〉
are equal to value 4.

=

V A L U E

VARIABLES

4
4

2 5

All solutions Figure 5.106 gives all solutions to the following non ground instance of the ATLEAST con-
straint: V1 ∈ [3, 5], V2 ∈ [1, 2], V3 ∈ [5, 6], V4 ∈ [7, 9], ATLEAST(2, 〈V1, V2, V3, V4〉,5).

¬ (2, 〈5, 1,5, 7〉,5)
 (2, 〈5, 1,5, 8〉,5)
® (2, 〈5, 1,5, 9〉,5)

¯ (2, 〈5, 2,5, 7〉,5)
° (2, 〈5, 2,5, 8〉,5)
± (2, 〈5, 2,5, 9〉,5)

Figure 5.106: All solutions corresponding to the non ground example of the ATLEAST
constraint of the All solutions slot

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • Items of VARIABLES are permutable.

• N can be decreased to any value ≥ 0.

• An occurrence of a value of VARIABLES.var that is different from VALUE can be
replaced by any other value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Extensible wrt. VARIABLES.

Systems OCCURENCEMIN in Choco, COUNT in Gecode, ATLEAST in Gecode, COUNT in JaCoP,
AT LEAST in MiniZinc, COUNT in SICStus.

Used in ALLDIFFERENT EXCEPT 0, AMONG DIFF 0, ATMOST, INT VALUE PRECEDE,
ITH POS DIFFERENT FROM 0, MINIMUM EXCEPT 0, NVALUES EXCEPT 0,
PERIOD EXCEPT 0, SLIDING CARD SKIP0, WEIGHTED PARTIAL ALLDIFF.

See also common keyword: AMONG (value constraint).

comparison swapped: ATMOST.

implied by: EXACTLY (≥ N replaced by = N).

related: ROOTS.

soft variant: OPEN ATLEAST (open constraint).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint.

filtering: arc-consistency.

modelling: at least.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_least
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC≥ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.107 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 5.107: Initial and final graph of the ATLEAST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.108 depicts the automaton associated with the ATLEAST constraint. To each vari-
able VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The fol-
lowing signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton
counts the number of variables of the VARIABLES collection that are assigned value VALUE
and finally checks that this number is greater than or equal to N.

ARITH(N,≤, C)

s{C ← 0}

VARi 6= VALUE

VARi = VALUE,
{C ← C + 1}

Figure 5.108: Automaton of the ATLEAST constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn ≥ N

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.109: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the ATLEAST constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.39 ATLEAST NVALUE

I B J DESCRIPTION LINKS GRAPH

Origin [352]

Constraint ATLEAST NVALUE(NVAL, VARIABLES)

Synonym K DIFF.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NVAL ≥ 0
NVAL ≤ |VARIABLES|
NVAL ≤range(VARIABLES.var)

Purpose The number of distinct values taken by the variables of the collection VARIABLES is
greater than or equal to NVAL.

Example (2, 〈3, 1, 7, 1, 6〉)
(4, 〈3, 1, 7, 1, 6〉)
(5, 〈3, 1, 7, 0, 6〉)

The first ATLEAST NVALUE constraint holds since the collection 〈3, 1, 7, 1, 6〉 in-
volves at least 2 distinct values (i.e., in fact 4 distinct values).

All solutions Figure 5.110 gives all solutions to the following non ground instance of the
ATLEAST NVALUE constraint: NVAL ∈ [3,4], V1 ∈ [1, 2], V2 = 3, V3 ∈ [3, 4], V4 ∈ [2, 3],
ATLEAST NVALUE(NVAL, 〈V1, V2, V3, V4〉).

¬ (3, 〈1, 3, 3, 2〉)
 (3, 〈1, 3, 4, 2〉)
® (4, 〈1, 3, 4, 2〉)

¯ (3, 〈1, 3, 4, 3〉)
° (3, 〈2, 3, 4, 2〉)
± (3, 〈2, 3, 4, 3〉)

Figure 5.110: All solutions corresponding to the non ground example of the
ATLEAST NVALUE constraint of the All solutions slot

Typical NVAL > 0
NVAL < |VARIABLES|
NVAL <range(VARIABLES.var)
|VARIABLES| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model nval(VARIABLES.var) > 2

Symmetries • NVAL can be decreased to any value ≥ 0.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Extensible wrt. VARIABLES.

Remark The ATLEAST NVALUE constraint was first introduced by J.-C. Régin under the name
K DIFF in [352]. Later on the ATLEAST NVALUE constraint was introduced together with
the ATMOST NVALUE constraint by C. Bessière et al. in an article [68] providing filtering
algorithms for the NVALUE constraint.

Algorithm [68] provides a sketch of a filtering algorithm enforcing arc-consistency for the
ATLEAST NVALUE constraint. This algorithm is based on the maximal matching in a bi-
partite graph.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 24 212 2470 35682 614600 12286024 279472266

Number of solutions for ATLEAST NVALUE: domains 0..n

2 3 4 5 6 7 8
100.4

100.5

100.6

100.7

100.8

Length

O
bs

er
ve

d
de

ns
ity

Solution density for ATLEAST NVALUE


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Solution density for ATLEAST NVALUE

Length (n) 2 3 4 5 6 7 8
Total 24 212 2470 35682 614600 12286024 279472266

Parameter
value

0 9 64 625 7776 117649 2097152 43046721
1 9 64 625 7776 117649 2097152 43046721
2 6 60 620 7770 117642 2097144 43046712
3 - 24 480 7320 116340 2093616 43037568
4 - - 120 4320 97440 1992480 42550704
5 - - - 720 42840 1404480 37406880
6 - - - - 5040 463680 21530880
7 - - - - - 40320 5443200
8 - - - - - - 362880
Solution count for ATLEAST NVALUE: domains 0..n
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See also comparison swapped: ATMOST NVALUE.

implied by: AND, EQUIVALENT, IMPLY, NAND, NOR, NVALUE (≥ NVAL

replaced by = NVAL), NVISIBLE FROM END, NVISIBLE FROM START, OR,


See also
Related constraints grouped by semantics links.
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SIZE MAX SEQ ALLDIFFERENT, SIZE MAX STARTING SEQ ALLDIFFERENT, XOR.

uses in its reformulation: NOT ALL EQUAL.

Keywords constraint type: counting constraint, value partitioning constraint.

filtering: bipartite matching, arc-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC≥ NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.111 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NSCC graph property
we show the different strongly connected components of the final graph. Each strongly
connected component corresponds to a specific value that is assigned to some variables of
the VARIABLES collection. The 4 following values 1, 3, 6 and 7 are used by the variables
of the VARIABLES collection.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

VARIABLES

1

2

3

4

5

(B) NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

Figure 5.111: Initial and final graph of the ATLEAST NVALUE constraint
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5.40 ATLEAST NVECTOR

I B J DESCRIPTION LINKS GRAPH

Origin Derived from NVECTOR

Constraint ATLEAST NVECTOR(NVEC, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ 0
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

The number of distinct tuples of values taken by the vectors of the collection VECTORS

is greater than or equal to NVEC. Two tuples of values 〈A1, A2, . . . , Am〉 and
〈B1, B2, . . . , Bm〉 are distinct if and only if there exist an integer i ∈ [1,m] such that
Ai 6= Bi.

Example

 2,

〈 vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 4〉

〉 
The ATLEAST NVECTOR constraint holds since the collection VECTORS involves at
least 2 distinct tuples of values (i.e., in fact the 3 distinct tuples 〈5, 6〉, 〈9, 3〉 and 〈9, 4〉).

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetries • NVEC can be decreased to any value ≥ 0.

• Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

• All occurrences of two distinct tuples of values of VECTORS.vec can be swapped;
all occurrences of a tuple of values of VECTORS.vec can be renamed to any unused
tuple of values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Extensible wrt. VECTORS.

Reformulation By introducing an extra variable NV ∈ [0, |VECTORS|], the
ATLEAST NVECTOR(NV, VECTORS) constraint can be expressed in term of an
NVECTOR(NV, VECTORS) constraint and of an inequality constraint NV ≥ NVEC.

See also comparison swapped: ATMOST NVECTOR.

implied by: NVECTOR (≥ NVEC replaced by = NVEC), ORDERED ATLEAST NVECTOR.

used in graph description: LEX EQUAL.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes.

problems: domination.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX EQUAL(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC≥ NVEC

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.112 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection.
The 3 following tuple of values 〈5, 6〉, 〈9, 3〉 and 〈9, 4〉 are used by the vectors of the
VECTORS collection.

VECTORS

1

2

3

4

5

NSCC=3

SCC#1 SCC#2 SCC#3

1:5
  6

2:5
  6

4:5
  6

3:9
  3

5:9
  4

(A) (B)

Figure 5.112: Initial and final graph of the ATLEAST NVECTOR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.41 ATMOST

I B J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint ATMOST(N, VARIABLES, VALUE)

Synonym COUNT.

Arguments N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions N ≥ 0
required(VARIABLES, var)

Purpose At most N variables of the VARIABLES collection are assigned value VALUE.

Example (1, 〈4, 2, 4, 5〉 , 2)

The ATMOST constraint holds since at most 1 value of the collection 〈4, 2, 4, 5〉 is
equal to value 2.

=

V A L U E

VARIABLES

2

4 4 5

All solutions Figure 5.113 gives all solutions to the following non ground instance of the ATMOST con-
straint: V1 ∈ [1, 2], V2 ∈ [2, 3], V3 ∈ [5, 6], V4 ∈ [2, 3], ATMOST(1, 〈V1, V2, V3, V4〉,2).

¬ (1, 〈1,2, 5, 3〉,2)
 (1, 〈1,2, 6, 3〉,2)
® (1, 〈1, 3, 5,2〉,2)
¯ (1, 〈1, 3, 5, 3〉,2)

° (1, 〈1, 3, 6,2〉,2)
± (1, 〈1, 3, 6, 3〉,2)
² (1, 〈2, 3, 5, 3〉,2)
³ (1, 〈2, 3, 6, 3〉,2)

Figure 5.113: All solutions corresponding to the non ground example of the ATMOST
constraint of the All solutions slot

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1
ATLEAST(1, VARIABLES, VALUE)

Symmetries • Items of VARIABLES are permutable.

• N can be increased.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
that is different from VALUE.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. VARIABLES.

Systems OCCURENCEMAX in Choco, COUNT in Gecode, ATMOST in Gecode, COUNT in JaCoP,
AT MOST in MiniZinc, COUNT in SICStus.

See also common keyword: AMONG (value constraint).

comparison swapped: ATLEAST.

generalisation: CUMULATIVE (variable replaced by task).

implied by: EXACTLY (≤N replaced by =N).

related: ROOTS.

soft variant: OPEN ATMOST (open constraint).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint.

filtering: arc-consistency.

modelling: at most.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_most
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC≤ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.114 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=1

2:2

(A) (B)

Figure 5.114: Initial and final graph of the ATMOST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.115 depicts the automaton associated with the ATMOST constraint. To each vari-
able VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The fol-
lowing signature constraint links VARi and Si: VARi = VALUE ⇔ Si. The automaton
counts the number of variables of the VARIABLES collection that are assigned value VALUE
and finally checks that this number is less than or equal to N.

ARITH(N,≥, C)

s{C ← 0}

VARi 6= VALUE

VARi = VALUE,
{C ← C + 1}

Figure 5.115: Automaton of the ATMOST constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn ≤ N

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.116: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the ATMOST constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.42 ATMOST1
I B J DESCRIPTION LINKS

Origin [376]

Constraint ATMOST1(SETS)

Synonym PAIR ATMOST1.

Argument SETS : collection(s−svar, c−int)

Restrictions required(SETS, [s, c])
SETS.c ≥ 1

Purpose

Given a collection of set variables s1, s2, . . . , sn and their respective cardinalities
c1, c2, . . . , cn, the ATMOST1 constraint forces the following two conditions:

• ∀i ∈ [1, n] : |si| = ci,

• ∀i, j ∈ [1, n] (i < j) : |si
⋂
sj | ≤ 1.

Example


〈 s− {5, 8} c− 2,

s− {5} c− 1,
s− {5, 6, 7} c− 3,
s− {1, 4} c− 2

〉 
The ATMOST1 constraint holds since:

• |{5, 8}| = 2, |{5}| = 1, |{5, 6, 7}| = 3, |{1, 4}| = 2.

• |{5, 8}
⋂
{5}| ≤ 1, |{5, 8}

⋂
{5, 6, 7}| ≤ 1, |{5, 8}

⋂
{1, 4}| ≤ 1,

|{5}
⋂
{5, 6, 7}| ≤ 1, |{5}

⋂
{1, 4}| ≤ 1,

|{5, 6, 7}
⋂
{1, 4}| ≤ 1.

Typical |SETS| > 1

Symmetries • Items of SETS are permutable.

• All occurrences of two distinct values of SETS.s can be swapped; all occurrences
of a value of SETS.s can be renamed to any unused value.

Arg. properties Contractible wrt. SETS.

Remark When we have only two set variables the ATMOST1 constraint was called PAIR ATMOST1
in [439].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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Algorithm C. Bessière et al. have shown in [74] that it is NP-hard to enforce bound consistency
for the ATMOST1 constraint. Consequently, following the first filtering algorithm from
A. Sadler and C. Gervet [376], W.-J. van Hoeve and A. Sabharwal have proposed an al-
gorithm that enforces bound-consistency when the ATMOST1 constraint involves only two
sets variables [439].

Systems AT MOST1 in MiniZinc.

Keywords constraint arguments: constraint involving set variables.

constraint type: predefined constraint.

filtering: bound-consistency.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_most1
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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5.43 ATMOST NVALUE

I B J DESCRIPTION LINKS GRAPH

Origin [68]

Constraint ATMOST NVALUE(NVAL, VARIABLES)

Synonyms SOFT ALLDIFF MAX VAR, SOFT ALLDIFFERENT MAX VAR,
SOFT ALLDISTINCT MAX VAR.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
required(VARIABLES, var)

Purpose The number of distinct values taken by the variables of the collection VARIABLES is less
than or equal to NVAL.

Example (4, 〈3, 1, 3, 1, 6〉)
(3, 〈3, 1, 3, 1, 6〉)
(1, 〈3, 3, 3, 3, 3〉)

The first ATMOST NVALUE constraint holds since the collection 〈3, 1, 3, 1, 6〉 involves at
most 4 distinct values (i.e., in fact 3 distinct values).

Typical NVAL > 1
NVAL < |VARIABLES|
|VARIABLES| > 1

Symmetries • NVAL can be increased.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

• An occurrence of a value of VARIABLES.var can be replaced by any value of
VARIABLES.var.

Arg. properties Contractible wrt. VARIABLES.

Remark This constraint was introduced together with the ATLEAST NVALUE constraint by
C. Bessière et al. in an article [68] providing filtering algorithms for the NVALUE con-
straint.

It was shown in [75] that, finding out whether a ATMOST NVALUE constraint has a solution
or not is NP-hard. This was achieved by reduction from 3-SAT.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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Algorithm [29] provides an algorithm that achieves bound consistency. [46] provides two filtering
algorithms, while [68] provides a greedy algorithm and a graph invariant for evaluating the
minimum number of distinct values. [68] also gives a linear relaxation for approximating
the minimum number of distinct values.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 12 108 1280 18750 326592 6588344 150994944

Number of solutions for ATMOST NVALUE: domains 0..n
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Solution density for ATMOST NVALUE


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Solution density for ATMOST NVALUE

Length (n) 2 3 4 5 6 7 8
Total 12 108 1280 18750 326592 6588344 150994944

Parameter
value

1 3 4 5 6 7 8 9
2 9 40 145 456 1309 3536 9153
3 - 64 505 3456 20209 104672 496017
4 - - 625 7056 74809 692672 5639841
5 - - - 7776 112609 1633472 21515841
6 - - - - 117649 2056832 37603521
7 - - - - - 2097152 42683841
8 - - - - - - 43046721
Solution count for ATMOST NVALUE: domains 0..n
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Systems ATMOSTNVALUE in Choco.

See also comparison swapped: ATLEAST NVALUE.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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implied by: NVALUE (≤ NVAL replaced by = NVAL).

related: SOFT ALL EQUAL MAX VAR, SOFT ALL EQUAL MIN CTR,
SOFT ALL EQUAL MIN VAR, SOFT ALLDIFFERENT CTR, SOFT ALLDIFFERENT VAR.

Keywords complexity: 3-SAT.

constraint type: counting constraint, value partitioning constraint.

filtering: bound-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC≤ NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.117 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NSCC graph property
we show the different strongly connected components of the final graph. Each strongly
connected component corresponds to a specific value that is assigned to some variables of
the VARIABLES collection. The 3 following values 1, 3 and 6 are used by the variables of
the VARIABLES collection.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

VARIABLES

1

2

3

4

5

(B)
NSCC=3

SCC#1 SCC#2 SCC#3

1:3

3:3

2:1

4:1

5:6

Figure 5.117: Initial and final graph of the ATMOST NVALUE constraint
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5.44 ATMOST NVECTOR

I B J DESCRIPTION LINKS GRAPH

Origin Derived from NVECTOR

Constraint ATMOST NVECTOR(NVEC, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

The number of distinct tuples of values taken by the vectors of the collection
VECTORS is less than or equal to NVEC. Two tuples of values 〈A1, A2, . . . , Am〉 and
〈B1, B2, . . . , Bm〉 are distinct if and only if there exist an integer i ∈ [1,m] such that
Ai 6= Bi.

Example

 3,

〈 vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉

〉 
The ATMOST NVECTOR constraint holds since the collection VECTORS involves at
most 3 distinct tuples of values (i.e., in fact the 2 distinct tuples 〈5, 6〉 and 〈9, 3〉).

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetries • NVEC can be increased.

• Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

• All occurrences of two distinct tuples of values of VECTORS.vec can be swapped;
all occurrences of a tuple of values of VECTORS.vec can be renamed to any unused
tuple of values.

Arg. properties Contractible wrt. VECTORS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Reformulation By introducing an extra variable NV ∈ [0, |VECTORS|], the
ATMOST NVECTOR(NV, VECTORS) constraint can be expressed in term of an
NVECTOR(NV, VECTORS) constraint and of an inequality constraint NV ≤ NVEC.

See also comparison swapped: ATLEAST NVECTOR.

implied by: NVECTOR (≤ NVEC replaced by = NVEC), ORDERED ATMOST NVECTOR.

used in graph description: LEX EQUAL.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes.

problems: domination.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX EQUAL(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC≤ NVEC

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.118 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection.
The 2 following tuple of values 〈5, 6〉 and 〈9, 3〉 are used by the vectors of the VECTORS

collection.

VECTORS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:5
  6

2:5
  6

4:5
  6

3:9
  3

5:9
  3

(A) (B)

Figure 5.118: Initial and final graph of the ATMOST NVECTOR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.45 BALANCE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint BALANCE(BALANCE, VARIABLES)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)

Purpose
BALANCE is equal to the difference between the number of occurrence of the value that
occurs the most and the value that occurs the least within the collection of variables
VARIABLES.

Example (2, 〈3, 1, 7, 1, 1〉)
(0, 〈3, 3, 1, 1, 1, 3〉)
(4, 〈3, 1, 1, 1, 1, 1〉)

In the first example, values 1, 3 and 7 are respectively used 3, 1 and 1 times. The
corresponding BALANCE constraint holds since its first argument BALANCE is assigned to
the difference between the maximum and minimum number of the previous occurrences
(i.e., 3− 1). Figure 5.119 shows the solution associated with this first example.

V1 V2 V3 V4 V5

2

4

5

6

8

1

3

7

variables

va
lu

es

1 2 3

2

4

5

6

8

1

3

7

number of occurrences
of assigned values

va
lu

es

maximum number
of occurrences = 3

minimum number
of occurrences = 1

BALANCE = 3− 1 = 2

Figure 5.119: Illustration of the first example of the Example slot: five variables V1,
V2, V3, V4, V5 respectively fixed to values 3, 1, 7, 1 and 1, and the corresponding value
of BALANCE = 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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All solutions Figure 5.120 gives all solutions to the following non ground instance of the BALANCE

constraint: BALANCE ∈ [2,3], V1 ∈ [0, 5], V2 ∈ [2, 6], V3 ∈ [0, 1], V4 ∈ [1, 2],
BALANCE(BALANCE, 〈V1, V2, V3, V4〉).

¬ (2, 〈1, 2, 1, 1〉)
 (2, 〈1, 3, 1, 1〉)
® (2, 〈1, 4, 1, 1〉)
¯ (2, 〈1, 5, 1, 1〉)
° (2, 〈1, 6, 1, 1〉)
± (2, 〈2, 2, 0, 2〉)
² (2, 〈2, 2, 1, 2〉)

1

2

1 1

2

¬
1

3

1 1

2



1

4

1 1

2

®
1

5

1 1

2

¯

1

6

1 1

2

°
2

0

2 2

2

±
2

1

2 2

2

²

Figure 5.120: All solutions corresponding to the non ground example of the BALANCE
constraint of the All solutions slot

Typical BALANCE ≤ 2 + |VARIABLES|/10
|VARIABLES| > 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Functional dependency: BALANCE determined by VARIABLES.

Usage An application of the BALANCE constraint is to enforce a balanced assignment of values,
no matter how many distinct values will be used. In this case one will push down the
maximum value of the first argument of the BALANCE constraint.

• On the one hand the BALANCE constraint should be used on problems for which, due
to some constraints, not all consecutive values will be assigned. This is the case, for
example, for some frequency assignment problems where, due to some interference,
all used values are not necessarily consecutive.

• On the other hand if only consecutive values are used then one should rather em-
ploy the ALL BALANCE constraint. This is the case, for example, in some resource
assignment problems where we know in advance that all resources will be used.

Remark If we do not want to use an automaton with an array of counters a first possible reformula-
tion of the BALANCE constraint introduced in [44, pages 1860–1861] can be achieved in the
following way. We use a SORT constraint in order to reorder the variables of the collection


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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VARIABLES and compute the difference between the longest and the smallest sequences of
consecutive values.

A more efficient reformulation introduced in [45, page 2071] uses a
GLOBAL CARDINALITY constraint for exposing the occurrence variables attached
to each value that can possibly be assigned to the variables of the BALANCE constraint.
Then the BALANCE argument is set to the difference between the maximum value of the
occurrence variables and the minimum value of the occurrence variables that are different
from 0.

Algorithm It was shown in [77] that achieving arc-consistency on the BALANCE constraint is NP-hard.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for BALANCE: domains 0..n
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Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 9 28 185 726 8617 40328 682929
1 - 36 360 5700 75600 1342600 24272640
2 - - 80 1200 30030 611520 15350832
3 - - - 150 3150 95256 2469600
4 - - - - 252 7056 256032
5 - - - - - 392 14112
6 - - - - - - 576

Solution count for BALANCE: domains 0..n
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See also generalisation: BALANCE INTERVAL (variable replaced by variable/constant),
BALANCE MODULO (variable replaced by variable mod constant),
BALANCE PARTITION (variable replaced by variable ∈ partition).


See also
Related constraints grouped by semantics links.
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implies: SOFT ALL EQUAL MIN CTR.

related: ALL BALANCE (take into account unused values), BALANCE CYCLE (balanced
assignment versus graph partitionning with balanced cycles), BALANCE PATH (balanced
assignment versus graph partitionning with balanced paths), BALANCE TREE (balanced
assignment versus graph partitionning with balanced trees), NVALUE (no restriction on
how balanced an assignment is), TREE RANGE (balanced assignment versus balanced
tree).

shift of concept: EQUILIBRIUM.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: balanced assignment, functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure 5.121 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the RANGE NSCC graph
property, we show the largest and smallest strongly connected components of the final
graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:3 2:1

4:1

5:1

3:7

(A) (B)

Figure 5.121: Initial and final graph of the BALANCE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.122 depicts the automaton associated with the BALANCE constraint. To each item
of the collection VARIABLES corresponds a signature variable Si that is equal to 1.

 MINIMUM EXCEPT 0(N1, C)
MAXIMUM(N2, C)
BALANCE = N2 −N1

s{C[ ]← 0} 1,
{C[VARi]← C[VARi] + 1}

Figure 5.122: Automaton of the BALANCE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.46 BALANCE CYCLE

I B C J DESCRIPTION LINKS GRAPH

Origin derived from BALANCE and CYCLE

Constraint BALANCE CYCLE(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |NODES| − 2)
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. Partition G into a set of vertex
disjoint circuits in such a way that each vertex of G belongs to a single circuit. BALANCE
is equal to the difference between the number of vertices of the largest circuit and the
number of vertices of the smallest circuit.

Example

 1,

〈 index− 1 succ− 2,
index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉 
 0,

〈 index− 1 succ− 2,
index− 2 succ− 3,
index− 3 succ− 1,
index− 4 succ− 5,
index− 5 succ− 6,
index− 6 succ− 4

〉


 4,

〈 index− 1 succ− 2,
index− 2 succ− 3,
index− 3 succ− 4,
index− 4 succ− 5,
index− 5 succ− 1,
index− 6 succ− 6

〉


In the first example we have the following two circuits: 1→ 2→ 1 and 3→ 5→ 4→ 3.
Since BALANCE = 1 is the difference between the number of vertices of the largest circuit
(i.e., 3) and the number of vertices of the smallest circuit (i.e., 2) the corresponding
BALANCE CYCLE constraint holds.

1 2 3

45

1 2

3 4

5

6

1 2 3

45 6


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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All solutions Figure 5.123 gives all solutions to the following non ground instance of the
BALANCE CYCLE constraint: BALANCE ∈ [0, 1], S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [3, 5],
S4 ∈ [3, 4], S5 ∈ [2, 5], BALANCE CYCLE(BALANCE, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5〉).

¬ (0, 〈11,22,33,44,55〉)
 (1, 〈11,22,43,34,55〉)
® (1, 〈11,22,53,44,35〉)
¯ (1, 〈21,12,33,44,55〉)
° (1, 〈21,12,43,34,55〉)
± (1, 〈21,12,53,34,45〉)
² (1, 〈21,12,53,44,35〉)

1 2 3

45¬

0 = 1− 1

1 2 3

45

1 = 2− 1

1 2 3

54®

1 = 2− 1

1 2 3

45¯

1 = 2− 1

1 2 3

45°

1 = 2− 1

1 2 3

45±

1 = 3− 2

1 2 3

54²

1 = 2− 1

Figure 5.123: All solutions corresponding to the non ground example of the
BALANCE CYCLE constraint of the All solutions slot; the index attribute is displayed
as indices of the succ attribute, and all vertices of a same cycle are coloured by the
same colour; the bottom left part of each subfigure shows how the BALANCE argument
(in red) is related to the largest and to the smallest cycles.

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: BALANCE determined by NODES.

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 2 6 24 120 720 5040 40320 362880 3628800

Number of solutions for BALANCE CYCLE: domains 0..n


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8 9 10
Total 2 6 24 120 720 5040 40320 362880 3628800

Parameter
value

0 2 3 10 25 176 721 6406 42561 436402
1 - 3 6 45 60 861 1778 23283 84150
2 - - 8 20 250 770 7980 38808 363680
3 - - - 30 90 1344 6300 75348 456120
4 - - - - 144 504 8736 45360 708048
5 - - - - - 840 3360 66240 378000
6 - - - - - - 5760 25920 572400
7 - - - - - - - 45360 226800
8 - - - - - - - - 403200
Solution count for BALANCE CYCLE: domains 0..n
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See also related: BALANCE (equivalence classes correspond to vertices in same cycle rather than
variables assigned to the same value), CYCLE (do not care how many cycles but how bal-
anced the cycles are).

Keywords combinatorial object: permutation.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: circuit, connected component, strongly connected component,
one succ.

modelling: cycle, functional dependency.

Cond. implications • BALANCE CYCLE(BALANCE, NODES)
with BALANCE > 0
and BALANCE ≤ 2

implies ALL DIFFER FROM AT LEAST K POS(K : BALANCE, VECTORS : NODES).

• BALANCE CYCLE(BALANCE, NODES)
implies PERMUTATION(VARIABLES : NODES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• RANGE NCC= BALANCE

Graph class ONE SUCC

Graph model From the restrictions and from the arc constraint, we deduce that we have a bijection from
the successor variables to the values of interval [1, |NODES|]. With no explicit restrictions it
would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the BALANCE CYCLE constraint considers objects
that have two attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices that both do
not belong to a circuit and have at least one successor located on a circuit. This concretely
means that all vertices of the final graph should belong to a circuit.

Parts (A) and (B) of Figure 5.124 respectively show the initial and final graph associ-
ated with the first example of the Example slot. Since we use the RANGE NCC
graph property, we show the connected components of the final graph. The constraint
holds since all the vertices belong to a circuit (i.e., NTREE = 0) and since BALANCE =
RANGE NCC = 1.

NODES

1

2

3

4

5

NTREE=0, RANGE_NCC=3-2=1

MIN_NCC MAX_NCC

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.124: Initial and final graph of the BALANCE CYCLE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.47 BALANCE INTERVAL

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from BALANCE.

Constraint BALANCE INTERVAL(BALANCE, VARIABLES, SIZE INTERVAL)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
SIZE INTERVAL : int

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose

Consider the largest set S1 (respectively the smallest set S2) of variables of the
collection VARIABLES that take their values in a same interval [SIZE INTERVAL ·
k, SIZE INTERVAL · k+ SIZE INTERVAL− 1], where k is an integer. BALANCE is equal
to the difference between the cardinality of S2 and the cardinality of S1.

Example (3, 〈6, 4, 3, 3, 4〉 , 3)

In the example, the third argument SIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Values 6,4,3,3 and 4 are
respectively located within intervals [6, 8], [3, 5], [3, 5], [3, 5] and [3, 5]. Therefore
intervals [6, 8] and [3, 5] are respectively used 1 and 4 times. The BALANCE INTERVAL

constraint holds since its first argument BALANCE is assigned to the difference between the
maximum and minimum number of the previous occurrences (i.e., 4− 1).

Typical |VARIABLES| > 2
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES.var)

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Arg. properties Functional dependency: BALANCE determined by VARIABLES and SIZE INTERVAL.

Usage An application of the BALANCE INTERVAL constraint is to enforce a balanced assign-
ment of interval of values, no matter how many distinct interval of values will be
used. In this case one will push down the maximum value of the first argument of the
BALANCE INTERVAL constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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See also specialisation: BALANCE (variable/constant replaced by variable).

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: interval, balanced assignment, functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure 5.125 respectively show the initial and final graph associated
with the Example slot. Since we use the RANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=4-1=3

MIN_NSCC MAX_NSCC

1:6 2:4

3:3

4:3

5:4

(A) (B)

Figure 5.125: Initial and final graph of the BALANCE INTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.126 depicts the automaton associated with the BALANCE INTERVAL constraint.
To each item of the collection VARIABLES corresponds a signature variable Si that is equal
to 1.

 MINIMUM EXCEPT 0(N1, C)
MAXIMUM(N2, C)
BALANCE = N2 −N1

s{C[ ]← 0} 1,

{C[b VARi
SIZE INTERVAL

c]← C[b VARi
SIZE INTERVAL

c] + 1}

Figure 5.126: Automaton of the BALANCE INTERVAL constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.48 BALANCE MODULO

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from BALANCE.

Constraint BALANCE MODULO(BALANCE, VARIABLES, M)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)
M > 0

Purpose
Consider the largest set S1 (respectively the smallest set S2) of variables of the collection
VARIABLES that have the same remainder when divided by M. BALANCE is equal to the
difference between the cardinality of S2 and the cardinality of S1.

Example (2, 〈6, 1, 7, 1, 5〉 , 3)

In this example values 6, 1, 7, 1, 5 are respectively associated with the equivalence
classes 6 mod 3 = 0, 1 mod 3 = 1, 7 mod 3 = 1, 1 mod 3 = 1, 5 mod 3 = 2.
Therefore the equivalence classes 0, 1 and 2 are respectively used 1, 3 and 1 times. The
BALANCE MODULO constraint holds since its first argument BALANCE is assigned to the
difference between the maximum and minimum number of the previous occurrences
(i.e., 3− 1).

Typical |VARIABLES| > 2
M > 1
M <maxval(VARIABLES.var)

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value u of VARIABLES.var can be replaced by any other value
v such that v is congruent to u modulo M.

Arg. properties Functional dependency: BALANCE determined by VARIABLES and M.

Usage An application of the BALANCE MODULO constraint is to enforce a balanced assignment
of values, no matter how many distinct equivalence classes will be used. In this case one
will push down the maximum value of the first argument of the BALANCE MODULO con-
straint.

See also specialisation: BALANCE (variable mod constant replaced by variable).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.
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Keywords application area: assignment.

characteristic of a constraint: modulo, automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: balanced assignment, functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure 5.127 respectively show the initial and final graph associated
with the Example slot. Since we use the RANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-1=2

MIN_NSCC MAX_NSCC

1:6 2:1

3:7

4:1

5:5

(A) (B)

Figure 5.127: Initial and final graph of the BALANCE MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.128 depicts the automaton associated with the BALANCE MODULO constraint. To
each item of the collection VARIABLES corresponds a signature variable Si that is equal to
1.

 MINIMUM EXCEPT 0(N1, C)
MAXIMUM(N2, C)
BALANCE = N2 −N1

s{C[ ]← 0} 1,
{C[VARi mod M]← C[VARi mod M] + 1}

Figure 5.128: Automaton of the BALANCE MODULO constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.49 BALANCE PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from BALANCE.

Constraint BALANCE PARTITION(BALANCE, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments BALANCE : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
BALANCE ≥ 0
BALANCE ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

Consider the largest set S1 (respectively the smallest set S2) of variables of the
collection VARIABLES that take their values in the same partition of the collection
PARTITIONS.BALANCE is equal to the difference between the cardinality of S2 and the
cardinality of S1.

Example (1, 〈6, 2, 6, 4, 4〉 , 〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉)

In this example values 6, 2, 6, 4, 4 are respectively associated with the partitions
p − 〈2, 6〉 and p − 〈4〉. Partitions p − 〈4〉 and p − 〈2, 6〉 are respectively used 2 and 3
times. The BALANCE PARTITION constraint holds since its first argument BALANCE is
assigned to the difference between the maximum and minimum number of the previous
occurrences (i.e., 3− 2). Note that we do not consider those partitions that are not used at
all.

Typical |VARIABLES| > 2
|VARIABLES| > |PARTITIONS|

Symmetries • Items of VARIABLES are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Functional dependency: BALANCE determined by VARIABLES and PARTITIONS.

Usage An application of the BALANCE PARTITION is to enforce a balanced assignment of values,
no matter how many distinct partitions will be used. In this case one will push down the
maximum value of the first argument of the BALANCE PARTITION constraint.

See also specialisation: BALANCE (variable ∈ partition replaced by variable).

used in graph description: IN SAME PARTITION.

Keywords application area: assignment.

characteristic of a constraint: partition.

constraint arguments: pure functional dependency.

constraint type: value constraint.

final graph structure: equivalence.

modelling: balanced assignment, functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) RANGE NSCC= BALANCE

Graph class EQUIVALENCE

Graph model The graph property RANGE NSCC constraints the difference between the sizes of the
largest and smallest strongly connected components.

Parts (A) and (B) of Figure 5.129 respectively show the initial and final graph associated
with the Example slot. Since we use the RANGE NSCC graph property, we show the
largest and smallest strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

RANGE_NSCC=3-2=1

MIN_NSCC MAX_NSCC

4:4

5:4

1:6

2:2

3:6

(A) (B)

Figure 5.129: Initial and final graph of the BALANCE PARTITION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.50 BALANCE PATH

I B C J

DESCRIPTION LINKS GRAPH

Origin derived from BALANCE and PATH

Constraint BALANCE PATH(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |NODES| − 2)
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. Partition G into a set of vertex
disjoint paths in such a way that each vertex of G belongs to a single path. BALANCE is
equal to the difference between the number of vertices of the largest path and the number
of vertices of the smallest path.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example


3,

〈
index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 4,
index− 5 succ− 1,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 6

〉



0,

〈
index− 1 succ− 2,
index− 2 succ− 3,
index− 3 succ− 4,
index− 4 succ− 4,
index− 5 succ− 6,
index− 6 succ− 7,
index− 7 succ− 8,
index− 8 succ− 8

〉



6,

〈
index− 1 succ− 2,
index− 2 succ− 3,
index− 3 succ− 4,
index− 4 succ− 5,
index− 5 succ− 6,
index− 6 succ− 7,
index− 7 succ− 7,
index− 8 succ− 8

〉


In the first example we have the following four paths: 2 → 3 → 5 → 1, 8 → 6,
4, and 7. Since BALANCE = 3 is the difference between the number of vertices of
the largest path (i.e., 4) and the number of vertices of the smallest path (i.e., 1) the
corresponding BALANCE PATH constraint holds.

2 3 5 1

4 7 8 6

1 2 3 4

5 6 7 8

1 2 3 4

5678

All solutions Figure 5.130 gives all solutions to the following non ground instance of the
BALANCE PATH constraint: BALANCE = 0, S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [3, 5], S4 ∈ [3, 4],
S5 ∈ [2, 5], S6 ∈ [5, 6], BALANCE PATH(BALANCE, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5, 6 S6〉).

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: BALANCE determined by NODES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 3 13 73 501 4051 37633 394353

Number of solutions for BALANCE PATH: domains 0..n


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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¬ (0, 〈11,12,33,34,55,56〉)
 (0, 〈11,12,43,44,55,56〉)
® (0, 〈11,22,33,44,55,66〉)
¯ (0, 〈21,22,33,34,55,56〉)
° (0, 〈21,22,43,44,55,56〉)
± (0, 〈21,32,33,44,45,56〉)

2 1 4 3 6 5¬

0 = 2− 2

2 1 3 4 6 5

0 = 2− 2

1 2 3 4 5 6®

0 = 1− 1

1 2 4 3 6 5¯

0 = 2− 2

1 2 3 4 6 5°

0 = 2− 2

1 2 3 6 5 4±

0 = 3− 3

Figure 5.130: All solutions corresponding to the non ground example of the
BALANCE PATH constraint of the All solutions slot; the index attribute is displayed as
indices of the succ attribute and all vertices of a same path are coloured by the same
colour; the bottom left part of each subfigure shows how the BALANCE argument (in
red) is related to the largest and to the smallest paths.
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Solution density for BALANCE PATH

Length (n) 2 3 4 5 6 7 8
Total 3 13 73 501 4051 37633 394353

Parameter
value

0 3 7 37 121 1201 5041 62161
1 - 6 12 200 210 8862 24416
2 - - 24 60 1560 5250 97776
3 - - - 120 360 10920 62160
4 - - - - 720 2520 87360
5 - - - - - 5040 20160
6 - - - - - - 40320

Solution count for BALANCE PATH: domains 0..n
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size 6
size 7
size 8
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size 6
size 7
size 8

See also implies: BALANCE TREE.

related: BALANCE (equivalence classes correspond to vertices in same path rather than
variables assigned to the same value), PATH (do not care how many paths but how balanced


See also
Related constraints grouped by semantics links.
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the paths are).

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
•MAX ID≤ 1
• RANGE NCC= BALANCE

Graph class ONE SUCC

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the BALANCE PATH constraint considers objects that
have two attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex.

We use the graph property MAX NSCC≤ 1 in order to specify the fact that the size of
the largest strongly connected component should not exceed one. In fact each root of a tree
is a strongly connected component with a single vertex. The graph property MAX ID≤ 1
constraints the maximum in-degree of the final graph to not exceed 1. MAX ID does not
consider loops: This is why we do not have any problem with the final node of each path.

Parts (A) and (B) of Figure 5.131 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the RANGE NCC graph
property, we show the connected components of the final graph. The constraint holds since
all the vertices belong to a path and since BALANCE = RANGE NCC = 3.

NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1, MAX_ID=1
RANGE_NCC=4-1=3

MIN_NCC MAX_NCC

4:4,4

1:1,1

5:5,1

3:3,5

2:2,3

6:6,6

7:7,78:8,6

(A) (B)

Figure 5.131: Initial and final graph of the BALANCE PATH constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.51 BALANCE TREE

I B C J DESCRIPTION LINKS GRAPH

Origin derived from BALANCE and TREE

Constraint BALANCE TREE(BALANCE, NODES)

Arguments BALANCE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions BALANCE ≥ 0
BALANCE ≤ max(0, |NODES| − 2)
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. Partition G into a set of vertex
disjoint trees in such a way that each vertex of G belongs to a single tree. BALANCE is
equal to the difference between the number of vertices of the largest tree and the number
of vertices of the smallest tree.

Example


4,

〈
index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉


 2,

〈 index− 1 succ− 1,
index− 2 succ− 1,
index− 3 succ− 1,
index− 4 succ− 2,
index− 5 succ− 6,
index− 6 succ− 6

〉


In the first example we have two trees involving respectively the set of vertices
{1, 2, 3, 5, 6, 8} and the set {4, 7}. They are depicted by Figure 5.132. Since
BALANCE = 6 − 2 = 4 is the difference between the number of vertices of the largest
tree (i.e., 6) and the number of vertices of the smallest tree (i.e., 2) the corresponding
BALANCE TREE constraint holds.

1

5

2 3 8

6

7

4

1

2

4

3

6

5


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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1|1

5|1

2|5 3|5 8|5

6|1

7|7

4|7

index− 1 succ− 1
index− 2 succ− 5
index− 3 succ− 5
index− 4 succ− 7
index− 5 succ− 1
index− 6 succ− 1
index− 7 succ− 7
index− 8 succ− 5

NODES

Figure 5.132: The two trees associated with the first example of the Example slot,
respectively containing 6 and 2 vertices, therefore BALANCE = 6− 2 = 4; each vertex
contains the information index|succ where succ is the index of its father in the tree
(by convention the father of the root is the root itself).

All solutions Figure 5.133 gives all solutions to the following non ground instance
of the BALANCE TREE constraint: BALANCE = 0, S1 ∈ [1, 2],
S2 ∈ [1, 2], S3 ∈ [4, 5], S4 ∈ [2, 4], S5 ∈ [4, 5], S6 ∈ [5, 6],
BALANCE TREE(BALANCE, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5, 6 S6〉).

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: BALANCE determined by NODES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 3 16 125 1296 16807 262144 4782969

Number of solutions for BALANCE TREE: domains 0..n


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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¬ (0, 〈11,12,43,24,45,56〉)
 (0, 〈11,12,43,44,55,56〉)
® (0, 〈11,12,53,24,45,56〉)
¯ (0, 〈11,12,53,24,55,56〉)
° (0, 〈21,22,43,24,45,56〉)
± (0, 〈21,22,43,44,55,56〉)
² (0, 〈21,22,53,24,45,56〉)
³ (0, 〈21,22,53,24,55,56〉)
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±
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¯

0 = 3− 3
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1 4
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3 6

³

0 = 3− 3

2

1 4

3 5

6

°

0 = 6− 6
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1 4

5

3 6

²

0 = 6− 6

Figure 5.133: All solutions corresponding to the non ground example of the
BALANCE TREE constraint of the All solutions slot; the index attribute is displayed
as indices of the succ attribute and all vertices of a same tree are coloured by the same
colour; the bottom left part of each subfigure shows how the BALANCE argument (in
red) is related to the largest and to the smallest trees.

2 3 4 5 6 7 8
10−1

10−0.9

10−0.8

10−0.7

10−0.6

10−0.5

Length

O
bs

er
ve

d
de

ns
ity

Solution density for BALANCE TREE



BALANCE TREE 759
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Length (n) 2 3 4 5 6 7 8
Total 3 16 125 1296 16807 262144 4782969

Parameter
value

0 3 10 77 626 8707 117650 2242193
1 - 6 12 260 210 25242 49616
2 - - 36 90 3180 9765 432264
3 - - - 320 960 41930 219520
4 - - - - 3750 13125 680456
5 - - - - - 54432 217728
6 - - - - - - 941192

Solution count for BALANCE TREE: domains 0..n
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See also implied by: BALANCE PATH.

related: BALANCE (equivalence classes correspond to vertices in same tree rather than
variables assigned to the same value), TREE (do not care how many trees but how balanced


See also
Related constraints grouped by semantics links.
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the trees are).

Keywords constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.

Cond. implications BALANCE TREE(BALANCE, NODES)
with BALANCE > 0
and BALANCE ≤ |NODES|

implies ORDERED ATLEAST NVECTOR(NVEC : BALANCE, VECTORS : NODES).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.



762 BALANCE TREE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
• RANGE NCC= BALANCE

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the BALANCE TREE constraint considers objects that
have two attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex.

We use the graph property MAX NSCC≤ 1 in order to specify the fact that the size of
the largest strongly connected component should not exceed one. In fact each root of a tree
is a strongly connected component with a single vertex.

Parts (A) and (B) of Figure 5.134 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the RANGE NCC graph
property, we show the connected components of the final graph. The constraint holds since
all the vertices belong to a tree and since BALANCE = RANGE NCC6− 2 = 4.

NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1, RANGE_NCC=6-2=4

MIN_NCC MAX_NCC

4:4,7

7:7,7

2:2,5

5:5,1

3:3,58:8,5

1:1,1

6:6,1

(A) (B)

Figure 5.134: Initial and final graph of the BALANCE TREE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.52 BETWEEN MIN MAX

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for defining CUMULATIVE CONVEX.

Constraint BETWEEN MIN MAX(VAR, VARIABLES)

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 0

Purpose VAR is greater than or equal to at least one variable of the collection VARIABLES and less
than or equal to at least one variable of the collection VARIABLES.

Example (3, 〈1, 1, 4, 8〉)
(1, 〈1, 1, 4, 8〉)
(8, 〈1, 1, 4, 8〉)

The first BETWEEN MIN MAX constraint holds since its first argument 3 is greater
than or equal to the minimum value of the values of the collection 〈1, 1, 4, 8〉 and less than
or equal to the maximum value of 〈1, 1, 4, 8〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• VAR can be set to any value of VARIABLES.var.

Arg. properties Extensible wrt. VARIABLES.

Reformulation By introducing two extra variables MIN and MAX, the
BETWEEN MIN MAX(VAR, VARIABLES) constraint can be expressed in term of the
following conjunction of constraints:

MINIMUM(MIN, VARIABLES),
MAXIMUM(MAX, VARIABLES),
VAR ≥ MIN,
VAR ≤ MAX.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 17 184 2417 37806 689201 14376608 338051265

Number of solutions for BETWEEN MIN MAX: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 17 184 2417 37806 689201 14376608 338051265

Parameter
value

0 5 37 369 4651 70993 1273609 26269505
1 7 55 543 6751 102023 1817215 37281919
2 5 55 593 7501 113489 2018899 41366849
3 - 37 543 7501 116191 2078581 42649535
4 - - 369 6751 113489 2078581 42915649
5 - - - 4651 102023 2018899 42649535
6 - - - - 70993 1817215 41366849
7 - - - - - 1273609 37281919
8 - - - - - - 26269505

Solution count for BETWEEN MIN MAX: domains 0..n
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Used in CUMULATIVE CONVEX.

See also implied by: AND, DEEPEST VALLEY, FIRST VALUE DIFF 0, HIGHEST PEAK, IN,
MAXIMUM, MINIMUM.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: centered cyclic(1) constraint network(1).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col(ITEM−collection(var−dvar), [item(var− VAR)])

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→collection(item, variables)

Arc arity 2

Arc constraint(s) item.var ≥ variables.var

Graph property(ies) NARC≥ 1

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→collection(item, variables)

Arc arity 2

Arc constraint(s) item.var ≤ variables.var

Graph property(ies) NARC≥ 1

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.135 respectively show the initial and final graph associated
with the second graph constraint of the first example of the Example slot. Since we use the
NARC graph property, the two arcs of the final graph are stressed in bold. The constraint
holds since 3 is greater than 1 and since 3 is less than 8.

ITEM

VARIABLES

1

1234

NARC=2

1:3

1:1 2:1

(A) (B)

Figure 5.135: Initial and final graph of the BETWEEN MIN MAX constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.136 depicts the automaton associated with the BETWEEN MIN MAX constraint. To
each pair (VAR, VARi), where VARi is a variable of the collection VARIABLES corresponds a
signature variable Si. The following signature constraint links VAR, VARi and Si: (VAR <
VARi ⇔ Si = 0) ∧ (VAR = VARi ⇔ Si = 1) ∧ (VAR > VARi ⇔ Si = 2).

s

i

j

t

VAR < VARi

VAR > VARi

VAR = VARi

VAR < VARi

VAR > VARi
VAR = VARi

VAR > VARi

VAR < VARi
VAR = VARi

VAR < VARi
VAR = VARi
VAR > VARi

Figure 5.136: Automaton of the BETWEEN MIN MAX constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

VAR

VAR1 VAR2 VARn

Figure 5.137: Hypergraph of the reformulation corresponding to the automaton of the
BETWEEN MIN MAX constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.53 BIG PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK.

Constraint BIG PEAK(N, VARIABLES, TOLERANCE)

Arguments N : dvar

VARIABLES : collection(var−dvar)
TOLERANCE : int

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)
TOLERANCE ≥ 0

Purpose

A variable Vp (1 < p < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ p) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vp and Vp > Vp+1. Similarly a variable Vv (1 < k < m) is a valley if and only
if there exists an i (1 < i ≤ v) such that Vi−1 > Vi and Vi = Vi+1 = · · · = Vv and
Vv < Vv+1. A peak variable Vp (1 < p < m) is a potential big peak wrt a non-negative
integer TOLERANCE if and only if:

1. Vp is a peak,

2. ∃i, j ∈ [1,m] | i < p < j, Vi is a valley (or i = 1 if there is no valley before
position p), Vj is a valley (or i = m if there is no valley after position p), Vp −
Vi > TOLERANCE, and Vp − Vj > TOLERANCE.

Let ip and jp be the largest i and the smallest j satisfying condition 2. Now a potential
big peak Vp (1 < p < m) is a big peak if and only if the interval [i, j] does not contain
any potential big peak that is strictly higher than Vp. The constraint BIG PEAK holds if
and only if N is the total number of big peaks of the sequence of variables VARIABLES.

Example (7, 〈4, 2, 2, 4, 3, 8, 6, 7, 7, 9, 5, 6, 3, 12, 12, 6, 6, 8, 4, 5, 1〉 , 0)
(4, 〈4, 2, 2, 4, 3, 8, 6, 7, 7, 9, 5, 6, 3, 12, 12, 6, 6, 8, 4, 5, 1〉 , 1)

As shown part Part (A) of Figure 5.138, the first BIG PEAK constraint holds since
the sequence 4 2 2 4 3 8 6 7 7 9 5 6 3 12 12 6 6 8 4 5 1 contains seven big peaks wrt a
tolerance of 0 (i.e., we consider standard peaks).

As shown part Part (B) of Figure 5.138, the second BIG PEAK constraint holds since the
same sequence 4 2 2 4 3 8 6 7 7 9 5 6 3 12 12 6 6 8 4 5 1 contains only four big peaks wrt
a tolerance of 1.

Typical N ≥ 1
|VARIABLES| > 6
range(VARIABLES.var) > 1
TOLERANCE > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model nval(VARIABLES.var) > 2
range(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Functional dependency: N determined by VARIABLES and TOLERANCE.

• Contractible wrt. VARIABLES when N = 0 and TOLERANCE = 0.

Usage Useful for constraining the number of big peaks of a sequence of domain variables, by
ignoring too small valleys that artificially create small peaks wrt TOLERANCE.

See also specialisation: PEAK (the tolerance is set to 0 and removed).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: pure functional dependency.

modelling: functional dependency.


Typical model
Typical conditions on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Figure 5.138: Illustration of the Example slot: Part (A) a sequence of 21 variables V1,
V2, . . . , V21 respectively fixed to values 4, 2, 2, 4, 3, 8, 6, 7, 7, 9, 5, 6, 3, 12, 12, 6, 6, 8,
4, 5, 1 and its corresponding 7 peaks (TOLERANCE = 0 corresponds to standard peaks)
with their respective heights h01 = 1, h02 = 2, h03 = 3, h04 = 1, h05 = 6, h06 = 2, h07 = 1
(the left and right hand sides of each peak are coloured in light orange and light red)
Part (B) the same sequence of variables and its 4 big peaks when TOLERANCE = 1 with
their respective heights h11 = 2, h12 = 3, h13 = 6, h14 = 2
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Automaton Figure 5.139 depicts the automaton associated with the BIG PEAK constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signa-
ture variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

s

 C ← 0,
S ← 0,
P ← min



u

vw

VARi ≥ VARi+1

VARi < VARi+1,
{S ← VARi}

VARi ≤ VARi+1

VARi > VARi+1,
{VARi − S ≤ ∆}

VARi > VARi+1,{
VARi − S > ∆,

P ← VARi

}

VARi ≥ VARi+1

VARi < VARi+1,
{P = min, S ← VARi}
{P > min ∧ P − VARi ≤ ∆}
{P − VARi > ∆, C ← C + 1, S ← VARi, P ← min}

VARi ≤ VARi+1

VARi > VARi+1,
{VARi − S > ∆, P ← max(P, VARi)}
{VARi − S ≤ ∆}

N = C +
(
(P − VAR|VARIABLES|) > ∆

)

Figure 5.139: Automaton for the BIG PEAK constraint where C, S, P , min and ∆
respectively stand for the number of big peaks already encountered, the altitude at the
start of the current potential big peak, the altitude of the current potential big peak,
the smallest value that can be assigned to a variable of VARIABLES, the TOLERANCE

parameter


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.54 BIG VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY.

Constraint BIG VALLEY(N, VARIABLES, TOLERANCE)

Arguments N : dvar

VARIABLES : collection(var−dvar)
TOLERANCE : int

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)
TOLERANCE ≥ 0

Purpose

A variable Vv (1 < k < m) is a valley if and only if there exists an i (1 < i ≤ v) such
that Vi−1 > Vi and Vi = Vi+1 = · · · = Vv and Vv < Vv+1. Similarly a variable Vp
(1 < p < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a peak if and
only if there exists an i (1 < i ≤ p) such that Vi−1 < Vi and Vi = Vi+1 = · · · = Vp
and Vp > Vp+1. A valley variable Vv (1 < v < m) is a potential big valley wrt a
non-negative integer TOLERANCE if and only if:

1. Vv is a valley,

2. ∃i, j ∈ [1,m] | i < v < j, Vi is a peak (or i = 1 if there is no peak before
position p), Vj is a peak (or i = m if there is no peak after position p), Vi−Vv >
TOLERANCE, and Vj − Vv > TOLERANCE.

Let iv and jv be the largest i and the smallest j satisfying condition 2. Now a potential
big valley Vv (1 < v < m) is a big valley if and only if the interval [i, j] does not contain
any potential big valley that is strictly less than Vv . The constraint BIG VALLEY holds if
and only if N is the total number of big valleys of the sequence of variables VARIABLES.

Example (7, 〈9, 11, 11, 9, 10, 5, 7, 6, 6, 4, 8, 7, 10, 1, 1, 7, 7, 5, 9, 8, 12〉 , 0)
(4, 〈9, 11, 11, 9, 10, 5, 7, 6, 6, 4, 8, 7, 10, 1, 1, 7, 7, 5, 9, 8, 12〉 , 1)

As shown part Part (A) of Figure 5.140, the first BIG VALLEY constraint holds
since the sequence 9 11 11 9 10 5 7 6 6 4 8 7 10 1 1 7 7 5 9 8 12 contains seven big
valleys wrt a tolerance of 0 (i.e., we consider standard valleys).

As shown part Part (B) of Figure 5.140, the second BIG VALLEY constraint holds since the
same sequence 9 11 11 9 10 5 7 6 6 4 8 7 10 1 1 7 7 5 9 8 12 contains only four big valleys
wrt a tolerance of 1.

Typical N ≥ 1
|VARIABLES| > 6
range(VARIABLES.var) > 1
TOLERANCE > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model nval(VARIABLES.var) > 2
range(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Functional dependency: N determined by VARIABLES and TOLERANCE.

• Contractible wrt. VARIABLES when N = 0 and TOLERANCE = 0.

Usage Useful for constraining the number of big valleys of a sequence of domain variables, by
ignoring too small peaks that artificially create small valleys wrt TOLERANCE.

See also specialisation: VALLEY (the tolerance is set to 0 and removed).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: pure functional dependency.

modelling: functional dependency.


Typical model
Typical conditions on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Figure 5.140: Illustration of the Example slot: Part (A) a sequence of 21 variables
V1, V2, . . . , V21 respectively fixed to values 9, 11, 11, 9, 10, 5, 7, 6, 6, 4, 8, 7, 10,
1, 1, 7, 7, 5, 9, 8, 12 and its corresponding 7 valleys (TOLERANCE = 0 corresponds
to standard valleys) with their respective depths d01 = 1, d02 = 2, d03 = 3, d04 = 1,
d05 = 6, d06 = 2, d07 = 1 (the left and right hand sides of each valley are coloured in
light orange and light red) Part (B) the same sequence of variables and its 4 big valleys
when TOLERANCE = 1 with their respective depths d11 = 2, d12 = 3, d13 = 6, d14 = 2
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Automaton Figure 5.141 depicts the automaton associated with the BIG VALLEY constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s

 C ← 0,
S ← 0,
V ← max



u

vw

VARi ≤ VARi+1

VARi > VARi+1,
{S ← VARi}

VARi ≥ VARi+1

VARi < VARi+1,
{S − VARi ≤ ∆}

VARi < VARi+1,{
S − VARi > ∆,

V ← VARi

}

VARi ≤ VARi+1

VARi > VARi+1,
{V = max , S ← VARi}
{V < max ∧ VARi − V ≤ ∆}
{VARi − V > ∆, C ← C + 1, S ← VARi, V ← max}

VARi ≥ VARi+1

VARi < VARi+1,
{S − VARi > ∆, V ← min(V, VARi)}
{S − VARi ≤ ∆}

N = C +
(
(VAR|VARIABLES| − V ) > ∆

)

Figure 5.141: Automaton for the BIG VALLEY where C, S, V , max and ∆ respec-
tively stand for the number of big valleys already encountered, the altitude at the start
of the current potential big valley, the altitude of the current potential big valley, the
largest value that can be assigned to a variable of VARIABLES, the TOLERANCE param-
eter


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.55 BIN PACKING

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CUMULATIVE.

Constraint BIN PACKING(CAPACITY, ITEMS)

Arguments CAPACITY : int

ITEMS : collection(bin−dvar, weight−int)

Restrictions CAPACITY ≥ 0
required(ITEMS, [bin, weight])
ITEMS.weight ≥ 0
ITEMS.weight ≤ CAPACITY

Purpose
Given several items of the collection ITEMS (each of them having a specific weight), and
different bins of a fixed capacity, assign each item to a bin so that the total weight of the
items in each bin does not exceed CAPACITY.

Example

 5,

〈
bin− 3 weight− 4,
bin− 1 weight− 3,
bin− 3 weight− 1

〉 
The BIN PACKING constraint holds since the sum of the height of items that are as-
signed to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities are both less
than or equal to the maximum CAPACITY 5. Figure 5.142 shows the solution associated
with the example.

 ¬

®

1 2 3 4 5

≤ 5

bins

su
m

of
w

ei
gh

ts

¬ bin− 3 weight− 4
 bin− 1 weight− 3
® bin− 3 weight− 1

ITEMS

Figure 5.142: Bin-packing solution to the Example slot


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical CAPACITY >maxval(ITEMS.weight)
CAPACITY ≤sum(ITEMS.weight)
|ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.weight) > 1
ITEMS.bin ≥ 0
ITEMS.weight > 0

Symmetries • CAPACITY can be increased.

• Items of ITEMS are permutable.

• ITEMS.weight can be decreased to any value ≥ 0.

• All occurrences of two distinct values of ITEMS.bin can be swapped; all occur-
rences of a value of ITEMS.bin can be renamed to any unused value.

Arg. properties Contractible wrt. ITEMS.

Remark Note the difference from the classical bin-packing problem [286, page 221] where one
wants to find solutions that minimise the number of bins. In our case each item may be
assigned only to specific bins (i.e., the different values of the bin variable) and the goal is
to find a feasible solution. This constraint can be seen as a special case of the CUMULATIVE

constraint [1], where all task durations are equal to 1.

In [390] the CAPACITY parameter of the BIN PACKING constraint is replaced by a collection
of domain variables representing the load of each bin (i.e., the sum of the weights of the
items assigned to a bin). This allows representing problems where a minimum level has to
be reached in each bin.

Coffman and al. give in [128] the worst case bounds of different list algorithms for
the bin packing problem (i.e., given a positive integer CAPACITY and a list L of inte-
ger sizes weight1, weight2, . . . , weightn (0 ≤ weighti ≤ CAPACITY), what is the
smallest integer m such that there is a partition L = L1 ∪ L2 ∪ · · · ∪ Lm satisfying∑

weighti∈Lj
weighti ≤ CAPACITY for all j ∈ [1,m]?).

Algorithm Initial filtering algorithms are described in [302, 299, 300, 301, 390]. More recently, lin-
ear continuous relaxations based on the graph associated with the dynamic programming
approach for knapsack by Trick [419], and on the more compact model introduced by Car-
valho [110, 111] are presented in [98].

Systems PACK in Choco, BINPACKING in Gecode, BIN PACKING in MiniZinc.

See also generalisation: BIN PACKING CAPA (fixed overall capacity replaced by non-fixed ca-
pacity), CUMULATIVE (task of duration 1 replaced by task of given duration),
CUMULATIVE TWO D (task of duration 1 replaced by square of size 1 with a height),
INDEXED SUM (negative contribution also allowed, fixed capacity replaced by a set of
variables).

used in graph description: SUM CTR.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#bin_packing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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constraint type: resource constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: assignment dimension, assignment to the same set of values.

modelling exercises: assignment to the same set of values.

Cond. implications BIN PACKING(CAPACITY, ITEMS)
with CAPACITY ≥ |ITEMS|

implies ATMOST NVECTOR(NVEC : CAPACITY, VECTORS : ITEMS).


Cond. implications
Conditional implications.
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Arc input(s) ITEMS ITEMS

Arc generator PRODUCT 7→collection(items1, items2)

Arc arity 2

Arc constraint(s) items1.bin = items2.bin

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− ITEMS.weight)]

) 
Constraint(s) on sets SUM CTR(variables,≤, CAPACITY)

Graph model We enforce the SUM CTR constraint on the weight of the items that are assigned to the
same bin.

Parts (A) and (B) of Figure 5.143 respectively show the initial and final graph associated
with the Example slot. Each connected component of the final graph corresponds to the
items that are all assigned to the same bin.

ITEMS

ITEMS

1

1 23

2 3

ITEMS

ITEMS

1:3,4

1:3,4 3:3,1

2:1,3

2:1,3

3:3,1

(A) (B)

Figure 5.143: Initial and final graph of the BIN PACKING constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.144 depicts the automaton associated with the BIN PACKING constraint. To each
item of the collection ITEMS corresponds a signature variable Si that is equal to 1.

ARITH(C,≤, CAPACITY)

s{C[ ]← 0} 1,
{C[BINi]← C[BINi] + WEIGHTi}

Figure 5.144: Automaton of the BIN PACKING constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.56 BIN PACKING CAPA

I B C J DESCRIPTION LINKS

Origin Derived from BIN PACKING.

Constraint BIN PACKING CAPA(BINS, ITEMS)

Arguments BINS : collection(id−int, capa−int)
ITEMS : collection(bin−dvar, weight−int)

Restrictions |BINS| > 0
required(BINS, [id, capa])
distinct(BINS, id)
BINS.id ≥ 1
BINS.id ≤ |BINS|
BINS.capa ≥ 0
required(ITEMS, [bin, weight])
in attr(ITEMS, bin, BINS, id)
ITEMS.weight ≥ 0

Purpose

Given several items of the collection ITEMS (each of them having a specific weight), and
different bins described the the items of collection BINS (each of them having a specific
capacity capa), assign each item to a bin so that the total weight of the items in each bin
does not exceed the capacity of the bin.

Example



〈 id− 1 capa− 4,
id− 2 capa− 3,
id− 3 capa− 5,
id− 4 capa− 3,
id− 5 capa− 3

〉
,

〈
bin− 3 weight− 4,
bin− 1 weight− 3,
bin− 3 weight− 1

〉


The BIN PACKING CAPA constraint holds since the sum of the height of items that
are assigned to bins 1 and 3 is respectively equal to 3 and 5. The previous quantities
are respectively less than or equal to the maximum capacities 4 and 5 of bins 1 and 3.
Figure 5.145 shows the solution associated with the example.

Typical |BINS| > 1
range(BINS.capa) > 1
BINS.capa >maxval(ITEMS.weight)
BINS.capa ≤sum(ITEMS.weight)
|ITEMS| > 1
range(ITEMS.bin) > 1
range(ITEMS.weight) > 1
ITEMS.weight > 0


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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 ¬

®

1 2 3 4 5

≤ 4≤ 3≤ 5≤ 3≤ 3

bins

su
m

of
w

ei
gh

ts

¬ bin− 3 weight− 4
 bin− 1 weight− 3
® bin− 3 weight− 1

ITEMS

Figure 5.145: Bin-packing solution to the Example slot

Symmetries • Items of BINS are permutable.

• Items of ITEMS are permutable.

• BINS.capa can be increased.

• ITEMS.weight can be decreased to any value ≥ 0.

• All occurrences of two distinct values in BINS.id or ITEMS.bin can be swapped;
all occurrences of a value in BINS.id or ITEMS.bin can be renamed to any unused
value.

Arg. properties Contractible wrt. ITEMS.

Remark In MiniZinc (http://www.minizinc.org/) there is also a constraint called
BIN PACKING LOAD which, for each bin has a domain variable that is equal to the sum
of the weights assigned to the corresponding bin.

Systems PACK in Choco, BINPACKING in Gecode, BIN PACKING CAPA in MiniZinc.

See also generalisation: INDEXED SUM (negative contribution also allowed).

specialisation: BIN PACKING (non-fixed capacity replaced by fixed overall capacity).

Keywords application area: assignment.

constraint type: predefined constraint, resource constraint.

modelling: assignment dimension, assignment to the same set of values.

modelling exercises: assignment to the same set of values.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#bin_packing_capa
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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5.57 BINARY TREE

I B C J

DESCRIPTION LINKS GRAPH

Origin Derived from TREE.

Constraint BINARY TREE(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 0
NTREES ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Cover the digraphG described by the NODES collection with NTREES binary trees in such
a way that each vertex of G belongs to exactly one binary tree (i.e., each vertex of G has
at most two children). The edges of the binary trees are directed from their leaves to
their respective roots.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example


2,

〈
index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉



8,

〈
index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉



7,

〈
index− 1 succ− 8,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉


1

5

2 3 8

6

7

4

1 2 3 4

5 6 7 8

8

1

2 3 4

5 6 7

The first BINARY TREE constraint holds since its second argument corresponds to
the 2 (i.e., the first argument of the first BINARY TREE constraint) binary trees depicted by
Figure 5.146.

1|1

5|1

8|5 3|5

2|3

6|1

7|7

4|7

index− 1 succ− 1
index− 2 succ− 3
index− 3 succ− 5
index− 4 succ− 7
index− 5 succ− 1
index− 6 succ− 1
index− 7 succ− 7
index− 8 succ− 5

NODES

Figure 5.146: The two binary trees corresponding to the first example of the Example
slot; each vertex contains the information index|succ where succ is the index of its
father in the tree (by convention the father of the root is the root itself).

All solutions Figure 5.147 gives all solutions to the following non ground instance of the BINARY TREE

constraint: NTREES ∈ {1, 4}, S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [3, 4], S4 ∈ [3, 4], S5 ∈ [2, 3],
BINARY TREE(NTREES, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5〉).


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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¬ (4, 〈11,22,33,44,25〉)
 (4, 〈11,22,33,44,35〉)
® (1, 〈21,32,33,34,25〉)
¯ (1, 〈21,32,43,44,25〉)
° (1, 〈21,32,43,44,35〉)

1 2

5

3 4

¬

1 2 3

5

4



3

2

1 5

4

®

4

3

2

1 5

¯

4

3

2

1

5

°

Figure 5.147: All solutions corresponding to the non ground example of the
BINARY TREE constraint of the All solutions slot, where all vertices of a same tree
are coloured by the same colour; in the left-hand side the index attributes ares dis-
played as indices of the succ attribute, while in the right-hand side they are directly
displayed within each node.

Typical NTREES > 0
NTREES < |NODES|
|NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: NTREES determined by NODES.

Reformulation The BINARY TREE constraint can be expressed in term of (1) a set of |NODES|2 reified
constraints for avoiding circuit between more than one node and of (2) |NODES| reified
constraints and of one sum constraint for counting the trees and of (3) a set of |NODES|2
reified constraints and of |NODES| inequalities constraints for enforcing the fact that each
vertex has at most two children.

1. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a
variable Ri that takes its value within interval [1, |NODES|]. This variable represents
the rank of vertex NODES[i] within a solution. It is used to prevent the creation of
circuit involving more than one vertex as explained now. For each pair of vertices
NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES collection we create a reified
constraint of the form NODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .
The purpose of this constraint is to express the fact that, if there is an arc from vertex
NODES[i] to another vertex NODES[j], then Ri should be strictly less than Rj .

2. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-
ate a 0-1 variable Bi and state the following reified constraint NODES[i].succ =


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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NODES[i].index ⇔ Bi in order to force variable Bi to be set to value 1 if and
only if there is a loop on vertex NODES[i]. Finally we create a constraint NTREES =
B1 +B2 + · · ·+B|NODES| for stating the fact that the number of trees is equal to the
number of loops of the graph.

3. For each pair of vertices NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES

collection we create a 0-1 variable Bij and state the following reified constraint
NODES[i].succ = NODES[j].index ∧ i 6= j ⇔ Bij . Variable Bij is set to value 1 if
and only if there is an arc from NODES[i] to NODES[j]. Then for each vertex NODES[j]
(j ∈ [1, |NODES|]) we create a constraint of the formB1j+B2j+· · ·+B|NODES|j ≤ 2.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 3 16 121 1191 14461 209098 3510921

Number of solutions for BINARY TREE: domains 0..n

2 3 4 5 6 7 8

10−1

10−0.8

10−0.6

Length

O
bs

er
ve

d
de

ns
ity

Solution density for BINARY TREE


Counting
Information on the solution density.
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2 3 4 5 6 7 8
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Solution density for BINARY TREE

Length (n) 2 3 4 5 6 7 8
Total 3 16 121 1191 14461 209098 3510921

Parameter
value

1 2 9 60 540 6120 83790 1345680
2 1 6 48 480 5850 84420 1411200
3 - 1 12 150 2100 33390 599760
4 - - 1 20 360 6720 135240
5 - - - 1 30 735 17640
6 - - - - 1 42 1344
7 - - - - - 1 56
8 - - - - - - 1

Solution count for BINARY TREE: domains 0..n
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See also generalisation: TREE (at most two childrens replaced by no restriction on maximum num-
ber of childrens).

implied by: PATH.


See also
Related constraints grouped by semantics links.
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implies: TREE.

implies (items to collection): ATLEAST NVECTOR.

specialisation: PATH (at most two childrens replaced by at most one child).

Keywords constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
• NCC= NTREES

•MAX ID≤ 2

Graph class ONE SUCC

Graph model We use the same graph constraint as for the TREE constraint, except that we add the graph
property MAX ID ≤ 2, which constraints the maximum in-degree of the final graph to
not exceed 2. MAX ID does not consider loops: This is why we do not have any problem
with the root of each tree.

Parts (A) and (B) of Figure 5.148 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NCC graph property, we
display the two connected components of the final graph. Each of them corresponds to a
binary tree. Since we use the MAX IN DEGREE graph property, we also show with
a double circle a vertex that has a maximum number of predecessors.

The BINARY TREE constraint holds since all strongly connected components of the final
graph have no more than one vertex, since NTREES = NCC = 2 and since MAX ID =
2.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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NODES

1

2

3

4

5

6

7

8
MAX_NSCC=1, NCC=2

MAX_ID=2

CC#1 CC#2

1:1,1

2:2,3

3:3,5

5:5,1 6:6,1

8:8,5

4:4,7

7:7,7

(A) (B)

Figure 5.148: Initial and final graph of the BINARY TREE constraint
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5.58 BIPARTITE

I B C J DESCRIPTION LINKS GRAPH

Origin [151]

Constraint BIPARTITE(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection. Select a subset of arcs of G
so that the corresponding graph is symmetric (i.e., if there is an arc from i to j, there is
also an arc from j to i) and bipartite (i.e., there is no cycle involving an odd number of
vertices).

Example


〈 index− 1 succ− {2, 3},

index− 2 succ− {1, 4},
index− 3 succ− {1, 4, 5},
index− 4 succ− {2, 3, 6},
index− 5 succ− {3, 6},
index− 6 succ− {4, 5}

〉


The BIPARTITE constraint holds since the NODES collection depicts a symmetric
graph with no cycle involving an odd number of vertices. The corresponding graph is
depicted by Figure 5.149.

2 4 6

1 3 5

2 3 6

1 4 5

Figure 5.149: Two ways of looking at the bipartite graph given in the Example slot

Typical |NODES| > 2

Symmetry Items of NODES are permutable.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.
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Algorithm The sketch of a filtering algorithm for the BIPARTITE constraint is given in [151, page 91].
Beside enforcing the fact that the graph is symmetric, it checks that the subset of mandatory
vertices and arcs is bipartite and removes all potential arcs that would make the previous
graph non-bipartite.

See also used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: DFS-bottleneck.

final graph structure: bipartite, symmetric.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



798 BIPARTITE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph class • SYMMETRIC
• BIPARTITE

Graph model Part (A) of Figure 5.150 shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of the succ

attribute of a given vertex. Part (B) of Figure 5.150 gives the final graph associated with
the Example slot.

NODES

1:1,{2,3,4}

2:2,{1,4} 3:3,{1,4,5}

4:4,{1,2,3,5,6}

5:5,{3,4,6}

6:6,{4,5}

1:1,{2,3}

2:2,{1,4} 3:3,{1,4,5}

4:4,{2,3,6} 5:5,{3,6}

6:6,{4,5}

(A) (B)

Figure 5.150: Initial and final graph of the BIPARTITE set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.59 CALENDAR

I B C J DESCRIPTION LINKS

Origin [28]

Constraint CALENDAR(INSTANTS, MACHINES)

Type UNAVAILABILITIES : collection(low−int, up−int)

Arguments INSTANTS : collection


machine−dvar,
virtual−dvar,
ireal−dvar,
flagend−int


MACHINES : collection(id−int, cal− UNAVAILABILITIES)

Restrictions required(UNAVAILABILITIES, [low, up])
UNAVAILABILITIES.low ≤ UNAVAILABILITIES.up
required(INSTANTS, [machine, virtual, ireal, flagend])
in attr(INSTANTS, machine, MACHINES, id)
INSTANTS.flagend ≥ 0
INSTANTS.flagend ≤ 1
|MACHINES| > 0
required(MACHINES, [id, cal])
distinct(MACHINES, id)

Purpose

Makes the link between an universal calendar and resource dependent calendars. Given
a collection of machines MACHINES where each machine is defined by its identifier
and its unavailability periods the CALENDAR constraint maps items of real and virtual
dates depending on the machine assignment as well as of the fact that we consider start
(flagend = 0) or end (flagend = 1) times. Virtual dates on a given machine m do
not consider the unavailability periods on m, while real dates consider all time points.

Example



〈
machine− 1 virtual− 2 ireal− 3 flagend− 0,
machine− 1 virtual− 5 ireal− 6 flagend− 1,
machine− 2 virtual− 4 ireal− 5 flagend− 0,
machine− 2 virtual− 6 ireal− 9 flagend− 1,
machine− 3 virtual− 2 ireal− 2 flagend− 0,
machine− 3 virtual− 5 ireal− 5 flagend− 1,
machine− 4 virtual− 2 ireal− 2 flagend− 0,
machine− 4 virtual− 7 ireal− 9 flagend− 1

〉
,

〈 id− 1 cal− 〈low− 2 up− 2, low− 6 up− 7〉 ,
id− 2 cal− 〈low− 2 up− 2, low− 6 up− 7〉 ,
id− 3 cal− [],
id− 4 cal− 〈low− 3 up− 4〉

〉




Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Figure 5.151 illustrates the example. It present four machines with their respective
unavailability periods (in grey) as well as four tasks (in blue and pink). Each item of the
INSTANTS collection corresponds to the start or to the end of one of the previous four
tasks. The CALENDAR constraint holds since:

• The real date 3 (INSTANTS[1].ireal = 3) associated with the start
(INSTANTS[1].flagend = 0) of task (a) in the universal time corresponds to the vir-
tual date 2 (INSTANTS[1].virtual = 2) on machine 1 (INSTANTS[1].machine =
1).

• The real date 6 (INSTANTS[2].ireal = 6) associated with the end
(INSTANTS[2].flagend = 1) of task (a) in the universal time corresponds to the vir-
tual date 5 (INSTANTS[2].virtual = 5) on machine 1 (INSTANTS[2].machine =
1).

• The real date 5 (INSTANTS[3].ireal = 5) associated with the start
(INSTANTS[3].flagend = 0) of task (b) in the universal time corresponds to the vir-
tual date 4 (INSTANTS[3].virtual = 4) on machine 2 (INSTANTS[3].machine =
2).

• The real date 9 (INSTANTS[4].ireal = 9) associated with the end
(INSTANTS[4].flagend = 1) of task (b) in the universal time corresponds to the vir-
tual date 6 (INSTANTS[4].virtual = 6) on machine 2 (INSTANTS[4].machine =
2).

• The real date 2 (INSTANTS[5].ireal = 2) associated with the start
(INSTANTS[5].flagend = 0) of task (c) in the universal time corresponds to the vir-
tual date 2 (INSTANTS[5].virtual = 2) on machine 3 (INSTANTS[5].machine =
3).

• The real date 5 (INSTANTS[6].ireal = 5) associated with the end
(INSTANTS[6].flagend = 1) of task (c) in the universal time corresponds to the vir-
tual date 5 (INSTANTS[6].virtual = 5) on machine 3 (INSTANTS[6].machine =
3).

• The real date 2 (INSTANTS[7].ireal = 2) associated with the start
(INSTANTS[7].flagend = 0) of task (d) in the universal time corresponds to the vir-
tual date 2 (INSTANTS[7].virtual = 2) on machine 4 (INSTANTS[7].machine =
4).

• The real date 9 (INSTANTS[8].ireal = 9) associated with the end
(INSTANTS[8].flagend = 1) of task (d) in the universal time corresponds to the vir-
tual date 7 (INSTANTS[8].virtual = 7) on machine 4 (INSTANTS[8].machine =
4).

Typical |INSTANTS| > 1
|MACHINES| > 1

Symmetries • Items of INSTANTS are permutable.

• Items of MACHINES are permutable.

Arg. properties Contractible wrt. INSTANTS.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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1 2 3 4 5 6 7 8 9

1

2

3

4

1 2 3 4 5 6

1 2 3 4 5 6

1 3 4 6 7 8 92 5

1 2 3 4 5 6 7

a

b

c

d

time

m
ac

hi
ne

s
Figure 5.151: Four machines with their unavailability periods as well as four tasks
assigned to these machines (virtual dates mentioned in the Example slot use a bold
font)

Usage The CALENDAR constraint is used as a channelling constraint in resource scheduling prob-
lems where resources have unavailability periods that can preempt the execution of a task.
In this context two time coordinates systems are used:

• A first coordinate system, so called the virtual coordinate system, ignores all unavail-
ability periods on the different resources. All resource constraints are stated within
this virtual coordinate system.

• A second coordinate system, so called the real coordinate system, corresponds to the
real time. All temporal constraints (e.g., precedence constraints) are stated within
this real coordinate system.

In this context, each task has a virtual origin, a virtual duration, a virtual end, a real origin,
a real duration, a real end and the CALENDAR constraint links together the virtual origin
and the real origin as well as the virtual end and the real end. The virtual duration (i.e., the
real duration plus the sum of the unavailability periods crossed by the task) is linked to the
virtual end and the virtual origin through an equality constraint on the difference between
the virtual end and the virtual origin. The real duration is linked in a similar way to the real
end and the real origin. The keyword scheduling with machine choice, calendars and pre-
emption provides a concrete example of resource scheduling problem using the CALENDAR

constraint.

Reformulation The CALENDAR constraint can be reformulated into two generalised CASE constraints
(i.e., two CASE constraints augmented with linear constraints). Part (A) (respectively
Part (B)) of Figure 5.152 provides the directed acyclic graph that allows mapping the vir-
tual start and real start (respectively the virtual end and real end) of a task. This directed
acyclic graph can be computed directly from the arguments of the CALENDAR constraint:

1. We create an initial root node labelled bym and we partition the set of machines into
classes of consecutive machines that all share exactly the same unavailability periods.
For each such class we create an arc from the root node to a new node vs labelled
by the corresponding interval of consecutive machines identifiers. In Part (A) this
corresponds to node m and its three outgoing arcs respectively labelled by intervals
[1, 2], [3, 3] and [4, 4].


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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2. For each class of consecutive machines found previously, we label in increasing order
each timepoint that is not part of an unavailability period. We create an arc from the
corresponding node vs for each maximum interval of available timepoints to a new
node labelled by rs . In Part (A) this translate to:

• For the class corresponding to machines 1 and 2 we create three outgoing arcs
labelled by the time intervals [1, 1], [2, 4] and [5, 6].

• For the class corresponding to machine 3 we create the outgoing arc labelled by
time interval [1, 9].

• For the class corresponding to machine 4 we create the two outgoing arcs la-
belled by the time intervals [1, 2] and [3, 7].

3. For each class of consecutive machines and for each maximum interval [i, j] of avail-
able timepoints previously computed, we find out the number of unavailable time-
points bi on the same class of machines that are located before the virtual date i.
We create an outgoing arc from the corresponding node rs to a new node labelled
by true (there is a single true node for the full directed acyclic graph). This arc is
labelled by the interval [i+ bi, j + bi] and by the linear constraint rs = vs + bi. In
Part (A) this translate to:

• For the class corresponding to machines 1 and 2 and for each rs node associated
with the time intervals [1, 1], [2, 4] and [5, 6] we respectively create an outgoing
arc labelled by intervals [1, 1], [3, 5] and [8, 9]. To each of these arcs we also
respectively associate the linear constraints rs = vs+ 0 (+0 since on machines
1 and 2 there is no unavailability period before the virtual date 1), rs = vs + 1
(+1 since on machines 1 and 2 there is a single unavailable timepoint before
the virtual date 2) and rs = vs+3 (+3 since on machines 1 and 2 there is three
unavailable timepoints before the virtual date 5).

• For the class corresponding to machine 3 and for the rs node associated with
the time interval [1, 9] we create the outgoing arc labelled by time interval [1, 9]
and by rs = vs+0 (i.e., since there is no unavailability period at all on machine
3).

• For the class corresponding to machine 4 and for each rs node associated with
the time intervals [1, 2] and [3, 7] we respectively create an outgoing arc labelled
by [1, 2] and [5, 9]. To each of these arcs we also respectively associate the
linear constraints rs = vs+0 (+0 since on machine 4 there is no unavailability
period before the virtual date 1) and rs = vs + 2 (+2 since on machine 4 there
is two unavailable timepoints before the virtual date 3).

The CALENDAR constraint can also be reformulated into a conjunction of reified con-
straints. This is done by generating, for each pair of items (I,M) of the INSTANTS and
MACHINES collections, a set of reified constraints expressing:

• The link between the real and the virtual dates under the hypothesis that the machine
attribute of item I is assigned to the value of the id attribute of itemM. More pre-
cisely, we generate one reified constraint for each available time interval on machine
id.

• The fact that a real date should not be located within an unavailability period of its
corresponding machine.

Operationally, this leads to the following cases:
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1. When machine id has no unavailability at all we state an equality constraint between
the real and virtual dates.

2. When the real date is located before the first unavailability period we also state an
equality constraint between the real and virtual dates.

3. When the real date is located between two consecutive unavailability periods we
state:

• An equality constraint between the real date and the virtual date plus the sum
of all unavailabilities located before the real date.

• An implication between the fact that the real date belongs to the first unavail-
ability period (among the two consecutive unavailability periods) and the fact
that the real date is not assigned to the machine that contains the unavailability
period.

4. When the real date is located after the last unavailability period we state:

• An equality constraint between the real date and the virtual date plus the sum
of all unavailabilities.

• An implication between the fact that the real date belongs to the last unavail-
ability period and the fact that the real date is not assigned to the machine that
contains the unavailability period.

As an example consider again consider the instance given in the Example slot. For the
start of task a (i.e., the first item 〈machine− 1 virtual− 2 ireal− 2 flagend− 0〉 of
collection INSTANTS), we generate the following reified constraints, where equivalences of
the form true⇔ true are shown in bold:

• (if task a is assigned on machine 1)
? before [2, 2]: 1 = 1 ∧ 3 < 2⇔ 1 = 1 ∧ 3 = 2
? between [2, 2] and [6, 7]: 1 = 1 ∧ 3 > 2 ∧ 3 < 6 ⇔ 1 = 1 ∧ 3 = 2 + 1
? after [6, 7]: 1 = 1 ∧ 3 > 7⇔ 1 = 1 ∧ 3 = 2 + 3
? do not cross [2, 2], [6, 7]: 3 ∈ [2, 2]⇒ 1 6= 1, 3 ∈ [6, 7]⇔ 1 6= 1

• (if task a is assigned on machine 2)
? before [2, 2]: 1 = 2 ∧ 3 < 2⇔ 1 = 2 ∧ 3 = 2
? between [2, 2] and [6, 7]: 1 = 2 ∧ 3 > 2 ∧ 3 < 6⇔ 1 = 2 ∧ 3 = 2 + 1
? after [6, 7]: 1 = 2 ∧ 3 > 7⇔ 1 = 2 ∧ 3 = 2 + 3
? do not cross [2, 2], [6, 7]: 3 ∈ [2, 2]⇒ 1 6= 2, 3 ∈ [6, 7]⇔ 1 6= 2

• (if task a is assigned on machine 3)
? no unavailability: 1 = 3⇔ 1 = 3 ∧ 3 = 2

• (if task a is assigned on machine 4)
? before [3, 4]: 1 = 4 ∧ 3 < 3⇔ 1 = 4 ∧ 3 = 2
? after [3, 4]: 1 = 4 ∧ 3 > 4⇔ 1 = 4 ∧ 3 = 2 + 2
? do not cross [3, 4]: 3 ∈ [3, 4]⇒ 1 6= 4
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(B) directed acyclic graph linking the machine attribute m, the virtual end ve

and the real end re of a task

Figure 5.152: The two generalised CASE constraints for respectively mapping (A) the
virtual start and real start of a task corresponding to the Example slot as well as (B) the
virtual end and real end; the directed acyclic graphs were generated under the hypoth-
esis that the virtual and real dates are located in [1, 9].
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For the end of task a (i.e., the second item 〈machine−1 virtual−5 ireal−6 flagend−
1〉 of collection INSTANTS), we generate the following reified constraints:

• (if task a is assigned on machine 1)
? before [2, 2]: 1 = 1 ∧ 6 < 3⇔ 1 = 1 ∧ 6 = 5
? between [2, 2] and [6, 7]: 1 = 1 ∧ 6 > 3 ∧ 6 < 7 ⇔ 1 = 1 ∧ 6 = 5 + 1
? after [6, 7]: 1 = 1 ∧ 6 > 8⇔ 1 = 1 ∧ 6 = 5 + 3
? do not cross [2, 2], [6, 7]: 6 ∈ [3, 3]⇒ 1 6= 1, 6 ∈ [7, 8]⇒ 1 6= 1

• (if task a is assigned on machine 2)
? before [2, 2]: 1 = 2 ∧ 6 < 3⇔ 1 = 2 ∧ 6 = 5
? between [2, 2] and [6, 7]: 1 = 2 ∧ 6 > 3 ∧ 6 < 7⇔ 1 = 2 ∧ 6 = 5 + 1
? after [6, 7]: 1 = 2 ∧ 6 > 8⇔ 1 = 2 ∧ 6 = 5 + 3
? do not cross [2, 2], [6, 7]: 6 ∈ [3, 3]⇒ 1 6= 2, 6 ∈ [7, 8]⇒ 1 6= 2

• (if task a is assigned on machine 3)
? no unavailability: 1 = 3⇔ 1 = 3 ∧ 6 = 5

• (if task a is assigned on machine 4)
? before [3, 4]: 1 = 4 ∧ 6 < 4⇔ 1 = 4 ∧ 6 = 5
? after [3, 4]: 1 = 4 ∧ 6 > 5⇔ 1 = 4 ∧ 6 = 5 + 2
? do not cross [3, 4]: 6 ∈ [4, 5]⇒ 1 6= 4

For the start of task b (i.e., the third item 〈machine−2 virtual−4 ireal−5 flagend−
0〉 of collection INSTANTS), we generate the following reified constraints:

• (if task b is assigned on machine 1)
? before [2, 2]: 2 = 1 ∧ 5 < 2⇔ 2 = 1 ∧ 5 = 4
? between [2, 2] and [6, 7]: 2 = 1 ∧ 5 > 2 ∧ 5 < 6⇔ 2 = 1 ∧ 5 = 4 + 1
? after [6, 7]: 2 = 1 ∧ 5 > 7⇔ 2 = 1 ∧ 5 = 4 + 3
? do not cross [2, 2], [6, 7]: 5 ∈ [2, 2]⇒ 2 6= 1, 5 ∈ [6, 7]⇒ 2 6= 1

• (if task b is assigned on machine 2)
? before [2, 2]: 2 = 2 ∧ 5 < 2⇔ 2 = 2 ∧ 5 = 4
? between [2, 2] and [6, 7]: 2 = 2 ∧ 5 > 2 ∧ 5 < 6 ⇔ 2 = 2 ∧ 5 = 4 + 1
? after [6, 7]: 2 = 2 ∧ 5 > 7⇔ 2 = 2 ∧ 5 = 4 + 3
? do not cross [2, 2], [6, 7]: 5 ∈ [2, 2]⇒ 2 6= 2, 5 ∈ [6, 7]⇒ 2 6= 2

• (if task b is assigned on machine 3)
? no unavailability: 2 = 3⇔ 2 = 3 ∧ 5 = 4

• (if task b is assigned on machine 4)
? before [3, 4]: 2 = 4 ∧ 5 < 3⇔ 2 = 4 ∧ 5 = 4
? after [3, 4]: 2 = 4 ∧ 5 > 4⇔ 2 = 4 ∧ 5 = 4 + 2
? do not cross [3, 4]: 5 ∈ [3, 4]⇒ 2 6= 4
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For the end of task b (i.e., the fourth item 〈machine−2 virtual−6 ireal−9 flagend−
1〉 of collection INSTANTS), we generate the following reified constraints:

• (if task b is assigned on machine 1)
? before [2, 2]: 2 = 1 ∧ 9 < 3⇔ 2 = 1 ∧ 9 = 6
? between [2, 2] and [6, 7]: 2 = 1 ∧ 9 > 3 ∧ 9 < 7⇔ 2 = 1 ∧ 9 = 6 + 1
? after [6, 7]: 2 = 1 ∧ 9 > 8⇔ 2 = 1 ∧ 9 = 6 + 3
? do not cross [2, 2], [6, 7]: 9 ∈ [3, 3]⇒ 2 6= 1, 9 ∈ [7, 8]⇒ 2 6= 1

• (if task b is assigned on machine 2)
? before [2, 2]: 2 = 2 ∧ 9 < 3⇔ 2 = 2 ∧ 9 = 6
? between [2, 2] and [6, 7]: 2 = 2 ∧ 9 > 3 ∧ 9 < 7⇔ 2 = 2 ∧ 9 = 6 + 1
? after [6, 7]: 2 = 2 ∧ 9 > 8 ⇔ 2 = 2 ∧ 9 = 6 + 3
? do not cross [2, 2], [6, 7]: 9 ∈ [3, 3]⇒ 2 6= 2, 9 ∈ [7, 8]⇒ 2 6= 2

• (if task b is assigned on machine 3)
? no unavailability: 2 = 3⇔ 2 = 3 ∧ 9 = 6

• (if task b is assigned on machine 4)
? before [3, 4]: 2 = 4 ∧ 9 < 4⇔ 2 = 4 ∧ 9 = 6
? after [3, 4]: 2 = 4 ∧ 9 > 5⇔ 2 = 4 ∧ 9 = 6 + 2
? do not cross [3, 4]: 9 ∈ [4, 5]⇒ 2 6= 4

For the start of task c (i.e., the fifth item 〈machine−3 virtual−2 ireal−2 flagend−0〉
of collection INSTANTS), we generate the following reified constraints:

• (if task c is assigned on machine 1)
? before [2, 2]: 3 = 1 ∧ 2 < 2⇔ 3 = 1 ∧ 2 = 2
? between [2, 2] and [6, 7]: 3 = 1 ∧ 2 > 2 ∧ 2 < 6⇔ 3 = 1 ∧ 2 = 2 + 1
? after [6, 7]: 3 = 1 ∧ 2 > 7⇔ 3 = 1 ∧ 2 = 2 + 3
? do not cross [2, 2], [6, 7]: 2 ∈ [2, 2]⇒ 3 6= 1, 2 ∈ [6, 7]⇒ 3 6= 1

• (if task c is assigned on machine 2)
? before [2, 2]: 3 = 2 ∧ 2 < 2⇔ 3 = 2 ∧ 2 = 2
? between [2, 2] and [6, 7]: 3 = 2 ∧ 2 > 2 ∧ 2 < 6⇔ 3 = 2 ∧ 2 = 2 + 1
? after [6, 7]: 3 = 2 ∧ 2 > 7⇔ 3 = 2 ∧ 2 = 2 + 3
? do not cross [2, 2], [6, 7]: 2 ∈ [2, 2]⇒ 3 6= 2, 2 ∈ [6, 7]⇒ 3 6= 2

• (if task c is assigned on machine 3)
? no unavailability: 3 = 3 ⇔ 3 = 3 ∧ 2 = 2

• (if task c is assigned on machine 4)
? before [3, 4]: 3 = 4 ∧ 2 < 3⇔ 3 = 4 ∧ 2 = 2
? after [3, 4]: 3 = 4 ∧ 2 > 4⇔ 3 = 4 ∧ 2 = 2 + 2
? do not cross [3, 4]: 2 ∈ [3, 4]⇒ 3 6= 4
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For the end of task c (i.e., the sixth item 〈machine−3 virtual−5 ireal−5 flagend−1〉
of collection INSTANTS), we generate the following reified constraints:

• (if task c is assigned on machine 1)
? before [2, 2]: 3 = 1 ∧ 5 < 3⇔ 3 = 1 ∧ 5 = 5
? between [2, 2] and [6, 7]: 3 = 1 ∧ 5 > 3 ∧ 5 < 7⇔ 3 = 1 ∧ 5 = 5 + 1
? after [6, 7]: 3 = 1 ∧ 5 > 8⇔ 3 = 1 ∧ 5 = 5 + 3
? do not cross [2, 2], [6, 7]: 5 ∈ [3..3]⇒ 3 6= 1, 5 ∈ [7..8]⇒ 3 6= 1

• (if task c is assigned on machine 2)
? before [2, 2]: 3 = 2 ∧ 5 < 3⇔ 3 = 2 ∧ 5 = 5
? between [2, 2] and [6, 7]: 3 = 2 ∧ 5 > 3 ∧ 5 < 7⇔ 3 = 2 ∧ 5 = 5 + 1
? after [6, 7]: 3 = 2 ∧ 5 > 8⇔ 3 = 2 ∧ 5 = 5 + 3
? do not cross [2, 2], [6, 7]: 5 ∈ [3..3]⇒ 3 6= 2, 5 ∈ [7..8]⇒ 3 6= 2

• (if task c is assigned on machine 3)
? no unavailability: 3 = 3 ⇔ 3 = 3 ∧ 5 = 5

• (if task c is assigned on machine 4)
? before [3, 4]: 3 = 4 ∧ 5 < 4⇔ 3 = 4 ∧ 5 = 5
? after [3, 4]: 3 = 4 ∧ 5 > 5⇔ 3 = 4 ∧ 5 = 5 + 2
? do not cross [3, 4]: 5 ∈ [4..5]⇒ 3 6= 4

For the start of task d (i.e., the seventh item 〈machine − 4 virtual − 2 ireal −
2 flagend− 0〉 of collection INSTANTS), we generate the following reified constraints:

• (if task d is assigned on machine 1)
? before [2, 2]: 4 = 1 ∧ 2 < 2⇔ 4 = 1 ∧ 2 = 2
? between [2, 2] and [6, 7]: 4 = 1 ∧ 2 > 2 ∧ 2 < 6⇔ 4 = 1 ∧ 2 = 2 + 1
? after [6, 7]: 4 = 1 ∧ 2 > 7⇔ 4 = 1 ∧ 2 = 2 + 3
? do not cross [2, 2], [6, 7]: 2 ∈ [2, 2]⇒ 4 6= 1, 2 ∈ [6, 7]⇒ 4 6= 1

• (if task d is assigned on machine 2)
? before [2, 2]: 4 = 2 ∧ 2 < 2⇔ 4 = 2 ∧ 2 = 2
? between [2, 2] and [6, 7]: 4 = 2 ∧ 2 > 2 ∧ 2 < 6⇔ 4 = 2 ∧ 2 = 2 + 1
? after [6, 7]: 4 = 2 ∧ 2 > 7⇔ 4 = 2 ∧ 2 = 2 + 3
? do not cross [2, 2], [6, 7]: 2 ∈ [2, 2]⇒ 4 6= 2, 2 ∈ [6, 7]⇒ 4 6= 2

• (if task d is assigned on machine 3)
? no unavailability: 4 = 3⇔ 4 = 3 ∧ 2 = 2

• (if task d assigned on machine 4)
? before [3, 4]: 4 = 4 ∧ 2 < 3 ⇔ 4 = 4 ∧ 2 = 2
? after [3, 4]: 4 = 4 ∧ 2 > 4⇔ 4 = 4 ∧ 2 = 2 + 2
? do not cross [3, 4]: 2 ∈ [3, 4]⇒ 4 6= 4
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For the end of task d (i.e., the eighth item 〈machine−4 virtual−7 ireal−9 flagend−
1〉 of collection INSTANTS), we generate the following reified constraints:

• (if task d is assigned on machine 1)
? before [2, 2]: 4 = 1 ∧ 9 < 3⇔ 4 = 1 ∧ 9 = 7
? between [2, 2] and [6, 7]: 4 = 1 ∧ 9 > 3 ∧ 9 < 7⇔ 4 = 1 ∧ 9 = 7 + 1
? after [6, 7]: 4 = 1 ∧ 9 > 8⇔ 4 = 1 ∧ 9 = 7 + 3
? do not cross [2, 2], [6, 7]: 9 ∈ [3, 3]⇒ 4 6= 1, 9 ∈ [7, 8]⇒ 4 6= 1

• (if task d is assigned on machine 2)
? before [2, 2]: 4 = 2 ∧ 9 < 3⇔ 4 = 2 ∧ 9 = 7
? between [2, 2] and [6, 7]: 4 = 2 ∧ 9 > 3 ∧ 9 < 7⇔ 4 = 2 ∧ 9 = 7 + 1
? after [6, 7]: 4 = 2 ∧ 9 > 8⇔ 4 = 2 ∧ 9 = 7 + 3
? do not cross [2, 2], [6, 7]: 9 ∈ [3, 3]⇒ 4 6= 2, 9 ∈ [7, 8]⇒ 4 6= 2

• (if task d is assigned on machine 3)
? no unavailability: 4 = 3⇔ 4 = 3 ∧ 9 = 7

• (if task d is assigned on machine 4)
? before [3, 4]: 4 = 4 ∧ 9 < 4⇔ 4 = 4 ∧ 9 = 7
? after [3, 4]: 4 = 4 ∧ 9 > 5 ⇔ 4 = 4 ∧ 9 = 7 + 2
? do not cross [3, 4]: 9 ∈ [4, 5]⇒ 4 6= 4

See also common keyword: CUMULATIVE (scheduling constraint), CUMULATIVES (scheduling
with machine choice, calendars and preemption), DIFFN (multi-site employee scheduling
with calendar constraints,
scheduling with machine choice, calendars and preemption), DISJUNCTIVE (scheduling
constraint),
GEOST (multi-site employee scheduling with calendar constraints,
scheduling with machine choice, calendars and preemption).

Keywords constraint type: predefined constraint, temporal constraint, scheduling constraint.

modelling: channelling constraint, multi-site employee scheduling with calendar con-
straints, scheduling with machine choice, calendars and preemption, assignment dimen-
sion.

modelling exercises: multi-site employee scheduling with calendar constraints, scheduling
with machine choice, calendars and preemption.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.60 CARDINALITY ATLEAST

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from GLOBAL CARDINALITY.

Constraint CARDINALITY ATLEAST(ATLEAST, VARIABLES, VALUES)

Arguments ATLEAST : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions ATLEAST ≥ 0
ATLEAST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATLEAST is the minimum number of time that a value of VALUES is taken by the variables
of the collection VARIABLES.

Example (1, 〈3, 3, 8〉 , 〈3, 8〉)

In this example, values 3 and 8 are respectively used 2, and 1 times. The
CARDINALITY ATLEAST constraint holds since its first argument ATLEAST = 1 is
assigned to the minimum number of time that values 3 and 8 occur in the collection
〈3, 3, 8〉.

Typical ATLEAST > 0
ATLEAST < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Arg. properties Functional dependency: ATLEAST determined by VARIABLES and VALUES.

Usage An application of the CARDINALITY ATLEAST constraint is to enforce a minimum use of
values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Remark This is a restricted form of a variant of an AMONG constraint and of the
GLOBAL CARDINALITY constraint. In the original GLOBAL CARDINALITY constraint,
one specifies for each value its minimum and maximum number of occurrences.

Algorithm See GLOBAL CARDINALITY [353].

See also generalisation: GLOBAL CARDINALITY (single count variable replaced by an individ-
ual count variable for each value).

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency, at least.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var 6= values.val

Graph property(ies) MAX ID= |VARIABLES| − ATLEAST

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Using directly the graph property MIN ID = ATLEAST, and replacing the disequality of
the arc constraint by an equality does not work since it ignores values that are not assigned
to any variable. This comes from the fact that isolated vertices are removed from the final
graph.

Parts (A) and (B) of Figure 5.153 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX ID graph property, the vertex with the
maximum number of predecessor (i.e., namely two predecessors) is stressed with a dou-
ble circle. As a consequence the first argument ATLEAST of the CARDINALITY ATLEAST

constraint is assigned to the total number of variables 3 minus 2.

VARIABLES

VALUES

1

12

2 3

MAX_ID=2

1:3

2:8

2:3 3:8

1:3

(A) (B)

Figure 5.153: Initial and final graph of the CARDINALITY ATLEAST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.154 depicts the automaton associated with the CARDINALITY ATLEAST con-
straint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature
variable Si. The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

MINIMUM EXCEPT 0(M,C)
M ≥ ATLEAST

s{C[ ]← 0} IN(VARi, VALUES),
{C[VARi]← C[VARi] + 1}

NOT IN(VARi, VALUES)

Figure 5.154: Automaton of the CARDINALITY ATLEAST constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.61 CARDINALITY ATMOST

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from GLOBAL CARDINALITY.

Constraint CARDINALITY ATMOST(ATMOST, VARIABLES, VALUES)

Arguments ATMOST : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose ATMOST is the maximum number of occurrences of each value of VALUES within the
variables of the collection VARIABLES.

Example (2, 〈2, 1, 7, 1, 2〉 , 〈5, 7, 2, 9〉)

In this example, values 5, 7, 2 and 9 occur respectively 0, 1, 2 and 0 times within
the collection 〈2, 1, 7, 1, 2〉. As a consequence, the CARDINALITY ATMOST constraint
holds since its first argument ATMOST is assigned to the maximum number of occurrences
2.

Typical ATMOST > 0
ATMOST < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Arg. properties Functional dependency: ATMOST determined by VARIABLES and VALUES.

Usage An application of the CARDINALITY ATMOST constraint is to enforce a maximum use of
values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Remark This is a restricted form of a variant of the AMONG constraint and of the
GLOBAL CARDINALITY constraint. In the original GLOBAL CARDINALITY constraint,
one specifies for each value its minimum and maximum number of occurrences.

Algorithm See GLOBAL CARDINALITY [353].

See also generalisation: GLOBAL CARDINALITY (single count variable replaced by an individ-
ual count variable for each value), MULTI INTER DISTANCE (window of size 1 replaced
by window of DIST consecutive values).

implied by: AMONG.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: at most, functional dependency.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) MAX ID= ATMOST

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.155 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX ID graph property, the vertex that has the
maximum number of predecessor is stressed with a double circle.

VARIABLES

VALUES

1

1234

2345

MAX_ID=2

1:2

3:2

3:7

2:7

5:2

(A) (B)

Figure 5.155: Initial and final graph of the CARDINALITY ATMOST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.156 depicts the automaton associated with the CARDINALITY ATMOST constraint.
To each variable VARi of the collection VARIABLES corresponds a 0-1 signature variable
Si. The following signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

ARITH(C,≤, ATMOST)

s{C[ ]← 0} IN(VARi, VALUES),
{C[VARi]← C[VARi] + 1}

NOT IN(VARi, VALUES)

Figure 5.156: Automaton of the CARDINALITY ATMOST constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.62 CARDINALITY ATMOST PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from GLOBAL CARDINALITY.

Constraint CARDINALITY ATMOST PARTITION(ATMOST, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments ATMOST : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose ATMOST is the maximum number of time that values of a same partition of PARTITIONS
are taken by the variables of the collection VARIABLES.

Example (2, 〈2, 3, 7, 1, 6, 0〉 , 〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉)

In this example, two variables of the collection VARIABLES = 〈2, 3, 7, 1, 6, 0〉 are
assigned values of the first partition, no variable is assigned a value of the second partition,
and finally two variables are assigned values of the last partition. As a consequence, the
CARDINALITY ATMOST PARTITION constraint holds since its first argument ATMOST is
assigned to the maximum number of occurrences 2.

Typical ATMOST > 0
ATMOST < |VARIABLES|
|VARIABLES| > 1
|VARIABLES| > |PARTITIONS|

Symmetries • Items of VARIABLES are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

Arg. properties Functional dependency: ATMOST determined by VARIABLES and PARTITIONS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also generalisation: GLOBAL CARDINALITY (single count variable replaced by an in-
dividual count variable for each value and variable replaced by variable ∈
partition).

used in graph description: IN.

Keywords characteristic of a constraint: partition.

constraint arguments: pure functional dependency.

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.

modelling: at most, functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→collection(variables, partitions)

Arc arity 2

Arc constraint(s) IN(variables.var, partitions.p)

Graph property(ies) MAX ID= ATMOST

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.157 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX ID graph property, a vertex with the
maximum number of predecessor is stressed with a double circle.

VARIABLES

PARTITIONS

1

1 23

2 3456

MAX_ID=2

1:2

3:2
  6

2:3

1:1
  3

4:15:6

(A) (B)

Figure 5.157: Initial and final graph of the CARDINALITY ATMOST PARTITION con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.63 CHANGE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint CHANGE(NCHANGE, VARIABLES, CTR)

Synonyms NBCHANGES, SIMILARITY.

Arguments NCHANGE : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraint CTR holds on consecutive variables of
the collection VARIABLES.

Example (3, 〈4, 4, 3, 4, 1〉 , 6=)
(1, 〈1, 2, 4, 3, 7〉 , >)

4 4 3 4 16= 6= 6==

1 2 4 3 7>≤ ≤ ≤

In the first example the changes are located between values 4 and 3, 3 and 4, 4
and 1. Consequently, the corresponding CHANGE constraint holds since its first argument
NCHANGE is fixed to value 3.

In the second example the unique change occurs between values 4 and 3. Consequently,
the corresponding CHANGE constraint holds since its first argument NCHANGE is fixed to 1.

All solutions Figure 5.158 gives all solutions to the following non ground instance of the CHANGE

constraint: NCHANGE ∈ [0, 1], V1 ∈ [2, 3], V2 ∈ [1, 2], V3 ∈ [4, 5], V4 ∈ [2, 4],
CHANGE(NCHANGE, 〈V1, V2, V3, V4〉, >).

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [ 6=]

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties • Functional dependency: NCHANGE determined by VARIABLES and CTR.

• Contractible wrt. VARIABLES when CTR ∈ [ 6=, <,≥, >,≤] and NCHANGE = 0.

• Contractible wrt. VARIABLES when CTR ∈ [=, <,≥, >,≤] and NCHANGE =
|VARIABLES| − 1.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).



CHANGE 823

¬ (1, 〈2,1,4,4〉)
 (1, 〈2,2,4,2〉)
® (1, 〈2,2,4,3〉)

¯ (0, 〈2,2,4,4〉)
° (1, 〈2,2,5,2〉)
± (1, 〈2,2,5,3〉)

² (1, 〈2,2,5,4〉)
³ (1, 〈3,1,4,4〉)
´ (1, 〈3,2,4,4〉)

Figure 5.158: All solutions corresponding to the non ground example of the CHANGE
constraint (with CTR set to>) of the All solutions slot; each change is shown by a color
change between two consecutive values.

Usage This constraint can be used in the context of timetabling problems in order to put an upper
limit on the number of changes of job types during a given period.

Remark A similar constraint appears in [314, page 338] under the name of SIMILARITY constraint.
The difference consists of replacing the arithmetic constraint CTR by a binary constraint.
When CTR is equal to 6= this constraint is called NBCHANGES in [416].

Algorithm A first incomplete algorithm is described in [32]. The sketch of a filtering algorithm for the
conjunction of the CHANGE and the STRETCH constraints based on dynamic programming
achieving arc-consistency is mentioned by L. Hellsten in [219, page 56].

Reformulation The CHANGE constraint can be reformulated with the SEQ BIN constraint [321] that we
now introduce. Given N a domain variable, X a sequence of domain variables, and C

and B two binary constraints, SEQ BIN(N, X, C, B) holds if (1) N is equal to the number
of C-stretches in the sequence X, and (2) B holds on any pair of consecutive variables in
X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant [316],
where the equality constraint is made explicit by replacing it by a binary constraint C, i.e., a
C-stretch is a maximal length subsequence of X for which the binary constraint C is satisfied
on consecutive variables. CHANGE(NCHANGE, VARIABLES, CTR ) can be reformulated as
N = N1− 1 ∧ SEQ BIN(N1, X,¬ CTR , true), where true is the universal constraint.

Used in PATTERN.

See also common keyword: CHANGE PARTITION, CIRCULAR CHANGE (number of changes in
a sequence of variables with respect to a binary constraint), CYCLIC CHANGE,
CYCLIC CHANGE JOKER (number of changes), SMOOTH (number of changes in a se-
quence of variables with respect to a binary constraint).

generalisation: CHANGE PAIR (variable replaced by pair of variables),
CHANGE VECTORS (variable replaced by vector).

shift of concept: DISTANCE CHANGE, LONGEST CHANGE.

Keywords characteristic of a constraint: automaton, automaton with counters, non-deterministic
automaton.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2), Berge-acyclic con-
straint network.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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constraint type: timetabling constraint.

filtering: dynamic programming.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Since we are only interested by the constraints linking two consecutive items of the collec-
tion VARIABLES we use PATH to generate the arcs of the initial graph.

Parts (A) and (B) of Figure 5.159 respectively show the initial and final graph of the first
example of the Example slot. Since we use the NARC graph property, the arcs of the
final graph are stressed in bold.

VARIABLES

1

2

3

4

5

NARC=3

2:4

3:3

4:4

5:1

(A) (B)

Figure 5.159: Initial and final graph of the CHANGE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.160 depicts a first automaton that only accepts all the solutions to the CHANGE

constraint. This automaton uses a counter in order to record the number of satisfied con-
straints of the form VARi CTR VARi+1 already encountered. To each pair of consecutive
variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-1 signature variable
Si. The following signature constraint links VARi, VARi+1 and Si: VARi CTR VARi+1 ⇔
Si.

NCHANGE = C

s{C ← 0} VARi CTR VARi+1,
{C ← C + 1}

VARi ¬CTR VARi+1

Figure 5.160: Automaton (with counter) of the CHANGE constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = NCHANGE

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.161: Hypergraph of the reformulation corresponding to the automaton (with
counter) of the CHANGE constraint

Since the reformulation associated with the previous automaton is not Berge-acyclic, we
now describe a second counter free automaton that also only accepts all the solutions to
the CHANGE constraint. Without loss of generality, assume that the collection of variables
VARIABLES contains at least two variables (i.e., |VARIABLES| ≥ 2). Let n and D respec-
tively denote the number of variables of the collection VARIABLES, and the union of the
domains of the variables of VARIABLES. Clearly, the maximum number of changes (i.e., the
number of times the constraint VARi CTR VARi+1 (1 ≤ i < n) holds) cannot exceed the
quantity m = min(n− 1, NCHANGE). The (m+ 1) · |D|+ 2 states of the automaton that
only accepts all the solutions to the CHANGE constraint are defined in the following way:

• We have an initial state labelled by sI .

• We have m · |D| intermediate states labelled by sij (i ∈ D, j ∈ [0,m]). The first
subscript i of state sij corresponds to the value currently encountered. The second
subscript j denotes the number of already encountered satisfied constraints of the
form VARi CTR VARi+1 from the initial state sI to the state sij .

• We have an accepting state labelled by sF .

Four classes of transitions are respectively defined in the following way:


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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1. There is a transition, labelled by i from the initial state sI to the state si0, (i ∈ D).

2. There is a transition, labelled by j, from every state sij , (i ∈ D, j ∈ [0,m]), to the
accepting state sF .

3. ∀i ∈ D, ∀j ∈ [0,m], ∀k ∈ D ∩ {k | i ¬ CTR k} there is a transition labelled by k
from sij to skj (i.e., the counter j does not change for values k such that constraint
i CTR k does not hold).

4. ∀i ∈ D, ∀j ∈ [0,m − 1], ∀k ∈ D r {k | i ¬ CTR k} there is a transition labelled
by k from sij to skj+1 (i.e., the counter j is incremented by +1 for values k such
that constraint i CTR k holds).

We have |D| transitions of type 1, |D| · (m+ 1) transitions of type 2, and at least |D|2 ·m
transitions of types 3 and 4. Since the maximum value of m is equal to n− 1, in the worst
case we have at least |D|2 · (n− 1) transitions. This leads to a worst case time complexity
of O(|D|2 · n2) if we use Pesant’s algorithm for filtering the REGULAR constraint [317].

Figure 5.162 depicts the corresponding counter free non deterministic automaton associ-
ated with the CHANGE constraint under the hypothesis that (1) all variables of VARIABLES
are assigned a value in {0, 1, 2, 3}, (2) |VARIABLES| is equal to 4, and (3) CTR is equal to
6=.
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s00 s10 s20 s30

s01 s11 s21 s31

s02 s12 s22 s32

s03 s13 s23 s33

sI

sF

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1
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1
1

1
1
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2
2

2
2
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2

2

2

0 0

0
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0
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0

33

3

33

3

33

3

0

1

2

3

The sequence of variables VAR1 VAR2 VAR3 VAR4 NCHANGE is passed
to the automaton

Figure 5.162: Counter free non deterministic automaton of the
CHANGE(NCHANGE, 〈VAR1, VAR2, VAR3, VAR4〉, 6=) constraint assuming VARi ∈ [0, 3]
(1 ≤ i ≤ 3), with initial state sI and accepting state sF
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5.64 CHANGE CONTINUITY

I B C J
DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint CHANGE CONTINUITY



NB PERIOD CHANGE,
NB PERIOD CONTINUITY,
MIN SIZE CHANGE,
MAX SIZE CHANGE,
MIN SIZE CONTINUITY,
MAX SIZE CONTINUITY,
NB CHANGE,
NB CONTINUITY,
VARIABLES,
CTR



Arguments NB PERIOD CHANGE : dvar

NB PERIOD CONTINUITY : dvar

MIN SIZE CHANGE : dvar

MAX SIZE CHANGE : dvar

MIN SIZE CONTINUITY : dvar

MAX SIZE CONTINUITY : dvar

NB CHANGE : dvar

NB CONTINUITY : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NB PERIOD CHANGE ≥ 0
NB PERIOD CONTINUITY ≥ 0
MIN SIZE CHANGE ≥ 0
MAX SIZE CHANGE ≥ MIN SIZE CHANGE

MIN SIZE CONTINUITY ≥ 0
MAX SIZE CONTINUITY ≥ MIN SIZE CONTINUITY

NB CHANGE ≥ 0
NB CONTINUITY ≥ 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

On the one hand a change is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i+ 1].var holds.
On the other hand a continuity is defined by the fact that constraint
VARIABLES[i].var CTR VARIABLES[i+ 1].var does not hold.
A period of change on variables

VARIABLES[i].var, VARIABLES[i+ 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k+ 1].var
hold for k ∈ [i, j − 1].
A period of continuity on variables

VARIABLES[i].var, VARIABLES[i+ 1].var, . . . , VARIABLES[j].var (i < j)

is defined by the fact that all constraints VARIABLES[k].var CTR VARIABLES[k+ 1].var
do not hold for k ∈ [i, j − 1].
The constraint CHANGE CONTINUITY holds if and only if:

• NB PERIOD CHANGE is equal to the number of periods of change,

• NB PERIOD CONTINUITY is equal to the number of periods of continuity,

• MIN SIZE CHANGE is equal to the number of variables of the smallest period of
change,

• MAX SIZE CHANGE is equal to the number of variables of the largest period of
change,

• MIN SIZE CONTINUITY is equal to the number of variables of the smallest period
of continuity,

• MAX SIZE CONTINUITY is equal to the number of variables of the largest period
of continuity,

• NB CHANGE is equal to the total number of changes,

• NB CONTINUITY is equal to the total number of continuities.

Example (3, 2, 2, 4, 2, 4, 6, 4, 〈1, 3, 1, 8, 8, 4, 7, 7, 7, 7, 2〉 , 6=)

Figure 5.163 makes clear the different parameters that are associated with the given
example for the collection VARIABLES = 〈1, 3, 1, 8, 8, 4, 7, 7, 7, 7, 2〉. We place character
| for representing a change and a blank for a continuity. On top of the solution we
represent the different periods of change, while below we show the different periods of
continuity. The CHANGE CONTINUITY constraint holds since:

• Its number of periods of change NB PERIOD CHANGE is equal to 3 (i.e., the 3 periods
depicted on top of Figure 5.163),

• Its number of periods of continuity NB PERIOD CONTINUITY is equal to 2 (i.e., the 2
periods depicted below Figure 5.163),

• The number of variables of its smallest period of change MIN SIZE CHANGE is equal
to 2 (i.e., the number of variables involved in the third period of change 7 2 depicted
on top of Figure 5.163),


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• The number of variables of the largest period of change MAX SIZE CHANGE is equal
to 4 (i.e., the number of variables involved in the first period of change 1 3 1 8
depicted on top of Figure 5.163),

• The number of variables of the smallest period of continuity MIN SIZE CONTINUITY

is equal to 2 (i.e., the number of variables involved in the first period 8 8 depicted
below Figure 5.163),

• The number of variables of the largest period of continuity MAX SIZE CONTINUITY

is equal to 4 (i.e., the number of variables involved in the second period 7 7 7 7
depicted below Figure 5.163),

• The total number of changes NB CHANGE is equal to 6 (i.e., the number of occurrences
of character | in Figure 5.163),

• The total number of continuities NB CONTINUITY is equal to 4.

1 3 1 8 8 4 7 7 7 7 2

6= 6= 6= 6= 6= 6=

= = = =

three periods of change wrt CTR (6=)

two periods of continuity wrt ¬CTR (=)

Figure 5.163: Illustration of the Example slot: periods of changes and periods of
continuities wrt the constraint CTR equal to 6=

Typical NB PERIOD CHANGE > 0
NB PERIOD CONTINUITY > 0
MIN SIZE CHANGE > 0
MIN SIZE CONTINUITY > 0
NB CHANGE > 0
NB CONTINUITY > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [ 6=]

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.
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Arg. properties • Functional dependency: NB PERIOD CHANGE determined by VARIABLES and CTR.

• Functional dependency: NB PERIOD CONTINUITY determined by VARIABLES and
CTR.

• Functional dependency: MIN SIZE CHANGE determined by VARIABLES and CTR.

• Functional dependency: MAX SIZE CHANGE determined by VARIABLES and CTR.

• Functional dependency: MIN SIZE CONTINUITY determined by VARIABLES and
CTR.

• Functional dependency: MAX SIZE CONTINUITY determined by VARIABLES and
CTR.

• Functional dependency: NB CHANGE determined by VARIABLES and CTR.

• Functional dependency: NB CONTINUITY determined by VARIABLES and CTR.

Remark If the variables of the collection VARIABLES have to take distinct values between 1 and the
total number of variables, we have what is called a permutation. In this case, if we choose
the binary constraint <, then MAX SIZE CHANGE gives the size of the longest run of the
permutation; A run is a maximal increasing contiguous subsequence in a permutation.

See also common keyword: GROUP, GROUP SKIP ISOLATED ITEM, STRETCH PATH (timetabling
constraint).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence, run of a permutation, permutation.

constraint arguments: reverse of a constraint.

constraint network structure: sliding cyclic(1) constraint network(2), sliding cyclic(1)
constraint network(3).

constraint type: timetabling constraint.

filtering: glue matrix.

final graph structure: connected component, apartition, acyclic, bipartite, no loop.

modelling: functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) • NCC= NB PERIOD CHANGE

•MIN NCC= MIN SIZE CHANGE

•MAX NCC= MAX SIZE CHANGE

• NARC= NB CHANGE

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var¬ CTR variables2.var

Graph property(ies) • NCC= NB PERIOD CONTINUITY

•MIN NCC= MIN SIZE CONTINUITY

•MAX NCC= MAX SIZE CONTINUITY

• NARC= NB CONTINUITY

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model We use two graph constraints to respectively catch the constraints on the period of changes
and of the period of continuities. In both case each period corresponds to a connected
component of the final graph.

Parts (A) and (B) of Figure 5.164 respectively show the initial and final graph associated
with the first graph constraint of the Example slot.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NCC=3
MIN_NCC=2
MAX_NCC=4
NARC=5

MIN_NCC MAX_NCC

10:7

11:2

1:1

2:3

3:1

4:8

5:8

6:4

(A) (B)

Figure 5.164: Initial and final graph of the CHANGE CONTINUITY constraint
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Automaton Figures 5.165 , 5.166 , 5.169 , 5.170 , 5.173 , 5.174 and 5.177 depict the automata as-
sociated with the different graph parameters of the CHANGE CONTINUITY constraint.
For the automata that respectively compute NB PERIOD CHANGE, NB PERIOD CONTINUITY

MIN SIZE CHANGE, MIN SIZE CONTINUITY MAX SIZE CHANGE, MAX SIZE CONTINUITY

NB CHANGE and NB CONTINUITY we have a 0-1 signature variable Si for each pair of con-
secutive variables (VARi, VARi+1) of the collection VARIABLES. The following signature
constraint links VARi, VARi+1 and Si: VARi CTR VARi+1 ⇔ Si.

s : ¬CTR mode ({¬CTR}∗)
i : CTR mode

(
{CTR}+

)
STATE SEMANTICS

NB PERIOD CHANGE = C

s{C ← 0} i

VARi ¬CTR VARi+1

VARi CTR VARi+1,
{C ← C + 1}

VARi CTR VARi+1

VARi ¬CTR VARi+1

s i

s
−→
C +

←−
C

−→
C +

←−
C

i
−→
C +

←−
C

−→
C +

←−
C − 1

Glue matrix where
−→
C and

←−
C resp. represent the coun-

ters values C at the end of a prefix and at the end of the
corresponding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.165: Automaton for the NB PERIOD CHANGE argument of the
CHANGE CONTINUITY constraint and its glue matrix; note that the reverse of
CHANGE CONTINUITY with CTR ∈ {=, 6=} is the same constraint, while the reverse
with CTR ∈ {<} (resp. CTR ∈ {≤}) is CTR ∈ {>} (resp. CTR ∈ {≥}).

s : CTR mode ({CTR}∗)
i : ¬CTR mode

(
{¬CTR}+

)
STATE SEMANTICS

NB PERIOD CONTINUITY = C

s{C ← 0} i

VARi CTR VARi+1

VARi ¬CTR VARi+1,
{C ← C + 1}

VARi ¬CTR VARi+1

VARi CTR VARi+1

s i

s
−→
C +

←−
C

−→
C +

←−
C

i
−→
C +

←−
C

−→
C +

←−
C − 1

Glue matrix where
−→
C and

←−
C resp. represent the coun-

ters values C at the end of a prefix and at the end of the
corresponding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.166: Automaton for the NB PERIOD CONTINUITY argument of the
CHANGE CONTINUITY constraint and its glue matrix; note that the reverse of
CHANGE CONTINUITY with CTR ∈ {=, 6=} is the same constraint, while the reverse
with CTR ∈ {<} (resp. CTR ∈ {≤}) is CTR ∈ {>} (resp. CTR ∈ {≥}).


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1

Qn−1 ∈ {s, i}

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.167: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CHANGE argument of the CHANGE CONTINUITY constraint
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Qn−1 ∈ {s, i}

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.168: Hypergraph of the reformulation corresponding to the automaton of the
NB PERIOD CONTINUITY argument of the CHANGE CONTINUITY constraint

s : ¬CTR mode ({¬CTR}∗)
i : CTR mode

(
{CTR}+

)
STATE SEMANTICS

MIN SIZE CHANGE = min(C,D)

s i

{
C ← |VARIABLES|,
D ← 0

}

VARi ¬CTR VARi+1

VARi CTR VARi+1,
{D ← 2} VARi CTR VARi+1,

{D ← D + 1}

VARi ¬CTR VARi+1,
{C ← min(C,D)}

s i

s min(
−→
C ,
−→
D +

←−
D,
←−
C ) min(

−→
C ,
←−
D,
←−
C )

i min(
−→
C ,
−→
D,
←−
C ) min(

−→
C ,
−→
D +

←−
D − 1,

←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp.

represent the counters values C, D at the end
of a prefix and at the end of the correspond-
ing reverse suffix that partitions the sequence
VARIABLES.

Figure 5.169: Automaton for the MIN SIZE CHANGE argument of the
CHANGE CONTINUITY constraint; its glue matrix when CTR ∈ {=, 6=}.
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s : CTR mode ({CTR}∗)
i : ¬CTR mode

(
{¬CTR}+

)
STATE SEMANTICS

MIN SIZE CONTINUITY = min(C,D)

s i

{
C ← |VARIABLES|,
D ← 0

}

VARi CTR VARi+1

VARi ¬CTR VARi+1,
{D ← 2} VARi ¬CTR VARi+1,

{D ← D + 1}

VARi CTR VARi+1,
{C ← min(C,D)}

s i

s min(
−→
C ,
−→
D +

←−
D,
←−
C ) min(

−→
C ,
←−
D,
←−
C )

i min(
−→
C ,
−→
D,
←−
C ) min(

−→
C ,
−→
D +

←−
D − 1,

←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp.

represent the counters values C, D at the end
of a prefix and at the end of the correspond-
ing reverse suffix that partitions the sequence
VARIABLES.

Figure 5.170: Automaton for the MIN SIZE CONTINUITY argument of the
CHANGE CONTINUITY constraint; its glue matrix when CTR ∈ {=, 6=}.
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Q0 = s

D1

C1

Q1

S1

D2

C2

Q2

S2 S3

Dn−1

Cn−1
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Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.171: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CHANGE argument of the CHANGE CONTINUITY constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn−1)
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Figure 5.172: Hypergraph of the reformulation corresponding to the automaton of the
MIN SIZE CONTINUITY argument of the CHANGE CONTINUITY constraint (since all
states of the automaton are accepting there is no restriction on the last variable Qn−1)

MAX SIZE CHANGE = max(C,D)

s

{
C ← 0,
D ← 0

}
i

VARi ¬CTR VARi+1

VARi CTR VARi+1,
{D ← 2}

VARi ¬CTR VARi+1,{
C ← max(C,D),
D ← 1

}

VARi CTR VARi+1,
{D ← D + 1}

s i

s 0 max
(←−
D,
←−
C
)

i max
(−→
C ,
−→
D
)

max
(−→
C ,
−→
D +

←−
D − 1,

←−
C
)Glue matrix where

−→
C ,
−→
D and

←−
C ,
←−
D resp. represent the

counters values C, D at the end of a prefix and at the
end of the corresponding reverse suffix that partitions the
sequence VARIABLES.

Figure 5.173: Automaton for the MAX SIZE CHANGE argument of the
CHANGE CONTINUITY constraint; its glue matrix when CTR ∈ {=, 6=}.
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MAX SIZE CONTINUITY = max(C,D)

s

{
C ← 0,
D ← 0

}
i

VARi CTR VARi+1

VARi ¬CTR VARi+1,
{D ← 2}

VARi CTR VARi+1,{
C ← max(C,D),
D ← 1

}

VARi ¬CTR VARi+1,
{D ← D + 1}

s i

s 0 max
(←−
D,
←−
C
)

i max
(−→
C ,
−→
D
)

max
(−→
C ,
−→
D +

←−
D − 1,

←−
C
)Glue matrix where

−→
C ,
−→
D and

←−
C ,
←−
D resp. represent the

counters values C, D at the end of a prefix and at the
end of the corresponding reverse suffix that partitions the
sequence VARIABLES.

Figure 5.174: Automaton for the MAX SIZE CONTINUITY argument of the
CHANGE CONTINUITY constraint; its glue matrix when CTR ∈ {=, 6=}.
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Figure 5.175: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CHANGE argument of the CHANGE CONTINUITY constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn−1)
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Figure 5.176: Hypergraph of the reformulation corresponding to the automaton of the
MAX SIZE CONTINUITY argument of the CHANGE CONTINUITY constraint (since all
states of the automaton are accepting there is no restriction on the last variable Qn−1)

NB CHANGE = C

s{C ← 0} VARi CTR VARi+1,
{C ← C + 1}

VARi ¬CTR VARi+1

NB CONTINUITY = C

s{C ← 0} VARi ¬CTR VARi+1,
{C ← C + 1}

VARi CTR VARi+1

s

s
−→
C +

←−
C

Common glue matrix where
−→
C and

←−
C resp. represent the counters values C at the

end of a prefix and at the end of the corresponding reverse suffix that partitions the
sequence VARIABLES.

Figure 5.177: Automata for the NB CHANGE and NB CONTINUITY arguments of the
CHANGE CONTINUITY constraint; their common glue matrix when argCTR ∈ {=
, 6=}.
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Figure 5.178: Hypergraph of the reformulation corresponding to the automaton of the
NB CHANGE argument of the CHANGE CONTINUITY constraint
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Figure 5.179: Hypergraph of the reformulation corresponding to the automaton of the
NB CONTINUITY argument of the CHANGE CONTINUITY constraint
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5.65 CHANGE PAIR

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CHANGE.

Constraint CHANGE PAIR(NCHANGE, PAIRS, CTRX, CTRY)

Arguments NCHANGE : dvar

PAIRS : collection(x−dvar, y−dvar)
CTRX : atom

CTRY : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |PAIRS|
required(PAIRS, [x, y])
CTRX ∈ [=, 6=, <,≥, >,≤]
CTRY ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that the following disjunction holds: (X1 CTRXX2) ∨
(Y1 CTRY Y2), where (X1, Y1) and (X2, Y2) correspond to consecutive pairs of variables
of the collection PAIRS.

Example


3,

〈
x− 3 y− 5,
x− 3 y− 7,
x− 3 y− 7,
x− 3 y− 8,
x− 3 y− 4,
x− 3 y− 7,
x− 1 y− 3,
x− 1 y− 6,
x− 1 y− 6,
x− 3 y− 7

〉
, 6=, >


In the example we have the following 3 changes:

• One change between pairs x− 3 y− 8 and x− 3 y− 4 since 3 6= 3 ∨ 8 > 4,

• One change between pairs x− 3 y− 7 and x− 1 y− 3 since 3 6= 1 ∨ 7 > 3,

• One change between pairs x− 1 y− 6 and x− 3 y− 7 since 1 6= 3 ∨ 6 > 7.

Consequently the CHANGE PAIR constraint holds since its first argument NCHANGE is as-
signed value 3.

3 3 3 3 3 3 1 1 1 36= 6== = = = = = =

5 7 7 8 4 7 3 6 6 7> >≤ ≤ ≤ ≤ ≤ ≤ ≤

Typical NCHANGE > 0
|PAIRS| > 1
range(PAIRS.x) > 1
range(PAIRS.y) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • One and the same constant can be added to the x attribute of all items of PAIRS.

• One and the same constant can be added to the y attribute of all items of PAIRS.

Arg. properties Functional dependency: NCHANGE determined by PAIRS, CTRX and CTRY.

Usage Here is a typical example where this constraint is useful. Assume we have to produce a set
of cables. A given quality and a given cross-section that respectively correspond to the x

and y attributes of the previous pairs of variables characterise each cable. The problem is
to sequence the different cables in order to minimise the number of times two consecutive
wire cables C1 and C2 verify the following property: C1 and C2 do not have the same
quality or the cross section of C1 is greater than the cross section of C2.

See also generalisation: CHANGE VECTORS (pair of variables replaced by vector).

specialisation: CHANGE (pair of variables replaced by variable).

Keywords characteristic of a constraint: pair, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(2) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) PAIRS

Arc generator PATH 7→collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.x CTRX pairs2.x ∨ pairs1.y CTRY pairs2.y

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Same as CHANGE, except that each item has two attributes x and y.

Parts (A) and (B) of Figure 5.180 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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PAIRS

1

2

3

4

5

6

7

8

9

10

NARC=3

4:3,8

5:3,4

6:3,7

7:1,3

9:1,6

10:3,7

(A) (B)

Figure 5.180: Initial and final graph of the CHANGE PAIR constraint
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Automaton Figure 5.181 depicts the automaton associated with the CHANGE PAIR constraint. To each
pair of consecutive pairs ((Xi, Yi), (Xi+1, Yi+1)) of the collection PAIRS corresponds a 0-1
signature variable Si. The following signature constraint links Xi, Yi, Xi+1, Yi+1 and Si:
(Xi CTRX Xi+1) ∨ (Yi CTRY Yi+1)⇔ Si.

NCHANGE = C

s{C ← 0} Xi CTRX Xi+1 ∨ Yi CTRY Yi+1,
{C ← C + 1}

Xi ¬CTRX Xi+1 ∧ Yi ¬CTRY Yi+1

Figure 5.181: Automaton of the CHANGE PAIR constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = CHANGE

Qn−1 = s

Sn−1

Y1 Y2

X1 X2

Y3

X3

Yn−1 Yn

Xn−1 Xn

Figure 5.182: Hypergraph of the reformulation corresponding to the automaton of the
CHANGE PAIR constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.66 CHANGE PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from CHANGE.

Constraint CHANGE PARTITION(NCHANGE, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments NCHANGE : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
NCHANGE ≥ 0
NCHANGE < |VARIABLES|
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
NCHANGE is the number of times that the following constraint holds: X and Y do not
belong to the same partition of the collection PARTITIONS, where X and Y correspond
to consecutive variables of the collection VARIABLES.

Example
(

2, 〈6, 6, 2, 1, 3, 3, 1, 6, 2, 2, 2〉 ,
〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉

)
In the example we have the following two changes:

• One change between values 2 and 1 (since 2 and 1 respectively belong to the third
and the first partition),

• One change between values 1 and 6 (since 1 and 6 respectively belong to the first
and the third partition).

Consequently the CHANGE PARTITION constraint holds since its first argument NCHANGE
is assigned to 2.

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |PARTITIONS|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES can be reversed.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

Arg. properties Functional dependency: NCHANGE determined by VARIABLES and PARTITIONS.

Usage This constraint is useful for the following problem: Assume you have to produce a set of
orders, each order belonging to a given family. In the context of the Example slot we have
three families that respectively correspond to values 1, 3, to value 4 and to values 2, 6. We
would like to sequence the orders in such a way that we minimise the number of times two
consecutive orders do not belong to the same family.

Algorithm [32].

See also common keyword: CHANGE (number of changes in a sequence of variables with re-
spect to a binary constraint).

used in graph description: IN SAME PARTITION.

Keywords characteristic of a constraint: partition.

constraint arguments: pure functional dependency.

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.183 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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VARIABLES

1

2

3

4

5

6

7

8

9

10

11

NARC=2

3:2

4:1

7:1

8:6

(A) (B)

Figure 5.183: Initial and final graph of the CHANGE PARTITION constraint
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5.67 CHANGE VECTORS

I B C J DESCRIPTION LINKS

Origin Derived from CHANGE

Constraint CHANGE VECTORS(NCHANGE, VECTORS, CTRS)

Types VECTOR : collection(var−dvar)
CTR : atom

Arguments NCHANGE : dvar

VECTORS : collection(vec− VECTOR)
CTRS : collection(ctr− CTR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
CTR ∈ [=, 6=, <,≥, >,≤]
NCHANGE ≥ 0
NCHANGE < |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)
required(CTRS, ctr)
|CTRS| = |VECTOR|

Purpose

Let us note VECTOR1, VECTOR2, . . . , VECTORn the vectors of the VECTORS collection, and
d the number of components of each vector (all vectors have the same size). NCHANGE is
the number of times that the following disjunctions holds where i ∈ [1, n− 1]

(VECTORi.vec[1] CTRS[1] VECTORi+1.vec[1]) ∨
(VECTORi.vec[2] CTRS[2] VECTORi+1.vec[2]) ∨
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∨
(VECTORi.vec[d] CTRS[d] VECTORi+1.vec[d]).

Example


3,

〈
vec− 〈4, 0〉 ,
vec− 〈4, 0〉 ,
vec− 〈4, 5〉 ,
vec− 〈3, 4〉 ,
vec− 〈3, 4〉 ,
vec− 〈3, 4〉 ,
vec− 〈4, 0〉

〉
,

〈6=, 6=〉


In the example we have the following 3 changes:

• One change between 〈4, 0〉 and 〈4, 5〉 since 4 6= 4 ∨ 0 6= 5,

• One change between 〈4, 5〉 and 〈3, 4〉 since 4 6= 3 ∨ 5 6= 4,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• One change between 〈3, 4〉 and 〈4, 0〉 since 3 6= 4 ∨ 4 6= 0.

Consequently the CHANGE VECTORS constraint holds since its first argument NCHANGE is
assigned value 3.

Typical CTR ∈ [ 6=]
|VECTOR| > 1
NCHANGE > 0
|VECTORS| > 1

Arg. properties Functional dependency: NCHANGE determined by VECTORS and CTRS.

See also specialisation: CHANGE (vector replaced by variable), CHANGE PAIR (vector replaced
by pair of variables).

Keywords characteristic of a constraint: automaton, automaton with counters, vector.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

modelling: number of changes, functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.68 CIRCUIT

I B C J DESCRIPTION LINKS GRAPH

Origin [267]

Constraint CIRCUIT(NODES)

Synonyms ATOUR, CYCLE.

Argument NODES : collection(index−int, succ−dvar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to cover a digraph G described by the NODES collection with one circuit visiting
once all vertices of G.

Example


〈 index− 1 succ− 2,

index− 2 succ− 3,
index− 3 succ− 4,
index− 4 succ− 1

〉 
The CIRCUIT constraint holds since its NODES argument depicts the following Hamiltonian
circuit visiting successively the vertices 1, 2, 3, 4 and 1.

1 2

34

All solutions Figure 5.184 gives all solutions to the following non ground instance of the CIRCUIT con-
straint: S1 ∈ [3, 4], S2 ∈ [1, 2], S3 ∈ [1, 4], S4 ∈ [2, 4], CIRCUIT(〈1 S1, 2 S2, 3 S3, 4 S4〉).

¬ (〈31,12,43,24〉)
 (〈41,12,23,34〉)

1 3

42

¬
1 4

32



Figure 5.184: All solutions corresponding to the non ground example of the CIRCUIT
constraint of the All solutions slot; in the left-hand side the index attributes are dis-
played as indices of the succ attribute, while in the right-hand side they are directly
displayed within each node.

Typical |NODES| > 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.
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Symmetry Items of NODES are permutable.

Remark In the original CIRCUIT constraint of CHIP the index attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list.

Within the context of linear programming [6] this constraint was introduced under the
name ATOUR. In the same context [226, page 380] provides continuous relaxations of the
CIRCUIT constraint.

Within the KOALOG constraint system this constraint is called CYCLE.

Algorithm Since all succ variables of the NODES collection have to take distinct values one can reuse
the algorithms associated with the ALLDIFFERENT constraint. A second necessary con-
dition is to have no more than one strongly connected component. Pruning for enforcing
this condition can be done by forcing all strong bridges to belong to the final solution,
since otherwise the strongly connected component would be broken apart. A third nec-
essary condition is that, if the graph is bipartite then the number of vertices of each class
should be identical. Consequently if the number of vertices is odd (i.e., |NODES| is odd)
the graph should not be bipartite. Further necessary conditions (useful when the graph is
sparse) combining the fact that we have a perfect matching and a single strongly connected
component can be found in [392]. These conditions forget about the orientation of the arcs
of the graph and characterise new required elementary chains. A typical pattern involving
four vertices is depicted by Figure 5.185 where we assume that:

• There is an elementary chain between c and d (depicted by a dashed edge),

• b has exactly 3 neighbours.

In this context the edge between a and b is mandatory in any covering (i.e., the arc from a
to b or the arc from b to a) since otherwise a small circuit involving b, c and d would be
created.

When the graph is planar [228][147] one can also use as a necessary condition discovered
by Grinberg [210] for pruning.

Finally, another approach based an the notion of 1-toughness [125] was proposed in [247]
and evaluated for small graphs (i.e., graphs with up to 15 vertices).


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

http://www.cosytec.com
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a

b

c d
elementary chain

(A) Initial situation: a vertex
b with 3 potential neighbours
a, c, d with an elementary
chain between c and d

a

b

c d
small cycle

elementary chain

(B) Removing edge (a, b)

leads to a contradiction:
a small cycle that does
not contain vertex a

a

b

c d
elementary chain

(C) The first alternative: an
elementary chain between
a and d: (a, b) is kept

a

b

c d
elementary chain

(D) The second alternative: an
elementary chain between
a and c: (a, b) is kept

Figure 5.185: Reasoning about elementary chains and degrees: if we have an elemen-
tary chain between c and d and if b has 3 neighbours then the edge (a, b) is mandatory.
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Reformulation Let n and s1, s2, . . . , sn respectively denotes the number of vertices (i.e., |NODES|) and the
successor variables associated with vertices 1, 2, . . . , n. The CIRCUIT constraint can be
reformulated as a conjunction of one DOMAIN constraint, two ALLDIFFERENT constraints,
and n ELEMENT constraints.

• First, we state an ALLDIFFERENT(〈s1,

s2, . . . , sn〉) constraint for enforcing
distinct values to be assigned to the
successor variables.

• Second, the key idea is, starting from
vertex 1, to successively extract the
vertices t1, t2, . . . , tn−1 of the cir-
cuit until we come back on vertex
1, where ti (with i ∈ [2, n −
1]) denotes the successor of ti−1

and t1 the successor of vertex 1.
Since we have a single circuit all
the t1, t2, . . . , tn−1 should be differ-
ent from 1. Consequently we state
a DOMAIN(〈t1, t2, . . . , tn1 〉, 2, n) con-
straint for declaring their initial do-
mains. To express the link between
consecutive ti we also state a con-
junction of n ELEMENT constraints of
the form:

ELEMENT(1, 〈s1, s2, . . . , sn〉, t1),
ELEMENT(t1, 〈s1, s2, . . . , sn〉, t2),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELEMENT(tn−1, 〈s1, s2, . . . , sn〉, 1).

• Finally we add a redundant con-
straint for stating that all ti (with
i ∈ [1, n − 1]) are distinct,
i.e. ALLDIFFERENT(〈t1, t2, . . . , tn−1〉).

1 2

34

Illustration of the reformulation of
CIRCUIT(〈1 2, 2 3, 3 4, 4 1〉)

ALLDIFFERENT(〈2, 3, 4, 1〉)
DOMAIN(〈2,3,4〉, 2, 4)

ALLDIFFERENT(〈2,3,4〉)

∥∥∥∥∥∥∥∥
ELEMENT(1, 〈2, 3, 4, 1〉, 2 )
ELEMENT(2, 〈2, 3, 4, 1〉, 3 )
ELEMENT(3, 〈2, 3, 4, 1〉, 4 )
ELEMENT(4, 〈2, 3, 4, 1〉, 1 )

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 1 2 6 24 120 720 5040 40320 362880

Number of solutions for CIRCUIT: domains 0..n


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Systems CIRCUIT in Gecode, CIRCUIT in JaCoP, CIRCUIT in MiniZinc, CIRCUIT in SICStus.

See also common keyword: ALLDIFFERENT (permutation), CIRCUIT CLUSTER (graph


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#circuit
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Graph-Constraints.html
http://www.sics.se/sicstus/


CIRCUIT 861

constraint, one succ), PATH (graph partitioning constraint, one succ),
PROPER CIRCUIT (permutation, one succ), TOUR (graph partitioning constraint,
Hamiltonian).

generalisation: CYCLE (introduce a variable for the number of circuits).

implies: ALLDIFFERENT, PROPER CIRCUIT, TWIN.

implies (items to collection): LEX ALLDIFFERENT.

related: STRONGLY CONNECTED.

Keywords combinatorial object: permutation.

constraint type: graph constraint, graph partitioning constraint.

filtering: linear programming, planarity test, strong bridge, DFS-bottleneck.

final graph structure: circuit, one succ.

problems: Hamiltonian.

puzzles: Euler knight.

Cond. implications • CIRCUIT(NODES)
implies CYCLE(NCYCLE, NODES)

when NCYCLE = 1.

• CIRCUIT(NODES)
with |NODES| > 1

implies DERANGEMENT(NODES).

• CIRCUIT(NODES)
with |NODES| > 1

implies K ALLDIFFERENT(VARS : NODES).

• CIRCUIT(NODES)
implies PERMUTATION(VARIABLES : NODES).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MIN NSCC= |NODES|
•MAX ID≤ 1

Graph class ONE SUCC

Graph model The first graph property enforces to have a single strongly connected component containing
|NODES| vertices. The second graph property imposes to only have circuits. Since each
vertex of the final graph has only one successor we do not need to use set variables for
representing the successors of a vertex.

Parts (A) and (B) of Figure 5.186 respectively show the initial and final graph associated
with the Example slot. The CIRCUIT constraint holds since the final graph consists of one
circuit mentioning once every vertex of the initial graph.

NODES

1

2

3

4

MIN_NSCC=4,MAX_ID=1

MIN_NSCC

1:1,2

2:2,3

3:3,4

4:4,1

(A) (B)

Figure 5.186: Initial and final graph of the CIRCUIT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.69 CIRCUIT CLUSTER

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [263].

Constraint CIRCUIT CLUSTER(NCIRCUIT, NODES)

Arguments NCIRCUIT : dvar

NODES : collection(index−int, cluster−int, succ−dvar)

Restrictions NCIRCUIT ≥ 1
NCIRCUIT ≤ |NODES|
required(NODES, [index, cluster, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G, described by the NODES collection, such that its vertices are parti-
tioned among several clusters. NCIRCUIT is the number of circuits containing more than
one vertex used for covering G in such a way that each cluster is visited by exactly one
circuit of length greater than 1.

Example


1,

〈
index− 1 cluster− 1 succ− 1,
index− 2 cluster− 1 succ− 4,
index− 3 cluster− 2 succ− 3,
index− 4 cluster− 2 succ− 5,
index− 5 cluster− 3 succ− 8,
index− 6 cluster− 3 succ− 6,
index− 7 cluster− 3 succ− 7,
index− 8 cluster− 4 succ− 2,
index− 9 cluster− 4 succ− 9

〉



2,

〈
index− 1 cluster− 1 succ− 1,
index− 2 cluster− 1 succ− 4,
index− 3 cluster− 2 succ− 3,
index− 4 cluster− 2 succ− 2,
index− 5 cluster− 3 succ− 5,
index− 6 cluster− 3 succ− 9,
index− 7 cluster− 3 succ− 7,
index− 8 cluster− 4 succ− 8,
index− 9 cluster− 4 succ− 6

〉


3

19

7

6

2
8

5
4

3

1

8

7

5

2
9

6
4


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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i− 1 c− 1 s− 1

i− 2 c− 1 s− 4

i− 3 c− 2 s− 3

i− 4 c− 2 s− 5

i− 5 c− 3 s− 8

i− 6 c− 3 s− 6

i− 7 c− 3 s− 7

i− 8 c− 4 s− 2

i− 9 c− 4 s− 9

NODES

 i for index,
c for cluster,
s for succ


Figure 5.187: Four clusters and a covering with one circuit corresponding to the first
example of the Example slot

Both examples involve 9 vertices 1, 2, . . . , 9 such that vertices 1 and 2 belong to cluster
number 1, vertices 3 and 4 belong to cluster number 2, vertices 5, 6 and 7 belong to cluster
number 3, and vertices 8 and 9 belong to cluster number 4.

The first example involves only a single circuit containing more than one vertex (i.e., see
in Figure 5.187 the circuit 2→ 4→ 5→ 8→ 2). The corresponding CIRCUIT CLUSTER

constraint holds since exactly one vertex of each cluster (i.e., vertex 2 for cluster 1, vertex
4 for cluster 2, vertex 5 for cluster 3, vertex 8 for cluster 4) belongs to this circuit.

The second example contains the two circuits 2→ 4→ 2 and 6→ 9→ 6 that both involve
more than one vertex. The corresponding CIRCUIT CLUSTER constraint holds since exactly
one vertex of each cluster (i.e., see in Figure 5.188 vertex 2 in 2 → 4 → 2 for cluster 1,
vertex 4 in 2 → 4 → 2 for cluster 2, vertex 6 in 6 → 9 → 6 for cluster 3, vertex 9 in
6→ 9→ 6 for cluster 4) belongs to these two circuits.

Typical NCIRCUIT < |NODES|
|NODES| > 2
range(NODES.cluster) > 1

Symmetry Items of NODES are permutable.

Usage A related abstraction in Operations Research was introduced in [263]. It was reported as
the Generalised Travelling Salesman Problem (GTSP). The CIRCUIT CLUSTER constraint
differs from the GTSP because of the two following points:

• Each node of our graph belongs to a single cluster,

• We do not constrain the number of circuits to be equal to 1: The number of circuits
should be equal to one of the values of the domain of the variable NCIRCUIT.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.
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i− 1 c− 1 s− 1

i− 2 c− 1 s− 4

i− 3 c− 2 s− 3

i− 4 c− 2 s− 2

i− 5 c− 3 s− 5

i− 6 c− 3 s− 9

i− 7 c− 3 s− 7

i− 8 c− 4 s− 8

i− 9 c− 4 s− 6

NODES

 i for index,
c for cluster,
s for succ


Figure 5.188: The same clusters as in the first example of the Example slot and a
covering with two circuits corresponding to the second example of the Example slot

See also common keyword: ALLDIFFERENT (permutation), CIRCUIT, CYCLE (graph constraint,
one succ).

used in graph description: ALLDIFFERENT, NVALUES.

Keywords combinatorial object: permutation.

constraint type: graph constraint.

final graph structure: strongly connected component, one succ.

modelling: cluster.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ 6= nodes1.index
• nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NSCC= NCIRCUIT

Graph class ONE SUCC

Sets ALL VERTICES 7→[
variables− col

(
VARIABLES−collection(var−dvar),
[item(var− NODES.cluster)]

) ]
Constraint(s) on sets • ALLDIFFERENT(variables)

• NVALUES(variables,=, size(NODES, cluster))

Graph model In order to express the binary constraint linking two vertices one has to make explicit the
identifier of each vertex as well as the cluster to which belongs each vertex. This is why the
CIRCUIT CLUSTER constraint considers objects that have the following three attributes:

• The attribute index that is the identifier of a vertex.

• The attribute cluster that is the cluster to which belongs a vertex.

• The attribute succ that is the unique successor of a vertex.

The partitioning of the clusters by different circuits is expressed in the following way:

• First note the condition nodes1.succ 6= nodes1.index prevents the final graph
of containing any loop. Moreover the condition nodes1.succ = nodes2.index
imposes no more than one successor for each vertex of the final graph.

• The graph property NTREE = 0 enforces that all vertices of the final graph belong
to one circuit.

• The graph property NSCC = NCIRCUIT express the fact that the number of strongly
connected components of the final graph is equal to NCIRCUIT.

• The constraint ALLDIFFERENT(variables) on the set ALL VERTICES (i.e., all the
vertices of the final graph) states that the cluster attributes of the vertices of the final
graph should be pairwise distinct. This concretely means that no cluster should be
visited more than once.

• The constraint NVALUES(variables,=, size(NODES, cluster)) on the set
ALL VERTICES conveys the fact that the number of distinct values of the cluster
attribute of the vertices of the final graph should be equal to the total number of
clusters. This implies that each cluster is visited at least one time.

Parts (A) and (B) of Figure 5.189 respectively show the initial and final graph associated
with the second example of the Example slot. Since we use the NSCC graph property,
we show the two strongly connected components of the final graph. They respectively
correspond to the two circuits 2 → 4 → 2 and 6 → 9 → 6. Since all the vertices belongs
to a circuit we have that NTREE = 0.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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NODES

1

2

3

4

5

6

7

8

9 NTREE=0,NSCC=2

SCC#1 SCC#2

2:2,1,4

4:4,2,2

6:6,3,9

9:9,4,6

(A) (B)

Figure 5.189: Initial and final graph of the CIRCUIT CLUSTER constraint
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5.70 CIRCULAR CHANGE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CHANGE.

Constraint CIRCULAR CHANGE(NCHANGE, VARIABLES, CTR)

Arguments NCHANGE : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
NCHANGE is the number of times that CTR holds on consecutive variables of the collec-
tion VARIABLES. The last and the first variables of the collection VARIABLES are also
considered to be consecutive.

Example (4, 〈4, 4, 3, 4, 1〉 , 6=)

In the example the changes within the VARIABLES = 〈4, 4, 3, 4, 1〉 collection are
located between values 4 and 3, 3 and 4, 4 and 1, and 1 and 4 (i.e., since the third argument
CTR of the CIRCULAR CHANGE constraint is set to 6=, we count one change for each
disequality constraint between two consecutive variables that holds). Consequently, the
corresponding CIRCULAR CHANGE constraint holds since its first argument NCHANGE is
fixed to 4.

All solutions Figure 5.190 gives all solutions to the following non ground instance of the
CIRCULAR CHANGE constraint: NCHANGE ∈ [0, 2], V1 ∈ [2, 3], V2 ∈ [1, 3], V3 ∈ [3, 4],
V4 ∈ [2, 3], V5 ∈ [3, 4], CIRCULAR CHANGE(NCHANGE, 〈V1, V2, V3, V4, V5〉, 6=).

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [ 6=]

Symmetries • Items of VARIABLES can be shifted.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: NCHANGE determined by VARIABLES and CTR.

See also common keyword: CHANGE (number of changes).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.
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¬ (2, 〈2,2,3,3,3〉)
 (2, 〈2,3,3,3,3〉)
® (2, 〈3,1,3,3,3〉)
¯ (2, 〈3,2,3,3,3〉)
° (2, 〈3,3,3,2,3〉)
± (0, 〈3,3,3,3,3〉)
² (2, 〈3,3,3,3,4〉)
³ (2, 〈3,3,4,3,3〉)
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Figure 5.190: All solutions corresponding to the non ground example of the
CIRCULAR CHANGE constraint of the All solutions slot; a missing arc between two
consecutive nodes represents a change, i.e. a disequality constraint that is satisfied be-
tween two consecutive variables (the last and the first variables of a sequence are also
consecutive).

Keywords characteristic of a constraint: cyclic, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: circular sliding cyclic(1) constraint network(2).

constraint type: timetabling constraint.

modelling: number of changes, functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CIRCUIT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) NARC= NCHANGE

Graph model Since we are also interested in the constraint that links the last and the first variable we use
the arc generator CIRCUIT to produce the arcs of the initial graph.

Parts (A) and (B) of Figure 5.191 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

5

NARC=4

2:4

3:3

4:4

5:1

1:4

(A) (B)

Figure 5.191: Initial and final graph of the CIRCULAR CHANGE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.192 depicts the automaton associated with the CIRCULAR CHANGE constraint.
To each pair of consecutive variables (VARi, VAR(imod |VARIABLES|)+1) of the collection
VARIABLES corresponds a 0-1 signature variable Si. The following signature constraint
links VARi, VAR(imod |VARIABLES|)+1 and Si: VARi CTR VAR(imod |VARIABLES|)+1 ⇔ Si.

NCHANGE = C

s{C ← 0} VARi CTR VARi+1,
{C ← C + 1}

VARi ¬CTR VARi+1

Figure 5.192: Automaton of the CIRCULAR CHANGE constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn = NCHANGE

Qn = s

Sn

VAR1 VAR2 VAR3 VARn VAR1

Figure 5.193: Hypergraph of the reformulation corresponding to the automaton of the
CIRCULAR CHANGE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.71 CLAUSE AND

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint CLAUSE AND(POSVARS, NEGVARS, VAR)

Synonym CLAUSE.

Arguments POSVARS : collection(var−dvar)
NEGVARS : collection(var−dvar)
VAR : dvar

Restrictions |POSVARS|+ |NEGVARS| > 0
required(POSVARS, var)
POSVARS.var ≥ 0
POSVARS.var ≤ 1
required(NEGVARS, var)
NEGVARS.var ≥ 0
NEGVARS.var ≤ 1
VAR ≥ 0
VAR ≤ 1

Purpose
Given a first collection of 0-1 variables POSVARS = U1, U2, . . . , Up, a second collection
of 0-1 variables NEGVARS = V1, V2, . . . , Vn, and a variable VAR, enforce VAR = (U1 ∧
U2 ∧ · · · ∧ Up) ∧ (¬V1 ∧ ¬V2 ∧ · · · ∧ ¬Vn).

Example (〈1, 0〉 , 〈0〉 , 0)

Typical |POSVARS|+ |NEGVARS| > 1

Symmetries • Items of POSVARS are permutable.

• Items of NEGVARS are permutable.

Arg. properties • Extensible wrt. POSVARS when VAR = 0.

• Extensible wrt. NEGVARS when VAR = 0.

Remark The CLAUSE OR constraint is called CLAUSE in Gecode (http://www.gecode.org/).

Systems REIFIEDAND in Choco, CLAUSE in Choco, CLAUSE in Gecode.

See also common keyword: AND, CLAUSE OR (Boolean constraint).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.194 depicts the automaton associated with the CLAUSE AND constraint:

• To the argument VAR of the CLAUSE AND constraint corresponds the first signature
variable.

• To each variable of the argument POSVARS corresponds a signature variable.

• Finally, to each variable VARi of the argument NEGVARS corresponds a signature vari-
able that is the negation of VARi.

s

i

j

k

VAR = 0

VAR = 1

PVARi = 1
NVARi = 0

PVARi = 0
NVARi = 1

PVARi = 1
NVARi = 0

PVARi = 0
NVARi = 1

PVARi = 1
NVARi = 0

Figure 5.194: Automaton of the CLAUSE AND constraint (PVARi and NVARi respec-
tively denote variables of POSVARS and NEGVARS)

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {j, k}

VARn

Figure 5.195: Hypergraph of the reformulation corresponding to the automaton of
the CLAUSE AND constraint (VAR1, . . . , VARn denotes PVAR1, . . . , PVAR|POSVARS|, 1 −
NVAR1, . . . , 1− NVAR|NEGVARS|)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.72 CLAUSE OR

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint CLAUSE OR(POSVARS, NEGVARS, VAR)

Synonym CLAUSE.

Arguments POSVARS : collection(var−dvar)
NEGVARS : collection(var−dvar)
VAR : dvar

Restrictions |POSVARS|+ |NEGVARS| > 0
required(POSVARS, var)
POSVARS.var ≥ 0
POSVARS.var ≤ 1
required(NEGVARS, var)
NEGVARS.var ≥ 0
NEGVARS.var ≤ 1
VAR ≥ 0
VAR ≤ 1

Purpose
Given a first collection of 0-1 variables POSVARS = U1, U2, . . . , Up, a second collection
of 0-1 variables NEGVARS = V1, V2, . . . , Vn, and a variable VAR, enforce VAR = (U1 ∨
U2 ∨ · · · ∨ Up) ∨ (¬V1 ∨ ¬V2 ∨ · · · ∨ ¬Vn).

Example (〈0, 0〉 , 〈0〉 , 1)

Typical |POSVARS|+ |NEGVARS| > 1

Symmetries • Items of POSVARS are permutable.

• Items of NEGVARS are permutable.

Arg. properties • Extensible wrt. POSVARS when VAR = 1.

• Extensible wrt. NEGVARS when VAR = 1.

Remark The CLAUSE OR constraint is called CLAUSE in Gecode (http://www.gecode.org/).

Systems REIFIEDOR in Choco, CLAUSE in Choco, CLAUSE in Gecode.

See also common keyword: CLAUSE AND, OR (Boolean constraint).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: disjunction.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.196 depicts the automaton associated with the CLAUSE OR constraint:

• To the argument VAR of the CLAUSE OR constraint corresponds the first signature
variable.

• To each variable of the argument POSVARS corresponds a signature variable.

• Finally, to each variable VARi of the argument NEGVARS corresponds a signature vari-
able that is the negation of VARi.

s

i

j k

VAR = 0

VAR = 1

PVARi = 0
NVARi = 1

PVARi = 0
NVARi = 1

PVARi = 1
NVARi = 0

PVARi = 0
NVARi = 1

PVARi = 1
NVARi = 0

Figure 5.196: Automaton of the CLAUSE OR constraint (PVARi and NVARi respectively
denote variables of POSVARS and NEGVARS)

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {i, k}

VARn

Figure 5.197: Hypergraph of the reformulation corresponding to the automaton
of the CLAUSE OR constraint (VAR1, . . . , VARn denotes PVAR1, . . . , PVAR|POSVARS|, 1 −
NVAR1, . . . , 1− NVAR|NEGVARS|)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.73 CLIQUE

I B C J DESCRIPTION LINKS GRAPH

Origin [170]

Constraint CLIQUE(SIZE CLIQUE, NODES)

Arguments SIZE CLIQUE : dvar

NODES : collection(index−int, succ−svar)

Restrictions SIZE CLIQUE ≥ 0
SIZE CLIQUE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraph G described by the NODES collection: to the ith item of the NODES

collection corresponds the ith vertex of G; To each value j of the ith succ variable
corresponds an arc from the ith vertex to the jth vertex. Select a subset S of the vertices
of G that forms a clique of size SIZE CLIQUE (i.e., there is an arc between each pair of
distinct vertices of S).

Example

 3,

〈 index− 1 succ− ∅,
index− 2 succ− {3, 5},
index− 3 succ− {2, 5},
index− 4 succ− ∅,
index− 5 succ− {2, 3}

〉 
The CLIQUE constraint holds since the NODES collection depicts a clique involving
3 vertices (namely vertices 2, 3 and 5) and since its first argument SIZE CLIQUE is set to
the number of vertices of this clique.

2

1
5

4
3

Typical SIZE CLIQUE ≥ 2
SIZE CLIQUE < |NODES|
|NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: SIZE CLIQUE determined by NODES.

Algorithm [170], [358, 359]. The algorithm for finding maximum cliques in an undirected graph
of C. Bron and J. Kerbosch [97] was adapted by J.-C. Régin to the context of constraint
programming in his papers.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables, can be
used for channelling).

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.

final graph structure: symmetric.

modelling: functional dependency.

problems: maximum clique.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE( 6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph property(ies) • NARC= SIZE CLIQUE ∗ SIZE CLIQUE− SIZE CLIQUE

• NVERTEX= SIZE CLIQUE

Graph class SYMMETRIC

Graph model Note the use of set variables for modelling the fact that the vertices of the final graph have
more than one successor: The successor variable associated with each vertex contains the
successors of the corresponding vertex.

Part (A) of Figure 5.198 shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of the succ

attribute of a given vertex. Part (B) of Figure 5.198 gives the final graph associated with
the Example slot. Since we both use the NARC and NVERTEX graph properties, the
arcs and the vertices of the final graph are stressed in bold. The final graph corresponds to
a clique containing three vertices.

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NARC=6,NVERTEX=3

2:2,{3,5}

3:3,{2,5}

5:5,{2,3}

(A) (B)

Figure 5.198: Initial and final graph of the CLIQUE set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.74 COLORED MATRIX

I B C J DESCRIPTION LINKS

Origin KOALOG

Constraint COLORED MATRIX(C, L, K, MATRIX, CPROJ, LPROJ)

Synonyms COLOURED MATRIX, CARDINALITY MATRIX, CARD MATRIX.

Arguments C : int

L : int

K : int

MATRIX : collection(column−int, line−int, var−dvar)
CPROJ : collection(column−int, val−int, nocc−dvar)
LPROJ : collection(line−int, val−int, nocc−dvar)

Restrictions C ≥ 0
L ≥ 0
K ≥ 0
required(MATRIX, [column, line, var])
increasing seq(MATRIX, [column, line])
|MATRIX| = C ∗ L + C + L + 1
MATRIX.column ≥ 0
MATRIX.column ≤ C

MATRIX.line ≥ 0
MATRIX.line ≤ L

MATRIX.var ≥ 0
MATRIX.var ≤ K

required(CPROJ, [column, val, nocc])
increasing seq(CPROJ, [column, val])
|CPROJ| = C ∗ K + C + K + 1
CPROJ.column ≥ 0
CPROJ.column ≤ C

CPROJ.val ≥ 0
CPROJ.val ≤ K

required(LPROJ, [line, val, nocc])
increasing seq(LPROJ, [line, val])
|LPROJ| = L ∗ K + L + K + 1
LPROJ.line ≥ 0
LPROJ.line ≤ L

LPROJ.val ≥ 0
LPROJ.val ≤ K

Purpose Given a matrix of domain variables, imposes a GLOBAL CARDINALITY constraint in-
volving cardinality variables on each column and each row of the matrix.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



1, 2, 4,

〈 column− 0 line− 0 var− 3,
column− 0 line− 1 var− 1,
column− 0 line− 2 var− 3,
column− 1 line− 0 var− 4,
column− 1 line− 1 var− 4,
column− 1 line− 2 var− 3

〉
,

〈
column− 0 val− 0 nocc− 0,
column− 0 val− 1 nocc− 1,
column− 0 val− 2 nocc− 0,
column− 0 val− 3 nocc− 2,
column− 0 val− 4 nocc− 0,
column− 1 val− 0 nocc− 0,
column− 1 val− 1 nocc− 0,
column− 1 val− 2 nocc− 0,
column− 1 val− 3 nocc− 1,
column− 1 val− 4 nocc− 2

〉
,

〈

line− 0 val− 0 nocc− 0,
line− 0 val− 1 nocc− 0,
line− 0 val− 2 nocc− 0,
line− 0 val− 3 nocc− 1,
line− 0 val− 4 nocc− 1,
line− 1 val− 0 nocc− 0,
line− 1 val− 1 nocc− 1,
line− 1 val− 2 nocc− 0,
line− 1 val− 3 nocc− 0,
line− 1 val− 4 nocc− 1,
line− 2 val− 0 nocc− 0,
line− 2 val− 1 nocc− 0,
line− 2 val− 2 nocc− 0,
line− 2 val− 3 nocc− 2,
line− 2 val− 4 nocc− 0

〉



Typical C ≥ 1
L ≥ 1
K ≥ 1
range(MATRIX.var) > 1

Arg. properties • Functional dependency: CPROJ.nocc determined by C, L and K.

• Functional dependency: LPROJ.nocc determined by C, L and K.

Remark Within [361] the COLORED MATRIX constraint is called CARDINALITY MATRIX.

Algorithm The filtering algorithm described in [361] is based on network flow and does not achieve
arc-consistency in general. However, when the number of values is restricted to two, the al-
gorithm [361] achieves arc-consistency on the variables of the matrix. This corresponds in
fact to a generalisation of the problem called ”Matrices composed of 0’s and 1’s” presented
by Ford and Fulkerson [238].


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also common keyword: K ALLDIFFERENT (system of constraints).

part of system of constraints: GLOBAL CARDINALITY.

related to a common problem: SAME (matrix reconstruction problem).

Keywords constraint arguments: pure functional dependency.

constraint type: system of constraints, predefined constraint, timetabling constraint.

modelling: functional dependency, matrix, matrix model.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.75 COLOURED CUMULATIVE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from CUMULATIVE and NVALUES.

Constraint COLOURED CUMULATIVE(TASKS, LIMIT)

Synonym COLORED CUMULATIVE.

Arguments TASKS : collection


origin−dvar,
duration−dvar,
end−dvar,
colour−dvar


LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, colour)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
LIMIT ≥ 0

Purpose

Consider the set T of tasks described by the TASKS collection. The
COLOURED CUMULATIVE constraint forces that, at each point in time, the number of
distinct colours of the set of tasks that overlap that point, does not exceed a given limit.
A task overlaps a point i if and only if (1) its origin is less than or equal to i, and
(2) its end is strictly greater than i. For each task of T it also imposes the constraint
origin + duration = end.

Example


〈 origin− 1 duration− 2 end− 3 colour− 1,

origin− 2 duration− 9 end− 11 colour− 2,
origin− 3 duration− 10 end− 13 colour− 3,
origin− 6 duration− 6 end− 12 colour− 2,
origin− 7 duration− 2 end− 9 colour− 3

〉
, 2



Figure 5.199 shows the solution associated with the example. Each rectangle of the figure
corresponds to a task of the COLOURED CUMULATIVE constraint. Tasks that have their
colour attributes set to 1, 2 and 3 are respectively coloured in yellow, blue and pink. The
COLOURED CUMULATIVE constraint holds since at each point in time we do not have more
than LIMIT = 2 distinct colours.

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.colour) > 1
LIMIT <nval(TASKS.colour)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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TASKS

(
o for origin, d for duration,
e for end, c for colour

)

1 2 3

colour codes:

Figure 5.199: The coloured cumulative solution to the Example slot with at most two
distinct colours in parallel

Symmetries • Items of TASKS are permutable.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.

• All occurrences of two distinct values of TASKS.colour can be swapped; all oc-
currences of a value of TASKS.colour can be renamed to any unused value.

• LIMIT can be increased.

Arg. properties Contractible wrt. TASKS.

Usage Useful for scheduling problems where a machine can only proceed in parallel a maxi-
mum number of tasks of distinct type. This condition cannot be modelled by the clas-
sical CUMULATIVE constraint. Also useful for coloured bin packing problems (i.e.,
duration = 1) where each item has a colour and no bin contains items with more than
LIMIT distinct colours [141, 197, 217].

Reformulation The COLOURED CUMULATIVE constraint can be expressed in term of a set of reified con-
straints and of |TASKS| NVALUE constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS col-
lection we create a variable Cij which is set to the colour of task TASKS[j] if task
TASKS[j] overlaps the origin attribute of task TASKS[i], and to the colour of task
TASKS[i] otherwise:

• If i = j:
– Cij = TASKS[i].colour.

• If i 6= j:
– Cij = TASKS[i].colour ∨ Cij = TASKS[j].colour.
– ((TASKS[j].origin ≤ TASKS[i].origin ∧

TASKS[j].end > TASKS[i].origin) ∧ (Cij = TASKS[j].colour)) ∨
((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Cij = TASKS[i].colour))


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we create a variable Ni which gives the
number of distinct colours associated with the tasks that overlap the origin of task
TASKS[i] (TASKS[i] overlaps its own origin) and we impose Ni to not exceed the
maximum number of distinct colours LIMIT allowed at each instant:

• Ni ≥ 1 ∧Ni ≤ LIMIT.
• NVALUE(Ni, 〈Ci1, Ci2, . . . , Ci|TASKS|〉).

See also assignment dimension added: COLOURED CUMULATIVES.

common keyword: CUMULATIVE, TRACK (resource constraint).

related: NVALUE.

specialisation: DISJOINT TASKS (a colour is assigned to each collection of tasks of con-
straint DISJOINT TASKS and a limit of one single colour is enforced).

used in graph description: NVALUES.

Keywords characteristic of a constraint: coloured.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part, minimum task duration.

modelling: number of distinct values, zero-duration task.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

) 
Constraint(s) on sets NVALUES(variables,≤, LIMIT)

Graph model Same as CUMULATIVE, except that we use another constraint for computing the resource
consumption at each time point.

Parts (A) and (B) of Figure 5.200 respectively show the initial and final graph associ-
ated with the second graph constraint of the Example slot. On the one hand, each source
vertex of the final graph can be interpreted as a time point. On the other hand the suc-
cessors of a source vertex correspond to those tasks that overlap that time point. The
COLOURED CUMULATIVE constraint holds since for each successor set S of the final graph
the number of distinct colours of the tasks in S does not exceed the LIMIT 2.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,2,3,1

1:1,2,3,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,3

3:3,10,13,3

4:6,6,12,2

4:6,6,12,2

5:7,2,9,3

5:7,2,9,3

Figure 5.200: Initial and final graph of the COLOURED CUMULATIVE constraint
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5.76 COLOURED CUMULATIVES

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from CUMULATIVES and NVALUES.

Constraint COLOURED CUMULATIVES(TASKS, MACHINES)

Synonym COLORED CUMULATIVES.

Arguments TASKS : collection


machine−dvar,
origin−dvar,
duration−dvar,
end−dvar,
colour−dvar


MACHINES : collection(id−int, capacity−int)

Restrictions required(TASKS, [machine, colour])
require at least(2, TASKS, [origin, duration, end])
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
MACHINES.capacity ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The
COLOURED CUMULATIVES constraint forces for each machine m of the MACHINES

collection the following condition: at each point in time p, the numbers of distinct
colours of the set of tasks that both overlap that point p and are assigned to machine
m does not exceed the capacity of machine m. A task overlaps a point i if and only if
(1) its origin is less than or equal to i, and (2) its end is strictly greater than i. It also
imposes for each task of T the constraint origin + duration = end.

Example


〈 m− 1 origin− 6 dur− 6 end− 12 colour− 2,

m− 1 origin− 2 dur− 9 end− 11 colour− 3,
m− 2 origin− 7 dur− 3 end− 10 colour− 3,
m− 1 origin− 1 dur− 2 end− 3 colour− 1,
m− 2 origin− 4 dur− 5 end− 9 colour− 3,
m− 1 origin− 3 dur− 10 end− 13 colour− 2

〉
,

〈id− 1 capacity− 2, id− 2 capacity− 1〉


(
m for machine, dur for duration

)
Figure 5.201 shows the solution associated with the example. Each rectangle of the
figure corresponds to a task of the COLOURED CUMULATIVES constraint. Tasks that
have their colour attributes set to 1 and 2 are respectively coloured in blue and pink.
The COLOURED CUMULATIVES constraint holds since for machine 1 we have at most


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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two distinct colours in parallel (which is the maximum capacity for machine 1), while
for machine 2 we have no more than a single colour in parallel (which is actually the
maximum capacity for machine 2).
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TASKS

 m for machine, o for origin,
d for duration, e for end,
c for colour



1 2 3

colour codes:

Figure 5.201: The coloured cumulative solution to the Example slot with at most two
distinct colours in parallel on machine 1 and at most one distinct colour in parallel on
machine 2

Typical |TASKS| > 1
range(TASKS.machine) > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.colour) > 1
TASKS.duration > 0
|MACHINES| > 1
MACHINES.capacity > 0
MACHINES.capacity <nval(TASKS.colour)
|TASKS| > |MACHINES|


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of TASKS are permutable.

• Items of MACHINES are permutable.

• MACHINES.capacity can be increased.

• All occurrences of two distinct values in TASKS.machine or MACHINES.id can be
swapped; all occurrences of a value in TASKS.machine or MACHINES.id can be
renamed to any unused value.

Arg. properties Contractible wrt. TASKS.

Usage Useful for scheduling problems where several machines are available and where you have
to assign each task to a specific machine. In addition each machine can only proceed in
parallel a maximum number of tasks of distinct types.

Reformulation The COLOURED CUMULATIVES constraint can be expressed in term of a set of reified
constraints and of |TASKS| NVALUE constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-
tion we create a variable Cij which is set to the colour of task TASKS[j] if both tasks
are assigned to the same machine and if task TASKS[j] overlaps the origin attribute
of task TASKS[i], and to the colour of task TASKS[i] otherwise:

• If i = j:

– Cij = TASKS[i].colour.

• If i 6= j:

– Cij = TASKS[i].colour ∨ Cij = TASKS[j].colour.

– ((TASKS[j].machine = TASKS[i].machine ∧
TASKS[j].origin ≤ TASKS[i].origin ∧
TASKS[j].end > TASKS[i].origin) ∧ (Cij = TASKS[j].colour)) ∨

((TASKS[j].machine 6= TASKS[i].machine ∨
TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Cij = TASKS[i].colour))

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we create a variable Ni which gives the
number of distinct colours associated with the tasks that both are assigned to the same
machine as task TASKS[i] and overlap the origin of task TASKS[i] (TASKS[i] overlaps
its own origin) and we impose Ni to not exceed the maximum number of distinct
colours LIMIT allowed at each instant:

• Ni ≥ 1 ∧Ni ≤ LIMIT.

• NVALUE(Ni, 〈Ci1, Ci2, . . . , Ci|TASKS|〉).

See also assignment dimension removed: COLOURED CUMULATIVE (machine attribute re-
moved), CUMULATIVE (machine attribute removed and number of distinct colours re-
placed by sum of task heights).

common keyword: CUMULATIVE, CUMULATIVES (resource constraint).

related: NVALUE.

used in graph description: NVALUES.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: coloured.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part, minimum task duration.

modelling: number of distinct values, assignment dimension, zero-duration task.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

For all items of MACHINES:

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.machine = MACHINES.id
• tasks1.machine = tasks2.machine
• tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

) 
Constraint(s) on sets NVALUES(variables,≤, MACHINES.capacity)

Graph model Parts (A) and (B) of Figure 5.202 respectively shows the initial and final graph associated
with machines 1 and 2 involved in the Example slot. On the one hand, each source vertex
of the final graph can be interpreted as a time point p on a specific machinem. On the other
hand the successors of a source vertex correspond to those tasks that both overlap that time
point p and are assigned to machine m. The COLOURED CUMULATIVES constraint holds
since for each successor set S of the final graph the number of distinct colours in S does
not exceed the capacity of the machine corresponding to the time point associated with S.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)
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TASKS
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1234 56

2 3456

(B)

MACHINES:1 MACHINES:2

1:1,6,6,12,2

1:1,6,6,12,22:1,2,9,11,3 6:1,3,10,13,2

2:1,2,9,11,3

4:1,1,2,3,1

4:1,1,2,3,1 6:1,3,10,13,2 3:2,7,3,10,3

3:2,7,3,10,35:2,4,5,9,3

5:2,4,5,9,3

Figure 5.202: Initial and final graph of the COLOURED CUMULATIVES constraint
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5.77 COMMON

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint COMMON(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking
a value in VARIABLES2.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking
a value in VARIABLES1.

Example (3, 4, 〈1, 9, 1, 5〉 , 〈2, 1, 9, 9, 6, 9〉)

The COMMON constraint holds since:

• Its first argument NCOMMON1 = 3 corresponds to the number of values of the collec-
tion 〈1, 9, 1, 5〉 that occur within 〈2, 1, 9, 9, 6, 9〉.

• Its second argument NCOMMON2 = 4 corresponds to the number of values of the
collection 〈2, 1, 9, 9, 6, 9〉 that occur within 〈1, 9, 1, 5〉.

0 2 3 4 6 7 851 9
1

0 3 4 5 7 82 61 9
9
9

All solutions Figure 5.203 gives all solutions to the following non ground instance of the COMMON

constraint: NCOMMON1 ∈ [0, 1], NCOMMON2 ∈ [2, 3], U1 ∈ [1, 2], U2 ∈
[1, 2], U3 ∈ [0, 1], U4 ∈ [5, 6], V1 ∈ [5, 6], V2 ∈ [1, 2], V3 ∈ [0, 1],
COMMON(NCOMMON1, NCOMMON2, 〈U1, U2, U3, U4〉, 〈V1, V2, V3〉).

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ (1,2, 〈1, 2, 0, 5〉, 〈6,1,1〉)
 (1,2, 〈1, 2, 0, 6〉, 〈5,1,1〉)
® (1,2, 〈2,1, 0, 5〉, 〈6,1,1〉)
¯ (1,2, 〈2,1, 0, 6〉, 〈5,1,1〉)
° (1,2, 〈2, 2,1, 5〉, 〈6,1,1〉)
± (1,2, 〈2, 2,1, 6〉, 〈5,1,1〉)

Figure 5.203: All solutions corresponding to the non ground example of the COMMON
constraint of the All solutions slot

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Arg. properties • Functional dependency: NCOMMON1 determined by VARIABLES1 and VARIABLES2.

• Functional dependency: NCOMMON2 determined by VARIABLES1 and VARIABLES2.

Remark It was shown in [76] that, finding out whether the COMMON constraint has a solution or not
is NP-hard. This was achieved by reduction from 3-SAT.

See also common keyword: ALLDIFFERENT ON INTERSECTION, NVALUE ON INTERSECTION,
SAME INTERSECTION (constraint on the intersection).

generalisation: COMMON INTERVAL (variable replaced by variable/constant),
COMMON MODULO (variable replaced by variable mod constant),
COMMON PARTITION (variable replaced by variable ∈ partition).

related: AMONG VAR, ROOTS.

root concept: AMONG.

specialisation: USES (NCOMMON2=|VARIABLES2|).

Keywords complexity: 3-SAT.

constraint arguments: constraint between two collections of variables, pure functional
dependency.

constraint type: constraint on the intersection.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.204 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since
the final graph has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are
respectively equal to 3 and 4. Note that all the vertices corresponding to the variables that
take values 5, 2 or 6 were removed from the final graph since there is no arc for which the
associated equality constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:1

2:1

2:9

3:9 4:9 6:9

3:1

(A) (B)

Figure 5.204: Initial and final graph of the COMMON constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.78 COMMON INTERVAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from COMMON.

Constraint COMMON INTERVAL


NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
SIZE INTERVAL


Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1

taking a value in one of the intervals derived from the values assigned to the
variables of the collection VARIABLES2: To each value v assigned to a vari-
able of the collection VARIABLES2 we associate the interval [SIZE INTERVAL ·
bv/SIZE INTERVALc, SIZE INTERVAL · bv/SIZE INTERVALc+ SIZE INTERVAL− 1].
NCOMMON2 is the number of variables of the collection of variables VARIABLES2

taking a value in one of the intervals derived from the values assigned to the
variables of the collection VARIABLES1: To each value v assigned to a vari-
able of the collection VARIABLES1 we associate the interval [SIZE INTERVAL ·
bv/SIZE INTERVALc, SIZE INTERVAL · bv/SIZE INTERVALc+ SIZE INTERVAL− 1].

Example (3, 2, 〈8, 6, 6, 0〉 , 〈7, 3, 3, 3, 3, 7〉 , 3)
1 2 3 4 5 7 8 9 10110 6 8

6

0 1 2 4 5 6 8 9 10117
7

3
33 3

In the example, the last argument SIZE INTERVAL = 3 defines the following fam-
ily of intervals [3 · k, 3 · k + 2], where k is an integer. As a consequence the items of
collection 〈8, 6, 6, 0〉 respectively correspond to intervals [6, 8], [6, 8], [6, 8] and [0, 2].
Similarly the items of collection 〈7, 3, 3, 3, 3, 7〉 respectively correspond to intervals [6, 8],
[3, 5], [3, 5], [3, 5], [3, 5], [6, 8]. The COMMON INTERVAL constraint holds since:

• Its first argument NCOMMON1 = 3 is the number of intervals associated with the
items of collection 〈8, 6, 6, 0〉 that also correspond to intervals associated with
〈7, 3, 3, 3, 3, 7〉.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• Its second argument NCOMMON2 = 2 is the number of intervals associated with the
items of collection 〈7, 3, 3, 3, 3, 7〉 that also correspond to intervals associated with
〈8, 6, 6, 0〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (SIZE INTERVAL).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

• An occurrence of a value of VARIABLES2.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Arg. properties • Functional dependency: NCOMMON1 determined by VARIABLES1, VARIABLES2

and SIZE INTERVAL.

• Functional dependency: NCOMMON2 determined by VARIABLES1, VARIABLES2

and SIZE INTERVAL.

See also specialisation: COMMON (variable/constant replaced by variable).

Keywords constraint arguments: constraint between two collections of variables, pure functional
dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: interval, functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.205 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties, the
source and sink vertices of the final graph are stressed with a double circle. Since the graph
has only 3 sources and 2 sinks the variables NCOMMON1 and NCOMMON2 are respectively
equal to 3 and 2. Note that the vertices corresponding to the variables that take values 0
or 3 were removed from the final graph since there is no arc for which the associated arc
constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=2

1:8

1:7 6:7

2:6 3:6

(A) (B)

Figure 5.205: Initial and final graph of the COMMON INTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.79 COMMON MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from COMMON.

Constraint COMMON MODULO(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2, M)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

NCOMMON1 is the number of variables of the collection of variables VARIABLES1 taking
a value situated in an equivalence class (congruence modulo a fixed number M) derived
from the values assigned to the variables of VARIABLES2 and from M.
NCOMMON2 is the number of variables of the collection of variables VARIABLES2 taking
a value situated in an equivalence class (congruence modulo a fixed number M) derived
from the values assigned to the variables of VARIABLES1 and from M.

Example (3, 4, 〈0, 4, 0, 8〉 , 〈7, 5, 4, 9, 2, 4〉 , 5)

In the example, the last argument M = 5 defines the equivalence classes a ≡ 0
(mod 5), a ≡ 1 (mod 5), a ≡ 2 (mod 5), a ≡ 3 (mod 5), and a ≡ 4 (mod 5)
where a is an integer. As a consequence the items of collection 〈0, 4, 0, 8〉 respectively
correspond to the equivalence classes a ≡ 0 (mod 5), a ≡ 4 (mod 5), a ≡ 0 (mod 5),
and a ≡ 3 (mod 5). Similarly the items of collection 〈7, 5, 4, 9, 2, 4〉 respectively
correspond to the equivalence classes a ≡ 2 (mod 5), a ≡ 0 (mod 5), a ≡ 4 (mod 5),
a ≡ 4 (mod 5), a ≡ 2 (mod 5), and a ≡ 4 (mod 5). The COMMON MODULO

constraint holds since:

• Its first argument NCOMMON1 = 3 is the number of equivalence classes associated
with the items of collection 〈0, 4, 0, 8〉 that also correspond to equivalence classes
associated with 〈7, 5, 4, 9, 2, 4〉.

• Its second argument NCOMMON2 = 4 is the number of equivalence classes associ-
ated with the items of collection 〈7, 5, 4, 9, 2, 4〉 that also correspond to equivalence
classes associated with 〈0, 4, 0, 8〉.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (M).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value u of VARIABLES1.var can be replaced by any other
value v such that v is congruent to u modulo M.

• An occurrence of a value u of VARIABLES2.var can be replaced by any other
value v such that v is congruent to u modulo M.

Arg. properties • Functional dependency: NCOMMON1 determined by VARIABLES1, VARIABLES2

and M.

• Functional dependency: NCOMMON2 determined by VARIABLES1, VARIABLES2

and M.

See also specialisation: COMMON (variable mod constant replaced by variable).

Keywords characteristic of a constraint: modulo.

constraint arguments: constraint between two collections of variables, pure functional
dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.206 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties, the
source and sink vertices of the final graph are stressed with a double circle. Since the graph
has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively
equal to 3 and 4. Note that the vertices corresponding to the variables that take values 8, 7
or 2 were removed from the final graph since there is no arc for which the associated arc
constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:0

2:5

2:4

3:4 4:9 6:4

3:0

(A) (B)

Figure 5.206: Initial and final graph of the COMMON MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.80 COMMON PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from COMMON.

Constraint COMMON PARTITION


NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
PARTITIONS


Type VALUES : collection(val−int)

Arguments NCOMMON1 : dvar

NCOMMON2 : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
NCOMMON1 ≥ 0
NCOMMON1 ≤ |VARIABLES1|
NCOMMON2 ≥ 0
NCOMMON2 ≤ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

NCOMMON1 is the number of variables of the VARIABLES1 collection taking a value in
a partition derived from the values assigned to the variables of VARIABLES2 and from
PARTITIONS.
NCOMMON2 is the number of variables of the VARIABLES2 collection taking a value in
a partition derived from the values assigned to the variables of VARIABLES1 and from
PARTITIONS.

Example

 3, 4, 〈2, 3, 6, 0〉 ,
〈0, 6, 3, 3, 7, 1〉 ,
〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉


In the example, the last argument PARTITIONS defines the partitions p − 〈1, 3〉,
p − 〈4〉 and p − 〈2, 6〉. As a consequence the first three items of collection 〈2, 3, 6, 0〉
respectively correspond to the partitions p − 〈2, 6〉, p − 〈1, 3〉, and p − 〈2, 6〉. Similarly


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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the items of collection 〈0, 6, 3, 3, 7, 1〉 (from which we remove items 0 and 7 since they do
not belong to any partition) respectively correspond to the partitions p− 〈2, 6〉, p− 〈1, 3〉,
p− 〈1, 3〉, and p− 〈1, 3〉. The COMMON PARTITION constraint holds since:

• Its first argument NCOMMON1 = 3 is the number of partitions associated with the
items of collection 〈2, 3, 6, 0〉 that also correspond to partitions associated with
〈0, 6, 3, 3, 7, 1〉.

• Its second argument NCOMMON2 = 4 is the number of partitions associated with the
items of collection 〈0, 6, 3, 3, 7, 1〉 that also correspond to partitions associated with
〈2, 3, 6, 0〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2)
(VARIABLES1, VARIABLES2) (PARTITIONS).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES1.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

• An occurrence of a value of VARIABLES2.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

Arg. properties • Functional dependency: NCOMMON1 determined by VARIABLES1, VARIABLES2

and PARTITIONS.

• Functional dependency: NCOMMON2 determined by VARIABLES1, VARIABLES2

and PARTITIONS.

See also specialisation: COMMON (variable ∈ partition replaced by variable).

used in graph description: IN SAME PARTITION.

Keywords characteristic of a constraint: partition.

constraint arguments: constraint between two collections of variables, pure functional
dependency.

final graph structure: acyclic, bipartite, no loop.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • NSOURCE= NCOMMON1

• NSINK= NCOMMON2

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.207 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties, the
source and sink vertices of the final graph are stressed with a double circle. Since the graph
has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively
equal to 3 and 4. Note that the vertices corresponding to the variables that take values
0 or 7 were removed from the final graph since there is no arc for which the associated
IN SAME PARTITION constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NSOURCE=3,NSINK=4

1:2

2:6

2:3

3:3 4:3 6:1

3:6

(A) (B)

Figure 5.207: Initial and final graph of the COMMON PARTITION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.81 COMPARE AND COUNT

I B C J DESCRIPTION LINKS

Origin Generalise DISCREPANCY

Constraint COMPARE AND COUNT(VARIABLES1, VARIABLES2, COMPARE, COUNT, LIMIT)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
COMPARE : atom

COUNT : atom

LIMIT : dvar

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
COMPARE ∈ [=, 6=, <,≥, >,≤]
COUNT ∈ [=, 6=, <,≥, >,≤]
LIMIT ≥ 0

Purpose
Enforce the condition(∑|VARIABLES1|

i=1 VARIABLES1[i].var COMPARE VARIABLES2[i].var
)
COUNT LIMIT.

Example (〈4, 5, 5, 4, 5〉 , 〈4, 2, 5, 1, 5〉 ,=,≤, 3)

The COMPARE AND COUNT constraint holds since no more than LIMIT = 3 pairs
of variables are equal, i.e., the first, third and fifth pairs.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
COMPARE ∈ [=]
COUNT ∈ [=, <,≥, >,≤]
LIMIT > 0
LIMIT < |VARIABLES1|

Arg. properties • Contractible wrt. VARIABLES1 and VARIABLES2 (remove items from same posi-
tion) when COUNT ∈ [<,≤].

• Extensible wrt. VARIABLES1 and VARIABLES2 (add items at same position) when
COUNT ∈ [≥, >].

See also common keyword: COUNT (counting constraint).

Keywords constraint type: predefined constraint, counting constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.82 COND LEX COST

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by [448].

Constraint COND LEX COST(VECTOR, PREFERENCE TABLE, COST)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)
COST : dvar

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR, var)
|VECTOR| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
IN RELATION(VECTOR, PREFERENCE TABLE)
COST ≥ 1
COST ≤ |PREFERENCE TABLE|

Purpose VECTOR is assigned to the COSTth item of the collection PREFERENCE TABLE.

Example


〈0, 1〉 ,〈 tuple− 〈1, 0〉 ,

tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉
, 2


The COND LEX COST constraint holds since VECTOR is assigned to the second item
of the collection PREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR| > 1
|PREFERENCE TABLE| > 1

Symmetries • Items of VECTOR and PREFERENCE TABLE.tuple are permutable (same permuta-
tion used).

• All occurrences of two distinct tuples of values in VECTOR or
PREFERENCE TABLE.tuple can be swapped; all occurrences of a tuple of
values in VECTOR or PREFERENCE TABLE.tuple can be renamed to any unused
tuple of values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Usage We consider an example taken from [448] were a customer has to decide among va-
cations. There are two seasons when he can travel (spring and summer) and two
locations Naples and Helsinki. Furthermore assume that location is more impor-
tant than season and the preferred period of the year depends on the selected loca-
tion. The travel preferences of a customer are explicitly defined by stating the prefer-
ences ordering among the possible tuples of values 〈Naples, spring〉, 〈Naples, summer〉,
〈Helsinki, spring〉 and 〈Helsinki, summer〉. For instance we may state within
the preference table PREFERENCE TABLE of the COND LEX COST constraint the prefer-
ence ordering 〈Naples, spring〉 � 〈Helsinki, summer〉 � 〈Helsinki, spring〉 �
〈Naples, summer〉, which denotes the fact that our customer prefers Naples in the spring
and Helsinki in the summer, and a vacation in spring is preferred over summer. Finally
a solution minimising the cost variable COST will match the preferences stated by our cus-
tomer.

See also attached to cost variant: IN RELATION (COST parameter removed).

common keyword: COND LEX GREATER, COND LEX GREATEREQ, COND LEX LESS,
COND LEX LESSEQ (preferences).

specialisation: ELEMENT (tuple of variables replaced by single variable).

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency, cost filtering constraint.

modelling: preferences.

symmetry: lexicographic order.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.208 depicts the automaton associated with COND LEX LESSEQ constraint. Let
VARk denote the var attribute of the kth item of the VECTOR collection. Figure 5.209
depicts the reformulation of the COND LEX COST constraint.

s

1 2

3 4 65

t

0 1

0
1 0

1

3

2 1

4

Figure 5.208: Automaton of the COND LEX COST constraint given in the Example
slot

Q0 = s Q1

VAR1 VAR2

Qn

VARn

Qn+1 = t

COST

Figure 5.209: Hypergraph of the reformulation corresponding to the automaton of the
COND LEX COST constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.83 COND LEX GREATER

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by [448].

Constraint COND LEX GREATER(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
IN RELATION(VECTOR1, PREFERENCE TABLE)
IN RELATION(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to the Ith and Jth items of the collection
PREFERENCE TABLE such that I > J.

Example


〈0, 0〉 ,
〈1, 0〉 ,〈 tuple− 〈1, 0〉 ,

tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉


The COND LEX GREATER constraint holds since VECTOR1 and VECTOR2 are respec-
tively assigned to the third and first items of the collection PREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values in VECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can be swapped; all occurrences of a tuple of val-
ues in VECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can be renamed to any
unused tuple of values.

Usage See COND LEX COST.

See also common keyword: COND LEX COST, COND LEX GREATEREQ, COND LEX LESS,
COND LEX LESSEQ (preferences), LEX GREATER (lexicographic order).

implies: COND LEX GREATEREQ.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.210 depicts the automaton associated with the preference table of the
COND LEX GREATER constraint given in the example. Let VAR1k and VAR2k respectively
be the var attributes of the kth items of the VECTOR1 and the VECTOR2 collections. Fig-
ure 5.211 depicts the reformulation of the COND LEX GREATER constraint. This reformu-
lation uses:

• Two occurrences of the automaton depicted by Figure 5.210 for computing the posi-
tions I and J within the preference table corresponding to VECTOR1 and VECTOR2.

• The binary constraint I > J.
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Figure 5.210: Automaton associated with the preference table of the
COND LEX GREATER constraint given in the Example slot

Q1,0 = s Q1,1

VAR11 VAR12

Q1,n

VAR1n

Q1,n+1 = t

I

Q2,0 = s Q2,1

VAR21 VAR22

Q2,n

VAR2n

Q2,n+1 = t

J

Figure 5.211: Hypergraph of the reformulation corresponding to the
COND LEX GREATER constraint: it uses two occurrences of the automaton of
Figure 5.210 and the constraint I > J


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.84 COND LEX GREATEREQ

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by [448].

Constraint COND LEX GREATEREQ(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
IN RELATION(VECTOR1, PREFERENCE TABLE)
IN RELATION(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to the Ith and Jth items of the collection
PREFERENCE TABLE such that I ≥ J.

Example


〈0, 0〉 ,
〈1, 0〉 ,〈 tuple− 〈1, 0〉 ,

tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉


The COND LEX GREATEREQ constraint holds since VECTOR1 and VECTOR2 are re-
spectively assigned to the third and first items of the collection PREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values in VECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can be swapped; all occurrences of a tuple of val-
ues in VECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can be renamed to any
unused tuple of values.

Usage See COND LEX COST.

See also common keyword: COND LEX COST, COND LEX GREATER, COND LEX LESS,
COND LEX LESSEQ (preferences), LEX GREATEREQ (lexicographic order).

implied by: COND LEX GREATER.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.212 depicts the automaton associated with the preference table of the
COND LEX GREATEREQ constraint given in the example. Let VAR1k and VAR2k respec-
tively be the var attributes of the kth items of the VECTOR1 and the VECTOR2 collections.
Figure 5.213 depicts the reformulation of the COND LEX GREATEREQ constraint. This
reformulation uses:

• Two occurrences of the automaton depicted by Figure 5.212 for computing the posi-
tions I and J within the preference table corresponding to VECTOR1 and VECTOR2.

• The binary constraint I ≥ J.
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Figure 5.212: Automaton associated with the preference table of the
COND LEX GREATEREQ constraint given in the Example slot

Q1,0 = s Q1,1

VAR11 VAR12

Q1,n

VAR1n

Q1,n+1 = t

I

Q2,0 = s Q2,1

VAR21 VAR22

Q2,n

VAR2n

Q2,n+1 = t

J

Figure 5.213: Hypergraph of the reformulation corresponding to the
COND LEX GREATEREQ constraint: it uses two occurrences of the automaton of
Figure 5.212 and the constraint I ≥ J


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.85 COND LEX LESS

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by [448].

Constraint COND LEX LESS(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
IN RELATION(VECTOR1, PREFERENCE TABLE)
IN RELATION(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to the Ith and Jth items of the collection
PREFERENCE TABLE such that I < J.

Example


〈1, 0〉 ,
〈0, 0〉 ,〈 tuple− 〈1, 0〉 ,

tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉


The COND LEX LESS constraint holds since VECTOR1 and VECTOR2 are respectively
assigned to the first and third items of the collection PREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values in VECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can be swapped; all occurrences of a tuple of val-
ues in VECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can be renamed to any
unused tuple of values.

Usage See COND LEX COST.

See also common keyword: COND LEX COST, COND LEX GREATER, COND LEX GREATEREQ,
COND LEX LESSEQ (preferences), LEX LESS (lexicographic order).

implies: COND LEX LESSEQ.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.214 depicts the automaton associated with the preference table of the
COND LEX LESS constraint given in the example. Let VAR1k and VAR2k respectively be the
var attributes of the kth items of the VECTOR1 and the VECTOR2 collections. Figure 5.215
depicts the reformulation of the COND LEX LESS constraint. This reformulation uses:

• Two occurrences of the automaton depicted by Figure 5.214 for computing the posi-
tions I and J within the preference table corresponding to VECTOR1 and VECTOR2.

• The binary constraint I < J.
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Figure 5.214: Automaton associated with the preference table of the COND LEX LESS
constraint given in the Example slot

Q1,0 = s Q1,1

VAR11 VAR12

Q1,n

VAR1n

Q1,n+1 = t

I

Q2,0 = s Q2,1

VAR21 VAR22

Q2,n

VAR2n

Q2,n+1 = t

J

Figure 5.215: Hypergraph of the reformulation corresponding to the COND LEX LESS
constraint: it uses two occurrences of the automaton of Figure 5.214 and the constraint
I < J


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.86 COND LEX LESSEQ

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by [448].

Constraint COND LEX LESSEQ(VECTOR1, VECTOR2, PREFERENCE TABLE)

Type TUPLE OF VALS : collection(val−int)

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)
PREFERENCE TABLE : collection(tuple− TUPLE OF VALS)

Restrictions |TUPLE OF VALS| ≥ 1
required(TUPLE OF VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE OF VALS|
required(PREFERENCE TABLE, tuple)
same size(PREFERENCE TABLE, tuple)
distinct(PREFERENCE TABLE, [])
IN RELATION(VECTOR1, PREFERENCE TABLE)
IN RELATION(VECTOR2, PREFERENCE TABLE)

Purpose VECTOR1 and VECTOR2 are both assigned to the Ith and Jth items of the collection
PREFERENCE TABLE such that I ≤ J.

Example


〈1, 0〉 ,
〈0, 0〉 ,〈 tuple− 〈1, 0〉 ,

tuple− 〈0, 1〉 ,
tuple− 〈0, 0〉 ,
tuple− 〈1, 1〉

〉


The COND LEX LESSEQ constraint holds since VECTOR1 and VECTOR2 are respec-
tively assigned to the first and third items of the collection PREFERENCE TABLE.

Typical |TUPLE OF VALS| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE TABLE| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VECTOR1, VECTOR2 and PREFERENCE TABLE.tuple are permutable
(same permutation used).

• All occurrences of two distinct tuples of values in VECTOR1, VECTOR2 or
PREFERENCE TABLE.tuple can be swapped; all occurrences of a tuple of val-
ues in VECTOR1, VECTOR2 or PREFERENCE TABLE.tuple can be renamed to any
unused tuple of values.

Usage See COND LEX COST.

See also common keyword: COND LEX COST, COND LEX GREATER, COND LEX GREATEREQ,
COND LEX LESS (preferences), LEX LESSEQ (lexicographic order).

implied by: COND LEX LESS.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

modelling: preferences.

symmetry: lexicographic order.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.216 depicts the automaton associated with the preference table of the
COND LEX LESSEQ constraint given in the example. Let VAR1k and VAR2k respectively
be the var attributes of the kth items of the VECTOR1 and the VECTOR2 collections. Fig-
ure 5.217 depicts the reformulation of the COND LEX LESSEQ constraint. This reformula-
tion uses:

• Two occurrences of the automaton depicted by Figure 5.216 for computing the posi-
tions I and J within the preference table corresponding to VECTOR1 and VECTOR2.

• The binary constraint I ≤ J.

s

1 2

3 4 65

t

0 1

0
1 0

1

3

2 1

4

Figure 5.216: Automaton associated with the preference table of the
COND LEX LESSEQ constraint given in the Example slot

Q1,0 = s Q1,1

VAR11 VAR12

Q1,n

VAR1n

Q1,n+1 = t

I

Q2,0 = s Q2,1

VAR21 VAR22

Q2,n

VAR2n

Q2,n+1 = t

J

Figure 5.217: Hypergraph of the reformulation corresponding to the
COND LEX LESSEQ constraint: it uses two occurrences of the automaton of
Figure 5.216 and the constraint I ≤ J


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.87 CONNECT POINTS

I B C J

DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint CONNECT POINTS(SIZE1, SIZE2, SIZE3, NGROUP, POINTS)

Arguments SIZE1 : int

SIZE2 : int

SIZE3 : int

NGROUP : dvar

POINTS : collection(p−dvar)

Restrictions SIZE1 > 0
SIZE2 > 0
SIZE3 > 0
NGROUP ≥ 0
NGROUP ≤ |POINTS|
SIZE1 ∗ SIZE2 ∗ SIZE3 = |POINTS|
required(POINTS, p)

Purpose On a 3-dimensional grid of variables, number of groups, where a group consists of a
connected set of variables that all have a same value distinct from 0.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



8, 4, 2, 2,

〈

p− 0, p− 0,
p− 1, p− 1,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 1,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 1,
p− 1, p− 1,
p− 1, p− 1,
p− 0, p− 2,
p− 0, p− 1,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 0,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 2,
p− 2, p− 2,
p− 2, p− 2,
p− 0, p− 0,
p− 0, p− 2,
p− 0, p− 0,
p− 0, p− 2,
p− 0, p− 0

〉


Figure 5.218 corresponds to the solution where we describe separately each layer
of the grid. The CONNECT POINTS constraint holds since we have two groups
(NGROUP = 2): a first one for the variables of the POINTS collection assigned to value 1,
and a second one for the variables assigned to value 2.

0 0 0 0 02 1 2

0 0 0 1 1 1 1 1

0 0 0 0 0 01 2

0 0 0 0 01 1 2

0 0 0 0 0 02 2

0 0 02 2 2 2 2

0 0 0 0 0 0 02

0 0 0 0 0 0 0 0

Figure 5.218: The two layers of the solution


Example
One or several examples of ground solutions of the constraint.
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Typical SIZE1 > 1
SIZE2 > 1
NGROUP > 0
NGROUP < |POINTS|
|POINTS| > 3

Symmetry All occurrences of two distinct values of POINTS.p that are both different from 0 can be
swapped; all occurrences of a value of POINTS.p that is different from 0 can be renamed
to any unused value that is also different from 0.

Arg. properties Functional dependency: NGROUP determined by SIZE1, SIZE2, SIZE3 and POINTS.

Usage Wiring problems [393], [462].

Algorithm Since the graph corresponding to the 3-dimensional grid is symmetric one could certainly
use as a starting point the filtering algorithm associated with the number of connected
components graph property described in [58] (see the paragraphs “Estimating NCC” and
“Estimating NCC”). One may also try to take advantage of the fact that the considered
initial graph is a grid in order to simplify the previous filtering algorithm.

Keywords characteristic of a constraint: joker value.

final graph structure: strongly connected component, symmetric.

geometry: geometrical constraint.

modelling: functional dependency.

problems: channel routing.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) POINTS

Arc generator GRID([SIZE1, SIZE2, SIZE3]) 7→collection(points1, points2)

Arc arity 2

Arc constraint(s) • points1.p 6= 0
• points1.p = points2.p

Graph property(ies) NSCC= NGROUP

Graph class SYMMETRIC

Graph model Figure 5.219 gives the initial graph constructed by the GRID arc generator associated with
the Example slot.

Figure 5.219: Graph generated by GRID([8,4,2])


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.88 CONNECTED

I B C J DESCRIPTION LINKS GRAPH

Origin [151]

Constraint CONNECTED(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Consider a digraph G described by the NODES collection. Select a subset of arcs of G so
that the corresponding graph is symmetric (i.e., if there is an arc from i to j, there is also
an arc from j to i) and connected (i.e., there is a path between any pair of vertices of G).

Example


〈 index− 1 succ− {1, 2, 3},

index− 2 succ− {1, 3},
index− 3 succ− {1, 2, 4},
index− 4 succ− {3, 5, 6},
index− 5 succ− {4},
index− 6 succ− {4}

〉


The CONNECTED constraint holds since the NODES collection depicts a symmetric
graph involving a single connected component.

1 2

3 4

5

6

Typical |NODES| > 1

Symmetry Items of NODES are permutable.

Algorithm A filtering algorithm for the CONNECTED constraint is sketched in [151, page 88]. Beside
the pruning associated with the fact that the final graph is symmetric, it is based on the fact
that all bridges and cut vertices on a path between two vertices that should for sure belong
to the final graph should also belong to the final graph.

See also common keyword: SYMMETRIC (symmetric).

implies: STRONGLY CONNECTED.

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, symmetric.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph property(ies) NCC= 1

Graph class SYMMETRIC

Graph model Part (A) of Figure 5.220 shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of the succ

attribute of a given vertex. Part (B) of Figure 5.220 gives the final graph associated with
the Example slot.

NODES

1:1,{1,2,3,4}

2:2,{1,3}

3:3,{1,2,4}

4:4,{1,3,5,6}

5:5,{4,6}

6:6,{4}

1:1,{1,2,3}

2:2,{1,3}

3:3,{1,2,4}

4:4,{3,5,6}

5:5,{4} 6:6,{4}

(A) (B)

Figure 5.220: Initial and final graph of the CONNECTED set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.89 CONSECUTIVE GROUPS OF ONES

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from GROUP

Constraint CONSECUTIVE GROUPS OF ONES(GROUP SIZES, VARIABLES)

Arguments GROUP SIZES : collection(nb−int)
VARIABLES : collection(var−dvar)

Restrictions required(GROUP SIZES, nb)
|GROUP SIZES| ≥ 1
GROUP SIZES.nb ≥ 1
GROUP SIZES.nb ≤ |VARIABLES|
required(VARIABLES, var)
|VARIABLES| ≥ 2 ∗ |GROUP SIZES| − 1
|VARIABLES| ≥sum(GROUP SIZES.nb) + |GROUP SIZES| − 1
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose

In order to define the meaning of the CONSECUTIVE GROUPS OF ONES constraint, we
first introduce the notions of stretch and span. Let n be the number of variables of the
collection VARIABLES and let m be the number of items of the collection GROUP SIZES.
Let Xi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables
VARIABLES such that the following conditions apply:

• All variables Xi, . . . , Xj are assigned value 1,

• i = 1 or Xi−1 6= 1,

• j = n or Xj+1 6= 1.

We call such a set of variables a stretch. The span of the stretch is equal to j− i+ 1. We
now define the condition enforced by the CONSECUTIVE GROUPS OF ONES constraint.

All variables of the VARIABLES collection should be assigned value 0 or 1. In addi-
tion there is |GROUP SIZES| successive stretches of respective span GROUP SIZES[1].nb,
GROUP SIZES[2].nb, . . . , GROUP SIZES[m].nb.

Example (〈2, 1〉 , 〈1, 1, 0, 0, 0, 1, 0〉)

The CONSECUTIVE GROUPS OF ONES constraint holds since the sequence 1 1 0 0 0 1 0
contains a first stretch (i.e., a maximum sequence of 1) of span 2 and a second stretch of
span 1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model sum(VARIABLES.var) > 2

Symmetry Items of GROUP SIZES and VARIABLES are simultaneously reversable.

Usage The CONSECUTIVE GROUPS OF ONES constraint can be used in order to model the logi-
graphe problem.

See also root concept: GROUP.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

modelling exercises: logigraphe.

puzzles: logigraphe.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.221 depicts the automaton associated with the CONSECUTIVE GROUPS OF ONES

constraint. To each variable VARi of the collection VARIABLES corresponds a signature
variable that is equal to VARi. There is no signature constraint.

s0 s1 s2 s3 s4

0

1 1

0

0 1

0

Figure 5.221: Non deterministic automaton of the CONSECUTIVE GROUPS OF ONES
constraint of the Example slot (a stretch of two 1 followed by a stretch of a single 1)

Q0 = s0 Q1

VAR1 VAR2

Q4 = s4

VAR4

Figure 5.222: Hypergraph of the reformulation corresponding to the automaton of the
CONSECUTIVE GROUPS OF ONES constraint of the Example slot


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.90 CONSECUTIVE VALUES

I B C J DESCRIPTION LINKS

Origin Derived from ALLDIFFERENT CONSECUTIVE VALUES.

Constraint CONSECUTIVE VALUES(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose
Constraint the difference between the largest and the smallest values of the VARIABLES
collection to be equal to the number of distinct values assigned to the variables of the
VARIABLES collection minus one (i.e., there is no holes at all within the used values).

Example (〈5, 4, 3, 5〉)

The CONSECUTIVE VALUES constraint holds since all values between value 3 and
value 5 are actually used.

5
4

3

5

1
2

6

3
4
5

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 7 34 217 1716 16159 176366 2187637

Number of solutions for CONSECUTIVE VALUES: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Counting
Information on the solution density.
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See also implied by: ALL EQUAL, ALLDIFFERENT CONSECUTIVE VALUES,
GLOBAL CONTIGUITY.

used in reformulation: NVALUE.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: sort based reformulation.

constraint type: value constraint, predefined constraint.

Cond. implications CONSECUTIVE VALUES(VARIABLES)
with |VARIABLES| >range(VARIABLES.var)

implies SOME EQUAL(VARIABLES).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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5.91 CONTAINS SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint CONTAINS SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym CONTAINS.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi contains Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An objectOi contains an objectOj with respect to a set of dimensions depicted by DIMS
if and only if, for all shifted boxes sj associated with Oj , there exists a shifted box si of
Oi such that si contains sj . A shifted box si contains a shifted box sj if and only if, for
all dimensions d ∈ DIMS, (1) the start of si in dimension d is strictly less than the start
of sj in dimension d and (2) the end of sj in dimension d is strictly less than the end of
si in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 3 x− 〈3, 3〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈5, 5〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.223 shows the objects of the example. Since O1 contains both O2 and
O3, and since O2 contains O3, the CONTAINS SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349]. The constraint
CONTAINS SBOXES is a restriction of the original relation since it requires that each shifted
box of an object is contained by one shifted box of the other object.

See also common keyword: COVEREDBY SBOXES, COVERS SBOXES,
DISJOINT SBOXES, EQUAL SBOXES, INSIDE SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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S1

(A) Shape of the
first object

S2

(B) Shape of the
second object

S3

(C) Shape of the
third object

4 5 61 2 3

4

5

1

2

3

O1

O2

O3

(D) Three objects O1, O2, O3, where O1 both contains O2 and O3

and where O2 contains O3

O1: oid− 1 sid− 1 x− 〈1, 1〉
O2: oid− 2 sid− 2 x− 〈2, 2〉
O3: oid− 3 sid− 3 x− 〈3, 3〉

OBJECTS

Figure 5.223: (D) the three nested objectsO1,O2,O3 of the Example slot respectively
assigned shapes S1, S2, S3; (A), (B), (C) shapes S1, S2 and S3 are made up from a
single shifted box.



CONTAINS SBOXES 957

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• contains sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧
origin(O1, S1, D) <
origin(O2, S2, D)

,

end(O2, S2, D) <
end(O1, S1, D)


• contains objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

( [
O2.sid

] )
contains sboxes


Dims,
O1,
S1,
O2,
S2


• all contains(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

contains objects

 Dims,
O1,
O2


• all contains(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.92 CORRESPONDENCE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SORT PERMUTATION by removing the sorting condition.

Constraint CORRESPONDENCE(FROM, PERMUTATION, TO)

Arguments FROM : collection(from−dvar)
PERMUTATION : collection(var−dvar)
TO : collection(tvar−dvar)

Restrictions |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
ALLDIFFERENT(PERMUTATION)
required(FROM, from)
required(PERMUTATION, var)
required(TO, tvar)

Purpose The variables of collection FROM correspond to the variables of collection TO according to
the permutation PERMUTATION (i.e., FROM[i].from = TO[PERMUTATION[i].var].tvar).

Example (〈1, 9, 1, 5, 2, 1〉 , 〈6, 1, 3, 5, 4, 2〉 , 〈9, 1, 1, 2, 5, 1〉)

As illustrated by Figure 5.224, the CORRESPONDENCE constraint holds since:

• The first item FROM[1].from = 1 of collection FROM corresponds to the
PERMUTATION[1].var = 6th item of collection TO.

• The second item FROM[2].from = 9 of collection FROM corresponds to the
PERMUTATION[2].var = 1th item of collection TO.

• The third item FROM[3].from = 1 of collection FROM corresponds to the
PERMUTATION[3].var = 3th item of collection TO.

• The fourth item FROM[4].from = 5 of collection FROM corresponds to the
PERMUTATION[4].var = 5th item of collection TO.

• The fifth item FROM[5].from = 2 of collection FROM corresponds to the
PERMUTATION[5].var = 4th item of collection TO.

• The sixth item FROM[6].from = 1 of collection FROM corresponds to the
PERMUTATION[6].var = 2th item of collection TO.

Typical |FROM| > 1
range(FROM.from) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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FROM PERMUTATION TO

Figure 5.224: Illustration of the correspondence between the items of the FROM and the
TO collections according to the permutation defined by the items of the PERMUTATION
collection of the Example slot

Symmetry All occurrences of two distinct values in FROM.from or TO.tvar can be swapped; all
occurrences of a value in FROM.from or TO.tvar can be renamed to any unused value.

Remark Similar to the SAME constraint except that we also provide the permutation that allows one
to go from the items of collection FROM to the items of collection TO.

Algorithm An arc-consistency filtering algorithm for the CORRESPONDENCE constraint is described
in [138, 139]. The algorithm is based on the following ideas:

• First, one can map solutions to the CORRESPONDENCE constraint to perfect match-
ings in a bipartite graph derived from the domain of the variables of the constraint
in the following way: to each variable of the FROM collection there is a from vertex;
similarly, to each variable of the TO collection there is a to vertex; finally, there is
an edge between the ith from vertex and the jth to vertex if and only if the corre-
sponding domains intersect and if j belongs to the domain of the ith permutation
variable.

• Second, Dulmage-Mendelsohn decomposition [157] is used to characterise all edges
that do not belong to any perfect matching, and therefore prune the corresponding
variables.

See also implied by: SORT PERMUTATION.

specialisation: SAME (PERMUTATION parameter removed).

Keywords characteristic of a constraint: derived collection.

combinatorial object: permutation.

constraint arguments: constraint between three collections of variables.

filtering: bipartite matching.

final graph structure: acyclic, bipartite, no loop.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col

(
FROM PERMUTATION−collection(from−dvar, var−dvar),
[item(from− FROM.from, var− PERMUTATION.var)]

)
Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.from = to.tvar
• from permutation.var = to.key

Graph property(ies) NARC= |PERMUTATION|

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.225 respectively show the initial and final graph associated
with the Example slot. In both graphs the source vertices correspond to the derived collec-
tion FROM PERMUTATION, while the sink vertices correspond to the collection TO. Since the
final graph contains exactly |PERMUTATION| arcs the CORRESPONDENCE constraint holds.
As we use the NARC graph property, the arcs of the final graph are stressed in bold.

Signature Because of the second condition from permutation.var = to.key of the arc constraint
and since both, the var attributes of the collection FROM PERMUTATION and the key at-
tributes of the collection TO are all-distinct, the final graph contains at most |PERMUTATION|
arcs. Therefore we can rewrite the graph property NARC = |PERMUTATION| to NARC
≥ |PERMUTATION|. This leads to simplify NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(B) NARC=6
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4:2
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Figure 5.225: Initial and final graph of the CORRESPONDENCE constraint
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5.93 COUNT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [108]

Constraint COUNT(VALUE, VARIABLES, RELOP, LIMIT)

Synonyms OCCURENCEMAX, OCCURENCEMIN, OCCURRENCE.

Arguments VALUE : int

VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of variables of the VARIABLES collection assigned to value VALUE;
Enforce condition N RELOP LIMIT to hold.

Example (5, 〈4, 5, 5, 4, 5〉 ,≥, 2)

The COUNT constraint holds since value VALUE = 5 occurs 3 times within the
items of the collection VARIABLES = 〈4, 5, 5, 4, 5〉, which is greater than or equal to
(RELOP is set to ≥) LIMIT = 2.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
RELOP ∈ [=, <,≥, >,≤]
LIMIT > 0
LIMIT < |VARIABLES|

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that is different from VALUE can be
replaced by any other value that is also different from VALUE.

Arg. properties • Contractible wrt. VARIABLES when RELOP ∈ [<,≤].

• Extensible wrt. VARIABLES when RELOP ∈ [≥, >].

• Aggregate: VALUE(id), VARIABLES(union), RELOP(id), LIMIT(+) when
RELOP ∈ [<,≤,≥, >].

Remark Similar to the AMONG constraint. Both, in JaCoP (http://www.jacop.eu/) and in
MiniZinc (http://www.minizinc.org/) RELOP is implicitly set to =.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/
http://www.minizinc.org/
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Reformulation The COUNT(VALUE, VARIABLES, RELOP , LIMIT) constraint can be expressed in term of
the conjunction AMONG(N, VARIABLES, 〈VALUE〉) ∧ N RELOP LIMIT.

Systems OCCURENCE in Choco, COUNT in Gecode, COUNT in JaCoP, COUNT EQ in MiniZinc,
COUNT GEQ in MiniZinc, COUNT GT in MiniZinc, COUNT LEQ in MiniZinc, COUNT LT

in MiniZinc, COUNT NEQ in MiniZinc, COUNT in SICStus.

See also assignment dimension added: ASSIGN AND COUNTS (variable=VALUE replaced by
variable ∈ VALUES and assignment dimension introduced).

common keyword: AMONG (value constraint,counting constraint), ARITH (value
constraint), COMPARE AND COUNT (counting constraint), GLOBAL CARDINALITY,
MAX NVALUE, MIN NVALUE (value constraint,counting constraint), NVALUE (counting
constraint).

generalisation: COUNTS (variable=VALUE replaced by variable ∈ VALUES).

related: ROOTS.

used in reformulation: AMONG.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_eq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_geq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_gt
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_leq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_lt
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_neq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC RELOP LIMIT

Graph model Parts (A) and (B) of Figure 5.226 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:5

(A) (B)

Figure 5.226: Initial and final graph of the COUNT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.227 depicts the automaton associated with the COUNT constraint. To each variable
VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The following
signature constraint links VARi and Si: VARi = VALUE⇔ Si.

C RELOP LIMIT

s{C ← 0} VARi = VALUE,
{C ← C + 1}

VARi 6= VALUE

Figure 5.227: Automaton of the COUNT constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn RELOP LIMIT

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.228: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the COUNT constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.94 COUNTS

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from COUNT.

Constraint COUNTS(VALUES, VARIABLES, RELOP, LIMIT)

Arguments VALUES : collection(val−int)
VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VALUES, val)
distinct(VALUES, val)
required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose LetN be the number of variables of the VARIABLES collection assigned to a value of the
VALUES collection. Enforce condition N RELOP LIMIT to hold.

Example (〈1, 3, 4, 9〉 , 〈4, 5, 5, 4, 1, 5〉 ,=, 3)

Values 1, 3, 4 and 9 of the VALUES collection are assigned to 3 items of the
VARIABLES = 〈4, 5, 5, 4, 1, 5〉 collection. The COUNTS constraint holds since this
number is in fact equal (RELOP is set to =) to the last argument of the COUNTS constraint.

Typical |VALUES| > 1
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |VALUES|
RELOP ∈ [=, <,≥, >,≤]
LIMIT > 0
LIMIT < |VARIABLES|

Symmetries • Items of VALUES are permutable.

• Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Contractible wrt. VARIABLES when RELOP ∈ [<,≤].

• Extensible wrt. VARIABLES when RELOP ∈ [≥, >].

• Aggregate: VALUES(sunion), VARIABLES(union), RELOP(id), LIMIT(+) when
RELOP ∈ [<,≤,≥, >].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage Used in the Constraint(s) on sets slot for defining some constraints like
ASSIGN AND COUNTS.

Reformulation The COUNT(VALUES, VARIABLES, RELOP , LIMIT) constraint can be expressed in term of
the conjunction AMONG(N, VARIABLES, VALUES) ∧ N RELOP LIMIT.

Systems COUNT in Gecode.

Used in ASSIGN AND COUNTS.

See also assignment dimension added: ASSIGN AND COUNTS (assignment dimension intro-
duced).

common keyword: AMONG (value constraint,counting constraint).

specialisation: COUNT (variable ∈ VALUES replaced by variable=VALUE).

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC RELOP LIMIT

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Because of the arc constraint variables.var = values.val and since each domain vari-
able can take at most one value, NARC is the number of variables taking a value in the
VALUES collection.

Parts (A) and (B) of Figure 5.229 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

VALUES

1

1234

2 3456

NARC=3

1:4

3:4

4:4 5:1

1:1

(A) (B)

Figure 5.229: Initial and final graph of the COUNTS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.230 depicts the automaton associated with the COUNTS constraint. To each vari-
able VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The fol-
lowing signature constraint links VARi and Si: VARi ∈ VALUES⇔ Si.

C RELOP LIMIT

s{C ← 0} IN(VARi, VALUES),
{C ← C + 1}

NOT IN(VARi, VALUES)

Figure 5.230: Automaton of the COUNTS constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn RELOP LIMIT

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.231: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the COUNTS constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.95 COVEREDBY SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint COVEREDBY SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym COVEREDBY.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
|SBOXES| ≥ 1
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi is covered by Oj with respect to a
set of dimensions depicted by DIMS. Oi andOj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi is covered by an object Oj with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted box si of Oi, there exists a shifted box sj of Oj such
that:

• For all dimensions d ∈ DIMS, (1) the start of sj in dimension d is less than or
equal to the start of si in dimension d, and (2) the end of si in dimension d is less
than or equal to the end of sj in dimension d.

• There exists a dimension d where, (1) the start of sj in dimension d coincide with
the start of si in dimension d, or (2) the end of sj in dimension d coincide with
the end of si in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 4 x− 〈2, 3〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 1 x− 〈1, 1〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 1 t− 〈3, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈2, 0〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.232 shows the objects of the example. Since O1 is covered by both O2

and O3, and since O2 is covered by O3, the COVEREDBY SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

Remark One of the eight relations of the Region Connection Calculus [349]. The constraint
COVEREDBY SBOXES is a restriction of the original relation since it requires that each
shifted box of an object is covered by one shifted box of the other object.

See also common keyword: CONTAINS SBOXES, COVERS SBOXES,
DISJOINT SBOXES, EQUAL SBOXES, INSIDE SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.
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S1

(A) Shape of the
third object

S2

(B) Shapes of the
second object

S3

S4

(C) Shape of the
first object

3 4 51 2

4

1

2

3

O3

O2

O1

(D) Three objects O1, O2, O3, where O1 is covered by both O2 and O3

and where O2 is covered by O3

O1: oid− 1 sid− 4 x− 〈2, 3〉
O2: oid− 2 sid− 2 x− 〈2, 2〉
O3: oid− 3 sid− 1 x− 〈1, 1〉

OBJECTS

Figure 5.232: (D) the three objects O1, O2, O3 of the Example slot respectively
assigned shapes S4, S2, S1; (A), (B), (C) shapes S1, S2, S3 and S4 are respectively
made up from 2, 2, 2 and 1 single shifted box.

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Keywords
Related keywords grouped by meta-keywords.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• coveredby sboxes(Dims, O1, S1, O2, S2)
def
=

∧



∀D ∈ Dims

∧


origin

 O2,
S2,
D

 ≤
origin

 O1,
S1,
D

 ,

end(O1, S1, D) ≤
end(O2, S2, D)


,

∃D ∈ Dims

∨


origin

 O2,
S2,
D

 =

origin

 O1,
S1,
D

 ,

end(O1, S1, D) =
end(O2, S2, D)




• coveredby objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

( [
O2.sid

] )
coveredby sboxes


Dims,
O1,
S1,
O2,
S2


• all coveredby(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

coveredby objects

 Dims,
O1,
O2


• all coveredby(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.96 COVERS SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint COVERS SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym COVERS.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi covers Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi covers an object Oj with respect to a set of dimensions depicted by DIMS

if and only if, for all shifted box sj of Oj , there exists a shifted box si of Oi such that:

• For all dimensions d ∈ DIMS, (1) the start of si in dimension d is less than or
equal to the start of sj in dimension d, and (2) the end of sj in dimension d is less
than or equal to the end of si in dimension d.

• There exists a dimension d where, (1) the start of si in dimension d coincide with
the start of sj in dimension d, or (2) the end of si in dimension d coincide with
the end of sj in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 4 x− 〈2, 3〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 1 t− 〈3, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 2 t− 〈2, 0〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 2〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.233 shows the objects of the example. Since O1 covers both O2 and O3,
and since O2 covers O3, the COVERS SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349]. The constraint
COVERS SBOXES is a relaxation of the original relation since it requires that each shifted
box of an object is covered by one shifted box of the other object.

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES,
DISJOINT SBOXES, EQUAL SBOXES, INSIDE SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.
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S1

(A) Shape of the
first object

S2

(B) Shapes of the
second object

S3

S4

(C) Shape of the
third object

3 4 51 2

4

1

2

3

O1

O2

O3

(D) Three objects O1, O2, O3, where O1 covers both O2 and O3

and where O2 covers O3

O1: oid− 1 sid− 1 x− 〈1, 1〉
O2: oid− 2 sid− 2 x− 〈2, 2〉
O3: oid− 3 sid− 4 x− 〈2, 3〉

OBJECTS

Figure 5.233: (D) the three objects O1, O2, O3 of the Example slot respectively
assigned shapes S1, S2, S4; (A), (B), (C) shapes S1, S2, S3 and S4 are respectively
made up from 2, 2, 2 and 1 single shifted box.

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Keywords
Related keywords grouped by meta-keywords.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• covers sboxes(Dims, O1, S1, O2, S2)
def
=

∧



∀D ∈ Dims

∧
origin(O1, S1, D) ≤
origin(O2, S2, D)

,

end(O2, S2, D) ≤
end(O1, S1, D)

 ,

∃D ∈ Dims

∨
origin(O1, S1, D) =
origin(O2, S2, D)

,

end(O1, S1, D) =
end(O2, S2, D)




• covers objects(Dims, O1, O2)

def
=

∀S2 ∈ sboxes([O2.sid])
∃S1 ∈ sboxes

( [
O1.sid

] )
covers sboxes


Dims,
O1,
S1,
O2,
S2


• all covers(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

covers objects

 Dims,
O1,
O2


• all covers(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.97 CROSSING

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [131].

Constraint CROSSING(NCROSS, SEGMENTS)

Arguments NCROSS : dvar

SEGMENTS : collection(ox−dvar, oy−dvar, ex−dvar, ey−dvar)

Restrictions NCROSS ≥ 0
NCROSS ≤ (|SEGMENTS| ∗ |SEGMENTS| − |SEGMENTS|)/2
required(SEGMENTS, [ox, oy, ex, ey])

Purpose
NCROSS is the number of line segments intersections between the line segments defined
by the SEGMENTS collection. Each line segment is defined by the coordinates (ox, oy)
and (ex, ey) of its two extremities.

Example

 3,

〈 ox− 1 oy− 4 ex− 9 ey− 2,
ox− 1 oy− 1 ex− 3 ey− 5,
ox− 3 oy− 2 ex− 7 ey− 4,
ox− 9 oy− 1 ex− 9 ey− 4

〉 
Figure 5.234 provides a picture of the example with the corresponding four line
segments of the SEGMENTS collection. The CROSSING constraint holds since its first
argument NCROSS is set to 3, which is actually the number of line segments intersections.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

S1S
2

S3

S4

x

y

Figure 5.234: Illustration of the Example slot: intersection, in red, between the four
line segments S1, S2, S3 and S4 (NCROSS = 3)

Typical |SEGMENTS| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.
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Symmetries • Items of SEGMENTS are permutable.

• Attributes of SEGMENTS are permutable w.r.t. permutation (ox, oy) (ex, ey) (per-
mutation applied to all items).

• One and the same constant can be added to the ox and ex attributes of all items of
SEGMENTS.

• One and the same constant can be added to the oy and ey attributes of all items of
SEGMENTS.

Arg. properties Functional dependency: NCROSS determined by SEGMENTS.

See also common keyword: GRAPH CROSSING, TWO LAYER EDGE CROSSING (line segments in-
tersection).

Keywords constraint arguments: pure functional dependency.

final graph structure: acyclic, no loop.

geometry: geometrical constraint, line segments intersection.

modelling: functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SEGMENTS

Arc generator CLIQUE(<) 7→collection(s1, s2)

Arc arity 2

Arc constraint(s) • max(s1.ox, s1.ex) ≥ min(s2.ox, s2.ex)
• max(s2.ox, s2.ex) ≥ min(s1.ox, s1.ex)
• max(s1.oy, s1.ey) ≥ min(s2.oy, s2.ey)
• max(s2.oy, s2.ey) ≥ min(s1.oy, s1.ey)

•
∨


(s2.ox− s1.ex) ∗ (s1.ey− s1.oy)−
(s1.ex− s1.ox) ∗ (s2.oy− s1.ey)

= 0,

(s2.ex− s1.ex) ∗ (s2.oy− s1.oy)−
(s2.ox− s1.ox) ∗ (s2.ey− s1.ey)

= 0,

sign

(
(s2.ox− s1.ex) ∗ (s1.ey− s1.oy)−
(s1.ex− s1.ox) ∗ (s2.oy− s1.ey)

)
6=

sign

(
(s2.ex− s1.ex) ∗ (s2.oy− s1.oy)−
(s2.ox− s1.ox) ∗ (s2.ey− s1.ey)

)


Graph property(ies) NARC= NCROSS

Graph class • ACYCLIC
• NO LOOP

Graph model Each line segment is described by the x and y coordinates of its two extremities. In the
arc generator we use the restriction < in order to generate a single arc for each pair of
segments. This is required, since otherwise we would count more than once a given line
segments intersection.

Parts (A) and (B) of Figure 5.235 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final graph
are stressed in bold. An arc constraint expresses the fact the two line segments intersect. It
is taken from [131, page 889]. Each arc of the final graph corresponds to a line segments
intersection.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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SEGMENTS

1

2

3

4

NARC=3

1:1,4,9,2

2:1,1,3,5 3:3,2,7,4 4:9,1,9,4

(A) (B)

Figure 5.235: Initial and final graph of the CROSSING constraint
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5.98 CUMULATIVE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [1]

Constraint CUMULATIVE(TASKS, LIMIT)

Synonym CUMULATIVE MAX.

Arguments TASKS : collection


origin−dvar,
duration−dvar,
end−dvar,
height−dvar


LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
set T of tasks described by the TASKS collection. The CUMULATIVE constraint enforces
that at each point in time, the cumulated height of the set of tasks that overlap that point,
does not exceed a given limit. A task overlaps a point i if and only if (1) its origin is less
than or equal to i, and (2) its end is strictly greater than i. It also imposes for each task
of T the constraint origin + duration = end.

Example


〈 origin− 1 duration− 3 end− 4 height− 1,

origin− 2 duration− 9 end− 11 height− 2,
origin− 3 duration− 10 end− 13 height− 1,
origin− 6 duration− 6 end− 12 height− 1,
origin− 7 duration− 2 end− 9 height− 3

〉
, 8



Figure 5.236 shows the cumulated profile associated with the example. To each task of
the CUMULATIVE constraint, i.e. each line of the example, corresponds a set of rectangles
coloured with the same colour: the sum of the lengths of the rectangles corresponds to the
duration of the task, while the height of the rectangles (i.e., all the rectangles associated
with a task have the same height) corresponds to the resource consumption of the task.
The CUMULATIVE constraint holds since at each point in time we do not have a cumulated
resource consumption strictly greater than the upper limit 8 enforced by the last argument
of the CUMULATIVE constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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¯ o− 6 d− 6 e− 12 h− 1
° o− 7 d− 2 e− 9 h− 3

TASKS

(
o for origin, d for duration,
e for end, h for height

)

Figure 5.236: Resource consumption profile corresponding to the five tasks of the
Example slot (note that the vertical position of a task does not really matter but is only
used for displaying the contribution of a task to the resource consumption profile)

All solutions Figure 5.237 gives all solutions to the following non ground instance of the CUMULATIVE

constraint:
O1 ∈ [1, 5], D1 ∈ [4, 4], E1 ∈ [1, 9], H1 ∈ [2, 6],
O2 ∈ [2, 7], D2 ∈ [6, 6], E2 ∈ [1, 9], H2 ∈ [3, 3],
O3 ∈ [3, 6], D3 ∈ [3, 6], E3 ∈ [1, 9], H3 ∈ [1, 2],
O4 ∈ [1, 8], D4 ∈ [2, 3], E4 ∈ [1, 9], H4 ∈ [3, 4],
CUMULATIVE(〈O1 D1 E1 H1 1, O2 D2 E2 H2 2, O3 D3 E3 H3 3, O4 D4 E4 H4 4〉, 5).

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
LIMIT <sum(TASKS.height)


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.



984 CUMULATIVE

¬ (〈1 4 5 2, 3 6 9 3, 5 3 8 1, 1 2 3 3〉)
 (〈1 4 5 2, 3 6 9 3, 5 3 8 2, 1 2 3 3〉)
® (〈1 4 5 2, 3 6 9 3, 5 4 9 1, 1 2 3 3〉)
¯ (〈1 4 5 2, 3 6 9 3, 5 4 9 2, 1 2 3 3〉)
° (〈1 4 5 2, 3 6 9 3, 6 3 9 1, 1 2 3 3〉)
± (〈1 4 5 2, 3 6 9 3, 6 3 9 2, 1 2 3 3〉)
² (〈2 4 6 2, 3 6 9 3, 6 3 9 1, 1 2 3 3〉)
³ (〈2 4 6 2, 3 6 9 3, 6 3 9 2, 1 2 3 3〉)
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Figure 5.237: All solutions corresponding to the non ground example of the
CUMULATIVE constraint of the All solutions slot

Symmetries • Items of TASKS are permutable.

• TASKS.duration can be decreased to any value ≥ 0.

• TASKS.height can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.

• LIMIT can be increased.

Arg. properties Contractible wrt. TASKS.

Usage The CUMULATIVE constraint occurs in most resource scheduling problems where one has
to deal with renewable and/or non-renewable resources:


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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• Renewable resources typically correspond to machines or persons, and tasks require
such resources during all their executions (i.e. a resource starts to be used at the
beginning of the task and is released at the end of the task). This means that, once
a task has finished its work, the resource it was using is available for other tasks.
Tasks are defined by their origins, durations, ends and resource consumptions and
can not be interrupted. When the duration and resource consumption are not fixed
tasks can be defined by their loads, i.e. the product of their durations and resource
consumptions. To express the dependency between a non-fixed duration/resource
consumption of a task with another decision variable (e.g., to state that the duration
of a task depends on its start) one can use the ELEMENT constraint where the decision
variable corresponds to the index argument of the ELEMENT constraint.

• Non renewable resources typically correspond to stock or money, i.e., resources that
do not come back when a task finishes to use them. In this context the CUMULATIVE

constraint is used for modelling producer-consumer problems, i.e. problems where
a first set of tasks produces a non-renewable resource, while a second set of tasks
consumes this resource so that a limit on the minimum or the maximum stock at
each instant is imposed.

The CUMULATIVE constraint is also used as a necessary condition for non-overlapping
rectangles (see the DIFFN constraint).

Remark In the original CUMULATIVE constraint of CHIP the LIMIT parameter was a domain vari-
able corresponding to the maximum peak of the resource consumption profile. Given a fixed
time frame, this variable could be used as a cost in order to directly minimise the maximum
resource consumption peak. Fixing this variable is potentially dangerous since it imposes
the maximum peak to be equal to a given target value.

Some systems like Ilog CP Optimizer also assume that a zero-duration task overlaps a point
i if and only if (1) its origin is less than or equal to i, and (2) its end is greater than or equal
to i. Under this definition, the height of a zero-duration task is also taken into account in
the resource consumption profile.

Note that the concept of cumulative is different from the concept of rectangles
non-overlapping even though, most of the time, each task of a ground solution to a
CUMULATIVE constraint is simply drawn as a single rectangle. As illustrated by Fig-
ure 5.291, this is in fact not always possible (i.e., some rectangles may need to be broken
apart). In fact the CUMULATIVE constraint is only a necessary condition for rectangles
non-overlapping (see Figure 5.290 and the corresponding explanation in the Algorithm
slot of the DIFFN constraint).

In MiniZinc (http://www.minizinc.org/) the tasks of a CUMULATIVE constraint have
no end attribute.

Algorithm The first filtering algorithms were related to the notion of compulsory part of a task [261].
They compute a cumulated resource profile of all the compulsory parts of the tasks and
prune the origins of the tasks with respect to this profile in order to not exceed the resource
capacity. These methods are sometimes called time tabling. Even though these methods are
quite local, i.e., a task has a non-empty compulsory part only when the difference between
its latest start and its earliest start is strictly less than its duration, it scales well and is there-
fore widely used. Later on, more global algorithms6 based on the resource consumption of

6Even though these more global algorithms usually can prune more early in the search tree, these algo-
rithms do not catch all deductions derived from the cumulated resource profile of compulsory parts.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

http://www.cosytec.com
http://www.minizinc.org/
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the tasks on specific intervals were introduced [163, 112, 276]. A popular variant, called
edge finding, considers only specific intervals [294]. An efficient implementation of edge
finding in O(kn logn), where k is the number of distinct task heights and n is the number
of tasks, based on a specific data structure, so called a cumulative Φ-tree [446], is provided
in [445]. When the number of distinct task heights k is not small, a usually almost faster
implementation in O(n2) is described in [241]. A O(n2 logn) filtering algorithm based
on tasks that can not be the earliest (or not be the latest) is described in [386].

Within the context of linear programming, the reference [227] provides a relaxation of the
CUMULATIVE constraint.

A necessary condition for the CUMULATIVE constraint is obtained by stating a
DISJUNCTIVE constraint on a subset of tasks T such that, for each pair of tasks of T ,
the sum of the two corresponding minimum heights is strictly greater than LIMIT. This can
be done by applying the following procedure:

• Let h be the smallest minimum height strictly greater than b LIMIT
2
c of the tasks of the

CUMULATIVE constraint. If no such task exists then the procedure is stopped without
stating any DISJUNCTIVE constraint.

• Let Th denote the set of tasks of the CUMULATIVE constraint for which the minimum
height is greater than or equal to h. By construction, the tasks of Th cannot overlap.
But we can possibly add one more task as shown by the next step.

• When it exists, we can add one task that does not belong to Th and such that its
minimum height is strictly greater than LIMIT− h. Again, by construction, this task
cannot overlap all the tasks of Th.

When the tasks are involved in several CUMULATIVE constraints more sophisticated meth-
ods are available for extracting DISJUNCTIVE constraints [18, 17].

In the context where, both the duration and height of all the tasks are fixed, [41] provides
two kinds of additional filtering algorithms that are especially useful when the slack σ (i.e.,
the difference between the available space and the sum of the surfaces of the tasks) is very
small:

• The first one introduces bounds for the so called cumulative longest hole problem.
Given an integer ε that does not exceed the resource limit, and a subset of tasks
T ′ for which the resource consumption is a most ε, the cumulative longest hole
problem is to find the largest integer lmax εσ(T ′) such that there is a cumulative
placement of maximum height ε involving a subset of tasks of T ′ where, on one
interval [i, i+ lmax εσ(T ′)−1] of the cumulative profile, the area of the empty space
does not exceed σ.

• The second one used dynamic programming for filtering so called balancing knap-
sack constraints. When the slack is 0, such constraints express that the total height
of tasks ending at instant i must equal the total height of tasks starting at instant i.
Such constraints can be generalised to non-zero slack.

Bound-consistency algorithms are available for the following relaxations of the
CUMULATIVE constraint:

• When the durations and the resource consumptions are all equal to 1, one can use
the bound-consistency filtering algorithm of the GLOBAL CARDINALITY LOW UP

constraint.
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• When the durations are all equal, one can use the bound-consistency filtering algo-
rithm of the MULTI INTER DISTANCE constraint.

Systems CUMULATIVEMAX in Choco, CUMULATIVE in Gecode, CUMULATIVE in JaCoP,
CUMULATIVE in MiniZinc, CUMULATIVE in SICStus.

See also assignment dimension added: COLOURED CUMULATIVES (sum of task

heights replaced by number of distinct colours, assignment dimension added),
CUMULATIVES (negative heights allowed and assignment dimension added).

common keyword: CALENDAR (scheduling constraint),
COLOURED CUMULATIVE (resource constraint, sum of task heights replaced
by number of distinct values), COLOURED CUMULATIVES (resource constraint),
CUMULATIVE CONVEX (resource constraint, task defined by a set of points),
CUMULATIVE PRODUCT (resource constraint, sum of task heights replaced by product
of task heights), CUMULATIVE WITH LEVEL OF PRIORITY (resource constraint, a
CUMULATIVE constraint for each set of tasks having a priority less than or equal to a
given threshold).

generalisation: CUMULATIVE TWO D (task replaced by rectangle with a height).

implied by: DIFFN (CUMULATIVE is a neccessary condition for each dimension of the
DIFFN constraint).

related: LEX CHAIN LESS, LEX CHAIN LESSEQ (lexicographic ordering on the origins
of tasks, rectangles, . . .), ORDERED GLOBAL CARDINALITY (controlling the shape of
the cumulative profile for breaking symmetry).

soft variant: SOFT CUMULATIVE.

specialisation: ATMOST (task replaced by variable), BIN PACKING (all tasks have
a duration of 1 and a fixed height), DISJUNCTIVE (all tasks have a height of 1),
GLOBAL CARDINALITY LOW UP (all tasks have the same duration and height of 1),
MULTI INTER DISTANCE (all tasks have the same duration equal to DIST and the same
height of 1).

used in graph description: SUM CTR.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: linear programming, dynamic programming, compulsory part, cumulative
longest hole problems, Phi-tree, minimum task duration.

modelling: zero-duration task.

problems: producer-consumer.

puzzles: squared squares.

Cond. implications CUMULATIVE(TASKS, LIMIT)
with TASKS.height > 0

implies COLOURED CUMULATIVE(TASKS : TASKS, LIMIT : LIMIT).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#cumulative
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Scheduling-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

) 
Constraint(s) on sets SUM CTR(variables,≤, LIMIT)

Graph model The first graph constraint forces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time point t corresponding to
the start of a task, that the cumulated heights of the tasks that overlap t does not exceed the
limit of the resource.

Parts (A) and (B) of Figure 5.238 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. On the one hand, each source vertex
of the final graph can be interpreted as a time point. On the other hand the successors of
a source vertex correspond to those tasks that overlap that time point. The CUMULATIVE

constraint holds since for each successor set S of the final graph the sum of the heights of
the tasks in S does not exceed the limit LIMIT = 8.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 5.238: Initial and final graph of the CUMULATIVE constraint
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Automaton Figure ?? depicts the automaton associated with the CUMULATIVE constraint. To each item
of the collection TASKS corresponds a signature variable Si that is equal to 1.

ARITH SLIDING(C,≤, LIMIT)

s{C[ ]← 0}
1,{

C[ORIi]← C[ORIi] + HEIGHTi,
C[ENDi]← C[ENDi]− HEIGHTi

}

Figure 5.239: Automaton of the CUMULATIVE constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint CUMULATIVE(〈1 2 3 3, 2 2 4 2, 4 1 5 1〉, 4)
hold?

B. Does the constraint CUMULATIVE(〈1 2 3 1, 4 1 5 2〉, 1) hold?

C. Does the constraint CUMULATIVE(〈1 2 3 0, 1 2 3 4, 4 1 6 1〉, 4)
hold?

aHint: go back to the definition of CUMULATIVE.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:
O1 ∈ [1, 9], O2 ∈ [1, 9], O3 ∈ [1, 9], O4 ∈ [1, 9],
E1 ∈ [1, 8], E2 ∈ [1, 8], E3 ∈ [1, 8], E4 ∈ [1, 8],
CUMULATIVE(〈O1 1 E1 1, O2 2 E2 2, O3 3 E3 5, O4 4 E4 7〉, 7).

aHint: reason first on the two highest tasks and then on the other tasks.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 3 (switching time and resource and breaking symmetry)

Consider a set of 20 tasks for which the duration is given by Table 1, as
well as five machines. Each task has to be assigned to one of the five
machines in such a way that:

• preemption is not allowed,

• two tasks assigned to a same machine should not overlap.

The goal is to find a schedule that minimises the latest completion time
of the tasks.

44 670 949 969 851 573 361 118 309 43
309 929 385 879 704 374 996 631 343 920

Table 1: Durations of the tasks

A. Model the problem with a single CUMULATIVE constraint and
show how to use an extra dummy task to handle the fact that the
optimal makespan is initially unknown. Make sure to model the
machine to which a task is assigned.

B. Provide a search heuristic that takes into account the durations of
the tasks.

C. Show how to modify the previous search heuristic in order to
break the symmetry related to the fact that all machines are
equivalent.

D. Rather than handling symmetry breaking inside the search
heuristic use a symmetry-breaking constraint.

E. Use your favourite solver to find the minimal makespan.

SOLUTION TO EXERCISE 1

A. No, since the first and second tasks
overlap at time point 2 and use up to
3 + 2 resource units which exceeds the
resource capacity 4.

B. No, since the second task uses 2
resource units, while the resource
capacity is 1.

C. No, since for the third task the origin
plus the duration is different from the
end (4 + 1 6= 6).

1
2

3

1 2 3 4 5

1
2
3
4

(A)

1 2

1 2 3 4 5

1
(B)
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SOLUTION TO EXERCISE 2
(nested disjunctions)

1. Since we have a resource limit of 7 the third task
(of height 5) cannot overlap the fourth task (of
height 7). Since there is no slack on the time axis
(i.e., the difference between the latest end of the
third and fourth tasks and their earliest starts is
equal to the sum of their durations,
8− 1 = 3 + 4), this leads to the two configurations
shown on the right.

2. Since there is no available space on top of the
fourth task, the first and second tasks have to be
put on top of the third task. Since on top of the
third task we only have a capacity of 2 the first
and second tasks cannot overlap. Since there is no
remaining slack on the time axis this leads to the
two configurations shown on the right.

3. Combining the two previous observations together
leads to the four solutions shown below.

3
4

3
4

3

1 2

3

12

〈O1D1E1H1, O2D2E2H2, O3D3E3H3, O4D4E4H4〉

¬ (〈1 1 2 1, 2 2 4 2, 1 3 4 5, 4 4 8 7〉)
 (〈3 1 4 1, 1 2 3 2, 1 3 4 5, 4 4 8 7〉)
® (〈5 1 6 1, 6 2 8 2, 5 3 8 5, 1 4 5 7〉)
¯ (〈7 1 8 1, 5 2 7 2, 5 3 8 5, 1 4 5 7〉)

the four solutions

1
2

3
4

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7

¬
1

2

3
4

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7



1
2

3
4

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7

®
1

2

3
4

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7

¯
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SOLUTION TO EXERCISE 3

A. Since there are no temporal constraints, the problem is modelled as a
bin-packing problem where each bin represents a machine.

(a) Consider a task to schedule and its counterpart within the
CUMULATIVE constraint that models the problem. The origin, the
height and the duration of a task in the CUMULATIVE constraint
respectively correspond to the machine where the task will be assigned,
to its duration and to 1. We set the limit argument of the
CUMULATIVE constraint to an upper bound on the makespan, e.g., the
sum ` of the durations of the tasks to schedule.

(b) Finally, to link the makespan to the machines where the tasks are
assigned, we create a dummy task of variable height h over all the five
bins, i.e., starting at 1 and ending at 6. Note that the need for creating
this dummy task explains why we use a CUMULATIVE constraint rather
than a BIN PACKING constraint, for which the maximum capacity is
usually fixed.

This leads to the following CUMULATIVE constraint, where w.l.o.g. we omit
the end attribute of each task:
∀i ∈ [1, 20] : mi ∈ [1, 5],
` = 44 + 670 + · · ·+ 920,
h ∈ [0, `], makespan ∈ [0, `], makespan = `− h+ 1,
CUMULATIVE(〈m1 1 44,m2 1 670, . . . ,m20 1 920, 1 5 h〉, `).

B. To reduce the search space, order the variables m1,m2, . . . , m20 by
decreasing task durations before fixing them by trying successively all values
1, 2, . . . , 5. Let md1 ,md2 , . . . , md20 denote the corresponding ordered
variables.

C. Rather than trying all values 1, 2, . . . , 5 when fixing a variable mdi , first try
all values that are already assigned to the previously fixed variables, and
then try only one of the not yet used values, i.e. the smallest one. This
amounts to, for example, fixing the first variable md1 to the first machine,
and upon backtracking not trying all other values, between 2 and 5.

D. We use the constraint
INT VALUE PRECEDE CHAIN(〈1, 2, . . . , 5〉, 〈md1 ,md2 , . . . ,md20〉) to state
that the first occurrence of value i within the sequence of variables
md1 ,md2 , . . . ,md20 is located before the first occurrence of value i+ 1 in
the same sequence (with i ∈ [1, 4]).

E. By using the previous model together with the symmetry-breaking constraint
we find a minimal value of 2274 shown below. In other words the resource
consumption peak is equal to 2273.

17 15 6

4 3 11

12 14 19 8

20 2 16 9

5 18 13 7

bin 1

bin 2

bin 3

bin 4

bin 5
2273

An optimal solution where the numbers in
the rectangles denote the task identifiers
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5.99 CUMULATIVE CONVEX

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from CUMULATIVE

Constraint CUMULATIVE CONVEX(TASKS, LIMIT)

Type POINTS : collection(var−dvar)

Arguments TASKS : collection(points− POINTS, height−dvar)
LIMIT : int

Restrictions required(POINTS, var)
|POINTS| > 0
required(TASKS, [points, height])
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
set T of tasks described by the TASKS collection where each task is defined by:

• A set of distinct points depicting the time interval where the task is actually run-
ning: the smallest and largest coordinates of these points respectively give the
first and last instant of that time interval.

• A height that depicts the resource consumption used by the task from its first
instant to its last instant.

The CUMULATIVE CONVEX constraint enforces that, at each point in time, the cumu-
lated height of the set of tasks that overlap that point, does not exceed a given limit. A
task overlaps a point i if and only if (1) its origin is less than or equal to i, and (2) its end
is strictly greater than i.

Example

 〈
points− 〈2, 1, 5〉 height− 1,
points− 〈4, 5, 7〉 height− 2,
points− 〈14, 13, 9, 11, 10〉 height− 2

〉
, 3


Figure 5.240 shows the cumulated profile associated with the example. To each set
of points defining a task corresponds a rectangle. The height of each rectangle represents
the resource consumption of the associated task. The CUMULATIVE CONVEX constraint
holds since at each point in time we do not have a cumulated resource consumption strictly
greater than the upper limit 3 enforced by the last argument of the CUMULATIVE CONVEX

constraint.

Typical |TASKS| > 1
TASKS.height > 0
LIMIT <sum(TASKS.height)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.



CUMULATIVE CONVEX 995

¬


®

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3 ≤ 3

time

am
ou

nt
of

us
ed

re
so

ur
ce

¬ points− 〈2, 1, 5〉 height− 1
 points− 〈4, 5, 7〉 height− 2
® points− 〈14, 13, 9, 11, 10〉 height− 2

TASKS

Figure 5.240: Points defining the three tasks of the Example slot and corresponding
resource consumption profile (note that the vertical position of a task does not really
matter but is only used for displaying the contribution of a task to the resource con-
sumption profile)

Symmetries • Items of TASKS are permutable.

• Items of TASKS.points are permutable.

• TASKS.height can be decreased to any value ≥ 0.

• LIMIT can be increased.

Arg. properties Contractible wrt. TASKS.

Usage A natural use of the CUMULATIVE CONVEX constraint corresponds to problems where a
task is defined as the convex hull of a set of distinct points P1, . . . , Pn that are not initially
fixed. Note that, by explicitly introducing a start S and an end E variables, and by using a
MINIMUM(S, 〈var−P1, . . . , var−Pn〉) and a MAXIMUM(E, 〈var−P1, . . . , var−Pn〉)
constraints, one could replace the CUMULATIVE CONVEX constraint by a CUMULATIVE

constraint. However this hinders propagation.

As a concrete example of use of the CUMULATIVE CONVEX constraint we present
a constraint model for a well-known pattern-sequencing problem [177] (also known
to be equivalent to the graph path-width [274] problem) that is based on a single
CUMULATIVE CONVEX constraint. The pattern sequencing problem can be described as
follows: Given a 0-1 matrix in which each column j (1 ≤ j ≤ p) corresponds to a prod-
uct required by the customers and each row i (1 ≤ i ≤ c) corresponds to the order of a
particular customer (The entry cij is equal to 1 if and only if customer i has ordered some
quantity of product j.), the objective is to find a permutation of the products such that the
maximum number of open orders at any point in the sequence is minimised. Order i is open
at point k in the production sequence if there is a product required in order i that appears
at or before position k in the sequence and also a product that appears at or after position k
in the sequence.

Before giving the constraint model, let us first provide an instance of the pattern-sequencing
problem. Consider the matrixM1 depicted by part (A1) of Fig. 5.241. Part (A2) gives its
corresponding cumulated matrixM2 obtained by setting to 1 each 0 ofM1 that is both
preceded and followed by a 1. Part (A3) depicts the corresponding solution in term of


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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≤ 3

(A4)

≤ 3

(B4)

P1 P2 P3 P4 P5 P6 P7 P8 P9

(A3)

P1 P2 P3 P5 P6 P7 P8 P9 P4

(B3)

1 1 1 1 1 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 0

P1 P2 P3 P4 P5 P6 P7 P8 P9

(A2)

1 1 1 1 1 1 1 1 1

0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 0

P1 P2 P3 P5 P6 P7 P8 P9 P4

(B2)

1 1 1 1 0 1 1 0 1

0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 1 0

P1 P2 P3 P4 P5 P6 P7 P8 P9

(A1)

1 1 1 0 1 1 0 1 1

0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 1

P1 P2 P3 P5 P6 P7 P8 P9 P4

(B1)

Figure 5.241: An input matrix for the pattern sequencing problem (A1), its corre-
sponding cumulated matrix (A2), a view in term of tasks (A3) and the corresponding
cumulative profile (A4); a second matrix (B1) where column 4 of (A1) is put at the
rightmost position.

the CUMULATIVE CONVEX constraint: to each row of the matrixM1 corresponds a task
defined as the convex hull of the different 1 located on that row. Finally part (A4) gives
the cumulated profile associated with part (A3), namely the number of 1 in each column
ofM2. The cost 3 of this solution is equal to the maximum number of 1 in the columns
of the cumulated matrixM2. As shown by parts (B1-B4), we can get a lower cost of 2 by
pushing the fourth column to the rightmost position.

The idea of the model is to associate to each row (i.e., customer) i of the cumulated matrix
a stack task that starts at the first 1 on row i and ends at the last 1 of row i (i.e., the task
corresponds to the convex hull of the different 1 located on row i). Then the cost of a
solution is simply the maximum height on the corresponding cumulated profile.

For each column j of the 0-1 matrix initially given there is a variable Vj ranging from 1



CUMULATIVE CONVEX 997

to the number of columns p. The value of Vj gives the position of column j in a solution.
We put all the stack tasks in a CUMULATIVE CONVEX constraint, telling that each stack
task uses one unit of the resource during all it execution. Since we want to have the same
model for different limits on the maximum number of open stacks, and since all variables
V1, V2, . . . , Vp have to be distinct, we have an extra dummy task characterised as the con-
vex hull of V1, V2, . . . , Vp. This extra dummy task has a heightH that has to be maximised.
For the matrix depicted by (A1) of Fig. 5.241 we pass to the CUMULATIVE CONVEX con-
straint the following collection of tasks:

〈 points− 〈P1, P2, P3, P4, P6, P7, P9〉 height− 1,
points− 〈P2, P5〉 height− 1,
points− 〈P4, P7, P8〉 height− 1,
points− 〈P1, P2, P3, P4, P5, P6, P7, P8, P9〉 height− 0

〉

Algorithm A first natural way to handle the CUMULATIVE CONVEX constraint is to accumulate the
compulsory part [261] of the different tasks in a profile and to prune according to this
profile. We give the main ideas for computing the compulsory part of a task and for pruning
a task according to the profile of compulsory parts.

Compulsory part of a task Given a task T characterised as the convex hull of a set of
distinct points P1, P2, . . . , Pk the compulsory part of T corresponds to the, possibly empty,
interval [sT , eT ] where:

• sT is the largest value v such that, when all variables P1, P2, . . . , Pk are greater than
or equal to v, all variables P1, P2, . . . , Pk can still take distinct values.

• eT is the smallest value v such that, when all variables P1, P2, . . . , Pk are less than
or equal to v, all variables P1, P2, . . . , Pk can still take distinct values.

Pruning according to the profile of compulsory parts Given two instants i and j (i < j)
and a task T characterised as the convex hull of a set of distinct points P1, P2, . . . , Pk, as-
sume that T cannot overlap i and j since this would lead exceeding LIMIT, the second ar-
gument of the CUMULATIVE CONVEX constraint. Furthermore assume that, when all vari-
ables P1, P2, . . . , Pk are both greater than i and less than j, all variables P1, P2, . . . , Pk
cannot take distinct values. Then all values of [i+ 1, j− 1] can be removed from variables
P1, P2, . . . , Pk.

See also common keyword: CUMULATIVE (resource constraint).

used in graph description: ALLDIFFERENT, BETWEEN MIN MAX, SUM CTR.

Keywords characteristic of a constraint: convex.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part.

problems: pattern sequencing.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



998 CUMULATIVE CONVEX

Derived Collection
col

(
INSTANTS−collection(instant−dvar),
[item(instant− TASKS.points.var)]

)
Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) ALLDIFFERENT(tasks.points)

Graph property(ies) NARC= |TASKS|

Arc input(s) INSTANTS TASKS

Arc generator PRODUCT 7→collection(instants, tasks)

Arc arity 2

Arc constraint(s) BETWEEN MIN MAX(instants.instant, tasks.points)

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

) 
Constraint(s) on sets SUM CTR(variables,≤, LIMIT)

Graph model The first graph constraint forces for each task that the set of points defining its time interval
are all distinct. The second graph constraint makes sure for each time point t, that the
cumulated heights of the tasks that overlap t does not exceed the limit of the resource.

Parts (A) and (B) of Figure 5.242 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. On the one hand, each source vertex
of the final graph can be interpreted as a time point corresponding to a point used in the
definitions of the different tasks. On the other hand, the successors of a source vertex
correspond to those tasks that overlap a given time point. The CUMULATIVE CONVEX

constraint holds since, for each successor set S of the final graph, the sum of the heights of
the tasks in S does not exceed the limit LIMIT = 3.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)
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TASKS

1

1 23

234567 891011

(B)

INSTANTS

TASKS

1:2

1:2
  1
  5

2:13:5

2:4
  5
  7

4:45:56:77:14

3:14
  13
  9
  11
  10

8:139:9 10:1111:10

Figure 5.242: Initial and final graph of the CUMULATIVE CONVEX constraint
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5.100 CUMULATIVE PRODUCT

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from CUMULATIVE.

Constraint CUMULATIVE PRODUCT(TASKS, LIMIT)

Arguments TASKS : collection


origin−dvar,
duration−dvar,
end−dvar,
height−dvar


LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 1
LIMIT ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The
CUMULATIVE PRODUCT constraint forces that at each point in time, the product
of the heights of the set of tasks that overlap that point, does not exceed a given limit.
A task overlaps a point i if and only if (1) its origin is less than or equal to i, and
(2) its end is strictly greater than i. It also imposes for each task of T the constraint
origin + duration = end.

Example


〈 origin− 1 duration− 3 end− 4 height− 1,

origin− 2 duration− 9 end− 11 height− 2,
origin− 3 duration− 10 end− 13 height− 1,
origin− 6 duration− 6 end− 12 height− 1,
origin− 7 duration− 2 end− 9 height− 3

〉
, 6


Figure 5.243 shows the solution associated with the example. To each task of the
CUMULATIVE PRODUCT constraint corresponds a set of rectangles coloured with the
same colour: the sum of the lengths of the rectangles corresponds to the duration of the
task, while the height of the rectangles (i.e., all the rectangles associated with a task have
the same height) corresponds to the height of the task. The profile corresponding to the
product of the heights of the tasks that overlap a given point is depicted by a thick red line.
The CUMULATIVE PRODUCT constraint holds since at each point in time the product of
the heights of the tasks that overlap that point is not strictly greater than the upper limit 6
enforced by the last argument of the CUMULATIVE PRODUCT constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Figure 5.243: Resource consumption profile in red corresponding to the product of the
heights of the five tasks of the Example slot

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
LIMIT <prod(TASKS.height)


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of TASKS are permutable.

• TASKS.height can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.

• LIMIT can be increased.

Arg. properties Contractible wrt. TASKS.

Reformulation The CUMULATIVE PRODUCT constraint can be expressed in term of a set of reified con-
straints and of |TASKS| constraints of the form h1 · h2 · · · · · h|TASKS| ≤ l:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS col-
lection we create a variable Hij which is set to the height of task TASKS[j] if task
TASKS[j] overlaps the origin attribute of task TASKS[i], and to 1 otherwise:

• If i = j:
– Hij = TASKS[i].height.

• If i 6= j:
– Hij = TASKS[j].height ∨Hij = 1.
– ((TASKS[j].origin ≤ TASKS[i].origin ∧

TASKS[j].end > TASKS[i].origin) ∧ (Hij = TASKS[j].height)) ∨
((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Hij = 1))

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we impose a constraint of the form Hi1 ·
Hi2 · · · · ·Hi|TASKS| ≤ LIMIT.

See also common keyword: CUMULATIVE (resource constraint).

used in graph description: PRODUCT CTR.

Keywords characteristic of a constraint: product.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part, minimum task duration.

modelling: zero-duration task.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin
• tasks1.origin < tasks2.end

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− ITEMS.height)]

) 
Constraint(s) on sets PRODUCT CTR(variables,≤, LIMIT)

Graph model Parts (A) and (B) of Figure 5.244 respectively show the initial and final graph associ-
ated with the second graph constraint of the Example slot. On the one hand, each source
vertex of the final graph can be interpreted as a time point. On the other hand the suc-
cessors of a source vertex correspond to those tasks that overlap that time point. The
CUMULATIVE PRODUCT constraint holds since for each successor set S of the final graph
the product of the heights of the tasks in S does not exceed the limit LIMIT = 6.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Figure 5.244: Initial and final graph of the CUMULATIVE PRODUCT constraint
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5.101 CUMULATIVE TWO D

I B C J DESCRIPTION LINKS

Origin Inspired by CUMULATIVE and DIFFN.

Constraint CUMULATIVE TWO D(RECTANGLES, LIMIT)

Arguments RECTANGLES : collection



start1−dvar,
size1−dvar,
last1−dvar,
start2−dvar,
size2−dvar,
last2−dvar,
height−dvar


LIMIT : int

Restrictions require at least(2, RECTANGLES, [start1, size1, last1])
require at least(2, RECTANGLES, [start2, size2, last2])
required(RECTANGLES, height)
RECTANGLES.size1 ≥ 0
RECTANGLES.size2 ≥ 0
RECTANGLES.height ≥ 0
LIMIT ≥ 0

Purpose
Consider a set R of rectangles described by the RECTANGLES collection. Enforces that
at each point of the plane, the cumulated height of the set of rectangles that overlap that
point, does not exceed a given limit.

Example


〈 s1− 1 d1− 4 e1− 4 s2− 3 d2− 3 e2− 5 h− 4,

s1− 3 d1− 2 e1− 4 s2− 1 d2− 2 e2− 2 h− 2,
s1− 1 d1− 2 e1− 2 s2− 1 d2− 2 e2− 2 h− 3,
s1− 4 d1− 1 e1− 4 s2− 1 d2− 1 e2− 1 h− 1

〉
, 4


 s1 for start1, d1 for size1, e1 for last1

s2 for start2, d2 for size2, e2 for last2
h for height


Part (A) of Figure 5.245 shows the 4 parallelepipeds of height 4, 2, 3 and 1 associ-
ated with the items of the RECTANGLES collection (parallelepipeds since each rectangle
also has a height). Part (B) gives the corresponding cumulated 2-dimensional profile,
where each number is the cumulated height of all the rectangles that contain the corre-
sponding region. The CUMULATIVE TWO D constraint holds since the highest peak of the
cumulated 2-dimensional profile does not exceed the upper limit 4 imposed by the last
argument of the CUMULATIVE TWO D constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Figure 5.245: Two representations of a 2-dimensional cumulative profile of the Ex-
ample slot (where the profile provides for each point of coordinates (cx, cy) the cor-
responding sum of the heights of the items intersecting that point): (A) a three dimen-
sional representation and (B) a two dimensional representation from above with the
height of the profile in red; as for the CUMULATIVE constraint the position of an item
on the z axis does not matter, i.e. only its height matters.

Typical |RECTANGLES| > 1
RECTANGLES.size1 > 0
RECTANGLES.size2 > 0
RECTANGLES.height > 0
LIMIT <sum(RECTANGLES.height)

Symmetries • Items of RECTANGLES are permutable.

• Attributes of RECTANGLES are permutable w.r.t. permutation (start1, start2)
(size1, size2) (last1, last2) (height) (permutation applied to all items).

• RECTANGLES.height can be decreased to any value ≥ 0.

• One and the same constant can be added to the start1 and last1 attributes of all
items of RECTANGLES.

• One and the same constant can be added to the start2 and last2 attributes of all
items of RECTANGLES.

• LIMIT can be increased.

Arg. properties Contractible wrt. RECTANGLES.

Usage The CUMULATIVE TWO D constraint is a necessary condition for the DIFFN constraint in
3 dimensions (i.e., the placement of parallelepipeds in such a way that they do not pairwise
overlap and that each parallelepiped has his sides parallel to the sides of the placement
space).

Algorithm A first natural way to handle this constraint would be to accumulate the compulsory
part [261] of the different rectangles in a quadtree [378]. To each leave of the quadtree
we associate the cumulated height of the rectangles containing the corresponding region.

Systems GEOST in Choco.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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See also related: DIFFN (CUMULATIVE TWO D is a necessary condition for DIFFN: forget one di-
mension when the number of dimensions is equal to 3).

specialisation: BIN PACKING (square of size 1 with a height replaced by task of
duration 1), CUMULATIVE (rectangle with a height replaced by task with same
height).

Keywords characteristic of a constraint: derived collection.

constraint type: predefined constraint.

filtering: quadtree, compulsory part.

geometry: geometrical constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.102 CUMULATIVE WITH LEVEL OF PRIORITY

I B C J DESCRIPTION LINKS GRAPH

Origin H. Simonis

Constraint CUMULATIVE WITH LEVEL OF PRIORITY(TASKS, PRIORITIES)

Arguments TASKS : collection


priority−int,
origin−dvar,
duration−dvar,
end−dvar,
height−dvar


PRIORITIES : collection(id−int, capacity−int)

Restrictions required(TASKS, [priority, height])
require at least(2, TASKS, [origin, duration, end])
TASKS.priority ≥ 1
TASKS.priority ≤ |PRIORITIES|
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
required(PRIORITIES, [id, capacity])
PRIORITIES.id ≥ 1
PRIORITIES.id ≤ |PRIORITIES|
increasing seq(PRIORITIES, id)
increasing seq(PRIORITIES, capacity)

Purpose

Consider a set T of tasks described by the TASKS collection where each task has
a given priority chosen in the range [1, PRIORITIES]. Let Ti denote the subset of
tasks of T that all have a priority less than or equal to i. For each set Ti, the
CUMULATIVE WITH LEVEL OF PRIORITY constraint forces that at each point in time,
the cumulated height of the set of tasks that overlap that point, does not exceed a given
limit. A task overlaps a point i if and only if (1) its origin is less than or equal to i,
and (2) its end is strictly greater than i. Finally, it also imposes for each task of T the
constraint origin + duration = end.

Example


〈 p− 1 origin− 1 dur− 2 end− 3 height− 1,

p− 1 origin− 2 dur− 3 end− 5 height− 1,
p− 1 origin− 5 dur− 2 end− 7 height− 2,
p− 2 origin− 3 dur− 2 end− 5 height− 2,
p− 2 origin− 6 dur− 3 end− 9 height− 1

〉
,

〈id− 1 capacity− 2, id− 2 capacity− 3〉


(
p for priority, dur for duration

)
Figure 5.246 shows the cumulated profile associated with both levels of priority.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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To each task of the CUMULATIVE WITH LEVEL OF PRIORITY constraint corresponds
a set of rectangles containing the same number (i.e., the position of the task within the
TASKS collection): the sum of the lengths of the rectangles corresponds to the duration of
the task, while the height of the rectangles (i.e., all the rectangles associated with a task
have the same height) corresponds to the resource consumption of the task. Tasks that
have a priority of 1 are coloured in pink, while tasks that have a priority of 2 are coloured
in blue. The CUMULATIVE WITH LEVEL OF PRIORITY constraint holds since:

• At each point in time the cumulated resource consumption profile of the tasks of
priority 1 does not exceed the upper capacity 2 enforced by the first item of the
PRIORITIES collection.

• At each point in time the cumulated resource consumption profile of the tasks of
priority 1 and 2 does not exceed the upper capacity 3 enforced by the second item of
the PRIORITIES collection.

Typical |TASKS| > 1
range(TASKS.priority) > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
|PRIORITIES| > 1
PRIORITIES.capacity > 0
PRIORITIES.capacity <sum(TASKS.height)
|TASKS| > |PRIORITIES|

Symmetries • Items of TASKS are permutable.

• TASKS.priority can be increased to any value ≤ |PRIORITIES|.
• TASKS.height can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.

• PRIORITIES.capacity can be increased.

Arg. properties Contractible wrt. TASKS.

Usage The CUMULATIVE WITH LEVEL OF PRIORITY constraint was suggested by problems
from the telecommunication area where one has to ensure different levels of quality of
service. For this purpose the capacity of a transmission link is split so that a given percent-
age is reserved to each level. In addition we have that, if the capacities allocated to levels
1, 2, . . . , i is not completely used, then level i+1 can use the corresponding spare capacity.

Remark The CUMULATIVE WITH LEVEL OF PRIORITY constraint can be modelled by a con-
junction of CUMULATIVE constraints. As shown by the next example, the consis-
tency for all variables of the CUMULATIVE constraints does not implies consistency for
the corresponding CUMULATIVE WITH LEVEL OF PRIORITY constraint. The following
CUMULATIVE WITH LEVEL OF PRIORITY constraint


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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(B) Profile of tasks of priority 1 and 2

¬ p− 1 o− 1 d− 2 e− 3 h− 1
 p− 1 o− 2 d− 3 e− 5 h− 1
® p− 1 o− 5 d− 2 e− 7 h− 2
¯ p− 2 o− 3 d− 2 e− 5 h− 2
° p− 2 o− 6 d− 3 e− 9 h− 1

TASKS (priority 1 and 2)

 p for priority, o for origin,
d for duration, e for end,
h for height



Figure 5.246: Resource consumption profiles according to both levels of priority for
the tasks of the Example slot


〈

priority− 1 origin− o1 duration− 2 height− 2,
priority− 1 origin− o2 duration− 2 height− 1,
priority− 2 origin− o3 duration− 1 height− 3

〉
,〈

id− 1 capacity− 2,
id− 2 capacity− 3

〉


where the domains of o1, o2 and o3 are respectively equal to {1, 2, 3}, {1, 2, 3} and
{1, 2, 3, 4} corresponds to the following conjunction of CUMULATIVE constraints

cumulative

( 〈
origin− o1 duration− 2 height− 2,
origin− o2 duration− 2 height− 1

〉
, 2

)
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cumulative

 〈
origin− o1 duration− 2 height− 2,
origin− o2 duration− 2 height− 1,
origin− o3 duration− 1 height− 3

〉
, 3


Even if the CUMULATIVE constraint could achieve arc-consistency, the previous conjunc-
tion of CUMULATIVE constraints would not detect the fact that there is no solution.

See also common keyword: CUMULATIVE (resource constraint).

used in graph description: SUM CTR.

Keywords characteristic of a constraint: derived collection.

constraint type: scheduling constraint, resource constraint, temporal constraint.

modelling: zero-duration task.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection

col



TIME POINTS−collection

 idp−int,
duration−dvar,
point−dvar

 ,
item

 idp− TASKS.priority,
duration− TASKS.duration,
point− TASKS.origin

 ,

item

 idp− TASKS.priority,
duration− TASKS.duration,
point− TASKS.end






Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

For all items of PRIORITIES:

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.idp = PRIORITIES.id
• time points.idp ≥ tasks.priority
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

) 
Constraint(s) on sets SUM CTR(variables,≤, PRIORITIES.capacity)

Graph model Within the context of the second graph constraint, part (A) of Figure 5.247 shows the
initial graphs associated with priorities 1 and 2 of the Example slot. Part (B) of Fig-
ure 5.247 shows the corresponding final graphs associated with priorities 1 and 2. On
the one hand, each source vertex of the final graph can be interpreted as a time point p.
On the other hand the successors of a source vertex correspond to those tasks that both
overlap that time point p and have a priority less than or equal to a given level. The
CUMULATIVE WITH LEVEL OF PRIORITY constraint holds since for each successor set
S of the final graph the sum of the height of the tasks in S is less than or equal to the


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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capacity associated with a given level of priority.

(A)

TIME_POINTS

TASKS

1

123456 7

234 5678

(B)

PRIORITIES:1 PRIORITIES:2

1:1,2,1

1:1,1,2,3,1

2:1,2,3

2:1,2,3,5,1

3:1,3,24:1,3,5

3:1,5,2,7,2

5:1,2,5 6:2,2,3

4:1,2,3,5,1 6:2,3,2,5,2

7:2,2,5

5:1,5,2,7,2

8:2,3,6

7:2,6,3,9,1

Figure 5.247: Initial and final graph of the CUMULATIVE WITH LEVEL OF PRIORITY
constraint

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-
straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC to NARC.


Signature
Provides some explanations about the graph based signature of the constraint.



1016 CUMULATIVES

5.103 CUMULATIVES

I B C J DESCRIPTION LINKS GRAPH

Origin [35]

Constraint CUMULATIVES(TASKS, MACHINES, CTR)

Arguments TASKS : collection


machine−dvar,
origin−dvar,
duration−dvar,
end−dvar,
height−dvar


MACHINES : collection(id−int, capacity−int)
CTR : atom

Restrictions required(TASKS, [machine, height])
require at least(2, TASKS, [origin, duration, end])
in attr(TASKS, machine, MACHINES, id)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
|MACHINES| > 0
required(MACHINES, [id, capacity])
distinct(MACHINES, id)
CTR ∈ [≤,≥]

Purpose

Consider a set T of tasks described by the TASKS collection. When CTR is equal to ≤
(respectively ≥), the CUMULATIVES constraint forces the following condition for each
machine m: At each point in time, where at least one task assigned on machine m is
present, the cumulated height of the set of tasks that both overlap that point and are
assigned to machinem should be less than or equal to (respectively greater than or equal
to) the capacity associated with machinem. A task overlaps a point i if and only if (1) its
origin is less than or equal to i, and (2) its end is strictly greater than i. It also imposes
for each task of T the constraint origin + duration = end.

Example



〈
m− 1 origin− 2 dur− 2 end− 4 height−−2,
m− 1 origin− 1 dur− 4 end− 5 height− 1,
m− 1 origin− 4 dur− 2 end− 6 height−−1,
m− 1 origin− 2 dur− 3 end− 5 height− 2,
m− 1 origin− 5 dur− 2 end− 7 height− 2,
m− 2 origin− 3 dur− 2 end− 5 height−−1,
m− 2 origin− 1 dur− 4 end− 5 height− 1

〉
,

〈id− 1 capacity− 0, id− 2 capacity− 0〉 ,≥


(
m for machine, dur for duration

)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Figure 5.248 shows with a thick line the cumulated profile on the two machines de-
scribed by the MACHINES collection. Within this profile a task with a positive (respectively
negative) height is represented by a pink (respectively blue) rectangle, where the length of
the rectangle corresponds to the duration of the task. The CUMULATIVES constraint holds
since, both on machines 1 and 2, we have that at each point in time the cumulated resource
consumption is greater than or equal to the limit 0 enforced by the last argument (i.e., the
attribute capacity of the items of the MACHINES collection) of the CUMULATIVES

constraint (i.e., we have a limit of 0 both on machines 1 and 2).
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(A) tasks on machine 1
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 m for machine, o for origin,
d for duration, e for end,
h for height
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(B) tasks on machine 2
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TASKS

 m for machine, o for origin,
d for duration, e for end,
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Figure 5.248: Resource consumption profiles on the different machines for the tasks
of the Example slot
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Typical |TASKS| > 1
range(TASKS.machine) > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height 6= 0
|MACHINES| > 1
MACHINES.capacity <sum(TASKS.height)
|TASKS| > |MACHINES|

Symmetries • Items of TASKS are permutable.

• Items of MACHINES are permutable.

• All occurrences of two distinct values in TASKS.machine or MACHINES.id can be
swapped; all occurrences of a value in TASKS.machine or MACHINES.id can be
renamed to any unused value.

Arg. properties Contractible wrt. TASKS when RELOP ∈ [≤] and minval(TASKS.height) ≥ 0.

Usage As shown in the Example slot, the CUMULATIVES constraint is useful for covering prob-
lems where different demand profiles have to be covered by a set of tasks. This is modelled
in the following way:

• To each demand profile is associated a given machine m and a set of tasks for which
all attributes (machine, origin, duration, end, height) are fixed; moreover the
machine attribute is fixed tom and the height attribute is strictly negative. For each
machine m the cumulated profile of all the previous tasks constitutes the demand
profile to cover.

• To each task that can be used to cover the demand is associated a task for which the
height attribute is a positive integer; the height attribute describes the amount of
demand that can be covered by the task at each instant during its execution (between
its origin and its end) on the demand profile associated with the machine attribute.

• In order to express the fact that each demand profile should completely be covered,
we set the capacity attribute of each machine to 0. We can also relax the constraint
by setting the capacity attribute to a negative number that specifies the maximum
allowed uncovered demand at each instant.

The demand profiles might also not be completely fixed in advance.

When all the heights of the tasks are non-negative, one other possible use of the
CUMULATIVES constraint is to enforce to reach a minimum level of resource consump-
tion. This is imposed on those time points that are overlapped by at least one task.

By introducing a dummy task of height 0, of origin the minimum origin of all the tasks and
of end the maximum end of all the tasks, this can also be imposed between the first and the
last utilisation of the resource.

Finally the CUMULATIVES constraint is also useful for scheduling problems where several
cumulative machines are available and where you have to assign each task on a specific
machine.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm Three filtering algorithms for this constraint are described in [35].

Systems CUMULATIVES in Gecode, CUMULATIVES in SICStus.

See also assignment dimension removed: CUMULATIVE (negative heights not allowed).

common keyword: CALENDAR (scheduling constraint),
COLOURED CUMULATIVES (resource constraint).

generalisation: DIFFN (task with machine assignment and origin attributes replaced
by orthotope).

used in graph description: SUM CTR.

Keywords application area: workload covering.

characteristic of a constraint: derived collection.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, temporal constraint,
timetabling constraint.

filtering: compulsory part, sweep, minimum task duration.

modelling: assignment dimension, assignment to the same set of values, scheduling with
machine choice, calendars and preemption, zero-duration task.

modelling exercises: assignment to the same set of values, scheduling with machine
choice, calendars and preemption.

problems: producer-consumer, demand profile.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Scheduling-Constraints.html
http://www.sics.se/sicstus/
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Derived Collection

col



TIME POINTS−collection

 idm−int,
duration−dvar,
point−dvar

 ,
item

 idm− TASKS.machine,
duration− TASKS.duration,
point− TASKS.origin

 ,

item

 idm− TASKS.machine,
duration− TASKS.duration,
point− TASKS.end






Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

For all items of MACHINES:

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.idm = MACHINES.id
• time points.idm = tasks.machine
• time points.duration > 0
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

) 
Constraint(s) on sets SUM CTR(variables, CTR, MACHINES.capacity)

Graph model Within the context of the second graph constraint, part (A) of Figure 5.249 shows the initial
graphs associated with machines 1 and 2 of the Example slot. Part (B) of Figure 5.249
shows the corresponding final graphs associated with machines 1 and 2. On the one hand,
each source vertex of the final graph can be interpreted as a time point p on a specific
machine m. On the other hand the successors of a source vertex correspond to those tasks
that both overlap that time point p and are assigned to machine m. Since they do not have
any successors we have eliminated those vertices corresponding to the end of the last three
tasks of the TASKS collection. The CUMULATIVES constraint holds since for each successor


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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set S of the final graph the sum of the height of the tasks in S is greater than or equal to
the capacity of the machine corresponding to the time point associated with S.

(A)

TIME_POINTS

TASKS

1

123456 7

2345678910 11121314

(B)

MACHINES:1 MACHINES:2

1:1,2,2

1:1,2,2,4,-22:1,1,4,5,1 4:1,2,3,5,2

2:1,2,4

3:1,4,2,6,-1

3:1,4,14:1,4,5

5:1,5,2,7,2

5:1,2,46:1,2,6 7:1,3,28:1,3,59:1,2,5 11:2,2,3

6:2,3,2,5,-17:2,1,4,5,1

13:2,4,1

Figure 5.249: Initial and final graph of the CUMULATIVES constraint

Signature Since NARC is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC= |TASKS| to NARC≥ |TASKS|. This leads to simplify
NARC to NARC.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.104 CUTSET

I B C J DESCRIPTION LINKS GRAPH

Origin [165]

Constraint CUTSET(SIZE CUTSET, NODES)

Arguments SIZE CUTSET : dvar

NODES : collection(index−int, succ−sint, bool−dvar)

Restrictions SIZE CUTSET ≥ 0
SIZE CUTSET ≤ |NODES|
required(NODES, [index, succ, bool])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.bool ≥ 0
NODES.bool ≤ 1

Purpose
Consider a digraph G with n vertices described by the NODES collection. Enforces that
the subset of kept vertices of cardinality n− SIZE CUTSET and their corresponding arcs
form a graph without circuit.

Example

 1,

〈 index− 1 succ− {2, 3, 4} bool− 1,
index− 2 succ− {3} bool− 1,
index− 3 succ− {4} bool− 1,
index− 4 succ− {1} bool− 0

〉 
The CUTSET constraint holds since the vertices of the NODES collection for which
the bool attribute is set to 1 correspond to a graph without circuit and since exactly one
(SIZE CUTSET = 1) vertex has its bool attribute set to 0.

1 2

3 4

Typical SIZE CUTSET > 0
SIZE CUTSET ≤ |NODES|
|NODES| > 1

Symmetry Items of NODES are permutable.

Usage The article [165] introducing the CUTSET constraint mentions applications from various
areas such that deadlock breaking or program verification.

Remark The undirected version of the CUTSET constraint corresponds to the minimum feedback
vertex set problem.

Algorithm The filtering algorithm presented in [165] uses graph reduction techniques inspired from
Levy and Low [271] as well as from Lloyd, Soffa and Wang [275].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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Keywords application area: deadlock breaking, program verification.

constraint type: graph constraint.

final graph structure: circuit, directed acyclic graph, acyclic, no loop.

problems: minimum feedback vertex set.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • IN SET(nodes2.index, nodes1.succ)
• nodes1.bool = 1
• nodes2.bool = 1

Graph property(ies) •MAX NSCC≤ 1
• NVERTEX= |NODES| − SIZE CUTSET

Graph class • ACYCLIC
• NO LOOP

Graph model We use a set of integers for representing the successors of each vertex. Because of the arc
constraint, all arcs such that the bool attribute of one extremity is equal to 0 are elimi-
nated; Therefore all vertices for which the bool attribute is equal to 0 are also eliminated
(since they will correspond to isolated vertices). The graph property MAX NSCC ≤ 1
enforces the size of the largest strongly connected component to not exceed 1; Therefore,
the final graph cannot contain any circuit.

Part (A) of Figure 5.250 shows the initial graph from which we have chosen to start. It is
derived from the set associated with each vertex. Each set describes the potential values of
the succ attribute of a given vertex. Part (B) of Figure 5.250 gives the final graph associated
with the Example slot. Since we use the NVERTEX graph property, the vertices of the
final graph are stressed in bold. The CUTSET constraint holds since the final graph does not
contain any circuit and since the number of removed vertices SIZE CUTSET is equal to 1.

NODES

1:1,{2,3,4}

2:2,{3}

3:3,{4}

4:4,{1}

MAX_NSCC=1,NVERTEX=3

1:1,{2,3,4},1

2:2,{3},1

3:3,{4},1

(A) (B)

Figure 5.250: Initial and final graph of the CUTSET set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.105 CYCLE

I B C J DESCRIPTION LINKS GRAPH

Origin [47]

Constraint CYCLE(NCYCLE, NODES)

Arguments NCYCLE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Consider a digraphG described by the NODES collection. NCYCLE is equal to the number
of circuits for covering G in such a way that each vertex of G belongs to a single circuit.
NCYCLE can also be interpreted as the number of cycles of the permutation associated
with the successor variables of the NODES collection.

Example

 2,

〈 index− 1 succ− 2,
index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉 
 1,

〈 index− 1 succ− 2,
index− 2 succ− 5,
index− 3 succ− 1,
index− 4 succ− 3,
index− 5 succ− 4

〉 
 5,

〈 index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5

〉 

1 2 3 5

4

1 2 5 4 3

1 2 3 4 5


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• In the first example we have the fol-
lowing 2 (NCYCLE = 2) cycles: 1 7→
2 7→ 1 and 3 7→ 5 7→ 4 7→ 3. Con-
sequently, the corresponding CYCLE

constraint holds.

1 2 3 5

4

CYCLE(2, 〈1 2, 2 1, 3 5, 4 3, 5 4〉)

• In the second example we have 1
(NCYCLE = 1) cycle: 1 7→ 2 7→ 5 7→
4 7→ 3 7→ 1.

• In the third example we have the fol-
lowing 5 (NCYCLE = 5) cycles: 1 7→
1, 2 7→ 2, 3 7→ 3, 4 7→ 4 and 5 7→ 5.

1 2 5 4 3

CYCLE(1, 〈1 2, 2 5, 3 1, 4 3, 5 4〉)

1 2 3 4 5

CYCLE(5, 〈1 1, 2 2, 3 3, 4 4, 5 5〉)

All solutions Figure 5.251 gives all solutions to the following non ground instance of the CYCLE con-
straint: N ∈ [1, 2], V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [1, 6], V4 ∈ [2, 5], V5 ∈ [2, 3], V6 ∈ [1, 6],
CYCLE(N, 〈1 V1, 2 V2, 3 V3, 4 V4, 5 V5, 6 V6〉).

¬ (1, 〈1 4, 2 3, 3 6, 4 5, 5 2, 6 1〉)
 (2, 〈1 4, 2 2, 3 6, 4 5, 5 3, 6 1〉)
® (2, 〈1 4, 2 3, 3 1, 4 5, 5 2, 6 6〉)

1

4

¬

4

5

5

2

2

3

3

6

6

1

1

4



4

5

5

3

3

6

6

1

2

2

1

4

®

4

5

5

2

2

3

3

1

6

6

Figure 5.251: All solutions corresponding to the non ground example of the CYCLE
constraint of the All solutions slot

Typical NCYCLE < |NODES|
|NODES| > 2

Symmetries • Items of NODES are permutable.

• Attributes of NODES are permutable w.r.t. permutation (index, succ) (permuta-
tion applied to all items).


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Functional dependency: NCYCLE determined by NODES.

Usage The PhD thesis of Éric Bourreau [93] mentions the following applications of extensions of
the CYCLE constraint:

• The balanced Euler knight problem where one tries to cover a rectangular chessboard
of size N ·M by C knights that all have to visit between 2 · bb(N ·M)/Cc/2c and
2 · dd(N · M)/Ce/2e distinct locations. For some values of N , M and C there
does not exist any solution to the previous problem. This is the case, for example,
when N = M = C = 6. Figure 5.252 depicts the graph associated with the 6 × 6
chessboard as well as examples of balanced solutions with respectively 1, 2, 3, 4 and
5 knights.

• Some pick-up delivery problems where a fleet of vehicles has to transport a set of
orders. Each order is characterised by its initial location, its final destination and its
weight. In addition one also has to take into account the capacity of the different
vehicles.

Remark In the original CYCLE constraint of CHIP the index attribute was not explicitly present. It
was implicitly defined as the position of a variable in a list.

In an early version of the CHIP there was a constraint named CIRCUIT that, from a declar-
ative point of view, was equivalent to cycle(1, NODES). In ALICE [267] the CIRCUIT

constraint was also present.

Given a complete digraph of n vertices as well as an unrestricted number of circuits
NCYCLE, the total number of solutions to the corresponding CYCLE constraint corresponds
to the sequence A000142 of the On-Line Encyclopaedia of Integer Sequences [403]. Given
a complete digraph of n vertices as well as a fixed number of circuits NCYCLE between 1
and n, the total number of solutions to the corresponding CYCLE constraint corresponds to
the so called Stirling number of first kind.

Algorithm Since all succ variables have to take distinct values one can reuse the algorithms associated
with the ALLDIFFERENT constraint. A second necessary condition is to have no more than
NCYCLE strongly connected components. Pruning for enforcing this condition, as soon as
we have NCYCLE strongly connected components, can be done by forcing all strong bridges
to belong to the final solution, since otherwise we would have more than NCYCLE strongly
connected components. Since all the vertices of a circuit belong to the same strongly
connected component an arc going from one strongly connected component to another
strongly connected component has to be removed.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

http://www.cosytec.com
http://www.cosytec.com
http://oeis.org/A000142
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Reformulation Let n and s1, s2, . . . , sn respectively de-
notes the number of vertices (i.e., |NODES|)
and the successor variables associated with
vertices 1, 2, . . . , n. The CYCLE constraint
can be reformulated as a conjunction of
one ALLDIFFERENT constraint, n · (n −
1) ELEMENT constraints, n MINIMUM con-
straints, and one NVALUE constraint.

• First, we state an
ALLDIFFERENT(〈s1, s2, . . . , sn〉) con-
straint for enforcing distinct values to
be assigned to the successor variables.

• Second, the key idea is to extract for
each vertex i (with i ∈ [1, n]) all the
vertices that belong to the same cycle.
This is done by stating a conjunction
of n − 1 ELEMENT constraints of the
form:

ELEMENT(i, 〈s1, s2, . . . , sn〉, si,1),
ELEMENT(si,1, 〈s1, s2, . . . , sn〉, si,2),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ELEMENT(si,n−2, 〈s1, s2, . . . , sn〉, si,n−1).
Then, using a MINIMUM(mi,

〈i, si,1, si,2, . . . , si,n−1〉) constraint,
we get a unique representative for the
cycle containing vertex i.

• Third, using a NVALUE(NCYCLE,

〈m1,m2, . . . ,mn〉) constraint, we get
the number of distinct cycles.

1 4

3

2

Illustration of the reformulation of
CYCLE(2, 〈1 4, 2 2, 3 1, 4 3〉)

ALLDIFFERENT(〈4, 2, 1, 3〉)∥∥∥∥∥∥
ELEMENT(1, 〈4, 2, 1, 3〉, 4 )
ELEMENT(4, 〈4, 2, 1, 3〉, 3 )
ELEMENT(3, 〈4, 2, 1, 3〉, 1 )

min= 1(representative of
the cycle containing
vertex 1)∥∥∥∥∥∥
ELEMENT(2, 〈4, 2, 1, 3〉, 2 )
ELEMENT(2, 〈4, 2, 1, 3〉, 2 )
ELEMENT(2, 〈4, 2, 1, 3〉, 2 )

min= 2(representative of
the cycle containing
vertex 2)∥∥∥∥∥∥
ELEMENT(3, 〈4, 2, 1, 3〉, 1 )
ELEMENT(1, 〈4, 2, 1, 3〉, 4 )
ELEMENT(4, 〈4, 2, 1, 3〉, 3 )

min= 1(representative of
the cycle containing
vertex 3)∥∥∥∥∥∥
ELEMENT(4, 〈4, 2, 1, 3〉, 3 )
ELEMENT(3, 〈4, 2, 1, 3〉, 1 )
ELEMENT(1, 〈4, 2, 1, 3〉, 4 )

min= 1(representative of
the cycle containing
vertex 4)

N
V

A
L

U
E
=
2

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 2 6 24 120 720 5040 40320 362880 3628800

Number of solutions for CYCLE: domains 0..n


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8 9 10
Total 2 6 24 120 720 5040 40320 362880 3628800

Parameter
value

1 1 2 6 24 120 720 5040 40320 362880
2 1 3 11 50 274 1764 13068 109584 1026576
3 - 1 6 35 225 1624 13132 118124 1172700
4 - - 1 10 85 735 6769 67284 723680
5 - - - 1 15 175 1960 22449 269325
6 - - - - 1 21 322 4536 63273
7 - - - - - 1 28 546 9450
8 - - - - - - 1 36 870
9 - - - - - - - 1 45

10 - - - - - - - - 1
Solution count for CYCLE: domains 0..n

0.2 0.4 0.6 0.8 1
10−11

10−10

10−9

10−8

10−7

10−6
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Parameter value as fraction of length
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d
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Solution density for CYCLE

size 6
size 7
size 8
size 9
size 10



1032 CYCLE
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1
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2.5
·10−3

Parameter value as fraction of length
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d
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ity

Solution density for CYCLE

size 6
size 7
size 8
size 9
size 10

See also common keyword: ALLDIFFERENT (permutation),
CIRCUIT CLUSTER (graph constraint, one succ),
CYCLE CARD ON PATH (permutation,graph partitioning constraint),
CYCLE OR ACCESSIBILITY (graph constraint),
CYCLE RESOURCE (graph partitioning constraint),
DERANGEMENT (permutation),
GRAPH CROSSING (graph constraint,graph partitioning constraint),
INVERSE (permutation),
MAP (graph partitioning constraint),
SYMMETRIC ALLDIFFERENT (permutation),
TOUR (graph constraint),
TREE (graph partitioning constraint).

implies: ALLDIFFERENT.

implies (items to collection): ATLEAST NVECTOR.

related: BALANCE CYCLE (counting number of cycles versus controlling how balanced
the cycles are).

specialisation: CIRCUIT (NCYCLE set to 1).

used in reformulation: ALLDIFFERENT, ELEMENT, MINIMUM, NVALUE.

Keywords characteristic of a constraint: core.

combinatorial object: permutation.

constraint arguments: business rules.

constraint type: graph constraint, graph partitioning constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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filtering: strong bridge, DFS-bottleneck.

final graph structure: circuit, connected component, strongly connected component,
one succ.

modelling: cycle, functional dependency.

problems: pick-up delivery.

puzzles: Euler knight.

Cond. implications • CYCLE(NCYCLE, NODES)
with NCYCLE = 1

implies BALANCE CYCLE(BALANCE, NODES)
when BALANCE = 0.

• CYCLE(NCYCLE, NODES)
implies PERMUTATION(VARIABLES : NODES).


Cond. implications
Conditional implications.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Graph of potential moves
of a 6× 6 chessboard

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 knight
(36 moves)

2 knights
(18 and 18 moves)

3 knights
(12, 12 and 12 moves)

4 knights
(8, 8, 10 and 10 moves)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

5 knights
(6, 6, 8, 8 and 8 moves)

i− 1 s− 9, i− 19 s− 8,
i− 2 s− 10, i− 20 s− 16,
i− 3 s− 11, i− 21 s− 13,
i− 4 s− 12, i− 22 s− 30,
i− 5 s− 18, i− 23 s− 36,
i− 6 s− 17, i− 24 s− 35,
i− 7 s− 3, i− 25 s− 14,
i− 8 s− 4, i− 26 s− 15,
i− 9 s− 5, i− 27 s− 31,
i− 10 s− 6, i− 28 s− 32,
i− 11 s− 22, i− 29 s− 33,
i− 12 s− 23, i− 30 s− 34,
i− 13 s− 2, i− 31 s− 20,
i− 14 s− 1, i− 32 s− 19,
i− 15 s− 7, i− 33 s− 25,
i− 16 s− 24, i− 34 s− 26,
i− 17 s− 21, i− 35 s− 27,
i− 18 s− 29, i− 36 s− 28

NODES (i for index, s for succ)

Figure 5.252: Graph of potential moves of a 6×6 chessboard, corresponding balanced
knight’s tours with 1 up to 5 knights, and collection of nodes passed to the CYCLE
constraint corresponding to the solution with 5 knights; note that there is no balanced
knight’s tour on a 6× 6 chessboard where each knight exactly performs 6 moves.



CYCLE 1035

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Graph class ONE SUCC

Graph model From the restrictions and from the arc constraint, we deduce that we have a bijection from
the successor variables to the values of interval [1, |NODES|]. With no explicit restrictions it
would have been impossible to derive this property.

In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the CYCLE constraint considers objects that have two
attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex.

The graph property NTREE = 0 is used in order to avoid having vertices that both do
not belong to a circuit and have at least one successor located on a circuit. This concretely
means that all vertices of the final graph should belong to a circuit.

Parts (A) and (B) of Figure 5.253 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NCC graph property, we
show the two connected components of the final graph. The constraint holds since all the
vertices belong to a circuit (i.e., NTREE = 0) and since NCYCLE = NCC = 2.

NODES

1

2

3

4

5

NTREE=0,NCC=2

CC#1 CC#2

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.253: Initial and final graph of the CYCLE constraint

Quiz


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint CYCLE(1, 〈1 2, 2 1, 3 2〉) hold?

B. Does the constraint CYCLE(2, 〈1 3, 2 2, 3 1〉) hold?

C. Does the constraint CYCLE(3, 〈1 1, 2 2, 3 3〉) hold?

D. Does the constraint CYCLE(2, 〈1 5, 2 4, 3 3, 4 2, 5 1〉) hold?

aHint: go back to the definition of CYCLE.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:
N ∈ {2, 4},
V1 ∈ {1, 3, 4, 5}, V2 ∈ {3, 4}, V3 ∈ {2, 3, 5, 6},
V4 ∈ {1, 4, 6}, V5 ∈ {2, 6}, V6 ∈ {3, 4, 6},
CYCLE(N, 〈1 V1, 2 V2, 3 V3, 4 V4, 5 V5, 6 V6〉).

aHint: follow the order induced by the functional dependency between the
arguments of CYCLE, start with variables that have the smallest domain.

EXERCISE 3 (identifying infeasible values)a

A. Describe the following digraph G
in terms of successor variables and
their corresponding domains. Give
the implicit assumption behind this
description.

B. Model with a single CYCLE constraint the problem of finding a
Hamiltonian cycleb in the graph G.

C. Identify variable-value pairs that do not belong to any solution to
the CYCLE constraint stated in the previous question.

aHint: make a link between the successor variables and the arcs of the graph,
identify the basic constraint on the successor variables, make a what-if reasoning
with respect to the arcs and the strongly connected components.

bGiven a digraph G with p vertices, a Hamiltonian cycle of G is a succession
of arcs v1 7→ v2, v2 7→ v3, · · · , vp−1 7→ vp, vp 7→ v1 of G such that the
vertices v1, v2, · · · , vp are all distinct.

6

5

1

2

3

4

G
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EXERCISE 4 (variable-based degree of violation)a

A. Compute the variable-based degree of violationb of the following
constraints:

(a) CYCLE(4, 〈1 2, 2 3, 3 1, 4 4〉),

(b) CYCLE(1, 〈1 3, 2 4, 3 3, 4 4〉),

(c) CYCLE(6, 〈1 2, 2 2, 3 4, 4 4, 5 6, 6 5〉).

B. Give a formula for evaluating the variable-based degree of
violation of any ground instance of the CYCLE constraint.

aHint: focus first on the basic constraint on the successor variables, then on
the first argument of CYCLE.

bGiven a constraint for which all variables are fixed, the variable-based de-
gree of violation is the minimum number of variables to assign differently in
order to satisfy the constraint.

EXERCISE 5 (De Bruijn sequence)a

Given an alphabet A = {0, 1, . . . , n − 1} and an integer m > 0 the
corresponding De Bruijn digraph Gnm = (V,E) of order m is defined as
follows:

• The set of vertices V consist of every potential word of length m
over the alphabet A.

• The set E contains all arcs w1 7→ w2 where w1 and w2 are words
of length m over the alphabet A such that the last m− 1 letters of
w1 coincide with the first m− 1 first letters of w2.

Given an alphabet A = {0, 1, . . . , n − 1} and an integer m > 0 a
De Bruijn sequence snm of order m is a word over the alphabet A such
that every word of length m over the alphabet A occursb exactly once in
s.

A. Given an alphabet A = {0, 1, . . . , n− 1} define a De Bruijn
sequence of order m wrt the De Bruijn digraph of order m
defined on the same alphabet A. Illustrate this link on the
De Bruijn sequence 0 1 0 1 1 1 0 0 when n = 2, m = 3 and
A = {0, 1}.

B. Based on the previous correspondence give a compact model for
De Bruijn sequences of order m that uses a single CYCLE

constraint.
aHint: define the vertices of the De Bruijn digraph G2

3 , define the arcs of G2
3 ,

search a pattern on G2
3 corresponding to a De Bruijn sequence.

bA word w = w0w1 · · ·wm−1 occurs in a sequence s = s0s1 · · · sp−1

(p ≥ m) if there exists a position i (0 ≤ i < p) such that w0 = si, w1 =
s(i+1) mod p, · · · , wm−1 = s(i+m−1) mod p.
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SOLUTION TO EXERCISE 1

A. No, since the successor attributes 2, 1, 2 are not all different.

B. Yes, since we have two cycles namely 1 7→ 3 7→ 1 and 2 7→ 2.

C. Yes, since we have three cycles namely 1 7→ 1, 2 7→ 2 and 3 7→ 3.

D. No, since we have three cycles namely 1 7→ 5 7→ 1, 2 7→ 4 7→ 2
and 3 7→ 3, rather than two cycles as stated by the first argument
of the CYCLE constraint.

SOLUTION TO EXERCISE 2
(variables of a same cycle are coloured with the same colour)

N, 〈1 V1, 2 V2, 3 V3, 4 V4, 5 V5, 6 V6〉

¬ (2, 〈1 1,2 4,3 5,4 6,5 2,6 3〉)
1 7→ 1, 2 7→ 4 7→ 6 7→ 3 7→ 5 7→ 2

 (2, 〈1 3,2 4,3 5,4 1,5 2,6 6〉)
1 7→ 3 7→ 5 7→ 2 7→ 4 7→ 1, 6 7→ 6

® (2, 〈1 5,2 3,3 2,4 1,5 6,6 4〉)
1 7→ 5 7→ 6 7→ 4 7→ 1, 2 7→ 3 7→ 2

¯ (2, 〈1 5,2 4,3 6,4 1,5 2,6 3〉)
1 7→ 5 7→ 2 7→ 4 7→ 1, 3 7→ 6 7→ 3

° (4, 〈1 1,2 3,3 5,4 4,5 2,6 6〉)
1 7→ 1, 2 7→ 3 7→ 5 7→ 2, 4 7→ 4, 6 7→ 6

the five solutions
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SOLUTION TO EXERCISE 3

A. To each vertex v of G we associate a successor variable Sv whose initial
domain is set to the labels of the successors of v. Thus we have:{

S1 ∈ {2, 6}, S2 ∈ {1, 2, 3, 4}, S3 ∈ {1, 3},
S4 ∈ {2, 3}, S5 ∈ {2, 5, 6}, S6 ∈ {2, 5}.

The implicit hypothesis is that, in solutions to the modelled problem, each
vertex of the corresponding induced subgraph of G has exactly one successor.

B. Since we were asked to have a single cycle we set the first argument of CYCLE

to 1 and obtain CYCLE(1, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5, 6 S6〉).

C. Since there is a single cycle, Si 6= i (with i ∈ [1, 6]).
A necessary condition for the CYCLE constraint is that
all its successor variables are assigned distinct values,
i.e. each vertex has exactly one predecessor in a ground
solution. Consequently, infeasible variable-value pairs
for ALLDIFFERENT are also infeasible for CYCLE. Any
edge that does not belong to a matching of cardinality 6
in the corresponding variable-value graph Gval

var given on
the right can not be part of a solution. As a result G′ is
shown below on the right.

We now deal with the fact that we should have a
single cycle. A necessary condition is that the graph
G′ consists of a single strongly connected component.
We identify the arcs u 7→ v of G′ such that, if they were
removed, the number of strongly connected components
of G′ would be greater than one. For such arcs u 7→ v
we remove all arcs w 7→ v (with w 6= u).

• If we remove 1 7→ 6 from G′ we obtain G′196,
which has the two strongly connected components
depicted by the two blue rectangles. Consequently
the arc 5 7→ 6 is forbidden.

• If we remove 5 7→ 2 from G′ we obtain G′592,
which has the two strongly connected components
depicted by the two blue rectangles. Consequently
the arc 1 7→ 2 is forbidden.

As a consequence we have a unique solution S1 = 6, S2 = 4, S3 = 1,
S4 = 3, S5 = 2, S6 = 5 corresponding to the Hamiltonian cycle
1 7→ 6 7→ 5 7→ 2 7→ 4 7→ 3 7→ 1.

S5

S6

S1

S2

S3

S4

5

6

1

2

3

4Gval
var

6

5

1

2

3

4

G′

6

5

1

2

3

4

G′196

6

5

1

2

3

4

G′592
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SOLUTION TO EXERCISE 4

A. (a) The variable-based degree of violation is equal to 1 since the
ALLDIFFERENT constraint holds and since we just have to correct the
number of cycles (we have the two cycles 1 7→ 2 7→ 3 7→ 1 and 4 7→ 4
rather than one cycle). Therefore we only need to set the first argument
of the CYCLE constraint to 2.

CYCLE(

2

4, 〈1 2, 2 3, 3 1, 4 4〉)

(b) Since we have two occurrences of 3 and two occurrences of 4 in the
successor variables the variable-based degree of violation is at least
equal to 2. Since, as shown below, it is possible the building of a single
cycle 1 7→ 3 7→ 2 7→ 4 7→ 1 by just changing the assignment of two
variables, the variable-based degree of violation is equal to 2.

CYCLE(1, 〈1 3, 2 4, 3

2

3, 4

1

4〉)

(c) Since we have two occurrences of 2 and two occurrences of 4 in the
successor variables the variable-based degree of violation is at least
equal to 2. Since just changing the values of two successor variables
does not allow the building of 6 cycles the variable-based degree of
violation is at least equal to 3. It is equal to 3 as shown by the
following assignment that corresponds to the three cycles 1 7→ 2 7→ 1,
3 7→ 4 7→ 3, 5 7→ 6 7→ 5.

CYCLE(

3

6, 〈1 2, 2

1

2, 3 4, 4

3

4, 5 6, 6 5〉)

B. Within the graph associated with the CYCLE constraint let ncycle , nmap and
nsource respectively denote the number of connected components
corresponding to a single cycle, the number of connected components with at
least one source, and the number of sources.

Given N the first argument of the CYCLE constraint the variable-based degree
of violation is equal to nsource + δ where δ is equal to 0 if
N ∈ [ncycle + (nmap > 0),ncycle + nmap] and 1 otherwise. The idea is
that we have to change at least nsource successor variables to fulfil the
ALLDIFFERENT constraint, and possibly the first argument N if we can not
reach N cycles by just changing nsource successor variables. The figures
below illustrate the formula for the three examples of the previous question:

(a) We have 0 + 4 /∈ [2 + (0 > 0), 2 + 0] = 1,

(b) We have 2 + 1 /∈ [0 + (2 > 0), 0 + 2] = 2,

(c) We have 2 + 6 /∈ [1 + (2 > 0), 1 + 2] = 3.

1

2 3

4

ncycle = 2
nmap = 0

source = 0

(a)

1

3

2

4

ncycle = 0
nmap = 2

source = 2

(b)

1

2

3

4

5

6

ncycle = 1
nmap = 2

source = 2

(c)
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SOLUTION TO EXERCISE 5

A. A De Bruijn sequence of order m over an alphabet A = {0, 1, . . . , n− 1} can
be seen as a Hamiltonian cyclea on the De Bruijn digraph of order m defined
over the same alphabet A, where the sequence of letters corresponds to the
sequence of last letters of the words associated with the successive vertices of
the cycle. Visiting once each vertex of the digraph allows the corresponding
cyclic sequence to contain exactly once each word of length m of the alphabet
A.

B. Each vertex of the De Bruijn graph associated with a word w is labelled by
the decimal number plus oneb corresponding to w. Then to each vertex of the
De Bruijn graph corresponds a successor variable whose initial domain is set
to the labels of the successors of v. Finally a CYCLE constraint with one cycle
is posted.

S1 ∈ {1, 2}, S2 ∈ {3, 4}, S3 ∈ {5, 6}, S4 ∈ {7, 8},
S5 ∈ {1, 2}, S6 ∈ {3, 4}, S7 ∈ {5, 6}, S8 ∈ {7, 8},
CYCLE(1, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5, 6 S6, 7 S7, 8 S8〉).

A solution corresponds to the sequence (S1 − 1) mod n, (S2 − 1) mod n, · · · ,
(S8 − 1) mod n.

aGiven a digraph G with p vertices, a Hamiltonian cycle of G is a succession of arcs v1 7→
v2, v2 7→ v3, · · · , vp−1 7→ vp, vp 7→ v1 of G such that the vertices v1, v2, · · · , vp are all dis-
tinct.

b+1 since, within the CYCLE constraint, vertices are labelled from 1 up to the total number
of vertices.

000

001

100

010 101

110

011

111

De Bruijn digraph of
order 3 over A = {0, 1}

0

1

0

1

1

1

0

0

01011100

A De Bruijn sequence of
order 3 over A = {0, 1}
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5.106 CYCLE CARD ON PATH

I B C J DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint CYCLE CARD ON PATH(NCYCLE, NODES, ATLEAST, ATMOST, PATH LEN, VALUES)

Arguments NCYCLE : dvar

NODES : collection(index−int, succ−dvar, colour−dvar)
ATLEAST : int

ATMOST : int

PATH LEN : int

VALUES : collection(val−int)

Restrictions NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, colour])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
ATLEAST ≥ 0
ATLEAST ≤ PATH LEN

ATMOST ≥ ATLEAST

PATH LEN ≥ 0
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)

Purpose

Consider a digraph G described by the NODES collection. NCYCLE is the number of
circuits for covering G in such a way that each vertex belongs to a single circuit. In
addition the following constraint must also hold: on each set of PATH LEN consecutive
distinct vertices of each final circuit, the number of vertices for which the attribute colour
takes his value in the collection of values VALUES should be located within the range
[ATLEAST, ATMOST].

Example


2,

〈
index− 1 succ− 7 colour− 2,
index− 2 succ− 4 colour− 3,
index− 3 succ− 8 colour− 2,
index− 4 succ− 9 colour− 1,
index− 5 succ− 1 colour− 2,
index− 6 succ− 2 colour− 1,
index− 7 succ− 5 colour− 1,
index− 8 succ− 6 colour− 1,
index− 9 succ− 3 colour− 1

〉
, 1, 2, 3,

〈1〉




Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Figure 5.254 illustrates the example with its corresponding circuits and all their
sliding sequences of three consecutive vertices. The constraint CYCLE CARD ON PATH

holds since the vertices of the NODES collection correspond to a set of disjoint circuits and
since, for each set of 3 (i.e., PATH LEN = 3) consecutive vertices, colour 1 (i.e., the value
provided by the VALUES collection) occurs at least once (i.e., ATLEAST = 1) and at most
twice (i.e., ATMOST = 2).

1 7 5 2 4 9 3 8 6

2 2 3 21 1 1 1 1

Figure 5.254: The two circuits (bottom) and all the corresponding sliding sequences
of three consecutive vertices, where an occurrence of colour 1 is represented by a tiny
circle (top) of the Example slot

Typical |NODES| > 2
NCYCLE < |NODES|
ATLEAST < PATH LEN

ATMOST > 0
PATH LEN > 1
|NODES| > |VALUES|
ATLEAST > 0 ∨ ATMOST < PATH LEN

Symmetries • Items of NODES are permutable.

• An occurrence of a value of NODES.colour that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

• ATLEAST can be decreased to any value ≥ 0.

• ATMOST can be increased.

• Items of VALUES are permutable.

Usage Assume that the vertices of G are partitioned into the following two categories:

• Clients to visit.

• Depots where one can reload a vehicle.

Using the CYCLE CARD ON PATH constraint we can express a constraint like: after visiting
three consecutive clients we should visit a depot. This is typically not possible with the
ATMOST constraint since we do not know in advance the set of variables involved in the
ATMOST constraint.

Remark This constraint is a special case of the sequence parameter of the CYCLE constraint of
CHIP [93, pages 121–128].


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
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See also common keyword: CYCLE (graph partitioning constraint).

used in graph description: AMONG LOW UP.

Keywords characteristic of a constraint: coloured.

combinatorial object: sequence.

constraint type: graph constraint, graph partitioning constraint, sliding sequence con-
straint.

final graph structure: connected component, one succ.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Graph class ONE SUCC

Sets PATH LENGTH(PATH LEN) 7→[
variables− col

(
VARIABLES−collection(var−dvar),
[item(var− NODES.colour)]

) ]
Constraint(s) on sets AMONG LOW UP(ATLEAST, ATMOST, variables, VALUES)

Graph model Parts (A) and (B) of Figure 5.255 respectively show the initial and final graph associated
with the Example slot. Since we use the NCC graph property, we show the two connected
components of the final graph. The constraint CYCLE CARD ON PATH holds since all the
vertices belong to a circuit (i.e., NTREE = 0) and since for each set of three consec-
utive vertices, colour 1 occurs at least once and at most twice (i.e., the AMONG LOW UP

constraint holds).

NODES

1

2

3

4

5

6

7

8

9

NTREE=0,NCC=2

CC#1 CC#2

1:1,7,2

7:7,5,1

5:5,1,2

2:2,4,3

4:4,9,1

3:3,8,2

8:8,6,1

9:9,3,1

6:6,2,1

(A) (B)

Figure 5.255: Initial and final graph of the CYCLE CARD ON PATH constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.107 CYCLE OR ACCESSIBILITY

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [255].

Constraint CYCLE OR ACCESSIBILITY(MAXDIST, NCYCLE, NODES)

Arguments MAXDIST : int

NCYCLE : dvar

NODES : collection(index−int, succ−dvar, x−int, y−int)

Restrictions MAXDIST ≥ 0
NCYCLE ≥ 1
NCYCLE ≤ |NODES|
required(NODES, [index, succ, x, y])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|
NODES.x ≥ 0
NODES.y ≥ 0

Purpose

Consider a digraph G described by the NODES collection. Cover a subset of the vertices
of G by a set of vertex-disjoint circuits in such a way that the following property holds:
for each uncovered vertex v1 of G there exists at least one covered vertex v2 of G such
that the Manhattan distance between v1 and v2 is less than or equal to MAXDIST.

Example


3, 2,

〈
index− 1 succ− 6 x− 4 y− 5,
index− 2 succ− 0 x− 9 y− 1,
index− 3 succ− 0 x− 2 y− 4,
index− 4 succ− 1 x− 2 y− 6,
index− 5 succ− 5 x− 7 y− 2,
index− 6 succ− 4 x− 4 y− 7,
index− 7 succ− 0 x− 6 y− 4

〉


Figure 5.256 represents the solution associated with the example. The covered ver-
tices are coloured in blue, while the links starting from the uncovered vertices are dashed.
The CYCLE OR ACCESSIBILITY constraint holds since:

• In the solution we have NCYCLE = 2 disjoint circuits.

• All the 3 uncovered nodes are located at a distance that does not exceed MAXDIST = 3
from at least one covered node.

Typical MAXDIST > 0
NCYCLE < |NODES|
|NODES| > 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 5.256: Final graph associated with the facilities location problem

Symmetries • Items of NODES are permutable.

• Attributes of NODES are permutable w.r.t. permutation (index) (succ) (x, y) (per-
mutation applied to all items).

• One and the same constant can be added to the x attribute of all items of NODES.

• One and the same constant can be added to the y attribute of all items of NODES.

Arg. properties Functional dependency: NCYCLE determined by NODES.

Remark This kind of facilities location problem is described in [255, pages 187–189] pages. In ad-
dition to our example they also mention the cost problem that is usually a trade-off between
the vertices that are directly covered by circuits and the others.

See also common keyword: CYCLE (graph constraint).

used in graph description: NVALUES EXCEPT 0.

Keywords constraint type: graph constraint.

final graph structure: strongly connected component.

geometry: geometrical constraint.

modelling: functional dependency.

problems: facilities location problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NTREE= 0
• NCC= NCYCLE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
∨

nodes1.succ = nodes2.index,∧ nodes1.succ = 0,
nodes2.succ 6= 0,
abs(nodes1.x− nodes2.x) + abs(nodes1.y− nodes2.y) ≤ MAXDIST




Graph property(ies) NVERTEX= |NODES|

Sets PRED 7→ variables− col

(
VARIABLES−collection(var−dvar),
[item(var− NODES.succ)]

)
,

destination


Constraint(s) on sets NVALUES EXCEPT 0(variables,=, 1)

Graph model For each vertex v we have introduced the following attributes:

• index: the label associated with v,

• succ: if v is not covered by a circuit then 0; If v is covered by a circuit then index of
the successor of v.

• x: the x-coordinate of v,

• y: the y-coordinate of v.

The first graph constraint forces all vertices, which have a non-zero successor, to form a set
of NCYCLE vertex-disjoint circuits.

The final graph associated with the second graph constraint contains two types of arcs:

• The arcs belonging to one circuit (i.e., nodes1.succ = nodes2.index),

• The arcs between one vertex v1 that does not belong to any circuit
(i.e., nodes1.succ = 0) and one vertex v2 located on a circuit (i.e., nodes2.succ 6=
0) such that the Manhattan distance between v1 and v2 is less than or equal to
MAXDIST.

In order to specify the fact that each vertex is involved in at least one arc we
use the graph property NVERTEX = |NODES|. Finally the dynamic constraint
nvalues except 0(variables,=, 1) expresses the fact that, for each vertex v, there is
exactly one predecessor of v that belongs to a circuit.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Parts (A) and (B) of Figure 5.257 respectively show the initial and final graph associated
with the second graph constraint of the Example slot.

NODES

1

2

3

4

5

6

7

NVERTEX=7

1:1,6,4,5

6:6,4,4,7

4:4,1,2,6

2:2,0,9,1

5:5,5,7,2

3:3,0,2,4 7:7,0,6,4

(A) (B)

Figure 5.257: Initial and final graph of the CYCLE OR ACCESSIBILITY constraint

Signature Since |NODES| is the maximum number of vertices of the final graph associated with the
second graph constraint we can rewrite NVERTEX = |NODES| to NVERTEX ≥
|NODES|. This leads to simplify NVERTEX to NVERTEX.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.108 CYCLE RESOURCE

I B C J DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint CYCLE RESOURCE(RESOURCE, TASK)

Arguments RESOURCE : collection(id−int, first task−dvar, nb task−dvar)
TASK : collection(id−int, next task−dvar, resource−dvar)

Restrictions required(RESOURCE, [id, first task, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.first task ≥ 1
RESOURCE.first task ≤ |RESOURCE|+ |TASK|
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, next task, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.next task ≥ 1
TASK.next task ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Consider a digraph G defined as follows:

• To each item of the RESOURCE and TASK collections corresponds one vertex ofG.
A vertex that was generated from an item of the RESOURCE (respectively TASK)
collection is called a resource vertex (respectively task vertex).

• There is an arc from a resource vertex r to a task vertex t if t ∈
RESOURCE[r].first task.

• There is an arc from a task vertex t to a resource vertex r if r ∈
TASK[t].next task.

• There is an arc from a task vertex t1 to a task vertex t2 if t2 ∈
TASK[t1].next task.

• There is no arc between two resource vertices.

Enforce to cover G in such a way that each vertex belongs to a single circuit. Each
circuit is made up from a single resource vertex and zero, one or more task vertices.
For each resource-vertex a domain variable indicates how many task-vertices belong to
the corresponding circuit. For each task a domain variable provides the identifier of the
resource that can effectively handle that task.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



〈
id− 1 first task− 5 nb task− 3,
id− 2 first task− 2 nb task− 0,
id− 3 first task− 8 nb task− 2

〉
,

〈 id− 4 next task− 7 resource− 1,
id− 5 next task− 4 resource− 1,
id− 6 next task− 3 resource− 3,
id− 7 next task− 1 resource− 1,
id− 8 next task− 6 resource− 3

〉


The CYCLE RESOURCE constraint holds since the graph corresponding to the ver-
tices described by its arguments consists of the following 3 disjoint circuits:

• The first circuit involves the resource vertex 1 as well as the task vertices 5, 4 and 7.

• The second circuit is limited to the resource vertex 2.

• Finally the third circuit is made up from the remaining vertices, namely the resource
vertex 3 and the task vertices 8 and 6.

1 5

47

2 3

86

Typical |RESOURCE| > 1
|TASK| > 1
|TASK| > |RESOURCE|

Symmetries • Items of RESOURCE are permutable.

• Items of TASK are permutable.

• All occurrences of two distinct values in RESOURCE.id or TASK.resource can be
swapped.

Usage This constraint is useful for some vehicles routing problem where the number of locations
to visit depends of the vehicle type that is actually used. The resource attribute allows
expressing various constraints such as:

• The compatibility or incompatibility between tasks and vehicles,

• The fact that certain tasks should be performed by the same vehicle,

• The pre-assignment of certain tasks to a given vehicle.

Remark This constraint could be expressed with the CYCLE constraint of CHIP by using the fol-
lowing optional parameters:

• The resource node parameter [93, page 97],

• The circuit weight parameter [93, page 101],

• The name parameter [93, page 104].

See also common keyword: CYCLE (graph partitioning constraint).

Keywords characteristic of a constraint: derived collection.

constraint type: graph constraint, resource constraint, graph partitioning constraint.

final graph structure: connected component, strongly connected component.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.cosytec.com
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Derived Collection

col



RESOURCE TASK−collection

 index−int,
succ−dvar,
name−dvar

 ,
item

 index− RESOURCE.id,
succ− RESOURCE.first task,
name− RESOURCE.id

 ,

item

 index− TASK.id,
succ− TASK.next task,
name− TASK.resource






Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) • NTREE= 0
• NCC= |RESOURCE|
• NVERTEX= |RESOURCE|+ |TASK|

Graph class ONE SUCC

For all items of RESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX= RESOURCE.nb task + 1

Graph model The graph model of the CYCLE RESOURCE constraint illustrates the following points:

• How to differentiate the constraint on the length of a circuit according to a resource
that is assigned to a circuit? This is achieved by introducing a collection of resources
and by asking a different graph property for each item of that collection.

• How to introduce the concept of name that corresponds to the resource that handles
a given task? This is done by adding to the arc constraint associated with the CYCLE

constraint the condition that the name variables of two consecutive vertices should
be equal.

Part (A) of Figure 5.258 shows the initial graphs (of the second graph constraint) associated
with resources 1, 2 and 3 of the Example slot. Part (B) of Figure 5.258 shows the corre-
sponding final graphs (of the second graph constraint) associated with resources 1, 2 and 3.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Since we use the NVERTEX graph property, the vertices of the final graphs are stressed
in bold. To each resource corresponds a circuit of respectively 3, 0 and 2 task-vertices.

RESOURCE_TASK

1

2

3

4

5

6

7

8

1:NVERTEX=4
2:NVERTEX=1
3:NVERTEX=3

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,5,1

5:5,4,1

4:4,7,1

7:7,1,1

2:2,2,2 3:3,8,3

8:8,6,3

6:6,3,3

(A) (B)

Figure 5.258: Initial and final graph of the CYCLE RESOURCE constraint

Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE|+ |TASK| and simplify NVERTEX to NVERTEX.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.109 CYCLIC CHANGE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CHANGE.

Constraint CYCLIC CHANGE(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Arguments NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE LENGTH > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var < CYCLE LENGTH

CTR ∈ [=, 6=, <,≥, >,≤]

Purpose NCHANGE is the number of times that constraint ((X + 1) mod CYCLE LENGTH) CTR Y
holds; X and Y correspond to consecutive variables of the collection VARIABLES.

Example (2, 4, 〈3, 0, 2, 3, 1〉 , 6=)

Since CTR is set to 6= and since CYCLE LENGTH is set to 4, a change between two
consecutive items X and Y of the VARIABLES collection corresponds to the fact that the
condition ((X + 1) mod 4) 6= Y holds. Consequently, the CYCLIC CHANGE constraint
holds since we have the two following changes (i.e., NCHANGE = 2) within 〈3, 0, 2, 3, 1〉:

• A first change between the consecutive values 0 and 2,

• A second change between the consecutive values 3 and 1.

However, the sequence 3 0 does not correspond to a change since (3 + 1) mod 4 is equal
to 0.

Typical NCHANGE > 0
|VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [ 6=]

Symmetry Items of VARIABLES can be shifted.

Arg. properties Functional dependency: NCHANGE determined by CYCLE LENGTH, VARIABLES and CTR.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage This constraint may be used for personnel cyclic timetabling problems where each person
has to work according to cycles. In this context each variable of the VARIABLES collection
corresponds to the type of work a person performs on a specific day. Because of some
perturbation (e.g., illness, unavailability, variation of the workload) it is in practice not rea-
sonable to ask for perfect cyclic solutions. One alternative is to use the CYCLIC CHANGE

constraint and to ask for solutions where one tries to minimise the number of cycle breaks
(i.e., the variable NCHANGE).

See also common keyword: CHANGE, CYCLIC CHANGE JOKER (number of changes).

implies: CYCLIC CHANGE JOKER.

Keywords characteristic of a constraint: cyclic, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) (variables1.var + 1) mod CYCLE LENGTH CTR variables2.var

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.259 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

5

NARC=2

2:0

3:2

4:3

5:1

(A) (B)

Figure 5.259: Initial and final graph of the CYCLIC CHANGE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.260 depicts the automaton associated with the CYCLIC CHANGE constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ⇔ Si.

NCHANGE = C

s{C ← 0} ((VARi + 1) mod CYCLE LENGTH) CTR VARi+1,
{C ← C + 1}

((VARi + 1) mod CYCLE LENGTH) ¬CTR VARi+1

Figure 5.260: Automaton of the CYCLIC CHANGE constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = NCHANGE

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.261: Hypergraph of the reformulation corresponding to the automaton of the
CYCLIC CHANGE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.110 CYCLIC CHANGE JOKER

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CYCLIC CHANGE.

Constraint CYCLIC CHANGE JOKER(NCHANGE, CYCLE LENGTH, VARIABLES, CTR)

Arguments NCHANGE : dvar

CYCLE LENGTH : int

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
CYCLE LENGTH > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

NCHANGE is the number of times that the following constraint holds:

((X + 1) mod CYCLE LENGTH) CTR Y ∧X < CYCLE LENGTH ∧ Y < CYCLE LENGTH

X and Y correspond to consecutive variables of the collection VARIABLES.

Example (2, 4, 〈3, 0, 2, 4, 4, 4, 3, 1, 4〉 , 6=)

Since CTR is set to 6= and since CYCLE LENGTH is set to 4, a change between two
consecutive items X and Y of the VARIABLES collection corresponds to the fact that
the condition ((X + 1) mod 4) 6= Y ∧ X < 4 ∧ Y < 4 holds. Consequently, the
CYCLIC CHANGE JOKER constraint holds since we have the two following changes
(i.e., NCHANGE = 2) within 〈3, 0, 2, 4, 4, 4, 3, 1, 4〉:

• A first change between 0 and 2,

• A second change between 3 and 1.

But when the joker value 4 is involved, there is no change. This is why no change is counted
between values 2 and 4, between 4 and 4 and between 1 and 4.

Typical NCHANGE > 0
CYCLE LENGTH > 1
|VARIABLES| > 1
range(VARIABLES.var) > 1
maxval(VARIABLES.var) ≥ CYCLE LENGTH

CTR ∈ [ 6=]


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model ATLEAST(2, VARIABLES, 0)

Symmetry Items of VARIABLES can be shifted.

Arg. properties Functional dependency: NCHANGE determined by CYCLE LENGTH, VARIABLES and CTR.

Usage The CYCLIC CHANGE JOKER constraint can be used in the same context as the
CYCLIC CHANGE constraint with the additional feature: in our example codes 0 to 3 cor-
respond to different type of activities (i.e., working the morning, the afternoon or the night)
and code 4 represents a holiday. We want to express the fact that we do not count any
change for two consecutive days d1, d2 such that d1 or d2 is a holiday.

See also common keyword: CHANGE, CYCLIC CHANGE (number of changes).

implied by: CYCLIC CHANGE.

Keywords characteristic of a constraint: cyclic, joker value, automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: timetabling constraint.

final graph structure: acyclic, bipartite, no loop.

modelling: number of changes, functional dependency.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • (variables1.var + 1) mod CYCLE LENGTH CTR variables2.var
• variables1.var < CYCLE LENGTH

• variables2.var < CYCLE LENGTH

Graph property(ies) NARC= NCHANGE

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model The joker values are those values that are greater than or equal to CYCLE LENGTH. We do
not count any change for those arc constraints involving at least one variable taking a joker
value.

Parts (A) and (B) of Figure 5.262 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9

NARC=2

2:0

3:2

7:3

8:1

(A) (B)

Figure 5.262: Initial and final graph of the CYCLIC CHANGE JOKER constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.263 depicts the automaton associated with the CYCLIC CHANGE JOKER con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a 0-1 signature variable Si. The following signature constraint links VARi,
VARi+1 and Si:

(((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ∧
(VARi < CYCLE LENGTH) ∧ (VARi+1 < CYCLE LENGTH))⇔ Si.

NCHANGE = C

s{C ← 0}
((VARi + 1) mod CYCLE LENGTH) CTR VARi+1 ∧
VARi < CYCLE LENGTH ∧ VARi+1 < CYCLE LENGTH,
{C ← C + 1}

((VARi + 1) mod CYCLE LENGTH) ¬CTR VARi+1 ∨
VARi ≥ CYCLE LENGTH ∨ VARi+1 ≥ CYCLE LENGTH

Figure 5.263: Automaton of the CYCLIC CHANGE JOKER constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = NCHANGE

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.264: Hypergraph of the reformulation corresponding to the automaton of the
CYCLIC CHANGE JOKER constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.111 DAG

I B C J DESCRIPTION LINKS GRAPH

Origin [151]

Constraint DAG(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Consider a digraph G described by the NODES collection. Select a subset of arcs of G so
that the corresponding graph does not contain any circuit.

Example


〈 index− 1 succ− {2, 4},

index− 2 succ− {3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅,
index− 5 succ− {6},
index− 6 succ− ∅

〉


The DAG constraint holds since the NODES collection depicts a graph without circuit.

1

2

3 4

5

6

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Algorithm A filtering algorithm for the DAG constraint is given in [151, page 90]. It removes potential
arcs that would create a circuit of mandatory arcs.

See also used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator SELF 7→collection(nodes)

Arc arity 1

Arc constraint(s) IN SET(nodes.key, nodes.succ)

Graph property(ies) NARC= 0

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph property(ies) MAX NSCC≤ 1

Graph model The first graph constraint removes the loop of each vertex. The second graph constraint
forbids the creation of circuits involving more than one vertex.

Part (A) of Figure 5.265 shows the initial graph associated with the second graph constraint
of the Example slot. This initial graph from which we start is derived from the set asso-
ciated with each vertex. Each set describes the potential values of the succ attribute of a
given vertex. Part (B) of Figure 5.265 gives the final graph associated with the Example
slot.

NODES

1:1,{2,4}

2:2,{3,4}

4:4,{1}

3:3,{2,4}

5:5,{6}

6:6,{5}

1:1,{2,4}

2:2,{3,4}

4:4,{} 3:3,{}

5:5,{6}

6:6,{}

(A) (B)

Figure 5.265: Initial and final graph of the DAG set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.112 DECREASING

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Inspired by INCREASING.

Constraint DECREASING(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are decreasing.

Example (〈8, 4, 1, 1〉)

The DECREASING constraint holds since 8 ≥ 4 ≥ 1 ≥ 1.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 6 20 70 252 924 3432 12870

Number of solutions for DECREASING: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Systems INCREASINGNVALUE in Choco, REL in Gecode, DECREASING in MiniZinc.

See also common keyword: STRICTLY INCREASING (order constraint).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#decreasing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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comparison swapped: INCREASING.

implied by: ALL EQUAL, STRICTLY DECREASING.

implies: MULTI GLOBAL CONTIGUITY, NO PEAK, NO VALLEY.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≥ variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.266 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:1

4:1

(A) (B)

Figure 5.266: Initial and final graph of the DECREASING constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.267 depicts the automaton associated with the DECREASING constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi ≥ VARi+1 ⇔ Si.

s VARi ≥ VARi+1

Figure 5.267: Automaton of the DECREASING constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.268: Hypergraph of the reformulation corresponding to the automaton of the
DECREASING constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.113 DECREASING PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK and DECREASING.

Constraint DECREASING PEAK(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vk and Vk > Vk+1.
When considering all the peaks of the sequence VARIABLES from left to right enforce all
peaks to be decreasing, i.e. the altitude of each peak is less than or equal to the altitude
of its preceding peak when it exists.

Example (〈1, 7, 7, 4, 3, 7, 2, 2, 5, 4〉)

The DECREASING PEAK constraint holds since the sequence 1 7 7 4 3 7 2 2 5 4
contains three peaks, in bold, that are decreasing.

1

7 7

4
3

7

2 2

5
4

first
peak

second
peak

third
peak

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1

2

3

4

5

6

7

8
decreasing altitudes peaks

1

7 7

4

3

7

2 2

5

4

variables

va
lu

es

Figure 5.269: Illustration of the Example slot: a sequence of ten variables V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10 respectively fixed to values 1, 7, 7, 4, 3, 7, 2, 2, 5, 4 and its
corresponding three peaks, in red, respectively located at altitudes 7, 7 and 5


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| ≥ 7
range(VARIABLES.var) > 1
PEAK(VARIABLES.var) ≥ 3

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7553 105798 1666878 29090469

Number of solutions for DECREASING PEAK: domains 0..n
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Solution density for DECREASING PEAK


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for DECREASING PEAK

See also implied by: ALL EQUAL PEAK.

related: INCREASING PEAK, PEAK.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications DECREASING PEAK(VARIABLES)
with PEAK(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.270 depicts the automaton associated with the DECREASING PEAK constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or decreasing mode ({= | >}∗)
u : increasing (before first potential peak) mode (< {< | =}∗)
v : decreasing (after a peak) mode (> {> | =}∗)
w : increasing (after a peak) mode (< {< | =}∗)

STATE SEMANTICS

s u

vw

{Altitude ← 0}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ← VARi}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ≥ VARi,
Altitude ← VARi}

Figure 5.270: Automaton for the DECREASING PEAK constraint (note the conditional
transition from state w to state v testing that the counter Altitude is greater than or
equal to VARi for enforcing that all peaks from left to right are in decreasing altitude)

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.271: Hypergraph of the reformulation corresponding to the automaton of the
DECREASING PEAK constraint where Ai stands for the value of the counter Altitude
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.114 DECREASING VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY and DECREASING.

Constraint DECREASING VALLEY(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (1 < i ≤ k) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vk and Vk < Vk+1.
When considering all the valleys of the sequence VARIABLES from left to right enforce
all valleys to be decreasing, i.e. the altitude of each valley is less than or equal to the
altitude of its preceding valley when it exists.

Example (〈1, 7, 6, 8, 3, 7, 3, 3, 5, 4〉)

The DECREASING VALLEY constraint holds since the sequence 1 7 6 8 3 7 3 3 5 2
contains three valleys, in bold, that are decreasing.
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Figure 5.272: Illustration of the Example slot: a sequence of ten variables V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10 respectively fixed to values 1, 7, 6, 8, 3, 7, 3, 3, 5, 2 and its
corresponding three valleys, in red, respectively located at altitudes 6, 3 and 3


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| ≥ 7
range(VARIABLES.var) > 1
VALLEY(VARIABLES.var) ≥ 3

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7553 105798 1666878 29090469

Number of solutions for DECREASING VALLEY: domains 0..n
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Solution density for DECREASING VALLEY


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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See also implied by: ALL EQUAL VALLEY.

related: INCREASING VALLEY, VALLEY.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications DECREASING VALLEY(VARIABLES)
with VALLEY(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.273 depicts the automaton associated with the DECREASING VALLEY constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a signature variable Si. The following signature constraint links VARi, VARi+1 and
Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or increasing mode ({= | >}∗)
u : decreasing (before first potential valley) mode (< {< | =}∗)
v : increasing (after a valley) mode (> {> | =}∗)
w : decreasing (after a valley) mode (< {< | =}∗)

STATE SEMANTICS

s u

vw

{Altitude ← 0}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ← VARi}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ≥ VARi,
Altitude ← VARi}

Figure 5.273: Automaton for the DECREASING VALLEY constraint (note the condi-
tional transition from state w to state v testing that the counter Altitude is greater than
or equal to VARi for enforcing that all valleys from left to right are in decreasing alti-
tude)

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.274: Hypergraph of the reformulation corresponding to the automaton of the
DECREASING VALLEY constraint whereAi stands for the value of the counter Altitude
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.115 DEEPEST VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY.

Constraint DEEPEST VALLEY(DEPTH, VARIABLES)

Arguments DEPTH : dvar

VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (1 < i ≤ k) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vk and Vk < Vk+1. DEPTH is the minimum value of the valley
variables. If no such variable exists DEPTH is equal to the default value MAXINT.

Example (2, 〈5, 3, 4, 8, 8, 2, 7, 1〉)
(7, 〈1, 3, 4, 8, 8, 8, 7, 8〉)

The first DEEPEST VALLEY constraint holds since 2 is the deepest valley of the
sequence 5 3 4 8 8 2 7 1.

5

3
4

88

2

7

1

first
valley

deepest
valley

DEPTH = 2

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

5

6

7

8

5

3

4

8 8

7

1

variables

va
lu

es

Figure 5.275: Illustration of the first example of the Example slot: a sequence of eight
variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 5, 3, 4, 8, 8, 2, 7, 1
and its corresponding deepest valley of depth 2

Typical |VARIABLES| > 2
range(VARIABLES.var) > 2
VALLEY(VARIABLES.var) > 0


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model nval(VARIABLES.var) > 2

Symmetry Items of VARIABLES can be reversed.

Arg. properties Functional dependency: DEPTH determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for DEEPEST VALLEY: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4

Length

O
bs

er
ve

d
de

ns
ity

Solution density for DEEPEST VALLEY


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0.9

1

1.1

1.2

Length

O
bs

er
ve

d
de

ns
ity

Solution density for DEEPEST VALLEY

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 - 9 176 2900 50472 976227 21133632
1 - 4 99 1712 29125 540576 11233250
2 - 1 44 900 15680 283250 5665896
3 - - 11 380 7587 138544 2693425
4 - - - 92 3000 61389 1195056
5 - - - - 697 22632 484020
6 - - - - - 5036 166208
7 - - - - - - 35443

1000000 9 50 295 1792 11088 69498 439791
Solution count for DEEPEST VALLEY: domains 0..n
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0 0.5 1 1.5 2

10−3

10−2

10−1

Parameter value as fraction of length

O
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Solution density for DEEPEST VALLEY

size 6
size 7
size 8

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

Parameter value as fraction of length

O
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er
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d
de
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ity

Solution density for DEEPEST VALLEY

size 6
size 7
size 8

See also common keyword: HIGHEST PEAK, VALLEY (sequence).

implies: BETWEEN MIN MAX.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: maxint, automaton, automaton with counters, automaton
with same input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.276 depicts the automaton associated with the DEEPEST VALLEY constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

VARi < VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi > VARi+1 ⇔
Si = 2.

s : stationary/increasing mode ({< | =}∗)
u : decreasing mode (> {> | =}∗)

STATE SEMANTICS
D
E
P
T
H

=
C

s

{C ← maxint}

u

VARi = VARi+1 VARi < VARi+1

VARi > VARi+1

VARi = VARi+1 VARi > VARi+1

VARi < VARi+1,
{C ← min(C, VARi)}

s u

s min(
−→
C ,
←−
C )

min(
−→
C ,
←−
C )

u

min(
−→
C ,
←−
C ) min(

−→
C ,
−→
X,
←−
C )

Glue matrix where
−→
C and

←−
C resp. repre-

sent the counters values C at the end of a
prefix and at the end of the corresponding
reverse suffix that partitions the sequence
VARIABLES;

−→
X denotes the last variable of

the prefix.

Figure 5.276: Automaton of the DEEPEST VALLEY constraint and its glue matrix (state
s means that we are in increasing or stationary mode, state u means that we are in
decreasing mode, a new valley is detected each time we switch from decreasing to in-
creasing mode and the counter C is updated accordingly); maxint is the largest integer
that can be represented on a machine

C0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = DEPTH

Qn−1 ∈ {s, u}

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.277: Hypergraph of the reformulation corresponding to the automaton of
the DEEPEST VALLEY constraint (C0 is set to maxint the largest integer that can be
represented on a machine)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.116 DERANGEMENT

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from CYCLE.

Constraint DERANGEMENT(NODES)

Argument NODES : collection(index−int, succ−dvar)

Restrictions |NODES| > 1
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to have a permutation with no cycle of length one. The permutation is depicted
by the succ attribute of the NODES collection.

Example


〈 index− 1 succ− 2,

index− 2 succ− 1,
index− 3 succ− 5,
index− 4 succ− 3,
index− 5 succ− 4

〉 
In the permutation of the example we have the following 2 cycles: 1 → 2 → 1
and 3 → 5 → 4 → 3. Since these cycles have both a length strictly greater than one the
corresponding DERANGEMENT constraint holds.

2

1

5

3

4

All solutions Figure 5.278 gives all solutions to the following non ground instance of the
DERANGEMENT constraint: S1 ∈ [2, 4], S2 ∈ [1, 2], S3 ∈ [1, 4], S4 ∈ [2, 4],
DERANGEMENT(〈1 S1, 2 S2, 3 S3, 4 S4〉).

¬ (〈21,12,43,34〉)
 (〈31,12,43,24〉)
® (〈41,12,23,34〉)

1 2

3 4

¬
1 3

42


1 4

32

®

Figure 5.278: All solutions corresponding to the non ground example of the
DERANGEMENT constraint of the All solutions slot; in the left-hand side the index

attributes are displayed as indices of the succ attribute, while in the right-hand side
they are directly displayed within each node.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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Typical |NODES| > 2

Symmetries • Items of NODES are permutable.

• Attributes of NODES are permutable w.r.t. permutation (index, succ) (permuta-
tion applied to all items).

Remark A special case of the CYCLE [47] constraint.

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 1 2 9 44 265 1854 14833 133496 1334961

Number of solutions for DERANGEMENT: domains 0..n

2 4 6 8 10

10−4

10−3

10−2

10−1

Length
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ity

Solution density for DERANGEMENT


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Counting
Information on the solution density.
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2 4 6 8 10

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Length
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er
ve

d
de

ns
ity

Solution density for DERANGEMENT

See also common keyword: ALLDIFFERENT, CYCLE (permutation).

implied by: SYMMETRIC ALLDIFFERENT.

implies: TWIN.

implies (items to collection): K ALLDIFFERENT, LEX ALLDIFFERENT.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation.

constraint type: graph constraint.

filtering: arc-consistency, DFS-bottleneck.

final graph structure: one succ.

Cond. implications DERANGEMENT(NODES)
implies PERMUTATION(VARIABLES : NODES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ 6= nodes1.index

Graph property(ies) NTREE= 0

Graph class ONE SUCC

Graph model Parts (A) and (B) of Figure 5.279 respectively show the initial and final graph associated
with the Example slot. The DERANGEMENT constraint holds since the final graph does
not contain any vertex that does not belong to a circuit (i.e., NTREE = 0).

NODES

1

2

3

4

5

NTREE=0

1:1,2

2:2,1

3:3,5

5:5,4

4:4,3

(A) (B)

Figure 5.279: Initial and final graph of the DERANGEMENT constraint

In order to express the binary constraint that links two vertices of the NODES collection
one has to make explicit the index value of the vertices. This is why the DERANGEMENT

constraint considers objects that have two attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex.

Forbidding cycles of length one is achieved by the second condition of the arc constraint.

Signature Since 0 is the smallest possible value of NTREE we can rewrite the graph property
NTREE = 0 to NTREE ≤ 0. This leads to simplify NTREE to NTREE.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.117 DIFFER FROM AT LEAST K POS

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Inspired by [188].

Constraint DIFFER FROM AT LEAST K POS(K, VECTOR1, VECTOR2)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTOR1 : VECTOR

VECTOR2 : VECTOR

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
K ≥ 0
K ≤ |VECTOR1|
|VECTOR1| = |VECTOR2|

Purpose Enforce two vectors VECTOR1 and VECTOR2 to differ from at least K positions.

Example (2, 〈2, 5, 2, 0〉 , 〈3, 6, 2, 1〉)

The DIFFER FROM AT LEAST K POS constraint holds since the first and second
vectors differ from 3 positions, which is greater than or equal to K = 2.

Typical K > 0
K < |VECTOR1|
|VECTOR1| > 1

Symmetries • Arguments are permutable w.r.t. permutation (K) (VECTOR1, VECTOR2).

• K can be decreased to any value ≥ 0.

• Items of VECTOR1 and VECTOR2 are permutable (same permutation used).

Arg. properties Extensible wrt. VARIABLES1 and VARIABLES2 (add items at same position).

Remark Used in the Arc constraint(s) slot of the ALL DIFFER FROM AT LEAST K POS constraint.

Used in ALL DIFFER FROM AT LEAST K POS.

See also implied by: DIFFER FROM EXACTLY K POS (≥ K replaced by = K).

system of constraints: ALL DIFFER FROM AT LEAST K POS.

Keywords characteristic of a constraint: vector, automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC≥ K

Graph model Parts (A) and (B) of Figure 5.280 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=3

1:2

1:3

2:5

2:6

4:0

4:1

(A) (B)

Figure 5.280: Initial and final graph of the DIFFER FROM AT LEAST K POS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.281 depicts the automaton associated with the DIFFER FROM AT LEAST K POS

constraint. Let VAR1i and VAR2i be the ith variables of the VECTOR1 and VECTOR2 collec-
tions. To each pair of variables (VAR1i, VAR2i) corresponds a signature variable Si. The
following signature constraint links VAR1i, VAR2i and Si: VAR1i = VAR2i ⇔ Si.

C ≥ K

s{C ← 0} VAR1i 6= VAR2i,
{C ← C + 1}

VAR1i = VAR2i

Figure 5.281: Automaton of the DIFFER FROM AT LEAST K POS constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn ≥ K

Qn = s

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.282: Hypergraph of the reformulation corresponding to the automaton of the
DIFFER FROM AT LEAST K POS constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.118 DIFFER FROM AT MOST K POS

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by DIFFER FROM AT LEAST K POS.

Constraint DIFFER FROM AT MOST K POS(K, VECTOR1, VECTOR2)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTOR1 : VECTOR

VECTOR2 : VECTOR

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
K ≥ 0
K ≤ |VECTOR1|
|VECTOR1| = |VECTOR2|

Purpose Enforce two vectors VECTOR1 and VECTOR2 to differ from at most K positions.

Example (3, 〈2, 5, 2, 0〉 , 〈3, 6, 2, 0〉)

The DIFFER FROM AT MOST K POS constraint holds since the first and second vec-
tors differ from 2 positions, which is less than or equal to K = 3.

Typical K > 0
K < |VECTOR1|
|VECTOR1| > 1

Symmetries • Arguments are permutable w.r.t. permutation (K) (VECTOR1, VECTOR2).

• K can be increased to any value ≤ |VECTOR1|.
• Items of VECTOR1 and VECTOR2 are permutable (same permutation used).

Arg. properties Contractible wrt. VARIABLES1 and VARIABLES2 (remove items from same position).

Used in ALL DIFFER FROM AT MOST K POS.

See also implied by: DIFFER FROM EXACTLY K POS (≤ K replaced by = K).

system of constraints: ALL DIFFER FROM AT MOST K POS.

Keywords characteristic of a constraint: vector.

constraint type: value constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC≤ K

Graph model Parts (A) and (B) of Figure 5.283 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=2

1:2

1:3

2:5

2:6

(A) (B)

Figure 5.283: Initial and final graph of the DIFFER FROM AT MOST K POS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.119 DIFFER FROM EXACTLY K POS

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by DIFFER FROM AT LEAST K POS.

Constraint DIFFER FROM EXACTLY K POS(K, VECTOR1, VECTOR2)

Type VECTOR : collection(var−dvar)

Arguments K : int

VECTOR1 : VECTOR

VECTOR2 : VECTOR

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
K ≥ 0
K ≤ |VECTOR1|
|VECTOR1| = |VECTOR2|

Purpose Enforce two vectors VECTOR1 and VECTOR2 to differ from exactly K positions.

Example (2, 〈3, 0, 2, 0〉 , 〈3, 6, 2, 1〉)

The DIFFER FROM EXACTLY K POS constraint holds since the first and second vec-
tors differ from 2 positions, which is equal to K = 2.

Typical K > 0
K ≤ |VECTOR1|
|VECTOR1| > 1

Symmetries • Arguments are permutable w.r.t. permutation (K) (VECTOR1, VECTOR2).

• Items of VECTOR1 and VECTOR2 are permutable (same permutation used).

Arg. properties Functional dependency: K determined by VECTOR1.

Used in ALL DIFFER FROM EXACTLY K POS.

See also implies: DIFFER FROM AT LEAST K POS (= K replaced by ≥ K),
DIFFER FROM AT MOST K POS (= K replaced by ≤ K).

system of constraints: ALL DIFFER FROM EXACTLY K POS.

Keywords characteristic of a constraint: vector.

constraint arguments: pure functional dependency.

constraint type: value constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC= K

Graph model Parts (A) and (B) of Figure 5.284 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=2

2:0

2:6

4:0

4:1

(A) (B)

Figure 5.284: Initial and final graph of the DIFFER FROM EXACTLY K POS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.120 DIFFN

I B C J DESCRIPTION LINKS GRAPH

Origin [47]

Constraint DIFFN(ORTHOTOPES)

Synonyms DISJOINT, DISJOINT1, DISJOINT2, DIFF2.

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Argument ORTHOTOPES : collection(orth− ORTHOTOPE)

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose

Generalised multi-dimensional non-overlapping constraint: Holds if, for each pair of or-
thotopes (O1, O2), O1 and O2 do not overlap. Two orthotopes do not overlap if one of
the orthotopes has zero size or if there exists at least one dimension where their projec-
tions do not overlap.

Example


〈 orth− 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 2 end− 3〉 ,

orth− 〈ori− 4 siz− 4 end− 8, ori− 2 siz− 2 end− 4〉 ,

orth−
〈

ori− 6 siz− 5 end− 11,
ori− 5 siz− 2 end− 7

〉 〉 
Figure 5.285 represents the position of the three rectangles of the example. The co-
ordinates of the leftmost lowest corner of each rectangle are stressed in bold. The DIFFN

constraint holds since the three rectangles do not overlap as explained in Figure 5.286.

1 3 5 7 8 9 102 4 6

3

4

6

1

2

5

R1

R2

R3

dimension 1

di
m

en
si

on
2

Figure 5.285: Illustration of the Example slot: the three rectangles


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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R1

R2

R1 andR2 do not overlap
since their projections onto
dimension 1 do not intersect

(A)

R1

R3

R1 andR3 do not overlap
since their projections onto
both dimensions do not intersect

(B)

R2

R3

R2 andR3 do not overlap
since their projections onto
dimension 2 do not intersect

(C)

Figure 5.286: Illustration of the Example slot: the reasons (A), (B), (C) why the pairs
of rectangles (R1, R2), (R1, R3), (R2, R3) do not overlap

All solutions Figure 5.287 gives all solutions to the following non ground instance of the DIFFN con-
straint:
X1 ∈ [1, 3], EX1 ∈ [1, 9], Y1 ∈ [1, 3], EY1 ∈ [1, 9],
X2 ∈ [1, 3], EX2 ∈ [1, 9], Y2 ∈ [2, 3], EY2 ∈ [1, 9],
X3 ∈ [1, 2], EX3 ∈ [1, 9], Y3 ∈ [1, 4], EY3 ∈ [1, 9],
X4 ∈ [1, 3], EX4 ∈ [1, 9], Y4 ∈ [1, 3], EY4 ∈ [1, 9],
DIFFN(〈〈X1 2 EX1, Y1 3 EY1〉, 〈X2 3 EX2, Y2 2 EY2〉,
〈X3 1 EX3, Y3 4 EY3〉, 〈X4 4 EX4, Y4 1 EY4〉〉).

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetries • Items of ORTHOTOPES are permutable.

• Items of ORTHOTOPES.orth are permutable (same permutation used).

• ORTHOTOPES.orth.siz can be decreased to any value ≥ 0.

• One and the same constant can be added to the ori and end attributes of all items
of ORTHOTOPES.orth.

Arg. properties Contractible wrt. ORTHOTOPES.

Usage The DIFFN constraint occurs in placement and scheduling problems. It was used, for exam-
ple, for scheduling problems where one has to both assign each non-preemptive task to a
resource and fix its origin so that two tasks, which are assigned to the same resource, do not
overlap. When the resource is a set of persons to which non-preemptive tasks have to be
assigned this corresponds to so called timetabling problems. A second practical application
from the area of the design of memory-dominated embedded systems [413] can be found
in [414]. Together with arithmetic and CUMULATIVE constraints, the DIFFN constraint was
used in [412] for packing more complex shapes such as angles. Figure 5.288 illustrates the
angle packing problem on an instance involving 10 angles taken from [412].

One other packing problem attributed to S. Golomb is to find the smallest square that can
contain the set of consecutive squares from 1× 1 up to n× n so that these squares do not
overlap each other (see the smallest rectangle area problem).


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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¬ (〈〈1 2 3, 1 3 4〉, 〈3 3 6, 2 2 4〉, 〈1 1 2, 4 4 8〉, 〈3 4 7, 1 1 2〉〉)
 (〈〈1 2 3, 1 3 4〉, 〈3 3 6, 2 2 4〉, 〈2 1 3, 4 4 8〉, 〈3 4 7, 1 1 2〉〉)
® (〈〈1 2 3, 1 3 4〉, 〈3 3 6, 3 2 5〉, 〈1 1 2, 4 4 8〉, 〈3 4 7, 1 1 2〉〉)
¯ (〈〈1 2 3, 1 3 4〉, 〈3 3 6, 3 2 5〉, 〈1 1 2, 4 4 8〉, 〈3 4 7, 2 1 3〉〉)
° (〈〈1 2 3, 1 3 4〉, 〈3 3 6, 3 2 5〉, 〈2 1 3, 4 4 8〉, 〈3 4 7, 1 1 2〉〉)
± (〈〈1 2 3, 1 3 4〉, 〈3 3 6, 3 2 5〉, 〈2 1 3, 4 4 8〉, 〈3 4 7, 2 1 3〉〉)
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Figure 5.287: All solutions corresponding to the non ground example of the DIFFN
constraint of the All solutions slot

Remark Unlike the definition of the Purpose slot the original paper [47] introducing the DIFFN

constraint imposes all orthotopes sizes to be different from 0. But it is convenient to allow
variable sizes which can be assigned value 0 to model the fact that an orthotope can be
skipped.

When we have segments (respectively rectangles) the DIFFN constraint is referenced under
the name DISJOINT1 (respectively DISJOINT2) in SICStus Prolog [108]. When we have
rectangles the DIFFN constraint is also called DIFF2 in JaCoP. In MiniZinc (http://www.
minizinc.org/) the DIFFN constraint considers only rectangles.

It was shown in [417, page 137] that, finding out whether a non-overlapping constraint
between a set of rectangles has a solution or not is NP-hard. This was achieved by reduction
from sequencing with release times and deadlines.

In the two-dimensional case, when rectangles heights are all equal to one and when rect-
angles starts in the first dimension are all fixed, the DIFFN constraint can be rewritten as
a K ALLDIFFERENT constraint corresponding to a system of ALLDIFFERENT constraints
derived from the maximum cliques of the corresponding interval graph.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.sics.se/sicstus/
http://www.jacop.eu/
http://www.minizinc.org/
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1 2 3 4 5 6 7 8 9
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A2 A1

A5A8A4
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Figure 5.288: A solution for the angle packing problem of items A1 = [2, 4, 3, 1],
A2 = [2, 2, 1, 3], A3 = [1, 3, 3, 2], A4 = [2, 1, 4, 3], A5 = [1, 7, 2, 2], A6 = [1, 2, 5, 5],
A7 = [6, 2, 2, 3], A8 = [4, 2, 2, 1], A9 = [3, 1, 1, 4], A10 = [3, 2, 1, 1].

Algorithm Checking whether a DIFFN constraint for which all variables are fixed is satisfied or not is
related to the Klee’s measure problem: given a collection of axis-aligned multi-dimensional
boxes, how quickly can one compute the volume of their union. Then the DIFFN constraint
holds if the volume of the union is equal to the sum of the volumes of the different boxes.

A first possible method for filtering non zero size orthotopes is to use constructive disjunc-
tion. The idea is to try out each alternative of a disjunction (e.g., given two orthotopes o1

and o2 that should not overlap, we successively assume for each dimension that o1 finishes
before o2, and that o2 finishes before o1) and to remove values that were pruned in all al-
ternatives. For the two-dimensional case of DIFFN a second possible solution used in [372]
is to represent explicitly the two-dimensional domain of the origin of each rectangle by a
quadtree [378] and to accumulate all forbidden regions within this data structure. As for
conventional domain variables, a failure occurs when a two-dimensional domain get empty.
A third possible filtering algorithm based on sweep is described in [34].

The thesis of J. Nelissen [303] considers the case where all rectangles have the same
size and can be rotated from 90 degrees (i.e., the pallet loading problem.). For the
n-dimensional case of DIFFN a filtering algorithm handling the fact that two objects do
not overlap is given in [50].

Extensions of the non-overlapping constraint to polygons and to more complex shapes
are respectively described in [50] and in [367]. Specialised propagation algorithms for
the squared squares problem [94] (based on the fact that no waste is permitted) are given
in [192] and in [191].

The CUMULATIVE constraint can be used as a necessary condition for the DIFFN constraint.
Figure 5.290 illustrates this point for the two-dimensional case. A first (respectively sec-
ond) CUMULATIVE constraint is obtained by forgetting the y-coordinate (respectively the
x-coordinate) of the origin of each rectangle occurring in a DIFFN constraint. Parts (B)
and (C) respectively depict the cumulated profiles associated with the projection of the
rectangles depicted by part (A) on the x and y axes.

The CUMULATIVE constraint is a necessary but not sufficient condition for the
two-dimensional case of the DIFFN constraint. Figure 5.291 illustrates this point on an


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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Figure 5.289: A hard instance from [303, page 165]: A solution for packing 99 rect-
angles of size 5× 9 into a rectangle of size 86× 52

example taken from [84] where one has to place the 8 rectangles R1, R2, R3, R4, R5, R6,
R7, R8 of respective size 5 × 2, 8 × 2, 6 × 1, 5 × 1, 2 × 1, 3 × 1, 2 × 2 and 1 × 2 in
a big rectangle of size 12 × 4. As shown by Figure 5.291 there is a cumulative solution
where R8 is split in two parts but M. Hujter proves in [232] that there is no solution where
no rectangle is split.

In the context of n parallelepipeds that have to be packed [198, 272] within a box of sizes
X × Y × Z one can proceed as follows for stating three CUMULATIVE constraints. The
ith (with i ∈ [1, n]) parallelepiped is described by the following attributes:

• ox i, oyi, oz i (with i ∈ [1, n]) the coordinates of its origin on the x, y and z-axes.

• sx i, syi, sz i (with i ∈ [1, n]) its sizes on the x, y and z-axes.

• px i, py i, pz i (with i ∈ [1, n]) the surfaces of its projections onto the planes yz, xz,
and xy respectively equal to syisz i, sx isz i, and sx isy i.

• vi its volume (equal to sx isyisz i).

For the placement of n parallelepipeds we get the following necessary conditions that re-
spectively correspond to three CUMULATIVE constraints on the planes yz, xz, and xy:

∀i ∈ [1, X] :
∑
j|oxj≤i≤oxj+sxj−1 px j ≤ Y Z

∀i ∈ [1, Y ] :
∑
j|oyj≤i≤oyj+syj−1 pyj ≤ XZ

∀i ∈ [1, Z] :
∑
j|ozj≤i≤ozj+szj−1 pz j ≤ XY

Reformulation Based on the fact that two orthotopes do not overlap if there exists at least one dimen-
sion where their projections do not overlap one can reformulate the DIFFN(ORTHOTOPES)
constraint as a disjunction of inequalities between the origin and the end attributes. In ad-
dition one has to link the origin, the size and the end attributes of each orthotope in each
dimension.

If we consider the example described in the Example slot we get the following reformula-
tion:


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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DIFFN

〈 〈2 2 4, 1 3 4〉,
〈4 4 8, 3 3 6〉,
〈9 2 11, 4 3 7〉

〉

CUMULATIVE

〈 2 2 4 3,
4 4 8 3,
9 2 11 3

〉
, 6



CUMULATIVE

〈 1 3 4 2,
3 3 6 4,
4 3 7 2

〉
, 10
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Figure 5.290: Looking from the perspective of the CUMULATIVE constraint in a two-
dimensional rectangles placement problem: projecting the three rectangles of (A) on
the x axis (B) and on the y axis (C)
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Figure 5.291: Illustrating the necessary but not sufficient placement condition: the
rectangle R8 is split in two parts

• 4 = 2+2 (link between the origin, size and end in dimension 1 of the first orthotope),

• 4 = 1+3 (link between the origin, size and end in dimension 2 of the first orthotope),

• 8 = 4 + 4 (link between the origin, size and end in dimension 1 of the second
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orthotope),

• 6 = 3 + 3 (link between the origin, size and end in dimension 2 of the second
orthotope),

• 11 = 9 + 2 (link between the origin, size and end in dimension 1 of the third
orthotope),

• 7 = 4+3 (link between the origin, size and end in dimension 2 of the third orthotope),

• 4 ≤ 4 ∨ 8 ≤ 2 ∨ 4 ≤ 3 ∨ 6 ≤ 1 (non-overlapping between the first and second
orthotopes),

• 4 ≤ 9 ∨ 11 ≤ 2 ∨ 4 ≤ 4 ∨ 7 ≤ 1 (non-overlapping between the first and third
orthotopes),

• 8 ≤ 9 ∨ 11 ≤ 4 ∨ 6 ≤ 4 ∨ 7 ≤ 3 (non-overlapping between the second and third
orthotopes).

Systems GEOST in Choco, NOOVERLAP in Gecode, DIFF2 in JaCoP, DIFF in JaCoP, DISJOINT in
JaCoP, DISJOINTCONDITIONAL in JaCoP, DIFFN in MiniZinc.

Used in DIFFN COLUMN, DIFFN INCLUDE, PLACE IN PYRAMID.

See also common keyword: CALENDAR (multi-site employee scheduling with calendar con-
straints,
scheduling with machine choice, calendars and preemption), DIFFN COLUMN,
DIFFN INCLUDE (geometrical constraint,orthotope), GEOST, GEOST TIME,
NON OVERLAP SBOXES (geometrical constraint,non-overlapping), VISIBLE (geometrical
constraint).

implied by: ORTHS ARE CONNECTED.

implies: CUMULATIVE (implies one CUMULATIVE constraint for each dimension).

related: CUMULATIVE TWO D (CUMULATIVE TWO D is a necessary condition for
DIFFN: forget one dimension when the number of dimensions is equal to 3),
LEX CHAIN LESS, LEX CHAIN LESSEQ (lexicographic ordering on the origins of tasks,
rectangles, . . .), TWO ORTH COLUMN, TWO ORTH INCLUDE.

specialisation: ALL MIN DIST (orthotope replaced by line segment, of same length),
ALLDIFFERENT (orthotope replaced by variable), CUMULATIVES (orthotope
replaced by task with machine assignment and origin attributes),
DISJUNCTIVE (orthotope replaced by task of heigth 1), K ALLDIFFERENT (when
rectangles heights are all equal to 1 and rectangles starts in the first dimension are all
fixed), LEX ALLDIFFERENT (orthotope replaced by vector).

used in graph description: ORTH LINK ORI SIZ END, TWO ORTH DO NOT OVERLAP.

Keywords application area: floor planning problem.

characteristic of a constraint: core.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#diffn
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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combinatorial object: pentomino.

complexity: sequencing with release times and deadlines.

constraint arguments: business rules.

constraint type: decomposition, timetabling constraint, relaxation.

filtering: Klee measure problem, sweep, quadtree, compulsory part, constructive disjunc-
tion, SAT.

geometry: geometrical constraint, orthotope, polygon, non-overlapping.

heuristics: heuristics for two-dimensional rectangle placement problems.

modelling: disjunction, assignment dimension, assignment to the same set of values, as-
signing and scheduling tasks that run in parallel, relaxation dimension, sequence dependent
set-up, multi-site employee scheduling with calendar constraints, scheduling with machine
choice, calendars and preemption.

modelling exercises: assignment to the same set of values, assigning and scheduling tasks
that run in parallel, relaxation dimension, sequence dependent set-up, multi-site employee
scheduling with calendar constraints, scheduling with machine choice, calendars and pre-
emption.

problems: strip packing, two-dimensional orthogonal packing, pallet loading.

puzzles: squared squares, packing almost squares, Partridge, pentomino, Shikaku, small-
est square for packing consecutive dominoes, smallest square for packing rectangles with
distinct sizes, smallest rectangle area, Conway packing problem.
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Arc input(s) ORTHOTOPES

Arc generator SELF 7→collection(orthotopes)

Arc arity 1

Arc constraint(s) ORTH LINK ORI SIZ END(orthotopes.orth)

Graph property(ies) NARC= |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE( 6=) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) TWO ORTH DO NOT OVERLAP(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) NARC= |ORTHOTOPES| ∗ |ORTHOTOPES| − |ORTHOTOPES|

Graph model The DIFFN constraint is expressed by using two graph constraints:

• The first graph constraint forces for each dimension and for each orthotope the link
between the corresponding ori, siz and end attributes.

• The second graph constraint imposes each pair of distinct orthotopes to not overlap.

Parts (A) and (B) of Figure 5.292 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.

ORTHOTOPES

1

2

3

NARC=6

1:2,2,4
  1,2,3

2:4,4,8
  2,2,4

3:6,5,11
  5,1,7

(A) (B)

Figure 5.292: Initial and final graph of the DIFFN constraint

Signature Since |ORTHOTOPES| is the maximum number of vertices of the final graph of the first graph
constraint we can rewrite NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. This
leads to simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Since we use the CLIQUE(6=) arc generator on the ORTHOTOPES collection,
|ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| is the maximum number of vertices
of the final graph of the second graph constraint. Therefore we can rewrite NARC
= |ORTHOTOPES| · |ORTHOTOPES| − |ORTHOTOPES| to NARC ≥ |ORTHOTOPES| ·
|ORTHOTOPES| − |ORTHOTOPES|. Again, this leads to simplify NARC to NARC.

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint DIFFN(〈〈1 1 1, 2 2 4〉, 〈5 1 6, 4 1 5〉〉) hold?

B. Does the constraint DIFFN(〈〈2 2 4, 3 2 5〉, 〈4 3 7, 4 2 6〉,
〈8 2 10, 2 3 5〉〉) hold?

C. Does the constraint DIFFN(〈〈2 2 4, 2 2 4〉, 〈4 5 9, 4 2 6〉,
〈8 2 10, 2 3 5〉〉) hold?

D. Does the constraint DIFFN(〈〈3 2 5〉, 〈4 0 4〉, 〈6 3 9〉〉) hold?

aHint: go back to the definition of DIFFN.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:

OX 1 ∈ [1, 5], EX 1 ∈ [1, 5], OY 1 ∈ [1, 5], EY 1 ∈ [1, 5],
OX 2 ∈ [1, 5], EX 2 ∈ [1, 5], OY 2 ∈ [1, 5], EY 2 ∈ [1, 5],
OX 3 ∈ [1, 5], EX 3 ∈ [1, 5], OY 3 ∈ [1, 5], EY 3 ∈ [1, 5],

DIFFN

〈 〈OX 1 1 EX 1, OY 1 3 EY 1〉,
〈OX 2 4 EX 2, OY 2 1 EY 2〉,
〈OX 3 3 EX 3, OY 3 3 EY 3〉

〉 .

aHint: consider rectangles by decreasing surface and focus on the coordinates
of their origins (OX 3,OY 3), (OX 2,OY 2) and (OX 1,OY 1); enumerate
solutions in lexicographic order of (OX 3,OY 3).


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 3 (finding the unique solution)a

Find the unique solution to the constraint:

OX 1 ∈ [1, 8], EX 1 ∈ [1, 8], OY 1 ∈ [1, 8], EY 1 ∈ [1, 8],
OX 2 ∈ [1, 8], EX 2 ∈ [1, 8], OY 2 ∈ [1, 8], EY 2 ∈ [1, 8],
OX 3 ∈ [1, 8], EX 3 ∈ [1, 8], OY 3 ∈ [1, 8], EY 3 ∈ [1, 8],
OX 4 ∈ [1, 8], EX 4 ∈ [1, 8], OY 4 ∈ [1, 8], EY 4 ∈ [1, 8],
OX 5 ∈ [1, 8], EX 5 ∈ [1, 8], OY 5 ∈ [1, 8], EY 5 ∈ [1, 8],

DIFFN



〈
〈OX 1 2 EX 1, OY 1 5 EY 1〉,
〈OX 2 5 EX 2, OY 2 1 EY 2〉,
〈OX 3 2 EX 3, OY 3 4 EY 3〉,
〈OX 4 4 EX 4, OY 4 2 EY 4〉,
〈OX 5 3 EX 5, OY 5 3 EY 5〉,
〈1 3 4, 1 3 4〉

〉 .

aHint: reason on whose compulsory parts of the projections of the rectangles
onto the x and y axes.

EXERCISE 4 (degrees of violation for non-overlapping)a

A. Give the variable-based degree of violationb of the constraint

DIFFN


〈
〈3 2 5, 4 2 6〉,
〈4 5 9, 5 2 7〉,
〈6 2 8, 3 5 8〉,
〈7 1 8, 2 4 6〉

〉.

B. Give the decomposition-based degree of violationc of the same
constraint.

C. In the decomposition-based degree of violation each violated
binary constraint contributes +1 to the degree of violation, which
does not consider how much two orthotopes overlap. For the same
constraint give the overlap decomposition-based degree of
violation where the degree of violation of a binary no-overlap
constraint is equal to the overlap between the corresponding
orthotopes.

D. Given two fixed orthotopes of the DIFFN constraint, propose a
formula for computing how much these orthotopes overlap.

aHint: focus on the rectangles that overlap; by changing one coordinate of
a rectangle one can move it (A); count how many rectangles overlap (B); count
how much each pair of rectangles overlaps (C).

bGiven a constraint for which all variables are fixed, the variable-based de-
gree of violation is the minimum number of variables to assign differently in
order to satisfy the constraint.

cGiven a constraint that can be decomposed in a conjunction of binary con-
straints, the decomposition-based degree of violation is the number of binary
constraints that do not hold.
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EXERCISE 5 (nasty pattern)a

Find a solution to the following constraint, or prove that no solution ex-
ists:

OX 1 ∈ [0, 2], EX 1 ∈ [0, 9], OY 1 ∈ [0, 2], EY 1 ∈ [0, 9],
OX 2 ∈ [1, 3], EX 2 ∈ [0, 9], OY 2 ∈ [1, 3], EY 2 ∈ [0, 9],
OX 3 ∈ [3, 4], EX 3 ∈ [0, 9], OY 3 ∈ [3, 4], EY 3 ∈ [0, 9],
OX 4 ∈ [3, 5], EX 4 ∈ [0, 9], OY 4 ∈ [3, 5], EY 4 ∈ [0, 9],
OX 5 ∈ [4, 6], EX 5 ∈ [0, 9], OY 5 ∈ [4, 6], EY 5 ∈ [0, 9],

DIFFN


〈 〈OX 1 3 EX 1, OY 1 3 EY 1〉,
〈OX 2 3 EX 2, OY 2 3 EY 2〉,
〈OX 3 2 EX 3, OY 3 2 EY 3〉,
〈OX 4 3 EX 4, OY 4 3 EY 4〉,
〈OX 5 3 EX 5, OY 5 3 EY 5〉

〉 .

aHint: focus on the compulsory part of the squares.
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SOLUTION TO EXERCISE 1

A. No, since the first rectangle
〈1 1 1, 2 2 4〉 is not well formed,
i.e., 1 + 1 6= 1.

B. Yes, since the three rectangles do
not overlap:

• Rectangles ¬ and  do not
overlap since their
projections onto the x axis
do not overlap,

• Rectangles  and ® do not
overlap since their
projections onto the x axis
do not overlap,

• Rectangles ¬ and ® do not
overlap since their
projections onto the x axis
do not overlap.

C. No, since rectangles  and ®

overlap, i.e., their projections onto
the x and y axes both overlap.

D. Yes, since line segments ¬ and ®

do not overlap and since the size
of line segment  is zero.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

¬


®

B.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

¬



®

C.

1 2 3 4 5 6 7 8 9 10
¬ ®

D.
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SOLUTION TO EXERCISE 2

〈〈OX11EX1,OY13EY1〉, 〈OX24EX2,OY21EY2〉, 〈OX33EX3,OY33EY3〉〉

¬ (〈〈4 1 5, 1 3 4〉, 〈1 4 5, 4 1 5〉, 〈1 3 4, 1 3 4〉〉)
 (〈〈4 1 5, 2 3 5〉, 〈1 4 5, 1 1 2〉, 〈1 3 4, 2 3 5〉〉)
® (〈〈1 1 2, 1 3 4〉, 〈1 4 5, 4 1 5〉, 〈2 3 5, 1 3 4〉〉)
¯ (〈〈1 1 2, 2 3 5〉, 〈1 4 5, 1 1 2〉, 〈2 3 5, 2 3 5〉〉)

the four solutions (once R3 is fixed, R2 and R1 are also fixed)

1 2 3 4

1

2

3

4

R1

R2

R3

solution ¬

1 2 3 4

1

2

3

4

R1

R2

R3

solution 

1 2 3 4

1

2

3

4

R1

R2

R3

solution ®

1 2 3 4

1

2

3

4

R1

R2

R3

solution ¯
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SOLUTION TO EXERCISE 3

We go through the following reasoning steps:

A. [SELECTING THE x OR y AXIS FOR REASONING ]
Among the rectangles that have the largest side lengths, i.e.,
R1 : 2× 5 and R2 : 5× 1, we select the rectangle that has the
largest surface, i.e., R1. Since the largest size of R1 is located in
dimension y we first choose to reason on the compulsory parts of the
projections of the rectangles onto the y axis.

B. [REASONING ON THE PROJECTIONS ONTO THE y AXIS ]
We focus on the projections of the rectangles onto the y axis and
gradually build the cumulated profile of their compulsory parts.
Fixed (respectively not completely fixed) projections use a saturated
(respectively unsaturated) colour. The gray square corresponds to an
initially fixed square.

C. [FILTERING A RECTANGLE WRT ONE OTHER RECTANGLE ]
A no-overlap constraint between two rectangles can be represented
as a disjunction with four alternatives:

• on the x axis the first rectangle ends before the start of the
second rectangle,

• on the x axis the second rectangle ends before the start of the
first rectangle,

• on the y axis the first rectangle ends before the start of the
second rectangle,

• on the y axis the second rectangle ends before the start of the
first rectangle.

If we consider the fixed 3× 3 gray square and the rectangle R4 we
have 4 ≤ OX 4 ∨EX 4 ≤ 1∨ 4 ≤ 1∨ 3 ≤ 1. The part 4 ≤ 1∨ 3 ≤ 1
does not hold. Since the minimum value of EX 4 is equal to 5 the
inequality EX 4 ≤ 1 does also not hold. Consequently 4 ≤ OX 4

must hold and the minimum value of OX 4 is equal to 4. Moreover
since the maximum value of OX 4 is 4 we have OX 4 = 4.

¬



®

¯
°

1
2

3
4

5
6

7

¬
®

≤
7

¬ overlaps [3, 5],
® overlaps [4, 4],
° cannot start in [1, 3].

1
2

3
4

5
6

7

¬
®

°

≤
7

° overlaps [5, 6],
 cannot start in [1, 6].

1
2

3
4

5
6

7

¬
®

°
 ≤
7

 overlaps [7, 7] :
⇒ OY 2 = 7,
° cannot start in [5, 5] :
⇒ OY 5 = 4,
¯ cannot start in [2, 7] :
⇒ OY 4 = 1.

1
2

3
4

5
6

7

¬
®

°


¯

≤
7

¬ cannot start in [1, 2] :
⇒ OY 1 = 3,
® cannot end in [7, 7] :
⇒ OY 3 = 3.

1
2

3
4

5
6

7

¬
®

°


¯

≤
7
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SOLUTION TO EXERCISE 3 (continued)

D. [REASONING ON THE PROJECTIONS ONTO THE x AXIS ]
We focus on the projections of the rectangles onto the x axis and
gradually build the cumulated profile of their compulsory parts.
Fixed (respectively not completely fixed) projections use a saturated
(respectively unsaturated) colour.

E. [PUTTING THINGS TOGETHER ]
For any pair of distinct rectangles i, j we check
EX i ≤ OX j ∨ EX j ≤ OX i ∨ EY i ≤ OY j ∨ EY j ≤ OY i, i.e.,
there exists at least one dimension where the projections of the two
rectangles do not overlap. We obtain the following unique solution.

1 2 3 4 5 6 7

¯



≤ 7

¬ cannot start in [1, 5]:
⇒ OX 1 = 6.

1 2 3 4 5 6 7

¯



¬

≤ 7

 cannot overlap [6, 7]:
⇒ OX 2 = 1.

1 2 3 4 5 6 7

¯



¬

≤ 7

® cannot overlap [1, 3]:
⇒ OX 3 = 4.

1 2 3 4 5 6 7

¯



¬
®

≤ 7

° cannot overlap [4, 7]:
⇒ OX 5 = 1.

1 2 3 4 5 6 7

¯



¬
®

°

≤ 7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

¬



®

¯

°
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SOLUTION TO EXERCISE 4

A. Since point (7, 5) is included in the three rectangles , ®, ¯, (see
Figure (A1)), we need to modify the attributes of at least two
rectangles. Figure (A2) shows a solution where only rectangles 

and ¯ are translated. Therefore the variable-based degree of
violation is equal to 2.

B. Figure (B) shows the constraint network associated with the
decomposition where each vertex corresponds to a rectangle and
each edge to a binary no-overlap constraint between two
rectangles. Edges where the corresponding binary constraint holds
(respectively does not hold) are coloured in blue (in red).
Consequently the decomposition-based degree of violation is equal
to 4 (i.e., each pair (¬,), (,®), (,¯), (®,¯) corresponds to
two overlapping rectangles).

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

¬



®

¯

(7, 5) ∈ , ®, ¯⇒
has to move at least
two rectangles

(A1)
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

¬



®

¯

�

⇒

A solution with only
two translations: , ¯

(A2)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

¬



®

¯

Clique graph associated
with the decomposition
with 3 violations (in red)

(B)
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SOLUTION TO EXERCISE 4 (continued)

C. As illustrated by Figure (C), the overlap decomposition-based
degree of violation is equal to 9 since:

• the overlap between rectangles ¬ and  is equal to 1,

• the overlap between rectangles  and ® is equal to 4,

• the overlap between rectangles  and ¯ is equal to 1,

• the overlap between rectangles ® and ¯ is equal to 3,

• the other pairs of rectangles do not overlap.

D. Given two orthotopes i and j, defined by their ends and their
origins in each dimension, their overlap is defined by∏|ORTHOTOPE|
d=1 max(0,min(endi,d, endj,d)−max(orii,d, orij,d)).

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

¬



®

¯

1 1

1 1

3

1

1

9 violations (in red) wrt
overlapping rectangles

(C)
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5.121 DIFFN COLUMN

I B C J DESCRIPTION LINKS GRAPH

Origin CHIP: option guillotine cut (column) of DIFFN.

Constraint DIFFN COLUMN(ORTHOTOPES, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPES : collection(orth− ORTHOTOPE)
DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
DIM > 0
DIM ≤ |ORTHOTOPE|
DIFFN(ORTHOTOPES)

Purpose

Extension of the generalised multi-dimensional non-overlapping diffn constraint. Holds
if, for each pair of orthotopes (O1, O2) the following conditions hold:

• O1 andO2 do not overlap. Two orthotopes do not overlap if one of the orthotopes
has zero size or if there exists at least one dimension where their projections do
not overlap.

• Let P1 and P2 respectively denote the projections of O1 and O2 onto dimension
DIM. If P1 and P2 overlap then the size of their intersection is equal to the size of
O1 in dimension DIM, as well as to the size of O2 in dimension DIM.

Example



〈
orth− 〈ori− 1 siz− 3 end− 4, ori− 3 siz− 2 end− 5〉 ,

orth−
〈

ori− 9 siz− 1 end− 10,
ori− 4 siz− 3 end− 7

〉
,

orth− 〈ori− 4 siz− 2 end− 6, ori− 3 siz− 4 end− 7〉 ,
orth− 〈ori− 1 siz− 3 end− 4, ori− 6 siz− 1 end− 7〉 ,
orth− 〈ori− 6 siz− 2 end− 8, ori− 1 siz− 4 end− 5〉 ,

orth−
〈

ori− 10 siz− 1 end− 11,
ori− 1 siz− 1 end− 2

〉
,

orth−
〈

ori− 9 siz− 1 end− 10,
ori− 1 siz− 1 end− 2

〉
,

orth− 〈ori− 6 siz− 2 end− 8, ori− 6 siz− 1 end− 7〉

〉
, 1


Figure 5.293 represents the respective position of the eight rectangles of the exam-
ple. The coordinates of the leftmost lowest corner of each rectangle are stressed in


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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bold. The DIFFN COLUMN constraint holds since (1) the eight rectangles do not overlap
and since (2) when their projection onto dimension DIM = 1 overlap the size of their
intersection is equal to the size of the corresponding rectangles in dimension DIM = 1.

R1, R4 R3 R5, R8 R2

R7

R6

dimension 1

di
m

en
si

on
2

2 3 5 7 81 4 6 9 10

2

5

1

3

4

6

R1

R2
R3

R4

R5

R6R7

R8

" " "" " "

Figure 5.293: Illustration of the Example slot: eight non-overlapping rectangles such
that, for each pair of rectangles Ri, Rj (1 ≤ i < j ≤ 8), if the projections onto dimen-
sion 1 of rectanglesRi andRj intersect then the size of their intersection is equal to the
size of Ri in dimension 1 and to the size of Rj in dimension 1 (i.e. complete vertical
strips along the border of any rectangle can be cut without crossing any rectangle)

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetries • Items of ORTHOTOPES are permutable.

• One and the same constant can be added to the ori and end attributes of all items
of ORTHOTOPES.orth.

Arg. properties Contractible wrt. ORTHOTOPES.

See also common keyword: DIFFN (geometrical constraint,orthotope),
DIFFN INCLUDE (geometrical constraint,orthotope,positioning constraint).

implies: DIFFN INCLUDE.

used in graph description: TWO ORTH COLUMN.

Keywords constraint type: decomposition.

geometry: geometrical constraint, positioning constraint, orthotope, guillotine cut.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) TWO ORTH COLUMN(orthotopes1.orth, orthotopes2.orth, DIM)

Graph property(ies) NARC= |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Graph model Since showing all items produces too big graphs, parts (A) and (B) of Figure 5.294 respec-
tively show the initial and final graph associated with the first three items of the Example
slot. Since we use the NARC graph property, the arcs of the final graph are stressed in
bold.

ORTHOTOPES

1

2

3

NARC=3

1:1,3,4
  3,2,5

2:9,1,10
  4,3,7

3:4,2,6
  3,4,7

(A) (B)

Figure 5.294: Initial and final graph of the DIFFN COLUMN constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



DIFFN COLUMN 1117



1118 DIFFN INCLUDE

5.122 DIFFN INCLUDE

I B C J
DESCRIPTION LINKS GRAPH

Origin CHIP: option guillotine cut (include) of DIFFN.

Constraint DIFFN INCLUDE(ORTHOTOPES, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPES : collection(orth− ORTHOTOPE)
DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
DIM > 0
DIM ≤ |ORTHOTOPE|
DIFFN(ORTHOTOPES)

Purpose

Extension of the generalised multi-dimensional non-overlapping diffn constraint. Holds
if, for each pair of orthotopes (O1, O2) the following conditions hold:

• O1 andO2 do not overlap. Two orthotopes do not overlap if one of the orthotopes
has zero size or if there exists at least one dimension where their projections do
not overlap.

• Let P1 and P2 respectively denote the projections of O1 and O2 onto dimension
DIM. If P1 and P2 overlap then, either P1 is included in P2, either P2 is included
in P1.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



〈

orth− 〈ori− 8 siz− 1 end− 9, ori− 4 siz− 1 end− 5〉 ,

orth−
〈

ori− 9 siz− 1 end− 10,
ori− 4 siz− 3 end− 7

〉
,

orth− 〈ori− 6 siz− 3 end− 9, ori− 5 siz− 2 end− 7〉 ,
orth− 〈ori− 1 siz− 3 end− 4, ori− 6 siz− 1 end− 7〉 ,
orth− 〈ori− 4 siz− 2 end− 6, ori− 3 siz− 4 end− 7〉 ,

orth−
〈

ori− 6 siz− 4 end− 10,
ori− 1 siz− 1 end− 2

〉
,

orth−
〈

ori− 10 siz− 1 end− 11,
ori− 1 siz− 1 end− 2

〉
,

orth−
〈

ori− 6 siz− 5 end− 11,
ori− 2 siz− 2 end− 4

〉
,

orth− 〈ori− 6 siz− 2 end− 8, ori− 4 siz− 1 end− 5〉 ,
orth− 〈ori− 1 siz− 5 end− 6, ori− 1 siz− 2 end− 3〉 ,
orth− 〈ori− 1 siz− 3 end− 4, ori− 3 siz− 2 end− 5〉 ,
orth− 〈ori− 1 siz− 2 end− 3, ori− 5 siz− 1 end− 6〉

〉
, 1


Figure 5.295 represents the respective position of the twelve rectangles of the ex-
ample. The coordinates of the leftmost lowest corner of each rectangle are stressed in
bold. The DIFFN INCLUDE constraint holds since (1) the twelve rectangles do not overlap
and since (2) when their projection onto dimension DIM = 1 overlap one of the projections
is included within the other one.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1

Symmetries • Items of ORTHOTOPES are permutable.

• One and the same constant can be added to the ori and end attributes of all items
of ORTHOTOPES.orth.

Arg. properties Contractible wrt. ORTHOTOPES.

See also common keyword: DIFFN (geometrical constraint,orthotope),
DIFFN COLUMN (geometrical constraint,orthotope,positioning constraint).

implied by: DIFFN COLUMN.

used in graph description: TWO ORTH COLUMN.

Keywords constraint type: decomposition.

geometry: geometrical constraint, positioning constraint, orthotope.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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R10

R4,R11 R5

R12

R8

R6 R7

R3 R2

R9 R1︸ ︷︷ ︸
projections of the rectangles

onto dimension 1

dimension 1

di
m

en
si

on
2

2 3 5 71 4 6 8 9 10

1

2

3

4

5

6

R1

R2

R3

R4

R5

R6 R7

R8

R9

R10

R11

R12

Figure 5.295: Illustration of the Example slot: twelve non-overlapping rectangles
such that, for each pair of rectangles Ri, Rj (1 ≤ i < j ≤ 12), if the projections onto
dimension 1 of rectangles Ri and Rj intersect then one of the projections is included
within the other projection
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Arc input(s) ORTHOTOPES

Arc generator CLIQUE(<) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) TWO ORTH INCLUDE(orthotopes1.orth, orthotopes2.orth, DIM)

Graph property(ies) NARC= |ORTHOTOPES| ∗ (|ORTHOTOPES| − 1)/2

Graph model Since showing all items produces too big graphs, parts (A) and (B) of Figure 5.296 respec-
tively show the initial and final graph associated with the first three items of the Example
slot. Since we use the NARC graph property, the arcs of the final graph are stressed in
bold.

ORTHOTOPES

1

2

3

NARC=3

1:8,1,9
  4,1,5

2:9,1,10
  4,3,7

3:6,3,9
  5,2,7

(A) (B)

Figure 5.296: Initial and final graph of the DIFFN INCLUDE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.123 DISCREPANCY

I B C J DESCRIPTION LINKS GRAPH

Origin [181] and [434]

Constraint DISCREPANCY(VARIABLES, K)

Arguments VARIABLES : collection(var−dvar, bad−sint)
K : int

Restrictions required(VARIABLES, var)
required(VARIABLES, bad)
K ≥ 0
K ≤ |VARIABLES|

Purpose K is the number of variables of the collection VARIABLES that take their values in their
respective sets of bad values.

Example


〈 var− 4 bad− {1, 4, 6},

var− 5 bad− {0, 1},
var− 5 bad− {1, 6, 9},
var− 4 bad− {1, 4},
var− 1 bad− ∅

〉
, 2


The DISCREPANCY constraint holds since exactly K = 2 variables (i.e., the first
and fourth variables) of the VARIABLES collection take their values within their respective
sets of bad values.

Typical |VARIABLES| > 1
K < |VARIABLES|

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values in VARIABLES.var or VARIABLES.bad can
be swapped; all occurrences of a value in VARIABLES.var or VARIABLES.bad can
be renamed to any unused value.

Arg. properties • Functional dependency: K determined by VARIABLES.

• Aggregate: VARIABLES(union), K(+).

Remark Limited discrepancy search was first introduced by M. L. Ginsberg and W. D. Harvey as
a search technique in [204]. Later on, discrepancy based filtering was presented in the
PhD thesis of F. Focacci [181, pages 171–172]. Finally the DISCREPANCY constraint was
explicitly defined in the PhD thesis of W.-J. van Hoeve [434, page 104].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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See also common keyword: AMONG (counting constraint).

used in graph description: IN SET.

Keywords constraint arguments: pure functional dependency.

constraint type: value constraint, counting constraint.

filtering: arc-consistency.

heuristics: heuristics, limited discrepancy search.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) IN SET(variables.var, variables.bad)

Graph property(ies) NARC= K

Graph model The arc constraint corresponds to the constraint
in set(variables.var, variables.bad) defined in this catalogue. We employ
the SELF arc generator in order to produce an initial graph with a single loop on each
vertex.

Parts (A) and (B) of Figure 5.297 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=2

1:4,{1,4,6} 4:4,{1,4}

(A) (B)

Figure 5.297: Initial and final graph of the DISCREPANCY constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.124 DISJ

I B C J DESCRIPTION LINKS GRAPH

Origin [298]

Constraint DISJ(TASKS)

Argument TASKS : collection


start−dvar,
duration−dvar,
before−svar,
position−dvar



Restrictions required(TASKS, [start, duration, before, position])
TASKS.duration ≥ 1
TASKS.position ≥ 0
TASKS.position < |TASKS|

Purpose

All the tasks of the collection TASKS should not overlap. For a given task t the attributes
before and position respectively correspond to the set of tasks starting before task t
(assuming that the first task is labelled by 1) and to the position of task t (assuming that
the first task has position 0).

Example


〈 start− 1 duration− 3 before− ∅ p− 0,

start− 9 duration− 1 before− {1, 3, 4} p− 3,
start− 7 duration− 2 before− {1, 4} p− 2,
start− 4 duration− 1 before− {1} p− 1

〉 
(
p for position

)
Figure 5.298 shows the tasks of the example. Since these tasks do not overlap the
DISJ constraint holds.

¬ ®¯

1 2 3 4 5 6 7 8 9 10 11

≤ 1

time

¬ s− 1 d− 3 b− ∅ p− 0
 s− 9 d− 1 b− {1, 3, 4} p− 3
® s− 7 d− 2 b− {1, 4} p− 2
¯ s− 4 d− 1 b− {1} p− 1

TASKS

(
s for start, d for duration,
b for before, p for position

)

Figure 5.298: Tasks corresponding to the Example slot

Typical |TASKS| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.
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Symmetries • One and the same constant can be added to the start attribute of all items of
TASKS.

• TASKS.duration can be decreased to any value ≥ 1.

Usage The DISJ constraint was originally applied [298] to solve the open-shop problem.

Remark This constraint is similar to the DISJUNCTIVE constraint. In addition to the start and the
duration attributes of a task t, the DISJ constraint introduces a set variable before that
represents the set of tasks that end before the start of task t as well as a domain variable
position that gives the absolute order of task t in the resource. Since it assumes that
the first task has position 0 we have that, for a given task t, the number of elements of its
before attribute is equal to the value of its position attribute.

Algorithm The main idea of the algorithm is to apply in a systematic way shaving on the position

attribute of a task. It is implemented in Gecode [385].

See also common keyword: DISJUNCTIVE (scheduling constraint).

used in graph description: IN SET.

Keywords complexity: sequencing with release times and deadlines.

constraint arguments: constraint involving set variables.

constraint type: scheduling constraint, resource constraint, decomposition.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/
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Arc input(s) TASKS

Arc generator CLIQUE( 6=) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) •
∨( tasks1.start + tasks1.duration ≤ tasks2.start,

tasks2.start + tasks2.duration ≤ tasks1.start

)
• tasks1.start + tasks1.duration ≤ tasks2.start⇔

IN SET(tasks1.key, tasks2.before)
• tasks1.start + tasks1.duration ≤ tasks2.start⇔

tasks1.position < tasks2.position

Graph property(ies) NARC= |TASKS| ∗ |TASKS| − |TASKS|

Graph model We generate a clique with a non-overlapping constraint between each pair of distinct tasks
and state that the number of arcs of the final graph should be equal to the number of arcs
of the initial graph. For two tasks t1 and t2, the three conditions of the arc constraint
respectively correspond to:

• The fact that t1 ends before the start of t2 or that t2 ends before the start of t1.

• The equivalence between the fact that t1 ends before the start of t2 and the fact that
the identifier of task t1 belongs to the before attribute of task t2.

• The equivalence between the fact that t1 ends before the start of t2 and the fact that
the position attribute of task t1 is strictly less than the position attribute of task
t2.

Parts (A) and (B) of Figure 5.299 respectively show the initial and final graph associated
with the Example slot. The DISJ constraint holds since all the arcs of the initial graph
belong to the final graph: all the non-overlapping constraints holds.

TASKS

1

2

3

4

NARC=12

1:1,3,{},0

2:9,1,{1,3,4},3

3:7,2,{1,4},2

4:4,1,{1},1

(A) (B)

Figure 5.299: Initial and final graph of the DISJ constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.125 DISJOINT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ALLDIFFERENT.

Constraint DISJOINT(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each variable of the collection VARIABLES1 should take a value that is distinct from all
the values assigned to the variables of the collection VARIABLES2.

Example (〈1, 9, 1, 5〉 , 〈2, 7, 7, 0, 6, 8〉)

In this example, values 1, 5, 9 are used by the variables of VARIABLES1 and values
0, 2, 6, 7, 8 by the variables of VARIABLES2. Since there is no intersection between the
two previous sets of values the DISJOINT constraint holds.

0 2 3 4 6 7 81 5 9
1

1 3 4 5 90 2 6 7 8
7

All solutions Figure 5.300 gives all solutions to the following non ground instance of the DISJOINT

constraint: U1 ∈ [0, 2], U2 ∈ [1, 2], U3 ∈ [1, 2], V1 ∈ [0, 1], V2 ∈ [1, 2],
DISJOINT(〈U1, U2, U3〉, 〈V1, V2〉).

¬ (〈0,2,2〉, 〈1,1〉)
 (〈1,1,1〉, 〈0,2〉)
® (〈2,2,2〉, 〈0,1〉)
¯ (〈2,2,2〉, 〈1,1〉)

Figure 5.300: All solutions corresponding to the non ground example of the DISJOINT
constraint of the All solutions slot

Typical |VARIABLES1| > 1
|VARIABLES2| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var can be replaced by any value of
VARIABLES1.var.

• An occurrence of a value of VARIABLES2.var can be replaced by any value of
VARIABLES2.var.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Arg. properties • Contractible wrt. VARIABLES1.

• Contractible wrt. VARIABLES2.

Remark Despite the fact that this is not an uncommon constraint, it can not be modelled in a com-
pact way neither with a disequality constraint (i.e., two given variables have to take distinct
values) nor with the ALLDIFFERENT constraint. The DISJOINT constraint can bee seen as
a special case of the COMMON(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) con-
straint where NCOMMON1 and NCOMMON2 are both set to 0.

MiniZinc (http://www.minizinc.org/) has a DISJOINT constraint between two set
variables rather than between two collections of variables.

Algorithm Let us note:

• n1 the minimum number of distinct values taken by the variables of the collection
VARIABLES1.

• n2 the minimum number of distinct values taken by the variables of the collection
VARIABLES2.

• n12 the maximum number of distinct values taken by the union of the variables of
VARIABLES1 and VARIABLES2.

One invariant to maintain for the DISJOINT constraint is n1 + n2 ≤ n12. A lower bound
of n1 and n2 can be obtained by using the algorithms provided in [29, 46]. An exact upper
bound of n12 can be computed by using a bipartite matching algorithm.

Systems DISJOINT in MiniZinc.

Used in K DISJOINT.

See also generalisation: DISJOINT TASKS (variable replaced by task).

implies: ALLDIFFERENT ON INTERSECTION, LEX DIFFERENT.

system of constraints: K DISJOINT.

Keywords characteristic of a constraint: disequality, automaton, automaton with array of counters.

constraint arguments: constraint between two collections of variables.

constraint type: value constraint.

filtering: bipartite matching.

modelling: empty intersection.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#disjoint
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC= 0

Graph model PRODUCT is used in order to generate the arcs of the graph between all variables of
VARIABLES1 and all variables of VARIABLES2. Since we use the graph property NARC
= 0 the final graph will be empty. Figure 5.301 shows the initial graph associated with the
Example slot. Since we use the NARC = 0 graph property the final graph is empty.

VARIABLES1

VARIABLES2

1

1234 56

234

Figure 5.301: Initial graph of the DISJOINT constraint (the final graph is empty)

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to
NARC ≤ 0. This leads to simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.302 depicts the automaton associated with the DISJOINT constraint. To each vari-
able VAR1i of the collection VARIABLES1 corresponds a signature variable Si that is equal
to 0. To each variable VAR2i of the collection VARIABLES2 corresponds a signature variable
Si+|VARIABLES1| that is equal to 1.

ARITH OR(C,D,<, 2)

s

{
C[ ]← 0,
D[ ]← 0

}

t

0,
{C[VAR1i]← C[VAR1i] + 1}

1,
{D[VAR2i]← D[VAR2i] + 1}

1,
{D[VAR2i]← D[VAR2i] + 1}

Figure 5.302: Automaton of the DISJOINT(VARIABLES1, VARIABLES2) constraint,
where state s handles variables of the collection VARIABLES1 and state t handles vari-
ables of the collection VARIABLES2


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.126 DISJOINT SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint DISJOINT SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym DISJOINT.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i 6= j, Oi and Oj are disjoint with respect to
a set of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a
set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin of
the shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
Two objects Oi and object Oj are disjoint with respect to a set of dimensions depicted
by DIMS if and only if for all shifted box si associated with Oi and for all shifted box sj
associated with Oj there exists at least one dimension d ∈ DIMS such that (1) the origin
of si in dimension d is strictly greater than the end of sj in dimension d, or (2) the origin
of sj in dimension d is strictly greater than the end of si in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 4 x− 〈2, 4〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.303 shows the objects of the example. Since these objects are pairwise
disjoint the DISJOINT SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• SBOXES.l.v can be decreased to any value ≥ 1.

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349]. Unlike the
NON OVERLAP SBOXES constraint, which just prevents objects from overlapping, the
DISJOINT SBOXES constraint in addition enforces that borders and corners of objects are
not directly in contact.

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES,
COVERS SBOXES, EQUAL SBOXES, INSIDE SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).

implies: NON OVERLAP SBOXES.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.
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S1

(A) Shape of the
first object

S2

(B) Shapes of the
second object

S3

S4

(C) Shape of the
third object

3 51 2 4

2

3

1

4

O1

O2

O3

(D) Three mutually disjoint objects

O1: oid− 1 sid− 1 x− 〈1, 1〉
O2: oid− 2 sid− 2 x− 〈4, 1〉
O3: oid− 3 sid− 4 x− 〈2, 4〉

OBJECTS

Figure 5.303: (D) the three mutually disjoint objects O1, O2, O3 of the Example slot
respectively assigned shapes S1, S2, S4; (A), (B), (C) shapes S1, S2, S3 and S4 are
respectively made up from 1, 3, 3 and 1 disjoint shifted box.

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Keywords
Related keywords grouped by meta-keywords.



DISJOINT SBOXES 1137

Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• disjoint sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨
origin(O1, S1, D) >
end(O2, S2, D)

,

origin(O2, S2, D) >
end(O1, S1, D)


• disjoint objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∀S2 ∈ sboxes

( [
O2.sid

] )
disjoint sboxes


Dims,
O1,
S1,
O2,
S2


• all disjoint(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

disjoint objects

 Dims,
O1,
O2


• all disjoint(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.127 DISJOINT TASKS

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from DISJOINT.

Constraint DISJOINT TASKS(TASKS1, TASKS2)

Arguments TASKS1 : collection(origin−dvar, duration−dvar, end−dvar)
TASKS2 : collection(origin−dvar, duration−dvar, end−dvar)

Restrictions require at least(2, TASKS1, [origin, duration, end])
TASKS1.duration ≥ 0
TASKS1.origin ≤ TASKS1.end
require at least(2, TASKS2, [origin, duration, end])
TASKS2.duration ≥ 0
TASKS2.origin ≤ TASKS2.end

Purpose Each task of the collection TASKS1 should not overlap any task of the collection TASKS2.
Two tasks overlap if they have an intersection that is strictly greater than zero.

Example


〈

origin− 6 duration− 5 end− 11,
origin− 8 duration− 2 end− 10

〉
,〈

origin− 2 duration− 2 end− 4,
origin− 3 duration− 3 end− 6,
origin− 12 duration− 1 end− 13

〉


Figure 5.304 displays the two groups of tasks (i.e., the tasks of TASKS1 and the
tasks of TASKS2). Since no task of the first group overlaps any task of the second group,
the DISJOINT TASKS constraint holds.

Typical |TASKS1| > 1
TASKS1.duration > 0
|TASKS2| > 1
TASKS2.duration > 0

Symmetries • Arguments are permutable w.r.t. permutation (TASKS1, TASKS2).

• Items of TASKS1 are permutable.

• Items of TASKS2 are permutable.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS1 and TASKS2.

Arg. properties • Contractible wrt. TASKS1.

• Contractible wrt. TASKS2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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¬


®
¯

°

1 2 3 4 5 6 7 8 9 10 11 12 time

ta
sk

s

 o− 8 d− 2 e− 10
¬ o− 6 d− 5 e− 11

TASKS1

 o for origin,
d for duration,
e for end



° o− 12 d− 1 e− 13
¯ o− 3 d− 3 e− 6
® o− 2 d− 2 e− 4

TASKS2

1 2 3 4 5 6 7 8 9 10 11 12

≤ 1

time

#
co

lo
ur

s

Figure 5.304: The DISJOINT TASKS solution to the Example slot with at most one
distinct colour in parallel (tasks in TASKS1 have the pink colour, while tasks in TASKS2

have the blue colour)

Remark Despite the fact that this is not an uncommon constraint, it cannot be modelled in a com-
pact way with a single CUMULATIVE constraint. But it can be expressed by using the
COLOURED CUMULATIVE constraint: We assign a first colour to the tasks of TASKS1 as
well as a second distinct colour to the tasks of TASKS2. Finally we set up a limit of 1 for
the maximum number of distinct colours allowed at each time point.

Reformulation The DISJOINT TASKS constraint can be expressed in term of |TASKS1| · |TASKS2| reified
constraints. For each task TASKS1[i] (i ∈ [1, |TASKS1|]) and for each task TASKS2[j]
(j ∈ [1, |TASKS2|]) we generate a reified constraint of the form TASKS1[i].end ≤
TASKS2[j].origin ∨ TASKS2[j].end ≤ TASKS1[i].origin. In addition we also state for
each task an arithmetic constraint that states that the end of a task is equal to the sum of its
origin and its duration.

Systems DISJOINT in Choco.

See also generalisation: COLOURED CUMULATIVE (tasks colours and limit on maximum number
of colours in parallel are explicitly given).

specialisation: DISJOINT (task replaced by variable).

Keywords constraint type: scheduling constraint, temporal constraint.

geometry: non-overlapping.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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Arc input(s) TASKS1

Arc generator SELF 7→collection(tasks1)

Arc arity 1

Arc constraint(s) tasks1.origin + tasks1.duration = tasks1.end

Graph property(ies) NARC= |TASKS1|

Arc input(s) TASKS2

Arc generator SELF 7→collection(tasks2)

Arc arity 1

Arc constraint(s) tasks2.origin + tasks2.duration = tasks2.end

Graph property(ies) NARC= |TASKS2|

Arc input(s) TASKS1 TASKS2

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.duration > 0
• tasks1.origin < tasks2.end
• tasks2.origin < tasks1.end

Graph property(ies) NARC= 0

Graph model PRODUCT is used in order to generate the arcs of the graph between all the tasks of the
collection TASKS1 and all tasks of the collection TASKS2. The first two graph constraints
respectively enforce for each task of TASKS1 and TASKS2 the fact that the end of a task
is equal to the sum of its origin and its duration. The arc constraint of the third graph
constraint depicts the fact that two tasks overlap. Therefore, since we use the graph property
NARC = 0 the final graph associated with the third graph constraint will be empty and
no task of TASKS1 will overlap any task of TASKS2. Figure 5.305 shows the initial graph of
the third graph constraint associated with the Example slot. Because of the graph property
NARC = 0 the corresponding final graph is empty.

Signature Since TASKS1 is the maximum number of arcs of the final graph associated with the first
graph constraint we can rewrite NARC = |TASKS1|. This leads to simplify NARC to
NARC.

We can apply a similar remark for the second graph constraint.

Finally, since 0 is the smallest number of arcs of the final graph we can rewrite NARC =
0 to NARC ≤ 0. This leads to simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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TASKS1

TASKS2

1

1 23

2

Figure 5.305: Initial graph of the DISJOINT TASKS constraint (the final graph is empty)
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5.128 DISJUNCTIVE

I B C J DESCRIPTION LINKS GRAPH

Origin [100]

Constraint DISJUNCTIVE(TASKS)

Synonym ONE MACHINE.

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose All the tasks of the collection TASKS that have a duration strictly greater than 0 should
not overlap.

Example


〈 origin− 1 duration− 3,

origin− 2 duration− 0,
origin− 7 duration− 2,
origin− 4 duration− 1

〉 
Figure 5.306 shows the tasks with non-zero duration of the example. Since these
tasks do not overlap the DISJUNCTIVE constraint holds.

¬ ®¯

1 2 3 4 5 6 7 8 9 10 11

≤ 1

time

¬ origin− 1 duration− 3
® origin− 7 duration− 2
¯ origin− 4 duration− 1

TASKS

Figure 5.306: Tasks with non-zero duration of the Example slot

All solutions Figure 5.307 gives all solutions to the following non ground instance of the DISJUNCTIVE

constraint: O1 ∈ [2, 5], D1 ∈ [2, 4], O2 ∈ [2, 4], D2 ∈ [1, 6], O3 ∈ [3, 6], D3 ∈ [4, 4],
O4 ∈ [2, 7], D4 ∈ [1, 3], DISJUNCTIVE(〈O1 D1, O2 D2, O3 D3, O4 D4〉).

Typical |TASKS| > 2
TASKS.duration ≥ 1

Symmetries • Items of TASKS are permutable.

• TASKS.duration can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin attribute of all items of
TASKS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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¬ (〈2 2, 4 1, 6 4, 5 1〉)
 (〈3 2, 2 1, 6 4, 5 1〉)
® (〈4 2, 2 1, 6 4, 3 1〉)
¯ (〈4 2, 3 1, 6 4, 2 1〉)

1 2 34

1 2 3 4 5 6 7 8 9 10

¬ 12 34

1 2 3 4 5 6 7 8 9 10



12 34

1 2 3 4 5 6 7 8 9 10

® 12 34

1 2 3 4 5 6 7 8 9 10

¯

Figure 5.307: All solutions corresponding to the non ground example of the
DISJUNCTIVE constraint of the All solutions slot

Arg. properties Contractible wrt. TASKS.

Usage The DISJUNCTIVE constraint occurs in many resource scheduling problems in order to
model a resource that can not be shared. This means that tasks using this resource can not
overlap in time. Quite often DISJUNCTIVE constraints are used together with precedence
constraints. A precedence constraint between two tasks models the fact that the processing
of a task has to be postponed until an other task is completed. Such mix of disjunctive and
precedence constraints occurs, for example, in job-shop problems.

Remark Some systems like Ilog CP Optimizer also imposes that zero duration tasks do not overlap
non-zero duration tasks.

A soft version of this constraint, under the hypothesis that all durations are fixed, was
presented by P. Baptiste et al. in [19]. In this context the goal was to perform as many tasks
as possible within their respective due-dates.

When all tasks have the same (fixed) duration the DISJUNCTIVE constraint can be refor-
mulated as an ALL MIN DIST constraint for which a filtering algorithm achieving bound-
consistency is available [12].

Within the context of linear programming [226, page 386] provides several relaxations of
the DISJUNCTIVE constraint.

Some solvers use in a pre-processing phase, while stating precedence and cumulative con-
straints, an algorithm for automatically extracting large cliques [97] from a set of tasks that
should not pairwise overlap (i.e., two tasks ti and tj can not overlap either, because ti ends
before the start of tj , either because the sum of resource consumption of ti and tj exceeds
the capacity of a cumulative resource that both tasks use) in order to state DISJUNCTIVE

constraints.

Algorithm We have four main families of methods for handling the DISJUNCTIVE constraint:

• Methods based on the compulsory part [261] of the tasks (also called time-tabling
methods). These methods determine the time slots which for sure are occupied by
a given task, an propagate back this information to the attributes of each task (i.e.,


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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the origin and the duration). Because of their simplicities, these methods have been
originally used for handling the DISJUNCTIVE constraint. Even if they propagate
less than the other methods they can in practice handle a large number of tasks. To
our best knowledge no efficient incremental algorithm devoted to this problem was
published up to now (i.e., September 2006).

• Methods based on constructive disjunction. The idea is to try out each alternative of
a disjunction (e.g., given two tasks t1 and t2 that should not overlap, we successively
assume that t1 finishes before t2, and that t2 finishes before t1) and to remove values
that were pruned in both alternatives.

• Methods based on edge-finding. Given a set of tasks T , edge-finding deter-
mines that some task must, can, or cannot execute first or last in T . Efficient
edge-finding algorithms for handling the DISJUNCTIVE constraint were originally
described in [101, 102] and more recently in [443, 315].

• Methods that, for any task t, consider the maximal number of tasks that can end up
before the start of task t as well as the maximal number of tasks that can start after
the end of task t [453].

All these methods are usually used for adjusting the minimum and maximum values of
the variables of the DISJUNCTIVE constraint. However some systems use these methods
for pruning the full domain of the variables. Finally, Jackson priority rule [236] provides
a necessary condition [102] for the DISJUNCTIVE constraint. Given a set of tasks T , it
consists to progressively schedule all tasks of T in the following way:

• It assigns to the first possible time point (i.e., the earliest start of all tasks of T ) the
available task with minimal latest end. In this context, available means a task for
which the earliest start is less than or equal to the considered time point.

• It continues by considering the next time point until all the tasks are completely
scheduled.

In 2014, assuming that the tasks are sorted, and using a union-find data structure, lin-
ear-time filtering algorithms [169] wrt the number of tasks were obtained for time-tabling,
overload check, and detectable precedences.

Systems DISJUNCTIVE in Choco, UNARY in Gecode.

See also common keyword: CALENDAR, DISJ, DISJUNCTIVE OR SAME END,
DISJUNCTIVE OR SAME START (scheduling constraint).

generalisation: CUMULATIVE (task heights and resource limit are not necessarly
all equal to 1), DIFFN (task of heigth 1 replaced by orthotope).

implied by: PRECEDENCE.

implies: DISJUNCTIVE OR SAME END, DISJUNCTIVE OR SAME START.

specialisation: ALL MIN DIST (line segment replaced by line segment, of same
length), ALLDIFFERENT (task replaced by variable).

Keywords characteristic of a constraint: core, sort based reformulation.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, decomposition.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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filtering: compulsory part, constructive disjunction, Phi-tree, minimum task duration.

modelling: disjunction, sequence dependent set-up, zero-duration task.

modelling exercises: sequence dependent set-up.

problems: maximum clique.

Cond. implications • DISJUNCTIVE(TASKS)
with minval(TASKS.duration) > 0

implies ALLDIFFERENT(TASKS.origin).

• DISJUNCTIVE(TASKS)
with minval(TASKS.duration) > 0

implies ALLDIFFERENT CST(VARIABLES : TASKS).


Cond. implications
Conditional implications.
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Arc input(s) TASKS

Arc generator CLIQUE(<) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨

tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin + tasks1.duration ≤ tasks2.origin,
tasks2.origin + tasks2.duration ≤ tasks1.origin


Graph property(ies) NARC= |TASKS| ∗ (|TASKS| − 1)/2

Graph model We generate a clique with a non-overlapping constraint between each pair of distinct tasks
and state that the number of arcs of the final graph should be equal to the number of arcs
of the initial graph.

Parts (A) and (B) of Figure 5.308 respectively show the initial and final graph associated
with the Example slot. The DISJUNCTIVE constraint holds since all the arcs of the initial
graph belong to the final graph: all the non-overlapping constraints holds.

TASKS

1

2

3

4

NARC=6

1:1,3

2:2,0

3:7,2

4:4,1

(A) (B)

Figure 5.308: Initial and final graph of the DISJUNCTIVE constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint DISJUNCTIVE(〈〈2 2〉, 〈4 5〉, 〈8 2〉〉) hold?

B. Does the constraint DISJUNCTIVE(〈〈1 3〉, 〈4 4〉, 〈8 2〉〉) hold?

C. Does the constraint DISJUNCTIVE(〈〈3 2〉, 〈4 0〉, 〈7 3〉〉) hold?

aHint: go back to the definition of DISJUNCTIVE.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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SOLUTION TO EXERCISE 1

A. No, since tasks  and ®

overlap at instant 8.

B. Yes, since the three tasks do
not overlap:

• Tasks ¬ and  do not
overlap since task ¬

ends before task ,

• Tasks ¬ and ® do not
overlap since task ¬

ends before task ®,

• Tasks  and ® do not
overlap since task 

ends before task ®.

C. Yes, since tasks ¬ and ® do
not overlap and since the
duration of task  is zero.

¬  ®


1 2 3 4 5 6 7 8 9 10 11

≤ 1

time

(A)

¬  ®
1 2 3 4 5 6 7 8 9 10 11

≤ 1

time

(B)

¬ ®
1 2 3 4 5 6 7 8 9 10 11

≤ 1

time

(C)



1148 DISJUNCTIVE OR SAME END

5.129 DISJUNCTIVE OR SAME END

I B C J DESCRIPTION LINKS GRAPH

Origin Scheduling.

Constraint DISJUNCTIVE OR SAME END(TASKS)

Synonyms SAME END OR DISJUNCTIVE, NON OVERLAP OR SAME END,
SAME END OR NON OVERLAP.

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose

All pairs of tasks of the collection TASKS that have a duration strictly greater than 0
should either not overlap either have the same end, i.e. ∀i ∈ [1, |TASKS|],∀j ∈ [i +
1, |TASKS|] : TASKS[i].duration = 0∨TASKS[j].duration = 0∨TASKS[i].origin+
TASKS[i].duration ≤ TASKS[j].origin∨ TASKS[j].origin+ TASKS[j].duration ≤
TASKS[i].origin ∨ TASKS[i].origin + TASKS[i].duration = TASKS[j].origin +
TASKS[j].duration.

Example

 〈
origin− 4 duration− 3,
origin− 7 duration− 2,
origin− 5 duration− 2

〉 
Since the ends of the first and third tasks coincide, and since the second task does
neither overlap the first task nor the third task, the DISJUNCTIVE OR SAME END

constraint holds.

Typical |TASKS| > 2
TASKS.duration ≥ 1

Symmetries • Items of TASKS are permutable.

• TASKS.duration can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

Arg. properties Contractible wrt. TASKS.

Algorithm Let ok and dk (with k ∈ [1, |TASKS|]) respectively denote the origin and the duration of the
kth task of the TASKS collection. The set of forbidden values for the origin of task j wrt
task i (with i, j ∈ [1, |TASKS|], i 6= j) is defined by the union [oi − dj + 1, oi + di − dj −
1] ∪ [oi + di − dj + 1, oi + di − 1]. One can use the sweep algorithm introduced in [42]
to filter the origin of a task wrt all the sets of forbidden values issued from the other tasks.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also common keyword: DISJUNCTIVE, DISJUNCTIVE OR SAME START (scheduling con-
straint).

implied by: DISJUNCTIVE.

Keywords constraint type: scheduling constraint, resource constraint, decomposition.

modelling: disjunction, zero-duration task.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator CLIQUE(<) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨


tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin + tasks1.duration ≤ tasks2.origin,
tasks2.origin + tasks2.duration ≤ tasks1.origin,
tasks1.origin + tasks1.duration =
tasks2.origin + tasks2.duration


Graph property(ies) NARC= |TASKS| ∗ (|TASKS| − 1)/2

Graph model We generate a clique with a non-overlapping constraint or a same end constraint between
each pair of distinct tasks and state that the number of arcs of the final graph should be
equal to the number of arcs of the initial graph.

Parts (A) and (B) of Figure 5.309 respectively show the initial and final graph associated
with the Example slot. The DISJUNCTIVE OR SAME END constraint holds since all the
arcs of the initial graph belong to the final graph.

TASKS

1

2

3

NARC=3

1:4,3

2:7,2

3:5,2

(A) (B)

Figure 5.309: Initial and final graph of the DISJUNCTIVE OR SAME END constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.130 DISJUNCTIVE OR SAME START

I B C J DESCRIPTION LINKS GRAPH

Origin Scheduling.

Constraint DISJUNCTIVE OR SAME START(TASKS)

Synonyms SAME START OR DISJUNCTIVE, NON OVERLAP OR SAME START,
SAME START OR NON OVERLAP.

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose

All pairs of tasks of the collection TASKS that have a duration strictly greater than 0
should either not overlap either have the same start, i.e. ∀i ∈ [1, |TASKS|], ∀j ∈ [i +
1, |TASKS|] : TASKS[i].duration = 0∨TASKS[j].duration = 0∨TASKS[i].origin+
TASKS[i].duration ≤ TASKS[j].origin∨ TASKS[j].origin+ TASKS[j].duration ≤
TASKS[i].origin ∨ TASKS[i].origin = TASKS[j].origin.

Example

 〈
origin− 4 duration− 3,
origin− 7 duration− 2,
origin− 4 duration− 1

〉 
Since the starts of the first and third tasks coincide, and since the second task does
neither overlap the first task nor the third task, the DISJUNCTIVE OR SAME START

constraint holds.

Typical |TASKS| > 2
TASKS.duration ≥ 1

Symmetries • Items of TASKS are permutable.

• TASKS.duration can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

Arg. properties Contractible wrt. TASKS.

Algorithm Let ok and dk (with k ∈ [1, |TASKS|]) respectively denote the origin and the duration of the
kth task of the TASKS collection. The set of forbidden values for the origin of task j wrt
task i (with i, j ∈ [1, |TASKS|], i 6= j) is defined by the union [oi − dj + 1, oi − 1]∪ [oi +
1, oi + di − 1]. One can use the sweep algorithm introduced in [42] to filter the origin of a
task wrt all the sets of forbidden values issued from the other tasks.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also common keyword: DISJUNCTIVE, DISJUNCTIVE OR SAME END (scheduling constraint).

implied by: DISJUNCTIVE.

Keywords constraint type: scheduling constraint, resource constraint, decomposition.

modelling: disjunction, zero-duration task.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator CLIQUE(<) 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨


tasks1.duration = 0,
tasks2.duration = 0,
tasks1.origin + tasks1.duration ≤ tasks2.origin,
tasks2.origin + tasks2.duration ≤ tasks1.origin,
tasks1.origin = tasks2.origin


Graph property(ies) NARC= |TASKS| ∗ (|TASKS| − 1)/2

Graph model We generate a clique with a non-overlapping constraint or a same start constraint between
each pair of distinct tasks and state that the number of arcs of the final graph should be
equal to the number of arcs of the initial graph.

Parts (A) and (B) of Figure 5.310 respectively show the initial and final graph associated
with the Example slot. The DISJUNCTIVE OR SAME START constraint holds since all the
arcs of the initial graph belong to the final graph.

TASKS

1

2

3

NARC=3

1:4,3

2:7,2

3:4,1

(A) (B)

Figure 5.310: Initial and final graph of the DISJUNCTIVE OR SAME START constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.131 DISTANCE

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint DISTANCE(X, Y, Z)

Arguments X : dvar

Y : dvar

Z : dvar

Restriction Z ≥ 0

Purpose Enforce the fact that Z is equal to |X− Y|.

Example (5, 7, 2)

The DISTANCE constraint holds since 2 = |5− 7|.

Typical Z > 0

Symmetry Arguments are permutable w.r.t. permutation (X, Y) (Z).

Arg. properties Functional dependency: Z determined by X and Y.

Systems DISTANCEEQ in Choco, DISTANCE in JaCoP, DISTANCE2 in JaCoP.

See also implies: LEQ CST.

related: ALL MIN DIST (fixed minimum distance between all pairs of variables of a col-
lection of variables), SMOOTH.

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: arithmetic constraint, predefined constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
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5.132 DISTANCE BETWEEN

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint DISTANCE BETWEEN(DIST, VARIABLES1, VARIABLES2, CTR)

Synonym DISTANCE.

Arguments DIST : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
CTR : atom

Restrictions DIST ≥ 0
DIST ≤ |VARIABLES1| ∗ |VARIABLES2| − |VARIABLES1|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let Ui and Vi be respectively the ith and jth variables (i 6= j) of the collection
VARIABLES1. In a similar way, let Xi and Yi be respectively the ith and jth variables
(i 6= j) of the collection VARIABLES2. DIST is equal to the number of times one of the
following mutually incompatible conditions are true:

• Ui CTR Vi holds and Xi CTR Yi does not hold,

• Xi CTR Yi holds and Ui CTR Vi does not hold.

Example (2, 〈3, 4, 6, 2, 4〉 , 〈2, 6, 9, 3, 6〉 , <)

The DISTANCE BETWEEN constraint holds since the following DIST = 2 conditions are
verified:

• VARIABLES1[4].var = 2 < VARIABLES1[1].var = 3 ∧
VARIABLES2[4].var = 3 ≥ VARIABLES2[1].var = 2

• VARIABLES2[1].var = 2 < VARIABLES2[4].var = 3 ∧
VARIABLES1[1].var = 3 ≥ VARIABLES1[4].var = 2

Typical DIST > 0
DIST < |VARIABLES1| ∗ |VARIABLES2| − |VARIABLES1|
|VARIABLES1| > 1
CTR ∈ [=, 6=]


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (DIST)
(VARIABLES1, VARIABLES2) (CTR).

• Items of VARIABLES1 and VARIABLES2 are permutable (same permutation used).

• One and the same constant can be added to the var attribute of all items of
VARIABLES1.

• One and the same constant can be added to the var attribute of all items of
VARIABLES2.

Arg. properties Functional dependency: DIST determined by VARIABLES1, VARIABLES2 and CTR.

Usage Measure the distance between two sequences in term of the number of constraint changes.
This should be put in contrast to the number of value changes that is sometimes superficial.

See also common keyword: DISTANCE CHANGE (proximity constraint).

Keywords constraint arguments: pure functional dependency.

constraint type: proximity constraint.

modelling: functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1/ VARIABLES2

Arc generator CLIQUE( 6=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE= DIST

Graph model Within the Arc input(s) slot, the character / indicates that we generate two distinct graphs.
The graph property DISTANCE measures the distance between two digraphs G1 and
G2. This distance is defined as the sum of the following quantities:

• The number of arcs of G1 that do not belong to G2,

• The number of arcs of G2 that do not belong to G1.

Part (A) of Figure 5.311 gives the final graph associated with the sequence var-3,var-
4,var-6,var-2,var-4 (i.e., the second argument of the constraint of the Example slot),
while part (B) shows the final graph corresponding to var-2,var-6,var-9,var-3,var-6
(i.e., the third argument of the constraint of the Example slot). The two arc constraints that
differ from one graph to the other are marked by a dotted line. The DISTANCE BETWEEN

constraint holds since between sequence var-3,var-4,var-6,var-2,var-4 and sequence
var-2,var-6,var-9,var-3,var-6 there are DIST = 2 changes that respectively correspond
to:

• Within the final graph associated with sequence var-3,var-4,var-6,var-2,var-4 the
arc 4 → 1 (i.e., values 2 → 3) does not occur in the final graph associated with
var-2,var-6,var-9,var-3,var-6,

• Within the final graph associated with sequence var-2,var-6,var-9,var-3,var-6 the
arc 1 → 4 (i.e., values 2 → 3) does not occur in the final graph associated with
var-3,var-4,var-6,var-2,var-4.

4:2

1:3

2:4

3:6

5:4

1:2

4:3

2:6

3:9

5:6

(A) (B)

Figure 5.311: Final graphs of the DISTANCE BETWEEN constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.133 DISTANCE CHANGE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CHANGE.

Constraint DISTANCE CHANGE(DIST, VARIABLES1, VARIABLES2, CTR)

Synonym DISTANCE.

Arguments DIST : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
CTR : atom

Restrictions DIST ≥ 0
DIST < |VARIABLES1|
required(VARIABLES1, var)
required(VARIABLES2, var)
|VARIABLES1| = |VARIABLES2|
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

DIST is equal to the number of times one of the following two conditions is true (1 ≤
i < n):

• VARIABLES1[i].var CTR VARIABLES1[i+ 1].var holds and
VARIABLES2[i].var CTR VARIABLES2[i+ 1].var does not hold,

• VARIABLES2[i].var CTR VARIABLES2[i+ 1].var holds and
VARIABLES1[i].var CTR VARIABLES1[i+ 1].var does not hold.

Example (1, 〈3, 3, 1, 2, 2〉 , 〈4, 4, 3, 3, 3〉 , 6=)

The DISTANCE CHANGE constraint holds since the following condition (DIST = 1)

is verified:
{

VARIABLES1[3].var = 1 6= VARIABLES1[4].var = 2 ∧
VARIABLES2[3].var = 3 = VARIABLES1[4].var = 3

.

Typical DIST > 0
|VARIABLES1| > 1
CTR ∈ [=, 6=]

Symmetries • Arguments are permutable w.r.t. permutation (DIST)
(VARIABLES1, VARIABLES2) (CTR).

• One and the same constant can be added to the var attribute of all items of
VARIABLES1.

• One and the same constant can be added to the var attribute of all items of
VARIABLES2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Functional dependency: DIST determined by VARIABLES1, VARIABLES2 and CTR.

Usage Measure the distance between two sequences according to the CHANGE constraint.

Remark We measure that distance with respect to a given constraint and not according to the fact
that the variables are assigned distinct values.

See also common keyword: DISTANCE BETWEEN (proximity constraint).

root concept: CHANGE.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(2) constraint network(2).

constraint type: proximity constraint.

modelling: functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1/ VARIABLES2

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) DISTANCE= DIST

Graph model Within the Arc input(s) slot, the character / indicates that we generate two distinct graphs.
The graph property DISTANCE measures the distance between two digraphs G1 and G2.
This distance is defined as the sum of the following quantities:

• The number of arcs of G1 that do not belong to G2,

• The number of arcs of G2 that do not belong to G1.

Part (A) of Figure 5.312 gives the final graph associated with the sequence var-3,var-
3,var-1,var-2,var-2 (i.e., the second argument of the constraint of the Example slot),
while part (B) shows the final graph corresponding to var-4,var-4,var-3,var-3,var-3
(i.e., the third argument of the constraint of the Example slot). Since arc 3 → 4 be-
longs to the first final graph but not to the second one, the distance between the two final
graphs is equal to 1.

3:1

4:2

2:3
2:4

3:3

(A) (B)

Figure 5.312: Final graphs of the DISTANCE CHANGE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.313 depicts the automaton associated with the DISTANCE CHANGE constraint.
Let (VAR1i, VAR1i+1) and (VAR2i, VAR2i+1) respectively be the ith pairs of consec-
utive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple
(VAR1i, VAR1i+1, VAR2i, VAR2i+1) corresponds a 0-1 signature variable Si. The follow-
ing signature constraint links these variables:

((VAR1i = VAR1i+1) ∧ (VAR2i 6= VAR2i+1)) ∨
((VAR1i 6= VAR1i+1) ∧ (VAR2i = VAR2i+1))⇔ Si.

DIST = C

s{C ← 0}
(VAR1i CTR VARi+1 ∧ VAR2i ¬CTR VAR2i+1) ∨
(VAR1i ¬CTR VAR1i+1 ∧ VAR2i CTR VAR2i+1),
{C ← C + 1}

(VAR1i ¬CTR VARi+1 ∨ VAR2i CTR VAR2i+1) ∧
(VAR1i CTR VARi+1 ∨ VAR2i ¬CTR VAR2i+1)

Figure 5.313: Automaton of the DISTANCE CHANGE constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = DIST

Qn−1 = s

Sn−1

VAR21 VAR22

VAR11 VAR12

VAR23

VAR13

VAR2n−1 VAR2n

VAR1n−1 VAR1n

Figure 5.314: Hypergraph of the reformulation corresponding to the automaton of the
DISTANCE CHANGE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.134 DIVISIBLE

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint DIVISIBLE(Q, D)

Synonym DIV.

Arguments Q : dvar

D : dvar

Restrictions Q ≥ 0
D > 0

Purpose Enforce the fact that the first variable Q is divisible by the second variable D.

Example (12, 4)

The DIVISIBLE constraint holds since 12 is divisible by 4.

Typical Q > 1
D < Q

See also implies: DIVISIBLE OR.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.135 DIVISIBLE OR

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint DIVISIBLE OR(C, D)

Synonym DIV OR.

Arguments C : dvar

D : dvar

Restrictions C > 0
D > 0

Purpose Enforce the fact that the first variable C is divisible by the second variable D, or that D is
divisible by C.

Example (4, 12)

The DIVISIBLE OR constraint holds since 12 is divisible by 4.

See also implied by: DIVISIBLE.

implies: SAME SIGN, ZERO OR NOT ZERO.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.136 DOM REACHABILITY

I B C J
DESCRIPTION LINKS

Origin [341]

Constraint DOM REACHABILITY


SOURCE,
FLOW GRAPH,
DOMINATOR GRAPH,
TRANSITIVE CLOSURE GRAPH



Arguments SOURCE : int

FLOW GRAPH : collection(index−int, succ−svar)
DOMINATOR GRAPH : collection(index−int, succ−sint)
TRANSITIVE CLOSURE GRAPH : collection(index−int, succ−svar)

Restrictions SOURCE ≥ 1
SOURCE ≤ |FLOW GRAPH|
required(FLOW GRAPH, [index, succ])
FLOW GRAPH.index ≥ 1
FLOW GRAPH.index ≤ |FLOW GRAPH|
FLOW GRAPH.succ ≥ 1
FLOW GRAPH.succ ≤ |FLOW GRAPH|
distinct(FLOW GRAPH, index)
required(DOMINATOR GRAPH, [index, succ])
|DOMINATOR GRAPH| = |FLOW GRAPH|
DOMINATOR GRAPH.index ≥ 1
DOMINATOR GRAPH.index ≤ |DOMINATOR GRAPH|
DOMINATOR GRAPH.succ ≥ 1
DOMINATOR GRAPH.succ ≤ |DOMINATOR GRAPH|
distinct(DOMINATOR GRAPH, index)
required(TRANSITIVE CLOSURE GRAPH, [index, succ])
|TRANSITIVE CLOSURE GRAPH| = |FLOW GRAPH|
TRANSITIVE CLOSURE GRAPH.index ≥ 1
TRANSITIVE CLOSURE GRAPH.index ≤ |TRANSITIVE CLOSURE GRAPH|
TRANSITIVE CLOSURE GRAPH.succ ≥ 1
TRANSITIVE CLOSURE GRAPH.succ ≤ |TRANSITIVE CLOSURE GRAPH|
distinct(TRANSITIVE CLOSURE GRAPH, index)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Let FLOW GRAPH, DOMINATOR GRAPH and TRANSITIVE CLOSURE GRAPH be three di-
rected graphs respectively called the flow graph, the dominance graph and the transitive
closure graph which all have the same vertices. In addition let SOURCE denote a vertex of
the flow graph called the source node (not necessarily a vertex with no incoming arcs).
The DOM REACHABILITY constraint holds if and only if the flow graph (and its source
node) verifies:

• The dominance relation expressed by the dominance graph (i.e., if there is an arc
(i, j) in the dominance graph then, within the flow graph, all the paths from the
source node to j contain i; note that when there is no path from the source node
to j then any node dominates j).

• The transitive relation expressed by the transitive closure graph (i.e., if there is an
arc (i, j) in the transitive closure graph then there is also a path from i to j in the
flow graph).

Example



1,

〈 index− 1 succ− {2},
index− 2 succ− {3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉
,

〈 index− 1 succ− {2, 3, 4},
index− 2 succ− {3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉
,

〈 index− 1 succ− {1, 2, 3, 4},
index− 2 succ− {2, 3, 4},
index− 3 succ− {3},
index− 4 succ− {4}

〉


The flow graph, the dominance graph and the transitive closure graph correspond-
ing to the second, third and fourth arguments of the DOM REACHABILITY constraint are
respectively depicted by parts (A), (B) and (C) of Figure 5.315. The DOM REACHABILITY

holds since the following conditions hold.

• The dominance relation expressed by the dominance graph is verified:

– Since (1, 2) belongs to the dominance graph all the paths from 1 to 2 in the flow
graph pass through 1.

– Since (1, 3) belongs to the dominance graph all the paths from 1 to 3 in the flow
graph pass through 1.

– Since (1, 4) belongs to the dominance graph all the paths from 1 to 4 in the flow
graph pass through 1.

– Since (2, 3) belongs to the dominance graph all the paths from 1 to 3 in the flow
graph pass through 2.

– Since (2, 4) belongs to the dominance graph all the paths from 1 to 4 in the flow
graph pass through 2.

• The graph depicted by the fourth argument of the DOM REACHABILITY constraint
(i.e., TRANSITIVE CLOSURE GRAPH) is the transitive closure of the graph depicted
by the second argument (i.e., FLOW GRAPH).


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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1

2

3 4

(A)

1

2

3 4

(B)

1

2

3 4

(C)

Figure 5.315: (A) Flow graph, (B) dominance graph and (C) transitive closure graph
of the Example slot (taken from [339, page 40])

Typical |FLOW GRAPH| > 2

Symmetries • Items of FLOW GRAPH are permutable.

• Items of DOMINATOR GRAPH are permutable.

• Items of TRANSITIVE CLOSURE GRAPH are permutable.

Usage The DOM REACHABILITY constraint was introduced in order to solve reachability prob-
lems (e.g., disjoint paths, simple path with mandatory nodes).

Remark Within the name DOM REACHABILITY, DOM stands for domination. In the context of path
problems SOURCE refers to the start of the path we want to build.

Algorithm It was shown in [339] that, finding out wether a DOM REACHABILITY constraint has a
solution or not is NP-hard. This was achieved by reduction to disjoint paths problem [194].

The first implementation [340] of the DOM REACHABILITY constraint was done in
Mozart [130]. Later on, a second implemention [339] was done in Gecode [385]. Both
implementations consist of the following two parts:

• Algorithms [373] for maintaining the lower bound of the transitive closure graph.

• Algorithms for maintaining the upper bound of the transitive closure graph, while
respecting the dominance constraints [203].

See also common keyword: PATH, PATH FROM TO (path).

Keywords combinatorial object: path.

constraint arguments: constraint involving set variables.

constraint type: predefined constraint, graph constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.mozart-oz.org/
http://www.gecode.org/
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5.137 DOMAIN

I B C J DESCRIPTION LINKS

Origin Domain definition.

Constraint DOMAIN(VARIABLES, LOW, UP)

Synonym DOM.

Arguments VARIABLES : collection(var−dvar)
LOW : int

UP : int

Restrictions required(VARIABLES, var)
LOW ≤ UP

Purpose Enforce all the variables of the collection VARIABLES to take a value within the interval
[LOW, UP].

Example (〈2, 8, 2〉 , 1, 9)

The DOMAIN constraint holds since all the values 2, 8 and 2 of its first argument
are greater than or equal to its second argument LOW = 1 and less than or equal to its third
argument UP = 9.

Typical |VARIABLES| > 1
LOW < UP

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
in [LOW, UP].

• LOW can be decreased.

• UP can be increased.

• One and the same constant can be added to the var attribute of all items of
VARIABLES as well as to LOW and UP.

Arg. properties Contractible wrt. VARIABLES.

Remark The DOMAIN constraint is called DOM in Gecode (http://www.gecode.org/).

Reformulation The DOMAIN(〈var − V1, var − V2, . . . , var − V|VARIABLES|〉, LOW, UP) constraint can be
expressed in term of the conjunction
V1 ≥ LOW ∧ V1 ≤ UP,
V2 ≥ LOW ∧ V2 ≤ UP,
. . . . . . . . . . . . . . . . . .
V|VARIABLES| ≥ LOW ∧ V|VARIABLES| ≤ UP.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

http://www.gecode.org/
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Systems MEMBER in Choco, DOM in Gecode, DOMAIN in SICStus.

See also common keyword: IN, IN INTERVAL (domain definition).

uses in its reformulation: TREE RANGE.

Keywords constraint type: predefined constraint, value constraint.

modelling: interval, domain definition.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
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5.138 DOMAIN CONSTRAINT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [350]

Constraint DOMAIN CONSTRAINT(VAR, VALUES)

Synonym DOMAIN.

Arguments VAR : dvar

VALUES : collection(var01−dvar, value−int)

Restrictions required(VALUES, [var01, value])
VALUES.var01 ≥ 0
VALUES.var01 ≤ 1
distinct(VALUES, value)

Purpose
Make the link between a domain variable VAR and those 0-1 variables that are associated
with each potential value of VAR: The 0-1 variable associated with the value that is taken
by variable VAR is equal to 1, while the remaining 0-1 variables are all equal to 0.

Example

 5,

〈 var01− 0 value− 9,
var01− 1 value− 5,
var01− 0 value− 2,
var01− 0 value− 7

〉 
The DOMAIN CONSTRAINT holds since VAR = 5 is set to the value corresponding
to the 0-1 variable set to 1, while the other 0-1 variables are all set to 0.

Typical |VALUES| > 1

Symmetry Items of VALUES are permutable.

Usage This constraint is used in order to make the link between a formulation using finite domain
constraints and a formulation exploiting 0-1 variables.

Reformulation The DOMAIN CONSTRAINT(VAR,
〈var01−B1 value− v1,
var01−B2 value− v2,
. . . . . . . . . . . . . . . . . . . . . . . .
var01−B|VALUES| value− v|VALUES|〉)

constraint can be expressed in term of the following reified constraint (VAR = v1 ∧ B1 =
1) ∨ (VAR = v2 ∧B2 = 1) ∨ · · · ∨ (VAR = v|VALUES| ∧B|VALUES| = 1).

Systems DOMAINCHANNELING in Choco, CHANNEL in Gecode, IN in SICStus, IN SET in SICS-
tus.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
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See also common keyword: LINK SET TO BOOLEANS (channelling constraint).

related: ROOTS.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint, derived collection.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: decomposition.

filtering: linear programming, arc-consistency.

modelling: channelling constraint, domain channel, Boolean channel.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col

(
VALUE−collection(var01−int, value−dvar),
[item(var01− 1, value− VAR)]

)
Arc input(s) VALUE VALUES

Arc generator PRODUCT 7→collection(value, values)

Arc arity 2

Arc constraint(s) value.value = values.value⇔ values.var01 = 1

Graph property(ies) NARC= |VALUES|

Graph model The DOMAIN CONSTRAINT constraint is modelled with the following bipartite graph:

• The first class of vertices corresponds to a single vertex containing the domain vari-
able.

• The second class of vertices contains one vertex for each item of the collection
VALUES.

PRODUCT is used in order to generate the arcs of the graph. In our context it takes a
collection with a single item 〈var01− 1 value− VAR〉 and the collection VALUES.

The arc constraint between the variable VAR and one potential value v expresses the fol-
lowing:

• If the 0-1 variable associated with v is equal to 1, VAR is equal to v.

• Otherwise, if the 0-1 variable associated with v is equal to 0, VAR is not equal to v.

Since all arc constraints should hold the final graph contains exactly |VALUES| arcs.

Parts (A) and (B) of Figure 5.316 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

Signature Since the number of arcs of the initial graph is equal to VALUES the maximum number of
arcs of the final graph is also equal to VALUES. Therefore we can rewrite the graph property
NARC = |VALUES| to NARC≥ |VALUES|. This leads to simplify NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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VALUE

VALUES

1

1234

NARC=4

1:1,5

1:0,9 2:1,5 3:0,2 4:0,7

(A) (B)

Figure 5.316: Initial and final graph of the DOMAIN CONSTRAINT constraint
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Automaton Figure 5.317 depicts the automaton associated with the DOMAIN CONSTRAINT constraint.
Let VAR01i and VALUEi respectively be the var01 and the value attributes of the ith

item of the VALUES collection. To each triple (VAR, VAR01i, VALUEi) corresponds a 0-1
signature variable Si as well as the following signature constraint: ((VAR = VALUEi) ⇔
VAR01i)⇔ Si.

s VAR = VALUEi ⇔ VAR01i = 1

Figure 5.317: Automaton of the DOMAIN CONSTRAINT constraint

Q0 = s Q1

S1 S2

Qn = s

Sn

VAR

VAR011 VAR012 VAR01n

Figure 5.318: Hypergraph of the reformulation corresponding to the automaton of the
DOMAIN CONSTRAINT constraint: since all states variables Q0, Q1, . . . , Qn are fixed
to the unique state s of the automaton, the transitions constraints involve only a single
variable and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.139 ELEM

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ELEMENT.

Constraint ELEM(ITEM, TABLE)

Usual name ELEMENT

Synonyms NTH, ARRAY.

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM is equal to one of the entries of the table TABLE.

Example


〈index− 3 value− 2〉 ,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


The ELEM constraint holds since its first argument ITEM corresponds to the third
item of the TABLE collection.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items of TABLE are permutable.

• All occurrences of two distinct values in ITEM.value or TABLE.value can be
swapped; all occurrences of a value in ITEM.value or TABLE.value can be re-
named to any unused value.

Arg. properties Functional dependency: ITEM.value determined by ITEM.index and TABLE.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage Makes the link between the discrete decision variable INDEX and the variable VALUE ac-
cording to a given table of values TABLE. We now give five typical uses of the ELEM

constraint.

1. In some problems we may have to represent a function y = f(x) (with x ∈ [1,m]).
In this context we generate the following ELEM constraint where INDEX is a domain
variable taking its values in {1, 2, . . . ,m}:

ELEM



〈
index− x value− y

〉
,〈 index− 1 value− f(1),

index− 2 value− f(2),
...

index−m value− f(m)

〉


1 2 3 4

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

1

8

27

x

y

Figure 5.319: y = x3 (1 ≤ x ≤ 3)

As an example, consider the problem of finding the smallest integer that can be de-


Usage
Typical usage of the constraint.
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composed in two different ways in the sum of two cubes [213]. The ELEM constraint
can be used for representing the function y = x3 (Figure 5.319). The unique solution
1729 = 123 + 13 = 103 + 93 can be obtained by the following set of constraints:

ELEM(〈index− x1 value− y1〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

ELEM(〈index− x2 value− y2〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

ELEM(〈index− x3 value− y3〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

ELEM(〈index− x4 value− y4〉,
〈index− 1 value− 1, index− 2 value− 8, . . . , index− 20 value− 8000〉)

y1 + y2 = y3 + y4

x1 < x2

x3 < x4

x1 < x3

The last three inequalities constraints in the conjunction are used for breaking sym-
metries. The constraints x1 < x2 and x3 < x4 respectively order the pairs of
variables (x1, x2) and (x3, x4) from which the sums x3

1 + x3
2 and x3

3 + x3
4 are

generated. Finally the inequality x1 < x3 enforces a lexicographic ordering between
the two pairs of variables (x1, x2) and (x3, x4).

2. In some optimisation problems a classical use of the ELEM constraint consists ex-
pressing the link between a discrete choice and its corresponding cost. For each
discrete choice we create an ELEM constraint of the form:

ELEM



〈
index− Choice value− Cost

〉
,〈 index− 1 value− Cost1,

index− 2 value− Cost2,
...

index−m value− Costm

〉


where:

• Choice is a domain variable that indicates which alternative will be finally
selected,

• Cost is a domain variable that corresponds to the cost of the decision associated
with the value of the Choice variable,

• Cost1, Cost2, . . . , Costm are the respective costs associated with the alterna-
tives 1, 2, . . . ,m.

3. In some problems we need to express a disjunction of the form VAR = VAR1∨VAR =
VAR2 ∨ · · · ∨ VAR = VARn. This can be directly reformulated as the following
ELEM constraint, where INDEX is a domain variable taking its value in the finite set
{1, 2, . . . , n} and where the TABLE argument corresponds to the domain variables
VAR1, VAR2, . . . , VARn:

ELEM



〈
index− INDEX value− VAR

〉
,〈 index− 1 value− VAR1,

index− 2 value− VAR2,
...

index− n value− VARn

〉
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4. In some scheduling problems the duration of a task depends on the machine where
the task will be assigned in final schedule. In this case we generate for each task an
ELEM constraint of the following form:

ELEM



〈
index− Machine value− Duration

〉
,〈 index− 1 value− Dur1,

index− 2 value− Dur2,
...

index−m value− Durm

〉


where:

• Machine is a domain variable that indicates the resource to which the task will
be assigned,

• Duration is a domain variable that corresponds to the duration of the task,
• Dur1, Dur2, . . . , Durm are the respective duration of the task according to the

hypothesis that it runs on machine 1, 2 or m.

t

t

t

1 2 3 4 5 6 7

1

2

3

Machine = 1⇒ Duration = Dur1 = 4

Machine = 2⇒ Duration = Dur2 = 6

Machine = 3⇒ Duration = Dur3 = 4

time

m
ac

hi
ne

s

ELEM

(
〈index− Machine value− Duration〉,
〈index− 1 value− 4, index− 2 value− 6, index− 3 value− 4〉

)

Figure 5.320: A task t for which the duration depends on the machine 1, 2 or 3 to
which it is assigned

Figure 5.320 illustrates this particular use of the ELEM constraint for modelling that
a task has a duration of 4, 6 and 4 when we respectively assign it on machines 1, 2
and 3.

5. In some vehicle routing problems we typically use the ELEM constraint to express
the distance between location i and the next location visited by a vehicle. For this
purpose we generate for each location i an ELEM constraint of the form:

ELEM



〈
index− Nexti value− distancei

〉
,〈 index− 1 value− Disti1 ,

index− 2 value− Disti2 ,
...

index−m value− Distim

〉


where:

• Nexti is a domain variable that gives the index of the location the vehicle will
visit just after location i,
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• distancei is a domain variable that corresponds to the distance between loca-
tion i and the location the vehicle will visit just after,

• Disti1 , Disti2 , . . . , Distim are the respective distances between location i
and locations 1, 2, . . . ,m.

An other example where the table argument corresponds to domain variables is described
in the keyword entry assignment to the same set of values.

Remark Originally, the parameters of the ELEM constraint had the form
ELEMENT(INDEX, TABLE, VALUE), where INDEX and VALUE were two domain vari-
ables and TABLE was a list of non-negative integers.

Within some systems (e.g., Gecode), the index of the first entry of the table TABLE corre-
sponds to 0 rather than to 1.

When the first entry of the table TABLE corresponds to a value p that is different from
1 we can still use the ELEM constraint. We use the reformulation I = J − p + 1 ∧
ELEM(〈index− I value− V 〉, TABLE), where I and J are domain variables respectively
ranging from 1 to |TABLE| and from p to p+ |TABLE| − 1.

Systems NTH in Choco, ELEMENT in Gecode, ELEMENT in JaCoP, ELEMENT in SICStus.

See also common keyword: ELEM FROM TO, ELEMENT MATRIX, ELEMENT PRODUCT,
ELEMENT SPARSE (array constraint), ELEMENTS SPARSE, STAGE ELEMENT (data
constraint).

implied by: ELEMENT.

implies: ELEMENT (single item replaced by two variables), ELEMENT GREATEREQ,
ELEMENT LESSEQ, ELEMENTS.

system of constraints: ELEMENTS.

uses in its reformulation: ELEMENTS ALLDIFFERENT.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

heuristics: labelling by increasing cost, regret based heuristics.

modelling: array constraint, table, functional dependency, variable indexing, variable sub-
script, disjunction, assignment to the same set of values, sequence dependent set-up.

modelling exercises: assignment to the same set of values, sequence dependent set-up,
zebra puzzle.

puzzles: zebra puzzle.

Cond. implications ELEM(ITEM, TABLE)
with TABLE.value ≥ 0

implies BIN PACKING CAPA(TABLE, ITEM).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://www.gecode.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value = table.value

Graph property(ies) NARC= 1

Graph model We regroup the INDEX and VALUE parameters of the original ELEMENT constraint
ELEMENT(INDEX, TABLE, VALUE) into the parameter ITEM. We also make explicit the dif-
ferent indices of the table TABLE.

Parts (A) and (B) of Figure 5.321 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:3,2

(A) (B)

Figure 5.321: Initial and final graph of the ELEM constraint

Signature Since all the index attributes of TABLE are distinct and because of the first condition of
the arc constraint the final graph cannot have more than one arc. Therefore we can rewrite
NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.322 depicts the automaton associated with the ELEM constraint. Let INDEX and
VALUE respectively be the index and the value attributes of the unique item of the ITEM

collection. Let INDEXi and VALUEi respectively be the index and the value attributes
of item i of the TABLE collection. To each quadruple (INDEX, VALUE, INDEXi, VALUEi)
corresponds a 0-1 signature variable Si as well as the following signature constraint:
((INDEX = INDEXi) ∧ (VALUE = VALUEi))⇔ Si.

s

t

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE 6= TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE 6= TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

Figure 5.322: Automaton of the ELEM(ITEM, TABLE) constraint (once one finds the
right item – index and value – in the table, one switches from the initial state s to the
accepting state t)

Q0 = s Q1

S1 S2

Qn = t

Sn

ITEM INDEX

ITEM VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.323: Hypergraph of the reformulation corresponding to the automaton of the
ELEM constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.140 ELEM FROM TO

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from ELEM.

Constraint ELEM FROM TO(ITEM, TABLE)

Synonym ELEMENT FROM TO.

Arguments ITEM : collection


from−dvar,
cst from−int,
to−dvar,
cst to−int,
value−dvar


TABLE : collection(index−int, value−dvar)

Restrictions required(ITEM, [from, cst from, to, cst to, value])
ITEM.from ≥ 1
ITEM.from ≤ |TABLE|
ITEM.to ≥ 1
ITEM.to ≤ |TABLE|
ITEM.from ≤ ITEM.to
|ITEM| = 1
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
increasing seq(TABLE, [index])

Purpose

Let FROM, CST FROM, TO, CST TO, VALUE respectively denote the attributes
ITEM[1].from, ITEM[1].cst from, ITEM[1].to, ITEM[1].cst to, ITEM[1].value of the
unique item of the ITEM collection.
Beside imposing the fact that FROM ≤ TO and that both FROM and TO are assigned a
value in [1, |TABLE|], the ELEM FROM TO constraint forces the following condition: All
entries of the TABLE collection from position max(1, FROM + CST FROM) to position
min(|TABLE|, TO + CST TO) are equal to VALUE. When max(1, FROM + CST FROM) is
strictly greater than min(|TABLE|, TO + CST TO) the constraint holds no matter what
value is assigned to VALUE.

Example


〈from− 1 cst from− 1 to− 4 cst to−−1 value− 2〉 ,

〈 index− 1 value− 6,
index− 2 value− 2,
index− 3 value− 2,
index− 4 value− 9,
index− 5 value− 9

〉


The ELEM FROM TO constraint holds since all entries between position


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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max(1, FROM + CST FROM) = max(1, 1 + 1) = 2 and position min(|TABLE|, TO +
CST TO) = min(5, 4− 1) = 3 are equal to 2.

Typical ITEM.cst from ≥ 0
ITEM.cst from ≤ 1
ITEM.cst to ≥ −1
ITEM.cst to ≤ 1
|TABLE| > 1
range(TABLE.value) > 1

Symmetry All occurrences of two distinct values in ITEM.value or TABLE.value can be swapped;
all occurrences of a value in ITEM.value or TABLE.value can be renamed to any unused
value.

Usage Given an array t[1..n] of integers (i.e., an array of integers for which the entries are defined
between 1 and n), the ELEM FROM TO constraint is useful, for example, for encoding
expressions of the form ∃i ∈ [1, n], ∀j ∈ [i+ 1, n] | t[i] = 0. Note that, when the interval
[i + 1, n] is empty, the condition ∀j ∈ [i + 1, n] | t[i] = 0 is satisfied and i is equal to
n. This example is encoded by using an ELEM FROM TO constraint and by respectively
setting:

• FROM to i, where i is a variable that is assigned a value from interval [1, n],

• CST FROM to constant 1,

• TO to n, the index of the last entry of the array t[1..n],

• CST TO to constant 0,

• VALUE to 0, the value we are looking for.

• TABLE to the array of integers t[1..n].

Finally, note that j is not used at all.

See also common keyword: ELEM, ELEMENT (array constraint).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, table, variable indexing, variable subscript.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.324 depicts the automaton associated with the ELEM FROM TO constraint.

Let us first introduce some notations:

• Let n denote the number of items of the TABLE collection.

• Let INDEXi and VALUEi respectively be the index and the value attributes of the ith

item of the TABLE collection.

• Let FROM, CST FROM, TO, CST TO, VALUE respectively denote the attributes
ITEM[1].from, ITEM[1].cst from, ITEM[1].to, ITEM[1].cst to, ITEM[1].value of
the unique item of the ITEM collection.

• Let IN be a shortcut for condition 1 ≤ FROM ∧ FROM ≤ TO ∧ TO ≤ n.

• Let F and T respectively denote the quantities max(1, FROM + CST FROM) and
min(|TABLE|, TO + CST TO).

To each septuple (FROM, TO, F, T, VALUE, INDEXi, VALUEi) corresponds a signature variable
Si as well as the following signature constraint:

(IN ∧ F > T) ⇔ Si = 0 ∧
(IN ∧ F ≤ T ∧ F > INDEXi) ⇔ Si = 1 ∧
(IN ∧ F ≤ T ∧ T < INDEXi) ⇔ Si = 2 ∧
(IN ∧ F ≤ T ∧ F ≤ INDEXi ∧ INDEXi ≤ T ∧ VALUE = VALUEi) ⇔ Si = 3 ∧
(IN ∧ F ≤ T ∧ F ≤ INDEXi ∧ INDEXi ≤ T ∧ VALUE 6= VALUEi) ⇔ Si = 4

.

s IN ∧ F > T

IN ∧ F ≤ T ∧ F ≤ INDEXi ∧ INDEXi ≤ T ∧ VALUE 6= VALUEi

IN ∧ F ≤ T ∧ F > INDEXi

IN ∧ F ≤ T ∧ T < INDEXi

Figure 5.324: Automaton of the ELEM FROM TO constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Q0 = s Q1

S1 S2

Qn = s

Sn

FROM

TO

VALUE

VALUE1 VALUE2 VALUEn

Figure 5.325: Hypergraph of the reformulation corresponding to the automaton of the
ELEM FROM TO constraint



1194 ELEMENT

5.141 ELEMENT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [429]

Constraint ELEMENT(INDEX, TABLE, VALUE)

Synonyms NTH, ELEMENT VAR, ARRAY.

Arguments INDEX : dvar

TABLE : collection(value−dvar)
VALUE : dvar

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE|
|TABLE| > 0
required(TABLE, value)

Purpose VALUE is equal to the INDEXth item of TABLE, i.e. VALUE = TABLE[INDEX].

Example (3, 〈6, 9, 2, 9〉 , 2)

The ELEMENT constraint holds since its third argument VALUE = 2 is equal to the
3th (INDEX = 3) item of the collection 〈6, 9, 2, 9〉.

6

1

9

2

9

4

2

3

All solutions Figure 5.326 gives all solutions to the following non ground instance of the ELEMENT

constraint: I ∈ [3, 6], V ∈ [1, 9], ELEMENT(I, 〈4, 8, 1, 0, 3, 3, 4, 3〉, V).

¬ (3, 〈41, 82,13, 04, 34, 36, 77, 38〉,1)
 (5, 〈41, 82, 13, 04,35, 36, 47, 38〉,3)
® (6, 〈41, 82, 13, 04, 35,36, 47, 38〉,3)

Figure 5.326: All solutions corresponding to the non ground example of the ELEMENT
constraint of the All solutions slot

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetry All occurrences of two distinct values in TABLE.value or VALUE can be swapped; all
occurrences of a value in TABLE.value or VALUE can be renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.
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Arg. properties • Functional dependency: VALUE determined by INDEX and TABLE.

• Suffix-extensible wrt. TABLE.

Usage See Usage slot of ELEM.

Remark In the original ELEMENT constraint of CHIP the index attribute was not explicitly present
in the table of values. It was implicitly defined as the position of a value in the previous
table.

Within some systems (e.g., Gecode), the index of the first entry of the table TABLE corre-
sponds to 0 rather than to 1.

When the first entry of the table TABLE corresponds to a value p that is different from 1
we can still use the ELEMENT constraint. We use the reformulation I = J − p + 1 ∧
ELEMENT(I, TABLE, V ), where I and J are domain variables respectively ranging from 1
to |TABLE| and from p to p+ |TABLE| − 1.

The ELEMENT constraint is called NTH in Choco (http://choco.sourceforge.net/).
It is also sometimes called ELEMENT VAR when the second argument corresponds to a
table of variables.

The CASE constraint [108] is a generalisation of the ELEMENT constraint, where the table
is replaced by a directed acyclic graph describing the set of solutions: there is a one to one
correspondence between the solutions and the paths from the unique source of the dag to
its leaves.

Systems NTH in Choco, ELEMENT in Gecode, ELEMENT in JaCoP, ELEMENT in MiniZinc,
ELEMENT in SICStus.

See also common keyword: ELEM FROM TO, ELEMENT GREATEREQ, ELEMENT LESSEQ,
ELEMENT MATRIX, ELEMENT PRODUCT, ELEMENT SPARSE (array constraint),
ELEMENTN, ELEMENTS SPARSE, IN RELATION, STAGE ELEMENT, SUM (data con-
straint).

generalisation: COND LEX COST (variable replaced by tuple of variables).

implied by: ELEM.

implies: ELEM.

related: TWIN ((pairs linked by an element with the same table)).

system of constraints: ELEMENTS.

uses in its reformulation: CYCLE, ELEMENTS ALLDIFFERENT, SORT PERMUTATION,
TREE RANGE, TREE RESOURCE.

Keywords characteristic of a constraint: core, automaton, automaton without counters, reified au-
tomaton constraint, derived collection.

constraint arguments: pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

heuristics: labelling by increasing cost, regret based heuristics.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.cosytec.com
http://www.gecode.org/
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#element
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://www.sics.se/sicstus/
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modelling: array constraint, table, functional dependency, variable indexing, variable sub-
script, disjunction, assignment to the same set of values, sequence dependent set-up.

modelling exercises: assignment to the same set of values, sequence dependent set-up,
zebra puzzle.

puzzles: zebra puzzle.
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Derived Collection
col

(
ITEM−collection(index−dvar, value−dvar),
[item(index− INDEX, value− VALUE)]

)
Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.key
• item.value = table.value

Graph property(ies) NARC= 1

Graph model The original ELEMENT constraint with three arguments. We use the derived collection
ITEM for putting together the INDEX and VALUE parameters of the ELEMENT constraint.
Within the arc constraint we use the implicit attribute key that associates to each item of a
collection its position within the collection.

Parts (A) and (B) of Figure 5.327 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:2

(A) (B)

Figure 5.327: Initial and final graph of the ELEMENT constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.328 depicts the automaton associated with the ELEMENT constraint. Let
VALUEi be the value attribute of item i of the TABLE collection. To each triple
(INDEX, VALUE, VALUEi) corresponds a 0-1 signature variable Si as well as the following
signature constraint: (INDEX = i ∧ VALUE = VALUEi)⇔ Si.

s

t

INDEX 6= TABLE KEYi ∨
VALUE 6= TABLE VALUEi

INDEX = TABLE KEYi ∧
VALUE = TABLE VALUEi

INDEX 6= TABLE KEYi ∨
VALUE 6= TABLE VALUEi

INDEX = TABLE KEYi ∧
VALUE = TABLE VALUEi

Figure 5.328: Automaton of the ELEMENT(INDEX, TABLE, VALUE) constraint (once
one finds the right index and value in the table, one switches from the initial state s to
the accepting state t)

Q0 = s Q1

S1 S2

Qn = t

Sn

INDEX

VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.329: Hypergraph of the reformulation corresponding to the automaton of the
ELEMENT constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint ELEMENT(0, 〈5, 1, 4, 8, 1〉, 5) hold?

B. Does the constraint ELEMENT(3, 〈8, 2, 4, 3〉, 4) hold?

C. Does the constraint ELEMENT(5, 〈0, 1, 2, 3, 4, 5〉, 5) hold?

aHint: go back to the definition of ELEMENT.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:
I ∈ [2, 6],
V ∈ [0, 5],
ELEMENT(I, 〈0, 2, 9, 5, 9, 2, 3, 9〉, V ).

aHint: follow the order induced by the functional dependency between the
arguments of ELEMENT, enumerate solutions in lexicographic order.

EXERCISE 3 (finding all solutions)a

Give all the solutions to the constraint:
I ∈ [2, 3],
V1 ∈ [5, 5], V2 ∈ [3, 5], V3 ∈ [0, 3],
V ∈ [1, 2],
ELEMENT(I, 〈V1, V2, V3〉, V ).

aHint: first find the feasible values of the first argument, then enumerate
solutions in lexicographic order.

EXERCISE 4 (identifying infeasible values)a

Identify all variable-value pairs (Vi, val) (0 ≤ i ≤ 3), such that the fol-
lowing constraint has no solution when value val is assigned to variable
Vi:

V0 ∈ [2, 3], V1 ∈ [2, 4],
V2 ∈ [0, 4], V3 ∈ [3, 5],
ELEMENT(V0, 〈V1, 0, V2, 6〉, V3).

aHint: first find the feasible values of the first argument, then filter the other
variables.

EXERCISE 5 (variable-based degree of violation)a

Compute the variable-based degree of violationb of the following con-
straints:

A. ELEMENT(0, 〈2, 2, 2, 2〉, 2),

B. ELEMENT(3, 〈3, 1, 5, 2, 7〉, 4),

C. ELEMENT(8, 〈5, 5, 8, 5, 5, 0, 7〉, 2).

aHint: take advantage of the functional dependency.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in
order to satisfy the constraint.
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EXERCISE 6 (using entailment for counting)a

A. Given an ELEMENT(i, 〈t1, t2, . . . , tn〉, v) constraint where i,
t1, t2, . . . , tn, v are variables, what is the minimum number of
variables to fix in order to achieve entailment.b We assume that
the constraint has at least one solution.

B. Exploit entailment in order to compute the number of solutions to
the constraint i ∈ [1, 3], v1 ∈ [0, 1], v2 ∈ [1, 9], v3 ∈ [3, 5],
v ∈ [2, 7], ELEMENT(i, 〈v1, v2, v3〉, v).

aHint: take advantage of the functional dependency, use a case analysis on
the first argument.

bA constraint is entailed if and only if it is for sure satisfied even though
some of its variables are not fixed.

EXERCISE 7 (modelling with an unconstrained index)a

What does the ELEMENT constraint model when its first argument, the
index, is unconstrained?

aHint: how would one define the set of solutions of the third argument?

EXERCISE 8 (modelling an index starting at 0)a

Given a table t whose entries are indexed at [0, n] model the requirement
v = t[i].

aHint: make a shift.

EXERCISE 9 (modelling indirection)a

Given a table t whose entries vary between 1 and 9, model the require-
ment v = t[t[i]] as one or several constraints. What is the implicit as-
sumption we have on the entries of the table?

aHint: use more than one constraint.

SOLUTION TO EXERCISE 1

A. No, since value the first argument starts at index 1.

B. Yes, since the third entry of the table is equal to 4.

C. No, since the fifth entry is equal to 4 (and not to 5).
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SOLUTION TO EXERCISE 2

I , 〈0, 2, 9, 5, 9, 2, 3, 9〉, V

¬ (2, 〈01,22, 93, 54, 95, 26, 37, 98〉,2)
 (4, 〈01, 22, 93,54, 95, 26, 37, 98〉,5)
® (6, 〈01, 22, 93, 54, 95,26, 37, 98〉,2)

the three solutions

1. The active entries of the table are located between index 2 and 6,
as shown in bold by 〈01,22,93,54,95,26, 37, 98〉.

2. Among these entries we restrict ourselves to those entries for
which the value is located in the domain of variable V , i.e. in
interval [0, 5]. The remaining entries are shown in bold,
i.e. 〈01,22, 93,54, 95,26, 37, 98〉.

3. This leads to the three solutions I = 2 V = 2, I = 4 V = 5 and
I = 6 V = 2.

SOLUTION TO EXERCISE 3

I , 〈V1, V2, V3〉, V

¬ (3, 〈51, 32,13〉,1)
 (3, 〈51, 32,23〉,2)
® (3, 〈51, 42,13〉,1)
¯ (3, 〈51, 42,23〉,2)
° (3, 〈51, 52,13〉,1)
± (3, 〈51, 52,23〉,2)

the six solutions

1. Since the domain of V2 which is located at the second entry of the
table does not intersect the domain of V (the third argument), the
index variable I (the first argument) can not be assigned value 2,
and is therefore fixed to 3.

2. Since I is fixed to 3 we have that V = V3. Consequently V and
V3 are assigned a same value that belongs to the intersection of
their respective domains, i.e. [0, 3] ∩ [1, 2] = [1, 2].



1202 ELEMENT

SOLUTION TO EXERCISE 4

V0 V1 V2 V3

0

1

2

3

4

5

(A)
Initial
domains

Vi

Vi

Vi

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj pruned
from dom(Vi)

V0 V1 V2 V3

0

1

2

3

4

5

(B)
After filtering
the index

V0 V1 V2 V3

0

1

2

3

4

5

(C)
Final
domains

1. In part (A) we give the initial domains of the index variable (V0),
of the first and third entries of the table (V1, V2), and of the third
argument of the ELEMENT constraint (V3).

2. In part (B) we prune the index variable V0. On the one hand, it
can not be assigned value 2 since the second entry of the table is
set to 0, and 0 does not belong to the domain of V3, see ×. On
the other hand, it can be assigned value 3 since
dom(V2) ∩ dom(V3) 6= ∅.

3. Finally in part (C) we remove those values that contradict the fact
that V2 = V3, see ×.
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SOLUTION TO EXERCISE 5

A. The degree of violation is equal to 1 since we only need to change
the index from 0 (because 0 is not an allowed value for the index)
to any integer value in [1, 4].

ELEMENT(

1

0, 〈2, 2, 2, 2〉, 2)

B. The degree of violation is equal to 1 since we only need to change
the third entry of the table to 4 (or to switch the third argument
from 4 to 5).

ELEMENT(3, 〈3, 1,
4

5, 2, 7〉, 4)

C. The degree of violation is equal to 2 since we need to change both
the index (the table has only 7 entries) and the third argument
(value 2 does not occur in the table). Rather than changing the
third argument, we may change an entry of the table (e.g., if we
set the index to 3 we set the third entry of the table to 2).

ELEMENT(

1

8, 〈5, 5, 8, 5, 5, 0, 7〉,
5

2)

SOLUTION TO EXERCISE 6

A. We need to fix 3 variables in the following way:

(i) The first argument, the index i, is fixed to a value α
(1 ≤ α ≤ n) such that dom(tα) ∩ dom(v) 6= ∅.

(ii) We fix the third argument v to a value β in
dom(tα) ∩ dom(v).

(iii) We fix tα to β.

B. We have 90 solutions depending on whether i = 1, i = 2, i = 3
(and v = vi):

(i) |dom(v)∩ dom(v1)| · |dom(v2)| · |dom(v3)| = 0 · 9 · 3 = 0,

(ii) |dom(v)∩dom(v2)| · |dom(v1)| · |dom(v3)| = 6 ·2 ·3 = 36,

(iii) |dom(v)∩dom(v3)| · |dom(v1)| · |dom(v2)| = 3 ·2 ·9 = 54.

SOLUTION TO EXERCISE 7

Given a table t of n entries t[1], t[2], . . . , t[n], ELEMENT models a dis-
junction stating that the third argument v is equal to one of the val-
ues that can be assigned to one of the variables of the table, i.e. v =
t[1] ∨ v = t[2] ∨ · · · ∨ v = t[n].
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SOLUTION TO EXERCISE 8

The requirement v = t[i] can be modelled as the conjunction of the two
constraints j = i+ 1, ELEMENT(j, 〈t[0], t[1], . . . , t[n]〉, v).

SOLUTION TO EXERCISE 9

The requirement v = t[t[i]] can be modelled as the conjunction of two
ELEMENT constraints sharing the same table, namely:

ELEMENT(i, 〈t[1], t[2], . . . , t[9]〉, j) ← inner indirection t[t[i]]
ELEMENT(j, 〈t[1], t[2], . . . , t[9]〉, v) ← outer indirection t[t[i]]

The second ELEMENT constraint assumes that j corresponds to a valid
index of the table, i.e. a value between 1 and 9.
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5.142 ELEMENT GREATEREQ

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [312]

Constraint ELEMENT GREATEREQ(ITEM, TABLE)

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM[1].value is greater than or equal to one of the entries (i.e., the value attribute) of
the table TABLE.

Example


〈index− 1 value− 8〉 ,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


The ELEMENT GREATEREQ constraint holds since ITEM[1].value = 8 is greater
than or equal to TABLE[ITEM[1].index].value = TABLE[1].value = 6.

2

3

9

2

9

4

6

1
(8 ≥ 6)

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items of TABLE are permutable.

• All occurrences of two distinct values in ITEM.value or TABLE.value can be
swapped; all occurrences of a value in ITEM.value or TABLE.value can be re-
named to any unused value.

Usage Used for modelling variable subscripts in linear constraints [312].

Reformulation By introducing an extra variable VAL, the ELEMENT GREATEREQ(〈index −
INDEX value − VALUE〉, TABLE) constraint can be expressed in term of an
ELEM(〈index − INDEX value − VAL〉, TABLE) constraint and of an inequality
constraint VALUE ≥ VAL.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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See also common keyword: ELEMENT, ELEMENT LESSEQ, ELEMENT PRODUCT (array con-
straint).

implied by: ELEM.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: linear programming, arc-consistency.

modelling: array constraint, table, variable subscript, variable indexing.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≥ table.value

Graph property(ies) NARC= 1

Graph model Similar to the ELEMENT constraint except that the equality constraint of the second condi-
tion of the arc constraint is replaced by a greater than or equal to constraint.

Parts (A) and (B) of Figure 5.330 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:1,8

1:1,6

(A) (B)

Figure 5.330: Initial and final graph of the ELEMENT GREATEREQ constraint

Signature Since all the index attributes of TABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.331 depicts the automaton associated with the ELEMENT GREATEREQ con-
straint. Let INDEX and VALUE respectively be the index and the value attributes of the
unique item of the ITEM collection. Let INDEXi and VALUEi respectively be the index

and the value attributes of the ith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the
following signature constraint: ((INDEX = INDEXi) ∧ (VALUE ≥ VALUEi))⇔ Si.

s

t

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE < TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE ≥ TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE < TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE ≥ TABLE VALUEi

Figure 5.331: Automaton of the ELEMENT GREATEREQ constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

ITEM INDEX

ITEM VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.332: Hypergraph of the reformulation corresponding to the automaton of the
ELEMENT GREATEREQ constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.143 ELEMENT LESSEQ

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [312]

Constraint ELEMENT LESSEQ(ITEM, TABLE)

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
ITEM.index ≤ |TABLE|
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose ITEM[1].value is less than or equal to one of the entries (i.e., the value attribute) of the
table TABLE.

Example


〈index− 3 value− 1〉 ,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


The ELEMENT LESSEQ constraint holds since ITEM[1].value = 1 is less than or
equal to TABLE[ITEM[1].index].value = TABLE[3].value = 2.

6

1

9

2

9

4

2

3
(1 ≤ 2)

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items of TABLE are permutable.

• All occurrences of two distinct values in ITEM.value or TABLE.value can be
swapped; all occurrences of a value in ITEM.value or TABLE.value can be re-
named to any unused value.

Usage Used for modelling variable subscripts in linear constraints [312].

Reformulation By introducing an extra variable VAL, the ELEMENT LESSEQ(〈index − INDEX value −
VALUE〉, TABLE) constraint can be expressed in term of an ELEM(〈index−INDEX value−
VAL〉, TABLE) constraint and of an inequality constraint VALUE ≤ VAL.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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See also common keyword: ELEMENT, ELEMENT GREATEREQ, ELEMENT PRODUCT (array con-
straint).

implied by: ELEM.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: linear programming, arc-consistency.

modelling: array constraint, table, variable subscript, variable indexing.

Cond. implications ELEMENT LESSEQ(ITEM, TABLE)
with minval(ITEM.value) > 0
and TABLE.value > 0

implies BIN PACKING CAPA(BINS : TABLE, ITEMS : ITEM).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.index
• item.value ≤ table.value

Graph property(ies) NARC= 1

Graph model Similar to the ELEMENT constraint except that the equality constraint of the second condi-
tion of the arc constraint is replaced by a less than or equal to constraint.

Parts (A) and (B) of Figure 5.333 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,1

3:3,2

(A) (B)

Figure 5.333: Initial and final graph of the ELEMENT LESSEQ constraint

Signature Since all the index attributes of TABLE are distinct and because of the first arc constraint
the final graph cannot have more than one arc. Therefore we can rewrite NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.334 depicts the automaton associated with the ELEMENT LESSEQ constraint.
Let INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quadruple
(INDEX, VALUE, INDEXi, VALUEi) corresponds a 0-1 signature variable Si as well as the
following signature constraint: ((INDEX = INDEXi) ∧ (VALUE ≤ VALUEi))⇔ Si.

s

t

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE > TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE ≤ TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∨
ITEM VALUE > TABLE VALUEi

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE ≤ TABLE VALUEi

Figure 5.334: Automaton of the ELEMENT LESSEQ constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

ITEM INDEX

ITEM VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.335: Hypergraph of the reformulation corresponding to the automaton of the
ELEMENT LESSEQ constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.144 ELEMENT MATRIX

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint ELEMENT MATRIX(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE)

Synonyms ELEM MATRIX, MATRIX.

Arguments MAX I : int

MAX J : int

INDEX I : dvar

INDEX J : dvar

MATRIX : collection(i−int, j−int, v−int)
VALUE : dvar

Restrictions MAX I ≥ 1
MAX J ≥ 1
INDEX I ≥ 1
INDEX I ≤ MAX I

INDEX J ≥ 1
INDEX J ≤ MAX J

required(MATRIX, [i, j, v])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ MAX I

MATRIX.j ≥ 1
MATRIX.j ≤ MAX J

|MATRIX| = MAX I ∗ MAX J

Purpose
The MATRIX collection corresponds to the two-dimensional matrix
MATRIX[1..MAX I, 1..MAX J]. VALUE is equal to the entry MATRIX[INDEX I, INDEX J] of
the previous matrix.

Example



4, 3, 1, 3,

〈

i− 1 j− 1 v− 4,
i− 1 j− 2 v− 1,
i− 1 j− 3 v− 7,
i− 2 j− 1 v− 1,
i− 2 j− 2 v− 0,
i− 2 j− 3 v− 8,
i− 3 j− 1 v− 3,
i− 3 j− 2 v− 2,
i− 3 j− 3 v− 1,
i− 4 j− 1 v− 0,
i− 4 j− 2 v− 0,
i− 4 j− 3 v− 6

〉
, 7




Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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The ELEMENT MATRIX constraint holds since its last argument VALUE = 7 is equal to the
v attribute of the kth item of the MATRIX collection such that MATRIX[k].i = INDEX I = 1
and MATRIX[k].j = INDEX J = 3.

Typical MAX I > 1
MAX J > 1
|MATRIX| > 3
maxval(MATRIX.i) > 1
maxval(MATRIX.j) > 1
range(MATRIX.v) > 1

Symmetry All occurrences of two distinct values in MATRIX.v or VALUE can be swapped; all occur-
rences of a value in MATRIX.v or VALUE can be renamed to any unused value.

Reformulation The ELEMENT MATRIX(MAX I, MAX J, INDEX I, INDEX J, MATRIX, VALUE) constraint can
be expressed in term of MAX I ELEMENT(INDEX J, LINEi, VARi) (i ∈ [1, MAX I]),
where LINEi corresponds to the i-th line of the matrix MATRIX and of one
ELEMENT(INDEX I, 〈VAR1, VAR2, . . . , VARMAX I〉, VALUE) constraint.

If we consider the Example slot we get the following ELEMENT constraints:

• ELEMENT(3, 〈4, 1, 7〉, 7),

• ELEMENT(3, 〈1, 0, 8〉, 8),

• ELEMENT(3, 〈3, 2, 1〉, 1),

• ELEMENT(3, 〈0, 0, 6〉, 6),

• ELEMENT(1, 〈7, 8, 1, 6〉, 7).

Systems NTH in Choco, ELEMENT in Gecode.

See also common keyword: ELEM, ELEMENT (array constraint).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint, derived collection.

constraint arguments: ternary constraint.

constraint network structure: centered cyclic(3) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, matrix.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Derived Collection
col

(
ITEM−collection(index i−dvar, index j−dvar, value−dvar),
[item(index i− INDEX I, index j− INDEX J, value− VALUE)]

)
Arc input(s) ITEM MATRIX

Arc generator PRODUCT 7→collection(item, matrix)

Arc arity 2

Arc constraint(s) • item.index i = matrix.i
• item.index j = matrix.j
• item.value = matrix.v

Graph property(ies) NARC= 1

Graph model Similar to the ELEMENT constraint except that the arc constraint is updated according to
the fact that we have a two-dimensional matrix.

Parts (A) and (B) of Figure 5.336 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

(A)

ITEM

MATRIX

1

123456789101112

(B) NARC=1

1:1,3,7

3:1,3,7

Figure 5.336: Initial and final graph of the ELEMENT MATRIX constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.337 depicts the automaton associated with the ELEMENT MATRIX constraint. Let
Ik, Jk and Vk respectively be the i, the j and the v kth attributes of the MATRIX collec-
tion. To each sextuple (INDEX I, INDEX J, VALUE, Ik, Jk, Vk) corresponds a 0-1 signature
variable Sk as well as the following signature constraint: ((INDEX I = Ik)∧ (INDEX J =
Jk) ∧ (VALUE = Vk))⇔ Sk.

s

t

INDEX I 6= MATRIX Ii,j ∨
INDEX J 6= MATRIX Ji,j ∨
VALUE 6= MATRIX VALUEi,j

INDEX I = MATRIX Ii,j ∧
INDEX J = MATRIX Ji,j ∧
VALUE = MATRIX VALUEi,j

INDEX I 6= MATRIX Ii,j ∨
INDEX J 6= MATRIX Ji,j ∨
VALUE 6= MATRIX VALUEi,j

INDEX I = MATRIX Ii,j ∧
INDEX J = MATRIX Ji,j ∧
VALUE = MATRIX VALUEi,j

Figure 5.337: Automaton of the ELEMENT MATRIX constraint

Q0 = s Q1

S1 S2

Qn·m = t

Sn,m

INDEX I

INDEX J

VALUE

MATRIX I1,1

MATRIX J1,1

MATRIX V1,1

MATRIX I1,2

MATRIX J1,2

MATRIX V1,2

MATRIX In,m

MATRIX Jn,m

MATRIX Vn,m

Figure 5.338: Hypergraph of the reformulation corresponding to the automaton of the
ELEMENT MATRIX constraint where n and m respectively stands for MAX I and MAX J


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.145 ELEMENT PRODUCT

I B C J DESCRIPTION LINKS GRAPH

Origin [311]

Constraint ELEMENT PRODUCT(Y, TABLE, X, Z)

Synonym ELEMENT.

Arguments Y : dvar

TABLE : collection(value−int)
X : dvar

Z : dvar

Restrictions Y ≥ 1
Y ≤ |TABLE|
X ≥ 0
Z ≥ 0
required(TABLE, value)
TABLE.value ≥ 0

Purpose Z is equal to the Yth item of TABLE multiplied by X.

Example (3, 〈6, 9, 2, 9〉 , 5, 10)

The ELEMENT PRODUCT constraint holds since its fourth argument Z = 10 is
equal to the 3th (Y = 3) item of the collection 〈6, 9, 2, 9〉 multiplied by X = 5.

Typical X > 0
Z > 0
|TABLE| > 1
range(TABLE.value) > 1
TABLE.value > 0

Arg. properties • Functional dependency: Z determined by Y, TABLE and X.

• Suffix-extensible wrt. TABLE.

Usage The ELEMENT PRODUCT constraint was originally used in configuration problems [311].
In this context, Z denotes the cost of buying X units of type Y at cost TABLE[Y].value.

Reformulation By introducing an extra variable VAL, the ELEMENT PRODUCT(Y, TABLE, X, Z) constraint
can be expressed in term of an ELEMENT(Y, TABLE, VAL) constraint and of a product con-
straint Z = VAL · X.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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See also common keyword: ELEM, ELEMENT, ELEMENT GREATEREQ, ELEMENT LESSEQ (array
constraint).

Keywords application area: configuration problem.

constraint arguments: pure functional dependency.

constraint type: data constraint.

modelling: array constraint, table, functional dependency, variable subscript.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col

(
ITEM−collection(y−dvar, x−dvar, z−dvar),
[item(y− Y, x− X, z− Z)]

)
Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.y = table.key
• item.z = item.x ∗ table.value

Graph property(ies) NARC= 1

Graph model We use the derived collection ITEM for putting together the Y, the X and Z parameters of
the ELEMENT PRODUCT constraint. Within the arc constraint we use the implicit attribute
key that associates to each item of a collection its position within the collection.

Parts (A) and (B) of Figure 5.339 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,5,10

3:2

(A) (B)

Figure 5.339: Initial and final graph of the ELEMENT PRODUCT constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to
NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.146 ELEMENT SPARSE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint ELEMENT SPARSE(ITEM, TABLE, DEFAULT)

Usual name ELEMENT

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)
DEFAULT : int

Restrictions required(ITEM, [index, value])
ITEM.index ≥ 1
|ITEM| = 1
|TABLE| > 0
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose ITEM[1].value is equal to one of the entries of the table TABLE or to the default value
DEFAULT if the entry ITEM[1].index does not exist in TABLE.

Example


〈index− 2 value− 5〉 ,〈 index− 1 value− 6,

index− 2 value− 5,
index− 4 value− 2,
index− 8 value− 9

〉
, 5


The ELEMENT SPARSE constraint holds since its first argument ITEM corresponds
to the second item of the TABLE collection.

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items of TABLE are permutable.

• All occurrences of two distinct values in ITEM.value, TABLE.value or DEFAULT
can be swapped; all occurrences of a value in ITEM.value, TABLE.value or
DEFAULT can be renamed to any unused value.

Usage A sometimes more compact form of the ELEMENT constraint: we are not obliged to specify
explicitly the table entries that correspond to the specified default value. This can some-
times reduce drastically memory utilisation.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.
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Remark The original constraint of CHIP had an additional parameter SIZE giving the maximum
value of ITEM.index.

Reformulation Let I and V respectively denote ITEM[1].index and ITEM[1].value. The
ELEMENT SPARSE(ITEM, TABLE, DEFAULT) constraint can be expressed in term of a rei-
fied constraint of the form:
((I = TABLE[1].index ∧ V = TABLE[1].value) ∨
(I = TABLE[2].index ∧ V = TABLE[2].value) ∨
. . .
(I = TABLE[|TABLE|].index ∧ V = TABLE[TABLE|].value)) ∨

((I 6= TABLE[1].index) ∧
(I 6= TABLE[2].index) ∧
. . .
(I 6= TABLE[|TABLE|].index) ∧
(V = DEFAULT)).

See also common keyword: ELEM, ELEMENT (array constraint), ELEMENTS SPARSE (sparse ta-
ble).

implies: ELEMENTS SPARSE.

system of constraints: ELEMENTS SPARSE.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint, derived collection.

constraint arguments: binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

modelling: array constraint, table, sparse table, sparse functional dependency, variable
indexing.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.cosytec.com
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Derived Collections
col

(
DEF−collection(index−int, value−int),
[item(index− 0, value− DEFAULT)]

)
col

 TABLE DEF−collection(index−dvar, value−dvar),[
item(index− TABLE.index, value− TABLE.value),
item(index− DEF.index, value− DEF.value)

] 
Arc input(s) ITEM TABLE DEF

Arc generator PRODUCT 7→collection(item, table def)

Arc arity 2

Arc constraint(s) • item.value = table def.value
• item.index = table def.index ∨ table def.index = 0

Graph property(ies) NARC≥ 1

Graph model The final graph has between one and two arc constraints: it has two arcs when the default
value DEFAULT occurs also in the table TABLE; otherwise it has only one arc.

Parts (A) and (B) of Figure 5.340 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property the arcs of the final graph
are outline with thick lines.

ITEM

TABLE_DEF

1

12345

NARC=2

1:2,5

1:0,5 3:2,5

(A) (B)

Figure 5.340: Initial and final graph of the ELEMENT SPARSE constraint


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.341 depicts the automaton associated with the ELEMENT SPARSE constraint.
Let INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let INDEXi and VALUEi respectively be the index and
the value attributes of the ith item of the TABLE collection. To each quintuple
(INDEX, VALUE, DEFAULT, INDEXi, VALUEi) corresponds a signature variable Si as well as
the following signature constraint:

(INDEX 6= INDEXi ∧ VALUE 6= DEFAULT) ⇔ Si = 0 ∧
(INDEX = INDEXi ∧ VALUE = VALUEi ) ⇔ Si = 1 ∧
(INDEX 6= INDEXi ∧ VALUE = DEFAULT) ⇔ Si = 2

.

s d

t

ITEM INDEX 6= TABLE INDEXi ∧
ITEM VALUE 6= DEFAULT

ITEM INDEX 6= TABLE INDEXi ∧
ITEM VALUE = DEFAULT

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∧
ITEM VALUE = DEFAULT

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∧
ITEM VALUE = DEFAULT

ITEM INDEX = TABLE INDEXi ∧
ITEM VALUE = TABLE VALUEi

ITEM INDEX 6= TABLE INDEXi ∧
ITEM VALUE 6= DEFAULT

Figure 5.341: Automaton of the ELEMENT SPARSE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Q0 = s Q1

S1 S2

Qn ∈ {d, t}

Sn

ITEM INDEX

ITEM VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.342: Hypergraph of the reformulation corresponding to the automaton of the
ELEMENT SPARSE constraint
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5.147 ELEMENTN

I B C J DESCRIPTION LINKS AUTOMATON

Origin P. Flener

Constraint ELEMENTN(INDEX, TABLE, ENTRIES)

Arguments INDEX : dvar

TABLE : collection(value−int)
ENTRIES : collection(entry−dvar)

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE| − |ENTRIES|+ 1
|TABLE| > 0
|ENTRIES| > 0
|TABLE| ≥ |ENTRIES|
required(TABLE, value)
required(ENTRIES, entry)

Purpose ∀i ∈ [1, |ENTRIES|] : ENTRIES[i].entry = TABLE[INDEX + i− 1].value

Example (3, 〈6, 9, 2, 9〉 , 〈2, 9〉)

The ELEMENTN constraint holds since its third argument ENTRIES = 〈2, 9〉 is set to the
subsequence starting at the third (i.e., INDEX = 3) item of the table TABLE = 〈6, 9, 2, 9〉.

Typical |TABLE| > 1
range(TABLE.value) > 1
|ENTRIES| > 1

Symmetry All occurrences of two distinct values in TABLE.value or ENTRIES.entry can be
swapped; all occurrences of a value in TABLE.value or ENTRIES.entry can be renamed
to any unused value.

Arg. properties Suffix-extensible wrt. TABLE.

Usage The ELEMENTN constraint is useful for extracting of subsequence of fixed length from a
given sequence.

Reformulation Let I1 = INDEX, I2 = INDEX + 1, . . . , I|ENTRIES| = INDEX + |ENTRIES| − 1. The
ELEMENTN(INDEX, TABLE, 〈entry−E1, entry−E2, . . . , entry−E|ENTRIES|〉) constraint
can be expressed in term of a conjunction of |ENTRIES| ELEMENT constraints of the form:

ELEMENT(I1, TABLE, E1),
ELEMENT(I2, TABLE, E2),
. . .
ELEMENT(INDEX + |ENTRIES| − 1, TABLE, E|ENTRIES|).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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See also common keyword: ELEMENT (data constraint).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: data constraint, sliding sequence constraint.

filtering: arc-consistency.

modelling: table.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.343 depicts the automaton associated with the ELEMENTN constraint of the Ex-
ample slot. Let I and Ek respectively denote the INDEX argument and the entry attribute
of the kth item of the ENTRIES collection. Figure 5.344 depicts the reformulation of the
ELEMENTN constraint.

s

1

2

3

4

5

6

t

I = 1
I = 2

I = 3

E1 = 6 E1 = 9 E1 = 2

E2 = 9
E2 = 2

E2 = 9

Figure 5.343: Automaton of the ELEMENTN constraint given in the example

Q0 = s Q1

I

Q2

E1

Q3 = t

E2

Figure 5.344: Hypergraph of the reformulation corresponding to the automaton of the
ELEMENTN constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.148 ELEMENTS

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ELEMENT.

Constraint ELEMENTS(ITEMS, TABLE)

Arguments ITEMS : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of ITEMS should be equal to one of the entries of the table TABLE.

Example


〈index− 4 value− 9, index− 1 value− 6〉 ,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


The ELEMENTS constraint holds since each item of its first argument ITEMS corre-
sponds to an item of the TABLE collection: the first item 〈index− 4 value− 9〉 of ITEMS
corresponds to the fourth item of TABLE, while the second item 〈index − 1 value − 6〉
of ITEMS corresponds to the first item of TABLE.

Typical |ITEMS| > 1
range(ITEMS.index) > 1
|TABLE| > 1
range(TABLE.value) > 1

Symmetries • Items of ITEMS are permutable.

• Items of TABLE are permutable.

• All occurrences of two distinct values in ITEMS.value or TABLE.value can be
swapped; all occurrences of a value in ITEMS.value or TABLE.value can be re-
named to any unused value.

Arg. properties Functional dependency: ITEMS.value determined by ITEMS.index and TABLE.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage Used for replacing several ELEMENT constraints sharing exactly the same table by a single
constraint.

Reformulation The ELEMENTS(〈index − I1 value − V1, index − I2 value − V2, . . . , index −
I|ITEMS| value − V|ITEMS|〉, TABLE) constraint can be expressed in term of a conjunction
of |ITEMS| ELEM constraints of the form:

ELEM(〈index− I1 value− V1〉, TABLE),
ELEM(〈index− I2 value− V2〉, TABLE),
. . .
ELEM(〈index− I|ITEMS| value− V|ITEMS|〉, TABLE).

See also implied by: ELEM, ELEMENTS ALLDIFFERENT.

part of system of constraints: ELEM, ELEMENT.

Keywords constraint arguments: pure functional dependency.

constraint type: data constraint, system of constraints.

filtering: arc-consistency.

modelling: table, shared table, functional dependency.

Cond. implications ELEMENTS(ITEMS, TABLE)
with distinct(ITEMS, index)
and TABLE.value ≥ 0

implies BIN PACKING CAPA(TABLE, ITEMS).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NARC= |ITEMS|

Graph model Parts (A) and (B) of Figure 5.345 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

ITEMS

TABLE

1

1234

2

NARC=2

1:4,9

4:4,9

2:1,6

1:1,6

(A) (B)

Figure 5.345: Initial and final graph of the ELEMENTS constraint

Signature Since all the index attributes of TABLE collection are distinct and because of the first
condition items.index = table.index of the arc constraint, a source vertex of the final
graph can have at most one successor. Therefore |ITEMS| is the maximum number of arcs
of the final graph and we can rewrite NARC = |ITEMS| to NARC ≥ |ITEMS|. So we
can simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.149 ELEMENTS ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ELEMENTS and ALLDIFFERENT.

Constraint ELEMENTS ALLDIFFERENT(ITEMS, TABLE)

Synonyms ELEMENTS ALLDIFF, ELEMENTS ALLDISTINCT, PERMUTATION.

Arguments ITEMS : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−dvar)

Restrictions required(ITEMS, [index, value])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
|ITEMS| = |TABLE|
required(TABLE, [index, value])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose All the items of the ITEMS collection should be equal to one of the entries of the table
TABLE and all the variables ITEMS.index should take distinct values.

Example



〈 index− 2 value− 9,
index− 1 value− 6,
index− 4 value− 9,
index− 3 value− 2

〉
,

〈 index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


The ELEMENTS ALLDIFFERENT constraint holds since, as depicted by Figure 5.346, there
is a one to one correspondence between the items of the ITEMS collection and the items of
the TABLE collection.

index− 2 value− 9,
index− 1 value− 6,
index− 4 value− 9,
index− 3 value− 2

ITEMS

index− 1 value− 6,
index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

TABLE

Figure 5.346: Illustration of the one to one correspondence between the items of ITEMS
and the items of TABLE


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |ITEMS| > 1
range(ITEMS.value) > 1
|TABLE| > 1
range(TABLE.value) > 1

Symmetries • Arguments are permutable w.r.t. permutation (ITEMS, TABLE).

• Items of ITEMS are permutable.

• Items of TABLE are permutable.

• All occurrences of two distinct values in ITEMS.value or TABLE.value can be
swapped; all occurrences of a value in ITEMS.value or TABLE.value can be re-
named to any unused value.

Arg. properties Functional dependency: ITEMS.value determined by ITEMS.index and TABLE.

Usage Used for replacing by a single ELEMENTS ALLDIFFERENT constraint an ALLDIFFERENT

and a set of ELEMENT constraints having the following structure:

• The union of the index variables of the ELEMENT constraints is equal to the set of
variables of the ALLDIFFERENT constraint.

• All the ELEMENT constraints share exactly the same table.

For instance, the constraint given in the Example slot is equivalent to the conjunction of
the following set of constraints:

ALLDIFFERENT(〈var− 2, var− 1, var− 4, var− 3〉)

ELEMENT


〈
index− 2 value− 9

〉
,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


ELEMENT


〈
index− 1 value− 6

〉
,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


ELEMENT


〈
index− 3 value− 2

〉
,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉


ELEMENT


〈
index− 4 value− 9

〉
,〈 index− 1 value− 6,

index− 2 value− 9,
index− 3 value− 2,
index− 4 value− 9

〉



Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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As a practical example of utilisation of the ELEMENTS ALLDIFFERENT constraint we show
how to model the link between a permutation consisting of a single cycle and its expanded
form. For instance, to the permutation 3, 6, 5, 2, 4, 1 corresponds the sequence 3 5 4 2 6 1.
Let us note S1, S2, S3, S4, S5, S6 the permutation and V1V2V3V4V5V6 its expanded form
(see Figure 5.347).

The constraint:

ELEMENTS ALLDIFFERENT



〈 index− V1 value− V2,
index− V2 value− V3,
index− V3 value− V4,
index− V4 value− V5,
index− V5 value− V6,
index− V6 value− V1

〉
,

〈 index− 1 value− S1,
index− 2 value− S2,
index− 3 value− S3,
index− 4 value− S4,
index− 5 value− S5,
index− 6 value− S6

〉


models the fact that S1, S2, S3, S4, S5, S6 corresponds to a permutation with a sin-
gle cycle. It also expresses the link between the variables S1, S2, S3, S4, S5, S6 and
V1, V2, V3, V4, V5, V6.

S4 = 24

S5 = 4

5

S3 = 5

3

S1 = 3 1

S6 = 1

6

S2 = 6

2

3 5 4 2 6 1

V1 = 3

V2 = 5

V3 = 4

V4 = 2

V5 = 6

V6 = 1

Figure 5.347: Two representations of a permutation containing a single cycle

Reformulation The ELEMENTS ALLDIFFERENT(〈index − I1 value − V1, index − I2 value −
V2, . . . , index − I|ITEMS| value − V|ITEMS|〉, TABLE) constraint can be expressed in term
of a conjunction of |ITEMS| ELEM constraints and of one ALLDIFFERENT constraint of the
form:

ELEM(〈index− I1 value− V1〉, TABLE),
ELEM(〈index− I2 value− V2〉, TABLE),
. . .
ELEM(〈index− I|ITEMS| value− V|ITEMS|〉, TABLE),
ALLDIFFERENT(〈I1, I2, . . . , I|ITEMS|〉).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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See also implies: ELEMENTS, INDEXED SUM.

used in reformulation: ALLDIFFERENT, ELEM, ELEMENT.

Keywords characteristic of a constraint: disequality.

combinatorial object: permutation.

constraint type: data constraint.

modelling: array constraint, table, functional dependency.

Cond. implications ELEMENTS ALLDIFFERENT(ITEMS, TABLE)
with TABLE.value ≥ 0

implies BIN PACKING CAPA(TABLE, ITEMS).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→collection(items, table)

Arc arity 2

Arc constraint(s) • items.index = table.index
• items.value = table.value

Graph property(ies) NVERTEX= |ITEMS|+ |TABLE|

Graph model The fact that all variables ITEMS.index are pairwise different is derived from the conjunc-
tions of the following facts:

• From the graph property NVERTEX = |ITEMS| + |TABLE| it follows that all
vertices of the initial graph belong also to the final graph,

• A vertex v belongs to the final graph if there is at least one constraint involving v that
holds,

• From the first condition items.index = table.index of the arc constraint, and
from the restriction distinct(TABLE.index) it follows: for all vertices v generated
from the collection ITEMS at most one constraint involving v holds.

Parts (A) and (B) of Figure 5.348 respectively show the initial and final graph associated
with the Example slot. Since we use the NVERTEX graph property, the vertices of the
final graph are stressed in bold.

ITEMS

TABLE

1

1234

234

NVERTEX=8

1:2,9

2:2,9

2:1,6

1:1,6

3:4,9

4:4,9

4:3,2

3:3,2

(A) (B)

Figure 5.348: Initial and final graph of the ELEMENTS ALLDIFFERENT constraint

Signature Since the final graph cannot have more than |ITEMS| + |TABLE| vertices one can simplify
NVERTEX to NVERTEX.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.150 ELEMENTS SPARSE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ELEMENT SPARSE.

Constraint ELEMENTS SPARSE(ITEMS, TABLE, DEFAULT)

Arguments ITEMS : collection(index−dvar, value−dvar)
TABLE : collection(index−int, value−int)
DEFAULT : int

Restrictions required(ITEMS, [index, value])
ITEMS.index ≥ 1
required(TABLE, [index, value])
TABLE.index ≥ 1
distinct(TABLE, index)

Purpose
All the items of ITEMS should be equal to one of the entries of the table TABLE or to the
default value DEFAULT if the entry ITEMS.index does not occurs among the values of
the index attribute of the TABLE collection.

Example



〈
index− 8 value− 9,
index− 3 value− 5,
index− 2 value− 5

〉
,

〈 index− 1 value− 6,
index− 2 value− 5,
index− 4 value− 2,
index− 8 value− 9

〉
, 5


The ELEMENTS SPARSE constraint holds since:

• The first and third items (items 〈index−8 value−9〉 and 〈index−2 value−5〉)
of its ITEMS collection respectively correspond to the fourth and second item of its
TABLE collection.

• The index attribute of the second item of its ITEMS collection (i.e., value 3) does
not correspond to any index of the TABLE collection. Therefore the value attribute
of the second item of the ITEMS collection is set the the default value 5 given by the
last argument of the ELEMENTS SPARSE constraint.

Typical |ITEMS| > 1
range(ITEMS.value) > 1
|TABLE| > 1
range(TABLE.value) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of ITEMS are permutable.

• Items of TABLE are permutable.

• All occurrences of two distinct values in ITEMS.value, TABLE.value or DEFAULT
can be swapped; all occurrences of a value in ITEMS.value, TABLE.value or
DEFAULT can be renamed to any unused value.

Usage Used for replacing several ELEMENT constraints sharing exactly the same sparse table by
a single constraint.

Reformulation Let Ik and Vk respectively denote ITEMS[k].index and ITEMS[k].value (k ∈
[1, |ITEMS|[]). The ELEMENTS SPARSE(ITEMS, TABLE, DEFAULT) constraint can be ex-
pressed in term of |ITEMS|[ reified constraints of the form:
((Ik = TABLE[1].index ∧ Vk = TABLE[1].value) ∨
(Ik = TABLE[2].index ∧ Vk = TABLE[2].value) ∨
. . .
(Ik = TABLE[|TABLE|].index ∧ Vk = TABLE[TABLE|].value)) ∨

((Ik 6= TABLE[1].index) ∧
(Ik 6= TABLE[2].index) ∧
. . .
(Ik 6= TABLE[|TABLE|].index) ∧
(Vk = DEFAULT)).

See also common keyword: ELEM, ELEMENT (data constraint), ELEMENT SPARSE (sparse table).

implied by: ELEMENT SPARSE.

part of system of constraints: ELEMENT SPARSE.

Keywords characteristic of a constraint: derived collection.

constraint type: data constraint, system of constraints.

filtering: arc-consistency.

modelling: table, shared table, sparse table, sparse functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collections
col

(
DEF−collection(index−int, value−int),
[item(index− 0, value− DEFAULT)]

)
col

 TABLE DEF−collection(index−dvar, value−dvar),[
item(index− TABLE.index, value− TABLE.index),
item(index− DEF.index, value− DEF.value)

] 
Arc input(s) ITEMS TABLE DEF

Arc generator PRODUCT 7→collection(items, table def)

Arc arity 2

Arc constraint(s) • items.value = table def.value
• items.index = table def.index ∨ table def.index = 0

Graph property(ies) NSOURCE= |ITEMS|

Graph model An item of the ITEMS collection may have up to two successors (see, for example, the third
item of the ITEMS collection of the Example slot). Therefore we use the graph property
NSOURCE = |ITEMS| for enforcing the fact that each item of the ITEMS collection has
at least one successor.

Parts (A) and (B) of Figure 5.349 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE graph property, the vertices of the
final graph are drawn with a double circle.

ITEMS

TABLE_DEF

1

12 345

2 3

NSOURCE=3

1:8,9

4:8,9

2:3,5

5:0,5

3:2,5

2:2,5

(A) (B)

Figure 5.349: Initial and final graph of the ELEMENTS SPARSE constraint

Signature On the one hand note that ITEMS is equal to the number of sources of the initial graph. On
the other hand note that, in the initial graph, all the vertices that are not sources correspond
to sinks. Since isolated vertices are eliminated from the final graph the sinks of the ini-
tial graph cannot become sources of the final graph. Therefore the maximum number of
sources of the final graph is equal to ITEMS. We can rewrite NSOURCE = |ITEMS| to
NSOURCE ≥ |ITEMS| and simplify NSOURCE to NSOURCE.


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.151 EQ

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint EQ(VAR1, VAR2)

Synonym XEQY.

Arguments VAR1 : dvar

VAR2 : dvar

Restriction

Purpose Enforce the fact that two variables are equal.

Example (8, 8)

The EQ constraint holds since 8 is equal to 8.

Symmetries • Arguments are permutable w.r.t. permutation (VAR1, VAR2).

• All occurrences of a value in VAR1 or VAR2 can be renamed to any unused value.

Arg. properties • Functional dependency: VAR2 determined by VAR1.

• Functional dependency: VAR1 determined by VAR2.

Systems EQ in Choco, REL in Gecode, XEQY in JaCoP, #= in SICStus.

See also common keyword: GT, LT (binary constraint,arithmetic constraint).

generalisation: ALL EQUAL (equality between more than two variables),
EQ CST (constant added), EQ SET (variable replaced by set variable).

implies: ABS VALUE, GEQ, LEQ, SAME SIGN, ZERO OR NOT ZERO.

negation: NEQ.

Keywords constraint arguments: binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.152 EQ CST

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint EQ CST(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is equal to the sum of the second variable and the
constant.

Example (8, 2, 6)

The EQ CST constraint holds since 8 is equal to 2 + 6.

Typical CST2 6= 0

Symmetries • Arguments are permutable w.r.t. permutation (VAR1) (VAR2, CST2).

• One and the same constant can be added to VAR1 and VAR2.

• One and the same constant can be added to VAR1 and CST2.

Arg. properties • Functional dependency: VAR1 determined by VAR2 and CST2.

• Functional dependency: VAR2 determined by VAR1 and CST2.

• Functional dependency: CST2 determined by VAR1 and VAR2.

See also implies: GEQ CST, LEQ CST.

negation: NEQ CST.

specialisation: EQ (constant set to 0).

Keywords constraint arguments: binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.153 EQ SET

I B C J DESCRIPTION LINKS

Origin Used for defining ALLDIFFERENT BETWEEN SETS.

Constraint EQ SET(SET1, SET2)

Arguments SET1 : svar

SET2 : svar

Purpose Constraint the set SET1 to be equal to the set SET2.

Example ({3, 5}, {3, 5})

Symmetries • Arguments are permutable w.r.t. permutation (SET1, SET2).

• All occurrences of a value in SET1 or SET2 can be renamed to any unused value.

Systems EQ in Choco, REL in Gecode.

Used in ALLDIFFERENT BETWEEN SETS.

See also specialisation: EQ (set variable replaced by variable).

Keywords characteristic of a constraint: equality.

constraint arguments: binary constraint, constraint involving set variables.

constraint type: predefined constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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5.154 EQUAL SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint EQUAL SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym EQUAL.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i 6= j, Oi and Oj coincide exactly with
respect to a set of dimensions depicted by DIMS. Oi and Oj are objects that take a shape
among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each
shifted box is described by a box in a K-dimensional space at a given offset (from the
origin of the shape) with given sizes. More precisely, a shifted box is an entity defined
by its shape id sid, shift offset t, and sizes l. Then, a shape is defined as the union
of shifted boxes sharing the same shape id. An object is an entity defined by its unique
object identifier oid, shape id sid and origin x.
Two objects Oi and object Oj are equal with respect to a set of dimensions depicted by
DIMS if and only if, for all shifted box si associated with Oi there exists a shifted box sj
such that, for all dimensions d ∈ DIMS, (1) the origins of si and sj coincide and, (2) the
ends of si and sj also coincide.

Example



2, {0, 1},〈
oid− 1 sid− 2 x− 〈4, 1〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 2 x− 〈4, 1〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.350 shows the objects of the example. Since these objects coincide exactly the
EQUAL SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349]. The constraint
EQUAL SBOXES is a restriction of the original relation since it requires to have exactly
the same partition between the different objects.

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES,
COVERS SBOXES, DISJOINT SBOXES, INSIDE SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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S1 S2 S3 S4

1 2 3 54

2

3

4

1

O3

O2

O1

(A) Possible shapes S1, S2, S3 and S4

(B) Three objects which exactly coincide

O1: oid− 1 sid− 2 x− 〈4, 1〉
O2: oid− 2 sid− 2 x− 〈4, 1〉
O3: oid− 3 sid− 2 x− 〈4, 1〉

OBJECTS

Figure 5.350: (B) The three mutually coinciding objects O1, O2, O3 of the Example
slot respectively assigned shape S2; (A) shapes S1, S2, S3 and S4 are respectively
made up from 1, 3, 3 and 1 disjoint shifted box.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• equal sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧
origin(O1, S1, D) =
origin(O2, S2, D)

,

end(O1, S1, D) =
end(O2, S2, D)


• equal objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

( [
O2.sid

] )
equal sboxes


Dims,
O1,
S1,
O2,
S2


• all equal(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid =
O2.oid− 1

⇒

equal objects

 Dims,
O1,
O2


• all equal(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.155 EQUILIBRIUM

I B C J

DESCRIPTION LINKS

Origin Inspired by the Irish Collegiate Programming Competition 2012 (equilibrium index)

Constraint EQUILIBRIUM



VARIABLES,
INDEX1,
INDEX2,
EPSILON,
COEF1,
COEF2,
TOLERANCE,
CTR



Synonym BALANCED.

Arguments VARIABLES : collection(var−dvar)
INDEX1 : dvar

INDEX2 : dvar

EPSILON : int

COEF1 : int

COEF2 : int

TOLERANCE : int

CTR : atom


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.
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Restrictions |VARIABLES| ≥ 1
INDEX1 ≥ 1
INDEX1 ≤ |VARIABLES|
INDEX2 ≥ 1
INDEX2 ≤ |VARIABLES|
INDEX1 ≤ INDEX2

EPSILON ≥ 0
EPSILON ≤ 2
EPSILON = INDEX2− INDEX1

COEF1 6= 0
COEF2 6= 0
TOLERANCE ≥ 0

CTR ∈



AMONG DIFF 0,
AND,
CHANGE,
DEEPEST VALLEY,
HIGHEST PEAK,
INCREASING NVALUE,
INFLEXION,
LONGEST CHANGE,
LONGEST DECREASING SEQUENCE,
LONGEST INCREASING SEQUENCE,
MAX DECREASING SLOPE,
MAX INCREASING SLOPE,
MIN DECREASING SLOPE,
MIN INCREASING SLOPE,
MIN WIDTH PEAK,
MIN WIDTH VALLEY,
PEAK,
SUM CTR,
VALLEY




Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Given VARIABLES = 〈VAR1, VAR2, . . . , VAR|VARIABLES|〉, enforce the following condi-
tions:

• INDEX1 ≥ 1

• INDEX2 ≥ 1

• EPSILON ≥ 0

• INDEX1 ≤ INDEX2

• COEF1 6= 0

• INDEX1 ≤ |VARIABLES|
• INDEX2 ≤ |VARIABLES|
• EPSILON ≤ 2

• INDEX2− INDEX1 = EPSILON

• TOLERANCE ≥ 0

• COEF2 6= 0



if CTR = CHANGE :
CHANGE(C1, 〈VAR1, . . . , VARINDEX1〉, 6=)
CHANGE(C2, 〈VARINDEX2, . . . , VAR|VARIABLES|〉, 6=)

if CTR = LONGEST CHANGE :
LONGEST CHANGE(C1, 〈VAR1, . . . , VARINDEX1〉, 6=)
LONGEST CHANGE(C2, 〈VARINDEX2, . . . , VAR|VARIABLES|〉, 6=)

if CTR = SUM CTR :
SUM CTR(〈VAR1, . . . , VARINDEX1〉,=, C1)
SUM CTR(〈VARINDEX2, . . . , VAR|VARIABLES|〉,=, C2)

otherwise :
CTR(C1, 〈VAR1, . . . , VARINDEX1〉)
CTR(C2, 〈VARINDEX2, . . . , VAR|VARIABLES|〉)

|COEF1 · C1 − COEF2 · C2| ≤ TOLERANCE

Example (〈4, 4, 3, 6, 2〉 , 2, 4, 2, 1, 1, 0,SUM CTR)
(〈−2, 5,−2, 6,−1, 0,−3, 5,−7, 6,−1, 7, 0〉 , 5, 5, 0, 1, 1, 0,SUM CTR)
(〈−2, 5,−2, 6,−1, 0,−3, 5,−7, 6,−1, 7, 0〉 , 11, 11, 0, 1, 1, 0,SUM CTR)
(〈0, 3, 2, 6, 2, 2, 5, 8, 7, 6, 7, 3〉 , 5, 7, 2, 1, 1, 0,PEAK)
(〈0, 5, 3, 8, 2, 2, 5, 5, 8, 7, 2, 7, 3〉 , 7, 7, 0, 1, 1, 0,CHANGE)


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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The first example, EQUILIBRIUM(〈41, 42, 33, 64, 25〉,2,4,2,1,1,0, SUM CTR), holds
since:

• INDEX1 = 2 ≥ 1,

• INDEX2 = 4 ≥ 1,

• EPSILON = 2 ≥ 0,

• INDEX1 = 2 ≤ INDEX2 = 4,

• C1 = 41 + 42 = 8,

• INDEX2− INDEX1 = EPSILON = 2,

• INDEX1 = 2 ≤ |VARIABLES| = 5,

• INDEX2 = 4 ≤ |VARIABLES| = 5,

• EPSILON = 2 ≤ 2,

• TOLERANCE = 0 ≥ 0,

• C2 = 64 + 25 = 8,

• |1 · 8− 1 · 8| ≤ TOLERANCE = 0.

41 42 33 64 25 VARIABLES
4 8 11 17 15 sum on prefixes

19 15 11 8 2 sum on suffixes
41 42 33 64 25 VARIABLES

EPSILON = 2

|1 · 8− 1 · 8| ≤ TOLERANCE = 0

Figure 5.351: Illustration of the first example of the Example slot

The second example, EQUILIBRIUM(〈−21, 52,−23, 64,−15, 06,−37, 58,−79, 610,−111, 712, 013〉,
5,5,0,1,1,0, SUM CTR), holds since:

• INDEX1 = 5 ≥ 1,

• INDEX2 = 5 ≥ 1,

• EPSILON = 0 ≥ 0,

• INDEX1 = 5 ≤ INDEX2 = 5,

• C1 = −21 + 52 − 23 + 64 − 15 = 6,

• INDEX2− INDEX1 = EPSILON = 0,

• INDEX1 = 5 ≤ |VARIABLES| = 13,

• INDEX2 = 5 ≤ |VARIABLES| = 13,

• EPSILON = 0 ≤ 2,

• TOLERANCE = 0 ≥ 0,

• C2 = −15 + 06−37 + 58−79 + 610−
111 + 712 + 013 = 6,

• |1 · 6− 1 · 6| ≤ TOLERANCE = 0.

−21 52 −23 64 −15 06 −37 58 −79 610 −111 712 013 VARIABLES
−2 3 1 7 6 6 3 8 1 7 6 13 13 sum on prefixes
13 15 10 12 6 7 7 10 5 12 6 7 0 sum on suffixes
−21 52 −23 64 −15 06 −37 58 −79 610 −111 712 013 VARIABLES

EPSILON = 0 EPSILON = 0

|1 · 6− 1 · 6| ≤ TOLERANCE = 0 |1 · 6− 1 · 6| ≤ TOLERANCE = 0

Figure 5.352: Illustration of the second and third examples of the Example slot

The third example, EQUILIBRIUM(〈−21, 52,−23, 64,−15, 06,−37, 58,−79, 610,−111, 712, 013〉,
11,11,0,1,1,0, SUM CTR), holds since:

• INDEX1 = 11 ≥ 1,

• INDEX2 = 11 ≥ 1,

• EPSILON = 0 ≥ 0,

• INDEX1 = 11 ≤ INDEX2 = 11,

• C1 = −21 + 52 − 23 + 64 − 15 + 06 −
37 + 58 − 79 + 610 − 111 = 6,
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• INDEX2− INDEX1 = EPSILON = 0, • INDEX1 = 11 ≤ |VARIABLES| = 13,

• INDEX2 = 11 ≤ |VARIABLES| = 13,

• EPSILON = 0 ≤ 2,

• TOLERANCE = 0 ≥ 0,

• C2 = −111 + 712 + 013 = 6,

• |1 · 6− 1 · 6| ≤ TOLERANCE = 0.

The fourth example, EQUILIBRIUM(〈01, 32, 23, 64, 25, 26, 57, 88, 79, 610, 711, 312〉,
5,7,2,1,1,0, PEAK), holds since:

• INDEX1 = 5 ≥ 1,

• INDEX2 = 7 ≥ 1,

• EPSILON = 2 ≥ 0,

• INDEX1 = 5 ≤ INDEX2 = 7,

• the sequence 01 32 23 64 25 contains 2
peaks,

• INDEX2− INDEX1 = EPSILON = 2,

• INDEX1 = 5 ≤ |VARIABLES| = 12,

• INDEX2 = 7 ≤ |VARIABLES| = 12,

• EPSILON = 2 ≤ 2,

• TOLERANCE = 0 ≥ 0,

• The sequence 57 88 79 610 711 312 con-
tains 2 peaks,

• |1 · 2− 1 · 2| ≤ TOLERANCE = 0.

01 32 23 64 25 26 57 88 79 610 711 312 VARIABLES
0 0 1 1 2 2 2 2 3 3 3 4 # of peaks on prefixes

4 3 3 2 2 2 2 1 1 1 0 0 # of peaks on suffixes
01 32 23 64 25 26 57 88 79 610 711 312 VARIABLESEPSILON = 2

|1 · 2− 1 · 2| ≤ TOLERANCE = 0

peaks

peaks

Figure 5.353: Illustration of the fourth example of the Example slot

The fifth example, EQUILIBRIUM(〈01, 52, 33, 84, 25, 26, 57, 58, 89, 710, 211, 712, 313〉,
7,7,0,1,1,0, CHANGE), holds since:

• INDEX1 = 7 ≥ 1,

• INDEX2 = 7 ≥ 1,

• EPSILON = 0 ≥ 0,

• INDEX1 = 7 ≤ INDEX2 = 7,

• the sequence 01, 52, 33, 84, 25, 26, 57
contains 5 changes,

• INDEX2− INDEX1 = EPSILON = 0,

• INDEX1 = 7 ≤ |VARIABLES| = 12,

• INDEX2 = 7 ≤ |VARIABLES| = 12,

• EPSILON = 0 ≤ 2,

• TOLERANCE = 0 ≥ 0,

• The sequence 57, 58, 89, 710, 211, 712, 313

contains 5 changes,

• |1 · 5− 1 · 5| ≤ TOLERANCE = 0.
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01 52 33 84 25 26 57 58 89 710 211 712 313 VARIABLES
0 1 2 3 4 4 5 5 6 7 8 9 10 # of changes on prefixes
10 9 8 7 6 6 5 5 4 3 2 1 0 # of changes on suffixes
01 52 33 84 25 26 57 58 89 710 211 712 313 VARIABLES

EPSILON = 0

|1 · 5− 1 · 5| ≤ TOLERANCE = 0
changes

6= 6= 6= 6= 6= 6= 6= 6= 6= 6=

changes

6= 6= 6= 6= 6= 6= 6= 6= 6= 6=

Figure 5.354: Illustration of the fifth example of the Example slot

Typical |VARIABLES| > 2
INDEX1 > 1
INDEX1 < |VARIABLES|
INDEX2 > 1
INDEX2 < |VARIABLES|
COEF1 = 1
COEF2 = 1
EPSILON = 1
TOLERANCE = 0

See also root concept: BALANCE.

Keywords characteristic of a constraint: automaton with counters.

constraint type: predefined constraint.


Typical
Typical conditions on the arguments of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.156 EQUIVALENT

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint EQUIVALENT(VAR, VARIABLES)

Synonym EQ.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| = 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2. Enforce VAR = (VAR1 ⇔
VAR2).

Example (1, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)

Symmetries • Items of VARIABLES are permutable.

• All occurrences of 0 in VAR and in VARIABLES.var can be set to 1.

Arg. properties Functional dependency: VAR determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 0 0 0 0 0 0

Number of solutions for EQUIVALENT: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2
Total 4

Parameter
value

0 2
1 2

Solution count for EQUIVALENT: domains 0..n

0 0.2 0.4 0.6 0.8 1
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Systems IFONLYIF in Choco, REL in Gecode, EQBOOL in JaCoP, #<=> in SICStus.

See also common keyword: AND, IMPLY, NAND, NOR, OR, XOR (Boolean constraint).

implies: ATLEAST NVALUE, SOFT ALL EQUAL MIN CTR, SOFT ALLDIFFERENT CTR.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/
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Automaton Figure 5.355 depicts the automaton associated with the EQUIVALENT constraint. To the
first argument VAR of the EQUIVALENT constraint corresponds the first signature variable.
To each variable VARi of the second argument VARIABLES of the EQUIVALENT constraint
corresponds the next signature variable. There is no signature constraint.

s

i j

k l

t

VAR = 0 VAR = 1

VAR1 = 1 VAR1 = 1

VAR2 = 0 VAR2 = 1

VAR1 = 0 VAR1 = 0

Figure 5.355: Automaton of the EQUIVALENT constraint

Q0 = s Q1

VAR

Q2

VAR1

Q3 = t

VAR2

Figure 5.356: Hypergraph of the reformulation corresponding to the automaton of the
EQUIVALENT constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.



EQUIVALENT 1267



1268 EXACTLY

5.157 EXACTLY

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from ATLEAST and ATMOST.

Constraint EXACTLY(N, VARIABLES, VALUE)

Synonym COUNT.

Arguments N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose Exactly N variables of the VARIABLES collection are assigned value VALUE.

Example (2, 〈4, 2, 4, 5〉 , 4)

The EXACTLY constraint holds since exactly N = 2 variables of the VARIABLES =
〈4, 2, 4, 5〉 collection are assigned value VALUE = 4.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that is different from VALUE can be
replaced by any other value that is also different from VALUE.

Arg. properties • Functional dependency: N determined by VARIABLES and VALUE.

• Aggregate: N(+), VARIABLES(union), VALUE(id).

Systems OCCURENCE in Choco, COUNT in Gecode, EXACTLY in Gecode, COUNT in JaCoP,
EXACTLY in MiniZinc, COUNT in SICStus.

See also generalisation: AMONG (constant replaced by variable and value replaced by list

of values).

implies: ATLEAST (= N replaced by ≥ N), ATMOST (= N replaced by ≤ N).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#exactly
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: value constraint, counting constraint.

filtering: glue matrix, arc-consistency.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUE

Graph property(ies) NARC= N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.357 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold. The EXACTLY constraint holds since exactly two variables are
assigned value 4.

VARIABLES

1234

NARC=2

1:4 3:4

(A) (B)

Figure 5.357: Initial and final graph of the EXACTLY constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.358 depicts the automaton associated with the EXACTLY constraint. To each vari-
able VARi of the collection VARIABLES corresponds a 0-1 signature variable Si. The fol-
lowing signature constraint links VARi and Si: VARi = VALUE⇔ Si.

N = C

s{C ← 0} VARi = VALUE,
{C ← C + 1}

VARi 6= VALUE
s

s
−→
C +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.358: Automaton (with one counter) of the EXACTLY constraint and its glue
matrix

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = N

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.359: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the EXACTLY constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.158 FIRST VALUE DIFF 0
I B C J DESCRIPTION LINKS AUTOMATON

Origin Paparazzi puzzle

Constraint FIRST VALUE DIFF 0(VAR, VARIABLES)

Synonyms FIRST VALUE DIFF FROM 0, FIRST VALUE DIFFERENT FROM 0.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR 6= 0
|VARIABLES| ≥ 1
required(VARIABLES, var)

Purpose VAR is equal to the first non-zero variable of the collection VARIABLES.

Example (8, 〈0, 0, 8, 0, 5〉)
(4, 〈4, 0, 8, 0, 5〉)

Typical |VARIABLES| > 1
minval(VARIABLES.var) < 0∨maxval(VARIABLES.var) > 1
|VARIABLES|−AMONG DIFF 0(VARIABLES.var) ≥ 1∨( |VARIABLES| ≤ 4,

|VARIABLES|−AMONG DIFF 0(VARIABLES.var) > 1

)

Typical model nval(VARIABLES.var) > 2
ATLEAST(2, VARIABLES, 0)

Arg. properties Functional dependency: VAR determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 8 63 624 7775 117648 2097151 43046720

Number of solutions for FIRST VALUE DIFF 0: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical conditions on the sample of a problem.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 8 63 624 7775 117648 2097151 43046720

Parameter
value

1 4 21 156 1555 19608 299593 5380840
2 4 21 156 1555 19608 299593 5380840
3 - 21 156 1555 19608 299593 5380840
4 - - 156 1555 19608 299593 5380840
5 - - - 1555 19608 299593 5380840
6 - - - - 19608 299593 5380840
7 - - - - - 299593 5380840
8 - - - - - - 5380840

Solution count for FIRST VALUE DIFF 0: domains 0..n
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See also implies: BETWEEN MIN MAX.

Keywords characteristic of a constraint: joker value, automaton, automaton with counters.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1276 FIRST VALUE DIFF 0

Automaton Figure 5.360 depicts an automaton that only accepts all the solutions to the
FIRST VALUE DIFF 0 constraint. This automaton uses a counter in order to record the
value of the first non-zero variable VARi already encountered. To each variable VARi of the
collection VARIABLES corresponds a 0-1 signature variable Si. The following signature
constraint links VARi and Si: VARi 6= 0⇔ Si.

VAR = C

s{C ← 0}

t

VARi = 0

VARi 6= 0,
{C ← VARi}

VARi = 0VARi 6= 0

Figure 5.360: Automaton (with one counter) of the FIRST VALUE DIFF 0 constraint

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = VAR

Qn = t

Sn

VAR1 VAR2 VARn

Figure 5.361: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the FIRST VALUE DIFF 0 constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.159 FULL GROUP

I B C J
DESCRIPTION LINKS AUTOMATON

Origin Inspired by GROUP

Constraint FULL GROUP



NGROUP,
MIN SIZE,
MAX SIZE,
MIN DIST,
MAX DIST,
NVAL,
VARIABLES,
VALUES



Synonym GROUP WITHOUT BORDER.

Arguments NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

MIN DIST : dvar

MAX DIST : dvar

NVAL : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

MIN DIST ≥ 0
MAX DIST ≥ MIN DIST

MAX DIST ≤ |VARIABLES| − 2
NVAL ≥ MAX SIZE

NVAL ≥ NGROUP

NVAL ≤ |VARIABLES| − 2
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj
(1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables VARIABLES
such that all the following conditions simultaneously apply:

• All variables Xi, . . . , Xj take their values in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.

We call such a sequence of variables a group. A full group is a group that neither starts
at position 1 nor ends at position n. Similarly an anti-full group is a maximum sequence
of variables that are not assigned any value from VALUES that neither starts at position 1
nor ends at position n.
The constraint FULL GROUP is true if all the following conditions hold:

• There are exactly NGROUP full groups of variables,

• MIN SIZE is the number of variables of the smallest full group,

• MAX SIZE is the number of variables of the largest full group,

• MIN DIST is the number of variables of the smallest anti-full group,

• MAX DIST is the number of variables of the largest anti-full group,

• NVAL is the number of variables that belong to a full group.

Example (2, 2, 3, 1, 1, 5, 〈0, 1, 2, 6, 2, 7, 4, 8, 9〉 , 〈0, 2, 4, 6, 8〉)

Given the fact that full groups are formed by even values in {0, 2, 4, 6, 8} (i.e., val-
ues expressed by the VALUES collection), the FULL GROUP constraint holds since:

• Its first argument, NGROUP, is set to value 2 since the sequence 0 1 2 6 2 7 4 8 9
contains two full groups of even values (i.e., group 2 6 2 and group 4 8). Note that
the first 0 is not a full group since it is located at the first position of the sequence.

• Its second argument, MIN SIZE, is set to value 2 since the smallest full group of even
values involves only two elements (i.e., the full group 4 8).

• Its third argument, MAX SIZE, is set to value 3 since the largest full group of even
values involves three elements (i.e., the full group 2 6 2).

• Its fourth argument, MIN DIST, is set to value 1 since the smallest anti-full groups
involve a single element (i.e., the anti-full groups 1 and 7).

• Its fifth argument, MAX DIST, is set to value 1 since the largest anti-full groups involve
a single element (i.e., the anti-full groups 1 and 7).

• Its sixth argument, NVAL, is set to value 5 since the total number of even values part
of a full group of the sequence 0 1 2 6 2 7 4 8 9 is equal to 5 (i.e., elements 2, 6, 2, 4
and 8).


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical NGROUP > 0
MIN SIZE > 0
MAX SIZE > MIN SIZE

MIN DIST > 0
MAX DIST > MIN DIST

MAX DIST < |VARIABLES|
NVAL > MAX SIZE

NVAL > NGROUP

NVAL < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items of VARIABLES can be reversed.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Functional dependency: NGROUP determined by VARIABLES and VALUES.

• Functional dependency: MIN SIZE determined by VARIABLES and VALUES.

• Functional dependency: MAX SIZE determined by VARIABLES and VALUES.

• Functional dependency: MIN DIST determined by VARIABLES and VALUES.

• Functional dependency: MAX DIST determined by VARIABLES and VALUES.

• Functional dependency: NVAL determined by VARIABLES and VALUES.

See also common keyword: GROUP (timetabling constraint,sequence).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2), alpha-acyclic con-
straint network(3).

constraint type: timetabling constraint.

filtering: glue matrix.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figures 5.362, 5.364, 5.366, 5.368, 5.370 and 5.372 depict the different automata associated
with the FULL GROUP constraint. For the automata that respectively compute NGROUP,
MIN SIZE, MAX SIZE, MIN DIST, MAX DIST and NVAL we have a 0-1 signature variable Si
for each variable VARi of the collection VARIABLES. The following signature constraint
links VARi and Si: VARi ∈ VALUES⇔ Si.

s : in VALUES mode (∈∗)
i : not in VALUES mode

(
/∈+
)

j : in VALUES mode
(
∈+
)

STATE SEMANTICS

NGROUP = C

s

{C ← 0}

i

j

IN(VARi, VALUES)
NOT IN(VARi, VALUES)

NOT IN(VARi, VALUES)

IN(VARi, VALUES)

IN(VARi, VALUES)

NOT IN(VARi, VALUES),
{C ← C + 1}

s (∈∗) i
(
/∈+
)

j
(
∈+
)

s(∈∗) 0 ←−
C

←−
C

i
(
/∈+
) −→

C
−→
C +

←−
C

−→
C + 1 +

←−
C

j
(
∈+
) −→

C
−→
C + 1 +

←−
C

−→
C + 1 +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.362: Automaton for the NGROUP argument of the FULL GROUP constraint and
its glue matrix

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NGROUP

Qn

Sn

VAR1 VAR2 VARn

Figure 5.363: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the NGROUP argument of the FULL GROUP constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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s : in VALUES mode (∈∗)
i, k : not in VALUES mode

(
/∈+
)

j, l : in VALUES mode
(
∈+
)

STATE SEMANTICS

MIN SIZE = C

s

{
C ← 0,
D ← 0

}
i

j

kl

IN(VARi, VALUES)

NOT IN(VARi, VALUES)
NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{C ← D,D ← 0}

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),{
C ← min(C,D),
D ← 0

}

Figure 5.364: Automaton for the MIN SIZE argument of the FULL GROUP constraint

M
I
N
S
I
Z
E

=
C
n

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.365: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MIN SIZE argument of the FULL GROUP constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn)
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s : in VALUES mode (∈∗)
i : not in VALUES mode

(
/∈+
)

j : in VALUES mode
(
∈+
)

STATE SEMANTICS

MAX SIZE = C

s

{C ← 0, D ← 0}

i

j

IN(VARi, VALUES)
NOT IN(VARi, VALUES)

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{D ← 1}

IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{C ← max(C,D)}

s (∈∗) i
(
/∈+
)

j
(
∈+
)

s(∈∗) 0 ←−
C

←−
C

i
(
/∈+
) −→

C max(
−→
C ,
←−
C ) max(

−→
C ,
←−
D,
←−
C )

j
(
∈+
) −→

C max(
−→
C ,
−→
D,
←−
C ) max(

−→
C ,
−→
D +

←−
D,
←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,←−

D resp. represent the counter value
C, D at the end of a prefix and at
the end of the corresponding reverse
suffix that partitions the sequence
VARIABLES.

Figure 5.366: Automaton for the MAX SIZE argument of the FULL GROUP constraint
and its glue matrix

M
A
X
S
I
Z
E

=
C
n

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.367: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MAX SIZE argument of the FULL GROUP constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn)
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s : not in VALUES mode (/∈∗)
i, k : in VALUES mode

(
∈+
)

j, l : not in VALUES mode
(
/∈+
)

STATE SEMANTICS

MIN DIST = C

s

{
C ← 0,
D ← 0

}
i

j

kl

NOT IN(VARi, VALUES)

IN(VARi, VALUES)
IN(VARi, VALUES)

NOT IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{C ← D,D ← 0}

IN(VARi, VALUES)

NOT IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),{
C ← min(C,D),
D ← 0

}

Figure 5.368: Automaton for the MIN DIST argument of the FULL GROUP constraint

M
I
N
D
I
S
T

=
C
n

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.369: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MIN DIST argument of the FULL GROUP constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn)



FULL GROUP 1285

s : not in VALUES mode (/∈∗)
i : in VALUES mode

(
∈+
)

j : not in VALUES mode
(
/∈+
)

STATE SEMANTICS

s

{C ← 0, D ← 0}

i

j

MAX SIZE = C

NOT IN(VARi, VALUES)
IN(VARi, VALUES)

IN(VARi, VALUES)

NOT IN(VARi, VALUES),
{D ← 1}

NOT IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{C ← max(C,D)}

s (/∈∗) i
(
∈+
)

j
(
/∈+
)

s(/∈∗) 0 ←−
C

←−
C

i
(
∈+
) −→

C max(
−→
C ,
←−
C ) max(

−→
C ,
←−
D,
←−
C )

j
(
/∈+
) −→

C max(
−→
C ,
−→
D,
←−
C ) max(

−→
C ,
−→
D +

←−
D,
←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,←−

D resp. represent the counter value
C, D at the end of a prefix and at
the end of the corresponding reverse
suffix that partitions the sequence
VARIABLES.

Figure 5.370: Automaton for the MAX DIST argument of the FULL GROUP constraint
and its glue matrix

M
A
X
D
I
S
T

=
C
n

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.371: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MAX DIST argument of the FULL GROUP constraint (since all states
of the automaton are accepting there is no restriction on the last variable Qn)



1286 FULL GROUP

s : in VALUES mode (∈∗)
i : not in VALUES mode

(
/∈+
)

j : in VALUES mode
(
∈+
)

STATE SEMANTICS

NVAL = C

s

{
C ← 0,
D ← 0

}
i

j

IN(VARi, VALUES)

NOT IN(VARi, VALUES)
NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{C ← C + D,D ← 0}

s (∈∗) i
(
/∈+
)

j
(
∈+
)

s(∈∗) 0 ←−
C

←−
C

i
(
/∈+
) −→

C
−→
C +

←−
C

−→
C +

←−
D +

←−
C

j
(
∈+
) −→

C
−→
C +

−→
D +

←−
C

−→
C +

−→
D +

←−
D +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.372: Automaton for the NVAL argument of the FULL GROUP constraint and
its glue matrix

N
V
A
L

=
C
n

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.373: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the NVAL argument of the FULL GROUP constraint (since all states of
the automaton are accepting there is no restriction on the last variable Qn)
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5.160 GCD

I B C J DESCRIPTION LINKS

Origin [146]

Constraint GCD(X, Y, Z)

Arguments X : dvar

Y : dvar

Z : dvar

Restrictions X > 0
Y > 0
Z > 0

Purpose Enforce the fact that Z is the greatest common divisor of X and Y.

Example (24, 60, 12)

The GCD constraint holds since 12 is the greatest common divisor of 24 and 60.

Typical X > 1
Y > 1

Symmetry Arguments are permutable w.r.t. permutation (X, Y) (Z).

Arg. properties Functional dependency: X determined by Y and Z.

Algorithm In [146] a filtering algorithm for the GCD constraint was automatically derived from the
Euclidian algorithm by using constructive disjunction and abstract interpretation in order
to approximate the behaviour of the while loop of the Euclidian algorithm.

See also common keyword: POWER (abstract interpretation).

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: arithmetic constraint, predefined constraint.

filtering: abstract interpretation.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.161 GEOST

I B C J
DESCRIPTION LINKS

Origin Generalisation of DIFFN.

Constraint GEOST(K, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
required(OBJECTS, [oid, sid, x])
distinct(OBJECTS, oid)
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi andOj do not overlap with respect
to a set of dimensions {1, 2, . . . , K}. Oi and Oj are objects that take a shape among a
set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin of
the shape) with given sizes that are all strictly greater than 0. More precisely, a shifted
box is an entity defined by its shape id sid, shift offset t, and sizes l. Then, a shape is
defined as the union of shifted boxes sharing the same shape id. An object is an entity
defined by its unique object identifier oid, shape id sid and origin x.
An object Oi does not overlap an object Oj with respect to the set of dimensions
{1, 2, . . . , K} if and only if for all shifted box si associated with Oi and for all shifted
box sj associated with Oj there exists a dimension d ∈ {1, 2, . . . , K} such that the start
of si in dimension d is greater than or equal to the end of sj in dimension d, or the start
of sj in dimension d is greater than or equal to the end of si in dimension d.

Example



2,

〈
oid− 1 sid− 1 x− 〈1, 2〉 ,
oid− 2 sid− 5 x− 〈2, 1〉 ,
oid− 3 sid− 8 x− 〈4, 1〉

〉
,

〈

sid− 1 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 1 t− 〈0, 1〉 l− 〈1, 2〉 ,
sid− 1 t− 〈1, 2〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 3〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 3 t− 〈1, 1〉 l− 〈1, 2〉 ,
sid− 3 t− 〈−2, 2〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈2, 1〉 l− 〈1, 3〉 ,
sid− 5 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 5 t− 〈1, 1〉 l− 〈1, 1〉 ,
sid− 5 t− 〈0, 2〉 l− 〈2, 1〉 ,
sid− 6 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 6 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 6 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 7 t− 〈0, 0〉 l− 〈3, 2〉 ,
sid− 8 t− 〈0, 0〉 l− 〈2, 3〉

〉


Parts (A), (B) and (C) of Figure 5.374 respectively represent the potential shapes
associated with the three objects of the example. Part (D) shows the position of the three
objects of the example, where the first, second and third objects were respectively assigned
shapes 1, 5 and 8. The coordinates of the leftmost lowest corner of each object are stressed
in bold. The GEOST constraint holds since the three objects do not overlap (i.e., see
part (D) if Figure 5.374).

Typical |OBJECTS| > 1


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.
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O1

O2

O3

(D)

O1: oid− 1 sid− 1 x− 〈1, 2〉
O2: oid− 2 sid− 5 x− 〈2, 1〉
O3: oid− 3 sid− 8 x− 〈4, 1〉

OBJECTS

Figure 5.374: (D) The three non-overlapping objects O1, O2, O3 of the Example slot
respectively assigned shapes S1, S5, S8; (A), (B), (C) shapes S1, S2, S3, S4, S5, S6,
S7 and S8 are respectively made up from 3, 3, 3, 3, 3, 3, 1 and 1 disjoint shifted box.

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

• SBOXES.l.v can be decreased to any value ≥ 1.

Usage The GEOST constraint allows one to model directly a large number of placement problems.

Remark In the two-dimensional case, when rectangles heights are all equal to one and when rect-
angles starts in the first dimension are all fixed, the GEOST constraint can be rewritten as
a K ALLDIFFERENT constraint corresponding to a system of ALLDIFFERENT constraints
derived from the maximum cliques of the corresponding interval graph.

Algorithm A sweep-based filtering algorithm for this constraint is described in [42]. Unlike previous
sweep filtering algorithms which move a line for finding a feasible position for the origin of
an object, this algorithm performs a recursive traversal of the multidimensional placement
space. It explores all points of the domain of the origin of the object under focus, one by
one, in increasing lexicographic order, until a point is found that is not infeasible for any
non-overlapping constraints. To make the search efficient, instead of moving each time
to the successor point, the search is arranged so that it skips points that are known to be
infeasible for some non-overlapping constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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Within the context of breaking symmetries six different ways of integrating within GEOST

a chain of lexicographical ordering constraints like LEX CHAIN LESS for enforcing a lexi-
cographic ordering on the origin coordinates of identical objects, are described in [3].

Systems GEOST in Choco, GEOST in JaCoP, GEOST in SICStus.

See also common keyword: CALENDAR (multi-site employee scheduling with calendar con-
straints,
scheduling with machine choice, calendars and preemption), DIFFN (geometrical con-
straint,non-overlapping),
LEX CHAIN LESS, LEX CHAIN LESSEQ (symmetry),
NON OVERLAP SBOXES (geometrical constraint,non-overlapping), VISIBLE (geometrical
constraint,sweep).

generalisation: GEOST TIME (temporal dimension added to geometrical

dimensions).

specialisation: K ALLDIFFERENT (when rectangles heights are all equal to 1 and rectan-
gles starts in the first dimension are all fixed), LEX ALLDIFFERENT (object replaced by
vector).

Keywords application area: floor planning problem.

combinatorial object: pentomino.

constraint arguments: business rules.

constraint type: logic, decomposition, timetabling constraint, predefined constraint, re-
laxation.

filtering: sweep.

geometry: geometrical constraint, non-overlapping.

heuristics: heuristics for two-dimensional rectangle placement problems.

modelling: multi-site employee scheduling with calendar constraints, scheduling with ma-
chine choice, calendars and preemption, disjunction, assignment dimension, assigning and
scheduling tasks that run in parallel, assignment to the same set of values, relaxation di-
mension.

modelling exercises: multi-site employee scheduling with calendar constraints, scheduling
with machine choice, calendars and preemption, assigning and scheduling tasks that run in
parallel, assignment to the same set of values, relaxation dimension.

problems: strip packing, two-dimensional orthogonal packing, pallet loading.

puzzles: squared squares, packing almost squares, Partridge, pentomino, Shikaku, small-
est square for packing consecutive dominoes, smallest square for packing rectangles with
distinct sizes, smallest rectangle area, Conway packing problem.

symmetry: symmetry.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Placement-Constraints.html
http://www.sics.se/sicstus/
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5.162 GEOST TIME

I B C J DESCRIPTION LINKS

Origin Generalisation of DIFFN.

Constraint GEOST TIME(K, DIMS, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection


oid−int,
sid−dvar,
x− VARIABLES,
start−dvar,
duration−dvar,
end−dvar


SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

distinct(OBJECTS, oid)
required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if (1) the difference between the end in time and the start in time of each object
is equal to its duration in time, and if (2) for each pair of objects (Oi, Oj), i < j, Oi
and Oj do not overlap with respect to a set of dimensions depicted by DIMS as well
as to the time axis. Note that an object with duration zero can never overlap any other
object. Oi and Oj are objects that take a shape among a set of shapes. Each shape is
defined as a finite set of shifted boxes, where each shifted box is described by a box in
a K-dimensional space at a given offset (from the origin of the shape) with given sizes
that are all strictly greater than 0. More precisely, a shifted box is an entity defined by its
shape id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted
boxes sharing the same shape id. An object is an entity defined by its unique object
identifier oid, shape id sid and origin x.
An object Oi does not overlap an object Oj with respect to a set of dimensions depicted
by DIMS as well as to the time axis if and only if:

• The start in time of Oi is greater than or equal to the end in time of Oj .

• The start in time of Oj is greater than or equal to the end in time of Oi.

• For all shifted box si associated with Oi and for all shifted box sj associated
with Oj there exists a dimension d ∈ DIMS such that the start of si in dimension
d is greater than or equal to the end of sj in dimension d, or the start of sj in
dimension d is greater than or equal to the end of si in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈1, 2〉 s− 0 d− 1 e− 1,
oid− 2 sid− 5 x− 〈2, 1〉 s− 0 d− 1 e− 1,
oid− 3 sid− 8 x− 〈4, 1〉 s− 0 d− 1 e− 1

〉
,

〈

sid− 1 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 1 t− 〈0, 1〉 l− 〈1, 2〉 ,
sid− 1 t− 〈1, 2〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 3〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 3 t− 〈1, 1〉 l− 〈1, 2〉 ,
sid− 3 t− 〈−2, 2〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈2, 1〉 l− 〈1, 3〉 ,
sid− 5 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 5 t− 〈1, 1〉 l− 〈1, 1〉 ,
sid− 5 t− 〈0, 2〉 l− 〈2, 1〉 ,
sid− 6 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 6 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 6 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 7 t− 〈0, 0〉 l− 〈3, 2〉 ,
sid− 8 t− 〈0, 0〉 l− 〈2, 3〉

〉


(
s for start, d for duration, e for end

)
Parts (A), (B) and (C) of Figure 5.375 respectively represent the potential shapes


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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associated with the three objects of the example. Part (D) shows the position of the three
objects of the example, where the first, second and third objects were respectively assigned
shapes 1, 5 and 8. The coordinates of the leftmost lowest corner of each object are
stressed in bold. The GEOST TIME constraint holds since the three objects do not overlap:
even though the time intervals associated with each object overlap (i.e., they are in fact
identical), their corresponding shapes do not overlap (i.e., see part (D) if Figure 5.375).
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O1: oid− 1 sid− 1 x− 〈1, 2〉
O2: oid− 2 sid− 5 x− 〈2, 1〉
O3: oid− 3 sid− 8 x− 〈4, 1〉

OBJECTS

Figure 5.375: (D) The three non-overlapping objects O1, O2, O3 of the Example slot
respectively assigned shapes S1, S5, S8; (A), (B), (C) shapes S1, S2, S3, S4, S5, S6,
S7 and S8 are respectively made up from 3, 3, 3, 3, 3, 3, 1 and 1 disjoint shifted box.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

• SBOXES.l.v can be decreased to any value ≥ 1.

• One and the same constant can be added to the start and end attributes of all
items of OBJECTS.

Usage The GEOST TIME constraint allows one to model directly a large number of placement
problems. Figure 5.376 sketches ten typical use of the GEOST TIME constraint:


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.
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• The first case (A) corresponds to a non-overlapping constraint among three segments
(or three tasks in disjunction).

• The second, third and fourth cases (B,C,D) correspond to a non-overlapping con-
straint between rectangles where (B) and (C) are special cases where the sizes of all
rectangles in the second dimension are equal to 1; this can be interpreted as a ma-
chine assignment problem where each rectangle corresponds to a non-pre-emptive
task that has to be placed in time and assigned to a specific machine so that no two
tasks assigned to the same machine overlap in time. In Part (B) the duration of each
task is fixed, while in Part (C) the duration depends on the machine to which the task
is actually assigned. This dependence can be expressed by the ELEMENT constraint,
which specifies the dependence between the shape variable and the assignment vari-
able of each task.

• The fifth case (E) corresponds to a non-overlapping constraint between rectangles
where each rectangle can have two orientations. This is achieved by associating with
each rectangle two shapes of respective sizes l · h and h · l. Since their orienta-
tions is not initially fixed, an ELEMENT LESSEQ constraint can be used for enforcing
the three rectangles to be included within the bounding box defined by the origin’s
coordinates 1, 1 and sizes 8, 3.

• The sixth case (F) corresponds to a non-overlapping constraint between more com-
plex objects where each object is described by a given set of rectangles.

• The seventh case (G) describes a rectangle placement problem where one has to first
assign each rectangle to a strip so that all rectangles that are assigned to the same
strip do not overlap.

• The eighth case (H) corresponds to a non-overlapping constraint between paral-
lelepipeds.

• The ninth case (I) can be interpreted as a non-overlapping constraint between paral-
lelepipeds that are assigned to the same container. The first dimension corresponds
to the identifier of the container, while the next three dimensions are associated with
the position of a parallelepiped inside a container.

• Finally the tenth case (J) describes a rectangle placement problem over three consec-
utive time-slots: rectangles assigned to the same time-slot should not overlap in time.
We initially start with the three rectangles 1, 2 and 3. Rectangle 3 is no more present
at instant 2 (the arrow ↓ within rectangle 3 at time 1 indicates that rectangle 3 will
disappear at the next time-point), while rectangle 4 appears at instant 2 (the arrow ↑
within rectangle 4 at time 2 denotes the fact that the rectangle 4 appears at instant 2).
Finally rectangle 2 disappears at instant 3 and is replaced by rectangle 5.

Algorithm A sweep-based filtering algorithm for this constraint is described in [42]. Unlike previous
sweep filtering algorithms which move a line for finding a feasible position for the origin of
an object, this algorithm performs a recursive traversal of the multidimensional placement
space. It explores all points of the domain of the origin of the object under focus, one by
one, in increasing lexicographic order, until a point is found that is not infeasible for any
non-overlapping constraints. To make the search efficient, instead of moving each time
to the successor point, the search is arranged so that it skips points that are known to be
infeasible for some non-overlapping constraint.

Systems GEOST in Choco, GEOST in JaCoP.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
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See also common keyword: DIFFN, NON OVERLAP SBOXES (geometrical constraint,non-
overlapping), VISIBLE (geometrical constraint,sweep).

specialisation: GEOST (temporal dimension removed).

Keywords constraint type: decomposition, timetabling constraint, predefined constraint.

filtering: sweep.

geometry: geometrical constraint, non-overlapping.

modelling: assignment dimension, assignment to the same set of values, assigning and
scheduling tasks that run in parallel, disjunction.

modelling exercises: assignment to the same set of values, assigning and scheduling tasks
that run in parallel.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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moving rectangles on a plate:
• rectangle ® gets out at instant 1
• rectangle  gets out at instant 2
• rectangle ¯ gets in at instant 2
• rectangle ° gets in at instant 3

Figure 5.376: Ten typical examples of use of the GEOST TIME constraint (ground
instances)
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5.163 GEQ

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint GEQ(VAR1, VAR2)

Synonyms REL, XGTEQY.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is greater than or equal to the second variable.

Example (8, 1)

The GEQ constraint holds since 8 is greater than or equal to 1.

Symmetries • VAR1 can be replaced by any value ≥ VAR2.

• VAR2 can be replaced by any value ≤ VAR1.

Systems GEQ in Choco, REL in Gecode, XGTEQY in JaCoP, #>= in SICStus.

See also common keyword: NEQ (binary constraint,arithmetic constraint).

generalisation: GEQ CST (constant added).

implied by: ABS VALUE, EQ, GT.

implies (if swap arguments): LEQ.

negation: LT.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.164 GEQ CST

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint GEQ CST(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is greater than or equal to the sum of the second
variable and the constant.

Example (8, 1, 7)

The GEQ CST constraint holds since 8 is greater than or equal to 1 + 7.

Typical CST2 6= 0
VAR1 > VAR2 + CST2

Symmetries • Arguments are permutable w.r.t. permutation (VAR1) (VAR2, CST2).

• VAR1 can be replaced by any value ≥ VAR2 + CST2.

• VAR2 can be replaced by any value ≤ VAR1− CST2.

• CST2 can be replaced by any value ≤ VAR1− VAR2.

See also common keyword: LEQ CST (binary constraint,arithmetic constraint).

implied by: EQ CST.

specialisation: GEQ (constant set to 0).

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.165 GLOBAL CARDINALITY

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHARME [309]

Constraint GLOBAL CARDINALITY(VARIABLES, VALUES)

Synonyms COUNT, DISTRIBUTE, DISTRIBUTION, GCC, CARD VAR GCC, EGCC,
EXTENDED GLOBAL CARDINALITY.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose Each value VALUES[i].val (with i ∈ [1, |VALUES|]) should be taken by exactly
VALUES[i].noccurrence variables of the VARIABLES collection.

Example


〈3, 3, 8, 6〉 ,〈

val− 3 noccurrence− 2,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉 
The GLOBAL CARDINALITY constraint holds since values 3, 5 and 6 respectively
occur 2, 0 and 1 times within the collection 〈3, 3, 8, 6〉 and since no restriction was
specified for value 8.

All solutions Figure 5.377 gives all solutions to the following non ground instance of the
GLOBAL CARDINALITY constraint: V1 ∈ [3, 4], V2 ∈ [2, 3], V3 ∈ [1, 2], V4 ∈ [2, 4],
V5 ∈ [2, 3], V6 ∈ [1, 2], O1 ∈ [1, 1], O2 ∈ [2, 3], O3 ∈ [0, 1], O4 ∈ [2, 3],
GLOBAL CARDINALITY(〈V1, V2, V3, V4, V5, V6〉, 〈1 O1, 2 O2, 3 O3, 4 O4〉).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
|VARIABLES| ≥ |VALUES|
minval(VARIABLES.var) = 0∨in attr(VARIABLES, var, VALUES, val)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ (〈4,2,1,4,2,2〉, 〈1 1, 2 3, 3 0, 4 2〉)
 (〈4,2,1,4,3,2〉, 〈1 1, 2 2, 3 1, 4 2〉)
® (〈4,2,2,4,2,1〉, 〈1 1, 2 3, 3 0, 4 2〉)
¯ (〈4,2,2,4,3,1〉, 〈1 1, 2 2, 3 1, 4 2〉)
° (〈4,3,1,4,2,2〉, 〈1 1, 2 2, 3 1, 4 2〉)
± (〈4,3,2,4,2,1〉, 〈1 1, 2 2, 3 1, 4 2〉)

Figure 5.377: All solutions corresponding to the non ground example of the
GLOBAL CARDINALITY constraint of the All solutions slot

Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Arg. properties • Functional dependency: VALUES.noccurrence determined by VARIABLES and
VALUES.val.

• Contractible wrt. VALUES.

Usage We show how to use the GLOBAL CARDINALITY constraint in order to model the magic
series problem [426, page 155] with a single GLOBAL CARDINALITY constraint. A non-
empty finite series S = (s0, s1, . . . , sn) is magic if and only if there are si occurrences of
i in S for each integer i ranging from 0 to n. This leads to the following model:

global cardinality



〈
var− s0, var− s1, . . . , var− sn

〉
,〈 val− 0 noccurrence− s0,

val− 1 noccurrence− s1,
...

val− n noccurrence− sn

〉


Remark This is a generalised form of the original GLOBAL CARDINALITY constraint: in the orig-
inal GLOBAL CARDINALITY constraint [353], one specifies for each value its minimum
and maximum number of occurrences (i.e., see GLOBAL CARDINALITY LOW UP). Here
we give for each value v a domain variable that indicates how many time value v is actu-
ally used. By setting the minimum and maximum values of this variable to the appropriate
constants we can express the same thing as in the original GLOBAL CARDINALITY con-
straint. However, as shown in the magic series problem, we can also use this variable in
other constraints. By reduction from 3-SAT, Claude-Guy Quimper shows in [342] that it is
NP-hard to achieve arc-consistency for the count variables.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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A last difference from the original GLOBAL CARDINALITY constraint is that there is no
constraint on the values that are not explicitly mentioned in the VALUES collection. In
the original GLOBAL CARDINALITY these values could not be assigned to the variables of
the VARIABLES collection. However allowing values that are not mentioned in VALUES to
be assigned to variables of VARIABLES can potentially avoid mentioning a huge number
of unconstrained values in the VALUES collection, and as a side effect, prevent possibly7

generating a dense graph (i.e., see DFS-bottleneck) for the corresponding underlying flow
model).

Within [92] the GLOBAL CARDINALITY constraint is called DISTRIBUTION. Within [361]
the GLOBAL CARDINALITY constraint is called CARD VAR GCC. Within [76] the
GLOBAL CARDINALITY constraint is called EGCC or RGCC. This later case corresponds to
the fact that some variables are duplicated within the VARIABLES collection.

The GLOBAL CARDINALITY constraint can be seen as a system (i.e., a conjunction) of
AMONG constraints.

When all count variables (i.e., the variables VALUES[i].noccurrence with
i ∈ [1, |VALUES|]) do not occur in any other constraints of the problem, it
may be operationally more efficient to replace the GLOBAL CARDINALITY

constraint by a GLOBAL CARDINALITY LOW UP constraint where each count
variable VALUES[i].noccurrence is replaced by the corresponding interval
[VALUES[i].noccurrence, VALUES[i].noccurrence]. This stands for two reasons:

• First, by using a GLOBAL CARDINALITY LOW UP constraint rather than a
GLOBAL CARDINALITY constraint, we avoid the filtering algorithm related to the
count variables.

• Second, unlike the GLOBAL CARDINALITY constraint where we need to fix all its
variables to get entailment, the GLOBAL CARDINALITY LOW UP constraint can be
entailed before all its variables get fixed. As a result, this potentially avoid unneces-
sary calls to its filtering algorithm.

When all values that can be assigned to the variables of the VARIABLES collection occur in
the val attribute of the VALUES collection, two implicit necessary conditions8 inferred by
double counting with the GLOBAL CARDINALITY constraint are depicted by the following
expressions:

|VARIABLES| =
|VALUES|∑
i=1

VALUES[i].noccurrence

|VARIABLES|∑
i=1

VARIABLES[i].var =

|VALUES|∑
i=1

VALUES[i].val · VALUES[i].noccurrence

Within [328, pages 50–51] the previous condition where terms involving identical variables
are grouped together (i.e., rule 5 of MALICE [327]) is mentioned as a crucial deduction
rule for the autoref problem.

7 Of course one could also, while generating a flow model, detect all unconstrained values in order to
generate a single vertex in the flow model for the set of unconstrained values.

8Note that such necessary conditions can be derived by assigning an integer weight to each value [396],
e.g. 1 for the first condition, the value itself for the second condition.
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W.-J. van Hoeve et al. present two soft versions of the GLOBAL CARDINALITY constraint
in [435].

In MiniZinc (http://www.minizinc.org/) there is also a DISTRIBUTE constraint
where the val attribute is not necessarily initially fixed and where a same value may oc-
cur more than once. There is also a GLOBAL CARDINALITY CLOSED constraint where all
variables must be assigned a value from the val attribute.

Algorithm A flow algorithm that handles the original GLOBAL CARDINALITY constraint is described
in [353]. The two approaches that were used to design bound-consistency algorithms for
ALLDIFFERENT were generalised for the GLOBAL CARDINALITY constraint. The algo-
rithm in [345] identifies Hall intervals and the one in [244] exploits convexity to achieve a
fast implementation of the flow-based arc-consistency algorithm. The later algorithm can
also compute bound-consistency for the count variables [245, 242]. An improved algorithm
for achieving arc-consistency is described in [344].

Systems GLOBALCARDINALITY in Choco, COUNT in Gecode, GCC in JaCoP,
GLOBAL CARDINALITY in MiniZinc, GLOBAL CARDINALITY in SICStus.

See also common keyword: COUNT, MAX NVALUE, MIN NVALUE (value constraint,counting con-
straint), NVALUE (counting constraint),
OPEN GLOBAL CARDINALITY LOW UP (assignment,counting constraint).

cost variant: GLOBAL CARDINALITY WITH COSTS (cost associated with each
variable,value pair).

implied by: GLOBAL CARDINALITY WITH COSTS (forget about cost),
SAME AND GLOBAL CARDINALITY (conjoin SAME and GLOBAL CARDINALITY).

part of system of constraints: AMONG.

related: ROOTS, SLIDING CARD SKIP0 (counting constraint of a set of values on maximal
sequences).

shift of concept: GLOBAL CARDINALITY NO LOOP (assignment of a variable to its po-
sition is ignored), ORDERED GLOBAL CARDINALITY (restrictions are done on nested sets
of values, all starting from first value), SYMMETRIC CARDINALITY, SYMMETRIC GCC.

soft variant: OPEN GLOBAL CARDINALITY (a set variable defines the set of variables
that are actually considered).

specialisation: ALLDIFFERENT (each value should occur at most
once), CARDINALITY ATLEAST, CARDINALITY ATMOST (individual
count variable for each value replaced by single count variable),
CARDINALITY ATMOST PARTITION (individual count variable for each value re-
placed by single count variable and variable ∈ partition replaced by variable),
GLOBAL CARDINALITY LOW UP (variable replaced by fixed interval).

system of constraints: COLORED MATRIX (one GLOBAL CARDINALITY constraint for
each row and each column of a matrix of variables).

uses in its reformulation: TREE RANGE, TREE RESOURCE.

Keywords application area: assignment.

characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: 3-SAT.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#global_cardinality
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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constraint arguments: pure functional dependency.

constraint type: value constraint, counting constraint, system of constraints.

filtering: Hall interval, bound-consistency, flow, duplicated variables, DFS-bottleneck.

modelling: functional dependency.

modelling exercises: magic series.

puzzles: magic series, autoref.

Cond. implications • GLOBAL CARDINALITY(VARIABLES, VALUES)
with minval(VARIABLES.var) = 0

implies AND(VAR, VARIABLES)
when VAR = 0.

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with maxval(VARIABLES.var) = 1

implies OR(VAR, VARIABLES)
when VAR = 1.

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with minval(VARIABLES.var) > 0

implies MIN SIZE FULL ZERO STRETCH(MINSIZE, VARIABLES)
when MINSIZE = |VARIABLES|.

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with maxval(VARIABLES.var) < 0

implies MIN SIZE FULL ZERO STRETCH(MINSIZE, VARIABLES)
when MINSIZE = |VARIABLES|.

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies AMONG DIFF 0(NVAR, VARIABLES).

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies ATMOST NVALUE(NVAL, VARIABLES).

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.noccurrence) = 1
and range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) =minval(VARIABLES.var)
and maxval(VALUES.val) =maxval(VARIABLES.var)

implies BALANCE(BALANCE, VARIABLES)
when BALANCE = 0.

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies MAX N(MAX, RANK, VARIABLES).


Cond. implications
Conditional implications.
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• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies MAX NVALUE(MAX, VARIABLES).

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies MIN N(MIN, RANK, VARIABLES).

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies MIN NVALUE(MIN, VARIABLES).

• GLOBAL CARDINALITY(VARIABLES, VALUES)
with range(VALUES.val) =nval(VALUES.val)
and minval(VALUES.val) ≤minval(VARIABLES.var)
and maxval(VALUES.val) ≥maxval(VARIABLES.var)

implies RANGE CTR(VARIABLES, CTR, R).
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. Part (A) of Figure 5.378 shows the initial graphs associated with each
value 3, 5 and 6 of the VALUES collection of the Example slot. Part (B) of Figure 5.378
shows the two corresponding final graphs respectively associated with values 3 and 6 that
are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned
to any variable of the VARIABLES collection the final graph associated with value 5 is
empty). Since we use the NVERTEX graph property, the vertices of the final graphs are
stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 5.378: Initial and final graph of the GLOBAL CARDINALITY constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.379 depicts the automaton associated with the GLOBAL CARDINALITY constraint.
To each item of the collection VARIABLES corresponds a signature variable Si that is equal
to 0. To each item of the collection VALUES corresponds a signature variable Si+|VARIABLES|
that is equal to 1.

ARITH(C,=, 0)

s{C[ ]← 0}

t

0,
{C[VARi]← C[VARi] + 1}

1,
{C[VALi]← C[VALi]− NOCCURRENCEi}

1,
{C[VALi]← C[VALi]− NOCCURRENCEi}

Figure 5.379: Automaton of the GLOBAL CARDINALITY constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint
GLOBAL CARDINALITY(〈2, 4, 2, 2, 1〉, 〈0 0, 1 1, 2 3, 3 0, 4 1〉) hold?

B. Does the constraint
GLOBAL CARDINALITY(〈0, 0, 1, 1〉, 〈0 2, 1 2, 2 1, 3 0, 4 0〉) hold?

C. Does the constraint
GLOBAL CARDINALITY(〈2, 3, 4, 5〉, 〈0 0, 1 0, 2 1, 3 1, 4 1〉) hold?

aHint: go back to the definition of GLOBAL CARDINALITY.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:

V1 ∈ [1, 2], V2 ∈ [1, 2], V3 ∈ [1, 2],
V4 ∈ [2, 3], V5 ∈ [3, 3],
O1 ∈ [1, 2], O2 ∈ [2, 3], O3 ∈ [0, 1],

GLOBAL CARDINALITY


〈V1, V2, V3, V4, V5〉,〈

val− 1 occurrence−O1,
val− 2 occurrence−O2,
val− 3 occurrence−O3

〉  .

aHint: focus on the variables of the first argument (since the counting variables
of the second argument are functionally determined by the first argument), and
enumerate solutions in lexicographic order.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 3 (identifying infeasible values)a

Identify all variable-value pairs (Vi, val) (respectively (Oi, val)) (with i ∈
[1, 5]), such that the following constraint has no solution when variable Vi (re-
spectively Oi) is assigned value val :

V1 ∈ [2, 3], V2 ∈ [1, 5], V3 ∈ [3, 4],
V4 ∈ [1, 3], V5 ∈ [1, 4],
O1 ∈ [1, 4], O2 ∈ [0, 1], O3 ∈ [0, 1],
O4 ∈ [1, 5], O5 ∈ [1, 4],

GLOBAL CARDINALITY



〈V1, V2, V3, V4, V5〉,〈
val− 1 occurrence−O1,
val− 2 occurrence−O2,
val− 3 occurrence−O3,
val− 4 occurrence−O4,
val− 5 occurrence−O5

〉  .

aHint: first restrict the occurrence variables O1, O2, . . . , O5, second restrict the deci-
sion variables V1, V2, . . . , V5, third check that all remaining values occur in at least one
solution.
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EXERCISE 4 (modelling a nurse assignment problem)a

Given a 24 hour period, you must schedule a pool of six nurses Bea,
Lea, Leo, Lio, Lili and Tom to at least two and at most three morn-
ing shifts, to at least two and at most three afternoon shifts, to at least
one night shift, while the other nurses are off-duty. In addition, due to
past work, we have the following extra requirements:

• Since on the previous 24 hour period Bea, Lea and Leo were
working in the afternoon shift they cannot be assigned to the night
shift.

• Leo, Lio and Lili have to work since they already took all
their days off.

• Bea and Tom have to work together since Bea supervises Tom.

Provide a model of this problem that uses the GLOBAL CARDINALITY

constraint.

A. Provide a solution that satisfies all the constraints, i.e., for each
nurse give his/her assignment (morning, afternoon, night,
off-duty).

B. Identify the decision variables and the values of the problem,
i.e., how do we model the fact that nurse x ∈ {Bea, Lea, Leo,
Lio, Lili, Tom} is assigned shift y ∈ {morning,
afternoon, night, off-duty}?

C. Using a bipartite graph, draw the relations between the variables
and the values identified in the previous question and display the
solution you came up with in the first question.

D. Provide a model of the problem that uses a single
GLOBAL CARDINALITY constraint.

• Explain how the minimum/maximum capacity constraints
(i.e., at least/at most) are modelled.

• Explain how each extra requirement is modelled in your
solution.

aHint: focus on what is a variable and what is a value in your model, and
how to model the capacity constraints with GLOBAL CARDINALITY.
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SOLUTION TO EXERCISE 1

A. Yes, since within 〈2, 4, 2, 2, 1〉, values 0, 1, 2, 3 and 4 are
respectively used zero, one, three, zero, and one times.

B. No, since within 〈0, 0, 1, 1〉, value 2 is not used one time.

C. Yes, since within 〈2, 3, 4, 5〉, value 0, 1, 2, 3 and 4 are
respectively used zero, zero, one, one, and one times. The
presence of a 5 in the solution does not matter since value 5
is not mentioned in the values of the second argument of the
GLOBAL CARDINALITY constraint.

SOLUTION TO EXERCISE 2

〈V1, V2, V3, V4, V5〉 〈1 O1, 2 O2, 3 O3〉

¬ (〈1,1,2,2,3〉, 〈1 2,2 2,3 1〉)
 (〈1,2,1,2,3〉, 〈1 2,2 2,3 1〉)
® (〈1,2,2,2,3〉, 〈1 1,2 3,3 1〉)
¯ (〈2,1,1,2,3〉, 〈1 2,2 2,3 1〉)
° (〈2,1,2,2,3〉, 〈1 1,2 3,3 1〉)
± (〈2,2,1,2,3〉, 〈1 1,2 3,3 1〉)

the six solutions
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SOLUTION TO EXERCISE 3

As suggested by the hint we go through the following steps:

A. [RESTRICTING THE OCCURRENCE VARIABLES O1, O2, . . . , O5 ]

(a) [PRUNING WRT THE MAXIMUM NUMBER OF OCCURRENCES OF EACH

VALUE ]
Since values 1, 2, 3, 4 and 5 can respectively be assigned to at
most 3, 4, 5, 3 and 1 decision variables (e.g., value 1 can only
be assigned to V2, V4 and V5) we have O1 ≤ min(3, 4),
O2 ≤ min(4, 1), O3 ≤ min(5, 1), O4 ≤ min(3, 5), and
O5 ≤ min(1, 4).

(b) [PRUNING WRT
∑5
i=1 Oi = 5 AND THE DOMAIN OF V1 ]

Since we have five decision variables the sum of the
occurrence variables is equal to five (i.e., O1 +O2 +O3+
O4 +O5 = 5). Since values 2 or 3 have to be assigned to the
decision variable V1 we have O2 +O3 ≥ 1. It follows that
O1 +O4 +O5 ≤ 4. Since O1 ∈ [1, 3], O4 ∈ [1, 3] and O5 = 1
we get O1 +O4 ≤ 3 and consequently O1 ≤ 2 and O4 ≤ 2.

B. [RESTRICTING THE DECISION VARIABLES V1, V2, . . . , V5 ]
At the end of step A we obtain O1 ∈ [1, 2], O2 ∈ [0, 1], O3 ∈ [0, 1],
O4 ∈ [1, 2], and O5 ∈ [1, 1]. Since O5 = 1 and since V2 is the only
decision variable that can be assigned value 5 we have V2 = 5.
Consequently V1 ∈ [2, 3], V2 ∈ [5, 5], V3 ∈ [3, 4], V4 ∈ [1, 3], and
V5 ∈ [1, 4].

C. [CHECKING FOR A SUPPORT ]
To show that no value can be removed from the domain of the
decision and occurrence variables we show that every value that is
still in the domain of a variable is part of a solution.

(a) A solution with O1 = 2 is V1 = 2, V2 = 5, V3 = 4, V4 = 1,
V5 = 1 and O1 = 2, O2 = 1, O3 = 0, O4 = 1, O5 = 1.

(b) A solution with O4 = 2 is V1 = 2, V2 = 5, V3 = 4, V4 = 1,
V5 = 4 and O1 = 1, O2 = 1, O3 = 0, O4 = 2, O5 = 1.

(c) We now assume that O1 = O2 = O3 = O4 = O5 = 1, i.e., all
decision variables must be distinct. Without loos of generality
we ignore V2, which is fixed to 5. We provide a set of
solutions where V1, V3, V4 and V5 can respectively be
assigned to all the values of their domains:

i. V1 = 2, V3 = 3, V4 = 1, V5 = 4,
ii. V1 = 2, V3 = 4, V4 = 3, V5 = 1,

iii. V1 = 2, V3 = 4, V4 = 1, V5 = 3,
iv. V1 = 3, V3 = 4, V4 = 1, V5 = 2,
v. V1 = 3, V3 = 4, V4 = 2, V5 = 1.
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SOLUTION TO EXERCISE 4

A. A feasible solution is the following assignment(
Bea : morning Lea : morning Leo : afternoon
Lio : afternoon Lili : night Tom : morning

)
since:

• the number of morning shifts is between 2 and 3,

• the number of afternoon shifts is between 2 and 3,

• the number of night shifts is at least 1,

• Bea, Lea and Leo are not assigned to a night shift,

• Leo, Lio and Lili work,

• Bea and Tom are both assigned the same shift.

B. To each nurse corresponds a variable whose initial domain is set to the types of
shifts that nurse can actually perform (i.e., each shift type is encoded by a
unique integer value).

C. The next figure provides a graphical representation of the assignment problem.
To each nurse and to each shift type corresponds a vertex. There is an edge
between a given nurse and a given shift type if and only if that nurse can
perform that shift type. The solution given to question A is displayed with thick
blue lines. The interval on top or below each vertex indicates the minimum and
maximum number of edges that can reach the corresponding vertex in any
solution; values in blue correspond to the number of edges of the displayed
solution.

D. We get the following model

M = 1, A = 2, N = 3, O = 4,
Bea ∈ [M,O], Lea ∈ [M,O], Leo ∈ [M,O],
Lio ∈ [M,O], Lili ∈ [M,O], Tom ∈ [M,O],
OM ∈ [2, 3], OA ∈ [2, 3], ON ∈ [1, 6], OO ∈ [0, 6],
Bea 6= N, Lea 6= N, Leo 6= N,
Leo 6= O, Lio 6= O, Lili 6= O,
Bea = Tom,

GLOBAL CARDINALITY


〈Bea,Lea,Leo,Lio,Lili,Tom〉,〈

val− M occurrence−OM,
val− A occurrence−OA,
val− N occurrence−ON,
val− O occurrence−OO

〉  ,

where:

• line 1 declares the integer value of each shift type,

• lines 2, 3 and 4 declare the nurse and occurrence variables,

• line 5 enforces Bea, Lea and Leo not to work on a night shift,

• line 6 imposes Leo, Lio and Lili to work,

• line 7 constrains Bea and Tom to work on the same shift,

• line 8 restricts each shift type to occur within a given range.

Bea Lea Leo Lio Lili Tom

M A N O

[1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]

[2, 3] [2, 3] [1, 6] [0, 6]
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5.166 GLOBAL CARDINALITY LOW UP

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining SLIDING DISTRIBUTION.

Constraint GLOBAL CARDINALITY LOW UP(VARIABLES, VALUES)

Synonyms GCC LOW UP, GCC.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least
VALUES[i].omin and at most VALUES[i].omax variables of the VARIABLES collection.

Example


〈3, 3, 8, 6〉 ,〈

val− 3 omin− 2 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉 
The GLOBAL CARDINALITY LOW UP constraint holds since values 3, 5 and 6 are
respectively used 2 (2 ≤ 2 ≤ 3), 0 (0 ≤ 0 ≤ 1) and 1 (1 ≤ 1 ≤ 2) times within the
collection 〈3, 3, 8, 6〉 and since no constraint was specified for value 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax < |VARIABLES|
|VARIABLES| > |VALUES|
in attr(VARIABLES, var, VALUES, val)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

• Items of VALUES are permutable.

• VALUES.omin can be decreased to any value ≥ 0.

• VALUES.omax can be increased to any value ≤ |VARIABLES|.
• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be

swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Arg. properties Contractible wrt. VALUES.

Remark Within the context of linear programming [226, page 376] provides relaxations of the
GLOBAL CARDINALITY LOW UP constraint.

In MiniZinc (http://www.minizinc.org/) there is also a
GLOBAL CARDINALITY LOW UP CLOSED constraint where all variables must be
assigned a value from the val attribute.

Algorithm A filtering algorithm achieving arc-consistency for the GLOBAL CARDINALITY LOW UP

constraint is given in [353]. This algorithm is based on a flow model of
the GLOBAL CARDINALITY LOW UP constraint where there is a one-to-one cor-
respondence between feasible flows in the flow model and solutions to the
GLOBAL CARDINALITY LOW UP constraint. The leftmost part of Figure 3.30 illustrates
this flow model.

The GLOBAL CARDINALITY LOW UP constraint is entailed if and only if for each value v
equal to VALUES[i].val (with 1 ≤ i ≤ |VALUES|) the following two conditions hold:

1. The number of variables of the VARIABLES collection assigned value v is greater
than or equal to VALUES[i].omin.

2. The number of variables of the VARIABLES collection that can potentially be assigned
value v is less than or equal to VALUES[i].omax.

Reformulation A reformulation of the GLOBAL CARDINALITY LOW UP, involving linear constraints,
preserving bound-consistency was introduced in [78]. For each potential in-
terval [l, u] of consecutive values this model uses |VARIABLES| 0-1 variables
B1,l,u, B2,l,u, . . . , B|VARIABLES|,l,u for modelling the fact that each variable of the collec-
tion VARIABLES is assigned a value within interval [l, u] (i.e., ∀i ∈ [1, |VARIABLES|] :
Bi,l,u ⇔ l ≤ VARIABLES[i].var ∧ VARIABLES[i].var ≤ u), as well as one domain vari-
able Cl,u for counting how many values of [l, u] are assigned to variables of VARIABLES
(i.e. Cl,u = B1,l,u + B2,l,u + · · · + B|VARIABLES|,l,u). The lower and upper bounds of
variable Cl,u are respectively initially set with respect to the minimum and maximum
number of possible occurrences of the values of interval [l, u]. Finally, assuming that s
is the smallest value that can be assigned to the variables of VARIABLES, the constraint
Cs,u = Cs,k + Ck+1,u is stated for each k ∈ [s, u− 1].

Systems GLOBALCARDINALITY in Choco, GLOBAL CARDINALITY LOW UP in MiniZinc.

Used in SLIDING DISTRIBUTION.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.

http://www.minizinc.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#global_cardinality_low_up
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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See also common keyword: OPEN GLOBAL CARDINALITY (assignment,counting constraint).

generalisation: CUMULATIVE (variables replaced by tasks),
GLOBAL CARDINALITY (fixed interval replaced by variable).

implied by: INCREASING GLOBAL CARDINALITY (a
GLOBAL CARDINALITY LOW UP constraint where the variables are increasing),
SAME AND GLOBAL CARDINALITY LOW UP.

related: ORDERED GLOBAL CARDINALITY (restrictions are done on nested sets of val-
ues, all starting from first value).

shift of concept: GLOBAL CARDINALITY LOW UP NO LOOP (assignment of a variable

to its position is ignored).

soft variant: OPEN GLOBAL CARDINALITY LOW UP (a set variable defines the set of
variables that are actually considered).

specialisation: ALLDIFFERENT (each value should occur at most once).

system of constraints: SLIDING DISTRIBUTION (one GLOBAL CARDINALITY LOW UP

constraint for each sliding sequence of SEQ consecutive variables).

Keywords application area: assignment.

constraint type: value constraint, counting constraint.

filtering: flow, arc-consistency, bound-consistency, DFS-bottleneck, entailment.

Cond. implications GLOBAL CARDINALITY LOW UP(VARIABLES, VALUES)
with INCREASING(VARIABLES)

implies INCREASING GLOBAL CARDINALITY(VARIABLES, VALUES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. Part (A) of Figure 5.380 shows the initial graphs associated with each
value 3, 5 and 6 of the VALUES collection of the Example slot. Part (B) of Figure 5.380
shows the two corresponding final graphs respectively associated with values 3 and 6 that
are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned
to any variable of the VARIABLES collection the final graph associated with value 5 is
empty). Since we use the NVERTEX graph property, the vertices of the final graphs are
stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 4:6

(A) (B)

Figure 5.380: Initial and final graph of the GLOBAL CARDINALITY LOW UP con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.167 GLOBAL CARDINALITY LOW UP NO LOOP

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from GLOBAL CARDINALITY LOW UP and TREE.

Constraint GLOBAL CARDINALITY LOW UP NO LOOP


MINLOOP,
MAXLOOP,
VARIABLES,
VALUES


Synonym GCC LOW UP NO LOOP.

Arguments MINLOOP : int

MAXLOOP : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions MINLOOP ≥ 0
MINLOOP ≤ MAXLOOP

MAXLOOP ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose

VALUES[i].omin (1 ≤ i ≤ |VALUES|) is less than or equal to the number of vari-
ables VARIABLES[j].var (j 6= i, 1 ≤ j ≤ |VARIABLES|) that are assigned value
VALUES[i].val.
VALUES[i].omax (1 ≤ i ≤ |VALUES|) is greater than or equal to the number of vari-
ables VARIABLES[j].var (j 6= i, 1 ≤ j ≤ |VARIABLES|) that are assigned value
VALUES[i].val.
The number of assignments of the form VARIABLES[i].var = i (i ∈ [1, |VARIABLES|])
is greater than or equal to MINLOOP and less than or equal to MAXLOOP.

Example


1, 1, 〈1, 1, 8, 6〉 ,〈

val− 1 omin− 1 omax− 1,
val− 5 omin− 0 omax− 0,
val− 6 omin− 1 omax− 2

〉 
The GLOBAL CARDINALITY LOW UP NO LOOP constraint holds since:

• Values 1, 5 and 6 are respectively assigned to the set of variables
{VARIABLES[2].var} (i.e., omin = 1 ≤ 1 ≤ omax = 1), {} (i.e., omin = 0 ≤


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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0 ≤ omax = 0) and {VARIABLES[4].var} (i.e., omin = 1 ≤ 1 ≤ omax = 2).
Note that, due to the definition of the constraint, the fact that VARIABLES[1].var is
assigned to 1 is not counted.

• In addition the number of assignments of the form VARIABLES[i].var = i (i ∈ [1, 4])
is greater than or equal to MINLOOP = 1 and less than or equal to MAXLOOP = 1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax < |VARIABLES|
|VARIABLES| > |VALUES|

Symmetries • Items of VALUES are permutable.

• VALUES.omin can be decreased to any value ≥ 0.

• VALUES.omax can be increased to any value ≤ |VARIABLES|.

Usage Within the context of the TREE constraint the GLOBAL CARDINALITY LOW UP NO LOOP

constraint allows one to model a minimum and maximum degree constraint on each vertex
of our trees.

Algorithm The flow algorithm that handles the original GLOBAL CARDINALITY constraint [353] can
be adapted to the context of the GLOBAL CARDINALITY LOW UP NO LOOP constraint.
This is done by creating an extra value node representing the loops corresponding to
the roots of the trees. The rightmost part of Figure 3.30 illustrates the corresponding
flow model for the GLOBAL CARDINALITY LOW UP NO LOOP constraint where there is a
one-to-one correspondence between feasible flows in the flow model and solutions to the
GLOBAL CARDINALITY LOW UP NO LOOP constraint.

See also generalisation: GLOBAL CARDINALITY NO LOOP (fixed interval replaced by
variable).

implied by: SAME AND GLOBAL CARDINALITY LOW UP.

related: TREE (graph partitioning by a set of trees with degree restrictions).

root concept: GLOBAL CARDINALITY LOW UP (assignment of a variable to its position
is ignored).

Keywords constraint type: value constraint.

filtering: flow.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1324 GLOBAL CARDINALITY LOW UP NO LOOP

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• variables.key 6= VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = variables.key

Graph property(ies) • NARC≥ MINLOOP

• NARC≤ MAXLOOP

Graph model Since, within the context of the first graph constraint, we want to express one unary con-
straint for each value we use the “For all items of VALUES” iterator. Part (A) of Figure 5.381
shows the initial graphs associated with each value 1, 5 and 6 of the VALUES collection of
the Example slot. Part (B) of Figure 5.381 shows the two corresponding final graphs re-
spectively associated with values 1 and 6 that are both assigned to the variables of the
VARIABLES collection (since value 5 is not assigned to any variable of the VARIABLES col-
lection the final graph associated with value 5 is empty). Since we use the NVERTEX
graph property, the vertices of the final graphs are stressed in bold.

VARIABLES

1234

1:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:1 VALUES:6

2:1 4:6

(A) (B)

Figure 5.381: Initial and final graph of the
GLOBAL CARDINALITY LOW UP NO LOOP constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.168 GLOBAL CARDINALITY NO LOOP

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from GLOBAL CARDINALITY and TREE.

Constraint GLOBAL CARDINALITY NO LOOP(NLOOP, VARIABLES, VALUES)

Synonym GCC NO LOOP.

Arguments NLOOP : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions NLOOP ≥ 0
NLOOP ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose

VALUES[i].noccurrence (1 ≤ i ≤ |VALUES|) is equal to the number of vari-
ables VARIABLES[j].var (j 6= i, 1 ≤ j ≤ |VARIABLES|) that are assigned value
VALUES[i].val.
The number of assignments of the form VARIABLES[i].var = i (i ∈ [1, |VARIABLES|])
is equal to NLOOP.

Example


1, 〈1, 1, 8, 6〉 ,〈

val− 1 noccurrence− 1,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉 
The GLOBAL CARDINALITY NO LOOP constraint holds since:

• Values 1, 5 and 6 are respectively assigned to the set of variables
{VARIABLES[2].var} (i.e., 1 occurrence of value 1), {} (i.e., no occurrence of value
5) and {VARIABLES[4].var} (i.e., 1 occurrence of value 6). Note that, due to the
definition of the constraint, the fact that VARIABLES[1].var is assigned to 1 is not
counted.

• In addition the number of assignments of the form VARIABLES[i].var = i (i ∈ [1, 4])
is equal to NLOOP = 1.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
|VARIABLES| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetry Items of VALUES are permutable.

Arg. properties • Functional dependency: NLOOP determined by VARIABLES.

• Functional dependency: VALUES.noccurrence determined by VARIABLES and
VALUES.val.

Usage Within the context of the TREE constraint the GLOBAL CARDINALITY NO LOOP constraint
allows one to model a minimum and maximum degree constraint on each vertex of our
trees.

Algorithm The flow algorithm that handles the original GLOBAL CARDINALITY constraint [353] can
be adapted to the context of the GLOBAL CARDINALITY NO LOOP constraint. This is
done by creating an extra value node representing the loops corresponding to the roots of
the trees.

See also related: TREE (graph partitioning by a set of trees with degree restrictions).

root concept: GLOBAL CARDINALITY (assignment of a variable to its position is ig-
nored).

specialisation: GLOBAL CARDINALITY LOW UP NO LOOP (variable replaced by
fixed interval).

Keywords constraint arguments: pure functional dependency.

constraint type: value constraint.

filtering: flow.

modelling: functional dependency.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• variables.key 6= VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = variables.key

Graph property(ies) NARC= NLOOP

Graph model Since, within the context of the first graph constraint, we want to express one unary con-
straint for each value we use the “For all items of VALUES” iterator. Part (A) of Figure 5.382
shows the initial graphs associated with each value 1, 5 and 6 of the VALUES collection of
the Example slot. Part (B) of Figure 5.382 shows the two corresponding final graphs re-
spectively associated with values 1 and 6 that are both assigned to the variables of the
VARIABLES collection (since value 5 is not assigned to any variable of the VARIABLES col-
lection the final graph associated with value 5 is empty). Since we use the NVERTEX
graph property, the vertices of the final graphs are stressed in bold.

VARIABLES

1234

1:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:1 VALUES:6

2:1 4:6

(A) (B)

Figure 5.382: Initial and final graph of the GLOBAL CARDINALITY NO LOOP con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.169 GLOBAL CARDINALITY WITH COSTS

I B C J
DESCRIPTION LINKS GRAPH

Origin [355]

Constraint GLOBAL CARDINALITY WITH COSTS(VARIABLES, VALUES, MATRIX, COST)

Synonyms GCCC, COST GCC.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)
MATRIX : collection(i−int, j−int, c−int)
COST : dvar

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VALUES|
|MATRIX| = |VARIABLES| ∗ |VALUES|

Purpose

Each value VALUES[i].val should be taken by exactly VALUES[i].noccurrence vari-
ables of the VARIABLES collection. In addition the COST of an assignment is equal to
the sum of the elementary costs associated with the fact that we assign variable i of the
VARIABLES collection to the jth value of the VALUES collection. These elementary costs
are given by the MATRIX collection.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



〈3, 3, 3, 6〉 ,〈
val− 3 noccurrence− 3,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉
,

〈

i− 1 j− 1 c− 4,
i− 1 j− 2 c− 1,
i− 1 j− 3 c− 7,
i− 2 j− 1 c− 1,
i− 2 j− 2 c− 0,
i− 2 j− 3 c− 8,
i− 3 j− 1 c− 3,
i− 3 j− 2 c− 2,
i− 3 j− 3 c− 1,
i− 4 j− 1 c− 0,
i− 4 j− 2 c− 0,
i− 4 j− 3 c− 6

〉
, 14


The GLOBAL CARDINALITY WITH COSTS constraint holds since:

• Values 3, 5 and 6 respectively occur 3, 0 and 1 times within the collection 〈3, 3, 3, 6〉.
• The COST argument corresponds to the sum of the costs respectively associated with

the first, second, third and fourth items of 〈3, 3, 3, 6〉, namely 4, 1, 3 and 6.

All solutions Figure 5.383 gives all solutions to the following non ground instance of the
GLOBAL CARDINALITY WITH COSTS constraint:
V1 ∈ [3, 4], V2 ∈ [2, 3], V3 ∈ [1, 2], V4 ∈ [2, 4], V5 ∈ [2, 3], V6 ∈ [1, 2],
O1 ∈ [1, 1], O2 ∈ [2, 3], O3 ∈ [0, 1], O4 ∈ [2, 3],
C ∈ [0, 16],
GLOBAL CARDINALITY WITH COSTS(〈V1, V2, V3, V4, V5, V6〉,

〈1 O1, 2 O2, 3 O3, 4 O4〉,
〈1 1 5, 1 2 0, 1 3 1, 1 4 1,
2 1 2, 2 2 7, 2 3 0, 2 4 2,
3 1 3, 3 2 3, 3 3 6, 3 4 6,
4 1 4, 4 2 3, 4 3 0, 4 4 0,
5 1 2, 5 2 0, 5 3 6, 5 4 3,
6 1 5, 6 2 4, 6 3 5, 6 4 4〉, C).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
range(VALUES.noccurrence) > 1
range(MATRIX.c) > 1
|VARIABLES| > |VALUES|

Arg. properties • Functional dependency: VALUES.noccurrence determined by VARIABLES.

• Functional dependency: COST determined by VARIABLES, VALUES and MATRIX.

Usage A classical utilisation of the GLOBAL CARDINALITY WITH COSTS constraint corresponds
to the following assignment problem. We have a set of persons P as well as a set of jobs


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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¬ (〈4,2,1,4,2,2〉, 〈1 1, 2 3, 3 0, 4 2〉, 15)
 (〈4,2,2,4,2,1〉, 〈1 1, 2 3, 3 0, 4 2〉, 16)
® (〈4,3,1,4,2,2〉, 〈1 1, 2 2, 3 1, 4 2〉, 8)
¯ (〈4,3,2,4,2,1〉, 〈1 1, 2 2, 3 1, 4 2〉, 9)

¬

15

5 0 1 1

2 7 0 2

3 3 6 6

4 3 0 0

2 0 6 3

5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4



16

5 0 1 1

2 7 0 2

3 3 6 6

4 3 0 0

2 0 6 3

5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4

®

8

5 0 1 1

2 7 0 2

3 3 6 6

4 3 0 0

2 0 6 3

5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4

¯

9

5 0 1 1

2 7 0 2

3 3 6 6

4 3 0 0

2 0 6 3

5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4

Figure 5.383: All solutions corresponding to the non ground example of the
GLOBAL CARDINALITY WITH COSTS constraint of the All solutions slot

J to perform. Each job requires a number of persons restricted to a specified interval. In
addition each person p has to be assigned to one specific job taken from a subset Jp of J .
There is a cost Cpj associated with the fact that person p is assigned to job j. The previous
problem is modelled with a single GLOBAL CARDINALITY WITH COSTS constraint where
the persons and the jobs respectively correspond to the items of the VARIABLES and VALUES
collection.

The GLOBAL CARDINALITY WITH COSTS constraint can also be used for modelling a
conjunction ALLDIFFERENT(X1, X2, . . . , Xn) and α1 · X1 +α2 · X2 + · · ·+αn · Xn = COST.
For this purpose we set the domain of the noccurrence variables to {0, 1} and the cost
attribute c of a variable Xi and one of its potential value j to αi · j. In practice this can be
used for the magic squares and the magic hexagon problems where all the αi are set to 1.

Algorithm A filtering algorithm achieving arc-consistency independently on each side (i.e.,
the greater than or equal to side and the less than or equal to side) of the
GLOBAL CARDINALITY WITH COSTS constraint is described in [355, 357]. This algo-
rithm assumes for each value a fixed minimum and maximum number of occurrences. If
we rather have occurrence variables, the Reformulation slot explains how to also obtain
some propagation from the cost variable back to the occurrence variables.

Reformulation Let n and m respectively denote the number of items of the VARIABLES

and of the VALUES collections. Let v1, v2, . . . , vm denote the values
VALUES[1].val, VALUES[2].val, . . . , VALUES[m].val. In addition let LINE i (with
i ∈ [1, n]) denote the values 〈MATRIX[m · (i − 1) + 1].c, MATRIX[m · (i − 1) +
2].c, . . . , MATRIX[m · i].c〉, i.e., line i of the matrix MATRIX.

By introducing 2 · n auxiliary variables U1, U2, . . . , Un and C1, C2, . . . , Cn,
the GLOBAL CARDINALITY WITH COSTS(VARIABLES, VALUES, MATRIX, COST)
constraint can be expressed in term of the conjunction of one
GLOBAL CARDINALITY(VARIABLES, VALUES) constraint, 2 · n ELEMENT constraints and
one arithmetic constraint SUM CTR.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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For each variable Vi (with i ∈ [1, |VARIABLES|]) of the VARIABLES collection a
first ELEMENT(Ui, 〈v1, v2, . . . , vm〉, Vi) constraint provides the correspondence between
the variable Vi and the index of the value Ui to which it is assigned. A second
ELEMENT(Ui,LINE i, Ci) links the previous index Ui to the cost Ci variable associated
with variable Vi. Finally the total cost COST is equal to the sum C1 + C2 + · · ·+ Cn.

In the context of the Example slot we get the following conjunction of constraints:
GLOBAL CARDINALITY(〈3, 3, 3, 6〉,

〈val− 3 noccurrence− 3,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1〉),

ELEMENT(1, 〈3, 5, 6〉, 3),
ELEMENT(1, 〈3, 5, 6〉, 3),
ELEMENT(1, 〈3, 5, 6〉, 3),
ELEMENT(3, 〈3, 5, 6〉, 6),
ELEMENT(1, 〈4, 1, 7〉, 4),
ELEMENT(1, 〈1, 0, 8〉, 1),
ELEMENT(1, 〈3, 2, 1〉, 3),
ELEMENT(3, 〈0, 0, 6〉, 6),
14 = 4 + 1 + 3 + 6.

We now show how to add implied constraints that can also propagate from the cost variable
back to the occurrence variables. Let O1, O2, . . . , Om respectively denote the variables
VALUES[1].noccurrence, VALUES[2].noccurrence, . . . , VALUES[m].noccurrence.
The idea is to get for each value vi (with i ∈ [1,m]) an idea of its minimum and maximum
contribution in the total cost COST that is linked to the number of times it is assigned
to a variables of VARIABLES. E.g., if value vi (with i ∈ [1,m]) is used twice, then the
corresponding minimum (respectively maximum) contribution in the total cost COST will
be at least equal to the sum of the two smallest (respectively largest) costs attached to
row i. Let Di (with i ∈ [1,m]) denotes the contribution that stems from the variables
of VARIABLES that are assigned value vi. For each value vi (with i ∈ [1,m]) we create
one ELEMENT constraint for linking Oi + 1 to the corresponding minimum contribution
LOW i. The table of that ELEMENT constraint has n + 1 entries, where entry j (with
j ∈ [0, n]) corresponds to the sum of the jth smallest entries of row i of the cost matrix
MATRIX. Similarly we create for each value vi (with i ∈ [1,m]) one ELEMENT constraint
for linking Oi + 1 to the corresponding maximum contribution UP i. The table of that
ELEMENT constraint also has n+ 1 entries, where entry j (with j ∈ [0, n]) corresponds to
the sum of the jth largest entries of row i of the cost matrix MATRIX.

In the context of the cost matrix of the Example slot we get the following conjunction of
implied constraints:

COST = D1 +D2 +D3,
n = O1 +O2 +O3,
P1 = O1 + 1,
P2 = O2 + 1,
P3 = O3 + 1,
ELEMENT(P1, 〈0, 0, 1, 4, 8〉,LOW 1),
ELEMENT(P2, 〈0, 0, 0, 1, 3〉,LOW 2),
ELEMENT(P3, 〈0, 1, 7, 14, 22〉,LOW 3),
ELEMENT(P1, 〈0, 4, 7, 8, 8〉,UP1),
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ELEMENT(P2, 〈0, 2, 3, 3, 3〉,UP2),
ELEMENT(P3, 〈0, 8, 15, 21, 22〉,UP3),
LOW 1 ≤ D1, D1 ≤ UP1,
LOW 2 ≤ D2, D2 ≤ UP2,
LOW 3 ≤ D3, D3 ≤ UP3.

Systems GLOBAL CARDINALITY in SICStus.

See also attached to cost variant: GLOBAL CARDINALITY (cost associated with each
variable,value pair removed).

common keyword: MINIMUM WEIGHT ALLDIFFERENT (cost filtering con-
straint,weighted assignment), SUM OF WEIGHTS OF DISTINCT VALUES,
WEIGHTED PARTIAL ALLDIFF (weighted assignment).

implies: GLOBAL CARDINALITY.

Keywords application area: assignment.

constraint arguments: pure functional dependency.

filtering: cost filtering constraint.

heuristics: regret based heuristics, regret based heuristics in matrix problems.

modelling: cost matrix, scalar product, functional dependency.

problems: weighted assignment.

puzzles: magic square, magic hexagon.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) SUM WEIGHT ARC

(
MATRIX

[∑(
(variables.key− 1) ∗ |VALUES|,
values.key

)]
.c

)
= COST

Graph model The first graph constraint forces each value of the VALUES collection to be taken by a spe-
cific number of variables of the VARIABLES collection. It is identical to the graph constraint
used in the GLOBAL CARDINALITY constraint. The second graph constraint expresses that
the COST variable is equal to the sum of the elementary costs associated with each vari-
able-value assignment. All these elementary costs are recorded in the MATRIX collection.
More precisely, the cost cij is recorded in the attribute c of the ((i− 1) · |VALUES)|+ j)th

entry of the MATRIX collection. This is ensured by the increasing restriction that enforces
the fact that the items of the MATRIX collection are sorted in lexicographically increasing
order according to attributes i and j.

Parts (A) and (B) of Figure 5.384 respectively show the initial and final graph associated
with the second graph constraint of the Example slot.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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VARIABLES

VALUES

1

1 23

234

SUM_WEIGHT_ARC=4+1+3+6=14

1:3

1:3,3

4

2:3

1

3:3

3

4:6

3:6,1

6

(A) (B)

Figure 5.384: Initial and final graph of the GLOBAL CARDINALITY WITH COSTS con-
straint
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5.170 GLOBAL CONTIGUITY

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [282]

Constraint GLOBAL CONTIGUITY(VARIABLES)

Synonym CONTIGUITY.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Enforce all variables of the VARIABLES collection to be assigned value 0 or 1. In addi-
tion, all variables assigned to value 1 appear contiguously.

Example (〈0, 1, 1, 0〉)

The GLOBAL CONTIGUITY constraint holds since the sequence 0 1 1 0 contains no
more than one group of contiguous 1.

All solutions Figure 5.385 gives all solutions to the following non ground instance of the
GLOBAL CONTIGUITY constraint: V1 ∈ [0, 1], V2 ∈ [0, 1], V3 = 1, V4 ∈ [0, 1],
GLOBAL CONTIGUITY(〈V1, V2, V3, V4〉).

¬ (〈0, 0,1, 0〉)
 (〈0, 0,1,1〉)
® (〈0,1,1, 0〉)
¯ (〈0,1,1,1〉)
° (〈1,1,1, 0〉)
± (〈1,1,1,1〉)

Figure 5.385: All solutions corresponding to the non ground example of the
GLOBAL CONTIGUITY constraint of the All solutions slot

Typical |VARIABLES| > 2

Typical model range(VARIABLES.var) > 1
ATLEAST(2, VARIABLES, 1)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Typical model
Typical conditions on the sample of a problem.
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Symmetry Items of VARIABLES can be reversed.

Arg. properties Contractible wrt. VARIABLES.

Usage The article [282] introducing this constraint refers to hardware configuration problems.

Algorithm A filtering algorithm for this constraint is described in [282].

Counting

Length (n) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Solutions 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301

Number of solutions for GLOBAL CONTIGUITY: domains 0..1

0 5 10 15 20 25

10−5

10−4

10−3

10−2

10−1

100

Length

O
bs

er
ve

d
de

ns
ity

Solution density for GLOBAL CONTIGUITY


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Solution density for GLOBAL CONTIGUITY

See also common keyword: GROUP, INFLEXION (sequence).

implies: ALL EQUAL EXCEPT 0, CONSECUTIVE VALUES,
MULTI GLOBAL CONTIGUITY, NO VALLEY.

related: ROOTS.

Keywords characteristic of a constraint: convex, automaton, automaton without counters, automa-
ton with same input symbol, reified automaton constraint.

combinatorial object: sequence.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

final graph structure: connected component.

Cond. implications GLOBAL CONTIGUITY(VARIABLES)
with |VARIABLES| > 2

implies SOME EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = variables2.var
• variables1.var = 1

Graph property(ies) NCC≤ 1

Graph model Each connected component of the final graph corresponds to one set of contiguous variables
that all take value 1.

Parts (A) and (B) of Figure 5.386 respectively show the initial and final graph associated
with the Example slot. The GLOBAL CONTIGUITY constraint holds since the final graph
does not contain more than one connected component. This connected component corre-
sponds to 2 contiguous variables that are both assigned to 1.

VARIABLES

1

2

3

4

NCC=1

CC#1

2:1

3:1

(A) (B)

Figure 5.386: Initial and final graph of the GLOBAL CONTIGUITY constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.387 depicts the automaton associated with the GLOBAL CONTIGUITY constraint.
To each variable VARi of the collection VARIABLES corresponds a signature variable that is
equal to VARi. There is no signature constraint.

s : in only 0 mode (0∗)

m : in stretch of 1 mode
(
1+
)

z : in 0 mode (after stretch of 1)
(
0+
)

STATE SEMANTICS

s m z

0

1

1

0

0

Figure 5.387: Automaton of the GLOBAL CONTIGUITY constraint

Q0 = s Q1

VAR1 VAR2

Qn ∈ {s,m, z}

VARn

Figure 5.388: Hypergraph of the reformulation corresponding to the automaton of the
GLOBAL CONTIGUITY constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.171 GOLOMB

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [207].

Constraint GOLOMB(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0
STRICTLY INCREASING(VARIABLES)

Purpose Given a strictly increasing sequence X1, X2, . . . , Xn, enforce all differences Xi −Xj
between two variables Xi and Xj (i > j) to be distinct.

Example (〈0, 1, 4, 6〉)

Figure 5.389 gives a graphical interpretation of the solution given in the example in
term of a graph: each vertex corresponds to a value of 〈0, 1, 4, 6〉, while each arc depicts
a difference between two values. The GOLOMB constraint holds since one can note that
these differences 1, 4, 6, 3, 5, 2 are all-distinct.

0 4

1

6

4

1

3

6 2

5

Figure 5.389: Graphical representation of the solution 0, 1, 4, 6 (differences are
displayed in light red and are pairwise distinct).

Typical |VARIABLES| > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Usage This constraint refers to the Golomb ruler problem. We quote the definition from [391]:
“A Golomb ruler is a set of integers (marks) a1 < · · · < ak such that all the differences
ai − aj (i > j) are distinct”.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Remark Different constraints models for the Golomb ruler problem were presented in [404].

Algorithm At a first glance, one could think that, because it looks so similar to the ALLDIFFERENT

constraint, we could have a perfect polynomial filtering algorithm. However this is not true
since one retrieves the same variable in different vertices of the graph. This leads to the fact
that one has incompatible arcs in the bipartite graph (the two classes of vertices correspond
to the pair of variables and to the fact that the difference between two pairs of variables
takes a specific value). However one can still reuse a similar filtering algorithm as for the
ALLDIFFERENT constraint, but this will not lead to perfect pruning.

Counting

Length (n) 2 3 4 5 6 7 8 9 10 11
Solutions 3 2 2 4 8 10 2 2 2 4

Number of solutions for GOLOMB: domains 0..k

2 4 6 8 10

10−21

10−17

10−13

10−9

10−5

10−1

Length

O
bs

er
ve

d
de
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ity

Solution density for GOLOMB


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Solution density for GOLOMB

See also common keyword: ALLDIFFERENT (all different).

implies: STRICTLY INCREASING.

Keywords characteristic of a constraint: disequality, difference, all different, derived collection.

puzzles: Golomb ruler.

Cond. implications • GOLOMB(VARIABLES)
implies INCREASING NVALUE(NVAL, VARIABLES)

when NVAL =nval(VARIABLES.var).

• GOLOMB(VARIABLES)
implies SOFT ALLDIFFERENT CTR(C, VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Derived Collection
col

(
PAIRS−collection(x−dvar, y−dvar),
[> −item(x− VARIABLES.var, y− VARIABLES.var)]

)
Arc input(s) PAIRS

Arc generator CLIQUE 7→collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) pairs1.y− pairs1.x = pairs2.y− pairs2.x

Graph property(ies) MAX NSCC≤ 1

Graph model When applied on the collection of items 〈VAR1, VAR2, VAR3, VAR4〉, the gen-
erator of derived collection generates the following collection of items:
〈VAR2 VAR1, VAR3 VAR1, VAR3 VAR2, VAR4 VAR1, VAR4 VAR2, VAR4 VAR3〉. Note
that we use a binary arc constraint between two vertices and that this binary constraint
involves four variables.

Parts (A) and (B) of Figure 5.390 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected components of the final graph. The constraint holds since all
the strongly connected components have at most one vertex: the differences 1, 2, 3, 4, 5, 6
that one can construct from the values 0, 1, 4, 6 assigned to the variables of the VARIABLES
collection are all-distinct.

(A)

PAIRS

1

2

3

4

5

6

(B) MAX_NSCC=1

MAX_NSCC

1:1,0 2:4,0 3:4,1 4:6,0 5:6,1 6:6,4

Figure 5.390: Initial and final graph of the GOLOMB constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.172 GRAPH CROSSING

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint GRAPH CROSSING(NCROSS, NODES)

Synonyms CROSSING, NCROSS.

Arguments NCROSS : dvar

NODES : collection(succ−dvar, x−int, y−int)

Restrictions NCROSS ≥ 0
required(NODES, [succ, x, y])
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
NCROSS is the number of proper intersections between line segments, where each line
segment is an arc of the directed graph defined by the arc linking a node and its unique
successor.

Example


2,

〈
succ− 1 x− 4 y− 7,
succ− 1 x− 2 y− 5,
succ− 1 x− 7 y− 6,
succ− 2 x− 1 y− 2,
succ− 3 x− 2 y− 2,
succ− 2 x− 5 y− 3,
succ− 3 x− 8 y− 2,
succ− 9 x− 6 y− 2,
succ− 10 x− 10 y− 6,
succ− 8 x− 10 y− 1

〉


Figure 5.391 shows the line segments associated with the NODES collection. One
can note the following line segments intersection:

• Arcs 8→ 9 and 7→ 3 cross,

• Arcs 5→ 3 and 6→ 2 cross also.

Consequently, the GRAPH CROSSING constraint holds since its first argument NCROSS is
set to 2.

Typical |NODES| > 1
range(NODES.succ) > 1
range(NODES.x) > 1
range(NODES.y) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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3 9 11 121 2 4 5 6 7 8 10

4

8

1

2

3

5

6

7 1

2

3

4 5

6

78

9

10

x

y

1: succ− 1 x− 4 y− 7
2: succ− 1 x− 2 y− 5
3: succ− 1 x− 7 y− 6
4: succ− 2 x− 1 y− 2
5: succ− 3 x− 2 y− 2
6: succ− 2 x− 5 y− 3
7: succ− 3 x− 8 y− 2
8: succ− 9 x− 6 y− 2
9: succ− 10 x− 10 y− 6

10: succ− 8 x− 10 y− 1

NODES

Figure 5.391: Illustration of the Example slot: a graph covering with 2 line segments
intersections in red (NCROSS = 2)

Symmetries • Attributes of NODES are permutable w.r.t. permutation (succ) (x, y) (permutation
applied to all items).

• One and the same constant can be added to the x attribute of all items of NODES.

• One and the same constant can be added to the y attribute of all items of NODES.

Arg. properties Functional dependency: NCROSS determined by NODES.

Usage This is a general crossing constraint that can be used in conjunction with one graph covering
constraint such as CYCLE, TREE or MAP. In many practical problems ones want not only
to cover a graph with specific patterns but also to avoid too much crossing between the arcs
of the final graph.

Remark We did not give a specific crossing constraint for each graph covering constraint. We feel
that it is better to start first with a more general constraint before going in the specificity of
the pattern that is used for covering the graph.

See also common keyword: CROSSING (line segments intersection),
CYCLE, MAP, TREE (graph constraint,graph partitioning constraint),
TWO LAYER EDGE CROSSING (line segments intersection).

Keywords constraint arguments: pure functional dependency.

constraint type: graph constraint, graph partitioning constraint.

geometry: geometrical constraint, line segments intersection.

modelling: functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE(<) 7→collection(n1, n2)

Arc arity 2

Arc constraint(s) • max(n1.x, NODES[n1.succ].x) ≥
min(n2.x, NODES[n2.succ].x)

• max(n2.x, NODES[n2.succ].x) ≥
min(n1.x, NODES[n1.succ].x)

• max(n1.y, NODES[n1.succ].y) ≥
min(n2.y, NODES[n2.succ].y)

• max(n2.y, NODES[n2.succ].y) ≥
min(n1.y, NODES[n1.succ].y)

•
(n2.x− NODES[n1.succ].x) ∗ (

NODES[n1.succ].y−
n1.y

)−

(NODES[n1.succ].x− n1.x) ∗ (
n2.y−
NODES[n1.succ].y

)
6= 0

•
(NODES[n2.succ].x− NODES[n1.succ].x) ∗ (

n2.y−
n1.y

)−

(n2.x− n1.x) ∗ (
NODES[n2.succ].y−
NODES[n1.succ].y

)
6= 0

• sign


∏( n2.x− NODES[n1.succ].x,

NODES[n1.succ].y− n1.y

)
−∏( NODES[n1.succ].x− n1.x,

n2.y− NODES[n1.succ].y

)
 6=

sign


∏( NODES[n2.succ].x− NODES[n1.succ].x,

n2.y− n1.y

)
−∏( n2.x− n1.x,

NODES[n2.succ].y− NODES[n1.succ].y

)


Graph property(ies) NARC= NCROSS

Graph model Each node is described by its coordinates x and y, and by its successor succ in the final cov-
ering. Note that the co-ordinates are initially fixed. We use the arc generator CLIQUE(<)
in order to avoid counting twice the same line segment crossing.

Parts (A) and (B) of Figure 5.392 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. Each arc of the final graph corresponds to a proper intersection
between two line segments.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

NODES

1

2

3

4

5

6

7

8

9

10

(B) NARC=2

5:3,2,2

6:2,5,3

7:3,8,2

8:9,6,2

Figure 5.392: Initial and final graph of the GRAPH CROSSING constraint
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5.173 GRAPH ISOMORPHISM

I B C J DESCRIPTION LINKS

Origin [288]

Constraint GRAPH ISOMORPHISM(NODES PATTERN, NODES TARGET, FUNCTION)

Arguments NODES PATTERN : collection(index−int, succ−sint)
NODES TARGET : collection(index−int, succ−sint)
FUNCTION : collection(image−dvar)

Restrictions required(NODES PATTERN, [index, succ])
NODES PATTERN.index ≥ 1
NODES PATTERN.index ≤ |NODES PATTERN|
distinct(NODES PATTERN, index)
NODES PATTERN.succ ≥ 1
NODES PATTERN.succ ≤ |NODES PATTERN|
required(NODES TARGET, [index, succ])
NODES TARGET.index ≥ 1
NODES TARGET.index ≤ |NODES TARGET|
distinct(NODES TARGET, index)
NODES TARGET.succ ≥ 1
NODES TARGET.succ ≤ |NODES TARGET|
|NODES TARGET| = |NODES PATTERN|
required(FUNCTION, [image])
FUNCTION.image ≥ 1
FUNCTION.image ≤ |NODES TARGET|
distinct(FUNCTION, image)
|FUNCTION| = |NODES PATTERN|

Purpose

Given two directed graphs PATTERN and TARGET enforce a one to one correspondence,
defined by the function FUNCTION, between the vertices of the graph PATTERN and the
vertices of the graph TARGET so that:

1. if there is an arc from u to v in the graph PATTERN, then there is also an arc from
the image of u to the image of v in the graph TARGET,

2. if there is no arc from u to v in the graph PATTERN, then there is also no arc from
the image of u to the image of v in the graph TARGET.

Both, the PATTERN and TARGET are fixed, and the vertices of both graphs are respectively
defined by the two collections of vertices NODES PATTERN and NODES TARGET.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



〈 index− 1 succ− {2, 4},
index− 2 succ− {1, 3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉
,

〈 index− 1 succ− ∅,
index− 2 succ− {1, 3, 4},
index− 3 succ− ∅,
index− 4 succ− {1, 2}

〉
,

〈4, 2, 3, 1〉


Figure 5.393 gives the pattern (see Part (A)) and target graph (see Part (B)) of the
Example slot as well as the one to one correspondence (see Part (C)) between the pattern
graph and the target graph. The GRAPH ISOMORPHISM constraint since the pattern and
target graphs have the same number of vertices and arcs and since:

• To the arc from vertex 1 to vertex 4 in the pattern graph corresponds the arc from
vertex 4 to 1 in the target graph.

• To the arc from vertex 1 to vertex 2 in the pattern graph corresponds the arc from
vertex 4 to 2 in the target graph.

• To the arc from vertex 2 to vertex 1 in the pattern graph corresponds the arc from
vertex 2 to 4 in the target graph.

• To the arc from vertex 2 to vertex 4 in the pattern graph corresponds the arc from
vertex 2 to 1 in the target graph.

• To the arc from vertex 2 to vertex 3 in the pattern graph corresponds the arc from
vertex 2 to 3 in the target graph.

Typical |NODES PATTERN| > 1

Symmetries • Items of NODES PATTERN are permutable.

• Items of NODES TARGET are permutable.

Algorithm A constraint approach is described in [406].

See also related: SUBGRAPH ISOMORPHISM.

Keywords constraint arguments: constraint involving set variables.

constraint type: predefined constraint, graph constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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1 2

34

¬ index− 1 succ− {2, 4}
 index− 2 succ− {1, 3, 4}
® index− 3 succ− ∅
¯ index− 4 succ− ∅

NODES PATTERN

2 3

41

¬ index− 1 succ− ∅
 index− 2 succ− {1, 3, 4}
® index− 3 succ− ∅
¯ index− 4 succ− {1, 2}

NODES TARGET

(A) (B)

¬ image− 4
 image− 2
® image− 3
¯ image− 1

FUNCTION

1 2

34

2 3

41



¬

®

¯

NODES PATTERN NODES TARGET(C)

Figure 5.393: Illustration of the Example slot: (A) The pattern graph, (B) the target
graph and (C) the correspondence, denoted by thick dashed arcs, between the vertices
of the pattern graph and the vertices of the target graph
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5.174 GROUP

I B C J

DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint GROUP



NGROUP,
MIN SIZE,
MAX SIZE,
MIN DIST,
MAX DIST,
NVAL,
VARIABLES,
VALUES



Arguments NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

MIN DIST : dvar

MAX DIST : dvar

NVAL : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NGROUP ≥ 0
MIN SIZE ≥ 0
MAX SIZE ≥ MIN SIZE

MIN DIST ≥ 0
MAX DIST ≥ MIN DIST

MAX DIST ≤ |VARIABLES|
NVAL ≥ MAX SIZE

NVAL ≥ NGROUP

NVAL ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj
(1 ≤ i ≤ j ≤ n) be consecutive variables of the collection of variables VARIABLES
such that all the following conditions simultaneously apply:

• All variables Xi, . . . , Xj take their values in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.

We call such a sequence of variables a group. Similarly an anti-group is a maximum
sequence of variables that are not assigned any value from VALUES. The constraint
GROUP is true if all the following conditions hold:

• There are exactly NGROUP groups of variables,

• MIN SIZE is the number of variables of the smallest group,

• MAX SIZE is the number of variables of the largest group,

• MIN DIST is the number of variables of the smallest anti-group,

• MAX DIST is the number of variables of the largest anti-group,

• NVAL is the number of variables that take their values in the set of values VALUES.

Example (2, 1, 2, 2, 4, 3, 〈2, 8, 1, 7, 4, 5, 1, 1, 1〉 , 〈0, 2, 4, 6, 8〉)

Given the fact that groups are formed by even values in {0, 2, 4, 6, 8} (i.e., values
expressed by the VALUES collection), the GROUP constraint holds since:

• Its first argument, NGROUP, is set to value 2 since the sequence 2 8 1 7 4 5 1 1 1
contains two groups of even values (i.e., group 2 8 and group 4).

• Its second argument, MIN SIZE, is set to value 1 since the smallest group of even
values involves only a single value (i.e., value 4).

• Its third argument, MAX SIZE, is set to value 2 since the largest group of even values
involves two values (i.e., group 2 8).

• Its fourth argument, MIN DIST, is set to value 2 since the smallest anti-group involves
two values (i.e., anti-group 1 7).

• Its fifth argument, MAX DIST, is set to value 4 since the largest anti-group involves
four values (i.e., anti-group 5 1 1 1).

• Its sixth argument, NVAL, is set to value 3 since the total number of even values of
the sequence 2 8 1 7 4 5 1 1 1 is equal to 3 (i.e., values 2, 8 and 4).

All solutions Figure 5.394 gives all solutions to the following non ground instance of the
GROUP constraint: NGROUP ∈ [2, 3], MIN SIZE ∈ [3, 4], MAX SIZE ∈ [3, 5],
MIN DIST ∈ [1, 2], MAX DIST ∈ [1, 2], NVAL ∈ [5, 6], V1 ∈ [0, 1], V2 ∈
[0, 1], V3 ∈ [0, 1], V4 ∈ [0, 1], V5 ∈ [0, 1], V6 ∈ [0, 1], V7 ∈ [0, 1], V8 ∈
[0, 1], V9 ∈ [0, 1], GROUP(NGROUP, MIN SIZE, MAX SIZE, MIN DIST, MAX DIST, NVAL,
〈V1, V2, V3, V4, V5, V6, V7, V8, V9〉, 〈1〉),


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.



1358 GROUP

¬ (2,3,3,1,2,6, 〈0,0,1,1,1,0,1,1,1〉, 〈1〉)
 (2,3,3,1,2,6, 〈0,1,1,1,0,0,1,1,1〉, 〈1〉)
® (2,3,3,1,1,6, 〈0,1,1,1,0,1,1,1,0〉, 〈1〉)
¯ (2,3,3,1,2,6, 〈1,1,1,0,0,1,1,1,0〉, 〈1〉)
° (2,3,3,1,2,6, 〈1,1,1,0,1,1,1,0,0〉, 〈1〉)

Figure 5.394: All solutions corresponding to the non ground example of the GROUP
constraint of the All solutions slot

Typical NGROUP > 0
MIN SIZE > 0
MAX SIZE > MIN SIZE

MIN DIST > 0
MAX DIST > MIN DIST

MAX DIST < |VARIABLES|
NVAL > MAX SIZE

NVAL > NGROUP

NVAL < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items of VARIABLES can be reversed.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Functional dependency: NGROUP determined by VARIABLES and VALUES.

• Functional dependency: MIN SIZE determined by VARIABLES and VALUES.

• Functional dependency: MAX SIZE determined by VARIABLES and VALUES.

• Functional dependency: MIN DIST determined by VARIABLES and VALUES.

• Functional dependency: MAX DIST determined by VARIABLES and VALUES.

• Functional dependency: NVAL determined by VARIABLES and VALUES.

Usage A typical use of the GROUP constraint in the context of timetabling is as follow: The value
of the ith variable of the VARIABLES collection corresponds to the type of shift (i.e., night,
morning, afternoon, rest) performed by a specific person on day i. A complete period
of work is represented by the variables of the VARIABLES collection. In this context the
GROUP constraint expresses for a person:


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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• The number of periods of consecutive night-shift during a complete period of work.

• The total number of night-shift during a complete period of work.

• The maximum number of allowed consecutive night-shift.

• The minimum number of days, which do not correspond to a night-shift, between
two consecutive sequences of night-shift.

Remark For this constraint we use the possibility to express directly more than one constraint on the
parameters of the final graph we want to obtain. For more propagation, it is crucial to keep
this in a single constraint, since strong relations relate the different parameters of a graph.
This constraint is very similar to the GROUP constraint introduced in CHIP, except that
here, the MIN DIST and MAX DIST constraints apply also for the two borders: we cannot
start or end with a group of k consecutive variables that take their values outside VALUES

and such that k is less than MIN DIST or k is greater than MAX DIST.

See also common keyword: CHANGE CONTINUITY, FULL GROUP (timetabling con-
straint,sequence), GLOBAL CONTIGUITY (sequence),
GROUP SKIP ISOLATED ITEM (timetabling constraint,sequence),
MULTI GLOBAL CONTIGUITY (sequence),
PATTERN, STRETCH CIRCUIT (timetabling constraint),
STRETCH PATH (timetabling constraint,sequence).

shift of concept: CONSECUTIVE GROUPS OF ONES.

used in graph description: IN, NOT IN.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: alpha-acyclic constraint network(2), alpha-acyclic con-
straint network(3).

constraint type: timetabling constraint.

filtering: glue matrix.

final graph structure: connected component, vpartition, consecutive loops are connected.

modelling: functional dependency.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.cosytec.com
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • IN(variables1.var, VALUES)
• IN(variables2.var, VALUES)

Graph property(ies) • NCC= NGROUP

•MIN NCC= MIN SIZE

•MAX NCC= MAX SIZE

• NVERTEX= NVAL

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • NOT IN(variables1.var, VALUES)
• NOT IN(variables2.var, VALUES)

Graph property(ies) •MIN NCC= MIN DIST

•MAX NCC= MAX DIST

Graph model We use two graph constraints for modelling the GROUP constraint: a first one for specifying
the constraints on NGROUP, MIN SIZE, MAX SIZE and NVAL, and a second one for stating
the constraints on MIN DIST and MAX DIST. In order to generate the initial graph related to
the first graph constraint we use:

• The arc generators PATH and LOOP ,

• The binary constraint variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES.

On the first graph constraint of the Example slot this produces an initial graph de-
picted in part (A) of Figure 5.395. We use PATH LOOP and the binary constraint
variables1.var ∈ VALUES ∧ variables2.var ∈ VALUES in order to catch the two
following situations:

• A binary constraint has to be used in order to get the notion of group: Consecutive
variables that take their values in VALUES.

• If we only use PATH then we would lose the groups that are composed from a single
variable since the predecessor and the successor arc would be destroyed; this is why
we use also the LOOP arc generator.

Part (B) of Figure 5.395 shows the final graph associated with the first graph constraint
of the Example slot. Since we use the NVERTEX graph property, the vertices of
the final graph are stressed in bold. In addition, since we use the MIN NCC and the
MAX NCC graph properties, we also show the smallest and largest connected compo-
nents of the final graph.

The GROUP constraint of the Example slot holds since:


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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VARIABLES

1

2

3

4

5

6

7

8

9

NCC=2
MIN_NCC=1
MAX_NCC=2
NVERTEX=3

MIN_NCC MAX_NCC

5:4 1:2

2:8

(A) (B)

Figure 5.395: Initial and final graph of the GROUP constraint
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• The final graph of the first graph constraint has two connected components. There-
fore the number of groups NGROUP is equal to two.

• The number of vertices of the smallest connected component of the final graph of the
first graph constraint is equal to 1. Therefore MIN SIZE is equal to 1.

• The number of vertices of the largest connected component of the final graph of the
first graph constraint is equal to 2. Therefore MAX SIZE is equal to 2.

• The number of vertices of the smallest connected component of the final graph of the
second graph constraint is equal to 2. Therefore MIN DIST is equal to 2.

• The number of vertices of the largest connected component of the final graph of the
second graph constraint is equal to 4. Therefore MAX DIST is equal to 4.

• The number of vertices of the final graph of the first graph constraint is equal to three.
Therefore NVAL is equal to 3.
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Automaton Figures 5.396, 5.398, 5.401, 5.403, 5.405 and 5.407 depict the different automata associated
with the GROUP constraint. For the automata that respectively compute NGROUP, MIN SIZE,
MAX SIZE, MIN DIST, MAX DIST and NVAL we have a 0-1 signature variable Si for each
variable VARi of the collection VARIABLES. The following signature constraint links VARi
and Si: VARi ∈ VALUES⇔ Si.

s : not in VALUES mode (/∈∗)
i : in VALUES mode

(
∈+
)

STATE SEMANTICS

N
G
R
O
U
P

=
C

s{C ← 0}

i

NOT IN(VARi, VALUES)

IN
(V
A
R
i ,
V
A
L
U
E
S
),

{
C
←

C
+

1}

IN(VARi, VALUES)
N

O
T

IN
(V
A
R
i
,V
A
L
U
E
S
)

s (/∈∗) i
(
∈+
)

s (/∈∗)
−→
C +

←−
C

−→
C +

←−
C

i
(
∈+
) −→

C +
←−
C

−→
C − 1 +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.396: Automaton for the NGROUP argument of the GROUP constraint and its
glue matrix, where counter C is the number of groups encountered so far

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NGROUP

Qn

Sn

VAR1 VAR2 VARn

Figure 5.397: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the NGROUP argument of the GROUP constraint (since all states of the
automaton are accepting there is no restriction on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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s : not in VALUES mode (/∈∗)
i : in VALUES mode

(
∈+
)

STATE SEMANTICS

M
I
N
S
I
Z
E

=
m

in
(C

,D
)

s

{
C ← |VARIABLES|,
D ← 0

}

i

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{D ← 1}

IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{C ← min(C,D)}

s (/∈∗) i
(
∈+
)

s (/∈∗) min(
−→
C ,
−→
D +

←−
D,
←−
C ) min(

−→
C ,
←−
D,
←−
C )

i
(
∈+
)

min(
−→
C ,
−→
D,
←−
C ) min(

−→
C ,
−→
D +

←−
D,
←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp. rep-

resent the counters values C, D at the end of a
prefix and at the end of the corresponding reverse
suffix that partitions the sequence VARIABLES.

Figure 5.398: Automaton for the MIN SIZE argument of the GROUP constraint and its
glue matrix; countersC andD respectively correspond to the size of the smallest group
encountered so far, and to the size of the current group.
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GROUP(MIN SIZE = 2, 〈0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1〉,V = {1})

GROUP

( −−−−−−→
MIN SIZE7 = 1,

〈 0,1,1,1,0,0,1 〉

)
GROUP

( ←−−−−−−
MIN SIZE6 = 1,

〈 1,1,1,1,0,1 〉

)

glue matrix entry associated with the state pair (i, i):
MIN SIZE = min

(−→
C 7,
−→
D7 +

←−
D6,
←−
C 6

)
= min(3, 1 + 1, 4) = 2

Figure 5.399: Illustrating the use of the state pair (i, i) of the glue matrix for linking
MIN SIZE with the counters variables obtained after reading the prefix 0, 1, 1, 1, 0, 0, 1
and corresponding suffix 1, 0, 1, 1, 1, 1 of the sequence 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1;
note that the suffix 1, 0, 1, 1, 1, 1 (in pink) is proceed in reverse order; the left
(resp. right) table shows the initialisation (for i = 0) and the evolution (for i > 0) of the
state of the automaton and its countersC andD upon reading the prefix 0, 1, 1, 1, 0, 0, 1
(resp. the reverse suffix 1, 1, 1, 1, 0, 1).
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M
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D0 = 0

C0 = n

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.400: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MIN SIZE argument of the GROUP constraint (since all states of
the automaton are accepting there is no restriction on the last variable Qn)

MAX SIZE = max(C,D)

s

{C ← 0, D ← 0}

IN(VARi, VALUES),
{D ← D + 1}

NOT IN(VARi, VALUES),
{C ← max(C,D), D ← 0}

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp. represent the

counters values C, D at the end of a prefix and at the
end of the corresponding reverse suffix that partitions the
sequence VARIABLES.

s

s max(
−→
C ,
−→
D +

←−
D,
←−
C )

Figure 5.401: Automaton for the MAX SIZE argument of the GROUP constraint and its
glue matrix; counters C and D respectively correspond to the size of the largest group
encountered so far, and to the size of the current group.
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Figure 5.402: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MAX SIZE argument of the GROUP constraint
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s : in VALUES mode (∈∗)
i : not in VALUES mode

(
/∈+
)

STATE SEMANTICS

M
I
N
D
I
S
T

=
m

in
(C

,D
)

s

{
C ← |VARIABLES|,
D ← 0

}

i

IN(VARi, VALUES)

NOT IN(VARi, VALUES),
{D ← 1}

NOT IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{C ← min(C,D)}

s (∈∗) i
(
/∈+
)

s (∈∗) min(
−→
C ,
−→
D +

←−
D,
←−
C ) min(

−→
C ,
←−
D,
←−
C )

i
(
/∈+
)

min(
−→
C ,
−→
D,
←−
C ) min(

−→
C ,
−→
D +

←−
D,
←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp. rep-

resent the counters values C, D at the end of a
prefix and at the end of the corresponding reverse
suffix that partitions the sequence VARIABLES.

Figure 5.403: Automaton for the MIN DIST argument of the GROUP constraint and
its glue matrix; counters C and D respectively correspond to the size of the smallest
anti-group encountered so far, and to the size of the current anti-group.
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Figure 5.404: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MIN DIST argument of the GROUP constraint (since all states of
the automaton are accepting there is no restriction on the last variable Qn)
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MAX DIST = max(C,D)

s

{C ← 0, D ← 0}

NOT IN(VARi, VALUES),
{D ← D + 1}

IN(VARi, VALUES),
{C ← max(C,D), D ← 0}

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp. represent the

counters values C, D at the end of a prefix and at the
end of the corresponding reverse suffix that partitions the
sequence VARIABLES.

s

s max(
−→
C ,
−→
D +

←−
D,
←−
C )

Figure 5.405: Automaton for the MAX DIST argument of the GROUP constraint and
its glue matrix; counters C and D respectively correspond to the size of the largest
anti-group encountered so far, and to the size of the current anti-group.
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Figure 5.406: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MAX DIST argument of the GROUP constraint

NVAL = C

s

{C ← 0}

NOT IN(VARi, VALUES)
IN(VARi, VALUES),
{C ← C + 1}

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

s

s
−→
C +

←−
C

Figure 5.407: Automaton for the NVAL argument of the GROUP constraint and its glue
matrix
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C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NVAL

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.408: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the NVAL argument of the GROUP constraint
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5.175 GROUP SKIP ISOLATED ITEM

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from GROUP.

Constraint GROUP SKIP ISOLATED ITEM


NGROUP,
MIN SIZE,
MAX SIZE,
NVAL,
VARIABLES,
VALUES


Arguments NGROUP : dvar

MIN SIZE : dvar

MAX SIZE : dvar

NVAL : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions NGROUP ≥ 0
3 ∗ NGROUP ≤ |VARIABLES|+ 1
MIN SIZE ≥ 0
MIN SIZE 6= 1
MAX SIZE ≥ MIN SIZE

NVAL ≥ MAX SIZE

NVAL ≥ NGROUP

NVAL ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose

Let n be the number of variables of the collection VARIABLES. Let Xi, Xi+1, . . . , Xj
(1 ≤ i < j ≤ n) be consecutive variables of the collection of variables VARIABLES
such that the following conditions apply:

• All variables Xi, . . . , Xj take their values in the set of values VALUES,

• i = 1 or Xi−1 does not take a value in VALUES,

• j = n or Xj+1 does not take a value in VALUES.

We call such a set of variables a group. The constraint GROUP SKIP ISOLATED ITEM is
true if all the following conditions hold:

• There are exactly NGROUP groups of variables,

• The number of variables of the smallest group is MIN SIZE,

• The number of variables of the largest group is MAX SIZE,

• The number of variables that take their values in the set of values VALUES is equal
to NVAL.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example (1, 2, 2, 3, 〈2, 8, 1, 7, 4, 5, 1, 1, 1〉 , 〈0, 2, 4, 6, 8〉)

Given the fact that groups are formed by even values in {0, 2, 4, 6, 8} (i.e., values
expressed by the VALUES collection), and the fact that isolated even values are ignored, the
GROUP SKIP ISOLATED ITEM constraint holds since:

• Its first argument, NGROUP, is set to value 1 since the sequence 2 8 1 7 4 5 1 1 1 con-
tains only one group of even values involving more than one even value (i.e., group
2 8).

• Its second and third arguments, MIN SIZE and MAX SIZE, are both set to 2 since
the only group of even values with more than one even value involves two values
(i.e., group 2 8).

• The fourth argument, NVAL, is fixed to 2 since it corresponds to the total number of
even values belonging to groups involving more than one even value (i.e., value 4 is
discarded since it is an isolated even value of the sequence 2 8 1 7 4 5 1 1 1).

Typical NGROUP > 0
MIN SIZE > 0
NVAL > MAX SIZE

NVAL > NGROUP

NVAL < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 0
|VARIABLES| > |VALUES|

Symmetries • Items of VARIABLES can be reversed.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Functional dependency: NGROUP determined by VARIABLES and VALUES.

• Functional dependency: MIN SIZE determined by VARIABLES and VALUES.

• Functional dependency: MAX SIZE determined by VARIABLES and VALUES.

• Functional dependency: NVAL determined by VARIABLES and VALUES.

Usage This constraint is useful in order to specify rules about how rest days should be allocated
to a person during a period of n consecutive days. In this case VALUES are the codes for the
rest days (perhaps a single value) and VARIABLES corresponds to the amount of work done
during n consecutive days. We can then express a rule like: in a month one should have at
least 4 periods of at least 2 rest days (isolated rest days are not counted as rest periods).

Remark The following invariant imposes a limit on the maximum number of groups wrt the mini-
mum size of a group and the total number of variables: NGROUP·(max(MIN SIZE, 2)+1) ≤
|VARIABLES|+ 1.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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See also common keyword: CHANGE CONTINUITY, GROUP, STRETCH PATH (timetabling con-
straint,sequence).

used in graph description: IN.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint.

constraint network structure: alpha-acyclic constraint network(2), alpha-acyclic con-
straint network(3).

constraint type: timetabling constraint.

filtering: glue matrix.

final graph structure: strongly connected component.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CHAIN 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • IN(variables1.var, VALUES)
• IN(variables2.var, VALUES)

Graph property(ies) • NSCC= NGROUP

•MIN NSCC= MIN SIZE

•MAX NSCC= MAX SIZE

• NVERTEX= NVAL

Graph model We use the CHAIN arc generator in order to produce the initial graph. In the context of the
Example slot, this creates the graph depicted in part (A) of Figure 5.409. We use CHAIN
together with the arc constraint variables1.var ∈ VALUES∧variables2.var ∈ VALUES

in order to skip the isolated variables that take a value in VALUES that we do not want
to count as a group. This is why, on the example, value 4 is not counted as a group.
Part (B) of Figure 5.409 shows the final graph associated with the Example slot. The
GROUP SKIP ISOLATED ITEM constraint of the Example slot holds since:

• The final graph contains one strongly connected component. Therefore the number
of groups is equal to one.

• The unique strongly connected component of the final graph contains two vertices.
Therefore MIN SIZE and MAX SIZE are both equal to 2.

• The number of vertices of the final graph is equal to two. Therefore NVAL is equal to
2.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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VARIABLES

1

2

3

4

5

6

7

8

9

NSCC=1
MIN_NSCC=2
MAX_NSCC=2
NVERTEX=2

SCC#1

1:2

2:8

(A) (B)

Figure 5.409: Initial and final graph of the GROUP SKIP ISOLATED ITEM constraint
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Automaton Figures 5.410, 5.412, 5.414 and 5.416 depict the different automata associated with the
GROUP SKIP ISOLATED ITEM constraint. For the automata that respectively compute
NGROUP, MIN SIZE, MAX SIZE and NVAL we have a 0-1 signature variable Si for each vari-
able VARi of the collection VARIABLES. The following signature constraint links VARi and
Si: VARi ∈ VALUES⇔ Si.

s : not in VALUES mode (/∈∗)
i, j : in VALUES mode

(
∈+
)

STATES SEMANTICS

NGROUP = C

s

{C ← 0}

ij

NOT IN(VARi, VALUES)

IN
(V
A
R
i ,
V
A
L
U
E
S
)

N
O

T
IN

(V
A
R
i
,V
A
L
U
E
S
)

IN(VARi, VALUES),
{C ← C + 1}

IN(VARi, VALUES)

NOT
IN

(V
AR
i
, V
AL
UE
S)

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and at
the end of the corresponding reverse suffix that
partitions the sequence VARIABLES.

s (/∈∗) i
(
∈+
)

j
(
∈+
)

s (/∈∗) −→
C +

←−
C

−→
C +

←−
C

−→
C +

←−
C

i
(
∈+
) −→

C +
←−
C

−→
C + 1 +

←−
C

−→
C +

←−
C

j
(
∈+
) −→

C +
←−
C

−→
C +

←−
C

−→
C − 1 +

←−
C

Figure 5.410: Automaton for the NGROUP argument of the
GROUP SKIP ISOLATED ITEM constraint and its glue matrix, where counter C
is the number of groups encountered so far

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NGROUP

Qn

Sn

VAR1 VAR2 VARn

Figure 5.411: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the NGROUP argument of the GROUP SKIP ISOLATED ITEM constraint
(since all states of the automaton are accepting there is no restriction on the last variable
Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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s : not in VALUES mode (/∈∗)
t, r : in VALUES mode

(
∈+
)

STATES SEMANTICS

MIN SIZE = min(C,D)

s

{
C ← |VARIABLES|,
D ← 0

}

tr

NOT IN(VARi, VALUES)

IN
(V
A
R
i ,
V
A
L
U
E
S
)

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{D ← 2}

IN(VARi, VALUES)
{D ← D + 1}

NOT
IN

(V
ARi

, V
AL
UE
S)

{C
←

min(C
,D

)}

s (/∈∗) t
(
∈+
)

r
(
∈+
)

s (/∈∗) min(
−→
C ,
−→
D +

←−
D,
←−
C ) min(

−→
C ,
−→
D +

←−
D,
←−
C ) min(

−→
C ,
←−
D,
←−
C )

t
(
∈+
)

min(
−→
C ,
−→
D +

←−
D,
←−
C ) 2 min(

−→
C ,
←−
D + 1,

←−
C )

r
(
∈+
)

min(
−→
C ,
−→
D,
←−
C ) min(

−→
C ,
−→
D + 1,

←−
C ) min(

−→
C ,
−→
D +

←−
D,
←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp. represent the counters values C, D at the end

of a prefix and at the end of the corresponding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.412: Automaton for the MIN SIZE argument of the
GROUP SKIP ISOLATED ITEM constraint and its glue matrix; counters C and D
respectively correspond to the size of the smallest group encountered so far, and to the
size of the current group.
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M
I
N
S
I
Z
E

=
m

in
(C
n
,D

n
)

D0 = 0

C0 = n

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.413: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MIN SIZE argument of the GROUP SKIP ISOLATED ITEM con-
straint (since all states of the automaton are accepting there is no restriction on the last
variable Qn)
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s : not in VALUES mode (/∈∗)
t, r : in VALUES mode

(
∈+
)

STATES SEMANTICS

MAX SIZE = max(C,D)

s

{
C ← 0,
D ← 0

}

tr

NOT IN(VARi, VALUES)

IN
(V
A
R
i ,
V
A
L
U
E
S
)

NOT IN(VARi, VALUES)

IN(VARi, VALUES),
{C ← max(C, 2), D ← 2}

IN(VARi, VALUES)
{C ← max(C,D + 1), D ← D + 1}

NOT
IN

(V
ARi

, V
AL
UE
S)

s (/∈∗) t
(
∈+
)

r
(
∈+
)

s (/∈∗) max(
−→
C ,
←−
C ) max(

−→
C ,
←−
C ) max(

−→
C ,
←−
C )

t
(
∈+
)

max(
−→
C ,
←−
C ) max(

−→
C , 2,

←−
C ) max(

−→
C ,
←−
D + 1,

←−
C )

r
(
∈+
)

max(
−→
C ,
←−
C ) max(

−→
C ,
−→
D + 1,

←−
C ) max(

−→
C ,
−→
D +

←−
D,
←−
C )

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D resp. represent the counters values C, D at the end

of a prefix and at the end of the corresponding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.414: Automaton for the MAX SIZE argument of the
GROUP SKIP ISOLATED ITEM constraint and its glue matrix; counters C and D
respectively correspond to the size of the largest group encountered so far, and to the
size of the current group.
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M
A
X
S
I
Z
E

=
m

a
x
(C
n
,D

n
)

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn

Cn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.415: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the MAX SIZE argument of the GROUP SKIP ISOLATED ITEM con-
straint (since all states of the automaton are accepting there is no restriction on the last
variable Qn)

NVAL = C

s

{C ← 0}

NOT IN(VARi, VALUES)
IN(VARi, VALUES),
{C ← C + 1}

s

s
−→
C +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.416: Automaton for the NVAL argument of the GROUP SKIP ISOLATED ITEM
constraint and its glue matrix

C0 = 0

Q0 = s

C1

Q1

S1 S2

Cn = NVAL

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.417: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the NVAL argument of the GROUP SKIP ISOLATED ITEM constraint
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5.176 GT

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint GT(VAR1, VAR2)

Synonyms REL, XGTY.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is strictly greater than the second variable.

Example (8, 1)

The GT constraint holds since 8 is strictly greater than 1.

Symmetries • VAR1 can be replaced by any value > VAR2.

• VAR2 can be replaced by any value < VAR1.

Systems GT in Choco, REL in Gecode, XGTY in JaCoP, #> in SICStus.

See also common keyword: EQ (binary constraint,arithmetic constraint).

implies: GEQ, NEQ.

implies (if swap arguments): LT.

negation: LEQ.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.177 HIGHEST PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK.

Constraint HIGHEST PEAK(HEIGHT, VARIABLES)

Arguments HEIGHT : dvar

VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vk and Vk > Vk+1. HEIGHT is the maximum value of the peak variables. If no
such variable exists HEIGHT is equal to MININT.

Example (8, 〈1, 1, 4, 8, 6, 2, 7, 1〉)
(1, 〈0, 1, 1, 0, 0, 1, 0, 1〉)

The first HIGHEST PEAK constraint holds since 8 is the maximum peak of the se-
quence 1 1 4 8 6 2 7 1.

11

4

8

6

2

7

1

heighest
peak

second
peak

HEIGHT = 8

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

5

6

7

8

1 1

4

6

2

7

1

variables

va
lu

es

Figure 5.418: Illustration of the first constraint of the Example slot: a sequence of
eight variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 1, 1, 4, 8, 6,
2, 7, 1 and its corresponding highest peak 8

Typical |VARIABLES| > 2
range(VARIABLES.var) > 2
PEAK(VARIABLES.var) > 0


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model nval(VARIABLES.var) > 2

Symmetry Items of VARIABLES can be reversed.

Arg. properties Functional dependency: HEIGHT determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for HIGHEST PEAK: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4

Length

O
bs

er
ve

d
de

ns
ity

Solution density for HIGHEST PEAK


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0.9

1

1.1

1.2

Length

O
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ve

d
de
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ity

Solution density for HIGHEST PEAK

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

-1000000 9 50 295 1792 11088 69498 439791
1 - 1 11 92 697 5036 35443
2 - 4 44 380 3000 22632 166208
3 - 9 99 900 7587 61389 484020
4 - - 176 1712 15680 138544 1195056
5 - - - 2900 29125 283250 2693425
6 - - - - 50472 540576 5665896
7 - - - - - 976227 11233250
8 - - - - - - 21133632

Solution count for HIGHEST PEAK: domains 0..n
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Solution density for HIGHEST PEAK

size 6
size 7
size 8
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Parameter value as fraction of length

O
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d
de
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ity

Solution density for HIGHEST PEAK

size 6
size 7
size 8

See also common keyword: DEEPEST VALLEY, PEAK (sequence).

implies: BETWEEN MIN MAX.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.419 depicts the automaton associated with the HIGHEST PEAK constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
signature variable Si. The following signature constraint links VARi, VARi+1 and Si:

VARi < VARi+1 ⇔ Si = 0 ∧ VARi = VARi+1 ⇔ Si = 1 ∧ VARi > VARi+1 ⇔ Si = 2.

s : stationary/decreasing mode ({> | =}∗)
u : increasing mode (< {< | =}∗)

STATE SEMANTICS

H
E
I
G
H
T

=
C

s{C ← minint}

u

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1

VARi = VARi+1VARi < VARi+1

VARi > VARi+1,
{C ← max(C, VARi)}

s u

s max(
−→
C ,
←−
C )

max(
−→
C ,
←−
C )

u

max(
−→
C ,
←−
C ) max(

−→
C ,
−→
X,
←−
C )

Glue matrix where
−→
C and

←−
C resp. repre-

sent the counters values C at the end of a
prefix and at the end of the corresponding
reverse suffix that partitions the sequence
VARIABLES;

−→
X denotes the last variable of

the prefix.

Figure 5.419: Automaton of the HIGHEST PEAK constraint and its glue matrix (state
s means that we are in decreasing or stationary mode, state u means that we are in
increasing mode, a new peak is detected each time we switch from increasing to de-
creasing mode and the counterC is updated accordingly); minint is the smallest integer
that can be represented on a machine

C0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = HEIGHT

Qn−1 ∈ {s, u}

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.420: Hypergraph of the reformulation corresponding to the automaton of the
HIGHEST PEAK constraint (C0 is set to minint the largest integer that can be repre-
sented on a machine)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.178 IMPLY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint IMPLY(VAR, VARIABLES)

Synonyms REL, IFTHEN.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| = 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2. Enforce VAR = (VAR1 ⇒
VAR2).

Example (1, 〈0, 0〉)
(1, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)

Symmetry All occurrences of 0 in VAR and in VARIABLES.var can be set to 1.

Arg. properties Functional dependency: VAR determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 0 0 0 0 0 0

Number of solutions for IMPLY: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2
Total 4

Parameter
value

0 1
1 3

Solution count for IMPLY: domains 0..n
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Systems REIFIEDLEFTIMP in Choco, REL in Gecode, IFTHENBOOL in JaCoP, #=> in SICStus.

See also common keyword: AND, EQUIVALENT, NAND, NOR, OR, XOR (Boolean constraint).

implies: ATLEAST NVALUE, SOFT ALLDIFFERENT CTR.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/


1392 IMPLY

Automaton Figure 5.421 depicts the automaton associated with the IMPLY constraint. To the first argu-
ment VAR of the IMPLY constraint corresponds the first signature variable. To each variable
VARi of the second argument VARIABLES of the IMPLY constraint corresponds the next
signature variable. There is no signature constraint.

s

i j

k l

t

VAR = 0 VAR = 1

VAR1 = 1 VAR1 = 1

VAR2 = 0 VAR2 = 1

VAR2 ∈ {0, 1}

VAR1 = 0

Figure 5.421: Automaton of the IMPLY constraint

Q0 = s Q1

VAR

Q2

VAR1

Q3 = t

VAR2

Figure 5.422: Hypergraph of the reformulation corresponding to the automaton of the
IMPLY constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.179 IN

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Domain definition.

Constraint IN(VAR, VALUES)

Synonyms DOM, IN SET, MEMBER.

Arguments VAR : dvar

VALUES : collection(val−int)

Restrictions |VALUES| > 0
required(VALUES, val)
distinct(VALUES, val)

Purpose Enforce the domain variable VAR to take a value within the values described by the
VALUES collection.

Example (3, 〈1, 3〉)

The IN constraint holds since its first argument VAR = 3 occurs within the collec-
tion of values VALUES = 〈1, 3〉.

Typical |VALUES| > 1

Symmetries • Items of VALUES are permutable.

• VAR can be set to any value of VALUES.val.

• One and the same constant can be added to VAR as well as to the val attribute of
all items of VALUES.

Arg. properties Extensible wrt. VALUES.

Remark Entailment occurs immediately after posting this constraint.

The IN constraint is called DOM in Gecode (http://www.gecode.org/), and MEMBER

in MiniZinc (http://www.minizinc.org/). In MiniZinc the val attribute is not nec-
essarily fixed, i.e. it can be a domain variable.

Systems MEMBER in Choco, REL in Gecode, DOM in Gecode, IN in JaCoP, MEMBER in MiniZinc,
IN in SICStus, IN SET in SICStus.

Used in AMONG, CARDINALITY ATMOST PARTITION, GROUP, GROUP SKIP ISOLATED ITEM,
IN SAME PARTITION, OPEN AMONG.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.

http://www.gecode.org/
http://www.minizinc.org/
http://www.minizinc.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#member
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/


IN 1395

See also common keyword: DOMAIN (domain definition), IN INTERVAL, IN SAME PARTITION,
IN SET (value constraint).

implied by: MAXIMUM, MINIMUM.

implies: BETWEEN MIN MAX.

negation: NOT IN.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint, derived collection.

constraint arguments: unary constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency.

modelling: included, domain definition.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col(VARIABLES−collection(var−dvar), [item(var− VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC= 1

Graph model Parts (A) and (B) of Figure 5.423 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLES

VALUES

1

12

NARC=1

1:3

2:3

(A) (B)

Figure 5.423: Initial and final graph of the IN constraint

Signature Since all the val attributes of the VALUES collection are distinct and because of the arc con-
straint variables.var = values.val the final graph contains at most one arc. Therefore
we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.424 depicts the automaton associated with the IN constraint. Let VALi be the val
attribute of the ith item of the VALUES collection. To each pair (VAR, VALi) corresponds a
0-1 signature variable Si as well as the following signature constraint: VAR = VALi ⇔ Si.

s t

VAR 6= VALi

VAR = VALi

VAR 6= VALi

Figure 5.424: Automaton of the IN constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

VAR

Figure 5.425: Hypergraph of the reformulation corresponding to the automaton of the
IN constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.180 IN INTERVAL

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Domain definition.

Constraint IN INTERVAL(VAR, LOW, UP)

Synonyms DOM, IN.

Arguments VAR : dvar

LOW : int

UP : int

Restriction LOW ≤ UP

Purpose Enforce the domain variable VAR to take a value within the interval [LOW, UP].

Example (3, 2, 5)

The IN INTERVAL constraint holds since its first argument VAR = 3 is greater than
or equal to its second argument LOW = 2 and less than or equal to its third argument
UP = 5.

Typical LOW < UP

VAR > LOW

VAR < UP

Symmetries • LOW can be decreased.

• UP can be increased.

• An occurrence of a value of VAR can be replaced by any other value in [LOW, UP].

• One and the same constant can be added to VAR, LOW and UP.

Remark Entailment occurs immediately after posting this constraint.

The IN INTERVAL constraint is referenced under the name DOM in Gecode.

Systems MEMBER in Choco, DOM in Gecode, IN in JaCoP, IN in SICStus.

See also common keyword: DOMAIN, IN (domain definition).

generalisation: IN INTERVAL REIFIED (reified version), IN INTERVALS (single interval
replaced by a set of intervals), IN SET (interval replaced by set variable).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
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Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint, derived collection.

constraint arguments: unary constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: value constraint.

filtering: arc-consistency.

modelling: interval, domain definition.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collections
col(VARIABLE−collection(var−dvar), [item(var− VAR)])

col

(
INTERVAL−collection(low−int, up−int),
[item(low− LOW, up− UP)]

)
Arc input(s) VARIABLE INTERVAL

Arc generator PRODUCT 7→collection(variable, interval)

Arc arity 2

Arc constraint(s) • variable.var ≥ interval.low
• variable.var ≤ interval.up

Graph property(ies) NARC= 1

Graph model Parts (A) and (B) of Figure 5.426 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLE

INTERVAL

1

1

NARC=1

1:3

1:2,5

(A) (B)

Figure 5.426: Initial and final graph of the IN INTERVAL constraint


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.427 depicts the automaton associated with the IN INTERVAL constraint. We have
a single 0-1 signature variable S as well as the following signature constraint: VAR ≥
LOW ∧ VAR ≤ UP⇔ S.

s t
VAR ≥ LOW ∧ VAR ≤ UP

Figure 5.427: Automaton of the IN INTERVAL constraint

Q0 = s Q1 = t

S

VAR

Figure 5.428: Hypergraph of the reformulation corresponding to the automaton of the
IN INTERVAL constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.181 IN INTERVAL REIFIED

I B C J DESCRIPTION LINKS

Origin Reified version of IN INTERVAL.

Constraint IN INTERVAL REIFIED(VAR, LOW, UP, B)

Synonyms DOM REIFIED, IN REIFIED.

Arguments VAR : dvar

LOW : int

UP : int

B : dvar

Restrictions LOW ≤ UP

B ≥ 0
B ≤ 1

Purpose Enforce the following equivalence, VAR ∈ [LOW, UP]⇔ B.

Example (3, 2, 5, 1)

The IN INTERVAL REIFIED constraint holds since:

• Its first argument VAR = 3 is greater than or equal to its second argument LOW = 2
and less than or equal to its third argument UP = 5 (i.e., 3 ∈ [2, 5]).

• The corresponding Boolean variable B is set to 1 since condition 3 ∈ [2, 5] holds.

Typical VAR 6= LOW

VAR 6= UP

LOW < UP

Symmetries • An occurrence of a value of VAR that belongs to [LOW, UP] (resp. does not belong to
[LOW, UP]) can be replaced by any other value in [LOW, UP]) (resp. not in [LOW, UP]).

• One and the same constant can be added to VAR, LOW and UP.

Reformulation The IN INTERVAL REIFIED constraint can be reformulated in terms of linear constraints.
For convenience, we rename VAR to x, LOW to l, UP to u, and B to y. The constraint is
decomposed into the following conjunction of constraints:

x ≥ l ⇔ y1,

x ≤ u ⇔ y2,

y1 ∧ y2 ⇔ y .


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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We show how to encode these constraints with linear inequalities. The first constraint,
i.e., x ≥ l⇔ y1 is encoded by posting one of the following three constraints:


a) if x ≥ l : y1 = 1,
b) if x < l : y1 = 0,
c) otherwise : x ≥ (l − x) · y1 + x ∧ x ≤ (x− l + 1) · y1 + l − 1.

On the one hand, cases a) and b) correspond to situations where one can fix y1, no matter
what value will be assigned to x. On the other hand, in case c), y1 can take both values
0 or 1 depending on the value assigned to x. As shown by Figure 5.429, all possible
solutions for the pair of variables (x, y1) satisfy the following two linear inequalities x ≥
(l − x) · y1 + x and x ≤ (x− l + 1) · y1 + l − 1. The first inequality discards all points
that are above the line that goes through the two extreme solution points (x, 0) and (l, 1),
while the second one removes all points that are below the line that goes through the two
extreme solution points (l − 1, 0) and (x, 1).

x

y1

0

1

x ≥ l⇔ y1

x = (x− l + 1) · y1 + l − 1

x = (l −
x)
· y1

+ x

x l − 1 l x

infeasible points
feasible points

Figure 5.429: Illustration of the reformulation of the reified constraint x ≥ l ⇔ y1
with two linear inequalities

The second constraint, i.e., x ≤ u ⇔ y2 is encoded by posting one of the following three
constraints:


d) if x ≤ u : y2 = 1,
e) if x > u : y2 = 0,
f) otherwise : x ≤ (u− x) · y2 + x ∧ x ≥ (x− u− 1) · y2 + u+ 1.

On the one hand, cases d) and e) correspond to situations where one can fix y2, no matter
what value will be assigned to x. On the other hand, in case f), y2 can take both value 0 or 1
depending on the value assigned to x. As shown by Figure 5.430, all possible solutions for
the pair of variables (x, y2) satisfy the following two linear inequalities x ≤ (u−x)·y2+x
and x ≥ (x−u− 1) · y2 +u+ 1. The first inequality discards all points that are above the
line that goes through the two extreme solution points (x, 0) and (u, 1), while the second
one removes all points that are below the line that goes through the two extreme solution
points (u+ 1, 0) and (x, 1).
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x

y2

0

1

x ≤ u⇔ y2

x = (x− u− 1) · y2 + u+ 1

x = (u− x) · y
2 + x

x u+ 1u x

infeasible points
feasible points

Figure 5.430: Illustration of the reformulation of the reified constraint x ≤ u ⇔ y2
with two linear inequalities

The third constraint, i.e., y1 ∧ y2 ⇔ y is encoded as:
g) y ≥ y1 + y2 − 1,
h) y ≤ y1,
i) y ≤ y2.

Case g) handles the implication y1 ∧ y2 ⇒ y, while cases h) and i) take care of the other
side y ⇒ y1 ∧ y2.

See also specialisation: IN INTERVAL.

uses in its reformulation: ALLDIFFERENT (bound consistency preserving reformulation).

Keywords characteristic of a constraint: reified constraint.

constraint arguments: binary constraint.

constraint type: predefined constraint, value constraint.

filtering: arc-consistency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.182 IN INTERVALS

I B C J DESCRIPTION LINKS

Origin Domain definition.

Constraint IN INTERVALS(VAR, INTERVALS)

Synonym IN.

Arguments VAR : dvar

INTERVALS : collection(low−int, up−int)

Restrictions required(INTERVALS, [low, up])
INTERVALS.low ≤ INTERVALS.up
|INTERVALS| > 0

Purpose Enforce the domain variable VAR to take a value within one of the intervals specified by
the collection of intervals INTERVALS.

Example (5, 〈low− 1 up− 1, low− 3 up− 5, low− 8 up− 8〉)

The IN INTERVALS constraint holds since its first argument VAR = 5 belongs to the
second intervals of the collection of intervals INTERVALS.

Typical |INTERVALS| > 1

Symmetries • Items of INTERVALS are permutable.

• INTERVALS.low can be decreased.

• INTERVALS.up can be increased.

• One and the same constant can be added to VAR as well as to the low and up

attributes of all items of INTERVALS.

Arg. properties Extensible wrt. INTERVALS.

Remark Entailment occurs immediately after posting this constraint.

Systems DOM in Gecode, IN in JaCoP, IN in SICStus.

See also specialisation: IN INTERVAL (set of intervals replaced by single interval).

Keywords constraint arguments: unary constraint.

constraint type: value constraint, predefined constraint.

filtering: arc-consistency.

modelling: interval, domain definition.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/
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5.183 IN RELATION

I B C J DESCRIPTION LINKS GRAPH

Origin Constraint explicitly defined by tuples of values.

Constraint IN RELATION(VARIABLES, TUPLES OF VALS)

Synonyms CASE, EXTENSION, EXTENSIONAL, EXTENSIONAL SUPPORT,
EXTENSIONAL SUPPORTVA, EXTENSIONAL SUPPORTMDD,
EXTENSIONAL SUPPORTSTR, FEASTUPLEAC, TABLE.

Types TUPLE OF VARS : collection(var−dvar)
TUPLE OF VALS : collection(val−int)

Arguments VARIABLES : TUPLE OF VARS

TUPLES OF VALS : collection(tuple− TUPLE OF VALS)

Restrictions required(TUPLE OF VARS, var)
|TUPLE OF VARS| ≥ 1
|TUPLE OF VALS| ≥ 1
|TUPLE OF VALS| = |VARIABLES|
required(TUPLE OF VALS, val)
required(TUPLES OF VALS, tuple)

Purpose
Enforce the tuple of variables VARIABLES to take its value out of a set of tuples of values
TUPLES OF VALS. The value of a tuple of variables 〈V1, V2, . . . , Vn〉 is a tuple of values
〈U1, U2, . . . , Un〉 if and only if V1 = U1 ∧ V2 = U2 ∧ · · · ∧ Vn = Un.

Example
(
〈5, 3, 3〉 ,
〈tuple− 〈5, 2, 3〉 , tuple− 〈5, 2, 6〉 , tuple− 〈5, 3, 3〉〉

)
The IN RELATION constraint holds since its first argument 〈5, 3, 3〉 corresponds to
the third item of the collection of tuples TUPLES OF VALS.

Typical |TUPLE OF VARS| > 1

Symmetries • Items of TUPLES OF VALS are permutable.

• Items of VARIABLES and TUPLES OF VALS.tuple are permutable (same permu-
tation used).

• All occurrences of two distinct tuples of values in VARIABLES or
TUPLES OF VALS.tuple can be swapped; all occurrences of a tuple of val-
ues in VARIABLES or TUPLES OF VALS.tuple can be renamed to any unused
tuple of values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Extensible wrt. TUPLES OF VALS.

Usage Quite often some constraints cannot be easily expressed, neither by a formula, nor by a
regular pattern. In this case one has to define the constraint by specifying in extension the
combinations of allowed values.

Remark The IN RELATION constraint is called EXTENSIONAL SUPPORT in JaCoP (http://www.
jacop.eu/). Within SICStus Prolog the constraint can be applied to more than a single
tuple of variables and is called TABLE. Within [92] this constraint is called EXTENSION.

The IN RELATION constraint is called TABLE in MiniZinc (http://www.minizinc.
org/).

Systems FEASPAIRAC in Choco, INFEASPAIRAC in Choco, RELATIONPAIRAC in Choco,
FEASTUPLEAC in Choco, INFEASTUPLEAC in Choco, RELATIONTUPLEAC
in Choco, EXTENSIONAL in Gecode, EXTENSIONALSUPPORTVA in JaCoP,
EXTENSIONALSUPPORTMDD in JaCoP, EXTENSIONALSUPPORTSTR in JaCoP,
TABLE in MiniZinc, CASE in SICStus, RELATION in SICStus, TABLE in SICStus.

Used in COND LEX COST, COND LEX GREATER, COND LEX GREATEREQ, COND LEX LESS,
COND LEX LESSEQ.

See also common keyword: ELEMENT (data constraint).

cost variant: COND LEX COST (COST parameter added).

used in graph description: VEC EQ TUPLE.

Keywords characteristic of a constraint: tuple, derived collection.

combinatorial object: relation.

constraint type: data constraint, extension.

filtering: arc-consistency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.jacop.eu/
http://www.sics.se/sicstus/
http://www.minizinc.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#table
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://www.sics.se/sicstus/
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Derived Collection
col

(
TUPLES OF VARS−collection(vec− TUPLE OF VARS),
[item(vec− VARIABLES)]

)
Arc input(s) TUPLES OF VARS TUPLES OF VALS

Arc generator PRODUCT 7→collection(tuples of vars, tuples of vals)

Arc arity 2

Arc constraint(s) VEC EQ TUPLE(tuples of vars.vec, tuples of vals.tuple)

Graph property(ies) NARC≥ 1

Graph model Parts (A) and (B) of Figure 5.431 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

TUPLES_OF_VARS

TUPLES_OF_VALS

1

123

NARC=1

1:5
  3
  3

3:5
  3
  3

(A) (B)

Figure 5.431: Initial and final graph of the IN RELATION constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.184 IN SAME PARTITION

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for defining several entries of this catalog.

Constraint IN SAME PARTITION(VAR1, VAR2, PARTITIONS)

Type VALUES : collection(val−int)

Arguments VAR1 : dvar

VAR2 : dvar

PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Enforce VAR1 and VAR2 to be respectively assigned to values v1 and v2 that both belong
to a same partition of the collection PARTITIONS.

Example (6, 2, 〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉)

The IN SAME PARTITION constraint holds since its first and second arguments VAR1 = 6
and VAR2 = 2 both belong to the third partition 〈2, 6〉 of its third argument PARTITIONS.

Typical VAR1 6= VAR2

Symmetries • Arguments are permutable w.r.t. permutation (VAR1, VAR2) (PARTITIONS).

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

Arg. properties Extensible wrt. PARTITIONS.

Used in ALLDIFFERENT PARTITION, BALANCE PARTITION, CHANGE PARTITION,
COMMON PARTITION, NCLASS, SAME PARTITION, SOFT SAME PARTITION VAR,
SOFT USED BY PARTITION VAR, USED BY PARTITION.

See also common keyword: ALLDIFFERENT PARTITION (partition), IN (value constraint).

used in graph description: IN.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: partition, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint arguments: binary constraint.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col

(
VARIABLES−collection(var−dvar),
[item(var− VAR1), item(var− VAR2)]

)
Arc input(s) VARIABLES PARTITIONS

Arc generator PRODUCT 7→collection(variables, partitions)

Arc arity 2

Arc constraint(s) IN(variables.var, partitions.p)

Graph property(ies) • NSOURCE= 2
• NSINK= 1

Graph model VAR1 and VAR2 are put together in the derived collection VARIABLES. Since both VAR1

and VAR2 should take their values in one of the partition depicted by the PARTITIONS

collection, the final graph should have two sources corresponding respectively to VAR1 and
VAR2. Since two, possibly distinct, values should be assigned to VAR1 and VAR2 and since
these values belong to the same partition p the final graph should only have one sink. This
sink corresponds in fact to partition p.

Parts (A) and (B) of Figure 5.432 respectively show the initial and final graph associated
with the Example slot. Since we both use the NSOURCE and NSINK graph proper-
ties, the source and sink vertices of the final graph are shown with a double circle.

VARIABLES

PARTITIONS

1

1 23

2

NSOURCE=2,NSINK=1

1:6

3:2
  6

2:2

(A) (B)

Figure 5.432: Initial and final graph of the IN SAME PARTITION constraint

Signature Note that the sinks of the initial graph cannot become sources of the final graph since
isolated vertices are eliminated from the final graph. Since the final graph contains two
sources it also includes one arc between a source and a sink. Therefore the minimum
number of sinks of the final graph is equal to one. So we can rewrite NSINK = 1 to
NSINK ≥ 1 and simplify NSINK to NSINK.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.433 depicts the automaton associated with the IN SAME PARTITION constraint.
Let VALUESi be the p attribute of the ith item of the PARTITIONS collection. To each triple
(VAR1, VAR2, VALUESi) corresponds a 0-1 signature variable Si as well as the following
signature constraint: ((VAR1 ∈ VALUESi) ∧ (VAR2 ∈ VALUESi))⇔ Si.

s

t

NOT IN(VAR1, VALUESi) ∨
NOT IN(VAR2, VALUESi)

IN(VAR1, VALUESi) ∧
IN(VAR2, VALUESi)

NOT IN(VAR1, VALUESi) ∨
NOT IN(VAR2, VALUESi)

IN(VAR1, VALUESi) ∧
IN(VAR2, VALUESi)

Figure 5.433: Automaton of the IN SAME PARTITION constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

VAR2

VAR1

Figure 5.434: Hypergraph of the reformulation corresponding to the automaton of the
IN SAME PARTITION constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.185 IN SET

I B C J DESCRIPTION LINKS

Origin Used for defining constraints with set variables.

Constraint IN SET(VAL, SET)

Synonyms DOM, MEMBER.

Arguments VAL : dvar

SET : svar

Purpose Constraint variable VAL to belong to set SET.

Example (3, {1, 3})

Remark When SET is fixed the IN SET constraint is referenced under the name DOM in Gecode.

Systems MEMBER in Choco, REL in Gecode, DOM in Gecode.

Used in BIPARTITE, CLIQUE, CONNECTED, CUTSET, DAG, DISCREPANCY, DISJ,
INVERSE SET, K CUT, LINK SET TO BOOLEANS, OPEN ALLDIFFERENT,
OPEN AMONG, OPEN ATLEAST, OPEN ATMOST, OPEN GLOBAL CARDINALITY,
OPEN GLOBAL CARDINALITY LOW UP, PATH FROM TO, PROPER FOREST, ROOTS,
STRONGLY CONNECTED, SUM, SUM SET, SYMMETRIC, SYMMETRIC CARDINALITY,
SYMMETRIC GCC, TOUR.

See also common keyword: IN (value constraint).

specialisation: IN INTERVAL (set variable replaced by fixed interval).

Keywords constraint arguments: constraint involving set variables.

constraint type: predefined constraint, value constraint.

modelling: included.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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5.186 INCOMPARABLE

I B C J DESCRIPTION LINKS

Origin Inspired by incomparable rectangles.

Constraint INCOMPARABLE(VECTOR1, VECTOR2)

Synonym INCOMPARABLES.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| ≥ 1
|VECTOR2| ≥ 1
|VECTOR1| = |VECTOR2|

Purpose

Enforce that when the components of VECTOR1 and VECTOR2 are ordered, and re-
spectively denoted by SVECTOR1 and SVECTOR2, we neither have SVECTOR1[i].var ≤
SVECTOR2[i].var (for all i ∈ [1, |SVECTOR1|]) nor have SVECTOR2[i].var ≤
SVECTOR1[i].var (for all i ∈ [1, |SVECTOR1|]).

Example (〈16, 2〉 , 〈4, 11〉)

The INCOMPARABLE constraint holds since 16 > 4 and 2 < 11.

Typical |VECTOR1| > 1

Symmetries • Items of VECTOR1 are permutable.

• Items of VECTOR2 are permutable.

• Arguments are permutable w.r.t. permutation (VECTOR1, VECTOR2).

Used in ALL INCOMPARABLE.

See also implies: LEX DIFFERENT.

system of constraints: ALL INCOMPARABLE.

Keywords characteristic of a constraint: vector.

constraint arguments: constraint between two collections of variables.

constraint type: predefined constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Cond. implications • INCOMPARABLE(VECTOR1, VECTOR2)
with |VECTOR1| = 2

implies DISJOINT(VARIABLES1 : VECTOR1, VARIABLES2 : VECTOR2).

• INCOMPARABLE(VECTOR1, VECTOR2)
with |VECTOR1| = 2

implies INT VALUE PRECEDE CHAIN(VALUES : VECTOR1, VARIABLES : VECTOR2).


Cond. implications
Conditional implications.
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5.187 INCREASING

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin KOALOG

Constraint INCREASING(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are increasing.

Example (〈1, 1, 4, 8〉)

The INCREASING constraint holds since 1 ≤ 1 ≤ 4 ≤ 8.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 6 20 70 252 924 3432 12870

Number of solutions for INCREASING: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.



INCREASING 1421

2 3 4 5 6 7 8

10−3

10−2

10−1

100

Length

O
bs

er
ve

d
de

ns
ity

Solution density for INCREASING

2 3 4 5 6 7 8

0

0.2

0.4

0.6

Length

O
bs

er
ve

d
de

ns
ity

Solution density for INCREASING

Systems INCREASINGNVALUE in Choco, REL in Gecode, INCREASING in MiniZinc.

Used in GLOBAL CARDINALITY LOW UP, INCREASING GLOBAL CARDINALITY,


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#increasing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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INCREASING NVALUE, INCREASING SUM, NVALUE, SUM CTR.

See also common keyword: PRECEDENCE, STRICTLY DECREASING (order constraint).

comparison swapped: DECREASING.

implied by: ALL EQUAL, INCREASING GLOBAL CARDINALITY,
INCREASING NVALUE (remove NVAL parameter from INCREASING NVALUE),
INCREASING SUM (remove SUM parameter from INCREASING SUM),
STRICTLY INCREASING.

implies: MULTI GLOBAL CONTIGUITY, NO PEAK, NO VALLEY.

uses in its reformulation: SORT PERMUTATION.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model Parts (A) and (B) of Figure 5.435 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:1

2:1

3:4

4:8

(A) (B)

Figure 5.435: Initial and final graph of the INCREASING constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



1424 INCREASING

Automaton Figure 5.436 depicts the automaton associated with the INCREASING constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a
0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi ≤ VARi+1 ⇔ Si.

s VARi ≤ VARi+1

Figure 5.436: Automaton of the INCREASING constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.437: Hypergraph of the reformulation corresponding to the automaton of the
INCREASING constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.188 INCREASING GLOBAL CARDINALITY

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Conjoin GLOBAL CARDINALITY LOW UP and INCREASING.

Constraint INCREASING GLOBAL CARDINALITY(VARIABLES, VALUES)

Synonyms INCREASING GLOBAL CARDINALITY LOW UP, INCREASING GCC,
INCREASING GCC LOW UP.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions required(VARIABLES, var)
INCREASING(VARIABLES)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose
The variables of the collection VARIABLES are increasing. In addition, each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and
at most VALUES[i].omax variables of the VARIABLES collection.

Example


〈3, 3, 6, 8〉 ,〈

val− 3 omin− 2 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉 
The INCREASING GLOBAL CARDINALITY constraint holds since:

• The values of the collection 〈3, 3, 6, 8〉 are sorted in increasing order.

• Values 3, 5 and 6 are respectively used 2 (2 ≤ 2 ≤ 3), 0 (0 ≤ 0 ≤ 1) and 1
(1 ≤ 1 ≤ 2) times within the collection 〈3, 3, 6, 8〉 and since no constraint was
specified for value 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax ≤ |VARIABLES|
|VARIABLES| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model nval(VARIABLES.var) > 2

Symmetry Items of VALUES are permutable.

Usage This constraint can be used in order to break symmetry in the context of the follow-
ing pattern. We have a matrix M of variables with the same constraint on each row
and a GLOBAL CARDINALITY LOW UP constraint on each column. Beside lexicographi-
cally ordering the rows ofM with a LEX CHAIN LESSEQ constraint, one can also state a
INCREASING GLOBAL CARDINALITY on the first column ofM in order to improve prop-
agation on the corresponding variables.

Reformulation The INCREASING GLOBAL CARDINALITY constraint can be expressed in term of a con-
junction of a GLOBAL CARDINALITY LOW UP and an INCREASING constraints. Even if
we achieve arc-consistency on these two constraints this hinders propagation as shown by
the following small example.

We have two variables X and Y (X ≤ Y ), which both take their values in the set {2, 3}.
In addition, assume that the minimum number of occurrences of values 0, 1 and 2 are re-
spectively equal to 0, 1 and 1. Similarly assume that, the maximum number of occurrences
of values 0, 1 and 2 are respectively equal to 1, 1 and 2. The reformulation does not reduce
the domain of variablesX , Y in any way, while the automaton described in the Automaton
slot fixes X to 2 and Y to 3.

See also implies: GLOBAL CARDINALITY LOW UP, INCREASING.

related: ORDERED GLOBAL CARDINALITY.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: value constraint, order constraint.

filtering: arc-consistency.

symmetry: symmetry, matrix symmetry.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. Part (A) of Figure 5.438 shows the initial graphs associated with each
value 3, 5 and 6 of the VALUES collection of the Example slot. Part (B) of Figure 5.438
shows the two corresponding final graphs respectively associated with values 3 and 6 that
are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned
to any variable of the VARIABLES collection the final graph associated with value 5 is
empty). Since we use the NVERTEX graph property, the vertices of the final graphs are
stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 3:6

(A) (B)

Figure 5.438: Initial and final graph of the INCREASING GLOBAL CARDINALITY con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton A first systematic approach for creating an automaton that only recognises the solutions to
the INCREASING GLOBAL CARDINALITY constraint could be to:

• First, create an automaton that recognises the solutions to the INCREASING con-
straint.

• Second, create an automaton that recognises the solutions to the
GLOBAL CARDINALITY LOW UP constraint.

• Third, make the product of the two previous automata and minimise the resulting
automaton.

However this approach is not going to scale well in practice since the automaton associated
with the GLOBAL CARDINALITY LOW UP constraint may have a too big size. Therefore
we propose an approach where we directly construct in a single step the automaton that only
recognises the solutions to the INCREASING GLOBAL CARDINALITY constraint. Note that
we do not have any formal proof that the resulting automaton is always minimum.

Without loss of generality, we assume that:

• All items of the VALUES collection are sorted in increasing value on the attribute val.

• All the potential values of the variables of the VARIABLES collection are included
within the set of values of the collection VALUES (i.e., the val attribute).9

• All values of the VALUES collection for which the attribute omax is set to 0 cannot be
assigned to the variables of the VARIABLES collection.10

Before defining the states of the automaton, we first need to introduce the following notion.
A value VALUES[v].val is constrained by its maximum number of occurrences if and only if
VALUES[v].omax ≤ 1∨VALUES[v].omax < |VARIABLES|−

∑|VALUES|
u=1,u6=v VALUES[u].omin.11

Let V denote the set of constrained values (i.e., their indexes within the collection VALUES)
by their respective maximum number of occurrences.

After determining the set V , the omax attribute of each potential value is normalised in the
following way:

• For an unconstrained value VALUES[v].val we reset VALUES[v].omax to
max(1, VALUES[v].omin).

• For a constrained value VALUES[v].val we reset VALUES[v].omax to 1 if its current
value is smaller than 1.

We are now in position to introduce the states of the automaton.

The 1 +
∑|VALUES|
v=1,v∈V VALUES[v].omax +

∑|VALUES|
v=1,v/∈V VALUES[v].omin states of the automa-

ton that only accepts solutions to the INCREASING GLOBAL CARDINALITY constraint are
defined in the following way:

• For the vth item of the collection VALUES we have:

– If v ∈ V , VALUES[v].omax states labelled by svo (1 ≤ o ≤ VALUES[v].omax).

9If this is not the case, we can include these values within the VALUES collection and set their minimum
and maximum number of occurrences to 0 and |VARIABLES| −

∑|VALUES|
v=1 VALUES[v].omin.

10We initially remove such values from all variables of the VARIABLES collection.
11When VALUES[v].omax ≤ 1 we cannot reduce the number of states related to value VALUES[v].val and

we therefore consider that we are in the constrained case.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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– If v /∈ V , VALUES[v].omin states labelled by svo (1 ≤ o ≤ VALUES[v].omin).

• We have an initial state labelled by s00.

Terminal states correspond to those states svo such that, both (1) o is greater than or
equal to VALUES[v].omin, and (2) there is no value item VALUES[w] (w > v) such that
VALUES[w].omin > 0. Transitions are defined in the following way:

• There is an arc, labelled by VALUES[v].val, from the initial state s00 to every state
sv1 where VALUES[v] is an item for which all values VALUES[u].val strictly less than
VALUES[v].val verify the condition VALUES[u].omin = 0.

• For each value VALUES[v].val constrained by its maximum number of occurrences
(i.e., v ∈ V), there is an arc, labelled by VALUES[v].val, from the state svk to the
state svk+1 for all k in [1, VALUES[v].omax− 1].

• For each value VALUES[v].val unconstrained by its maximum number of occurrences
(i.e., v /∈ V), there is an arc, labelled by VALUES[v].val, from the state svk to the
state svk+1 for all k in [1, VALUES[v].omin − 1]. There is also a loop, labelled by
VALUES[v].val, from state svk to the state svk for k = VALUES[v].omin.

• For each value VALUES[v].val constrained by its maximum number of occurrences
(i.e., v ∈ V), there is an arc, labelled by VALUES[w].val, from state svk to state
sw1 (v < w) for all k in [VALUES[v].omin, VALUES[v].omax] and for all w such that
∀u ∈ [v + 1, w − 1] : VALUES[u].omin = 0.

• For each value VALUES[v].val unconstrained by its maximum number of occurrences
(i.e., v /∈ V), there is an arc, labelled by VALUES[w].val, from state svk to state sw1

(v < w) for k = VALUES[v].omin and for all w such that ∀u ∈ [v + 1, w − 1] :
VALUES[u].omin = 0.

Figure 5.439 depicts the automaton associated with the
INCREASING GLOBAL CARDINALITY constraint of the Example slot. For this pur-
pose we assume without loss of generality that we have four decision variables that all
take their potential values within interval [3, 8]. Consequently, values 4, 7 and 8 are
first added to the items of the VALUES collection. Both values 3 and 6 are unconstrained
by their respective maximum number of occurrences. Therefore their omax attributes
are respectively reduced to 2 and 1. All other values, namely values 4, 5, 7 and 8, are
constrained values. The INCREASING GLOBAL CARDINALITY constraint holds since the
corresponding sequence of visited states, s00 s11 s12 s41 s61, ends up in an accepting state
(i.e., accepting states are denoted graphically by a double circle in the figure). Note that
non initial states are first indexed by the position of an item within the VALUES collection,
and not by the value itself (e.g., within s12 the 1 designates value 3). For instance state
s11 depicts the fact that the automaton has already recognised a single occurrence of
value 3, while s12 corresponds to the fact that the automaton has already seen at least two
occurrences of value 3.12

12The at least comes from the loop on state s12.
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s00 s11 s12

s21

s31

s41s51s61
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Figure 5.439: Automaton of the INCREASING GLOBAL CARDINALITY constraint of
the Example slot: the path corresponding to the solution 〈3,3,6,8〉 is depicted by
thick orange arcs
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5.189 INCREASING NVALUE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Conjoin NVALUE and INCREASING.

Constraint INCREASING NVALUE(NVAL, VARIABLES)

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
INCREASING(VARIABLES)

Purpose The variables of the collection VARIABLES are increasing. In addition, NVAL is the num-
ber of distinct values taken by the variables of the collection VARIABLES.

Example (2, 〈6, 6, 8, 8, 8〉)
(1, 〈6, 6, 6, 6, 6〉)
(5, 〈0, 2, 3, 6, 7〉)

The first INCREASING NVALUE constraint (see Figure 5.440 for a graphical repre-
sentation) holds since:

• The values of the collection 〈6, 6, 8, 8, 8〉 are sorted in increasing order.

• NVAL = 2 is set to the number of distinct values occurring within the collection
〈6, 6, 8, 8, 8〉.

first
value

second
value

V1 V2 V3 V4 V5

4

5

7

9

6

8

6 6

8 8 8

variables

va
lu

es

Figure 5.440: Illustration of the first example of the Example slot: five variables V1,
V2, V3, V4, V5 respectively fixed to values 6, 6, 8, 8 and 8, and the corresponding
number of distinct values NVAL = 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: NVAL determined by VARIABLES.

Algorithm A complete filtering algorithm in a linear time complexity over the sum of the domain sizes
is described in [51].

Reformulation The INCREASING NVALUE constraint can be expressed in term of a conjunction of a
NVALUE and an INCREASING constraints (i.e., a chain of non strict inequality constraints
on adjacent variables of the collection VARIABLES). But as shown by the following ex-
ample, V1 ∈ [1, 2], V2 ∈ [1, 2], V1 ≤ V2, NVALUE(2, 〈V1, V2〉), this hinders propagation
(i.e., the unique solution V1 = 1, V2 = 2 is not directly obtained after stating all the
previous constraints).

A better reformulation achieving arc-consistency uses the SEQ BIN constraint [321] that
we now introduce. Given N a domain variable, X a sequence of domain variables, and
C and B two binary constraints, SEQ BIN(N, X, C, B) holds if (1) N is equal to the number
of C-stretches in the sequence X, and (2) B holds on any pair of consecutive variables in
X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant [316],
where the equality constraint is made explicit by replacing it by a binary constraint C, i.e., a
C-stretch is a maximal length subsequence of X for which the binary constraint C is satisfied
on consecutive variables. INCREASING NVALUE(NVAL, VARIABLES) can be reformulated
as SEQ BIN(NVAL, VARIABLES,=,≤).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 6 20 70 252 924 3432 12870

Number of solutions for INCREASING NVALUE: domains 0..n


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 6 20 70 252 924 3432 12870

Parameter
value

1 3 4 5 6 7 8 9
2 3 12 30 60 105 168 252
3 - 4 30 120 350 840 1764
4 - - 5 60 350 1400 4410
5 - - - 6 105 840 4410
6 - - - - 7 168 1764
7 - - - - - 8 252
8 - - - - - - 9

Solution count for INCREASING NVALUE: domains 0..n
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Solution density for INCREASING NVALUE

size 6
size 7
size 8
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Systems INCREASINGNVALUE in Choco.

See also implies: INCREASING (remove NVAL parameter from INCREASING NVALUE), NVALUE,
NVISIBLE FROM START.

related: INCREASING NVALUE CHAIN.

shift of concept: ORDERED NVECTOR (variable replaced by vector and ≤ replaced
by LEX LESSEQ).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: counting constraint, value partitioning constraint, order constraint.

filtering: arc-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values, functional
dependency.

symmetry: symmetry.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC= NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.441 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NSCC graph property
we show the different strongly connected components of the final graph. Each strongly
connected component corresponds to a value that is assigned to some variables of the
VARIABLES collection. The 2 following values 6 and 8 are used by the variables of the
VARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:6

2:6

3:8

4:8

5:8

(A) (B)

Figure 5.441: Initial and final graph of the INCREASING NVALUE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton A first systematic approach for creating an automaton that only recognises the solutions to
the INCREASING NVALUE constraint could be to:

• First, create an automaton that recognises the solutions to the INCREASING con-
straint.

• Second, create an automaton that recognises the solutions to the NVALUE constraint.

• Third, make the product of the two previous automata and minimise the resulting
automaton.

However this approach is not going to scale well in practice since the automaton associated
with the NVALUE constraint has a too big size. Therefore we propose an approach where
we directly construct in a single step the automaton that only recognises the solutions to
the INCREASING NVALUE constraint. Note that we do not have any formal proof that the
resulting automaton is always minimum.

Without loss of generality, assume that the collection of variables VARIABLES contains at
least one variable (i.e., |VARIABLES| ≥ 1). Let l, m, n, min and max respectively de-
note the minimum and maximum possible value of variable NVAL, the number of variables
of the collection VARIABLES, the smallest value that can be assigned to the variables of
VARIABLES, and the largest value that can be assigned to the variables of VARIABLES. Let
s = max − min + 1 denote the total number of potential values. Clearly, the maximum
number of distinct values that can be assigned to the variables of the collection VARIABLES

cannot exceed the quantity d = min(m,n, s). The s·(s+1)
2
− (s−d)·(s−d+1)

2
+ 1 states of

the automaton that only accepts solutions to the INCREASING NVALUE constraint can be
defined in the following way:

• We have an initial state labelled by s00.

• We have s·(s+1)
2
− (s−d)·(s−d+1)

2
states labelled by sij (1 ≤ i ≤ d, i ≤ j ≤ s). The

first index i of a state sij corresponds to the number of distinct values already en-
countered, while the second index j denotes the the current value (i.e., more precisely
the index of the current value, where the minimum value has index 1).

Terminal states depend on the possible values of variable NVAL and correspond to those
states sij such that i is a possible value for variable NVAL. Note that we assume no further
restriction on the domain of NVAL (otherwise the set of accepting states needs to be reduced
in order to reflect the current set of possible values of NVAL). Three classes of transitions
are respectively defined in the following way:

1. There is a transition, labelled by min + j − 1, from the initial state s00 to the state
s1j (1 ≤ j ≤ s).

2. There is a loop, labelled by min + j − 1 for every state sij (1 ≤ i ≤ d, i ≤ j ≤ s).

3. ∀i ∈ [1, d−1], ∀j ∈ [i, s], ∀k ∈ [j+1, s] there is a transition labelled by min+k−1
from sij to si+1k.

We respectively have s transitions of class 1, s·(s+1)
2
− (s−d)·(s−d+1)

2
transitions of class

2, and (s−1)·s·(s+1)
6

− (s−d)·(s−d+1)·(s−d+2)
6

transitions of class 3.

Note that all states sij such that i+ s− j < l can be discarded since they do not allow to
reach the minimum number of distinct values required l.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Part (A) of Figure 5.442 depicts the automaton associated with the INCREASING NVALUE

constraint of the first example of the Example slot. For this purpose, we assume that vari-
able NVAL is fixed to value 2 and that variables of the collection VARIABLES take their
values within interval [6, 8]. Part (B) of Figure 5.442 represents the simplified automaton
where all states that do not allow to reach an accepting state were removed. The corre-
sponding INCREASING GLOBAL CARDINALITY constraint holds since the corresponding
sequence of visited states, s00 s11 s11 s23 s23 s23, ends up in an accepting state (i.e., ac-
cepting states are denoted graphically by a double circle).

s00 s11

s12 s22

s13 s23

6

8

6

7

8

7

8

7

8
8

7

(A)

s00 s11

s12 s22

s23

6

8

6

7 7

8

7

8

7

(B)

Figure 5.442: Automaton – Part (A) – and simplified automaton – Part (B) – of the
INCREASING NVALUE(2, 〈6, 6, 8, 8, 8〉) constraint of the first example of the Example
slot: the path corresponding to the second argument 〈6,6,8,8,8〉 is depicted by thick
orange arcs, where the self-loop on state s23 is applied twice

Figure 5.443 depicts a second deterministic automaton with one counter associated with the
INCREASING NVALUE constraint, where the argument NVAL is unified to the final value of
the counter.

NVAL = Cs{C ← 1}

VARi = VARi+1

VARi < VARi+1,
{C ← C + 1}

Figure 5.443: Automaton (with one counter) of the INCREASING VALUE constraint
for a non-empty collection of variables
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5.190 INCREASING NVALUE CHAIN

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from INCREASING NVALUE.

Constraint INCREASING NVALUE CHAIN(NVAL, VARIABLES)

Arguments NVAL : dvar

VARIABLES : collection(b−dvar, var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, [b, var])
VARIABLES.b ≥ 0
VARIABLES.b ≤ 1

Purpose

For each consecutive pair of items VARIABLES[i], VARIABLES[i + 1] (1 ≤ i <
|VARIABLES|) of the VARIABLES collection at least one of the following conditions hold:

1. VARIABLES[i+ 1].b = 0,

2. VARIABLES[i].var ≤ VARIABLES[i+ 1].var.

In addition, NVAL is equal to number of pairs of variables VARIABLES[i], VARIABLES[i+
1] (1 ≤ i < |VARIABLES|) plus one, which verify at least one of the following condi-
tions:

1. VARIABLES[i+ 1].b = 0,

2. VARIABLES[i].var < VARIABLES[i+ 1].var.

Note that VARIABLES[1].b is not referenced at all in the previous definition (i.e., its value
does not influence at all the values assigned to the other variables).

Example


6,

〈
b− 0 var− 2,
b− 1 var− 4,
b− 1 var− 4,
b− 1 var− 4,
b− 0 var− 4,
b− 1 var− 8,
b− 0 var− 1,
b− 0 var− 7,
b− 1 var− 7

〉


The INCREASING NVALUE CHAIN constraint holds since:

1. The condition VARIABLES[i + 1].b = 0 ∨ VARIABLES[i].var ≤ VARIABLES[i +
1].var holds for every pair of adjacent items of the VARIABLES collection:


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• For the pair (VARIABLES[1].var, VARIABLES[2].var) we have
VARIABLES[1].var ≤ VARIABLES[2].var (2 ≤ 4).

• For the pair (VARIABLES[2].var, VARIABLES[3].var) we have
VARIABLES[2].var ≤ VARIABLES[3].var (4 ≤ 4).

• For the pair (VARIABLES[3].var, VARIABLES[4].var) we have
VARIABLES[3].var ≤ VARIABLES[4].var (4 ≤ 4).

• For the pair (VARIABLES[4].var, VARIABLES[5].var) we have
VARIABLES[5].b = 0.

• For the pair (VARIABLES[5].var, VARIABLES[6].var) we have
VARIABLES[5].var ≤ VARIABLES[6].var (4 ≤ 8).

• For the pair (VARIABLES[6].var, VARIABLES[7].var) we have
VARIABLES[7].b = 0.

• For the pair (VARIABLES[7].var, VARIABLES[8].var) we have
VARIABLES[8].b = 0.

• For the pair (VARIABLES[8].var, VARIABLES[9].var) we have
VARIABLES[8].var ≤ VARIABLES[9].var (7 ≤ 7).

2. NVAL is equal to number of pairs of variables VARIABLES[i], VARIABLES[i + 1]
(1 ≤ i < |VARIABLES|) plus one which verify at least VARIABLES[i + 1].b =
0∨ VARIABLES[i].var < VARIABLES[i+ 1].var. Beside the plus one, the following
five pairs contribute for 1 in NVAL:

• For the pair (VARIABLES[1].var, VARIABLES[2].var) we have
VARIABLES[1].var ≤ VARIABLES[2].var (2 < 4).

• For the pair (VARIABLES[4].var, VARIABLES[5].var) we have
VARIABLES[5].b = 0.

• For the pair (VARIABLES[5].var, VARIABLES[6].var) we have
VARIABLES[5].var ≤ VARIABLES[6].var (4 < 8).

• For the pair (VARIABLES[6].var, VARIABLES[7].var) we have
VARIABLES[7].b = 0.

• For the pair (VARIABLES[7].var, VARIABLES[8].var) we have
VARIABLES[8].b = 0.

Typical |VARIABLES| > 1
range(VARIABLES.b) > 1
range(VARIABLES.var) > 1

See also related: INCREASING NVALUE, NVALUE, ORDERED NVECTOR.

Keywords constraint type: counting constraint, order constraint.

modelling: number of distinct values.


Typical
Typical conditions on the arguments of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables2.b = 0 ∨ variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables2.b = 0 ∨ variables1.var < variables2.var

Graph property(ies) NARC= NVAL− 1

Graph model Parts (A) and (B) of Figure 5.444 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property the arcs of the final graph are stressed in bold.

VARIABLES

1

2

3

4

5

6

7

8

9
NARC=5

1:0,2

2:1,4

4:1,4

5:0,4

6:1,8

7:0,1

8:0,7

(A) (B)

Figure 5.444: Initial and final graph of the INCREASING NVALUE CHAIN constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Without loss of generality, assume that the collection VARIABLES contains at least one
variable (i.e., |VARIABLES| ≥ 1). Let l, m, n, min and max respectively denote the mini-
mum and maximum possible value of variable NVAL, the number of items of the collection
VARIABLES, the smallest value that can be assigned to VARIABLES[i].var (1 ≤ i ≤ n),
and the largest value that can be assigned to VARIABLES[i].var (1 ≤ i ≤ n). Let
s = max − min + 1 denote the total number of potential values. Clearly, the maximum
value of NVAL cannot exceed the quantity d = min(m,n). The states of the automaton
that only accepts solutions to the INCREASING NVALUE CHAIN constraint can be defined
in the following way:

• We have an initial state labelled by s00.

• We have d · s states labelled by sij (1 ≤ i ≤ d, 1 ≤ j ≤ s).

Terminal states depend on the possible values of variable NVAL and correspond to those
states sij such that i is a possible value for variable NVAL. Note that we assume no further
restriction on the domain of NVAL (otherwise the set of accepting states needs to be reduced
in order to reflect the current set of possible values of NVAL).

Transitions of the automaton are labelled by a pair of values (α, β) and correspond to
a condition of the form VARIABLES[i].b = α ∧ VARIABLES[i].var = β, (1 ≤ i ≤
n). Characters ∗ and + respectively represent all values in {0, 1} and all values in
{min,min + 1, . . . ,max}. Four classes of transitions are respectively defined in the
following way:

1. There is a transition, labelled by the pair (∗,min + j − 1), from the initial state s00

to the state s1j (1 ≤ j ≤ s). We use the ∗ character since VARIABLES[1].b is not use
at all in the definition of the INCREASING NVALUE CHAIN constraint.

2. There is a loop, labelled by the pair (1,min + j − 1) for every state sij (1 ≤ i ≤
d, 1 ≤ j ≤ s).

3. ∀i ∈ [1, d − 1], ∀j ∈ [1, s], ∀k ∈ [j + 1, s] there is a transition labelled by the pair
(1,min + k − 1) from sij to si+1k.

4. ∀i ∈ [1, d − 1], ∀j ∈ [1, s] there is a transition labelled by the pair (0,+) from sij
to si+1 1.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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s00 s11

s12

s13

s21

s22

s23

∗, 6

∗, 7

∗, 8

1, 6

0,+

1, 7

1, 8

1, 6

1, 7

1, 8

1, 7

1, 8

1, 8

0,+

0,+

Figure 5.445: Automaton of the INCREASING NVALUE CHAIN constraint under the
hypothesis that all variables are assigned a value in {6, 7, 8} and that NVAL is equal to
2. The character ∗ on a transition corresponds to a 0 or to a 1 and the + corresponds to
a 6, 7 or 8.
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5.191 INCREASING PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK and INCREASING.

Constraint INCREASING PEAK(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vk and Vk > Vk+1.
When considering all the peaks of the sequence VARIABLES from left to right enforce
all peaks to be increasing, i.e. the altitude of each peak is greater than or equal to the
altitude of its preceding peak when it exists.

Example (〈1, 5, 5, 3, 5, 2, 2, 7, 4〉)

The INCREASING PEAK constraint holds since the sequence 1 5 5 3 5 2 2 7 4
contains three peaks, in bold, that are increasing.

1

5 5
4
3

5

2 2

7

4

first
peak

second
peak

third
peak

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1

2

3

4

5

6

7

8

increa
sin

g altit
udes peaks

1

5 5

4

3

5

2 2

7

4

variables

va
lu

es

Figure 5.446: Illustration of the Example slot: a sequence of ten variables V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10 respectively fixed to values 1, 5, 5, 4, 3, 5, 2, 2, 7, 4 and its
corresponding three peaks, in red, respectively located at altitudes 5, 5 and 7


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| ≥ 7
range(VARIABLES.var) > 1
PEAK(VARIABLES.var) ≥ 3

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7553 105798 1666878 29090469

Number of solutions for INCREASING PEAK: domains 0..n
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Solution density for INCREASING PEAK


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for INCREASING PEAK

See also implied by: ALL EQUAL PEAK.

related: DECREASING PEAK, PEAK.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications INCREASING PEAK(VARIABLES)
with PEAK(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.447 depicts the automaton associated with the INCREASING PEAK constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or decreasing mode ({= | >}∗)
u : increasing (before first potential peak) mode (< {< | =}∗)
v : decreasing (after a peak) mode (> {> | =}∗)
w : increasing (after a peak) mode (< {< | =}∗)

STATE SEMANTICS

s u

vw

{Altitude ← 0}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ← VARi}

VARi ≥ VARi+1

VARi < VARi+1

VARi ≤ VARi+1

VARi > VARi+1,
{Altitude ≤ VARi,
Altitude ← VARi}

Figure 5.447: Automaton for the INCREASING PEAK constraint (note the conditional
transition from state w to state v testing that the counter Altitude is less than or equal
to VARi for enforcing that all peaks from left to right are in increasing altitude)

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.448: Hypergraph of the reformulation corresponding to the automaton of the
INCREASING PEAK constraint where Ai stands for the value of the counter Altitude
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.192 INCREASING SUM

I B C J DESCRIPTION LINKS

Origin Conjoin INCREASING and SUM CTR.

Constraint INCREASING SUM(VARIABLES, S)

Synonyms INCREASING SUM CTR, INCREASING SUM EQ.

Arguments VARIABLES : collection(var−dvar)
S : dvar

Restrictions required(VARIABLES, var)
INCREASING(VARIABLES)

Purpose The variables of the collection VARIABLES are increasing. In addition, S is the sum of
the variables of the collection VARIABLES.

Example (〈3, 3, 6, 8〉 , 20)

The INCREASING SUM constraint holds since:

• The values of the collection 〈3, 3, 6, 8〉 are sorted in increasing order.

• S = 20 is set to the sum 〈3 + 3 + 6 + 8〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Arg. properties Functional dependency: S determined by VARIABLES.

Usage The INCREASING SUM constraint can be used for breaking some symmetries in bin pack-
ing problems. Given a set of n bins with the same maximum capacity, and a set of items
each of them with a specific height, the problem is to pack all items in the bins. To break
symmetry we order bins by increasing use. This is done by introducing a variable xi
(0 ≤ i < n) for each bin i giving its use, i.e., the sum of items heights assigned to bin i,
and by posting the following INCREASING SUM(〈x0, x1, . . . , xn−1〉, s) where s denotes
the sum of the heights of all the items to pack.

Algorithm A linear time filtering algorithm achieving bound-consistency for the INCREASING SUM

constraint is described in [324]. This algorithm was motivated by the fact that achieving
bound-consistency on the inequality constraints and on the sum constraint independently
hinders propagation, as illustrated by the following small example, where the maximum
value of x1 is not reduced to 2: x1 ∈ [1, 3], x2 ∈ [2, 5], s ∈ [5, 6], x1 < x2, x1 + x2 = s.

Given an INCREASING SUM(〈x0, x1, . . . , xn−1〉, s) constraint, the bound-consistency al-
gorithm consists of three phases:


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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1. A normalisation phase adjusts the minimum and maximum value of variables
x0, x1, . . . , xn−1 with respect to the chain of inequalities x0 ≤ x1 ≤ · · · ≤ xn−1.
A forward phase adjusts the minimum value of x1, x2, . . . , xn−1 (i.e., xi+1 ≥
xi), while a backward phase adjusts the maximum value of xn−2, xn−1, . . . , x0

(i.e., xi−1 ≤ xi).

2. A phase restricts the minimum and maximum value of the sum variable swith respect
to the chain of inequalities x0 ≤ x1 ≤ · · · ≤ xn−1 (i.e., s ≥

∑
0≤i<n xi and

s ≤
∑

0≤i<n xi).

3. A final phase reduces the minimum and maximum value of variables
x0, x1, . . . , xn−1 both from the bounds of s and from the chain of inequalities.
Without loss of generality we now focus on the pruning of the maximum value of
variables x0, x1, . . . , xn−1. For this purpose we first need to introduce the notion
of last intersecting index of a variable xi, denoted by last i. This corresponds to
the greatest index in [i + 1, n − 1] such that xi > xlasti , or i if no such inte-
ger exists. Then the increase of the minimum value of s when xi is equal to xi is
equal to

∑
k∈[i,lasti]

(xi − xk). When this increase exceeds the available margin,
i.e. s−

∑
0≤i<n xi, we update the maximum value of xi.

We illustrate a part of the final phase on the following example
INCREASING SUM(〈x0, x1, x2, x3, x4, x5〉, s), where x0 ∈ [2, 6], x1 ∈ [4, 7],
x2 ∈ [4, 7], x3 ∈ [5, 7], x4 ∈ [6, 9], x5 ∈ [7, 9] and s ∈ [28, 29]. Observe that the
domains are consistent with the first two phases of the algorithm, since,

1. the minimum (and maximum) values of variables x0, x1, x2, x3, x4, x5 are increas-
ing,

2. the sum of the minimum of the variables x0, x1, x2, x3, x4, x5, i.e., 28 is less than
or equal to the maximum value of s,

3. the sum of the maximum of the variables x0, x1, x2, x3, x4, x5, i.e., 45 is greater
than or equal to the minimum value of s.

Now, assume we want to know the increase of the minimum value of s when x0 is set to its
maximum value 6. First we compute the last intersecting index of variable x0. Since x4 is
the last variable for which the minimum value is less than or equal to maximum value of x0

we have last0 = 4. The increase is equal to
∑
k∈[0,4](x0−xk) = (6−2)+(6−4)+(6−

4) + (6− 5) + (6− 6) = 9. Since it exceeds the margin 29− (2 + 4 + 4 + 5 + 6 + 7) = 1
we have to reduce the maximum value of x0. How to do this incrementally is described
in [324].

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 6 20 70 252 924 3432 12870
Number of solutions for INCREASING SUM: domains 0..n


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 6 20 70 252 924 3432 12870

Parameter
value

0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 1 3 3 3 3 3 3
4 1 3 5 5 5 5 5
5 - 3 5 7 7 7 7
6 - 3 7 9 11 11 11
7 - 2 7 11 13 15 15
8 - 1 8 14 18 20 22
9 - 1 7 16 22 26 28

10 - - 7 18 28 34 38
11 - - 5 19 32 42 48
12 - - 5 20 39 53 63
13 - - 3 20 42 63 77
14 - - 2 19 48 75 97
15 - - 1 18 51 87 116
16 - - 1 16 55 100 141
17 - - - 14 55 112 164
18 - - - 11 58 125 194
19 - - - 9 55 136 221
20 - - - 7 55 146 255
21 - - - 5 51 155 284
22 - - - 3 48 162 319
23 - - - 2 42 166 348
24 - - - 1 39 169 383
25 - - - 1 32 169 409
26 - - - - 28 166 440
27 - - - - 22 162 461
28 - - - - 18 155 486
29 - - - - 13 146 499
30 - - - - 11 136 515
31 - - - - 7 125 519
32 - - - - 5 112 526
33 - - - - 3 100 519
34 - - - - 2 87 515
35 - - - - 1 75 499
36 - - - - 1 63 486
37 - - - - - 53 461
38 - - - - - 42 440
39 - - - - - 34 409
40 - - - - - 26 383
41 - - - - - 20 348
42 - - - - - 15 319
43 - - - - - 11 284
44 - - - - - 7 255
45 - - - - - 5 221
46 - - - - - 3 194
47 - - - - - 2 164
48 - - - - - 1 141
49 - - - - - 1 116
50 - - - - - - 97
51 - - - - - - 77
52 - - - - - - 63
53 - - - - - - 48
54 - - - - - - 38
55 - - - - - - 28
56 - - - - - - 22
57 - - - - - - 15
58 - - - - - - 11
59 - - - - - - 7
60 - - - - - - 5
61 - - - - - - 3
62 - - - - - - 2
63 - - - - - - 1
64 - - - - - - 1

Solution count for INCREASING SUM: domains 0..n
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See also common keyword: SUM CTR (sum).

implies: INCREASING.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, order constraint, arithmetic constraint.

filtering: bound-consistency.

modelling: functional dependency.

symmetry: symmetry.

Cond. implications • INCREASING SUM(VARIABLES, S)
with minval(VARIABLES.var) > 0

implies ATMOST NVALUE(S, VARIABLES).

• INCREASING SUM(VARIABLES, S)
with minval(VARIABLES.var) > 0

implies SUM OF INCREMENTS(VARIABLES, LIMIT).


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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5.193 INCREASING VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY and INCREASING.

Constraint INCREASING VALLEY(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (1 < i ≤ k) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vk and Vk < Vk+1.
When considering all the valleys of the sequence VARIABLES from left to right enforce
all valleys to be increasing, i.e. the altitude of each valley is greater than or equal to the
altitude of its preceding valley when it exists.

Example (〈3, 5, 1, 4, 3, 5, 3, 3, 7, 2〉)

The INCREASING VALLEY constraint holds since the sequence 3 5 1 4 3 5 3 3 7 2
contains three valleys, in bold, that are increasing.
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Figure 5.449: Illustration of the Example slot: a sequence of ten variables V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10 respectively fixed to values 3, 5, 1, 4, 3, 5, 3, 3, 7, 2 and its
corresponding three valleys, in red, respectively located at altitudes 1, 3 and 3


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| ≥ 7
range(VARIABLES.var) > 1
VALLEY(VARIABLES.var) ≥ 3

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7553 105798 1666878 29090469

Number of solutions for INCREASING VALLEY: domains 0..n
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Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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See also implied by: ALL EQUAL VALLEY.

related: DECREASING VALLEY, VALLEY.

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications INCREASING VALLEY(VARIABLES)
with VALLEY(VARIABLES.var) > 0

implies NOT ALL EQUAL(VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.450 depicts the automaton associated with the INCREASING VALLEY constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a signature variable Si. The following signature constraint links VARi, VARi+1 and
Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : initial stationary or increasing mode ({= | <}∗)
u : decreasing (before first potential valley) mode (> {> | =}∗)
v : increasing (after a valley) mode (< {< | =}∗)
w : decreasing (after a valley) mode (> {> | =}∗)

STATE SEMANTICS

s u

vw

{Altitude ← 0}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ← VARi}

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1,
{Altitude ≤ VARi,
Altitude ← VARi}

Figure 5.450: Automaton for the INCREASING VALLEY constraint (note the condi-
tional transition from state w to state v testing that the counter Altitude is less than or
equal to VARi for enforcing that all valleys from left to right are in increasing altitude)

A0 = 0

Q0 = s

A1

Q1

S1

A2

Q2

S2 S3

An−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.451: Hypergraph of the reformulation corresponding to the automaton of the
INCREASING VALLEY constraint whereAi stands for the value of the counter Altitude
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.194 INDEXED SUM

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint INDEXED SUM(ITEMS, TABLE)

Arguments ITEMS : collection(index−dvar, weight−dvar)
TABLE : collection(index−int, summation−dvar)

Restrictions |ITEMS| > 0
|TABLE| > 0
required(ITEMS, [index, weight])
ITEMS.index ≥ 1
ITEMS.index ≤ |TABLE|
required(TABLE, [index, summation])
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
increasing seq(TABLE, index)

Purpose

Given several items of the collection ITEMS (each of them having a specific fixed index

as well as a weight that may be negative or positive), and a table TABLE (each entry of
TABLE corresponding to a summation variable), assign each item to an entry of TABLE
so that the sum of the weights of the items assigned to that entry is equal to the corre-
sponding summation variable.

Example



〈
index− 3 weight−−4,
index− 1 weight− 6,
index− 3 weight− 1

〉
,

〈
index− 1 summation− 6,
index− 2 summation− 0,
index− 3 summation−−3

〉


The INDEXED SUM constraint holds since the summation variables associated with
each entry of TABLE are equal to the sum of the weights of the items assigned to the
corresponding entry:

• TABLE[1].summation = ITEMS[2].weight = 6 (since TABLE[1].index =
ITEMS[2].index = 1),

• TABLE[2].summation = 0 (since TABLE[2].index = 2 does not occur as a value of
the index attribute of an item of ITEMS),

• TABLE[3].summation = ITEMS[1].weight + ITEMS[3].weight = −4 + 1 = −3
(since TABLE[3].index = ITEMS[1].index = ITEMS[3].index = 3).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |ITEMS| > 1
range(ITEMS.index) > 1
|TABLE| > 1
range(TABLE.summation) > 1

Symmetries • Items of ITEMS are permutable.

• Items of TABLE are permutable.

Reformulation The INDEXED SUM(ITEMS, TABLE) constraint can be expressed in term of a set of reified
constraints and of |TABLE| arithmetic constraints (i.e., SCALAR PRODUCT constraints).

1. For each item ITEMS[i] (i ∈ [1, |ITEMS|]) and for each table entry j (j ∈
[1, |TABLE|]) of TABLE we create a 0-1 variable Bij that will be set to 1 if and only
if ITEMS[i].index is fixed to j (i.e., Bij ⇔ ITEMS[i].index = j).

2. For each entry j of the table TABLE, we impose the sum ITEMS[1].weight · B1j +
ITEMS[2].weight · B2j + · · · + ITEMS[|ITEMS|].weight · B|ITEMS|j to be equal to
TABLE[j].summation.

See also implied by: ELEMENTS ALLDIFFERENT.

specialisation: BIN PACKING (negative contribution not allowed, effective use variable for
each bin replaced by an overall fixed capacity), BIN PACKING CAPA (negative contribution
not allowed, effective use variable for each bin replaced by a fixed capacity for each bin).

used in graph description: SUM CTR.

Keywords application area: assignment.

modelling: variable indexing, variable subscript.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of TABLE:

Arc input(s) ITEMS TABLE

Arc generator PRODUCT 7→collection(items, table)

Arc arity 2

Arc constraint(s) items.index = table.index

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− ITEMS.weight)]

) 
Constraint(s) on sets SUM CTR(variables,=, TABLE.summation)

Graph model We enforce the SUM CTR constraint on the weight of the items that are assigned to the same
entry. Within the context of the Example slot, part (A) of Figure 5.452 shows the initial
graphs associated with entries 1, 2 and 3 (i.e., one initial graph for each item of the TABLE
collection). Part (B) of Figure 5.452 shows the corresponding final graphs associated with
entries 1 and 3. Each source vertex of the final graph can be interpreted as an item assigned
to a specific entry of TABLE.

ITEMS

TABLE

1

1 23

2 3

TABLE:1 TABLE:3

2:1,6

1:1,6

1:3,-4

3:3,-3

3:3,1

(A) (B)

Figure 5.452: Initial and final graph of the INDEXED SUM constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.195 INFLEXION

I B C J DESCRIPTION LINKS AUTOMATON

Origin N. Beldiceanu

Constraint INFLEXION(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
N ≤ max(0, |VARIABLES| − 2)
required(VARIABLES, var)

Purpose

N is equal to the number of times that the following conjunctions of constraints hold:

• Xi CTRXi+1 ∧Xi 6= Xi+1,

• Xi+1 = Xi+2 ∧ · · · ∧Xj−2 = Xj−1,

• Xj−1 6= Xj ∧Xj−1 ¬CTRXj .

where Xk is the kth item of the VARIABLES collection and 1 ≤ i, i+ 2 ≤ j, j ≤ n and
CTR is < or >.

Example (3, 〈1, 1, 4, 8, 8, 2, 7, 1〉)
(0, 〈1, 1, 4, 4, 6, 6, 7, 9〉)
(7, 〈1, 0, 2, 0, 7, 2, 7, 1, 2〉)

The first INFLEXION constraint holds since the sequence 1 1 4 8 8 2 7 1 contains
three inflexions peaks that respectively correspond to values 8, 2 and 7.

1 1

4

8 8

2

7

1 1 1

4 4

6 6
7

9

1
0

2

0

7

2

7

1
2

All solutions Figure 5.454 gives all solutions to the following non ground instance of the INFLEXION

constraint: N ∈ {0, 2}, V1 = 2, V2 ∈ [2, 3], V3 ∈ [1, 2], V4 ∈ [1, 2], V5 = 3,
INFLEXION(N, 〈V1, V2, V3, V4, V5〉).

Typical N > 0
|VARIABLES| > 2
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: N determined by VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).



INFLEXION 1465

first
peak

unique
valley

second
peak

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

5

6

7

8

1 1

4

8 8

2

7

1

variables

va
lu

es

Figure 5.453: Illustration of the first example of the Example slot: a sequence of eight
variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 1, 1, 4, 8, 8, 2, 7, 1
and its three inflexions in red, two peaks and one valley (N = 3)

¬ (0, 〈2, 2, 2, 2, 3〉)
 (2, 〈2,3,1,1, 3〉)
® (2, 〈2,3,1, 2, 3〉)
¯ (2, 〈2,3, 2,1, 3〉)
° (2, 〈2,3,2,2, 3〉)

Figure 5.454: All solutions corresponding to the non ground example of the
INFLEXION constraint of the All solutions slot where each inflexion (i.e. peak or val-
ley) is coloured in orange or cyan

Usage Useful for constraining the number of inflexions of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the INFLEXION constraint cannot be cur-
rently described with the graph-based representation. However, this would not hold any-
more if we were introducing a slot that specifies how to merge adjacent vertices of the final
graph.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for INFLEXION: domains 0..n


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 9 36 135 498 1841 6856 25731
1 - 28 320 2588 18494 125284 828120
2 - - 170 3348 44058 492320 5069970
3 - - - 1342 40446 778936 12341184
4 - - - - 12810 549152 14547186
5 - - - - - 144604 8354520
6 - - - - - - 1880010
Solution count for INFLEXION: domains 0..n
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See also common keyword: GLOBAL CONTIGUITY, MIN DIST BETWEEN INFLEXION, PEAK,
VALLEY (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

Cond. implications • INFLEXION(N, VARIABLES)
with N > 0

implies ATLEAST NVALUE(NVAL, VARIABLES)
when NVAL = 2.

• INFLEXION(N, VARIABLES)
with VALLEY(VARIABLES.var) = 0

implies PEAK(N, VARIABLES).

• INFLEXION(N, VARIABLES)
with PEAK(VARIABLES.var) = 0

implies VALLEY(N, VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.455 depicts the automaton associated with the INFLEXION constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signa-
ture variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

s : stationary mode (=∗)
i : increasing mode (< {< | =}∗)
j : decreasing mode (> {> | =}∗)

STATE SEMANTICS

N = C

s{C ← 0}

i j

VARi = VARi+1

VARi < VARi+1 VARi > VARi+1

VARi ≤ VARi+1

VARi > VARi+1, {C ← C + 1}
VARi ≥ VARi+1

VARi < VARi+1, {C ← C + 1}

Figure 5.455: Automaton of the INFLEXION constraint (state s means that we are in
stationary mode, state imeans that we are in increasing mode, state j means that we are
in decreasing mode, a new inflexion is detected each time we switch from increasing to
decreasing mode – or conversely from decreasing to increasing mode – and the counter
C is incremented accordingly)

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = N

Qn−1 ∈ {s, i, j}

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.456: Hypergraph of the reformulation corresponding to the automaton of the
INFLEXION constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Glue matrix where
−→
C and

←−
C resp. represent the counter value C at the end

of a prefix and at the end of the corresponding reverse suffix that partitions the
sequence VARIABLES.

s (=∗) i (< {< | =}∗) j (> {> | =}∗)

s (=∗)

0 ←−
C

←−
C

i (< {< | =}∗)
−→
C

−→
C + 1 +

←−
C

−→
C +

←−
C

j (> {> | =}∗)

−→
C

−→
C +

←−
C

−→
C + 1 +

←−
C

Figure 5.457: Glue matrix associated with the automaton of the INFLEXION constraint

1 1 4 8 8 2
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−→
Ni
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0
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0
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3

i

0

0

4

i

0

0

5

j

1

1

...

...

...

...

172
<>

i

←−
Qi
←−
Ci
←−
Ni

0

s

0

0

1

i

0

0

2

j

1

1

...

...

...

...

INFLEXION(N = 3, 〈1, 1, 4, 8, 8, 2, 7, 1〉)

INFLEXION

( −→
N5 = 1,

〈1, 1, 4, 8, 8, 2〉

)
INFLEXION

( ←−
N2 = 1,
〈1, 7, 2〉

)
glue matrix entry associated with the state pair (j, j):

N =
−→
C5 + 1 +

←−
C2 = 1 + 1 + 1 = 3

Figure 5.458: Illustrating the use of the state pair (j, j) of the glue matrix for linking
N with the counters variables obtained after reading the prefix 1, 1, 4, 8, 8, 2 and corre-
sponding suffix 2, 7, 1 of the sequence 1, 1, 4, 8, 8, 2, 7, 1; note that the suffix 2, 7, 1 (in
pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for
i = 0) and the evolution (for i > 0) of the state of the automaton and its counter C
upon reading the prefix 1, 1, 4, 8, 8, 2 (resp. the reverse suffix 1, 7, 2).
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5.196 INSIDE SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint INSIDE SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym INSIDE.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi is inside Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An objectOi is inside an objectOj with respect to a set of dimensions depicted by DIMS

if and only if, for all shifted boxes si associated with Oi, there exists a shifted box sj of
Oj such that sj is inside si. A shifted box sj is inside a shifted box si if and only if, for
all dimensions d ∈ DIMS, (1) the start of sj in dimension d is strictly less than the start
of si in dimension d, and (2) the end of si in dimension d is strictly less than the end of
sj in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈3, 3〉 ,
oid− 2 sid− 2 x− 〈2, 2〉 ,
oid− 3 sid− 3 x− 〈1, 1〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈5, 5〉

〉


Figure 5.459 shows the objects of the example. Since O1 is inside O2 and O3, and
since O2 is also inside O3, the INSIDE SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349]. The constraint
INSIDE SBOXES is a restriction of the original relation since it requires that each box of
an object is contained by one box of the other object.

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES,
COVERS SBOXES, DISJOINT SBOXES, EQUAL SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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S1

(A) Shape of the
first object

S2

(B) Shape of the
second object

S3

(C) Shape of the
third object

4 5 61 2 3

4

5

1

2

3

O3

O2

O1

(D) Three objects O1, O2, O3, where O1 is inside O2 and O3,
and where O2 is inside O3

O1: oid− 1 sid− 1 x− 〈3, 3〉
O2: oid− 2 sid− 2 x− 〈2, 2〉
O3: oid− 3 sid− 3 x− 〈1, 1〉

OBJECTS

Figure 5.459: (D) the three nested objectsO3,O2,O1 of the Example slot respectively
assigned shapes S3, S2, S1; (A), (B), (C) shapes S1, S2 and S3 are made up from a
single shifted box.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• inside sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧
origin(O2, S2, D) <
origin(O1, S1, D)

,

end(O1, S1, D) <
end(O2, S2, D)


• inside objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

( [
O2.sid

] )
inside sboxes


Dims,
O1,
S1,
O2,
S2


• all inside(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

inside objects

 Dims,
O1,
O2


• all inside(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.197 INT VALUE PRECEDE

I B C J DESCRIPTION LINKS AUTOMATON

Origin [269]

Constraint INT VALUE PRECEDE(S, T, VARIABLES)

Synonyms PRECEDE, PRECEDENCE, VALUE PRECEDE.

Arguments S : int

T : int

VARIABLES : collection(var−dvar)

Restrictions S 6= T

required(VARIABLES, var)

Purpose If value T occurs in the collection of variables VARIABLES then its first occurrence should
be preceded by an occurrence of value S.

Example (0, 1, 〈4, 0, 6, 1, 0〉)

The INT VALUE PRECEDE constraint holds since the first occurrence of value 0
precedes the first occurrence of value 1.

Typical S < T

|VARIABLES| > 1
ATLEAST(1, VARIABLES, S)
ATLEAST(1, VARIABLES, T)

Symmetries • An occurrence of a value of VARIABLES.var that is different from S and T can be
replaced by any other value that is also different from S and T.

• All occurrences of values S and T can be swapped in S, T and VARIABLES.var.

Arg. properties • Suffix-contractible wrt. VARIABLES.

• Aggregate: S(id), T(id), VARIABLES(union).

Algorithm A filtering algorithm for maintaining value precedence is presented in [269]. Its complexity
is linear to the number of variables of the collection VARIABLES.

Systems PRECEDE in Gecode, VALUE PRECEDE in MiniZinc.

See also generalisation: INT VALUE PRECEDE CHAIN (sequence of 2 values replaced by
sequence of at least 2 values), SET VALUE PRECEDE (sequence of domain variables
replaced by sequence of set variables).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#value_precede
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

symmetry: symmetry, indistinguishable values, value precedence.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.460 depicts the automaton associated with the INT VALUE PRECEDE constraint.
Let VARi be the ith variable of the VARIABLES collection. To each triple (S, T, VARi) corre-
sponds a signature variable Si as well as the following signature constraint: (VARi = S⇔
Si = 1) ∧ (VARi = T⇔ Si = 2) ∧ (VARi 6= S ∧ VARi 6= T⇔ Si = 3).

s

t

VARi 6= S ∧ VARi 6= T

VARi = S

VARi 6= S ∧ VARi 6= T

VARi = S

VARi = T

Figure 5.460: Automaton of the INT VALUE PRECEDE constraint (state s means that
value S was not yet encountered, while state t means that value S was already encoun-
tered)

Q0 = s Q1

S1 S2

Qn ∈ {s, t}

Sn

VAR1 VAR2 VARn

Figure 5.461: Hypergraph of the reformulation corresponding to the automaton of the
INT VALUE PRECEDE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.198 INT VALUE PRECEDE CHAIN

I B C J DESCRIPTION LINKS AUTOMATON

Origin [269]

Constraint INT VALUE PRECEDE CHAIN(VALUES, VARIABLES)

Synonyms PRECEDE, PRECEDENCE, VALUE PRECEDE CHAIN.

Arguments VALUES : collection(var−int)
VARIABLES : collection(var−dvar)

Restrictions required(VALUES, var)
distinct(VALUES, var)
required(VARIABLES, var)

Purpose

Assuming n denotes the number of items of the VALUES collection, the following con-
dition holds for every i ∈ [1, n − 1]: When it is defined, the first occurrence of the
(i + 1)th value of the VALUES collection should be preceded by the first occurrence of
the ith value of the VALUES collection.

Example (〈4, 0, 1〉 , 〈4, 0, 6, 1, 0〉)

The INT VALUE PRECEDE CHAIN constraint holds since within the sequence 4, 0,
6, 1, 0:

• The first occurrence of value 4 occurs before the first occurrence of value 0.

• The first occurrence of value 0 occurs before the first occurrence of value 1.

Typical |VALUES| > 1
STRICTLY INCREASING(VALUES)
|VARIABLES| > |VALUES|
range(VARIABLES.var) > 1
USED BY(VARIABLES, VALUES)

Symmetry An occurrence of a value of VARIABLES.var that does not occur in VALUES.var can be
replaced by any other value that also does not occur in VALUES.var.

Arg. properties • Contractible wrt. VALUES.

• Suffix-contractible wrt. VARIABLES.

• Aggregate: VALUES(id), VARIABLES(union).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage The INT VALUE PRECEDE CHAIN constraint is useful for breaking symmetries in graph
colouring problems. We set a INT VALUE PRECEDE CHAIN constraint on all variables
V1, V2, . . . , Vn associated with the vertices of the graph to colour, where we state that the
first occurrence of colour i should be located before the first occurrence of colour i + 1
within the sequence V1, V2, . . . , Vn.

Figure 5.462 illustrates the problem of colouring earth and mars from Thom Sulanke.
Part (A) of Figure 5.462 provides a solution where the first occurrence of each value of i,
(i ∈ {1, 2, . . . , 8}) is located before the first occurrence of value i + 1. This is obtained
by using the following constraints:



A 6= B, A 6= E, A 6= F, A 6= G, A 6= H, A 6= I, A 6= J, A 6= K,
B 6= A, B 6= C, B 6= F, B 6= G, B 6= H, B 6= I, B 6= J, B 6= K,
C 6= B, C 6= D, C 6= F, C 6= G, C 6= H, C 6= I, C 6= J, C 6= K,
D 6= C, D 6= E, D 6= F, D 6= G, D 6= H, D 6= I, D 6= J, D 6= K,
E 6= A, E 6= D, E 6= F, E 6= G, E 6= H, E 6= I, E 6= J, E 6= K,
F 6= A, F 6= B, F 6= C, F 6= D, F 6= E, F 6= G, F 6= H, F 6= I, F 6= J, F 6= K,
G 6= A, G 6= B, G 6= C, G 6= D, G 6= E, G 6= F, G 6= H, G 6= I, G 6= J, G 6= K,
H 6= A, H 6= B, H 6= C, H 6= D, H 6= E, H 6= F, H 6= G, H 6= I, H 6= J, H 6= K,
I 6= A, I 6= B, I 6= C, I 6= D, I 6= E, I 6= F, I 6= G, I 6= H, I 6= J, I 6= K,
J 6= A, J 6= B, J 6= C, J 6= D, J 6= E, J 6= F, J 6= G, J 6= H, J 6= I, J 6= K,
K 6= A, K 6= B, K 6= C, K 6= D, K 6= E, K 6= F, K 6= G, K 6= H, K 6= I, K 6= J,
INT VALUE PRECEDE CHAIN(〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 , 〈A, B, C, D, E, F, G, H, I, J, K〉).

Part (B) provides a symmetric solution where the value precedence constraints between
the pairs of values (1, 2), (2, 3), (4, 5), (7, 8) and (8, 9) are all violated (each violation is
depicted by a dashed arc).

For one other example of use of the INT VALUE PRECEDE CHAIN constraint in the context
of bin packing problems see the exercise called switching time and resource and breaking
symmetry of the CUMULATIVE constraint.

Remark When we have more than one class of interchangeable values (i.e., a partition of inter-
changeable values) we can use one INT VALUE PRECEDE CHAIN constraint for breaking
value symmetry in each class of interchangeable values. However it was shown in [450]
that enforcing arc-consistency for such a conjunction of INT VALUE PRECEDE CHAIN

constraints is NP-hard.

Algorithm The 2004 reformulation [30] associated with the automaton of the Automaton slot achieves
arc-consistency since the corresponding constraint network is a Berge-acyclic constraint
network. Later on, another formulation into a sequence of ternary sliding constraints was
proposed by [449]. It also achieves arc-consistency for the same reason.

Systems PRECEDE in Gecode, VALUE PRECEDE CHAIN in MiniZinc.

See also specialisation: INT VALUE PRECEDE (sequence of at least 2 values replaced by
sequence of 2 values).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#value_precede_chain
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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VARIABLES:

VALUES:

(A) Chain of satisfied value precedences between
first occurrence of consecutive values
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(B) Broken value precedences between first
occurrence of consecutive values (in dashed)
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Figure 5.462: Using the INT VALUE PRECEDE CHAIN constraint for breaking sym-
metries in graph colouring problems; there is an arc between the first occurrence of
value v (1 ≤ v ≤ 8) in the sequence of variables A, B, C, D, E, F, G, H, I, J, K, and
the first occurrence of value v + 1 (a plain arc if the corresponding value precedence
constraint holds, a dashed arc otherwise)

constraint type: order constraint.

filtering: arc-consistency.

problems: graph colouring.
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symmetry: symmetry, indistinguishable values, value precedence.
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Automaton Figure 5.463 depicts the automaton associated with the INT VALUE PRECEDE CHAIN con-
straint. Let n and m respectively denote the number of variables of the VARIABLES col-
lection and the number of values of the VALUES collection. Let VARi be the ith variable of
the VARIABLES collection. Let valv (1 ≤ v ≤ m) denote the vth value of the VALUES

collection.

s0

s1

s2

sm−1

sm

NOT IN(VARi, VALUES)

VARi = val1

NOT IN(VARi, VALUES) VARi = val1

VARi = val2

NOT IN(VARi, VALUES) VARi = val1 ∨ VARi = val2

NOT IN(VARi, VALUES) VARi = val1 ∨ · · · ∨ VARi = valm−1

VARi = valm

NOT IN(VARi, VALUES) VARi = val1 ∨ · · · ∨ VARi = valm

Figure 5.463: Automaton of the INT VALUE PRECEDE CHAIN constraint (state si
means that (1) each value val1, val2, . . . , vali was already encountered at least once,
and that (2) value vali+1 was not yet found)

Q0 = s0 Q1

VAR1 VAR2

Qn

VARn

Figure 5.464: Hypergraph of the reformulation corresponding to the automaton of the
INT VALUE PRECEDE CHAIN constraint (since all states of the automaton are accept-
ing there is no restriction on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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We now show how to construct such an automaton systematically. For this purpose let us
first introduce some notations:

• Without loss of generality we assume that we have at least two values (i.e., m ≥ 2).

• Let C be the set of values that can be potentially assigned to a variable
of the VARIABLES collection, but which do not belong to the values of the
VALUES collection (i.e., C = (dom(VAR1) ∪ dom(VAR2) ∪ · · · ∪ dom(VARn) −
{val1, val2, . . . , valm} = {w1, w2, . . . , w|C|}.

The states and transitions of the automaton are respectively defined in the following way:

• We have m + 1 states labelled s0, s1, . . . , sm from which s0 is the initial state. All
states are accepting states.

• We have the following three sets of transitions:

1. For all v ∈ [0,m − 1], a transition from sv to sv+1 labelled by value valv+1.
Each transition of this type will be triggered on the first occurrence of value
valv+1 within the variables of the VARIABLES collection.

2. For all v ∈ [1,m] and for all w ∈ [1, v], a self loop on sv labelled by value
valw. Such transitions encode the fact that we stay in the same state as long as
we have a value that was already encountered.

3. If the set C is not empty, then for all v ∈ [0,m] a self loop on sv labelled by
the fact that we take a value not in VALUES (i.e., a value in C). This models the
fact that, encountering a value that does not belong to the set of values of the
VALUES collection, leaves us in the same state.
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5.199 INTERVAL AND COUNT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [135]

Constraint INTERVAL AND COUNT(ATMOST, COLOURS, TASKS, SIZE INTERVAL)

Arguments ATMOST : int

COLOURS : collection(val−int)
TASKS : collection(origin−dvar, colour−dvar)
SIZE INTERVAL : int

Restrictions ATMOST ≥ 0
required(COLOURS, val)
distinct(COLOURS, val)
required(TASKS, [origin, colour])
TASKS.origin ≥ 0
SIZE INTERVAL > 0

Purpose

First consider the set of tasks of the TASKS collection, where each task has a spe-
cific colour that may not be initially fixed. Then consider the intervals of the form
[k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL − 1], where k is an inte-
ger. The INTERVAL AND COUNT constraint forces that, for each interval Ik previously
defined, the total number of tasks, which both are assigned to Ik and take their colours
in COLOURS, does not exceed the limit ATMOST.

Example


2, 〈4〉 ,〈 origin− 1 colour− 4,

origin− 0 colour− 9,
origin− 10 colour− 4,
origin− 4 colour− 4

〉
, 5


Figure 5.465 shows the solution associated with the example. The constraint
INTERVAL AND COUNT holds since, for each interval, the number of tasks taking
colour 4 does not exceed the limit 2.

Typical ATMOST > 0
ATMOST < |TASKS|
|COLOURS| > 0
|TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.colour) > 1
SIZE INTERVAL > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬
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®



︸ ︷︷ ︸
interval 0

︸ ︷︷ ︸
interval 1

︸ ︷︷ ︸
interval 2

︸︷︷︸colour ∈ {4}

colour /∈ {4}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time

≤ 2

¬ o− 1 c− 4 ® o− 10 c− 4
 o− 0 c− 9 ¯ o− 4 c− 4

TASKS

(
o for origin, c for colour

)

4 9

colour codes:

Figure 5.465: The INTERVAL AND COUNT solution to the Example slot with the use
of each interval

Symmetries • ATMOST can be increased.

• Items of COLOURS are permutable.

• Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

• An occurrence of a value of TASKS.origin that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

• An occurrence of a value of TASKS.colour that belongs to COLOURS.val
(resp. does not belong to COLOURS.val) can be replaced by any other value in
COLOURS.val (resp. not in COLOURS.val).

Arg. properties • Contractible wrt. COLOURS.

• Contractible wrt. TASKS.

Usage This constraint was originally proposed for dealing with timetabling problems. In this
context the different intervals are interpreted as morning and afternoon periods of different
consecutive days. Each colour corresponds to a type of course (i.e., French, mathematics).
There is a restriction on the maximum number of courses of a given type each morning as
well as each afternoon.

Remark If we want to only consider intervals that correspond to the morning or to the afternoon we
could extend the INTERVAL AND COUNT constraint in the following way:

• We introduce two extra parameters REST and QUOTIENT that correspond to non-
negative integers such that REST is strictly less than QUOTIENT,

• We add the following condition to the arc constraint:
(tasks1.origin/SIZE INTERVAL) ≡ REST( mod QUOTIENT)

Now, if we want to express a constraint on the morning intervals, we set REST to 0 and
QUOTIENT to 2.

Reformulation Let K denote the index of the last possible interval where the tasks can

be assigned: K = bmaxi∈[1,|TASKS|](TASKS[i].origin)+SIZE INTERVAL−1

SIZE INTERVAL
c. The


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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INTERVAL AND COUNT(ATMOST, COLOURS, TASKS, SIZE INTERVAL) constraint can
be expressed in term of a set of reified constraints and of K arithmetic constraints
(i.e., SUM CTR constraints).

1. For each task TASKS[i] (i ∈ [1, |TASKS|]) of the TASKS collection we create a 0-1
variable Bi that will be set to 1 if and only if task TASKS[i] takes a colour within the
set of colours COLOURS:
Bi ⇔ TASKS[i].colour = COLOURS[1].val ∨

TASKS[i].colour = COLOURS[2].val ∨
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TASKS[i].colour = COLOURS[|COLOURS|].val.

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) and for each interval [k ·
SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1] (k ∈ [0,K]) we create
a 0-1 variableBik that will be set to 1 if and only if, both task TASKS[i] takes a colour
within the set of colours COLOURS, and the origin of task TASKS[i] is assigned within
interval [k · SIZE INTERVAL, k · SIZE INTERVAL + SIZE INTERVAL− 1]:
Bik ⇔ Bi ∧

TASKS[i].origin ≥ k · SIZE INTERVAL ∧
TASKS[i].origin ≤ k · SIZE INTERVAL + SIZE INTERVAL− 1

3. Finally, for each interval [k · SIZE INTERVAL, k · SIZE INTERVAL +
SIZE INTERVAL−1] (k ∈ [0,K]), we impose the sumB1k +B2k + · · ·+B|TASKS|k
to not exceed the maximum allowed capacity ATMOST.

See also assignment dimension removed: AMONG LOW UP (assignment dimension correspond-
ing to intervals is removed).

related: INTERVAL AND SUM (AMONG LOW UP constraint replaced by SUM CTR).

used in graph description: AMONG LOW UP.

Keywords application area: assignment.

characteristic of a constraint: coloured, automaton, automaton with array of counters.

constraint type: timetabling constraint, resource constraint, temporal constraint.

modelling: assignment dimension, interval.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.colour)]

) 
Constraint(s) on sets AMONG LOW UP(0, ATMOST, variables, COLOURS)

Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks of
the TASKS collection. There is an arc between two tasks if their origins belong to the same
interval. Finally we enforce an AMONG LOW UP constraint on each set S of successors of
the different vertices of the final graph. This put a restriction on the maximum number of
tasks of S for which the colour attribute takes its value in COLOURS.

Parts (A) and (B) of Figure 5.466 respectively show the initial and final graph associated
with the Example slot. Each connected component of the final graph corresponds to items
that are all assigned to the same interval.

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,4

1:1,4 2:0,94:4,4

2:0,93:10,4

3:10,4

4:4,4

(A) (B)

Figure 5.466: Initial and final graph of the INTERVAL AND COUNT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.467 depicts the automaton associated with the INTERVAL AND COUNT constraint.
Let COLOURi be the colour attribute of the ith item of the TASKS collection. To each pair
(COLOURS, COLOURi) corresponds a signature variable Si as well as the following signature
constraint: COLOURi ∈ COLOURS⇔ Si.

ARITH(C,≤, ATMOST)

s{C[ ]← 0}
IN(COLOURi, COLOURS),{
C[b ORIGINi

SIZE INTERVAL
c]← C[b ORIGINi

SIZE INTERVAL
c] + 1

}
NOT IN(COLOURi, COLOURS)

Figure 5.467: Automaton of the INTERVAL AND COUNT constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.200 INTERVAL AND SUM

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CUMULATIVE.

Constraint INTERVAL AND SUM(SIZE INTERVAL, TASKS, LIMIT)

Arguments SIZE INTERVAL : int

TASKS : collection(origin−dvar, height−dvar)
LIMIT : int

Restrictions SIZE INTERVAL > 0
required(TASKS, [origin, height])
TASKS.origin ≥ 0
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

A maximum resource capacity constraint: We have to fix the origins of a collection of
tasks in such a way that, for all the tasks that are allocated to the same interval, the sum
of the heights does not exceed a given capacity. All the intervals we consider have the
following form: [k ·SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1], where
k is an integer.

Example

 5,

〈 origin− 1 height− 2,
origin− 10 height− 2,
origin− 10 height− 3,
origin− 4 height− 1

〉
, 5


Figure 5.468 shows the solution associated with the example. The constraint
INTERVAL AND SUM holds since the sum of the heights of the tasks that are lo-
cated in the same interval does not exceed the limit 5. Each task t is depicted by a
rectangle r associated with the interval to which the task t is assigned. The rectangle r
is labelled with the position of t within the items of the TASKS collection. The origin of
task t is represented by a small black square located within its corresponding rectangle
r. Finally, the height of a rectangle r is equal to the height of the task t to which it
corresponds.

Typical SIZE INTERVAL > 1
|TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.height) > 1
LIMIT <sum(TASKS.height)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¯

︸ ︷︷ ︸
interval 0

︸ ︷︷ ︸
interval 1

︸ ︷︷ ︸
interval 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time

≤ 5

¬ o− 1 h− 2 ® o− 10 h− 3
 o− 10 h− 2 ¯ o− 4 h− 1

TASKS

(
o for origin, h for height

)

Figure 5.468: The INTERVAL AND SUM solution to the Example slot with the use of
each interval

Symmetries • Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

• An occurrence of a value of TASKS.origin that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

• TASKS.height can be decreased to any value ≥ 0.

• LIMIT can be increased.

Arg. properties Contractible wrt. TASKS.

Usage This constraint can be use for timetabling problems. In this context the different intervals
are interpreted as morning and afternoon periods of different consecutive days. We have
a capacity constraint for all tasks that are assigned to the same morning or afternoon of a
given day.

Reformulation Let K denote the index of the last possible interval where the tasks can

be assigned: K = bmaxi∈[1,|TASKS|](TASKS[i].origin)+SIZE INTERVAL−1

SIZE INTERVAL
c. The

INTERVAL AND SUM(SIZE INTERVAL, TASKS, LIMIT) constraint can be expressed in
term of a set of reified constraints and ofK arithmetic constraints (i.e., SCALAR PRODUCT

constraints).

1. For each task TASKS[i] (i ∈ [1, |TASKS|]) and for each interval [k ·
SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1] (k ∈ [0,K]) we create
a 0-1 variable Bik that will be set to 1 if and only if the origin of task TASKS[i] is as-
signed within interval [k ·SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−
1]:
Bik ⇔ TASKS[i].origin ≥ k · SIZE INTERVAL ∧

TASKS[i].origin ≤ k · SIZE INTERVAL + SIZE INTERVAL− 1

2. Finally, for each interval [k · SIZE INTERVAL, k · SIZE INTERVAL +
SIZE INTERVAL − 1] (k ∈ [0,K]), we impose the sum TASKS[1].height ·


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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B1k + TASKS[2].height · B2k + · · · + TASKS[|TASKS|].height · B|TASKS|k to not
exceed the maximum allowed capacity LIMIT.

See also assignment dimension removed: SUM CTR (assignment dimension corresponding to in-
tervals is removed).

related: INTERVAL AND COUNT (SUM CTR constraint replaced by AMONG LOW UP).

used in graph description: SUM CTR.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint type: timetabling constraint, resource constraint, temporal constraint.

modelling: assignment dimension, interval.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

) 
Constraint(s) on sets SUM CTR(variables,≤, LIMIT)

Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks
of the TASKS collection. There is an arc between two tasks if their origins belong to the
same interval. Finally we enforce a SUM CTR constraint on each set S of successors of the
different vertices of the final graph. This put a restriction on the maximum value of the
sum of the height attributes of the tasks of S.

Parts (A) and (B) of Figure 5.469 respectively show the initial and final graph associated
with the Example slot. Each connected component of the final graph corresponds to items
that are all assigned to the same interval.

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,2

1:1,24:4,1

2:10,2

2:10,2 3:10,3

3:10,3 4:4,1

(A) (B)

Figure 5.469: Initial and final graph of the INTERVAL AND SUM constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.470 depicts the automaton associated with the INTERVAL AND SUM constraint.
To each item of the collection TASKS corresponds a signature variable Si that is equal to 1.

ARITH(C,≤, LIMIT)

s{C[ ]← 0}
1,{
C[b ORIGINi

SIZE INTERVAL
c]← C[b ORIGINi

SIZE INTERVAL
c] + HEIGHTi

}

Figure 5.470: Automaton of the INTERVAL AND SUM constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.201 INVERSE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint INVERSE(NODES)

Synonyms ASSIGNMENT, CHANNEL, INVERSE CHANNELING.

Argument NODES : collection(index−int, succ−dvar, pred−dvar)

Restrictions required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.pred ≥ 1
NODES.pred ≤ |NODES|

Purpose

Enforce each vertex of a digraph to have exactly one predecessor and one successor. In
addition the following two statements are equivalent:

1. The successor of the ith node is the jth node.

2. The predecessor of the jth node is the ith node.

Example


〈 index− 1 succ− 2 pred− 2,

index− 2 succ− 1 pred− 1,
index− 3 succ− 5 pred− 4,
index− 4 succ− 3 pred− 5,
index− 5 succ− 4 pred− 3

〉 
The INVERSE constraint holds since:

• NODES[1].succ = 2⇔ NODES[2].pred = 1,

• NODES[2].succ = 1⇔ NODES[1].pred = 2,

• NODES[3].succ = 5⇔ NODES[5].pred = 3,

• NODES[4].succ = 3⇔ NODES[3].pred = 4,

• NODES[5].succ = 4⇔ NODES[4].pred = 5.

S1 S2 S3 S4 S5

P1

P2

P3

P4

P5

1 2 3 4 5

1

2

3

4

5

All solutions Figure 5.471 gives all solutions to the following non ground instance of the INVERSE con-
straint: S1 ∈ [2, 4], P1 ∈ [1, 4], S2 ∈ [1, 2], P2 ∈ [1, 4], S3 ∈ [1, 4], P3 ∈ [1, 4],
S4 ∈ [2, 4], P4 ∈ [1, 3], INVERSE(〈1 S1 P1, 2 S2 P2, 3 S3 P3, 4 S4 P4〉).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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¬ (〈2 21, 1 12, 4 43, 3 34〉)
 (〈3 21, 1 42, 4 13, 2 34〉)
® (〈4 21, 1 32, 2 43, 3 14〉)
¯ (〈4 21, 1 42, 3 33, 2 14〉)
° (〈4 31, 2 22, 1 43, 3 14〉)
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¯
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Figure 5.471: All solutions corresponding to the non ground example of the INVERSE
constraint of the All solutions slot; in the left-hand side the index attributes are dis-
played as indices of the pred attribute, while in the right-hand side and in the lower
part they are directly displayed within each node of the corresponding graph.

Typical |NODES| > 1

Symmetries • Items of NODES are permutable.

• Attributes of NODES are permutable w.r.t. permutation (index) (succ, pred) (per-
mutation applied to all items).

Arg. properties • Functional dependency: NODES.succ determined by NODES.index and
NODES.pred.

• Functional dependency: NODES.pred determined by NODES.index and
NODES.succ.

Usage This constraint is used in order to make the link between the successor and the predeces-
sor variables. This is sometimes required by specific heuristics that use both predecessor
and successor variables. In some problems, the successor and predecessor variables are
respectively interpreted as column an row variables (i.e., we have a bijection between the
successor variables and their values). This is the case, for example, in the n-queens prob-
lem (i.e., place n queens on an n by n chessboard in such a way that no two queens are on
the same row, the same column or the same diagonal) when we use the following model:
to each column of the chessboard we associate a variable that gives the row where the cor-
responding queen is located. Symmetrically, to each row of the chessboard we create a


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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variable that indicates the column where the associated queen is placed. Having these two
sets of variables, we can now write a heuristic that selects the column or the row for which
we have the fewest number of alternatives for placing a queen.

Remark In the original INVERSE constraint of CHIP the index attribute was not explicitly present.
It was implicitly defined as the position of a variable in a list, the first position being 1.
This is also the case for SICStus Prolog, JaCoP and Gecode where the variables are
respectively indexed from 1, 0 and 0. Within SICStus Prolog and JaCoP (http://www.
jacop.eu/), the INVERSE constraint is called ASSIGNMENT. Within Gecode, it is called
CHANNEL (http://www.gecode.org/).

Algorithm An arc-consistency filtering algorithm for the INVERSE constraint is described in [138,
139]. The algorithm is based on the following ideas:

• We first normalize the domains of the variables by removing value i from the jth

predecessor variable if value j does not belong to the ith successor variable, and by
removing value j from the ith successor variable if value i does not belong to the
jth predecessor variable.

• Second, one can map solutions to the INVERSE constraint to perfect matchings in
a so-called variable bipartite graph derived from the domain of the variables of the
constraint in the following way: to each successor variable corresponds a vertex; sim-
ilarly to each predecessor variable corresponds a vertex; there is and edge between
the ith successor variable and the jth predecessor variable if and only if value i
belongs to the domain of the jth predecessor variable and value j belongs to the
domain of the ith successor variable.

• Third, Dulmage-Mendelsohn decomposition [157] is used to characterise all edges
that do not belong to any perfect matching, and therefore prune the corresponding
variables.

Systems INVERSECHANNELING in Choco, CHANNEL in Gecode, INVERSE in MiniZinc,
ASSIGNMENT in SICStus.

See also common keyword: CYCLE, SYMMETRIC ALLDIFFERENT (permutation).

generalisation: INVERSE OFFSET (do not assume anymore that the smallest value of the
pred or succ attributes is equal to 1), INVERSE SET (domain variable replaced by set
variable), INVERSE WITHIN RANGE (partial mapping between two collections of dis-
tinct size).

implies (items to collection): LEX ALLDIFFERENT.

related: INVERSE EXCEPT LOOP.

Keywords characteristic of a constraint: automaton, automaton with array of counters.

combinatorial object: permutation.

constraint arguments: pure functional dependency.

constraint type: graph constraint.

filtering: bipartite matching, arc-consistency.

heuristics: heuristics.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.cosytec.com
http://www.sics.se/sicstus/
http://www.jacop.eu/
http://www.gecode.org/
http://www.sics.se/sicstus/
http://www.jacop.eu/
http://www.gecode.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#inverse
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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modelling: channelling constraint, permutation channel, dual model, functional depen-
dency.

modelling exercises: n-Amazons, zebra puzzle.

puzzles: n-Amazons, n-queens, zebra puzzle.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.pred = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the INVERSE constraint considers objects that have
three attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex,

• One variable attribute pred that is the predecessor of the vertex.

Parts (A) and (B) of Figure 5.472 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

5

NARC=5

1:1,2,2

2:2,1,1

3:3,5,4

5:5,4,3

4:4,3,5

(A) (B)

Figure 5.472: Initial and final graph of the INVERSE constraint

Signature Since all the index attributes of the NODES collection are distinct and because of the first
condition nodes1.succ = nodes2.index of the arc constraint all the vertices of the final
graph have at most one predecessor.

Since all the index attributes of the NODES collection are distinct and because of the second
condition nodes2.pred = nodes1.index of the arc constraint all the vertices of the final
graph have at most one successor.

From the two previous remarks it follows that the final graph is made up from disjoint
paths and disjoint circuits. Therefore the maximum number of arcs of the final graph is


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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equal to its maximum number of vertices NODES. So we can rewrite the graph property
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.
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Automaton Figure 5.473 depicts the automaton associated with the INVERSE constraint. To each item
of the collection NODES corresponds a signature variable Si that is equal to 1.

ARITH(C,=, 0)

s{C[ ]← 0}
1,{

C[SUCCi] ← C[SUCCi] + INDEXi,
C[INDEXi] ← C[INDEXi]− PREDi

}

Figure 5.473: Automaton of the INVERSE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.202 INVERSE EXCEPT LOOP

I B C J DESCRIPTION LINKS

Origin Derived from INVERSE

Constraint INVERSE EXCEPT LOOP(NODES)

Argument NODES : collection(index−int, succ−dvar, pred−dvar)

Restrictions required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.pred ≥ 1
NODES.pred ≤ |NODES|

Purpose

Enforce the following conditions:

1. NODES[i].succ = j ∧ i 6= j ⇔ NODES[j].pred = i ∧ i 6= j,

2. NODES[i].succ = i⇔ ∀j ∈ [1, n] : NODES[j].pred 6= i,

3. NODES[i].pred = i⇔ ∀j ∈ [1, n] : NODES[j].succ 6= i.

Example


〈 index− 1 succ− 3 pred− 1,

index− 2 succ− 4 pred− 2,
index− 3 succ− 3 pred− 1,
index− 4 succ− 5 pred− 2,
index− 5 succ− 5 pred− 4

〉 
Figure 5.474 illustrates the constraint of the Example slot. The INVERSE EXCEPT LOOP

constraint holds since:

1. • NODES[1].succ = 3 ∧ 1 6= 3⇔ NODES[3].pred = 1 ∧ 3 6= 1,

• NODES[2].succ = 4 ∧ 2 6= 4⇔ NODES[4].pred = 2 ∧ 4 6= 2,

• NODES[4].succ = 5 ∧ 4 6= 5⇔ NODES[5].pred = 4 ∧ 5 6= 4.

2. • NODES[3].succ = 3⇔ ∀j ∈ [1, 5] : NODES[j].pred 6= 3,

• NODES[5].succ = 5⇔ ∀j ∈ [1, 5] : NODES[j].pred 6= 5.

3. • NODES[1].pred = 1⇔ ∀j ∈ [1, 5] : NODES[j].succ 6= 1,

• NODES[2].pred = 2⇔ ∀j ∈ [1, 5] : NODES[j].succ 6= 2.

Typical |NODES| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.
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2 3 5 1

8 6

4 7(A)

2 3 5 1

8 6

4 7 (B)

Figure 5.474: (A) Successor and (B) predecessor views corresponding to the constraint
of the Example slot

Arg. properties • Functional dependency: NODES.succ determined by NODES.index and
NODES.pred.

• Functional dependency: NODES.pred determined by NODES.index and
NODES.succ.

Usage The INVERSE EXCEPT LOOP constraint can be used in the reformulation of the
PATH(NPATH, 〈1 s1, . . . , n sn〉) constraint. This reformulation is based on the use of two
TREE constraints as well as on the use of one INVERSE EXCEPT LOOP channeling con-
straint for connecting the two TREE constraints:

• TREE(NPATH, 〈1 s1, . . . , n sn〉),

• INVERSE EXCEPT LOOP(〈1 s1 p1, . . . , n sn pn〉),

• TREE(NPATH, 〈1 p1, . . . , n pn〉).

In the context of one single path this reformulation was first mentioned in the PhD thesis
of J.-G. Fages [166].

See also related: INVERSE.

Keywords constraint arguments: pure functional dependency.

constraint type: graph constraint.

modelling: channelling constraint, dual model, functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.203 INVERSE OFFSET

I B C J DESCRIPTION LINKS GRAPH

Origin Gecode

Constraint INVERSE OFFSET(SOFFSET, POFFSET, NODES)

Synonym CHANNEL.

Arguments SOFFSET : int

POFFSET : int

NODES : collection(index−int, succ−dvar, pred−dvar)

Restrictions required(NODES, [index, succ, pred])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1 + SOFFSET

NODES.succ ≤ |NODES|+ SOFFSET

NODES.pred ≥ 1 + POFFSET

NODES.pred ≤ |NODES|+ POFFSET

Purpose

Enforce each vertex of a digraph to have exactly one predecessor and one successor. In
addition the following two statements are equivalent:

1. The successor of the ith node minus SOFFSET is equal to j.

2. The predecessor of the jth node minus POFFSET is equal to i.

I.e., NODES[i].succ− SOFFSET = j ⇔ NODES[j].pred−POFFSET = i.

Example


−1, 0,

〈
index− 1 succ− 4 pred− 3,
index− 2 succ− 2 pred− 5,
index− 3 succ− 0 pred− 2,
index− 4 succ− 6 pred− 8,
index− 5 succ− 1 pred− 1,
index− 6 succ− 7 pred− 7,
index− 7 succ− 5 pred− 4,
index− 8 succ− 3 pred− 6

〉


The INVERSE OFFSET constraint holds since:

• NODES[1].succ− (−1) = 5⇔ NODES[5].pred− 0 = 1,

• NODES[2].succ− (−1) = 3⇔ NODES[3].pred− 0 = 2,

• NODES[3].succ− (−1) = 1⇔ NODES[1].pred− 0 = 3,

• NODES[4].succ− (−1) = 7⇔ NODES[7].pred− 0 = 4,

• NODES[5].succ− (−1) = 2⇔ NODES[2].pred− 0 = 5.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• NODES[6].succ− (−1) = 8⇔ NODES[8].pred− 0 = 6.

• NODES[7].succ− (−1) = 6⇔ NODES[6].pred− 0 = 7.

• NODES[8].succ− (−1) = 4⇔ NODES[4].pred− 0 = 8.

Figure 5.475 shows the board that can be associated with this example.

¬ index− 1 succ− 4 pred− 3
 index− 2 succ− 2 pred− 5
® index− 3 succ− 0 pred− 2
¯ index− 4 succ− 6 pred− 8
° index− 5 succ− 1 pred− 1
± index− 6 succ− 7 pred− 7
² index− 7 succ− 5 pred− 4
³ index− 8 succ− 3 pred− 6

NODES

(A)

Q

Q

Q

Q

Q

Q

Q

Q

S1 S2 S3 S4 S5 S6 S7 S8

= = = = = = = =

4 2 0 6 1 7 5 3

P1

P2

P3

P4

P5

P6

P7

P8

=

=

=

=

=

=

=

=

3

5

2

8

1

7

4

6

1

2

3

4

5

6

7

0

2 3 4 5 6 7 81

(B)

SOFFSET = 1 POFFSET = 0

S1 − 1 = 5⇔ P5 − 0 = 1

S2 − 1 = 3⇔ P3 − 0 = 2

S3 − 1 = 1⇔ P1 − 0 = 3

S4 − 1 = 7⇔ P7 − 0 = 4

S5 − 1 = 2⇔ P2 − 0 = 5

S6 − 1 = 8⇔ P8 − 0 = 6

S7 − 1 = 6⇔ P6 − 0 = 7

S8 − 1 = 4⇔ P4 − 0 = 8

(C)

Figure 5.475: Example slot where we highlight the fourth item in red showing the
relation between S4 and P7, where Si and Pi (with 1 ≤ i ≤ 8) respectively stands
for the successor and predecessor attributes of the ith item of the NODES collection
(A) Collection of nodes passed to the INVERSE OFFSET constraint, (B) Correspond-
ing board, (C) Conditions linking the successor and the predecessor attributes via the
offsets SOFFSET = 1 and POFFSET = 0.

Typical SOFFSET ≥ −1
SOFFSET ≤ 1
POFFSET ≥ −1
POFFSET ≤ 1
|NODES| > 1

Symmetry Items of NODES are permutable.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.
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Arg. properties • Functional dependency: NODES.succ determined by SOFFSET, POFFSET,
NODES.index and NODES.pred.

• Functional dependency: NODES.pred determined by SOFFSET, POFFSET,
NODES.index and NODES.succ.

Remark The INVERSE OFFSET constraint is called CHANNEL in Gecode (http://www.gecode.
org/). Having two offsets was motivated by the fact that it is possible to declare arrays at
any position in the MiniZinc modelling language.

Systems INVERSECHANNELING in Choco, CHANNEL in Gecode.

See also specialisation: INVERSE (assume that SOFFSET and POFFSET are both equal to 0).

Keywords constraint arguments: pure functional dependency.

constraint type: graph constraint.

filtering: arc-consistency.

heuristics: heuristics.

modelling: channelling constraint, dual model, functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/
http://www.minizinc.org/
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ− SOFFSET = nodes2.index
• nodes2.pred− POFFSET = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices. This is why the INVERSE OFFSET constraint considers objects
that have three attributes:

• One fixed attribute index that is the identifier of the vertex,

• One variable attribute succ that is the successor of the vertex,

• One variable attribute pred that is the predecessor of the vertex.

Parts (A) and (B) of Figure 5.476 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

5

6

7

8

NARC=8

1:1,4,3

5:5,1,1

2:2,2,5

3:3,0,2

4:4,6,8

7:7,5,4

6:6,7,7

8:8,3,6

(A) (B)

Figure 5.476: Initial and final graph of the INVERSE OFFSET constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.204 INVERSE SET

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from INVERSE.

Constraint INVERSE SET(X, Y)

Arguments X : collection(index−int, set−svar)
Y : collection(index−int, set−svar)

Restrictions required(X, [index, set])
required(Y, [index, set])
increasing seq(X, index)
increasing seq(Y, index)
X.index ≥ 1
X.index ≤ |X|
Y.index ≥ 1
Y.index ≤ |Y|
X.set ≥ 1
X.set ≤ |Y|
Y.set ≥ 1
Y.set ≤ |X|

Purpose

The following two statements are equivalent:

1. Value j belongs to the set variable of the ith item of the X collection.

2. Value i belongs to the set variable of the jth item of the Y collection.

I.e., j ∈ X[i]⇔ i ∈ Y[j].

Example



〈 index− 1 set− {2, 4},
index− 2 set− {4},
index− 3 set− {1},
index− 4 set− {4}

〉
,

〈 index− 1 set− {3},
index− 2 set− {1},
index− 3 set− ∅,
index− 4 set− {1, 2, 4},
index− 5 set− ∅

〉


The INVERSE SET constraint holds since:

2 ∈ X[1].set⇔ 1 ∈ Y[2].set, 4 ∈ X[1].set⇔ 1 ∈ Y[4].set,
4 ∈ X[2].set⇔ 2 ∈ Y[4].set,
1 ∈ X[3].set⇔ 3 ∈ Y[1].set,
4 ∈ X[4].set⇔ 4 ∈ Y[4].set.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |X| > 1
|Y| > 1

Symmetries • Arguments are permutable w.r.t. permutation (X, Y).

• Items of X are permutable.

• Items of Y are permutable.

Usage The INVERSE SET constraint can be used, for example, to model problems where one has
to place items on a rectangular board in such a way that a column or a row can have more
than one item. We have one set variable for each row of the board; Its values are the column
indexes corresponding to the positions where an item is placed. Similarly we have also one
set variable for each column of the board; Its values are the row indexes corresponding
to the positions where an item is placed. The INVERSE SET constraint maintains the link
between the rows and the columns variables. Figure 5.477 shows the board that can be
associated with the example of the Example slot.

¬ index− 1 set− {2, 4}
 index− 2 set− {4}
® index− 3 set− {1}
¯ index− 4 set− {4}

X

¬ index− 1 set− {3}
 index− 2 set− {1}
® index− 3 set− ∅
¯ index− 4 set− {1, 2, 4}
° index− 5 set− ∅

Y

(A)

Q

Q Q

Q

Q

X1 X2 X3 X4

= = = =

{2, 4}{4} {1} {4}

Y1 = {3}

Y2 = {1}

Y3 = ∅

Y4 = {1, 2, 4}

Y5 = ∅

1

2

3

4

5

1 2 3 4

(B)

2 ∈ X1 ⇔ 1 ∈ Y2

4 ∈ X1 ⇔ 1 ∈ Y4

4 ∈ X2 ⇔ 2 ∈ Y4

1 ∈ X3 ⇔ 3 ∈ Y1

4 ∈ X4 ⇔ 4 ∈ Y4

(C)

Figure 5.477: Illustration of the Example slot where we highlight in red the second
item of the X collection and the fourth item of the Y collection showing the relation
between X2 and Y4, where Xi (with 1 ≤ i ≤ 4) and Yj (with 1 ≤ j ≤ 5) respectively
stands for the set attribute of the ith item of the X collection and of the jth item of the
Y collection (A) Collections X and Y passed to the INVERSE SET constraint, (B) Corre-
sponding board, (C) Conditions linking the items of X and the items of Y.

Systems INVERSESET in Choco, INVERSE SET in MiniZinc.

See also common keyword: INVERSE WITHIN RANGE (channelling constraint).

specialisation: INVERSE (set variable replaced by domain variable).

used in graph description: IN SET.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#inverse_set
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html


1514 INVERSE SET

Keywords constraint arguments: constraint involving set variables.

modelling: channelling constraint, set channel, dual model.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) X Y

Arc generator PRODUCT 7→collection(x, y)

Arc arity 2

Arc constraint(s) IN SET(y.index, x.set)⇔IN SET(x.index, y.set)

Graph property(ies) NARC= |X| ∗ |Y|

Graph model Parts (A) and (B) of Figure 5.478 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

X

Y

1

12 345

234

NARC=20

1:1,{2,4}

1:1,{3}2:2,{1} 3:3,{} 4:4,{1,2,4} 5:5,{}

2:2,{4}3:3,{1} 4:4,{4}

(A) (B)

Figure 5.478: Initial and final graph of the INVERSE SET constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.205 INVERSE WITHIN RANGE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from INVERSE.

Constraint INVERSE WITHIN RANGE(X, Y)

Synonyms INVERSE IN RANGE, INVERSE RANGE.

Arguments X : collection(var−dvar)
Y : collection(var−dvar)

Restrictions required(X, var)
required(Y, var)

Purpose

If the ith variable of the collection X is assigned to j and if j is greater than or equal to
1 and less than or equal to the number of items of the collection Y then the jth variable
of the collection Y is assigned to i.
Conversely, if the jth variable of the collection Y is assigned to i and if i is greater than
or equal to 1 and less than or equal to the number of items of the collection X then the
ith variable of the collection X is assigned to j.

Example (〈9, 4, 2〉 , 〈9, 3, 9, 2〉)

Since the second item of X is assigned to 4, the fourth item of Y is assigned to 2.
Similarly, since the third item of X is assigned to 2, the second item of Y is assigned to 3.
Figure 5.479 illustrates the correspondence between X and Y.

2

4

9

2

9

3

9

3

2

1

4

3

2

1

X Y

Figure 5.479: Correspondence between the items of X = 〈9, 4, 2〉 and the items of
Y = 〈9, 3, 9, 2〉: on the X side values between 1 and |Y| = 4 are shown in blue, on the
Y side values between 1 and |X| = 3 are shown in red.

Typical |X| > 1
range(X.var) > 1
|Y| > 1
range(Y.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetry Arguments are permutable w.r.t. permutation (X, Y).

Usage Consider an integer valuem and a sequence of n variables S from which you have to select
a subsequence S′ such that:

• All variables of S′ have to be assigned to distinct values from [1,m],

• All variables not in S′ have to be assigned a value, not necessarily distinct, outside
[1,m].

As for the INVERSE constraint we may want to create explicitly a value variable for each
value in [1,m] in order to state some specific constraints on the value variables or to use a
heuristic involving the original variables of S as well as the value variables. The purpose
of the INVERSE WITHIN RANGE constraint is to link the variables of S with the value
variables.

See also common keyword: INVERSE SET (channelling constraint).

specialisation: INVERSE (the 2 collections have not necessarly the same number of items).

Keywords constraint arguments: constraint between two collections of variables.

constraint type: graph constraint.

final graph structure: bipartite, no loop, symmetric.

heuristics: heuristics.

modelling: channelling constraint, dual model.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) X Y

Arc generator SYMMETRIC PRODUCT 7→collection(s1, s2)

Arc arity 2

Arc constraint(s) s1.var = s2.key

Graph class • BIPARTITE
• NO LOOP

• SYMMETRIC



INVERSE WITHIN RANGE 1519



1520 ITH POS DIFFERENT FROM 0

5.206 ITH POS DIFFERENT FROM 0
I B C J DESCRIPTION LINKS AUTOMATON

Origin N. Beldiceanu

Constraint ITH POS DIFFERENT FROM 0(ITH, POS, VARIABLES)

Arguments ITH : int

POS : dvar

VARIABLES : collection(var−dvar)

Restrictions ITH ≥ 1
ITH ≤ |VARIABLES|
POS ≥ ITH

POS ≤ |VARIABLES|
required(VARIABLES, var)

Purpose POS is the position of the ITHth non-zero item of the sequence of variables VARIABLES.

Example (2, 4, 〈3, 0, 0, 8, 6〉)

The ITH POS DIFFERENT FROM 0 constraint holds since 4 corresponds to the posi-
tion of the 2th non-zero item of the sequence 3 0 0 8 6.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
ATLEAST(1, VARIABLES, 0)

Typical model ATLEAST(2, VARIABLES, 0)

Symmetry An occurrence of a value of VARIABLES.var that is different from 0 can be replaced by
any other value that is also different from 0.

Arg. properties Suffix-extensible wrt. VARIABLES.

Keywords characteristic of a constraint: joker value, automaton, automaton with counters.

constraint network structure: alpha-acyclic constraint network(3).

constraint type: data constraint.

modelling: table.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.480 depicts the automaton associated with the ITH POS DIFFERENT FROM 0 con-
straint. To each variable VARi of the collection VARIABLES corresponds a 0-1 signature
variable Si. The following signature constraint links VARi and Si: VARi = 0⇔ Si.

ITH = C, POS = D

s

{
C ← 0,
D ← 0

} VARi 6= 0,{
if C < ITH then

C ← C + 1,
D ← D + 1

}
VARi = 0,
{if C < ITH then D ← D + 1}

Figure 5.480: Automaton of the ITH POS DIFFERENT FROM 0 constraint

D0 = 0

C0 = 0

Q0 = s

D1

C1

Q1

S1 S2

Dn = POS

Cn = ITH

Qn = s

Sn

VAR1 VAR2 VARn

Figure 5.481: Hypergraph of the reformulation corresponding to the automaton of the
ITH POS DIFFERENT FROM 0 constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.207 K ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin [160]

Constraint K ALLDIFFERENT(VARS)

Synonyms K ALLDIFF, K ALLDISTINCT, SOME DIFFERENT.

Type X : collection(x−dvar)

Argument VARS : collection(vars− X)

Restrictions |X| ≥ 1
required(X, x)
required(VARS, vars)
|VARS| ≥ 1

Purpose For each collection of variables depicted by an item of VARS, enforce their corresponding
variables to take distinct values. Usually some variables occur in several collections.

Example (〈vars− 〈5, 6, 0, 9, 3〉 , vars− 〈5, 6, 1, 2〉〉)

The K ALLDIFFERENT constraint holds since all the values 5, 6, 0, 9 and 3 are
distinct and since all the values 5, 6, 1 and 2 are distinct as well.

Typical |X| > 1
|VARS| > 1

Symmetries • Items of VARS are permutable.

• Items of VARS.vars are permutable.

• All occurrences of two distinct values of VARS.vars.x can be swapped; all occur-
rences of a value of VARS.vars.x can be renamed to any unused value.

Arg. properties Contractible wrt. VARS.

Usage Systems of ALLDIFFERENT constraints sharing variables occurs frequently in practice. We
give 4 typical problems that can be modelled by a combination of ALLDIFFERENT con-
straints as well as one problem where a system of ALLDIFFERENT constraints provides a
necessary condition.

• The graph colouring problem is to colour with a restricted number of colours the
vertices of a given undirected graph in such a way that adjacent vertices are coloured
with distinct colours. The problem can be modelled by a system of ALLDIFFERENT

constraints. All the next problems can been seen as graph colouring problems where
the graphs have some specific structure.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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• A Latin square of order n is an n× n array in which n distinct numbers in [1, n] are
arranged so that each number occurs once in each row and column. The problem is
to complete a partially filled Latin square. Part (A) of Figure 5.482 gives a partially
filled Latin square, while part (B) provides a possible completion.

1

3

3

1

(A)

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(B)

Figure 5.482: (A) A partially filled Latin square and (B) a possible completion

• A Sudoku is a Latin square of order 9× 9 such that the numbers in each major 3× 3
block are distinct. As for the Latin square problem, the problem is to complete a
partially filled board. Part (A) of Figure 5.483 gives a partially filled Sudoku board,
while part (B) provides a possible completion. A constraint programming approach
for solving Sudoku puzzles is depicted in [395]. It shows how to generate redundant
constraints as well as shaving [287] in order to find a solution without guessing.

5

1

4

3

3

4

5

2

8

3

6

2

3

9

1

7

3

5

4

2

5

7

8

4

1

8

6

5

9

1

9

2

7

6

(A)

5

1

4

3

3

4

5

2

8

3

6

2

3

9

1

7

3

5

4

2

5

7

8

4

1

8

6

5

9

1

9

2

7

6

2

9

6

8

7

6

9

7

8

1

7

4

1

2
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5

5

8

6

4

7

1

6

8

4

2

9

9

6

1

3

3

5

7

6

2

9

8

7

2

3

4

1

8

4

3

5

(B)

Figure 5.483: (A) A partially filled Sudoku square and (B) its unique completion

• A task assignment problem consists to assign a given set of non-preemptive tasks,
which are fixed in time (i.e., the origin, duration and end of each task are fixed), to
a set of resources so that, tasks that are assigned to the same resource do not over-
lap in time. Each task can be assigned to a predefined set of resources. Problems
like aircraft stand allocation [149], [394] or air traffic flow management [21] corre-
spond to an example of a real-life task assignment problem. Assignment of service
professionals [14] is yet another industrial example where professionals have to be
assigned positions in such a way that positions assigned to a given professional do
not overlap in time.
Part (A) of Figure 5.484 gives an example of task assignment problem. For each task
we indicate the set of resources where it can potentially be assigned (i.e., the domain
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of its assignment variable). For instance, task t1 can be assigned to resources 1 or 2.
Part (B) of Figure 5.484 gives the corresponding interval graph: We have one vertex
for each task and an edge between two tasks that overlap in time. We have a system
of ALLDIFFERENT constraints corresponding to the maximum cliques of the interval
graph (i.e., {t1, t5, t8}, {t2, t5, t8}, {t2, t6}, {t3, t6, t9}, {t3, t7, t9}, {t4, t7, t9}).
Finally, part (C) of Figure 5.484 provides a possible solution to the task assignment
problem where tasks t1, t2, t9 are assigned to resource 1, tasks t3, t4, t8 are assigned
to resource 2, and tasks t5, t6, t7 are assigned to resource 3.

t1
{1, 2}

t2
{1, 3}

t3
{1, 2}

t4
{1, 2}

t5
{1, 3}

t6
{2, 3}

t7
{1, 2, 3}

t8
{2, 3}

t9
{1, 2}

(A)

t1

t2

t5 t8

t6

t9

t4t7

t3

(B)

t1
{1}

t2
{1}

t3
{2}

t4
{2}

t5
{3}

t6
{3}

t7
{3}

t8
{2}

t9
{1}1

2

3

(C)

Figure 5.484: (A) Tasks t1, t2, . . . , t9 with their potential assignments 1, 2 or 3 (B) In-
terval graph where to each task of corresponds a vertex, and to each pair of overlapping
tasks corresponds an edge (C) A valid assignment where tasks assigned to a same ma-
chine do not overlap

• The tree partitioning with precedences problem is to compute a vertex-partitioning
of a given digraph G in disjoint trees (i.e., a forest), so that a given set of precedences
holds. The problem can be modelled with a TREE PRECEDENCE(NTREE, VERTICES)
constraint, where NTREE is a domain variable specifying the numbers of trees in
the forest and VERTICES is a collection of the digraph’s n vertices. Each item
v ∈ VERTICES has the following attributes, which complete the description of the
digraph:

– index is an integer in [1, n] that can be interpreted as the label of v.
– father is a domain variable whose domain consists of elements (vertex label)

of [1, n]. It can be interpreted as the unique successor of v.
– preds is a possibly empty set of integers, its elements (vertex label) being in

[1, n]. It can be interpreted as the mandatory ancestors of v.

We model the TREE PRECEDENCE constraint by the digraph G = (V, E) in which
the vertices represent the elements of VERTICES and the arcs represent the successors
relations between them. Formally, G is defined as follows:

– To the ith vertex (1 ≤ i ≤ n), VERTICES[i], of the VERTICES collection
corresponds a vertex of V denoted by vi.

– For every pair of vertices (VERTICES[i],VERTICES[j]), where i and j are not
necessarily distinct, there is an arc from vi to vj in E .

The TREE PRECEDENCE constraint specifies that its associated digraph G should
be a forest that fulfils the precedence constraints. Formally a ground instance of
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a TREE PRECEDENCE(NTREE, VERTICES) constraint is satisfied if and only if the
following conditions hold:

1. ∀i ∈ [1, n] : VERTICES[i].index = i,

2. Its associated digraph G consists of NTREE connected components,

3. Each connected component of G does not contain any circuit involving more
than one vertex,

4. For every vertex VERTICES[i] such that j ∈ VERTICES[i].preds there must be
an elementary path in G from VERTICES[j] to VERTICES[i].

We can build the following system of ALLDIFFERENT constraints that corresponds
to a necessary condition for the TREE PRECEDENCE constraint: To each vertex v of
G, which both has no predecessors and cannot be the root of a tree, we generate an
ALLDIFFERENT constraint involving the father variables of those descendants of v in
G that cannot be the root of a tree.

For the set of precedences depicted by part (A) of Figure 5.48513, where we as-
sume that VERTICES[12] is the only vertex that can be a root and where Fi de-
notes the father variable associated with VERTICES[i], we get the following system
of ALLDIFFERENT constraints:

– ALLDIFFERENT(〈F1, F3, F5, F6, F7, F10, F11〉),

– ALLDIFFERENT(〈F2, F4, F7, F8, F9, F10, F11〉).

The variables of these two ALLDIFFERENT constraints respectively correspond
to the descendants of the two source vertices (i.e., F1 and F2) of the precedence
graph depicted by parts (B) and (C) of Figure 5.485. On part (B) and (C) of
Figure 5.485 the descendants of F1 and F2 are respectively depicted in red and
blue. Their intersections, {F7, F10, F11, F12}, from which we remove F12 belong
to the two ALLDIFFERENT constraints. In fact, F12 is not mentioned in the
two ALLDIFFERENT constraints since its corresponding vertex is the root of a
tree. Part (D) of Figure 5.485 gives a possible tree satisfying all the precedences
constraints expressed by part (A). It corresponds to the following ground solution:

TREE PRECEDENCE(〈 index− 1 father− 3 preds− {},
index− 2 father− 4 preds− {},
index− 3 father− 5 preds− {1},
index− 4 father− 8 preds− {2},
index− 5 father− 6 preds− {1},
index− 6 father− 7 preds− {3},
index− 7 father− 10 preds− {3, 4},
index− 8 father− 9 preds− {4},
index− 9 father− 7 preds− {2},
index− 10 father− 11 preds− {5, 6, 7},
index− 11 father− 12 preds− {7, 8, 9},
index− 12 father− 12 preds− {10, 11} 〉)

Parts (E) and (F) of Figure 5.485 illustrate how the precedence constraints are
satisfied by the solution depicted by part (D): each precedence, represented by a
dashed arc, links two vertices that belong to a same path of the tree that is directed
toward the root of the tree.

13The number in a vertex gives the value of the index attribute of the corresponding item.
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(A) Precedence graph

765 8 9

10 11
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3 4

1 2

ALLDIFFERENT


〈 F1, F3,

F5, F6,
F7, F10,
F11

〉

(B) ALLDIFFERENT derived
from the source vertex 1

765 8 9

10 11
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3 4

1 2

ALLDIFFERENT


〈 F2, F4,

F7, F8,
F9, F10,
F11

〉

(C) ALLDIFFERENT derived
from the source vertex 2
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(D) A tree satisfying the
precedence graph
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(E) Checking the red
precedences on the
path from the source 1
to the sink 12 of the
tree depicted in (D)

7

10

11

12

6 9

5 8

3 4

1 2

(F) Checking the blue
precedences on the
path from the source 2
to the sink 12 of the
tree depicted in (D)

Figure 5.485: (A) A set of precedences and (D) a corresponding feasible tree where
Fi stands for the father of the ith vertex; (B) the ALLDIFFERENT constraint associated
with the source vertex 1 and (E) the satisfied precedences in red along the paths of the
tree of (D); (C) the ALLDIFFERENT constraint associated with the source vertex 2 and
(F) the satisfied precedences in blue along the paths of the tree of (D);

Remark It was shown in [161] that, finding out whether a system of two ALLDIFFERENT constraints
sharing some variables has a solution or not is NP-hard. This was achieved by reduction
from set packing.

A slight variation in the way of describing the arguments of the K ALLDIFFERENT con-


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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straint appears in [368] under the name of SOME DIFFERENT: the set of disequalities is
described by a set of pairs of variables, where each pair corresponds to a disequality con-
straint between two given variables.

Within the context of linear programming, a relaxation of the K ALLDIFFERENT constraint
is provided in [9]. The special case where k = 2 is discussed in [10].

Algorithm Even if there is no filtering algorithm for the K ALLDIFFERENT constraint, one can enforce
redundant constraints for the following patterns:

• Within the context of graph colouring, one can state an NVALUE constraint for every
cycle of odd length of the graph to colour enforcing that the corresponding variables
have to be assigned to at least three distinct values.

• Within the context of Latin squares, one can state a COLORED MATRIX constraint
enforcing that each value is used exactly once in each row and column.

• Within the context of two ALLDIFFERENT constraints
ALLDIFFERENT(〈U1, . . . , Un, V1, . . . , Vm〉) and ALLDIFFERENT(〈U1, . . . , Un,
W1, . . . ,Wm〉) where the domain of all variables U1, . . . , Un, V1, . . . , Vm,
W1, . . . ,Wm is included in the interval [1, n + m], one can state a
SAME AND GLOBAL CARDINALITY constraint stating that the variables V1, . . . , Vm
should correspond to a permutation of the variables W1, . . . ,Wm and that the
variables V1, . . . , Vm should be assigned to distinct values.

• In the general case of two ALLDIFFERENT constraints
ALLDIFFERENT(〈U1, . . . , Un, V1, . . . , Vm〉) and ALLDIFFERENT(〈U1, . . . , Un,
W1, . . . ,Wo〉), one can state an NVALUE constraint involving the variables
V1, . . . , Vm and W1, . . . ,Wo enforcing that these variables should not use more
than s − n distinct values, where s denotes the cardinality of the union of the
domains of the variables U1, . . . , Un, V1, . . . , Vm, W1, . . . ,Wo.

Several propagation rules for the K ALLDIFFERENT constraint are also described in [264].

Reformulation Given two ALLDIFFERENT constraints that share some variables, a reformulation preserv-
ing bound-consistency was introduced in [80]. This reformulation is based on an extension
of Hall’s theorem that is presented in the same paper.

See also common keyword: COLORED MATRIX (system of constraints).

generalisation: DIFFN, GEOST (tasks for which the start attribute is not fixed).

part of system of constraints: ALLDIFFERENT.

related: NVALUE (implied by two overlapping ALLDIFFERENT),
SAME AND GLOBAL CARDINALITY (implied by two overlapping ALLDIFFERENT

and restriction on values).

Keywords application area: air traffic management, assignment.

characteristic of a constraint: all different, disequality.

combinatorial object: permutation, Latin square.

complexity: set packing.

constraint type: system of constraints, overlapping alldifferent, value constraint, decom-
position.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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filtering: bound-consistency, duplicated variables.

problems: graph colouring.

puzzles: Sudoku.
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For all items of VARS:

Arc input(s) VARS.vars

Arc generator CLIQUE 7→collection(x1, x2)

Arc arity 2

Arc constraint(s) x1.x = x2.x

Graph property(ies) MAX NSCC≤ 1

Graph model For each collection of variables depicted by an item of VARS we generate a clique with an
equality constraint between each pair of vertices (including a vertex and itself) and state
that the size of the largest strongly connected component should not exceed one.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.208 K CUT

I B C J DESCRIPTION LINKS GRAPH

Origin E. Althaus

Constraint K CUT(K, NODES)

Arguments K : int

NODES : collection(index−int, succ−svar)

Restrictions K ≥ 1
K ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Select some arcs of a digraph in order to have at least K connected components (an
isolated vertex, i.e. a vertex without any ingoing or outgoing arc, is counted as one
connected component).

Example

 3,

〈 index− 1 succ− ∅,
index− 2 succ− {3, 5},
index− 3 succ− {5},
index− 4 succ− ∅,
index− 5 succ− {2, 3}

〉 
The K CUT constraint holds since the graph corresponding to the NODES collection
contains 3 connected components (i.e., two connected components respectively involving
vertices 1 and 4 and a third connected component containing the remaining vertices 2, 3
and 5), and since the first argument K enforces to have at least 3 connected components.

Typical |NODES| > 1

Symmetries • K can be decreased to any value ≥ 1.

• Items of NODES are permutable.

See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables).

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.

final graph structure: connected component.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s)
∨( nodes1.index = nodes2.index,

IN SET(nodes2.index, nodes1.succ)

)
Graph property(ies) NCC≥ K

Graph model nodes1.index = nodes2.index holds if nodes1 and nodes2 correspond to the same
vertex. It is used in order to enforce keeping all the vertices of the initial graph. This is
because an isolated vertex counts always as one connected component. Within the context
of the Example slot, part (A) of Figure 5.486 shows the initial graph from which we have
chosen to start. It is derived from the set associated with each vertex. Each set describes
the potential values of the succ attribute of a given vertex. Part (B) of Figure 5.486 gives
the final graph associated with the example of the Example slot. The K CUT constraint
holds since we have at least K = 3 connected components in the final graph.

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

NCC=3

CC#1 CC#2 CC#3

1:1,{} 2:2,{3,5}

3:3,{5}

5:5,{2,3}

4:4,{}

(A) (B)

Figure 5.486: Initial and final graph of the K CUT set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.209 K DISJOINT

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from DISJOINT

Constraint K DISJOINT(SETS)

Type VARIABLES : collection(var−dvar)

Argument SETS : collection(set− VARIABLES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1

Purpose Given |SETS| sets of domain variables, the K DISJOINT constraint forces that no value is
assigned to more than one set.

Example (〈set− 〈1, 9, 1, 5〉 , set− 〈2, 7, 7, 0, 6, 8〉 , set− 〈4, 4, 3〉〉)

The K DISJOINT constraint holds since:

• The set of values {1, 5, 9} and {0, 2, 6, 7, 8} respectively assigned to the variables
of the first and second collections have an empty intersection.

• The set of values {1, 5, 9} and {3, 4} respectively assigned to the variables of the
first and third collections have an empty intersection.

• The set of values {0, 2, 6, 7, 8} and {3, 4} respectively assigned to the variables of
the second and third collections have an empty intersection.

Typical |VARIABLES| > 1

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any value of
VARIABLES.var.

• All occurrences of two distinct values of SETS.set.var can be swapped; all oc-
currences of a value of SETS.set.var can be renamed to any unused value.

Arg. properties Contractible wrt. SETS.

See also part of system of constraints: DISJOINT.

used in graph description: DISJOINT.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: disequality.

constraint type: system of constraints, decomposition, value constraint.

modelling: empty intersection.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator CLIQUE(<) 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) DISJOINT(set1.set, set2.set)

Graph property(ies) NARC= |SETS| ∗ (|SETS| − 1)/2

Graph model Parts (A) and (B) of Figure 5.487 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a DISJOINT constraint.

SETS

1

2

3

NARC=3

1:1
  9
  1
  5

2:2
  7
  7
  0
  6
  8

3:4
  4
  3

(A) (B)

Figure 5.487: Initial and final graph of the K DISJOINT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.210 K SAME

I B C J DESCRIPTION LINKS GRAPH

Origin [160]

Constraint K SAME(SETS)

Type VARIABLES : collection(var−dvar)

Argument SETS : collection(set− VARIABLES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
same size(SETS, set)

Purpose Given |SETS| sets, each containing the same number of domain variables, the K SAME

constraint forces that the multisets of values assigned to each set are all identical.

Example

 〈
set− 〈1, 9, 1, 5, 2, 1〉 ,
set− 〈9, 1, 1, 1, 2, 5〉 ,
set− 〈5, 2, 1, 1, 9, 1〉

〉 
The K SAME constraint holds since:

• The first and second collections of variables are assigned to the same multiset.

• The second and third collections of variables are also assigned to the same multiset.

Typical |VARIABLES| > 1

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• All occurrences of two distinct values of SETS.set.var can be swapped; all oc-
currences of a value of SETS.set.var can be renamed to any unused value.

Arg. properties Contractible wrt. SETS.

Remark It was shown in [160] that, finding out whether the K SAME constraint has a solution or not
is NP-hard when we have more than one SAME constraint. This was achieved by reduction
from 3-dimensional-matching in the context where we have 2 SAME constraints.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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See also common keyword: K SAME INTERVAL, K SAME MODULO,
K SAME PARTITION (system of constraints).

implies: K USED BY.

part of system of constraints: SAME.

used in graph description: SAME.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation, multiset.

complexity: 3-dimensional-matching.

constraint type: system of constraints, decomposition.

modelling: equality between multisets.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) SAME(set1.set, set2.set)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.488 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a SAME constraint.

SETS

1

2

3

NARC=2

1:1
  9
  1
  5
  2
  1

2:9
  1
  1
  1
  2
  5

3:5
  2
  1
  1
  9
  1

(A) (B)

Figure 5.488: Initial and final graph of the K SAME constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.211 K SAME INTERVAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME INTERVAL and from K SAME.

Constraint K SAME INTERVAL(SETS, SIZE INTERVAL)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
SIZE INTERVAL : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
same size(SETS, set)
SIZE INTERVAL > 0

Purpose
Given a collection of |SETS| sets, each containing the same number of domain variables,
the K SAME INTERVAL constraint forces a SAME INTERVAL constraint between each
pair of consecutive sets.

Example

 〈
set− 〈1, 1, 6, 0, 1, 7〉 ,
set− 〈8, 8, 0, 0, 1, 2〉 ,
set− 〈2, 1, 1, 2, 6, 6〉

〉
, 3


In the example, the second argument SIZE INTERVAL = 3 of the K SAME INTERVAL

constraint defines the following family of intervals [3 · k, 3 · k + 2], where k is an integer.
The K SAME INTERVAL constraint holds since:

• The first and second collections of variables are assigned 4 values in the interval
[0, 2] as well as 2 values in the interval [6, 8].

• The second and third collections of variables are also assigned 4 values in the interval
[0, 2] as well as 2 values in the interval [6, 8].

Typical |VARIABLES| > 1
SIZE INTERVAL > 1

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• An occurrence of a value of SETS.set.var that belongs to the k-th interval, of size
SIZE INTERVAL, can be replaced by any other value of the same interval.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. SETS.

See also common keyword: K SAME (system of constraints).

implies: K USED BY INTERVAL.

part of system of constraints: SAME INTERVAL.

used in graph description: SAME INTERVAL.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation.

constraint type: system of constraints, decomposition.

modelling: interval.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) SAME INTERVAL(set1.set, set2.set, SIZE INTERVAL)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.489 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a SAME INTERVAL constraint.

SETS

1

2

3

NARC=2

1:1
  1
  6
  0
  1
  7

2:8
  8
  0
  0
  1
  2

3:2
  1
  1
  2
  6
  6

(A) (B)

Figure 5.489: Initial and final graph of the K SAME INTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.212 K SAME MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME MODULO and from K SAME.

Constraint K SAME MODULO(SETS, M)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
M : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
same size(SETS, set)
M > 0

Purpose
Given a collection of |SETS| sets, each containing the same number of domain variables,
the K SAME MODULO constraint forces a SAME MODULO constraint between each pair
of consecutive sets.

Example

 〈
set− 〈1, 9, 1, 5, 2, 1〉 ,
set− 〈6, 4, 1, 1, 5, 5〉 ,
set− 〈1, 3, 4, 2, 8, 7〉

〉
, 3


The K SAME MODULO constraint holds since:

• The first and second collections of variables are assigned 1 value in {0, 3, . . . , 3 ·k},
3 values in {1, 4, . . . , 1 + 3 · k} and 2 values in {2, 5, . . . , 2 + 3 · k}.

• The second and third collections of variables are also assigned 1 value in
{0, 3, . . . , 3 ·k}, 3 values in {1, 4, . . . , 1+3 ·k} and 2 values in {2, 5, . . . , 2+3 ·k}.

Typical |VARIABLES| > 1
M > 1

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• An occurrence of a value u of SETS.set.var can be replaced by any other value
v such that v is congruent to u modulo M.

Arg. properties Contractible wrt. SETS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also common keyword: K SAME (system of constraints).

implies: K USED BY MODULO.

part of system of constraints: SAME MODULO.

used in graph description: SAME MODULO.

Keywords characteristic of a constraint: sort based reformulation, modulo.

combinatorial object: permutation.

constraint type: system of constraints, decomposition.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1546 K SAME MODULO

Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) SAME MODULO(set1.set, set2.set, M)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.490 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a SAME MODULO constraint.

SETS

1

2

3

NARC=2

1:1
  9
  1
  5
  2
  1

2:6
  4
  1
  1
  5
  5

3:1
  3
  4
  2
  8
  7

(A) (B)

Figure 5.490: Initial and final graph of the K SAME MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.213 K SAME PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME PARTITION and from K SAME.

Constraint K SAME PARTITION(SETS, PARTITIONS)

Types VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Arguments SETS : collection(set− VARIABLES)
PARTITIONS : collection(p− VALUES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
required(SETS, set)
|SETS| > 1
same size(SETS, set)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose
Given a collection of |SETS| sets, each containing the same number of domain variables,
the K SAME PARTITION constraint forces a SAME PARTITION constraint between each
pair of consecutive sets.

Example


〈

set− 〈1, 2, 6, 3, 1, 2〉 ,
set− 〈6, 6, 2, 3, 1, 3〉 ,
set− 〈2, 2, 2, 1, 1, 1〉

〉
,

〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉


The first argument SETS of the K SAME PARTITION constraint corresponds to 3
collections of variables, while the second argument PARTITIONS defines the 3 sets of
values {1, 3}, {4} and {2, 6}. The K SAME PARTITION constraint holds since:

• The first and second collections of variables are assigned 3 values in the {1, 3} as
well as 3 values in {2, 6}.

• The second and third collections of variables are also assigned 3 values in the {1, 3}
as well as 3 values in {2, 6}.

Typical |VARIABLES| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.
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Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of SETS.set.var can be replaced by any other value that
also belongs to the same partition of PARTITIONS.

Arg. properties Contractible wrt. SETS.

See also common keyword: K SAME (system of constraints).

implies: K USED BY PARTITION.

part of system of constraints: SAME PARTITION.

used in graph description: SAME PARTITION.

Keywords characteristic of a constraint: sort based reformulation, partition.

combinatorial object: permutation.

constraint type: system of constraints, decomposition.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) SAME PARTITION(set1.set, set2.set, PARTITIONS)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.491 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a SAME PARTITION constraint.

SETS

1

2

3

NARC=2

1:1
  2
  6
  3
  1
  2

2:6
  6
  2
  3
  1
  3

3:2
  2
  2
  1
  1
  1

(A) (B)

Figure 5.491: Initial and final graph of the K SAME PARTITION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.214 K USED BY

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY

Constraint K USED BY(SETS)

Type VARIABLES : collection(var−dvar)

Argument SETS : collection(set− VARIABLES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)

Purpose Given |SETS| sets of domain variables, the K USED BY constraint forces a USED BY

constraint between each pair of consecutive sets.

Example

 〈
set− 〈1, 9, 1, 5, 2, 1〉 ,
set− 〈9, 1, 1, 1, 2, 5〉 ,
set− 〈1, 1, 2, 5〉

〉 
The K USED BY constraint holds since:

• The multiset of values {{1, 1, 1, 2, 5, 9}} associated with the second collection of
variables is included into the multiset {{1, 1, 1, 2, 5, 9}} associated with the first
collection of variables.

• The multiset of values {{1, 1, 2, 5}} associated with the third collection of variables
is included into the multiset {{1, 1, 1, 2, 5, 9}} associated with the second collection
of variables.

Typical |VARIABLES| > 1

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• All occurrences of two distinct values of SETS.set.var can be swapped; all oc-
currences of a value of SETS.set.var can be renamed to any unused value.

Arg. properties Contractible wrt. SETS.

Remark Similarly to the K SAME constraint [160], finding out whether the K USED BY constraint
has a solution or not is NP-hard when we have more than one USED BY constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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See also common keyword: K USED BY INTERVAL, K USED BY MODULO,
K USED BY PARTITION (system of constraints).

implied by: K SAME.

part of system of constraints: USED BY.

used in graph description: USED BY.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: multiset.

constraint type: system of constraints, decomposition.

modelling: inclusion.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) USED BY(set1.set, set2.set)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.492 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a USED BY constraint.

SETS

1

2

3

NARC=2

1:1
  9
  1
  5
  2
  1

2:9
  1
  1
  1
  2
  5

3:1
  1
  2
  5

(A) (B)

Figure 5.492: Initial and final graph of the K USED BY constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.215 K USED BY INTERVAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY INTERVAL and from K USED BY.

Constraint K USED BY INTERVAL(SETS, SIZE INTERVAL)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
SIZE INTERVAL : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)
SIZE INTERVAL > 0

Purpose Given |SETS| sets of domain variables, the K USED BY INTERVAL constraint forces a
USED BY INTERVAL constraint between each pair of consecutive sets.

Example (〈set− 〈1, 1, 1, 8, 6, 2〉 , set− 〈1, 0, 7, 7〉 , set− 〈1, 2〉〉 , 3)

In the example, the second argument SIZE INTERVAL = 3 defines the following family of
intervals [3 · k, 3 · k+ 2], where k is an integer. Consequently, the K USED BY INTERVAL

constraint holds since:

• The first collection of variables is assigned 4 values in the interval [0, 2] as well as
2 values in the interval [6, 8], while the second collection of variables is assigned no
more values in the previous two intervals.

• The second collection of variables is assigned 2 values in the interval [0, 2] as well
as 2 values in the interval [6, 8], while the third collection of variables is assigned no
more values in the previous two intervals.

Typical |VARIABLES| > 1
SIZE INTERVAL > 0

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• An occurrence of a value of SETS.set.var that belongs to the k-th interval, of size
SIZE INTERVAL, can be replaced by any other value of the same interval.

Arg. properties Contractible wrt. SETS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also common keyword: K USED BY (system of constraints).

implied by: K SAME INTERVAL.

part of system of constraints: USED BY INTERVAL.

used in graph description: USED BY INTERVAL.

Keywords characteristic of a constraint: sort based reformulation.

constraint type: system of constraints, decomposition.

modelling: inclusion, interval.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) USED BY INTERVAL(set1.set, set2.set, SIZE INTERVAL)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.493 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a USED BY INTERVAL constraint.

SETS

1

2

3

NARC=2

1:1
  1
  1
  8
  6
  2

2:1
  0
  7
  7

3:1
  2

(A) (B)

Figure 5.493: Initial and final graph of the K USED BY INTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



K USED BY INTERVAL 1559



1560 K USED BY MODULO

5.216 K USED BY MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY MODULO and from K USED BY.

Constraint K USED BY MODULO(SETS, M)

Type VARIABLES : collection(var−dvar)

Arguments SETS : collection(set− VARIABLES)
M : int

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)
M > 0

Purpose Given |SETS| sets of domain variables, the K USED BY MODULO constraint forces a
USED BY MODULO constraint between each pair of consecutive sets.

Example (〈set− 〈1, 9, 4, 5, 2, 1〉 , set− 〈7, 1, 2, 5〉 , set− 〈1, 1〉〉 , 3)

The K USED BY MODULO constraint holds since:

• The first collection of variables is assigned 1 value in {0, 3, . . . , 3 · k}, 3 values in
{1, 4, . . . , 1+3 ·k} and 2 values in {2, 5, . . . , 2+3 ·k}, while the second collection
of variables is assigned no more values in the previous three sets of values.

• The second collection of variables is assigned 2 values in {0, 3, . . . , 3 · k} and 2
values in {2, 5, . . . , 2 + 3 · k}, while the third collection of variables is assigned no
more values in the previous three sets of values.

Typical |VARIABLES| > 1
M > 1

Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• An occurrence of a value u of SETS.set.var can be replaced by any other value
v such that v is congruent to u modulo M.

Arg. properties Contractible wrt. SETS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also common keyword: K USED BY (system of constraints).

implied by: K SAME MODULO.

part of system of constraints: USED BY MODULO.

used in graph description: USED BY MODULO.

Keywords characteristic of a constraint: modulo, sort based reformulation.

constraint type: system of constraints, decomposition.

modelling: inclusion.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) USED BY MODULO(set1.set, set2.set, M)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.494 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a USED BY MODULO constraint.

SETS

1

2

3

NARC=2

1:1
  9
  4
  5
  2
  1

2:7
  1
  2
  5

3:1
  1

(A) (B)

Figure 5.494: Initial and final graph of the K USED BY MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.217 K USED BY PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY PARTITION and from K USED BY.

Constraint K USED BY PARTITION(SETS, PARTITIONS)

Types VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Arguments SETS : collection(set− VARIABLES)
PARTITIONS : collection(p− VALUES)

Restrictions required(VARIABLES, var)
|VARIABLES| ≥ 1
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
required(SETS, set)
|SETS| > 1
non increasing size(SETS, set)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Given |SETS| sets of domain variables, the K USED BY PARTITION constraint forces a
USED BY PARTITION constraint between each pair of consecutive sets.

Example
(
〈set− 〈1, 9, 1, 6, 2, 3〉 , set− 〈1, 3, 6, 6〉 , set− 〈2, 2〉〉 ,
〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉

)
The K USED BY PARTITION constraint holds since:

• The first collection of variables is assigned 3 values in {1, 3}, 0 value in {4} and 2
values in {2, 6}, while the second collection of variables is assigned no more values
in the previous three sets of values.

• The second collection of variables is assigned 2 values in {1, 3}, 0 value in {4} and
2 values in {2, 6}, while the third collection of variables is assigned no more values
in the previous three sets of values.

Typical |VARIABLES| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.
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Symmetries • Items of SETS are permutable.

• Items of SETS.set are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of SETS.set.var can be replaced by any other value that
also belongs to the same partition of PARTITIONS.

Arg. properties Contractible wrt. SETS.

See also common keyword: K USED BY (system of constraints).

implied by: K SAME PARTITION.

part of system of constraints: USED BY PARTITION.

used in graph description: USED BY PARTITION.

Keywords characteristic of a constraint: partition, sort based reformulation.

constraint type: system of constraints, decomposition.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) SETS

Arc generator PATH 7→collection(set1, set2)

Arc arity 2

Arc constraint(s) USED BY PARTITION(set1.set, set2.set, PARTITIONS)

Graph property(ies) NARC= |SETS| − 1

Graph model Parts (A) and (B) of Figure 5.495 respectively show the initial and final graph associated
with the Example slot. To each vertex corresponds a collection of variables, while to each
arc corresponds a USED BY PARTITION constraint.

SETS

1

2

3

NARC=2

1:1
  9
  1
  6
  2
  3

2:1
  3
  6
  6

3:2
  2

(A) (B)

Figure 5.495: Initial and final graph of the K USED BY PARTITION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.218 LENGTH FIRST SEQUENCE

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by STRETCH PATH

Constraint LENGTH FIRST SEQUENCE(LEN, VARIABLES)

Synonym LENGTH FIRST STRETCH.

Arguments LEN : dvar

VARIABLES : collection(var−dvar)

Restrictions LEN ≥ 0
LEN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose LEN is the length of the maximum sequence of variables that take the same value that
contains the first variable of the collection VARIABLES (or 0 if the collection is empty).

Example (3, 〈4, 4, 4, 5, 5, 4〉)
(6, 〈4, 4, 4, 4, 4, 4〉)
(5, 〈4, 4, 4, 4, 4, 1〉)

The first LENGTH FIRST SEQUENCE constraint holds since the sequence associated
with the first value of the collection VARIABLES = 〈4, 4, 4, 5, 5, 4〉 spans over three
consecutive variables.

4 4 4 5 5 4

4 4 4 4 4 4

4 4 4 4 4 1

Typical LEN < |VARIABLES|
|VARIABLES| > 1

Typical model nval(VARIABLES.var) > 2

Symmetry All occurrences of two distinct values of VARIABLES.var can be swapped; all occur-
rences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Functional dependency: LEN determined by VARIABLES.

Reformulation Without loss of generality let assume that the collection VARIABLES = 〈V1, V2, . . . , Vn〉
has more than one variable. By introducing 2 · n − 1 0-1 variables, the
LENGTH FIRST SEQUENCE(LEN, VARIABLES) constraint can be expressed in term of 2 ·
n − 1 reified constraints and one arithmetic constraint (i.e., a SUM CTR constraint). We
first introduce n− 1 variables that are respectively set to 1 if and only if two given consec-
utive variables of the collection VARIABLES are equal:
B1,2 ⇔ V1 = V2,
B2,3 ⇔ V2 = V3,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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. . . . . . . . . . . . . . . . . .
Bn−1,n ⇔ Vn−1 = Vn.

We then introduce n variablesA1, A2, . . . , An that are respectively associated to the differ-
ent sliding sequences starting on the first variable of the sequence V1 V2 . . . Vn. Variable
Ai is set to 1 if and only if V1 = V2 = · · · = Vi:
A1 = 1,
A2 ⇔ B1,2 ∧A1,
A3 ⇔ B2,3 ∧A2,
. . . . . . . . . . . . . . . . . .
An ⇔ Bn−1,n ∧An−1.

Finally we state the following arithmetic constraint:
LEN = A1 +A2 + · · ·+An.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for LENGTH FIRST SEQUENCE: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4

Length

O
bs

er
ve

d
de

ns
ity

Solution density for LENGTH FIRST SEQUENCE


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0.9

1

1.1

1.2

Length
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ve

d
de

ns
ity

Solution density for LENGTH FIRST SEQUENCE

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 6 48 500 6480 100842 1835008 38263752
2 3 12 100 1080 14406 229376 4251528
3 - 4 20 180 2058 28672 472392
4 - - 5 30 294 3584 52488
5 - - - 6 42 448 5832
6 - - - - 7 56 648
7 - - - - - 8 72
8 - - - - - - 9

Solution count for LENGTH FIRST SEQUENCE: domains 0..n
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size 6
size 7
size 8
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Solution density for LENGTH FIRST SEQUENCE

size 6
size 7
size 8

See also common keyword: LENGTH LAST SEQUENCE (counting constraint,sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: value constraint, counting constraint.

filtering: glue matrix.

modelling: functional dependency.
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Automaton Figure 5.496 depicts the automaton associated with the LENGTH FIRST SEQUENCE con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi = VARi+1 ⇔ Si.

LEN = C

s{C ← 1} t

VARi = VARi+1,
{C ← C + 1}

VARi 6= VARi+1

VARi = VARi+1

VARi 6= VARi+1

Figure 5.496: Automaton of the LENGTH FIRST SEQUENCE constraint when
|VARIABLES| ≥ 2

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = LEN

Qn−1 ∈ {s, t}

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.497: Hypergraph of the reformulation corresponding to the automaton of the
LENGTH FIRST SEQUENCE constraint

LEN = C

s{C ← 1} VARi = VARi+1,
{C ← C + 1}

VARi 6= VARi+1,
{C ← 1}

Glue matrix where
−→
C and

←−
C resp. represent

the counters values C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

s

s
−→
C +

←−
C − 1

t
−→
C

Figure 5.498: Automaton of the reverse of the LENGTH FIRST SEQUENCE con-
straint (i.e., the LENGTH LAST SEQUENCE constraint) when |VARIABLES| ≥ 2
and corresponding glue matrix between LENGTH FIRST SEQUENCE and its reverse
LENGTH LAST SEQUENCE


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.219 LENGTH LAST SEQUENCE

I B C J DESCRIPTION LINKS AUTOMATON

Origin Inspired by STRETCH PATH

Constraint LENGTH LAST SEQUENCE(LEN, VARIABLES)

Synonym LENGTH LAST STRETCH.

Arguments LEN : dvar

VARIABLES : collection(var−dvar)

Restrictions LEN ≥ 0
LEN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose LEN is the length of the maximum sequence of variables that take the same value that
contains the last variable of the collection VARIABLES (or 0 if the collection is empty).

Example (1, 〈4, 4, 4, 5, 5, 4〉)
(6, 〈4, 4, 4, 4, 4, 4〉)
(5, 〈2, 4, 4, 4, 4, 4〉)

The first LENGTH LAST SEQUENCE constraint holds since the sequence associated
with the last value of the collection VARIABLES = 〈4, 4, 4, 5, 5, 4〉 spans over a single
variable.

4 4 4 5 5 4

4 4 4 4 4 4

2 4 4 4 4 4

Typical LEN < |VARIABLES|
|VARIABLES| > 1

Typical model nval(VARIABLES.var) > 2

Symmetry All occurrences of two distinct values of VARIABLES.var can be swapped; all occur-
rences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Functional dependency: LEN determined by VARIABLES.

Reformulation Without loss of generality let assume that the collection VARIABLES = 〈V1, V2, . . . , Vn〉
has more than one variable. By introducing 2 · n − 1 0-1 variables, the
LENGTH LAST SEQUENCE(LEN, VARIABLES) constraint can be expressed in term of 2 ·
n − 1 reified constraints and one arithmetic constraint (i.e., a SUM CTR constraint). We
first introduce n− 1 variables that are respectively set to 1 if and only if two given consec-
utive variables of the collection VARIABLES are equal:
Bn−1,n ⇔ Vn−1 = Vn,
Bn−2,n−1 ⇔ Vn−2 = Vn−1,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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. . . . . . . . . . . . . . . . . . . . . . . . . . .
B1,2 ⇔ V1 = V2.

We then introduce n variables An, An−1, . . . , A1 that are respectively associated to the
different sliding sequences ending on the last variable of the sequence V1 V2 . . . Vn. Vari-
able Ai is set to 1 if and only if Vn = Vn−1 = · · · = Vi:
An = 1,
An−1 ⇔ Bn−1,n ∧An,
An−2 ⇔ Bn−2,n−1 ∧An−1,
. . . . . . . . . . . . . . . . . . . . . . . . . . .
A1 ⇔ B1,2 ∧A2.

Finally we state the following arithmetic constraint:
LEN = An +An−1 + · · ·+A1.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for LENGTH LAST SEQUENCE: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4

Length
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de
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ity

Solution density for LENGTH LAST SEQUENCE


Counting
Information on the solution density.
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Solution density for LENGTH LAST SEQUENCE

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 6 48 500 6480 100842 1835008 38263752
2 3 12 100 1080 14406 229376 4251528
3 - 4 20 180 2058 28672 472392
4 - - 5 30 294 3584 52488
5 - - - 6 42 448 5832
6 - - - - 7 56 648
7 - - - - - 8 72
8 - - - - - - 9

Solution count for LENGTH LAST SEQUENCE: domains 0..n
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See also common keyword: LENGTH FIRST SEQUENCE (counting constraint,sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

constraint type: value constraint, counting constraint.

filtering: glue matrix.

modelling: functional dependency.
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Automaton Figure 5.499 depicts the automaton associated with the LENGTH LAST SEQUENCE con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi = VARi+1 ⇔ Si.

LEN = C

s{C ← 1} VARi = VARi+1,
{C ← C + 1}

VARi 6= VARi+1,
{C ← 1}

Figure 5.499: Automaton of the LENGTH LAST SEQUENCE constraint when
|VARIABLES| ≥ 2

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = LEN

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.500: Hypergraph of the reformulation corresponding to the automaton of the
LENGTH LAST SEQUENCE constraint

LEN = C

s{C ← 1} t

VARi = VARi+1,
{C ← C + 1}

VARi 6= VARi+1

VARi = VARi+1

VARi 6= VARi+1

Glue matrix where
−→
C and

←−
C resp. represent

the counters values C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

s t

s
−→
C +

←−
C − 1

−→
C

Figure 5.501: Automaton of the reverse of the LENGTH LAST SEQUENCE con-
straint (i.e., the LENGTH FIRST SEQUENCE constraint) when |VARIABLES| ≥ 2
and corresponding glue matrix between LENGTH LAST SEQUENCE and its reverse
LENGTH FIRST SEQUENCE


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.220 LEQ

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint LEQ(VAR1, VAR2)

Synonyms REL, XLTEQY.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is less than or equal to the second variable.

Example (1, 8)

The LEQ constraint holds since 1 is greater than or equal to 8.

Symmetries • VAR1 can be replaced by any value ≤ VAR2.

• VAR2 can be replaced by any value ≥ VAR1.

Systems LEQ in Choco, REL in Gecode, XLTEQY in JaCoP, #=< in SICStus.

See also common keyword: NEQ (binary constraint,arithmetic constraint).

generalisation: LEQ CST (constant added).

implied by: EQ, LT.

implies (if swap arguments): GEQ.

negation: GT.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.221 LEQ CST

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint LEQ CST(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is less than or equal to the sum of the second
variable and the constant.

Example (5, 2, 4)

The LEQ CST constraint holds since 5 is less than or equal to 2 + 4.

Typical CST2 6= 0
VAR1 < VAR2 + CST2

Symmetries • Arguments are permutable w.r.t. permutation (VAR1) (VAR2, CST2).

• VAR1 can be replaced by any value ≤ VAR2 + CST2.

• VAR2 can be replaced by any value ≥ VAR1− CST2.

• CST2 can be replaced by any value ≥ VAR1− VAR2.

See also common keyword: GEQ CST (binary constraint,arithmetic constraint).

implied by: DISTANCE, EQ CST.

specialisation: LEQ (constant set to 0).

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling exercises: metro.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.222 LEX2
I B C J DESCRIPTION LINKS

Origin [179]

Constraint LEX2(MATRIX)

Synonyms DOUBLE LEX, ROW AND COLUMN LEX.

Type VECTOR : collection(var−dvar)

Argument MATRIX : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose
Given a matrix of domain variables, enforces that both adjacent rows, and adjacent
columns are lexicographically ordered (adjacent rows and adjacent columns can be
equal).

Example (〈vec− 〈2, 2, 3〉 , vec− 〈2, 3, 1〉〉)

The LEX2 constraint holds since:

• The first row 〈2, 2, 3〉 is lexicographically less than or equal to the second row
〈2, 3, 1〉.

• The first column 〈2, 2〉 is lexicographically less than or equal to the second column
〈2, 3〉.

• The second column 〈2, 3〉 is lexicographically less than or equal to the third column
〈3, 1〉.

2 2 3
= <

2 3 1

2
2

2
3

3
1

=

<
<

Typical |VECTOR| > 1
|MATRIX| > 1

Symmetry One and the same constant can be added to the var attribute of all items of MATRIX.vec.

Usage A symmetry-breaking constraint.

Remark The idea of this symmetry-breaking constraint can already be found in the following articles
of A. Lubiw [278, 279].

In block designs you sometimes want repeated blocks, so using the non-strict order would
be required in this case.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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Reformulation The LEX2 constraint can be expressed as a conjunction of two LEX CHAIN LESSEQ con-
straints: A first LEX CHAIN LESSEQ constraint on the MATRIX argument and a second
LEX CHAIN LESSEQ constraint on the transpose of the MATRIX argument.

Systems LEX2 in MiniZinc.

See also common keyword: ALLPERM, LEX LESSEQ (matrix symmetry,lexicographic order).

implied by: STRICT LEX2.

implies: LEX CHAIN LESSEQ.

part of system of constraints: LEX CHAIN LESSEQ.

Keywords constraint type: predefined constraint, system of constraints, order constraint.

modelling: matrix, matrix model.

symmetry: symmetry, matrix symmetry, lexicographic order.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex2
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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5.223 LEX ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin J. Pearson

Constraint LEX ALLDIFFERENT(VECTORS)

Synonyms LEX ALLDIFF, LEX ALLDISTINCT, ALLDIFF ON TUPLES,
ALLDIFFERENT ON TUPLES, ALLDISTINCT ON TUPLES.

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose All the vectors of the collection VECTORS are distinct. Two vectors (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are distinct if and only if there exists i ∈ [1, n] such that ui 6= vi.

Example (〈vec− 〈5, 2, 3〉 , vec− 〈5, 2, 6〉 , vec− 〈5, 3, 3〉〉)

The LEX ALLDIFFERENT constraint holds since:

• The first vector 〈5, 2, 3〉 and the second vector 〈5, 2, 6〉 of the VECTORS collection
differ in their third components (i.e., 3 6= 6).

• The first vector 〈5, 2, 3〉 and the third vector 〈5, 3, 3〉 of the VECTORS collection differ
in their second components (i.e., 2 6= 3).

• The second vector 〈5, 2, 6〉 and the third vector 〈5, 3, 3〉 of the VECTORS collection
differ in their second and third components (i.e., 2 6= 3 and 6 6= 3).

Typical |VECTOR| > 1
|VECTORS| > 1

Symmetries • Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

• All occurrences of two distinct tuples of values of VECTORS.vec can be swapped;
all occurrences of a tuple of values of VECTORS.vec can be renamed to any unused
tuple of values.

Arg. properties • Contractible wrt. VECTORS.

• Extensible wrt. VECTORS.vec (add items at same position).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage When the vectors have two components, the LEX ALLDIFFERENT constraint allows to di-
rectly enforce difference constraints between pairs of variables. Such difference constraints
occur, for example, in block design problems (e.g., Steiner triples, Kirkman schoolgirls,
orthogonal Latin squares problems). However, in all these problems a same variable may
occur in more than one pair of variables. Consequently, arc-consistency is not achieved
any more by the filtering algorithm described in [346]. Figure 5.502 illustrates the use of
the LEX ALLDIFFERENT constraint in the context of the orthogonal Latin squares problem,
i.e. two Latin squares such that the pairs of corresponding cells are distinct.

0 3 1 2

2 1 3 0

3 0 2 1

1 2 0 3

(A) First Latin
square

0 3 2 1

3 0 1 2

2 1 0 3

1 2 3 0

(B) Second Latin
square

(C) Corresponding
orthogonal
Latin square〈 vec− 〈0, 0〉, vec− 〈3, 3〉, vec− 〈1, 2〉, vec− 〈2, 1〉,

vec− 〈2, 3〉, vec− 〈1, 0〉, vec− 〈3, 1〉, vec− 〈0, 2〉,
vec− 〈3, 2〉, vec− 〈0, 1〉, vec− 〈2, 0〉, vec− 〈1, 3〉,
vec− 〈1, 1〉, vec− 〈2, 2〉, vec− 〈0, 3〉, vec− 〈3, 0〉

〉
(D) Argument of the LEX ALLDIFFERENT constraint enforcing

that the pairs of corresponding cells are all distinct

Figure 5.502: Illustrating the use of the LEX ALLDIFFERENT constraint in the context
of orthogonal Latin squares

Algorithm A filtering algorithm achieving arc-consistency for the LEX ALLDIFFERENT constraint is
proposed by C.-G. Quimper and T. Walsh in [346] and a longer version is available in [347]
and in [348].

Reformulation The LEX ALLDIFFERENT(VECTORS) constraint can be expressed as a clique of
LEX DIFFERENT constraints. By associating a n-dimensional box for which all sizes are
equal to 1, one can also express the LEX ALLDIFFERENT(VECTORS) constraint as a DIFFN

or a GEOST constraint. Enforcing all the n-dimensional boxes to not overlap is equivalent
as enforcing all the vectors to be distinct. In the context of the multidimensional sweep
algorithm of the GEOST constraint [42], it makes more sense to make a complete sweep
over the domain of each variable in order not to only restrict the minimum and maximum
value of each variable.

See also generalisation: DIFFN (vector replaced by orthotope), GEOST (vector replaced by
object).

implied by: ALL INCOMPARABLE, LEX CHAIN GREATER, LEX CHAIN LESS.

implies: LEX ALLDIFFERENT EXCEPT 0.

part of system of constraints: LEX DIFFERENT.

specialisation: ALLDIFFERENT (vector replaced by variable).

used in graph description: LEX DIFFERENT.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition.

filtering: bipartite matching, arc-consistency.

modelling: difference between pairs of variables.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator CLIQUE(<) 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX DIFFERENT(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| ∗ (|VECTORS| − 1)/2

Graph model Parts (A) and (B) of Figure 5.503 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VECTORS

1

2

3

NARC=3

1:5
  2
  3

2:5
  2
  6

3:5
  3
  3

(A) (B)

Figure 5.503: Initial and final graph of the LEX ALLDIFFERENT constraint

Signature Since we use the CLIQUE(<) arc generator on the VECTORS collection the number of arcs
of the initial graph is equal to |VECTORS|·(|VECTORS|−1)/2. For this reason we can rewrite
NARC = |VECTORS| · (|VECTORS|− 1)/2 to NARC ≥ |VECTORS| · (|VECTORS|− 1)/2
and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.224 LEX ALLDIFFERENT EXCEPT 0
I B C J DESCRIPTION LINKS

Origin H. Simonis

Constraint LEX ALLDIFFERENT EXCEPT 0(VECTORS)

Synonyms LEX ALLDIFF EXCEPT 0, LEX ALLDISTINCT EXCEPT 0,
ALLDIFF ON TUPLES EXCEPT 0, ALLDIFFERENT ON TUPLES EXCEPT 0,
ALLDISTINCT ON TUPLES EXCEPT 0.

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose
All the non null vectors of the collection VECTORS are distinct. A vector is null
if all its components are equal to zero. Two non null vectors (u1, u2, . . . , un) and
(v1, v2, . . . , vn) are distinct if and only if there exists i ∈ [1, n] such that ui 6= vi.

Example


〈 vec− 〈0, 0, 0〉 ,

vec− 〈5, 2, 0〉 ,
vec− 〈5, 8, 0〉 ,
vec− 〈0, 0, 0〉

〉 
The LEX ALLDIFFERENT EXCEPT 0 constraint holds since its two non null vectors,
i.e. the second and third vectors are distinct (the vectors 〈5, 2, 0〉 and 〈5, 8, 0〉 differ in
their second components.

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties Contractible wrt. VECTORS.

See also implied by: LEX ALLDIFFERENT.

Keywords characteristic of a constraint: vector, joker value.

constraint type: predefined constraint.

modelling: difference between pairs of variables.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.225 LEX BETWEEN

I B C J DESCRIPTION LINKS AUTOMATON

Origin [104]

Constraint LEX BETWEEN(LOWER BOUND, VECTOR, UPPER BOUND)

Synonym BETWEEN.

Arguments LOWER BOUND : collection(var−int)
VECTOR : collection(var−dvar)
UPPER BOUND : collection(var−int)

Restrictions required(LOWER BOUND, var)
required(VECTOR, var)
required(UPPER BOUND, var)
|LOWER BOUND| = |VECTOR|
|UPPER BOUND| = |VECTOR|
LEX LESSEQ(LOWER BOUND, VECTOR)
LEX LESSEQ(VECTOR, UPPER BOUND)

Purpose
The vector VECTOR is lexicographically greater than or equal to the fixed vec-
tor LOWER BOUND and lexicographically smaller than or equal to the fixed vector
UPPER BOUND.

Example (〈5, 2, 3, 9〉 , 〈5, 2, 6, 2〉 , 〈5, 2, 6, 3〉)

The LEX BETWEEN constraint holds since:

• The vector VECTOR = 〈5, 2, 6, 2〉 is greater than or equal to the vector
LOWER BOUND = 〈5, 2, 3, 9〉.

• The vector VECTOR = 〈5, 2, 6, 2〉 is less than or equal to the vector UPPER BOUND =
〈5, 2, 6, 3〉.

5 2 3 9
= = <

5 2 6 2
= = = <

5 2 6 3

Typical |LOWER BOUND| > 1
LEX LESSEQ(LOWER BOUND, UPPER BOUND)

Symmetries • LOWER BOUND.var can be decreased.

• UPPER BOUND.var can be increased.

Arg. properties Suffix-contractible wrt. LOWER BOUND, VECTOR and UPPER BOUND (remove items from
same position).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Usage This constraint does usually not occur explicitly in practice. However it shows up indirectly
in the context of the LEX CHAIN LESS and the LEX CHAIN LESSEQ constraints: in order to
have a complete filtering algorithm for the LEX CHAIN LESS and the LEX CHAIN LESSEQ

constraints one has to come up with a complete filtering algorithm for the LEX BETWEEN

constraint. The reason is that the LEX CHAIN LESS as well as the LEX CHAIN LESSEQ

constraints both compute feasible lower and upper bounds for each vector they men-
tion. Therefore one ends up with a LEX BETWEEN constraint for each vector of the
LEX CHAIN LESS and LEX CHAIN LESSEQ constraints.

Algorithm [104].

Reformulation The LEX BETWEEN(LOWER BOUND, VECTORS, UPPER BOUND) constraint can
be expressed as the conjunction LEX LESSEQ(LOWER BOUND, VECTORS) ∧
LEX LESSEQ(VECTORS, UPPER BOUND).

Systems LEXCHAINEQ in Choco, LEX CHAIN in SICStus.

See also common keyword: LEX CHAIN GREATER, LEX CHAIN GREATEREQ, LEX CHAIN LESS,
LEX CHAIN LESSEQ, LEX GREATER, LEX GREATEREQ, LEX LESS (lexicographic order).

part of system of constraints: LEX LESSEQ.

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint, system of constraints.

filtering: arc-consistency.

symmetry: symmetry, lexicographic order.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Automaton Figure 5.504 depicts the automaton associated with the LEX BETWEEN constraint. Let
Li, Vi and Ui respectively be the var attributes of the ith items of the LOWER BOUND, the
VECTOR and the UPPER BOUND collections. To each triple (Li, Vi, Ui) corresponds a signa-
ture variable Si as well as the following signature constraint:

(Li < Vi) ∧ (Vi < Ui)⇔ Si = 0 ∧
(Li < Vi) ∧ (Vi = Ui)⇔ Si = 1 ∧
(Li < Vi) ∧ (Vi > Ui)⇔ Si = 2 ∧
(Li = Vi) ∧ (Vi < Ui)⇔ Si = 3 ∧
(Li = Vi) ∧ (Vi = Ui)⇔ Si = 4 ∧
(Li = Vi) ∧ (Vi > Ui)⇔ Si = 5 ∧
(Li > Vi) ∧ (Vi < Ui)⇔ Si = 6 ∧
(Li > Vi) ∧ (Vi = Ui)⇔ Si = 7 ∧
(Li > Vi) ∧ (Vi > Ui)⇔ Si = 8.

s

a b

t

Li = Vi ∧ Vi = Ui

Li = Vi ∧ Vi < Ui Li < Vi ∧ Vi = Ui

Li < Vi ∧
Vi < Ui

Li = Vi ∧ Vi < Ui
Li = Vi ∧ Vi = Ui
Li = Vi ∧ Vi > Ui

Li < Vi ∧ Vi < Ui
Li < Vi ∧ Vi = Ui
Li < Vi ∧ Vi > Ui

Li < Vi ∧ Vi = Ui
Li = Vi ∧ Vi = Ui
Li > Vi ∧ Vi = Ui

Li < Vi ∧ Vi < Ui
Li = Vi ∧ Vi < Ui
Li > Vi ∧ Vi < Ui

Li < Vi ∧ Vi < Ui Li < Vi ∧ Vi = Ui Li < Vi ∧ Vi > Ui
Li = Vi ∧ Vi < Ui Li = Vi ∧ Vi = Ui Li = Vi ∧ Vi > Ui
Li > Vi ∧ Vi < Ui Li > Vi ∧ Vi = Ui Li > Vi ∧ Vi > Ui

Figure 5.504: Automaton of the LEX BETWEEN constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Q0 = s Q1

S1 S2

Qn

Sn

V1 V2 Vn

Figure 5.505: Hypergraph of the reformulation corresponding to the automaton of the
LEX BETWEEN constraint (since all states of the automaton are accepting there is no
restriction on the last variable Qn)
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5.226 LEX CHAIN GREATER

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from LEX CHAIN LESS

Constraint LEX CHAIN GREATER(VECTORS)

Usual name LEX CHAIN

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collec-
tion we have that VECTORi is lexicographically strictly greater than VECTORi+1. Given
two vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is
lexicographically strictly greater than ~Y if and only if X0 > Y0 or X0 = Y0 and
〈X1, . . . , Xn−1〉 is lexicographically strictly greater than 〈Y1, . . . , Yn−1〉.

Example (〈vec− 〈5, 2, 6, 3〉 , vec− 〈5, 2, 6, 2〉 , vec− 〈5, 2, 3, 9〉〉)

The LEX CHAIN GREATER constraint holds since:

• The first vector 〈5, 2, 6, 3〉 of the VECTORS collection is lexicographically strictly
greater than the second vector 〈5, 2, 6, 2〉 of the VECTORS collection.

• The second vector 〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically strictly
greater than the third vector 〈5, 2, 3, 9〉 of the VECTORS collection.

5 2 6 3
= = = >

5 2 6 2
= = >

5 2 3 9

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties • Contractible wrt. VECTORS.

• Suffix-extensible wrt. VECTORS.vec (add items at same position).

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows the solver to come up with a complete pruning.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm A filtering algorithm achieving arc-consistency for a chain of lexicographical ordering con-
straints is presented in [104].

See also common keyword: LEX BETWEEN, LEX GREATEREQ, LEX LESS,
LEX LESSEQ (lexicographic order).

implies: LEX ALLDIFFERENT, LEX CHAIN GREATEREQ.

part of system of constraints: LEX GREATER.

used in graph description: LEX GREATER.

Keywords application area: floor planning problem.

characteristic of a constraint: vector.

constraint type: decomposition, order constraint, system of constraints.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

modelling: degree of diversity of a set of solutions.

modelling exercises: degree of diversity of a set of solutions.

symmetry: symmetry, matrix symmetry, lexicographic order.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX GREATER(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Graph model Parts (A) and (B) of Figure 5.506 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. The LEX CHAIN GREATER constraint holds since all the arc
constraints of the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
  2
  6
  3

2:5
  2
  6
  2

3:5
  2
  3
  9

(A) (B)

Figure 5.506: Initial and final graph of the LEX CHAIN GREATER constraint

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.227 LEX CHAIN GREATEREQ

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from LEX CHAIN LESSEQ

Constraint LEX CHAIN GREATEREQ(VECTORS)

Usual name LEX CHAIN

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection
we have that VECTORi is lexicographically greater than or equal to VECTORi+1. Given
two vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is
lexicographically greater than or equal to ~Y if and only if n = 0 or X0 > Y0 or X0 =
Y0 and 〈X1, . . . , Xn−1〉 is lexicographically greater than or equal to 〈Y1, . . . , Yn−1〉.

Example (〈vec− 〈5, 2, 6, 2〉 , vec− 〈5, 2, 6, 2〉 , vec− 〈5, 2, 3, 9〉〉)

The LEX CHAIN GREATEREQ constraint holds since:

• The first vector 〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically greater
than or equal to the second vector 〈5, 2, 6, 2〉 of the VECTORS collection.

• The second vector 〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically greater
than or equal to the third vector 〈5, 2, 3, 9〉 of the VECTORS collection.

5 2 6 2
= = = =

5 2 6 2
= = >

5 2 3 9

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties • Contractible wrt. VECTORS.

• Suffix-contractible wrt. VECTORS.vec (remove items from same position).

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows the solver to come up with a complete pruning.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm A filtering algorithm achieving arc-consistency for a chain of lexicographical ordering con-
straints is presented in [104].

Six different ways of integrating a chain of lexicographical ordering constraints within
non-overlapping constraints like DIFFN or GEOST and within their corresponding necessary
conditions like the CUMULATIVE constraint are shown in [3].

See also common keyword: LEX BETWEEN, LEX GREATER, LEX LESS,
LEX LESSEQ (lexicographic order).

implied by: LEX CHAIN GREATER (non-strict order implied by strict order).

part of system of constraints: LEX GREATEREQ.

used in graph description: LEX GREATEREQ.

Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition, order constraint.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESSEQ(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Graph model Parts (A) and (B) of Figure 5.507 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. The LEX CHAIN GREATEREQ constraint holds since all the arc
constraints of the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
  2
  6
  2

2:5
  2
  6
  2

3:5
  2
  3
  9

(A) (B)

Figure 5.507: Initial and final graph of the LEX CHAIN GREATEREQ constraint

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.228 LEX CHAIN LESS

I B C J DESCRIPTION LINKS GRAPH

Origin [104]

Constraint LEX CHAIN LESS(VECTORS)

Usual name LEX CHAIN

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collec-
tion we have that VECTORi is lexicographically strictly less than VECTORi+1. Given two
vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexico-
graphically strictly less than ~Y if and only ifX0 < Y0 orX0 = Y0 and 〈X1, . . . , Xn−1〉
is lexicographically strictly less than 〈Y1, . . . , Yn−1〉.

Example (〈vec− 〈5, 2, 3, 9〉 , vec− 〈5, 2, 6, 2〉 , vec− 〈5, 2, 6, 3〉〉)

The LEX CHAIN LESS constraint holds since:

• The first vector 〈5, 2, 3, 9〉 of the VECTORS collection is lexicographically strictly less
than the second vector 〈5, 2, 6, 2〉 of the VECTORS collection.

• The second vector 〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically strictly
less than the third vector 〈5, 2, 6, 3〉 of the VECTORS collection.

5 2 3 9
= = <

5 2 6 2
= = = <

5 2 6 3

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties • Contractible wrt. VECTORS.

• Suffix-extensible wrt. VECTORS.vec (add items at same position).

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows the solver to come up with a complete pruning.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm A filtering algorithm achieving arc-consistency for a chain of lexicographical ordering con-
straints is presented in [104].

Six different ways of integrating a chain of lexicographical ordering constraints within
non-overlapping constraints like DIFFN or GEOST and within their corresponding necessary
conditions like the CUMULATIVE constraint are shown in [3].

Systems LEXCHAIN in Choco, LEX CHAIN in SICStus.

See also common keyword: GEOST (symmetry, lexicographic ordering on the origins
of tasks, rectangles, . . .), LEX BETWEEN, LEX GREATER, LEX GREATEREQ,
LEX LESSEQ (lexicographic order).

implied by: STRICT LEX2.

implies: LEX ALLDIFFERENT, LEX CHAIN LESSEQ.

part of system of constraints: LEX LESS.

related: CUMULATIVE, DIFFN (lexicographic ordering on the origins of tasks,
rectangles, . . .).

system of constraints: STRICT LEX2.

used in graph description: LEX LESS.

Keywords application area: floor planning problem.

characteristic of a constraint: vector.

constraint type: decomposition, order constraint, system of constraints.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

modelling: degree of diversity of a set of solutions.

modelling exercises: degree of diversity of a set of solutions.

symmetry: symmetry, matrix symmetry, lexicographic order.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESS(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Graph model Parts (A) and (B) of Figure 5.508 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final graph
are stressed in bold. The LEX CHAIN LESS constraint holds since all the arc constraints of
the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
  2
  3
  9

2:5
  2
  6
  2

3:5
  2
  6
  3

(A) (B)

Figure 5.508: Initial and final graph of the LEX CHAIN LESS constraint

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.229 LEX CHAIN LESSEQ

I B C J DESCRIPTION LINKS GRAPH

Origin [104]

Constraint LEX CHAIN LESSEQ(VECTORS)

Usual name LEX CHAIN

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS collection
we have that VECTORi is lexicographically less than or equal to VECTORi+1. Given two
vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexico-
graphically less than or equal to ~Y if and only if n = 0 or X0 < Y0 or X0 = Y0 and
〈X1, . . . , Xn−1〉 is lexicographically less than or equal to 〈Y1, . . . , Yn−1〉.

Example (〈vec− 〈5, 2, 3, 9〉 , vec− 〈5, 2, 6, 2〉 , vec− 〈5, 2, 6, 2〉〉)

The LEX CHAIN LESSEQ constraint holds since:

• The first vector 〈5, 2, 3, 9〉 of the VECTORS collection is lexicographically less than
or equal to the second vector 〈5, 2, 6, 2〉 of the VECTORS collection.

• The second vector 〈5, 2, 6, 2〉 of the VECTORS collection is lexicographically less
than or equal to the third vector 〈5, 2, 6, 2〉 of the VECTORS collection.

5 2 3 9
= = <

5 2 6 2
= = = =

5 2 6 2

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties • Contractible wrt. VECTORS.

• Suffix-contractible wrt. VECTORS.vec (remove items from same position).

Usage This constraint was motivated for breaking symmetry: more precisely when one wants
to lexicographically order the consecutive columns of a matrix of decision variables. A
further motivation is that using a set of lexicographic ordering constraints between two
vectors does usually not allows the solver to come up with a complete pruning.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm A filtering algorithm achieving arc-consistency for a chain of lexicographical ordering con-
straints is presented in [104].

Six different ways of integrating a chain of lexicographical ordering constraints within
non-overlapping constraints like DIFFN or GEOST and within their corresponding necessary
conditions like the CUMULATIVE constraint are shown in [3].

Systems LEXCHAINEQ in Choco, LEX CHAIN in SICStus.

See also common keyword: ALLPERM (lexicographic order), GEOST (symmetry, lexicographic
ordering on the origins of tasks, rectangles, . . .), LEX BETWEEN, LEX GREATER,
LEX GREATEREQ, LEX LESS (lexicographic order).

implied by: LEX2 (columns lex ordering imposed by constraint LEX2 removed),
LEX CHAIN LESS (non-strict order implied by strict order),
ORDERED ATLEAST NVECTOR (NVEC of constraint ORDERED ATLEAST NVECTOR re-
moved),
ORDERED ATMOST NVECTOR (NVEC of constraint ORDERED ATMOST NVECTOR re-
moved),
ORDERED NVECTOR (NVEC of constraint ORDERED NVECTOR removed).

part of system of constraints: LEX LESSEQ.

related: CUMULATIVE, DIFFN (lexicographic ordering on the origins of tasks,
rectangles, . . .).

system of constraints: LEX2.

used in graph description: LEX LESSEQ.

Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition, order constraint.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESSEQ(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Graph model Parts (A) and (B) of Figure 5.509 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final graph
are stressed in bold. The LEX CHAIN LESSEQ constraint holds since all the arc constraints
of the initial graph are satisfied.

VECTORS

1

2

3

NARC=2

1:5
  2
  3
  9

2:5
  2
  6
  2

3:5
  2
  6
  2

(A) (B)

Figure 5.509: Initial and final graph of the LEX CHAIN LESSEQ constraint

Signature Since we use the PATH arc generator on the VECTORS collection the number of arcs of
the initial graph is equal to |VECTORS| − 1. For this reason we can rewrite NARC =
|VECTORS| − 1 to NARC ≥ |VECTORS| − 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.230 LEX DIFFERENT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for defining LEX ALLDIFFERENT.

Constraint LEX DIFFERENT(VECTOR1, VECTOR2)

Synonyms DIFFERENT, DIFF.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| > 0
|VECTOR1| = |VECTOR2|

Purpose Vectors VECTOR1 and VECTOR2 differ in at least one component.

Example (〈5, 2, 7, 1〉 , 〈5, 3, 7, 1〉)

The LEX DIFFERENT constraint holds since VECTOR1 = 〈5, 2, 7, 1〉 and VECTOR2 =
〈5, 3, 7, 1〉 differ in their second components.

5 2 7 1
= 6= = =

5 3 7 1

Typical |VECTOR1| > 1
range(VECTOR1.var) > 1
range(VECTOR2.var) > 1

Symmetries • Arguments are permutable w.r.t. permutation (VECTOR1, VECTOR2).

• Items of VECTOR1 and VECTOR2 are permutable (same permutation used).

Arg. properties Extensible wrt. VECTOR1 and VECTOR2 (add items at same position).

Reformulation The LEX DIFFERENT(〈var − U1, var − U2, . . . , var − U|VECTOR1|〉, 〈var − V1, var −
V2, . . . , var − V|VECTOR2|〉) constraint can be expressed in term of the following disjunc-
tion of disequality constraints U1 6= V1 ∨ U2 6= V2 ∨ · · · ∨ U|VECTOR1| 6= V|VECTOR2|.

Used in LEX ALLDIFFERENT, SORT PERMUTATION.

See also common keyword: LEX GREATEREQ, LEX LESSEQ (vector).

implied by: DISJOINT, INCOMPARABLE, LEX GREATER, LEX LESS.

negation: LEX EQUAL.

system of constraints: LEX ALLDIFFERENT.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: vector, disequality, automaton, automaton without coun-
ters, reified automaton constraint.

constraint arguments: constraint between two collections of variables.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var 6= vector2.var

Graph property(ies) NARC≥ 1

Graph model Parts (A) and (B) of Figure 5.510 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold. It corresponds to a component where the two vectors differ.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=1

2:2

2:3

(A) (B)

Figure 5.510: Initial and final graph of the LEX DIFFERENT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.511 depicts the automaton associated with the LEX DIFFERENT constraint. Let
VAR1i and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a 0-1 signature variable Si
as well as the following signature constraint: VAR1i = VAR2i ⇔ Si.

s t

VAR1i = VAR2i

VAR1i 6= VAR2i

VAR1i = VAR2i

VAR1i 6= VAR2i

Figure 5.511: Automaton of the LEX DIFFERENT constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.512: Hypergraph of the reformulation corresponding to the automaton of the
LEX DIFFERENT constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.231 LEX EQUAL

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Initially introduced for defining NVECTOR

Constraint LEX EQUAL(VECTOR1, VECTOR2)

Synonyms EQUAL, EQ.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose
VECTOR1 is equal to VECTOR2. Given two vectors, ~X and ~Y of n components,
〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is equal to ~Y if and only if n = 0 or
X0 = Y0 ∧X1 = Y1 ∧ · · · ∧Xn−1 = Yn−1.

Example (〈1, 9, 1, 5〉 , 〈1, 9, 1, 5〉)

The LEX EQUAL constraint holds since (1) the first component of the first vector is
equal to the first component of the second vector, (2) the second component of the first
vector is equal to the second component of the second vector, (3) the third component
of the first vector is equal to the third component of the second vector and (4) the fourth
component of the first vector is equal to the fourth component of the second vector.

1 9 1 5
= = = =

1 9 1 5

All solutions Figure 5.513 gives all solutions to the following non ground instance of the LEX EQUAL

constraint: X0 ∈ [1, 2], X1 ∈ [1, 2], X2 ∈ [1, 2], Y0 ∈ [0, 1], Y1 ∈ [0, 2], Y2 ∈ [2, 4],
LEX EQUAL0(〈X0, X1, X2〉, 〈Y0, Y1, Y2〉).

¬ (〈1,1,2〉, 〈1,1,2〉)
 (〈1,2,2〉, 〈1,2,2〉)

1 1 2
= = =

1 1 2

¬ 1 2 2
= = =

1 2 2



Figure 5.513: All solutions corresponding to the non ground example of the
LEX EQUAL constraint

Typical |VECTOR1| > 1
range(VECTOR1.var) > 1
range(VECTOR2.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (VECTOR1, VECTOR2).

• Items of VECTOR1 and VECTOR2 are permutable (same permutation used).

Arg. properties Contractible wrt. VECTOR1 and VECTOR2 (remove items from same position).

Used in ATLEAST NVECTOR, ATMOST NVECTOR, NVECTOR, NVECTORS.

See also common keyword: NVECTOR (vector).

implied by: VEC EQ TUPLE.

implies: LEX GREATEREQ, LEX LESSEQ, SAME.

negation: LEX DIFFERENT.

specialisation: VEC EQ TUPLE (variable replaced by integer in second argument).

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint.

constraint arguments: constraint between two collections of variables.

constraint network structure: Berge-acyclic constraint network.

filtering: arc-consistency.

final graph structure: acyclic, bipartite, no loop.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTOR1 VECTOR2

Arc generator PRODUCT (=) 7→collection(vector1, vector2)

Arc arity 2

Arc constraint(s) vector1.var = vector2.var

Graph property(ies) NARC= |VECTOR1|

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.514 respectively show the initial and final graphs associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VECTOR1

VECTOR2

1

1

2

2

3

3

4

4

NARC=4

1:1

1:1

2:9

2:9

3:1

3:1

4:5

4:5

(A) (B)

Figure 5.514: Initial and final graph of the LEX EQUAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.515 depicts the automaton associated with the LEX EQUAL constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i 6= VAR2i ⇔ Si = 0) ∧ (VAR1i =
VAR2i ⇔ Si = 1).

s VAR1i = VAR2i

Figure 5.515: Automaton of the LEX EQUAL constraint

Q0 = s Q1

S1 S2

Qn = s

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.516: Hypergraph of the reformulation corresponding to the automaton of the
LEX EQUAL constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.232 LEX GREATER

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint LEX GREATER(VECTOR1, VECTOR2)

Synonyms LEX, LEX CHAIN, REL, GREATER, GT.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly greater than VECTOR2. Given two vectors, ~X
and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexicographically
strictly greater than ~Y if and only if X0 > Y0 or X0 = Y0 and 〈X1, . . . , Xn−1〉 is
lexicographically strictly greater than 〈Y1, . . . , Yn−1〉.

Example (〈5, 2, 7, 1〉 , 〈5, 2, 6, 2〉)

The LEX GREATER constraint holds since VECTOR1 = 〈5, 2, 7, 1〉 is lexicographi-
cally strictly greater than VECTOR2 = 〈5, 2, 6, 2〉.

5 2 7 1
= = >

5 2 6 2

All solutions Figure 5.517 gives all solutions to the following non ground instance of the LEX GREATER

constraint: X0 ∈ [0, 1], X1 ∈ [0, 2], X2 ∈ [1, 1], Y0 ∈ [0, 1], Y1 ∈ [1, 2], Y2 ∈ [4, 4],
LEX GREATER(〈X0, X1, X2〉, 〈Y0, Y1, Y2〉).

Typical |VECTOR1| > 1∨( |VECTOR1| < 5,
nval([VECTOR1.var, VECTOR2.var]) < 2 ∗ |VECTOR1|

)
∨( maxval([VECTOR1.var, VECTOR2.var]) ≤ 1,

2 ∗ |VECTOR1|−MAX NVALUE([VECTOR1.var, VECTOR2.var]) > 2

)

Symmetries • VECTOR1.var can be increased.

• VECTOR2.var can be decreased.

Arg. properties Suffix-extensible wrt. VECTOR1 and VECTOR2 (add items at same position).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [185].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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¬ (〈0,2,1〉, 〈0,1,4〉)
 (〈1,0,1〉, 〈0,1,4〉)
® (〈1,0,1〉, 〈0,2,4〉)
¯ (〈1,1,1〉, 〈0,1,4〉)
° (〈1,1,1〉, 〈0,2,4〉)
± (〈1,2,1〉, 〈0,1,4〉)
² (〈1,2,1〉, 〈0,2,4〉)
³ (〈1,2,1〉, 〈1,1,4〉)

0 2 1
= >

0 1 4

¬ 1 0 1

>

0 1 4



1 0 1

>

0 2 4

® 1 1 1

>

0 1 4

¯

1 1 1

>

0 2 4

° 1 2 1

>

0 1 4

± 1 2 1

>

0 2 4

² 1 2 1
= >

1 1 4

³

Figure 5.517: All solutions corresponding to the non ground example of the
LEX GREATER constraint

Algorithm The first filtering algorithm maintaining arc-consistency for this constraint was presented
in [184]. A second filtering algorithm maintaining arc-consistency and detecting entail-
ment in a more eager way, was given in [105]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [184] detecting entailment is given in the PhD thesis of Z. Kızıltan [250, page 95]. The
previous thesis [250, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [186] in [187].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing the lexicographically strictly greater than constraint. The first one converts ~X
and ~Y into numbers and post an inequality constraint. It assumes all components of ~X and
~Y to be within [0, a− 1]:

an−1Y0 + an−2Y1 + · · ·+ a0Yn−1 < an−1X0 + an−2X1 + · · ·+ a0Xn−1

Since the previous reformulation can only be used with small values of n and a, W. Harvey
came up with the following alternative model that maintains arc-consistency:

(Y0 < X0 + (Y1 < X1 + (· · ·+ (Yn−1 < Xn−1 + 0) . . . ))) = 1

Finally, the lexicographically strictly greater than constraint can be expressed as a con-
junction or a disjunction of constraints:


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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Y0 ≤ X0 ∧
(Y0 = X0)⇒ Y1 ≤ X1 ∧

(Y0 = X0 ∧ Y1 = X1)⇒ Y2 ≤ X2 ∧
...

(Y0 = X0 ∧ Y1 = X1 ∧ · · · ∧ Yn−2 = Xn−2)⇒ Yn−1 < Xn−1

Y0 < X0 ∨
Y0 = X0 ∧ Y1 < X1 ∨

Y0 = X0 ∧ Y1 = X1 ∧ Y2 < X2 ∨
...

Y0 = X0 ∧ Y1 = X1 ∧ · · · ∧ Yn−2 = Xn−2 ∧ Yn−1 < Xn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems LEX in Choco, REL in Gecode, LEX GREATER in MiniZinc, LEX CHAIN in SICStus.

Used in LEX CHAIN GREATER.

See also common keyword: COND LEX GREATER, LEX BETWEEN, LEX CHAIN GREATEREQ,
LEX CHAIN LESS, LEX CHAIN LESSEQ (lexicographic order).

implies: LEX DIFFERENT, LEX GREATEREQ.

implies (if swap arguments): LEX LESS.

negation: LEX LESSEQ.

system of constraints: LEX CHAIN GREATER.

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint arguments: constraint between two collections of variables.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_greater
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Derived Collections
col

(
DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col


COMPONENTS−collection(index−int, x−dvar, y−dvar), item

 index− VECTOR1.key,
x− VECTOR1.var,
y− VECTOR2.var

 


Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨( item2.index > 0 ∧ item1.x = item1.y,

item2.index = 0 ∧ item1.x > item1.y

)
Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure 5.518 respectively show the initial and final graph associated
with the Example slot. Since we use the PATH FROM TO graph property we show
the following information on the final graph:

• The vertices, which respectively correspond to the start and the end of the required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,7,6

1:0,0,0

(A) (B)

Figure 5.518: Initial and final graph of the LEX GREATER constraint

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components that both have the same index i.


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint
item1.x > item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The LEX GREATER constraint holds when there exist a path from c1 to d. This path can be
interpreted as a sequence of equality constraints on the prefix of both vectors, immediately
followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.519 depicts the automaton associated with the LEX GREATER constraint. Let
VAR1i and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as
well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s t

VAR1i = VAR2i

VAR1i > VAR2i

VAR1i = VAR2i

VAR1i > VAR2i

VAR1i < VAR2i

Figure 5.519: Automaton of the LEX GREATER constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.520: Hypergraph of the reformulation corresponding to the automaton of the
LEX GREATER constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.233 LEX GREATEREQ

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint LEX GREATEREQ(VECTOR1, VECTOR2)

Synonyms LEXEQ, LEX CHAIN, REL, GREATEREQ, GEQ, LEX GEQ.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically greater than or equal to VECTOR2. Given two vectors,
~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexicographi-
cally greater than or equal to ~Y if and only if n = 0 or X0 > Y0 or X0 = Y0 and
〈X1, . . . , Xn−1〉 is lexicographically greater than or equal to 〈Y1, . . . , Yn−1〉.

Example (〈5, 2, 8, 9〉 , 〈5, 2, 6, 2〉)
(〈5, 2, 3, 9〉 , 〈5, 2, 3, 9〉)

The LEX GREATEREQ constraints associated with the first and second examples
hold since:

• Within the first example VECTOR1 = 〈5, 2, 8, 9〉 is lexicographically greater than or
equal to VECTOR2 = 〈5, 2, 6, 2〉.

• Within the second example VECTOR1 = 〈5, 2, 3, 9〉 is lexicographically greater than
or equal to VECTOR2 = 〈5, 2, 3, 9〉.

5 2 8 9
= = >

5 2 6 2

5 2 3 9
= = = =

5 2 3 9

All solutions Figure 5.521 gives all solutions to the following non ground instance of the
LEX GREATEREQ constraint: X0 ∈ [0, 1], X1 ∈ [0, 2], X2 ∈ [1, 1], Y0 ∈ [1, 2], Y1 ∈ [1, 2],
Y2 ∈ [1, 2], LEX GREATEREQ0(〈X0, X1, X2〉, 〈Y0, Y1, Y2〉).

Typical |VECTOR1| > 1∨( |VECTOR1| < 5,
nval([VECTOR1.var, VECTOR2.var]) < 2 ∗ |VECTOR1|

)
∨( maxval([VECTOR1.var, VECTOR2.var]) ≤ 1,

2 ∗ |VECTOR1|−MAX NVALUE([VECTOR1.var, VECTOR2.var]) > 2

)

Symmetries • VECTOR1.var can be increased.

• VECTOR2.var can be decreased.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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¬ (〈1,1,1〉, 〈1,1,1〉)
 (〈1,2,1〉, 〈1,1,1〉)
® (〈1,2,1〉, 〈1,1,2〉)
¯ (〈1,2,1〉, 〈1,2,1〉)

1 1 1
= = =

1 1 1

¬ 1 2 1
= >

1 1 1



1 2 1
= >

1 1 2

® 1 2 1
= = =

1 2 1

¯

Figure 5.521: All solutions corresponding to the non ground example of the
LEX GREATEREQ constraint

Arg. properties Suffix-contractible wrt. VECTOR1 and VECTOR2 (remove items from same position).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [185].

Algorithm The first filtering algorithm maintaining arc-consistency for this constraint was presented
in [184]. A second filtering algorithm maintaining arc-consistency and detecting entail-
ment in a more eager way, was given in [105]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [184] detecting entailment is given in the PhD thesis of Z. Kızıltan [250, page 95]. The
previous thesis [250, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [186] in [187].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing the lexicographically greater than or equal to constraint. The first one converts
~X and ~Y into numbers and post an inequality constraint. It assumes all components of ~X
and ~Y to be within [0, a− 1]:

an−1Y0 + an−2Y1 + · · ·+ a0Yn−1 ≤ an−1X0 + an−2X1 + · · ·+ a0Xn−1

Since the previous reformulation can only be used with small values of n and a, W. Harvey
came up with the following alternative model that maintains arc-consistency:

(Y0 < X0 + (Y1 < X1 + (· · ·+ (Yn−1 < Xn−1 + 1) . . . ))) = 1

Finally, the lexicographically greater than or equal to constraint can be expressed as a
conjunction or a disjunction of constraints:


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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Y0 ≤ X0 ∧
(Y0 = X0)⇒ Y1 ≤ X1 ∧

(Y0 = X0 ∧ Y1 = X1)⇒ Y2 ≤ X2 ∧
...

(Y0 = X0 ∧ Y1 = X1 ∧ · · · ∧ Yn−2 = Xn−2)⇒ Yn−1 ≤ Xn−1

Y0 < X0 ∨
Y0 = X0 ∧ Y1 < X1 ∨

Y0 = X0 ∧ Y1 = X1 ∧ Y2 < X2 ∨
...

Y0 = X0 ∧ Y1 = X1 ∧ · · · ∧ Yn−2 = Xn−2 ∧ Yn−1 ≤ Xn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems LEXEQ in Choco, REL in Gecode, LEX GREATEREQ in MiniZinc, LEX CHAIN in SICS-
tus.

See also common keyword: COND LEX GREATEREQ, LEX BETWEEN, LEX CHAIN GREATER,
LEX CHAIN LESS, LEX CHAIN LESSEQ (lexicographic order), LEX DIFFERENT (vector).

implied by: LEX EQUAL, LEX GREATER, SORT.

implies (if swap arguments): LEX LESSEQ.

negation: LEX LESS.

system of constraints: LEX CHAIN GREATEREQ.

uses in its reformulation: LEX CHAIN GREATEREQ.

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint arguments: constraint between two collections of variables.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_greatereq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
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Derived Collections
col

(
DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col


COMPONENTS−collection(index−int, x−dvar, y−dvar), item

 index− VECTOR1.key,
x− VECTOR1.var,
y− VECTOR2.var

 


Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨


item2.index > 0 ∧ item1.x = item1.y,∧ item1.index < |VECTOR1|,
item2.index = 0,
item1.x > item1.y

 ,

∧ item1.index = |VECTOR1|,
item2.index = 0,
item1.x ≥ item1.y




Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure 5.522 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the PATH FROM TO graph
property we show on the final graph the following information:

• The vertices, which respectively correspond to the start and the end of the required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components that both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components
of both vectors We associate to this arc the arc constraint item1.x ≥ item2.y;
Otherwise we associate to this arc the arc constraint item1.x > item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The LEX GREATEREQ constraint holds when there exist a path from c1 to d. This path can
be interpreted as a maximum sequence of equality constraints on the prefix of both vectors,
possibly followed by a greater than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,8,6

1:0,0,0

4:4,9,2

(A) (B)

Figure 5.522: Initial and final graph of the LEX GREATEREQ constraint
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Automaton Figure 5.523 depicts the automaton associated with the LEX GREATEREQ constraint. Let
VAR1i and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si as
well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s t

VAR1i = VAR2i

VAR1i > VAR2i

VAR1i = VAR2i

VAR1i > VAR2i

VAR1i < VAR2i

Figure 5.523: Automaton of the LEX GREATEREQ constraint

Q0 = s Q1

S1 S2

Qn ∈ {s, t}

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.524: Hypergraph of the reformulation corresponding to the automaton of the
LEX GREATEREQ constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.234 LEX LESS

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint LEX LESS(VECTOR1, VECTOR2)

Synonyms LEX, LEX CHAIN, REL, LESS.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically strictly less than VECTOR2. Given two vectors, ~X and ~Y
of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexicographically strictly
less than ~Y if and only if X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn−1〉 is lexicographi-
cally strictly less than 〈Y1, . . . , Yn−1〉.

Example (〈5, 2, 3, 9〉 , 〈5, 2, 6, 2〉)

The LEX LESS constraint holds since VECTOR1 = 〈5, 2, 3, 9〉 is lexicographically
strictly less than VECTOR2 = 〈5, 2, 6, 2〉.

5 2 3 9
= = <

5 2 6 2

All solutions Figure 5.525 gives all solutions to the following non ground instance of the LEX LESS

constraint: X0 ∈ [0, 1], X1 ∈ [1, 2], X2 ∈ [4, 4], Y0 ∈ [0, 1], Y1 ∈ [0, 2], Y2 ∈ [1, 1],
LEX LESS(〈X0, X1, X2〉, 〈Y0, Y1, Y2〉).

Typical |VECTOR1| > 1∨( |VECTOR1| < 5,
nval([VECTOR1.var, VECTOR2.var]) < 2 ∗ |VECTOR1|

)
∨( maxval([VECTOR1.var, VECTOR2.var]) ≤ 1,

2 ∗ |VECTOR1|−MAX NVALUE([VECTOR1.var, VECTOR2.var]) > 2

)

Symmetries • VECTOR1.var can be decreased.

• VECTOR2.var can be increased.

Arg. properties Suffix-extensible wrt. VECTOR1 and VECTOR2 (add items at same position).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [185].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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¬ (〈0,1,4〉, 〈0,2,1〉)
 (〈0,1,4〉, 〈1,0,1〉)
® (〈0,1,4〉, 〈1,1,1〉)
¯ (〈0,1,4〉, 〈1,2,1〉)
° (〈0,2,4〉, 〈1,0,1〉)
± (〈0,2,4〉, 〈1,1,1〉)
² (〈0,2,4〉, 〈1,2,1〉)
³ (〈1,1,4〉, 〈1,2,1〉)

0 1 4
= <

0 2 1

¬ 0 1 4

<

1 0 1



0 1 4

<

1 1 1

® 0 1 4

<

1 2 1

¯

0 2 4

<

1 0 1

° 0 2 4

<

1 1 1

± 0 2 4

<

1 2 1

² 1 1 4
= <

1 2 1

³

Figure 5.525: All solutions corresponding to the non ground example of the LEX LESS
constraint

Algorithm The first filtering algorithm maintaining arc-consistency for this constraint was presented
in [184]. A second filtering algorithm maintaining arc-consistency and detecting entail-
ment in a more eager way, was given in [105]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [184] detecting entailment is given in the PhD thesis of Z. Kızıltan [250, page 95]. The
previous thesis [250, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [186] in [187].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing the lexicographically strictly less than constraint. The first one converts ~X and
~Y into numbers and post an inequality constraint. It assumes all components of ~X and ~Y
to be within [0, a− 1]:

an−1X0 + an−2X1 + · · ·+ a0Xn−1 < an−1Y0 + an−2Y1 + · · ·+ a0Yn−1

Since the previous reformulation can only be used with small values of n and a, W. Harvey
came up with the following alternative model that maintains arc-consistency:

(X0 < Y0 + (X1 < Y1 + (· · ·+ (Xn−1 < Yn−1 + 0) . . . ))) = 1

Finally, the lexicographically strictly less than constraint can be expressed as a conjunction
or a disjunction of constraints:


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.



1634 LEX LESS

X0 ≤ Y0 ∧
(X0 = Y0)⇒ X1 ≤ Y1 ∧

(X0 = Y0 ∧X1 = Y1)⇒ X2 ≤ Y2 ∧
...

(X0 = Y0 ∧X1 = Y1 ∧ · · · ∧Xn−2 = Yn−2)⇒ Xn−1 < Yn−1

X0 < Y0 ∨
X0 = Y0 ∧X1 < Y1 ∨

X0 = Y0 ∧X1 = Y1 ∧X2 < Y2 ∨
...

X0 = Y0 ∧X1 = Y1 ∧ · · · ∧Xn−2 = Yn−2 ∧Xn−1 < Yn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems LEX in Choco, REL in Gecode, LEX LESS in MiniZinc, LEX CHAIN in SICStus.

Used in LEX CHAIN LESS, ORDERED ATLEAST NVECTOR, ORDERED ATMOST NVECTOR,
ORDERED NVECTOR.

See also common keyword: COND LEX LESS, LEX BETWEEN, LEX CHAIN GREATER,
LEX CHAIN GREATEREQ, LEX CHAIN LESSEQ (lexicographic order).

implies: LEX DIFFERENT, LEX LESSEQ.

implies (if swap arguments): LEX GREATER.

negation: LEX GREATEREQ.

system of constraints: LEX CHAIN LESS.

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint arguments: constraint between two collections of variables.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_less
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Derived Collections
col

(
DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col


COMPONENTS−collection(index−int, x−dvar, y−dvar), item

 index− VECTOR1.key,
x− VECTOR1.var,
y− VECTOR2.var

 


Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨( item2.index > 0 ∧ item1.x = item1.y,

item2.index = 0 ∧ item1.x < item1.y

)
Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure 5.526 respectively show the initial and final graph associated
with the Example slot. Since we use the PATH FROM TO graph property we show
on the final graph the following information:

• The vertices, which respectively correspond to the start and the end of the required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

(A) (B)

Figure 5.526: Initial and final graph of the LEX LESS constraint

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components that both have the same index i.


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. We associate to this arc the arc constraint
item1.x < item2.y.

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The LEX LESS constraint holds when there exist a path from c1 to d. This path can be
interpreted as a sequence of equality constraints on the prefix of both vectors, immediately
followed by a less than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.527 depicts the automaton associated with the LEX LESS constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s t

VAR1i = VAR2i

VAR1i < VAR2i

VAR1i = VAR2i

VAR1i < VAR2i

VAR1i > VAR2i

Figure 5.527: Automaton of the LEX LESS constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.528: Hypergraph of the reformulation corresponding to the automaton of the
LEX LESS constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.235 LEX LESSEQ

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint LEX LESSEQ(VECTOR1, VECTOR2)

Synonyms LEXEQ, LEX CHAIN, REL, LESSEQ, LEQ, LEX LEQ.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically less than or equal to VECTOR2. Given two vectors, ~X and
~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is lexicographically less
than or equal to ~Y if and only if n = 0 or X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn−1〉
is lexicographically less than or equal to 〈Y1, . . . , Yn−1〉.

Example (〈5, 2, 3, 1〉 , 〈5, 2, 6, 2〉)
(〈5, 2, 3, 9〉 , 〈5, 2, 3, 9〉)

The LEX LESSEQ constraints associated with the first and second examples hold
since:

• Within the first example VECTOR1 = 〈5, 2, 3, 1〉 is lexicographically less than or
equal to VECTOR2 = 〈5, 2, 6, 2〉.

• Within the second example VECTOR1 = 〈5, 2, 3, 9〉 is lexicographically less than or
equal to VECTOR2 = 〈5, 2, 3, 9〉.

5 2 3 1
= = <

5 2 6 2

5 2 3 9
= = = =

5 2 3 9

All solutions Figure 5.529 gives all solutions to the following non ground instance of the LEX LESSEQ

constraint: X0 ∈ [1, 2], X1 ∈ [1, 2], X2 ∈ [1, 2], Y0 ∈ [0, 1], Y1 ∈ [0, 2], Y2 ∈ [1, 1],
LEX LESSEQ0(〈X0, X1, X2〉, 〈Y0, Y1, Y2〉).

Typical |VECTOR1| > 1∨( |VECTOR1| < 5,
nval([VECTOR1.var, VECTOR2.var]) < 2 ∗ |VECTOR1|

)
∨( maxval([VECTOR1.var, VECTOR2.var]) ≤ 1,

2 ∗ |VECTOR1|−MAX NVALUE([VECTOR1.var, VECTOR2.var]) > 2

)

Symmetries • VECTOR1.var can be decreased.

• VECTOR2.var can be increased.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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¬ (〈1,1,1〉, 〈1,1,1〉)
 (〈1,1,1〉, 〈1,2,1〉)
® (〈1,1,2〉, 〈1,2,1〉)
¯ (〈1,2,1〉, 〈1,2,1〉)

1 1 1
= = =

1 1 1

¬ 1 1 1
= <

1 2 1



1 1 2
= <

1 2 1

® 1 2 1
= = =

1 2 1

¯

Figure 5.529: All solutions corresponding to the non ground example of the
LEX LESSEQ constraint

Arg. properties Suffix-contractible wrt. VECTOR1 and VECTOR2 (remove items from same position).

Remark A multiset ordering constraint and its corresponding filtering algorithm are described
in [185].

Algorithm The first filtering algorithm maintaining arc-consistency for this constraint was presented
in [184]. A second filtering algorithm maintaining arc-consistency and detecting entail-
ment in a more eager way, was given in [105]. This second algorithm was derived from a
deterministic finite automata. A third filtering algorithm extending the algorithm presented
in [184] detecting entailment is given in the PhD thesis of Z. Kızıltan [250, page 95]. The
previous thesis [250, pages 105–109] presents also a filtering algorithm handling the fact
that a given variable has more than one occurrence. Finally, T. Frühwirth shows how to
encode lexicographic ordering constraints within the context of CHR [186] in [187].

Reformulation The following reformulations in term of arithmetic and/or logical expressions exist for
enforcing the lexicographically less than or equal to constraint. The first one converts ~X
and ~Y into numbers and post an inequality constraint. It assumes all components of ~X and
~Y to be within [0, a− 1]:

an−1X0 + an−2X1 + · · ·+ a0Xn−1 ≤ an−1Y0 + an−2Y1 + · · ·+ a0Yn−1

Since the previous reformulation can only be used with small values of n and a, W. Harvey
came up with the following alternative model that maintains arc-consistency:

(X0 < Y0 + (X1 < Y1 + (· · ·+ (Xn−1 < Yn−1 + 1) . . . ))) = 1

Finally, the lexicographically less than or equal to constraint can be expressed as a con-
junction or a disjunction of constraints:


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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X0 ≤ Y0 ∧
(X0 = Y0)⇒ X1 ≤ Y1 ∧

(X0 = Y0 ∧X1 = Y1)⇒ X2 ≤ Y2 ∧
...

(X0 = Y0 ∧X1 = Y1 ∧ · · · ∧Xn−2 = Yn−2)⇒ Xn−1 ≤ Yn−1

X0 < Y0 ∨
X0 = Y0 ∧X1 < Y1 ∨

X0 = Y0 ∧X1 = Y1 ∧X2 < Y2 ∨
...

X0 = Y0 ∧X1 = Y1 ∧ · · · ∧Xn−2 = Yn−2 ∧Xn−1 ≤ Yn−1

When used separately, the two previous logical decompositions do not maintain
arc-consistency.

Systems LEXEQ in Choco, REL in Gecode, LEX LESSEQ in MiniZinc, LEX CHAIN in SICStus.

Used in LEX BETWEEN, LEX CHAIN GREATEREQ, LEX CHAIN LESSEQ,
ORDERED ATLEAST NVECTOR, ORDERED ATMOST NVECTOR, ORDERED NVECTOR.

See also common keyword: ALLPERM, COND LEX LESSEQ (lexicographic order), LEX2 (matrix
symmetry,lexicographic order), LEX CHAIN GREATER, LEX CHAIN GREATEREQ,
LEX CHAIN LESS (lexicographic order), LEX DIFFERENT (vector), STRICT LEX2 (matrix
symmetry,lexicographic order).

implied by: LEX EQUAL, LEX LESS, LEX LESSEQ ALLPERM.

implies (if swap arguments): LEX GREATEREQ.

negation: LEX GREATER.

system of constraints: LEX BETWEEN, LEX CHAIN LESSEQ.

Keywords characteristic of a constraint: vector, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint arguments: constraint between two collections of variables.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: duplicated variables, arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order, multiset ordering.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_lesseq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Derived Collections
col

(
DESTINATION−collection(index−int, x−int, y−int),
[item(index− 0, x− 0, y− 0)]

)

col


COMPONENTS−collection(index−int, x−dvar, y−dvar), item

 index− VECTOR1.key,
x− VECTOR1.var,
y− VECTOR2.var

 


Arc input(s) COMPONENTS DESTINATION

Arc generator PRODUCT (PATH ,VOID) 7→collection(item1, item2)

Arc arity 2

Arc constraint(s)
∨


item2.index > 0 ∧ item1.x = item1.y,∧ item1.index < |VECTOR1|,
item2.index = 0,
item1.x < item1.y

 ,

∧ item1.index = |VECTOR1|,
item2.index = 0,
item1.x ≤ item1.y




Graph property(ies) PATH FROM TO(index, 1, 0) = 1

Graph model Parts (A) and (B) of Figure 5.530 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the PATH FROM TO graph
property we show on the final graph the following information:

• The vertices, which respectively correspond to the start and the end of the required
path, are stressed in bold.

• The arcs on the required path are also stressed in bold.

The vertices of the initial graph are generated in the following way:

• We create a vertex ci for each pair of components that both have the same index i.

• We create an additional dummy vertex called d.

The arcs of the initial graph are generated in the following way:

• We create an arc between ci and d. When ci was generated from the last components
of both vectors We associate to this arc the arc constraint item1.x ≤ item2.y;
Otherwise we associate to this arc the arc constraint item1.x < item2.y;

• We create an arc between ci and ci+1. We associate to this arc the arc constraint
item1.x = item2.y.

The LEX LESSEQ constraint holds when there exist a path from c1 to d. This path can be
interpreted as a maximum sequence of equality constraints on the prefix of both vectors,
possibly followed by a less than constraint.

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, 1, 0) = 1 to
PATH FROM TO(index, 1, 0) ≥ 1. Therefore we simplify PATH FROM TO
to PATH FROM TO.


Derived Collections
Declarations of new collections that are derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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COMPONENTS

DESTINATION

1

2

1

3

4

PATH_FROM_TO(index,1,0)=1

COMPONENTS

DESTINATION

1:1,5,5

2:2,2,2

3:3,3,6

1:0,0,0

4:4,1,2

(A) (B)

Figure 5.530: Initial and final graph of the LEX LESSEQ constraint
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Automaton Figure 5.531 depicts the automaton associated with the LEX LESSEQ constraint. Let VAR1i
and VAR2i respectively be the var attributes of the ith items of the VECTOR1 and the
VECTOR2 collections. To each pair (VAR1i, VAR2i) corresponds a signature variable Si
as well as the following signature constraint: (VAR1i < VAR2i ⇔ Si = 1) ∧ (VAR1i =
VAR2i ⇔ Si = 2) ∧ (VAR1i > VAR2i ⇔ Si = 3).

s t

VAR1i = VAR2i

VAR1i < VAR2i

VAR1i = VAR2i

VAR1i < VAR2i

VAR1i > VAR2i

Figure 5.531: Automaton of the LEX LESSEQ constraint

Q0 = s Q1

S1 S2

Qn ∈ {s, t}

Sn

VAR11

VAR21

VAR12

VAR22

VAR1n

VAR2n

Figure 5.532: Hypergraph of the reformulation corresponding to the automaton of the
LEX LESSEQ constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.236 LEX LESSEQ ALLPERM

I B C J DESCRIPTION LINKS

Origin Inspired by [179]

Constraint LEX LESSEQ ALLPERM(VECTOR1, VECTOR2)

Synonym LEXIMIN.

Arguments VECTOR1 : collection(var−dvar)
VECTOR2 : collection(var−dvar)

Restrictions required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|

Purpose

VECTOR1 is lexicographically less than or equal to all permutations of VECTOR2. Given
two vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉 and 〈Y0, . . . , Yn−1〉, ~X is
lexicographically less than or equal to ~Y if and only if n = 0 or X0 < Y0 or X0 = Y0

and 〈X1, . . . , Xn−1〉 is lexicographically less than or equal to 〈Y1, . . . , Yn−1〉.

Example (〈1, 2, 3〉 , 〈3, 1, 2〉)

The LEX LESSEQ ALLPERM constraint holds since vector 〈1, 2, 3〉 is lexicographi-
cally less than or equal to all the permutations of vector 〈3, 1, 2〉 (i.e., 〈1, 2, 3〉, 〈1, 3, 2〉,
〈2, 1, 3〉, 〈2, 3, 1〉, 〈3, 1, 2〉, 〈3, 2, 1〉).

1 2 3
<

3 1 2

1 2 3
<

3 2 1

1 2 3
= <

1 3 2

1 2 3
= = =

1 2 3

1 2 3
<

2 1 3

1 2 3
<

2 3 1

Typical |VECTOR1| > 1

Symmetry All occurrences of two distinct values in VECTOR1.var or VECTOR2.var can be swapped;
all occurrences of a value in VECTOR1.var or VECTOR2.var can be renamed to any unused
value.

Arg. properties Suffix-contractible wrt. VECTOR1 and VECTOR2 (remove items from same position).

Remark The LEX LESSEQ ALLPERM(VECTOR1, VECTOR2) can be reformulated as the conjunction
SORT(VECTOR2, VECTOR), LEX LESSEQ(VECTOR1, VECTOR).

Systems LEXIMIN in Choco.

Used in ALLPERM.

See also common keyword: ALLPERM (matrix symmetry,lexicographic order).

implies: LEX LESSEQ.

system of constraints: ALLPERM.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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Keywords characteristic of a constraint: vector.

constraint arguments: constraint between two collections of variables.

constraint type: predefined constraint, order constraint.

symmetry: symmetry, matrix symmetry, lexicographic order.


Keywords
Related keywords grouped by meta-keywords.
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5.237 LINK SET TO BOOLEANS

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by DOMAIN CONSTRAINT.

Constraint LINK SET TO BOOLEANS(SVAR, BOOLEANS)

Arguments SVAR : svar

BOOLEANS : collection(bool−dvar, val−int)

Restrictions required(BOOLEANS, [bool, val])
BOOLEANS.bool ≥ 0
BOOLEANS.bool ≤ 1
distinct(BOOLEANS, val)

Purpose

Make the link between a set variable SVAR and those 0-1 variables that are associated
with each potential value belonging to SVAR: The 0-1 variables, which are associated
with a value belonging to the set variable SVAR, are equal to 1, while the remaining 0-1
variables are all equal to 0.

Example



{1, 3, 4},

〈 bool− 0 val− 0,
bool− 1 val− 1,
bool− 0 val− 2,
bool− 1 val− 3,
bool− 1 val− 4,
bool− 0 val− 5

〉


In the example, the 0-1 variables associated with the values 1, 3 and 4 are all set to
1, while the other 0-1 variables are set to 0. Consequently, the LINK SET TO BOOLEANS

constraint holds since its first argument SVAR is set to {1, 3, 4}.

Typical |BOOLEANS| > 1
range(BOOLEANS.bool) > 1

Symmetry Items of BOOLEANS are permutable.

Usage This constraint is used in order to make the link between a formulation using set variables
and a formulation based on linear programming.

Systems CHANNEL in Gecode, LINK SET TO BOOLEANS in MiniZinc.

See also common keyword: ALLDIFFERENT BETWEEN SETS, CLIQUE (constraint involving set
variables), DOMAIN CONSTRAINT (channelling constraint), K CUT, PATH FROM TO,
ROOTS, STRONGLY CONNECTED, SYMMETRIC CARDINALITY, SYMMETRIC GCC,
TOUR (constraint involving set variables).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#link_set_to_booleans
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Keywords characteristic of a constraint: derived collection.

constraint arguments: constraint involving set variables.

constraint type: decomposition, value constraint.

filtering: linear programming.

modelling: channelling constraint, set channel.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col

(
SET−collection(one−int, setvar−svar),
[item(one− 1, setvar− SVAR)]

)
Arc input(s) SET BOOLEANS

Arc generator PRODUCT 7→collection(set, booleans)

Arc arity 2

Arc constraint(s) booleans.bool = set.one⇔IN SET(booleans.val, set.setvar)

Graph property(ies) NARC= |BOOLEANS|

Graph model The LINK SET TO BOOLEANS constraint is modelled with the following bipartite graph.
The first set of vertices corresponds to a single vertex containing the set variable. The
second class of vertices contains one vertex for each item of the collection BOOLEANS. The
arc constraint between the set variable SVAR and one potential value v of the set variable
expresses the following:

• If the 0-1 variable associated with v is equal to 1 then v should belong to SVAR.

• Otherwise if the 0-1 variable associated with v is equal to 0 then v should not belong
to SVAR.

Since all arc constraints should hold the final graph contains exactly |BOOLEANS| arcs.

Parts (A) and (B) of Figure 5.533 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. The LINK SET TO BOOLEANS constraint holds since the final
graph contains exactly 6 arcs (one for each 0-1 variable).

Signature Since the initial graph contains |BOOLEANS| arcs the maximum number of arcs of the final
graph is equal to |BOOLEANS|. Therefore we can rewrite the graph property NARC =
|BOOLEANS| to NARC ≥ |BOOLEANS| and simplify NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

SET

BOOLEANS

1

123456

(B) NARC=6

1:1,{1,3,4}

1:0,0 2:1,1 3:0,2 4:1,3 5:1,4 6:0,5

Figure 5.533: Initial and final graph of the LINK SET TO BOOLEANS constraint
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5.238 LONGEST CHANGE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CHANGE.

Constraint LONGEST CHANGE(SIZE, VARIABLES, CTR)

Arguments SIZE : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

SIZE is the maximum number of consecutive variables of the collection VARIABLES for
which constraint CTR holds in an uninterrupted way (0 if the constraint CTR does not
hold at all). We count a change when X CTR Y holds; X and Y are two consecutive
variables of the collection VARIABLES.

Example (4, 〈8, 8, 3, 4, 1, 1, 5, 5, 2〉 , 6=)

The LONGEST CHANGE constraint holds since its first argument SIZE = 4 is fixed
to the length of the longest subsequence of consecutive values of the collection
〈8, 8, 3, 4, 1, 1, 5, 5, 2〉 such that two consecutive values are distinct (i.e., subsequence
8 3 4 1).

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
CTR ∈ [ 6=]

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: SIZE determined by VARIABLES and CTR.

See also root concept: CHANGE.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(3).

constraint type: timetabling constraint.

filtering: glue matrix.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var CTR variables2.var

Graph property(ies) MAX NCC= SIZE

Graph model In order to specify the LONGEST CHANGE constraint, we use MAX NCC, which is the
number of vertices of the largest connected component. Since the initial graph corresponds
to a path, this will be the length of the longest path in the final graph.

Parts (A) and (B) of Figure 5.534 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NCC graph property we show the largest
connected component of the final graph. It corresponds to the longest period of uninter-
rupted changes: sequence 8, 3, 4, 1 that involves 4 consecutive variables.

VARIABLES

1

2

3

4

5

6

7

8

9

MAX_NCC=4

MAX_NCC

2:8

3:3

4:4

5:1

6:1

7:5

8:5

9:2

(A) (B)

Figure 5.534: Initial and final graph of the LONGEST CHANGE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.535 depicts the automaton associated with the LONGEST CHANGE constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi CTR VARi+1 ⇔ Si.

SIZE = max(C,D)

s

{
C ← 0,
D ← 0

}
i

VARi ¬CTR VARi+1

VARi CTR VARi+1,
{D ← 2}

VARi ¬CTR VARi+1,{
C ← max(C,D),
D ← 1

}

VARi CTR VARi+1,
{D ← D + 1}

s i

s 0 max
(←−
D,
←−
C
)

i max
(−→
C ,
−→
D
)

max
(−→
C ,
−→
D +

←−
D − 1,

←−
C
)

Glue matrix where
−→
C ,
−→
D and

←−
C ,
←−
D

resp. represent the counters values C, D
at the end of a prefix and at the end of the
corresponding reverse suffix that partitions
the sequence VARIABLES.

Figure 5.535: Automaton of the LONGEST CHANGE constraint and its glue matrix
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D2

C2

Q2

S2 S3

Dn−1

Cn−1

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.536: Hypergraph of the reformulation corresponding to the automaton of the
LONGEST CHANGE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.239 LONGEST DECREASING SEQUENCE

I B C J DESCRIPTION LINKS AUTOMATON

Origin constraint on sequences

Constraint LONGEST DECREASING SEQUENCE(L, VARIABLES)

Synonym SIZE LONGEST DECREASING SEQUENCE.

Arguments L : dvar

VARIABLES : collection(var−dvar)

Restrictions L ≥ 0
L <range(VARIABLES.var)
required(VARIABLES, var)

Purpose

L is the largest difference between the first and the last value of the maximum decreasing
sequences of the collection VARIABLES.
A sequence of consecutive variables Xi, Xi+1, . . . , Xj (1 ≤ i ≤ j ≤ |VARIABLES|)
of the collection of variables VARIABLES is a maximum decreasing sequence if all the
following conditions simultaneously apply:

• Xi ≥ Xi+1 ≥ · · · ≥ Xj ,
• i = 1 or Xi−1 < Xi,

• i = |VARIABLES| or Xj < Xj+1.

Example (0, 〈0, 1, 2, 5〉)
(0, 〈8, 8〉)
(6, 〈10, 8, 8, 6, 4, 9, 10, 8〉)

Figure 5.537 gives a graphical representation of the third example of the Example
slot with its two maximum decreasing sequences in red of respective size 6 and 2.
The corresponding LONGEST DECREASING SEQUENCE constraint holds since its first
argument L is fixed to the maximum size 6.

Typical L > 0
|VARIABLES| > 1
nval(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: L determined by VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).



LONGEST DECREASING SEQUENCE 1655
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Figure 5.537: Illustration of the third example of the Example slot: a sequence of
eight variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 10, 8, 8, 6, 4,
9, 10, 8 and its two maximum decreasing sequences in red of respective size 10−4 = 6
and 10− 8 = 2.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for LONGEST DECREASING SEQUENCE: domains 0..n
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Solution density for LONGEST DECREASING SEQUENCE


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 6 20 70 252 924 3432 12870
1 2 18 122 750 4412 25382 144314
2 1 16 161 1398 11361 89132 685090
3 - 10 162 1942 20816 211106 2074365
4 - - 110 2024 28930 375084 4603682
5 - - - 1410 30134 506766 7792840
6 - - - - 21072 522648 10197174
7 - - - - - 363602 10379696
8 - - - - - - 7156690

Solution count for LONGEST DECREASING SEQUENCE: domains 0..n
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See also common keyword: LONGEST INCREASING SEQUENCE,
MIN DIST BETWEEN INFLEXION (sequence).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

filtering: glue matrix.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.538 depicts the automaton associated with the
LONGEST DECREASING SEQUENCE constraint.

s : increasing mode ({< | =}∗)
t : decreasing mode (> {> | =}∗)

STATE SEMANTICS

L = Ms

{
M ← 0,
C ← 0

}
t

VARi ≤ VARi+1

VARi > VARi+1,{
M ← max(M, VARi − VARi+1),

C ← VARi − VARi+1

}

VARi = VARi+1

VARi > VARi+1,{
M ← max(M,C + VARi − VARi+1),

C ← C + VARi − VARi+1

}VARi < VARi+1

Glue matrix where
−→
M ,
−→
C and

←−
M ,
←−
C resp.

represent the counters values M , C at the
end of a prefix and at the end of the cor-
responding reverse suffix that partitions the
sequence VARIABLES.

s ({> | =}∗) t (< {< | =}∗)

s ({< | =}∗) max(
−→
M,
←−
M) max(

−→
M,
←−
M)

t (> {> | =}∗) max(
−→
M,
←−
M) max(

−→
M,
−→
C +

←−
C ,
←−
M)

Figure 5.538: Automaton of the LONGEST DECREASING SEQUENCE constraint and
its glue matrix (note that the reverse of the LONGEST DECREASING SEQUENCE con-
straint is the LONGEST INCREASING SEQUENCE constraint)

C0 = 0

M0 = 0

Q0 = s

C1

M1

Q1

S1

C2

M2

Q2

S2 S3

Cn−1

Mn−1 = L

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.539: Hypergraph of the reformulation corresponding to the automaton of the
LONGEST DECREASING SEQUENCE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.240 LONGEST INCREASING SEQUENCE

I B C J DESCRIPTION LINKS AUTOMATON

Origin constraint on sequences

Constraint LONGEST INCREASING SEQUENCE(L, VARIABLES)

Synonym SIZE LONGEST INCREASING SEQUENCE.

Arguments L : dvar

VARIABLES : collection(var−dvar)

Restrictions L ≥ 0
L <range(VARIABLES.var)
required(VARIABLES, var)

Purpose

L is the largest difference between the first and the last value of the maximum increasing
sequences of the collection VARIABLES.
A sequence of consecutive variables Xi, Xi+1, . . . , Xj (1 ≤ i ≤ j ≤ |VARIABLES|)
of the collection of variables VARIABLES is a maximum increasing sequence if all the
following conditions simultaneously apply:

• Xi ≤ Xi+1 ≤ · · · ≤ Xj ,
• i = 1 or Xi−1 > Xi,

• i = |VARIABLES| or Xj > Xj+1.

Example (7, 〈10, 8, 8, 6, 4, 9, 11, 8〉)
(0, 〈10, 8, 7, 5, 4, 3, 1, 0〉)

Figure 5.540 gives a graphical representation of the first example of the Example
slot with its two maximum increasing sequences in red of respective size 0 and 7.
The corresponding LONGEST INCREASING SEQUENCE constraint holds since its first
argument L is fixed to the maximum size 7.

Typical L > 0
|VARIABLES| > 1
nval(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: L determined by VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Figure 5.540: Illustration of the first example of the Example slot: a sequence of eight
variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 10, 8, 8, 6, 4, 9, 11,
8 and its two maximum increasing sequences in red of respective size 8 − 8 = 0 and
11− 4 = 7.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for LONGEST INCREASING SEQUENCE: domains 0..n


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 6 20 70 252 924 3432 12870
1 2 18 122 750 4412 25382 144314
2 1 16 161 1398 11361 89132 685090
3 - 10 162 1942 20816 211106 2074365
4 - - 110 2024 28930 375084 4603682
5 - - - 1410 30134 506766 7792840
6 - - - - 21072 522648 10197174
7 - - - - - 363602 10379696
8 - - - - - - 7156690

Solution count for LONGEST INCREASING SEQUENCE: domains 0..n
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See also common keyword: LONGEST DECREASING SEQUENCE,
MIN DIST BETWEEN INFLEXION (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

filtering: glue matrix.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.541 depicts the automaton associated with the
LONGEST INCREASING SEQUENCE constraint.

s : decreasing mode ({> | =}∗)
t : increasing mode (< {< | =}∗)

STATE SEMANTICS

L = Ms

{
M ← 0,
C ← 0

}
t

VARi ≥ VARi+1

VARi < VARi+1,{
M ← max(M, VARi+1 − VARi),

C ← VARi+1 − VARi

}

VARi = VARi+1

VARi < VARi+1,{
M ← max(M,C + VARi+1 − VARi),

C ← C + VARi+1 − VARi

}VARi > VARi+1

Glue matrix where
−→
M ,
−→
C and

←−
M ,
←−
C resp.

represent the counters values M , C at the
end of a prefix and at the end of the cor-
responding reverse suffix that partitions the
sequence VARIABLES.

s ({< | =}∗) t (> {> | =}∗)

s ({> | =}∗) max(
−→
M,
←−
M) max(

−→
M,
←−
M)

t (< {< | =}∗) max(
−→
M,
←−
M) max(

−→
M,
−→
C +

←−
C ,
←−
M)

Figure 5.541: Automaton of the LONGEST INCREASING SEQUENCE constraint and its
glue matrix (note that the reverse of the LONGEST INCREASING SEQUENCE constraint
is the LONGEST DECREASING SEQUENCE constraint)
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Figure 5.542: Hypergraph of the reformulation corresponding to the automaton of the
LONGEST INCREASING SEQUENCE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.241 LT

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint LT(VAR1, VAR2)

Synonyms REL, XLTY.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that the first variable is strictly less than the second variable.

Example (1, 8)

The LT constraint holds since 1 is strictly less than 8.

Symmetries • VAR1 can be replaced by any value < VAR2.

• VAR2 can be replaced by any value > VAR1.

Systems LT in Choco, REL in Gecode, XLTY in JaCoP, #< in SICStus.

See also common keyword: EQ (binary constraint,arithmetic constraint).

implies: LEQ, NEQ.

implies (if swap arguments): GT.

negation: GEQ.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.242 MAP

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [387]

Constraint MAP(NBCYCLE, NBTREE, NODES)

Arguments NBCYCLE : dvar

NBTREE : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NBCYCLE ≥ 0
NBTREE ≥ 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Number of trees and number of cycles of a map. We take the description of a map from
[387, page 459]:

“Every map decomposes into a set of connected components, also
called connected maps. Each component consists of the set of all points
that wind up on the same cycle, with each point on the cycle attached to a
tree of all points that enter the cycle at that point.”

Example


2, 3,

〈
index− 1 succ− 5,
index− 2 succ− 9,
index− 3 succ− 8,
index− 4 succ− 2,
index− 5 succ− 9,
index− 6 succ− 2,
index− 7 succ− 9,
index− 8 succ− 8,
index− 9 succ− 1

〉


The MAP constraint holds since, as shown by part (B) of Figure 5.543, the graph
corresponding to the NODES collection is a map containing NBCYCLE = 2 cycles (i.e., a
first cycle involving vertices 1, 5 and 9 and a second cycle involving vertex 8) and 3 trees
(i.e., two trees respectively involving vertices 7 and 4, 6, 2 and attached to the first cycle,
and one tree mentioning vertex 3 linked to the second cycle.)

1 5

9

7

4

26

8

3


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical NBCYCLE > 0
NBTREE > 0
NBCYCLE < |NODES|
NBCYCLE < NBTREE

|NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties • Functional dependency: NBCYCLE determined by NODES.

• Functional dependency: NBTREE determined by NODES.

See also common keyword: CYCLE, GRAPH CROSSING, TREE (graph partitioning constraint).

Keywords constraint arguments: pure functional dependency.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • NCC= NBCYCLE

• NTREE= NBTREE

Graph model Note that, for the argument NBTREE of the MAP constraint, we consider a definition different
from the one used for the argument NTREES of the TREE constraint:

• In the MAP constraint the number of trees NBTREE is equal to the number of vertices
of the final graph, which both do not belong to any circuit and have a successor that
is located on a circuit. Therefore we count three trees in the context of the Example
slot.

• In the TREE constraint the number of trees NTREES is equal to the number of con-
nected components of the final graph.

Parts (A) and (B) of Figure 5.543 respectively show the initial and final graph associated
with the Example slot. Since we use the NCC graph property, we display the two con-
nected components of the final graph. Each of them corresponds to a connected map.
The first connected map is made up from one circuit and two trees, while the second one
consists of one circuit and one tree. Since we also use the NTREE graph property, we
display with a double circle those vertices that do not belong to any circuit but for which at
least one successor belongs to a circuit.

NODES

1

2

3

4

5

6

7

8

9

NCC=2,NTREE=3

CC#1

CC#2

1:1,5

5:5,92:2,9

9:9,1

4:4,26:6,2

7:7,9

3:3,8

8:8,8

(A) (B)

Figure 5.543: Initial and final graph of the MAP constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.243 MAX DECREASING SLOPE

I B C J DESCRIPTION LINKS AUTOMATON

Origin Motivated by time series.

Constraint MAX DECREASING SLOPE(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions MAX ≥ 0
MAX <range(VARIABLES.var)
required(VARIABLES, var)
|VARIABLES| > 0

Purpose
Given a sequence of variables VARIABLES = V1, V2, . . . , Vn, sets MAX to 0 if @i ∈
[1, n− 1]|Vi > Vi+1, otherwise sets MAX to maxi∈[1,n−1]|Vi>Vi+1

(Vi − Vi+1).

Example (4, 〈1, 1, 5, 8, 6, 2, 4, 1, 2〉)
(0, 〈1, 3, 5, 8〉)
(8, 〈3, 1, 9, 1〉)

The first MAX DECREASING SLOPE constraint holds since the sequence 1 1 5 8 6 2 4 1 2
contains two decreasing subsequences 8 6 2 and 4 1 and the maximum slope is equal to
max(8− 6, 6− 2, 4− 1) = 4 as shown on Figure 5.544.

Typical MAX > 0
MAX <range(VARIABLES.var)− 1
|VARIABLES| > 2
range(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: MAX determined by VARIABLES.

Usage Getting the maximum slope over the decreasing sequences of time series.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MAX DECREASING SLOPE: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Counting
Information on the solution density.
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Figure 5.544: Illustration of the first example of the Example slot: a sequence of nine
variables V1, V2, V3, V4, V5, V6, V7, V8, V9 respectively fixed to values 1, 1, 5, 8, 6, 2,
4, 1, 5 and the corresponding maximum slope on the strictly decreasing subsequences
8 6 2 and 4 1 (MAX = 4)
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Solution density for MAX DECREASING SLOPE

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 6 20 70 252 924 3432 12870
1 2 20 151 1036 6828 44220 284405
2 1 16 188 1952 19200 183304 1721425
3 - 8 142 2106 29035 380116 4847301
4 - - 74 1584 28266 483840 8021350
5 - - - 846 21684 457632 9208124
6 - - - - 11712 353088 8654931
7 - - - - - 191520 6673834
8 - - - - - - 3622481

Solution count for MAX DECREASING SLOPE: domains 0..n
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Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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filtering: glue matrix.

modelling: functional dependency.

Cond. implications • MAX DECREASING SLOPE(MAX, VARIABLES)
with range(VARIABLES.var) = MAX + 1

implies LONGEST DECREASING SEQUENCE(L, VARIABLES)
when range(VARIABLES.var) = L + 1.

• MAX DECREASING SLOPE(MAX, VARIABLES)
with MAX = 1

implies MIN DECREASING SLOPE(MIN, VARIABLES)
when MIN = 1.


Cond. implications
Conditional implications.
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Automaton Figure 5.545 depicts the automaton associated with the MAX DECREASING SLOPE con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: (VARi ≤ VARi+1 ⇔ Si = 0) ∧ (VARi > VARi+1 ⇔ Si = 1).

MAX = C

s{C ← 0} VARi ≤ VARi+1

VARi > VARi+1,
{C ← max(C, VARi − VARi+1)}

s

s max(
−→
C ,
←−
C )

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.545: Automaton for the MAX DECREASING SLOPE constraint
and its glue matrix (note that the reverse of MAX DECREASING SLOPE is
MAX INCREASING SLOPE)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.244 MAX INCREASING SLOPE

I B C J DESCRIPTION LINKS AUTOMATON

Origin Motivated by time series.

Constraint MAX INCREASING SLOPE(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions MAX ≥ 0
MAX <range(VARIABLES.var)
required(VARIABLES, var)
|VARIABLES| > 0

Purpose
Given a sequence of variables VARIABLES = V1, V2, . . . , Vn, sets MAX to 0 if @i ∈
[1, n− 1]|Vi < Vi+1, otherwise sets MAX to maxi∈[1,n−1]|Vi<Vi+1

(Vi+1 − Vi).

Example (4, 〈1, 1, 5, 8, 6, 2, 2, 1, 2〉)
(0, 〈9, 8, 6, 4, 1, 0〉)
(8, 〈9, 6, 6, 4, 1, 9〉)

The first MAX INCREASING SLOPE constraint holds since the sequence 1 1 5 8 6 2 2 1 2
contains two increasing subsequences 1 5 8 and 1 2 and the maximum slope is equal to
max(5− 1, 8− 5, 2− 1) = 4 as shown on Figure 5.546.

Typical MAX > 0
MAX <range(VARIABLES.var)− 1
|VARIABLES| > 2
range(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: MAX determined by VARIABLES.

Usage Getting the maximum slope over the increasing sequences of time series.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MAX INCREASING SLOPE: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Counting
Information on the solution density.
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Figure 5.546: Illustration of the first example of the Example slot: a sequence of nine
variables V1, V2, V3, V4, V5, V6, V7, V8, V9 respectively fixed to values 1, 1, 5, 8, 6, 2,
2, 1, 2 and the corresponding maximum slope on the strictly increasing subsequences
1 5 8 and 1 2 (MAX = 4)
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Solution density for MAX INCREASING SLOPE

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 6 20 70 252 924 3432 12870
1 2 20 151 1036 6828 44220 284405
2 1 16 188 1952 19200 183304 1721425
3 - 8 142 2106 29035 380116 4847301
4 - - 74 1584 28266 483840 8021350
5 - - - 846 21684 457632 9208124
6 - - - - 11712 353088 8654931
7 - - - - - 191520 6673834
8 - - - - - - 3622481

Solution count for MAX INCREASING SLOPE: domains 0..n



MAX INCREASING SLOPE 1681

0 0.2 0.4 0.6 0.8 1

10−3

10−2

10−1

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for MAX INCREASING SLOPE

size 6
size 7
size 8

0 0.2 0.4 0.6 0.8 1

0

5 · 10−2

0.1

0.15

0.2

0.25

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for MAX INCREASING SLOPE

size 6
size 7
size 8

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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filtering: glue matrix.

modelling: functional dependency.

Cond. implications • MAX INCREASING SLOPE(MAX, VARIABLES)
with range(VARIABLES.var) = MAX + 1

implies LONGEST INCREASING SEQUENCE(L, VARIABLES)
when range(VARIABLES.var) = L + 1.

• MAX INCREASING SLOPE(MAX, VARIABLES)
with MAX = 1

implies MIN INCREASING SLOPE(MIN, VARIABLES)
when MIN = 1.


Cond. implications
Conditional implications.
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Automaton Figure 5.547 depicts the automaton associated with the MAX INCREASING SLOPE con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: (VARi ≥ VARi+1 ⇔ Si = 0) ∧ (VARi < VARi+1 ⇔ Si = 1).

MAX = C

s{C ← 0} VARi ≥ VARi+1

VARi < VARi+1,
{C ← max(C, VARi+1 − VARi)}

s

s max(
−→
C ,
←−
C )

Glue matrix where
−→
C and

←−
C resp. represent

the counter value C at the end of a prefix and
at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

Figure 5.547: Automaton for the MAX INCREASING SLOPE constraint
and its glue matrix (note that the reverse of MAX INCREASING SLOPE is
MAX DECREASING SLOPE)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.245 MAX INDEX

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint MAX INDEX(MAX INDEX, VARIABLES)

Arguments MAX INDEX : dvar

VARIABLES : collection(index−int, var−dvar)

Restrictions |VARIABLES| > 0
MAX INDEX ≥ 0
MAX INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MAX INDEX is one of the indices of the collection of variables VARIABLES corresponding
to its maximum value.

Example

 3,

〈 index− 1 var− 3,
index− 2 var− 2,
index− 3 var− 7,
index− 4 var− 2,
index− 5 var− 7

〉 
The attribute var = 7 of the third and fifth items of the collection VARIABLES is
the maximum value over values 3, 2, 7, 2, 7. Consequently, the MAX INDEX constraint
holds since its first argument MAX INDEX is set to 3 ∈ {3, 5}.

Typical |VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

See also comparison swapped: MIN INDEX.

Keywords characteristic of a constraint: maximum.

constraint type: order constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var > variables2.var

)
Graph property(ies) ORDER(0, 0, index) = MAX INDEX

Graph model Parts (A) and (B) of Figure 5.548 respectively show the initial and final graph associated
with the Example slot. Since we use the ORDER graph property, the vertex of rank 0
(without considering the loops) of the final graph is outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=3

1:1,3

2:2,2 4:4,2

3:3,75:5,7

(A) (B)

Figure 5.548: Initial and final graph of the MAX INDEX constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.246 MAX N

I B C J DESCRIPTION LINKS GRAPH

Origin [29]

Constraint MAX N(MAX, RANK, VARIABLES)

Arguments MAX : dvar

RANK : int

VARIABLES : collection(var−dvar)

Restrictions RANK ≥ 0
RANK < |VARIABLES|
|VARIABLES| > 0
required(VARIABLES, var)

Purpose
MAX is the maximum value of rank RANK (i.e., the RANKth largest distinct value, identical
values are merged) of the collection of domain variables VARIABLES. The maximum
value has rank 0.

Example (6, 1, 〈3, 1, 7, 1, 6〉)

The MAX N constraint holds since its first argument MAX = 6 is fixed to the second
(i.e., RANK + 1) largest distinct value of the collection 〈3, 1, 7, 1, 6〉.

Typical RANK > 0
RANK < 3
|VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to MAX as well as to the var attribute of
all items of VARIABLES.

Arg. properties Functional dependency: MAX determined by RANK and VARIABLES.

Algorithm [29].

Reformulation The constraint AMONG VAR(1, 〈MAX〉, VARIABLES) enforces MAX to be assigned one of the
values of VARIABLES. The constraint NVALUE(NVAL, VARIABLES) provides a hand on the
number of distinct values assigned to the variables of VARIABLES. By associating to each
variable Vi (i ∈ [1, |VARIABLES|]) of the VARIABLES collection a rank variable Ri ∈


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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[0, |VARIABLES| − 1] with the reified constraint Ri = RANK ⇔ Vi = MAX, the inequality
Ri < NVAL, and by creating for each pair of variables Vi, Vj (i, j < i ∈ [1, |VARIABLES|])
the reified constraints
Vi > Vj ⇔ Ri < Rj ,
Vi = Vj ⇔ Ri = Rj ,
Vi < Vj ⇔ Ri > Rj ,

one can reformulate the MAX N constraint in term of 3 · |VARIABLES|·(|VARIABLES|−1)
2

+1 reified
constraints.

See also comparison swapped: MIN N.

generalisation: MAXIMUM (absolute maximum replaced by maximum or order n).

Keywords characteristic of a constraint: rank, maximum.

constraint arguments: pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var > variables2.var

)
Graph property(ies) ORDER(RANK, MININT, var) = MAX

Graph model Parts (A) and (B) of Figure 5.549 respectively show the initial and final graph associated
with the Example slot. Since we use the ORDER graph property, the vertex of rank 1
(without considering the loops) of the final graph is outlined with a thick circle.
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ORDER(1,MININT,var)=6

1:3

2:1 4:1

3:7

5:6

(A) (B)

Figure 5.549: Initial and final graph of the MAX N constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.247 MAX NVALUE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from NVALUE.

Constraint MAX NVALUE(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the maximum number of times that the same value is taken by the variables of the
collection VARIABLES.

Example (3, 〈9, 1, 7, 1, 1, 6, 7, 7, 4, 9〉)
(1, 〈9, 1, 7, 3, 2, 6〉)
(6, 〈5, 5, 5, 5, 5, 5〉)

In the first example, values 1, 4, 6, 7, 9 are respectively used 3, 1, 1, 3, 2 times. So
the maximum number of time MAX that a same value occurs is 3. Consequently the
corresponding MAX NVALUE constraint holds.

Typical MAX > 1
MAX < |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Functional dependency: MAX determined by VARIABLES.

Usage This constraint may be used in order to replace a set of COUNT or AMONG constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the mostly used value without knowing this
value in advance and without giving explicitly an upper limit on the number of occurrences
of each value as it is done in the GLOBAL CARDINALITY constraint.

Reformulation Assume that VARIABLES is not empty. Let α and β respectively denote the smallest and
largest possible values that can be assigned to the variables of the VARIABLES collec-
tion. Let the variables Oα, Oα+1, . . . , Oβ respectively correspond to the number of oc-
currences of values α, α+ 1, . . . , β within the variables of the VARIABLES collection. The


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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MAX NVALUE constraint can be expressed as the conjunction of the following two con-
straints:

GLOBAL CARDINALITY (VARIABLES,
〈val− α noccurrence−Oα,
val− α+ 1 noccurrence−Oα+1,
. . .
val− β noccurrence−Oβ〉),

MAXIMUM(MAX, 〈Oα, Oα+1, . . . , Oβ〉).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MAX NVALUE: domains 0..n
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Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 6 24 120 720 5040 40320 362880
2 3 36 420 5400 78750 1305360 24449040
3 - 4 80 1500 29820 646800 15382080
4 - - 5 150 3780 96040 2577960
5 - - - 6 252 8232 258048
6 - - - - 7 392 16128
7 - - - - - 8 576
8 - - - - - - 9
Solution count for MAX NVALUE: domains 0..n
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See also common keyword: AMONG (counting constraint), COUNT,
GLOBAL CARDINALITY (value constraint,counting constraint), MIN NVALUE,
NVALUE (counting constraint).


See also
Related constraints grouped by semantics links.
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Keywords application area: assignment.

characteristic of a constraint: maximum, automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint, counting constraint.

final graph structure: equivalence.

modelling: maximum number of occurrences, functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC= MAX

Graph model Because of the arc constraint, each strongly connected component of the final graph cor-
responds to a distinct value that is assigned to a subset of variables of the VARIABLES

collection. Therefore the number of vertices of the largest strongly connected component
is equal to the mostly used value.

Parts (A) and (B) of Figure 5.550 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the MAX NSCC graph prop-
erty, we show the largest strongly connected component of the final graph.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

VARIABLES

1

2

3

4

5

6

7

8

9

10

(B) MAX_NSCC=3

MAX_NSCC

3:7

7:7

8:7

1:9

10:9

2:1

4:1

5:1

6:6 9:4

Figure 5.550: Initial and final graph of the MAX NVALUE constraint
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Automaton Figure 5.551 depicts the automaton associated with the MAX NVALUE constraint. To each
item of the collection VARIABLES corresponds a signature variable Si that is equal to 0.

MAXIMUM(N, C)

s{C[ ]← 0} 0,
{C[VARi]← C[VARi] + 1}

Figure 5.551: Automaton of the MAX NVALUE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.248 MAX OCC OF CONSECUTIVE TUPLES OF VALUES

I B C J DESCRIPTION LINKS

Origin Design.

Constraint MAX OCC OF CONSECUTIVE TUPLES OF VALUES(MAX, K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments MAX : int

K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 2
ALLDIFFERENT(VECTOR)
MAX ≥ 1
K ≥ 2
K < |VECTOR|
required(VECTORS, vec)
|VECTORS| ≥ 1
same size(VECTORS, vec)

Purpose

MAX is equal to the maximum number of occurrences of identical vectors derived from
the vectors VECTORS in the following way. To each vector 〈v1, v2, . . . , vm〉 of VECTORS
(with v1, v2, . . . , vm distinct) we generate all vectors 〈u1, u2, . . . , uK〉 such that u1 =
vp, u2 = vp+1, . . . , uK = vp+K−1 or u1 = vp+K−1, u2 = vp+K−2, . . . , uK = vp (with
1 ≤ p ≤ m− K + 1).

Example (1, 2, 〈vec− 〈4, 1, 3〉 , vec− 〈2, 7, 6〉 , vec− 〈5, 9, 8〉〉)

Given the three vectors of the example we respectively generate:

• the pairs 〈4, 1〉, 〈1, 4〉, 〈1, 3〉, 〈3, 1〉 from the triple 〈4, 1, 3〉,
• the pairs 〈2, 7〉, 〈7, 2〉, 〈7, 6〉, 〈6, 7〉 from the triple 〈2, 7, 6〉,
• the pairs 〈5, 9〉, 〈9, 5〉, 〈9, 8〉, 〈8, 9〉 from the triple 〈5, 9, 8〉.

Putting these pairs together, we get the set of pairs {〈1, 3〉, 〈1, 4〉, 〈2, 7〉,
〈3, 1〉, 〈4, 1〉, 〈5, 9〉, 〈6, 7〉, 〈7, 2〉, 〈7, 6〉, 〈8, 9〉, 〈9, 5〉, 〈9, 8〉}. The
MAX OCC OF CONSECUTIVE TUPLES OF VALUES constraint holds since the com-
ponents of each of the original three vectors are distinct, and since MAX is set to one and all
the generated pairs are distinct.

Typical MAX = 1
K = 2
|VECTORS| > 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Arg. properties • Functional dependency: MAX determined by K and VECTORS.

• Contractible wrt. VECTORS when MAX = 1.

Usage This constraint occurs in balanced block design problems [374].

See also common keyword: MAX OCC OF SORTED TUPLES OF VALUES,
MAX OCC OF TUPLES OF VALUES (vector).

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint.

modelling: functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.249 MAX OCC OF SORTED TUPLES OF VALUES

I B C J DESCRIPTION LINKS

Origin Design.

Constraint MAX OCC OF SORTED TUPLES OF VALUES(MAX, K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments MAX : int

K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 2
ALLDIFFERENT(VECTOR)
MAX ≥ 1
K ≥ 2
K < |VECTOR|
required(VECTORS, vec)
|VECTORS| ≥ 1
same size(VECTORS, vec)

Purpose

MAX is equal to the maximum number of occurrences of identical vectors derived from
the vectors VECTORS in the following way. To each vector 〈v1, v2, . . . , vm〉 of VECTORS
(with v1, v2, . . . , vm distinct) let 〈s1, s2, . . . , sm〉 be the corresponding sorted vector by
increasing component. We generate all vectors 〈u1, u2, . . . , uK〉 such that u1 = si1 ,
u2 = si2 , . . . , uK = siK (with 1 ≤ i1 < i2 < · · · < iK ≤ m).

Example


1, 2,

〈
vec− 〈4, 2, 1〉 ,
vec− 〈2, 3, 5〉 ,
vec− 〈3, 6, 4〉 ,
vec− 〈5, 4, 7〉 ,
vec− 〈6, 5, 1〉 ,
vec− 〈7, 6, 2〉 ,
vec− 〈3, 1, 7〉

〉


Given the seven vectors of the example we respectively generate:

• the pairs 〈1, 2〉, 〈1, 4〉 and 〈2, 4〉 from the triple 〈4, 2, 1〉,
• the pairs 〈2, 3〉, 〈2, 5〉 and 〈3, 5〉 from the triple 〈2, 3, 5〉,
• the pairs 〈3, 4〉, 〈3, 6〉 and 〈4, 6〉 from the triple 〈3, 6, 4〉,
• the pairs 〈4, 5〉, 〈4, 7〉 and 〈5, 7〉 from the triple 〈5, 4, 7〉,
• the pairs 〈1, 5〉, 〈1, 6〉 and 〈5, 6〉 from the triple 〈6, 5, 1〉,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• the pairs 〈2, 6〉, 〈2, 7〉 and 〈6, 7〉 from the triple 〈7, 6, 2〉,
• the pairs 〈1, 3〉, 〈1, 7〉 and 〈3, 7〉 from the triple 〈3, 1, 7〉.

Putting these pairs together, we get the set of pairs {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈1, 6〉,
〈1, 7〉, 〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈2, 6〉, 〈2, 7〉, 〈3, 4〉, 〈3, 5〉, 〈3, 6〉, 〈3, 7〉, 〈4, 5〉, 〈4, 6〉, 〈4, 7〉,
〈5, 6〉, 〈5, 7〉, 〈6, 7〉}. The MAX OCC OF SORTED TUPLES OF VALUES constraint holds
since each vector has pairwise distinct components, and since MAX is set to one and all the
generated pairs are distinct.

Typical MAX = 1
K + 1 = |VECTOR|
|VECTORS| > 2

Arg. properties • Functional dependency: MAX determined by K and VECTORS.

• Contractible wrt. VECTORS when MAX = 1.

Usage This constraint occurs in balanced block design problems where all vectors are not neces-
sarily sorted.

See also common keyword: MAX OCC OF CONSECUTIVE TUPLES OF VALUES,
MAX OCC OF TUPLES OF VALUES (vector).

implied by: MAX OCC OF TUPLES OF VALUES.

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.250 MAX OCC OF TUPLES OF VALUES

I B C J DESCRIPTION LINKS

Origin Design.

Constraint MAX OCC OF TUPLES OF VALUES(MAX, K, VECTORS)

Type VECTOR : collection(var−dvar)

Arguments MAX : int

K : int

VECTORS : collection(vec− VECTOR)

Restrictions required(VECTOR, var)
|VECTOR| ≥ 2
STRICTLY INCREASING(VECTOR)
MAX ≥ 1
K ≥ 2
K < |VECTOR|
required(VECTORS, vec)
|VECTORS| ≥ 1
same size(VECTORS, vec)

Purpose

MAX is equal to the maximum number of occurrences of identical vectors derived from
the vectors VECTORS in the following way. To each vector 〈v1, v2, . . . , vm〉 (with v1 <
v2 ∧ · · · ∧ vm−1 < vm) of VECTORS we generate all vectors 〈u1, u2, . . . , uK〉 such that
u1 = vi1 , u2 = vi2 , . . . , uK = viK (with 1 ≤ i1 < i2 < · · · < iK ≤ m).

Example


1, 2,

〈
vec− 〈1, 2, 4〉 ,
vec− 〈2, 3, 5〉 ,
vec− 〈3, 4, 6〉 ,
vec− 〈4, 5, 7〉 ,
vec− 〈1, 5, 6〉 ,
vec− 〈2, 6, 7〉 ,
vec− 〈1, 3, 7〉

〉


Given the seven vectors of the example we respectively generate:

• the pairs 〈1, 2〉, 〈1, 4〉 and 〈2, 4〉 from the triple 〈1, 2, 4〉,
• the pairs 〈2, 3〉, 〈2, 5〉 and 〈3, 5〉 from the triple 〈2, 3, 5〉,
• the pairs 〈3, 4〉, 〈3, 6〉 and 〈4, 6〉 from the triple 〈3, 4, 6〉,
• the pairs 〈4, 5〉, 〈4, 7〉 and 〈5, 7〉 from the triple 〈4, 5, 7〉,
• the pairs 〈1, 5〉, 〈1, 6〉 and 〈5, 6〉 from the triple 〈1, 5, 6〉,
• the pairs 〈2, 6〉, 〈2, 7〉 and 〈6, 7〉 from the triple 〈2, 6, 7〉,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• the pairs 〈1, 3〉, 〈1, 7〉 and 〈3, 7〉 from the triple 〈1, 3, 7〉.

Putting these pairs together, we get the set of pairs {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈1, 6〉,
〈1, 7〉, 〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈2, 6〉, 〈2, 7〉, 〈3, 4〉, 〈3, 5〉, 〈3, 6〉, 〈3, 7〉, 〈4, 5〉, 〈4, 6〉, 〈4, 7〉,
〈5, 6〉, 〈5, 7〉, 〈6, 7〉}. The MAX OCC OF TUPLES OF VALUES constraint holds since the
components of the original seven vectors are strictly increasing, and since MAX is set to one
and all the generated pairs are distinct.

Typical MAX ≤ 2
|VECTOR| < K + 5
K = 2 ∨ K + 1 = |VECTOR|
|VECTORS| > 2

Arg. properties • Functional dependency: MAX determined by K and VECTORS.

• Contractible wrt. VECTORS when MAX = 1.

Usage This constraint occurs in balanced block design problems [218, 273] such as Steiner or
Kirkman triples.

See also common keyword: MAX OCC OF CONSECUTIVE TUPLES OF VALUES,
MAX OCC OF SORTED TUPLES OF VALUES (vector).

implies: MAX OCC OF SORTED TUPLES OF VALUES.

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.251 MAX SIZE SET OF CONSECUTIVE VAR

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint MAX SIZE SET OF CONSECUTIVE VAR(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions MAX ≥ 1
MAX ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MAX is the size of the largest set of variables of the collection VARIABLES that all take
their values in a set of consecutive values.

Example (6, 〈3, 1, 3, 7, 4, 1, 2, 8, 7, 6〉)
(2, 〈2, 6, 7, 3, 0, 9〉)

In the first example, the two sets {3, 1, 3, 4, 1, 2} and {7, 8, 7, 6} take respectively
their values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}.
Consequently, the corresponding MAX SIZE SET OF CONSECUTIVE VAR constraint holds
since the cardinality of the largest set of variables is 6.

Typical MAX < |VARIABLES|
|VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: MAX determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MAX SIZE SET OF CONSECUTIVE VAR: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 2 - - - - - -
2 7 30 168 720 5220 27720 249480
3 - 34 240 3080 35580 426720 6059760
4 - - 217 2260 36030 683550 12672940
5 - - - 1716 24660 477162 10592848
6 - - - - 16159 305634 7044632
7 - - - - - 176366 4239424
8 - - - - - - 2187637

Solution count for MAX SIZE SET OF CONSECUTIVE VAR: domains 0..n
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See also common keyword: NSET OF CONSECUTIVE VALUES (consecutive values).

Keywords characteristic of a constraint: consecutive values, maximum.

constraint arguments: pure functional dependency.

constraint type: value constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≤ 1

Graph property(ies) MAX NSCC= MAX

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Parts (A) and (B) of Figure 5.552 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the MAX NSCC graph prop-
erty, we show the largest strongly connected component of the final graph.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Figure 5.552: Initial and final graph of the MAX SIZE SET OF CONSECUTIVE VAR
constraint



1710 MAXIMUM

5.252 MAXIMUM

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint MAXIMUM(MAX, VARIABLES)

Synonym MAX.

Arguments MAX : dvar

VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose MAX is the maximum value of the collection of domain variables VARIABLES.

Example (7, 〈3, 2, 7, 2, 6〉)
(1, 〈0, 0, 1, 0, 1〉)

The first MAXIMUM constraint holds since its first argument MAX = 7 is fixed to
the maximum value of the collection 〈3, 2, 7, 2, 6〉.

3

2

7

2

6

0 0

1

0

1

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to MAX as well as to the var attribute of
all items of VARIABLES.

Arg. properties • Functional dependency: MAX determined by VARIABLES.

• Aggregate: MAX(max), VARIABLES(union).

Usage In some project scheduling problems one has to introduce dummy activities that corre-
spond, for example, to the completion time of a given set of activities. In this context one
can use the MAXIMUM constraint to get the maximum completion time of a set of tasks.

Remark Note that MAXIMUM is a constraint and not just a function that computes the maxi-
mum value of a collection of variables: potential values of MAX influence the variables
of VARIABLES, and reciprocally potential values that can be assigned to variables of
VARIABLES influence MAX.

The MAXIMUM constraint is called MAX in JaCoP (http://www.jacop.eu/).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/
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Algorithm A filtering algorithm for the MAXIMUM constraint is described in [29].

The MAXIMUM constraint is entailed if all the following conditions hold:

1. MAX is fixed.

2. At least one variable of VARIABLES is assigned value MAX.

3. All variables of VARIABLES have their maximum values less than or equal to value
MAX.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MAXIMUM: domains 0..n

2 3 4 5 6 7 8
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100

100.2

100.4

Length
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ve

d
de
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ity

Solution density for MAXIMUM


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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2 3 4 5 6 7 8
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Solution density for MAXIMUM

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 1 1 1 1 1 1 1
1 3 7 15 31 63 127 255
2 5 19 65 211 665 2059 6305
3 - 37 175 781 3367 14197 58975
4 - - 369 2101 11529 61741 325089
5 - - - 4651 31031 201811 1288991
6 - - - - 70993 543607 4085185
7 - - - - - 1273609 11012415
8 - - - - - - 26269505
Solution count for MAXIMUM: domains 0..n
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Systems MAX in Choco, MAX in Gecode, MAX in JaCoP, MAXIMUM in MiniZinc, MAXIMUM in
SICStus.


Systems
References to the constraint in some concrete constraint programming systems.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#maximum
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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See also common keyword: MINIMUM (order constraint).

comparison swapped: MINIMUM.

generalisation: MAXIMUM MODULO (variable replaced by variablemodconstant).

implied by: OR.

implies: BETWEEN MIN MAX, IN.

soft variant: OPEN MAXIMUM (open constraint).

specialisation: MAX N (maximum or order n replaced by absolute maximum).

uses in its reformulation: TREE RANGE.

Keywords characteristic of a constraint: maximum, automaton, automaton without counters, reified
automaton constraint.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint.

filtering: glue matrix, arc-consistency, entailment.

modelling: balanced assignment, functional dependency.

Cond. implications MAXIMUM(MAX, VARIABLES)
with first(VARIABLES.var) < MAX

and last(VARIABLES.var) < MAX

implies HIGHEST PEAK(HEIGHT, VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var > variables2.var

)
Graph property(ies) ORDER(0, MININT, var) = MAX

Graph model We use a similar definition that the one that was utilised for the MINIMUM constraint.
Within the arc constraint, we replace the comparison operator < by >.

Parts (A) and (B) of Figure 5.553 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the ORDER graph property,
the vertex of rank 0 (without considering the loops) of the final graph is outlined with a
thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=7

1:3

2:2 4:2

3:7

5:6

(A) (B)

Figure 5.553: Initial and final graph of the MAXIMUM constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.554 depicts the automaton associated with the MAXIMUM constraint. Let VARi
be the ith variable of the VARIABLES collection. To each pair (MAX, VARi) corresponds a
signature variable Si as well as the following signature constraint: (MAX > VARi ⇔ Si =
0) ∧ (MAX = VARi ⇔ Si = 1) ∧ (MAX < VARi ⇔ Si = 2).

s t

MAX > VARi

MAX = VARi

MAX > VARi

MAX = VARi

Figure 5.554: Counter free automaton of the MAXIMUM constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

MAX

VAR1 VAR2 VARn

Figure 5.555: Hypergraph of the reformulation corresponding to the counter free au-
tomaton of the MAXIMUM constraint

Figure 5.556 depicts a second counter free non deterministic automaton associated with the
MAXIMUM constraint, where the argument MAX is also part of the sequence passed to the
automaton.

Figure 5.558 depicts a third deterministic automaton with one counter associated with the
MAXIMUM constraint, where the argument MAX is unified to the final value of the counter.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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The sequence of variables
VAR1 VAR2 . . . VAR|VARIABLES| MAX
is passed to the automaton

s1 s2 s3 s4

t

1

2

3

4

1

1, 2

3

4

2

1, 2, 3

4

3

1, 2, 3, 4

4

Figure 5.556: Counter free non deterministic automaton of the
MAXIMUM(MAX, VARIABLES) constraint assuming that the union of the domain
of the variables is the set {1, 2, 3, 4} and that the elements of VARIABLES are first
passed to the automaton followed by MAX (state si means that no value strictly greater
than value i was found and that value i was already encountered at least once)

Q0 = s1 Q1

VAR1 VAR2

Qn

VARn

Qn+1 = t

MAX

Figure 5.557: Hypergraph of the reformulation corresponding to the counter free non
deterministic automaton of the MAXIMUM constraint

MAX = Cs{C ← −∞}

0,
{C ← max(C, VARi)}

s

s max
(−→
C ,
←−
C
)

Glue matrix where
−→
C and

←−
C resp. represent the counter

value C at the end of a prefix and at the end of the cor-
responding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.558: Automaton (with one counter) of the MAXIMUM constraint and its glue
constraint
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C0 = −∞

Q0 = s

C1

Q1

VAR1 VAR2

Cn = MAX

Qn = s

VARn

Figure 5.559: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the MAXIMUM constraint: since all states variablesQ0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic
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5.253 MAXIMUM MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from MAXIMUM.

Constraint MAXIMUM MODULO(MAX, VARIABLES, M)

Arguments MAX : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose MAX is a maximum value of the collection of domain variables VARIABLES according to
the following partial ordering: (X mod M) < (Y mod M).

Example (5, 〈9, 1, 7, 6, 5〉 , 3)

The MAXIMUM MODULO constraint holds since its first argument MAX is set to
value 5, where 5 mod 3 = 2 is greater than or equal to all the expressions 9 mod 3 = 0,
1 mod 3 = 1, 7 mod 3 = 1 and 6 mod 3 = 0.

Typical M > 1
M <maxval(VARIABLES.var)
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry Items of VARIABLES are permutable.

Arg. properties Functional dependency: MAX determined by VARIABLES and M.

See also comparison swapped: MINIMUM MODULO.

specialisation: MAXIMUM (variable mod constant replaced by variable).

Keywords characteristic of a constraint: modulo, maximum.

constraint arguments: pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var mod M > variables2.var mod M

)
Graph property(ies) ORDER(0, MININT, var) = MAX

Graph model Parts (A) and (B) of Figure 5.560 respectively show the initial and final graph associated
with the Example slot. Since we use the ORDER graph property, the vertex of rank 0
(without considering the loops) of the final graph is outlined with a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MININT,var)=5

1:9

2:1

4:6

3:7

5:5

(A) (B)

Figure 5.560: Initial and final graph of the MAXIMUM MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.254 MEET SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint MEET SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym MEET.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i 6= j, Oi and Oj meet with respect to a set
of dimensions depicted by DIMS. Each shape is defined as a finite set of shifted boxes,
where each shifted box is described by a box in a K-dimensional space at a given offset
(from the origin of the shape) with given sizes. More precisely, a shifted box is an entity
defined by its shape id sid, shift offset t, and sizes l. Then, a shape is defined as the
union of shifted boxes sharing the same shape id. An object is an entity defined by its
unique object identifier oid, shape id sid and origin x.
Two objectsOi and objectOj meet with respect to a set of dimensions depicted by DIMS

if and only if the two following conditions hold:

• For all shifted box si associated withOi and for all shifted box sj associated with
Oj there exists a dimension d ∈ DIMS such that (1) the start of si in dimension
d is greater than or equal to the end of sj in dimension d, or (2) the start of sj in
dimension d is greater than or equal to the end of si in dimension d (i.e., there is
no overlap between the shifted box of Oi and the shifted box of Oj).

• There exists a shifted box si of Oi and there exists a shifted box sj of Oj such
that for all dimensions d (1) the end of si in dimension d is greater than or equal
to the start of sj in dimension d, and (2) the end of sj in dimension d is greater
than or equal to the start of si in dimension d (i.e., at least two shifted box of Oi
and Oj are in contact).

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈3, 2〉 ,
oid− 2 sid− 2 x− 〈4, 1〉 ,
oid− 3 sid− 4 x− 〈3, 4〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 2 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 2 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 2 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 3 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.561 shows the objects of the example. Since all the pairs of objects meet
the MEET SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349].


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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S1

(A) Shape of the
first object

S2

(B) Shapes of the
second object

S3

S4

(C) Shape of the
third object

1 2 53 4

3

1

2

4

O1
O2

O3

(D) Three objects for which each pair of objects meet

O1: oid− 1 sid− 1 x− 〈3, 2〉
O2: oid− 2 sid− 2 x− 〈4, 1〉
O3: oid− 3 sid− 4 x− 〈3, 4〉

OBJECTS

Figure 5.561: (D) the three pairwise meeting objects O1, O2, O3 of the Example slot
respectively assigned shapes S1, S2, S4; (A), (B), (C) shapes S1, S2, S3 and S4 are
respectively made up from 1, 3, 3 and 1 disjoint shifted box.

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES,
COVERS SBOXES, DISJOINT SBOXES, EQUAL SBOXES, INSIDE SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic), OVERLAP SBOXES (rcc8).

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• non overlap sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨


end(O1, S1, D) ≤

origin

 O2,
S2,
D

 ,

end(O2, S2, D) ≤

origin

 O1,
S1,
D




• meet sboxes(Dims, O1, S1, O2, S2)

def
=

∃D ∈ Dims

∨
end(O1, S1, D) =
origin(O2, S2, D)

,

end(O2, S2, D) =
origin(O1, S1, D)


• meet objects(Dims, O1, O2)

def
=

∧



∀S1 ∈ sboxes([O1.sid])
∀S2 ∈ sboxes

( [
O2.sid

] )
non overlap sboxes


Dims,
O1,
S1,
O2,
S2


,

∃S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

( [
O2.sid

] )
meet sboxes


Dims,
O1,
S1,
O2,
S2




• all meet(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

meet objects

 Dims,
O1,
O2


• all meet(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.255 MIN DECREASING SLOPE

I B C J DESCRIPTION LINKS AUTOMATON

Origin Motivated by time series.

Constraint MIN DECREASING SLOPE(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN ≥ 0
MIN <range(VARIABLES.var)
required(VARIABLES, var)
|VARIABLES| > 0

Purpose
Given a sequence of variables VARIABLES = V1, V2, . . . , Vn, sets MIN to 0 if @i ∈
[1, n− 1]|Vi > Vi+1, otherwise sets MIN to mini∈[1,n−1]|Vi>Vi+1

(Vi − Vi+1).

Example (2, 〈1, 1, 5, 8, 6, 2, 4, 1, 5〉)
(0, 〈1, 1, 1, 3, 4, 7, 7, 7, 9〉)
(9, 〈1, 1, 9, 0, 4, 7, 7, 7, 9〉)

The first MIN DECREASING SLOPE constraint holds since the sequence 1 1 5 8 6 2 4 1 5
contains two decreasing subsequences 8 6 2 and 4 1 and the minimum slope is equal to
min(8− 6, 6− 2, 4− 1) = 2 as shown on Figure 5.562.

Typical MIN > 1
|VARIABLES| > 2
range(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: MIN determined by VARIABLES.

Usage Getting the minimum slope over the decreasing sequences of time series.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MIN DECREASING SLOPE: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Counting
Information on the solution density.
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first decreasing
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Figure 5.562: Illustration of the first example of the Example slot: a sequence of nine
variables V1, V2, V3, V4, V5, V6, V7, V8, V9 respectively fixed to values 1, 1, 5, 8, 6, 2,
4, 1, 5 and the corresponding minimum slope on the strictly decreasing subsequences
8 6 2 and 4 1 (MIN = 2)
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Solution density for MIN DECREASING SLOPE

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 6 20 70 252 924 3432 12870
1 2 22 256 3512 56537 1051936 22280084
2 1 14 145 1864 28728 515372 10601773
3 - 8 98 1062 14729 255076 5106480
4 - - 56 704 8853 133672 2475484
5 - - - 382 5266 78198 1369232
6 - - - - 2612 41330 730161
7 - - - - - 18136 341618
8 - - - - - - 129019

Solution count for MIN DECREASING SLOPE: domains 0..n
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Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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filtering: glue matrix.

modelling: functional dependency.

Cond. implications MIN DECREASING SLOPE(MIN, VARIABLES)
with range(VARIABLES.var) = MIN + 1

implies MAX DECREASING SLOPE(MAX, VARIABLES)
when range(VARIABLES.var) = MAX + 1.


Cond. implications
Conditional implications.



MIN DECREASING SLOPE 1731

Automaton Figure 5.563 depicts the automaton associated with the MIN DECREASING SLOPE con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: (VARi ≤ VARi+1 ⇔ Si = 0) ∧ (VARi > VARi+1 ⇔ Si = 1).

MIN = C

s{C ← 0} t

VARi ≤ VARi+1

VARi > VARi+1,
{C ← VARi − VARi+1}

VARi ≤ VARi+1

VARi > VARi+1,
{C ← min(C, VARi − VARi+1)}

s t

s 0
←−
C

t
−→
C min(

−→
C ,
←−
C )

Glue matrix where
−→
C and

←−
C resp. represent the counter value C at the end

of a prefix and at the end of the corresponding reverse suffix that partitions
the sequence VARIABLES.

Figure 5.563: Automaton for the MIN DECREASING SLOPE constraint and its glue ma-
trix (note that the reverse of MIN DECREASING SLOPE is MIN INCREASING SLOPE)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.256 MIN DIST BETWEEN INFLEXION

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from INFLEXION

Constraint MIN DIST BETWEEN INFLEXION(MINDIST, VARIABLES)

Arguments MINDIST : int

VARIABLES : collection(var−dvar)

Restrictions MINDIST ≥ 0
MINDIST ≤ |VARIABLES|
required(VARIABLES, var)

Purpose

Given an integer value MINDIST and a sequence of variables VARIABLES enforce
MINDIST to be greater than or equal to the smallest distance between two consecutive
inflexions in the sequence VARIABLES, or to |VARIABLES| if no more than one inflexion
exists.
An inflexion of a sequence of variables VARIABLES is a set of consecutive variables
Vi, Vi+1, . . . , Vj−1, Vj (i+ 1 < j) such that one of the following conditions holds:

• Vi < Vi+1 ∧ Vi+1 = · · · = Vj−1 ∧ Vj−1 > Vj ,

• Vi > Vi+1 ∧ Vi+1 = · · · = Vj−1 ∧ Vj−1 < Vj .

In this context, the index j is the position of the inflexion (i.e., the first instant when the
inflexion is discovered when scanning the sequence of variables VARIABLES from left
to right. The distance between two consecutive inflexions is the absolute value of the
difference of their corresponding positions.

Example (2, 〈2, 2, 3, 3, 2, 2, 1, 4, 4, 3〉)

Figure 5.564 shows the three inflexions associated with the sequence 2, 2, 3, 3, 2, 2, 1, 4, 4,
3 and their respective positions 5, 8 and 10 in red. The MIN DIST BETWEEN INFLEXION

constraint holds since its first argument MINDIST = 2 is greater than or equal to the
smallest distance 2 between two consecutive inflexions of the sequence of variables
VARIABLES.

2 2
3 3

2 2
1

4 4
3

Typical MINDIST > 1
|VARIABLES| > 3
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Figure 5.564: Illustration of the Example slot: a sequence of ten variables V1, V2, V3,
V4, V5, V6, V7, V8, V9, V10 respectively fixed to values 2, 2, 3, 3, 2, 2, 1, 4, 4, 3 and
its three inflexions, two peaks and one valley; each red point denotes an instant where
a new inflexion is discovered while scanning the sequence from left to right; as shown
by the rightmost arrow, the minimum distance between two consecutive inflexions is
equal to 2.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 1135 25444 574483 13287476 328156407

Number of solutions for MIN DIST BETWEEN INFLEXION: domains 0..n
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Solution density for MIN DIST BETWEEN INFLEXION


Counting
Information on the solution density.
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Solution density for MIN DIST BETWEEN INFLEXION

Length (n) 2 3 4 5 6 7 8
Total 9 64 1135 25444 574483 13287476 328156407

Parameter
value

1 - - 170 3598 73794 1543512 35152278
2 9 - 170 4690 91098 1819764 39992562
3 - 64 170 4690 97314 1932012 41360676
4 - - 625 4690 97314 1965012 42025560
5 - - - 7776 97314 1965012 42192870
6 - - - - 117649 1965012 42192870
7 - - - - - 2097152 42192870
8 - - - - - - 43046721

Solution count for MIN DIST BETWEEN INFLEXION: domains 0..n
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See also common keyword: INFLEXION, LONGEST DECREASING SEQUENCE,
LONGEST INCREASING SEQUENCE, PEAK, VALLEY (sequence).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(3).


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.565 depicts the automaton associated with the MIN DIST BETWEEN INFLEXION

constraint.

s : stationary mode (=∗)
i0 : increasing mode (no inflexion yet found) (< {< | =}∗)
d0 : decreasing mode (no inflexion yet found) (> {> | =}∗)
i1 : increasing mode (at least one inflexion already found) (< {< | =}∗)
d1 : decreasing mode (at least one inflexion already found) (> {> | =}∗)

STATE SEMANTICS

MINDIST ≥ D

s

{
D ← |VARIABLES|,
C ← 1

}

i0 d0

i1d1

VARi = VARi+1

VARi < VARi+1 VARi > VARi+1

VARi ≤ VARi+1

VARi > VARi+1

VARi ≥ VARi+1

VARi < VARi+1

VARi ≥ VARi+1,
{C ← C + 1}

VARi < VARi+1,{
D ← min(D,C),
C ← 1

}
VARi ≤ VARi+1,
{C ← C + 1}

VARi > VARi+1,{
D ← min(D,C),
C ← 1

}

Figure 5.565: Automaton of the MIN DIST BETWEEN INFLEXION constraint (state s
means that we are in stationary mode, state i0 means that we are in increasing mode
and that we did not yet found any inflexion, state d0 means that we are in decreasing
mode and that we did not yet found any inflexion, state i1 means that we are in increas-
ing mode and that we already found at least one inflexion, state d1 means that we are
in decreasing mode and that we already found at least one inflexion, the minimum dis-
tance between two consecutive inflexions is updated each time we switch from i1 to d1
mode – or conversely from d1 to i1 mode – and the counter D is updated accordingly)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Figure 5.566: Hypergraph of the reformulation corresponding to the automaton of
the MIN DIST BETWEEN INFLEXION constraint where V is a shortcut for VARIABLES
(since all states of the automaton are accepting there is no restriction on the last variable
Qn−1)
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5.257 MIN INCREASING SLOPE

I B C J DESCRIPTION LINKS AUTOMATON

Origin Motivated by time series.

Constraint MIN INCREASING SLOPE(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN ≥ 0
MIN <range(VARIABLES.var)
required(VARIABLES, var)
|VARIABLES| > 0

Purpose
Given a sequence of variables VARIABLES = V1, V2, . . . , Vn, sets MIN to 0 if @i ∈
[1, n− 1]|Vi < Vi+1, otherwise sets MIN to mini∈[1,n−1]|Vi<Vi+1

(Vi+1 − Vi).

Example (3, 〈1, 1, 5, 8, 6, 2, 2, 1, 5〉)
(0, 〈8, 8, 2, 0, 0〉)
(9, 〈1, 1, 0, 9, 6〉)

The first MIN INCREASING SLOPE constraint holds since the sequence 1 1 5 8 6 2 2 1 5
contains two increasing subsequences 1 5 8 and 1 5 and the minimum slope is equal to
min(5− 1, 8− 5, 5− 1) = 3 as shown on Figure 5.567.

Typical MIN > 1
|VARIABLES| > 2
range(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: MIN determined by VARIABLES.

Usage Getting the minimum slope over the increasing sequences of time series.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MIN INCREASING SLOPE: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Counting
Information on the solution density.
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Figure 5.567: Illustration of the first example of the Example slot: a sequence of nine
variables V1, V2, V3, V4, V5, V6, V7, V8, V9 respectively fixed to values 1, 1, 5, 8, 6, 2,
2, 1, 5 and the corresponding minimum slope on the strictly increasing subsequences
1 5 8 and 1 5 (MIN = 3)
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 6 20 70 252 924 3432 12870
1 2 22 256 3512 56537 1051936 22280084
2 1 14 145 1864 28728 515372 10601773
3 - 8 98 1062 14729 255076 5106480
4 - - 56 704 8853 133672 2475484
5 - - - 382 5266 78198 1369232
6 - - - - 2612 41330 730161
7 - - - - - 18136 341618
8 - - - - - - 129019

Solution count for MIN INCREASING SLOPE: domains 0..n
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Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.


Keywords
Related keywords grouped by meta-keywords.
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filtering: glue matrix.

modelling: functional dependency.

Cond. implications MIN INCREASING SLOPE(MIN, VARIABLES)
with range(VARIABLES.var) = MIN + 1

implies MAX INCREASING SLOPE(MAX, VARIABLES)
when range(VARIABLES.var) = MAX + 1.


Cond. implications
Conditional implications.
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Automaton Figure 5.568 depicts the automaton associated with the MIN INCREASING SLOPE con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a signature variable Si. The following signature constraint links VARi, VARi+1

and Si: (VARi ≥ VARi+1 ⇔ Si = 0) ∧ (VARi < VARi+1 ⇔ Si = 1).

MIN = C

s{C ← 0} t

VARi ≥ VARi+1

VARi < VARi+1,
{C ← VARi+1 − VARi}

VARi ≥ VARi+1

VARi < VARi+1,
{C ← min(C, VARi+1 − VARi)}

s t

s 0
←−
C

t
−→
C min(

−→
C ,
←−
C )

Glue matrix where
−→
C and

←−
C resp. represent the counter value C at the end

of a prefix and at the end of the corresponding reverse suffix that partitions
the sequence VARIABLES.

Figure 5.568: Automaton for the MIN INCREASING SLOPE constraint and its glue ma-
trix (note that the reverse of MIN INCREASING SLOPE is MIN DECREASING SLOPE)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.258 MIN INDEX

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint MIN INDEX(MIN INDEX, VARIABLES)

Arguments MIN INDEX : dvar

VARIABLES : collection(index−int, var−dvar)

Restrictions |VARIABLES| > 0
MIN INDEX ≥ 0
MIN INDEX ≤ |VARIABLES|
required(VARIABLES, [index, var])
VARIABLES.index ≥ 1
VARIABLES.index ≤ |VARIABLES|
distinct(VARIABLES, index)

Purpose MIN INDEX is one of the indices of the collection of variables VARIABLES corresponding
to its minimum value.

Example

 2,

〈 index− 1 var− 3,
index− 2 var− 2,
index− 3 var− 7,
index− 4 var− 2,
index− 5 var− 6

〉 
 4,

〈 index− 1 var− 3,
index− 2 var− 2,
index− 3 var− 7,
index− 4 var− 2,
index− 5 var− 6

〉 
The attribute var = 2 of the second and fourth items of the collection VARIABLES

is the minimum value over values 3, 2, 7, 2, 6. Consequently, both MIN INDEX constraints
hold since their first arguments MIN INDEX are respectively set to 2 and 4.

Typical |VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Usage Within the context of scheduling, assume the variables of the VARIABLES collection corre-
spond to the starts of a set of tasks. Then MIN INDEX gives the indexes of those tasks that
can be scheduled first.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.
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See also comparison swapped: MAX INDEX.

Keywords characteristic of a constraint: minimum.

constraint type: order constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var < variables2.var

)
Graph property(ies) ORDER(0, 0, index) = MIN INDEX

Graph model Parts (A) and (B) of Figure 5.569 respectively show the initial and final graph associated
with the two examples of the Example slot. Since we use the ORDER graph property,
the vertices of rank 0 (without considering the loops) of the final graph are outlined with a
thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,0,index)=2

1:1,3

3:3,7

5:5,6

2:2,2 4:4,2

(A) (B)

Figure 5.569: Initial and final graph of the MIN INDEX constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.259 MIN N

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [29]

Constraint MIN N(MIN, RANK, VARIABLES)

Arguments MIN : dvar

RANK : int

VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
RANK ≥ 0
RANK < |VARIABLES|
required(VARIABLES, var)

Purpose
MIN is the minimum value of rank RANK (i.e., the RANKth smallest distinct value, identical
values are merged) of the collection of domain variables VARIABLES. The minimum
value has rank 0.

Example (3, 1, 〈3, 1, 7, 1, 6〉)

The MIN N constraint holds since its first argument MIN = 3 is fixed to the second
(i.e., RANK + 1) smallest distinct value of the collection 〈3, 1, 7, 1, 6〉. Note that identical
values are only counted once: this is why the minimum of order 1 is 3 instead of 1.

Typical RANK > 0
RANK < 3
|VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to MIN as well as to the var attribute of
all items of VARIABLES.

Arg. properties Functional dependency: MIN determined by RANK and VARIABLES.

Algorithm [29].

Reformulation The constraint AMONG VAR(1, 〈MIN〉, VARIABLES) enforces MIN to be assigned one of the
values of VARIABLES. The constraint NVALUE(NVAL, VARIABLES) provides a hand on the
number of distinct values assigned to the variables of VARIABLES. By associating to each


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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variable Vi (i ∈ [1, |VARIABLES|]) of the VARIABLES collection a rank variable Ri ∈
[0, |VARIABLES| − 1] with the reified constraint Ri = RANK ⇔ Vi = MIN, the inequality
Ri < NVAL, and by creating for each pair of variables Vi, Vj (i, j < i ∈ [1, |VARIABLES|])
the reified constraints
Vi < Vj ⇔ Ri < Rj ,
Vi = Vj ⇔ Ri = Rj ,
Vi > Vj ⇔ Ri > Rj ,

one can reformulate the MIN N constraint in term of 3 · |VARIABLES|·(|VARIABLES|−1)
2

+ 1 reified
constraints.

See also comparison swapped: MAX N.

generalisation: MINIMUM (absolute minimum replaced by minimum or order n).

used in reformulation: AMONG VAR, NVALUE.

Keywords characteristic of a constraint: rank, minimum, maxint, automaton, automaton with array
of counters.

constraint arguments: pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.

Cond. implications • MIN N(MIN, RANK, VARIABLES)
implies ATLEAST(N, VARIABLES, MIN)

when N = 1.

• MIN N(MIN, RANK, VARIABLES)
with RANK = 1
and minval(VARIABLES.var) = 1

implies MINIMUM GREATER THAN(VAR1, VAR2, VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var < variables2.var

)
Graph property(ies) ORDER(RANK, MAXINT, var) = MIN

Graph model Parts (A) and (B) of Figure 5.570 respectively show the initial and final graph associated
with the Example slot. Since we use the ORDER graph property, the vertex of rank 1
(without considering the loops) of the final graph is shown in grey.

VARIABLES

1

2

3

4

5

ORDER(1,MAXINT,var)=3

1:3

3:7

5:6

2:1 4:1

(A) (B)

Figure 5.570: Initial and final graph of the MIN N constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.571 depicts the automaton associated with the MIN N constraint. Figure 5.571
depicts the automaton associated with the MIN N constraint. To each item of the collection
VARIABLES corresponds a signature variable Si that is equal to 1.

ITH POS DIFFERENT FROM 0(RANK + 1,M,C)
MIN = M + D − 1

s

{
C[ ]← 0,
D ← maxint

} 1,{
C[VARi]← C[VARi] + 1,
D ← min(D, VARi)

}

Figure 5.571: Automaton of the MIN N constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.260 MIN NVALUE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint MIN NVALUE(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the minimum number of times that the same value is taken by the variables of the
collection VARIABLES.

Example (2, 〈9, 1, 7, 1, 1, 7, 7, 7, 7, 9〉)
(5, 〈8, 8, 8, 8, 8〉)
(2, 〈1, 8, 1, 8, 1〉)

In the first example, values 1, 7, 9 are respectively used 3, 5, 2 times. So the mini-
mum number of time MIN that a same value occurs is 2. Consequently the corresponding
MIN NVALUE constraint holds.

Typical 2 ∗ MIN ≤ |VARIABLES|
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Functional dependency: MIN determined by VARIABLES.

Usage This constraint may be used in order to replace a set of COUNT or AMONG constraints were
one would have to generate explicitly one constraint for each potential value. Also useful
for constraining the number of occurrences of the less used value without knowing this
value in advance and without giving explicitly a lower limit on the number of occurrences
of each value as it is done in the GLOBAL CARDINALITY constraint.

Reformulation Assume that VARIABLES is not empty. Let α and β respectively denote the smallest and
largest possible values that can be assigned to the variables of the VARIABLES collec-
tion. Let the variables Oα, Oα+1, . . . , Oβ respectively correspond to the number of oc-
currences of values α, α+ 1, . . . , β within the variables of the VARIABLES collection. The


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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MIN NVALUE constraint can be expressed as the conjunction of the following two con-
straints:

GLOBAL CARDINALITY (VARIABLES,
〈val− α noccurrence−Oα,
val− α+ 1 noccurrence−Oα+1,
. . .
val− β noccurrence−Oβ〉),

MIN N(MIN, 1, 〈0, Oα, Oα+1, . . . , Oβ〉).
We use a MIN N constraint (with its RANK parameter set to 1) instead of a MINIMUM con-
straint in order to discard the smallest value 0.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MIN NVALUE: domains 0..n

2 3 4 5 6 7 8
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Length

O
bs

er
ve

d
de

ns
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Solution density for MIN NVALUE


Counting
Information on the solution density.
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Solution density for MIN NVALUE

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 6 60 560 7470 113442 2058728 42473664
2 3 - 60 300 3780 36456 566496
3 - 4 - - 420 1960 4032
4 - - 5 - - - 2520
5 - - - 6 - - -
6 - - - - 7 - -
7 - - - - - 8 -
8 - - - - - - 9
Solution count for MIN NVALUE: domains 0..n
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See also common keyword: AMONG (counting constraint), COUNT,
GLOBAL CARDINALITY (value constraint,counting constraint), MAX NVALUE,
NVALUE (counting constraint).


See also
Related constraints grouped by semantics links.
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Keywords application area: assignment.

characteristic of a constraint: minimum, automaton, automaton with array of counters.

constraint arguments: pure functional dependency.

constraint type: value constraint, counting constraint.

final graph structure: equivalence.

modelling: minimum number of occurrences, functional dependency.

Cond. implications MIN NVALUE(MIN, VARIABLES)
with MIN < |VARIABLES|

implies ATLEAST NVALUE(NVAL, VARIABLES)
when NVAL = 2.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MIN NSCC= MIN

Graph model Parts (A) and (B) of Figure 5.572 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the MIN NSCC graph prop-
erty, we show the smallest strongly connected component of the final graph associated with
the first example of the Example slot.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

VARIABLES

1

2

3

4

5

6

7

8

9

10

(B) MIN_NSCC=2

MIN_NSCC

1:9

10:9

2:1

4:1

5:1

3:7

6:7

7:7

8:7

9:7

Figure 5.572: Initial and final graph of the MIN NVALUE constraint
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Automaton Figure 5.573 depicts the automaton associated with the MIN NVALUE constraint. To each
item of the collection VARIABLES corresponds a signature variable Si that is equal to 0.

MINIMUM EXCEPT 0(N, C)

s{C[ ]← 0} 0,
{C[VARi]← C[VARi] + 1}

Figure 5.573: Automaton of the MIN NVALUE constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.261 MIN SIZE FULL ZERO STRETCH

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from the unit commitment problem

Constraint MIN SIZE FULL ZERO STRETCH(MINSIZE, VARIABLES)

Arguments MINSIZE : int

VARIABLES : collection(var−dvar)

Restrictions MINSIZE ≥ 0
MINSIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose

Given an integer MINSIZE and a sequence of variables VARIABLES enforce MINSIZE to
be greater than or equal to the size of the smallest full stretch of zero of VARIABLES or
to |VARIABLES| if no full stretch of zero exists.
A stretch of zero is a maximum sequence of zero, while a full stretch of zero is a stretch
of zero that is neither located at the leftmost nor at the rightmost border of the sequence
of variables VARIABLES. The size of a stretch of zero is the number of zero of the stretch.

Example (2, 〈0, 2, 0, 0, 0, 2, 1, 0, 0, 3〉)

Figure 5.574 shows the smallest full stretch of zero associated with the example.
The MIN SIZE FULL ZERO STRETCH constraint holds since the size of the smallest full
stretch of zero of the sequence 0 2 0 0 0 2 1 0 0 3 is greater than or equal to 2.

0 2 0 0 0 2 1 30 0

three stretches of 0

two full stretches of 0

MINSIZE = 2

Figure 5.574: Illustration of the Example slot: smallest full stretch of zero in bold and
red (MINSIZE = 2); note that the leftmost stretch of zero of size 1 is ignored since it is
located at one of the two extremities of the sequence 0 2 0 0 0 2 1 0 0 3.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
|VARIABLES|−AMONG DIFF 0(VARIABLES.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Typical model ATLEAST(2, VARIABLES, 0)

Symmetries • Items of VARIABLES can be reversed.

• An occurrence of a value of VARIABLES.var that is different from 0 can be re-
placed by any other value that is also different from 0.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 82 1137 19026 364033 7850291 188987201

Number of solutions for MIN SIZE FULL ZERO STRETCH: domains 0..n
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Solution density for MIN SIZE FULL ZERO STRETCH


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 82 1137 19026 364033 7850291 188987201

Parameter
value

1 - 9 160 2575 45072 882441 19330432
2 9 9 176 2875 49932 966672 20958912
3 - 64 176 2900 50436 975394 21117888
4 - - 625 2900 50472 976178 21132416
5 - - - 7776 50472 976227 21133568
6 - - - - 117649 976227 21133632
7 - - - - - 2097152 21133632
8 - - - - - - 43046721

Solution count for MIN SIZE FULL ZERO STRETCH: domains 0..n
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See also common keyword: STRETCH PATH (sequence).

Keywords characteristic of a constraint: joker value, automaton, automaton with counters, automa-


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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ton with same input symbol.

combinatorial object: sequence.

constraint network structure: alpha-acyclic constraint network(3).
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Automaton Figure 5.575 depicts the automaton associated with the MIN SIZE FULL ZERO STRETCH

constraint.

s : zero mode ({= 0}∗)
i : different from zero mode

(
{6= 0}+

)
j : zero mode (non-zero value already found)

(
{= 0}+

)
STATE SEMANTICS

MINSIZE ≥M

s

{
M ← |VARIABLES|,
C ← 0

}
i

j

VARi = 0

VARi 6= 0

VARi 6= 0

VARi = 0,
{C ← C + 1}

VARi = 0,
{C ← C + 1}

VARi 6= 0,{
M ← min(M,C),
C ← 0

}

Figure 5.575: Automaton of the MIN SIZE FULL ZERO STRETCH constraint

M
I
N
S
I
Z
E
≥

M

C0 = 0

M0 = l

Q0 = s

C1

M1

Q1

S1 S2

Cn

Mn

Qn

Sn

VAR1 VAR2 VARn

Figure 5.576: Hypergraph of the reformulation corresponding to the automaton
(with two counters) of the MIN SIZE FULL ZERO STRETCH constraint where l =
|VARIABLES| (since all states of the automaton are accepting there is no restriction
on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.262 MIN SIZE SET OF CONSECUTIVE VAR

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint MIN SIZE SET OF CONSECUTIVE VAR(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN ≥ 1
MIN ≤ |VARIABLES|
required(VARIABLES, var)

Purpose MIN is the size of the smallest set of variables of the collection VARIABLES that all take
their values in a set of consecutive values.

Example (4, 〈3, 1, 3, 7, 4, 1, 2, 8, 7, 6〉)
(4, 〈3, 1, 3, 2〉)

In the first example, the two parts 3, 1, 3, 4, 1, 2 and 7, 8, 7, 6 take respectively their
values in the two following sets of consecutive values {1, 2, 3, 4} and {6, 7, 8}. Conse-
quently, the corresponding MIN SIZE SET OF CONSECUTIVE VAR constraint holds since
the cardinality of the smallest set of variables is 4.

Typical MIN > 1
MIN < |VARIABLES|
|VARIABLES| > 0
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: MIN determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MIN SIZE SET OF CONSECUTIVE VAR: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 2 30 276 3580 57000 1065834 22894984
2 7 - 132 2480 30990 522522 11080412
3 - 34 - - 13500 332430 4590208
4 - - 217 - - - 2293480
5 - - - 1716 - - -
6 - - - - 16159 - -
7 - - - - - 176366 -
8 - - - - - - 2187637

Solution count for MIN SIZE SET OF CONSECUTIVE VAR: domains 0..n
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See also common keyword: NSET OF CONSECUTIVE VALUES (consecutive values).

Keywords application area: assignment.

characteristic of a constraint: consecutive values, minimum.

constraint arguments: pure functional dependency.

constraint type: value constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≤ 1

Graph property(ies) MIN NSCC= MIN

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Parts (A) and (B) of Figure 5.577 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the MIN NSCC graph prop-
erty, we show the smallest strongly connected component of the final graph.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Figure 5.577: Initial and final graph of the MIN SIZE SET OF CONSECUTIVE VAR
constraint



1774 MIN SURF PEAK

5.263 MIN SURF PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin derived from PEAK

Constraint MIN SURF PEAK(MIN SURF, VARIABLES)

Arguments MIN SURF : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN SURF ≥ 0
MIN SURF ≤sum(VARIABLES.var)
required(VARIABLES, var)

Purpose Given a sequence VARIABLES constraint MIN SURF to be fixed to the smallest surface of
the different peaks, or to 0 if no peak exists.

Example (12, 〈4, 4, 2, 2, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1〉)
(35, 〈4, 6, 7, 9, 8, 5, 4〉)
(0, 〈4, 4, 2, 0, 0, 4, 5〉)

The first MIN SURF PEAK constraint holds since the sequence
4 4 2 2 3 5 5 6 3 1 1 2 2 2 2 2 2 1 contains two peaks of respective surface 22
and 12 (see Figure 5.578) and since its argument MIN SURF is fixed to the smallest value
12.

4
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4

35

4 4
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0 0
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5

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18
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3

1 1

2 2 2 2 2 2

1

variables
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lu
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peak ¬

surface=22

peak 

surface=12

Figure 5.578: Illustration of the first example of the Example slot: a sequence of
eighteen variables V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16,
V17, V18 respectively fixed to values 4, 4, 2, 2, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1 and
its two peaks of surface 22 and 12.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical MIN SURF > 1
|VARIABLES| > 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: MIN SURF determined by VARIABLES.

See also common keyword: MIN WIDTH PEAK, PEAK (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.579 depicts the automaton associated with the MIN SURF PEAK constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : stationary or
decreasing mode ({= | >}∗)

j : increasing mode (< {< | =}∗)
k : decreasing (after

a peak) mode (> {> | =}∗)

STATE SEMANTICS

MIN SURF = min(S,C)

s

j k

 S ←
∑|VARIABLES|
i=1 VARi,

C ← 0,
D ← 0


VARi ≥ VARi+1

VARi < VARi+1,
{D ← VARi+1}

VARi ≤ VARi+1,
{D ← D + VARi+1}

VARi > VARi+1,
{C ← D,D ← 0}

VARi > VARi+1,
{C ← C + D + VARi,
D ← 0}

VARi = VARi+1,
{D ← D + VARi}

VARi < VARi+1,{
S ← min(S,C),
D ← VARi+1

}

Figure 5.579: Automaton of the MIN SURF PEAK constraint: the start of the first
potential peak is discovered while triggering the transition from s to j, the top of a
peak is discovered while triggering the transition from j to k, the end of a peak and
the start of the next potential peak are discovered while triggering the transition from k
to j; the counters S, C and D respectively stand for min surface, current surface and
descending plateau surface.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Figure 5.580: Hypergraph of the reformulation corresponding to the automaton of the
MIN SURF PEAK constraint
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5.264 MIN WIDTH PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin derived from PEAK

Constraint MIN WIDTH PEAK(MIN WIDTH, VARIABLES)

Synonym MIN BASE PEAK.

Arguments MIN WIDTH : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN WIDTH ≥ 0
MIN WIDTH ≤ |VARIABLES| − 2
required(VARIABLES, var)

Purpose Given a sequence VARIABLES constraint MIN WIDTH to be fixed to the width of the small-
est peak, or to 0 if no peak exists.

Example (5, 〈4, 4, 2, 2, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1〉)
(5, 〈4, 6, 7, 9, 8, 5, 4〉)
(0, 〈4, 4, 2, 0, 0, 4, 5〉)

The first MIN WIDTH PEAK constraint holds since the sequence
4 4 2 2 3 5 5 6 3 1 1 2 2 2 2 2 2 1 contains two peaks of respective width 5 and 6
(see Figure 5.581) and since its argument MIN WIDTH is fixed to the smallest value 5.

4

6
7

9
8

5
4

5

4 4

2

0 0

4
5

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18

1

2

3

4

5

6

4 4

2 2

3

5 5

6

3

1 1

2 2 2 2 2 2

1

variables

va
lu

es

peak ¬

width=5

peak 

width=6

Figure 5.581: Illustration of the first example of the Example slot: a sequence of
eighteen variables V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16,
V17, V18 respectively fixed to values 4, 4, 2, 2, 3, 5, 5, 6, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1 and
its two peaks of width 5 and 6.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical MIN WIDTH > 1
|VARIABLES| > 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: MIN WIDTH determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MIN WIDTH PEAK: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2
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Solution density for MIN WIDTH PEAK


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for MIN WIDTH PEAK

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 9 50 295 1792 11088 69498 439791
1 - 14 230 3205 56637 1174398 26327058
2 - - 100 2100 28420 424928 9363060
3 - - - 679 17024 268722 3413256
4 - - - - 4480 130452 2345982
5 - - - - - 29154 968946
6 - - - - - - 188628

Solution count for MIN WIDTH PEAK: domains 0..n
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size 7
size 8
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See also common keyword: MIN SURF PEAK, MIN WIDTH PLATEAU, PEAK (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

filtering: glue matrix.

modelling: functional dependency.
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Automaton Figure 5.582 depicts the automaton associated with the MIN WIDTH PEAK constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : stationary or
decreasing mode ({= | >}∗)

j : increasing mode (< {< | =}∗)
k : decreasing (after

a peak) mode (> {> | =}∗)

STATE SEMANTICS

MIN WIDTH = min(W,C)

s

j k

 W ← |VARIABLES|,
C ← 0,
F ← 0


VARi ≥ VARi+1

VARi < VARi+1,
{F ← i}

VARi ≤ VARi+1

VARi > VARi+1,
{C ← i− F}

VARi > VARi+1,
{C ← i− F}

VARi = VARi+1VARi < VARi+1,{
W ← min(W,C),
F ← i

}

Figure 5.582: Automaton of the MIN WIDTH PEAK constraint: the start of the first
potential peak is discovered while triggering the transition from s to j, the top of a
peak is discovered while triggering the transition from j to k, the end of a peak and the
start of the next potential peak are discovered while triggering the transition from k to
j; the counters W , C and F respectively stand for min width, current and first.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Glue matrix where
−→
W ,
−→
C ,
−→
F and

←−
W ,
←−
C ,
←−
F resp. represent the counters values W , C, F at the end of a

prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES;
−−−−−−→
MIN WIDTH

(resp.
←−−−−−−
MIN WIDTH) stands for min(

−→
W,
−→
C ) (resp. min(

←−
W,
←−
C )).

s ({> | =}∗) j (< {< | =}∗) k (> {> | =}∗)

s ({> | =}∗)

0

1 n

←−−−−−−
MIN WIDTH
1

←−−−−−−
MIN WIDTH
1

j (< {< | =}∗)

−−−−−−→
MIN WIDTH

n
min


−→
W,

n−
−→
F −

←−
F ,

←−
W



−→
F

←−
F

min


−−−−−−→
MIN WIDTH,

n−
−→
F −

←−
F ,

←−−−−−−
MIN WIDTH



k (> {> | =}∗)

−−−−−−→
MIN WIDTH

n

min


−−−−−−→
MIN WIDTH,

n−
−→
F −

←−
F ,

←−−−−−−
MIN WIDTH

 min

( −−−−−−→
MIN WIDTH,
←−−−−−−
MIN WIDTH

)

Figure 5.583: Glue matrix associated with the automaton of the MIN WIDTH PEAK
constraint, where n stands for |VARIABLES|
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MIN WIDTH PEAK(MIN WIDTH = 5, VARIABLES = 〈4, 6, 7, 9, 8, 5, 4〉)

MIN WIDTH PEAK

( −−−−−−−→
MIN WIDTH3 = 0,
〈4, 6, 7, 9〉

)
MIN WIDTH PEAK

( ←−−−−−−−
MIN WIDTH3 = 0,
〈4, 5, 8, 9〉

)
glue matrix entry associated with the state pair (j, j):

MIN WIDTH = min(
−→
W3, |VARIABLES| −

−→
F3 −

←−
F3,
←−
W3) = min(7, 7− 1− 1, 7) = 5

Figure 5.584: Illustrating the use of the state pair (j, j) of the glue matrix for link-
ing MIN WIDTH with the counters variables obtained after reading the prefix 4, 6, 7, 9
and corresponding suffix 9, 8, 5, 4 of the sequence 4, 6, 7, 9, 8, 5, 4; note that the suf-
fix 9, 8, 5, 4 (in pink) is proceed in reverse order; the left (resp. right) table shows the
initialisation (for i = 0) and the evolution (for i > 0) of the state of the automaton
and its counters W , C and F upon reading the prefix 4, 6, 7, 9 (resp. the reverse suffix
4, 5, 8, 9).
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Figure 5.585: Hypergraph of the reformulation corresponding to the automaton of the
MIN WIDTH PEAK constraint
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5.265 MIN WIDTH PLATEAU

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK.

Constraint MIN WIDTH PLATEAU(MIN WIDTH, VARIABLES)

Arguments MIN WIDTH : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN WIDTH ≥ 0
MIN WIDTH ≤ |VARIABLES| − 2
required(VARIABLES, var)

Purpose
Given a sequence VARIABLES constraint MIN WIDTH to be fixed to the width of the small-
est plateau, or to 0 if no peak exists. A plateau corresponds to the highest portion of a
peak.

Example (3, 〈4, 4, 2, 2, 3, 5, 6, 6, 6, 1, 1, 2, 2, 2, 2, 2, 2, 1〉)
(1, 〈4, 6, 7, 9, 8, 5, 4〉)
(0, 〈4, 4, 2, 0, 0, 4, 5〉)

The first MIN WIDTH PLATEAU constraint holds since the sequence
4 4 2 2 3 5 6 6 6 1 1 2 2 2 2 2 2 1 contains two peaks with two plateaux of re-
spective width 3 and 6 (see Figure 5.586) and since its argument MIN WIDTH is fixed to the
smallest value 3.
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Figure 5.586: Illustration of the first example of the Example slot: a sequence of
eighteen variables V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16,
V17, V18 respectively fixed to values 4, 4, 2, 2, 3, 5, 6, 6, 6, 1, 1, 2, 2, 2, 2, 2, 2, 1 and
its two peaks with two plateaux of width 3 and 6.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: MIN WIDTH determined by VARIABLES.

See also common keyword: MIN WIDTH PEAK (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.587 depicts the automaton associated with the MIN WIDTH PLATEAU constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a signature variable Si. The following signature constraint links VARi, VARi+1 and
Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

MIN WIDTH = min(C,D) · P

s

{
C ← |VARIABLES|,
D ← 0, P ← 0

}

tr

VARi ≥ VARi+1

V
A
R
i
<

V
A
R
i+

1

VARi < VARi+1

VARi > VARi+1, C ← 1,
D ← 1,
P ← 1


VARi = VARi+1, {D ← 2}

VARi = VARi+1,
{D ← D + 1}

VA
Ri

>
VA
Ri+

1
,

{C
←

min(C
,D

), P
←

1}

VARi < VARi+1,
{D ← C}

Figure 5.587: Automaton for the MIN WIDTH PLATEAU constraint; states s, t and r
respectively correspond to a decreasing or stationary state, to an increasing state and
to a potential plateau; counters C, D and P respectively correspond to the size of the
smallest plateau encountered so far, to the size of the current potential plateau and to
the fact that we already encountered at least one plateau; the transition from r to t
cancels out the effect of D on the final result by resetting D to the current value of C.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Figure 5.588: Hypergraph of the reformulation corresponding to the automaton of the
MIN WIDTH PLATEAU constraint
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5.266 MIN WIDTH VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin derived from VALLEY

Constraint MIN WIDTH VALLEY(MIN WIDTH, VARIABLES)

Synonym MIN BASE VALLEY.

Arguments MIN WIDTH : dvar

VARIABLES : collection(var−dvar)

Restrictions MIN WIDTH ≥ 0
MIN WIDTH ≤ |VARIABLES| − 2
required(VARIABLES, var)

Purpose Given a sequence VARIABLES constraint MIN WIDTH to be fixed to the width of the small-
est valley, or to 0 if no valley exists.

Example (5, 〈3, 3, 5, 5, 4, 2, 2, 3, 4, 6, 6, 5, 5, 5, 5, 5, 5, 6〉)
(0, 〈3, 8, 8, 5, 0, 0〉)
(4, 〈9, 8, 8, 0, 0, 2〉)

The first MIN WIDTH VALLEY constraint holds since the sequence
3 3 5 5 4 2 2 3 4 6 6 5 5 5 5 5 5 6 contains two valleys of respective width 5 and
6 (see Figure 5.589) and since its argument MIN WIDTH is fixed to the smallest value 5.
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Figure 5.589: Illustration of the first example of the Example slot: a sequence of
eighteen variables V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14, V15, V16,
V17, V18 respectively fixed to values 3, 3, 5, 5, 4, 2, 2, 3, 4, 6, 6, 5, 5, 5, 5, 5, 5, 6 and
its two valleys of width 5 and 6.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical MIN WIDTH > 1
|VARIABLES| > 2

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: MIN WIDTH determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MIN WIDTH VALLEY: domains 0..n
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Solution density for MIN WIDTH VALLEY


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Solution density for MIN WIDTH VALLEY

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 9 50 295 1792 11088 69498 439791
1 - 14 230 3205 56637 1174398 26327058
2 - - 100 2100 28420 424928 9363060
3 - - - 679 17024 268722 3413256
4 - - - - 4480 130452 2345982
5 - - - - - 29154 968946
6 - - - - - - 188628

Solution count for MIN WIDTH VALLEY: domains 0..n
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See also common keyword: VALLEY (sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1794 MIN WIDTH VALLEY

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

filtering: glue matrix.

modelling: functional dependency.
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Automaton Figure 5.590 depicts the automaton associated with the MIN WIDTH VALLEY constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a signature variable Si. The following signature constraint links VARi, VARi+1 and
Si: (VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : stationary or increasing mode ({= | >}∗)
j : decreasing mode (< {< | =}∗)
k : increasing (before a valley) mode (> {> | =}∗)

STATE SEMANTICS

MIN WIDTH = min(W,C)

s

j k

 W ← |VARIABLES|,
C ← 0,
F ← 0


VARi ≤ VARi+1

VARi > VARi+1,
{F ← i}

VARi ≥ VARi+1

VARi < VARi+1,
{C ← i− F} VARi < VARi+1,

{C ← i− F}

VARi = VARi+1VARi > VARi+1,{
W ← min(W,C),
F ← i

}

Figure 5.590: Automaton of the MIN WIDTH VALLEY constraint: the start of the first
potential valley is discovered while triggering the transition from s to j, the bottom of
a valley is discovered while triggering the transition from j to k, the end of a valley and
the start of the next potential valley are discovered while triggering the transition from
k to j; the counters W , C and F respectively stand for min width, current and first.

Glue matrix where
−→
W ,
−→
C ,
−→
F and

←−
W ,
←−
C ,
←−
F resp. represent the counters values W , C, F at the end of a

prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES;
−−−−−−→
MIN WIDTH

(resp.
←−−−−−−
MIN WIDTH) stands for min(

−→
W,
−→
C ) (resp. min(

←−
W,
←−
C )).

s ({< | =}∗) j (> {> | =}∗) k (< {< | =}∗)
s ({< | =}∗) 0 ←−−−−−−

MIN WIDTH
←−−−−−−
MIN WIDTH

j (> {> | =}∗) −−−−−−→
MIN WIDTH min


−→
W,

n−
−→
F −

←−
F ,

←−
W

 min


−−−−−−→
MIN WIDTH,

n−
−→
F −

←−
F ,

←−−−−−−
MIN WIDTH



k (< {< | =}∗) −−−−−−→
MIN WIDTH min


−−−−−−→
MIN WIDTH,

n−
−→
F −

←−
F ,

←−−−−−−
MIN WIDTH

 min

( −−−−−−→
MIN WIDTH,
←−−−−−−
MIN WIDTH

)

Figure 5.591: Glue matrix associated with the automaton of the MIN WIDTH VALLEY
constraint, where n stands for |VARIABLES|


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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MIN WIDTH VALLEY(MIN WIDTH = 5, VARIABLES = 〈6, 4, 3, 1, 2, 5, 6〉)
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( −−−−−−−→
MIN WIDTH3 = 0,
〈6, 4, 3, 1〉

)
MIN WIDTH VALLEY

( ←−−−−−−−
MIN WIDTH3 = 0,
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)
glue matrix entry associated with the state pair (j, j):

MIN WIDTH = min(
−→
W3, |VARIABLES| −

−→
F3 −

←−
F3,
←−
W3) = min(7, 7− 1− 1, 7) = 5

Figure 5.592: Illustrating the use of the state pair (j, j) of the glue matrix for link-
ing MIN WIDTH with the counters variables obtained after reading the prefix 6, 4, 3, 1
and corresponding suffix 1, 2, 5, 6 of the sequence 6, 4, 3, 1, 2, 5, 6; note that the suf-
fix 1, 2, 5, 6 (in pink) is proceed in reverse order; the left (resp. right) table shows the
initialisation (for i = 0) and the evolution (for i > 0) of the state of the automaton
and its counters W , C and F upon reading the prefix 6, 4, 3, 1 (resp. the reverse suffix
6, 5, 2, 1).
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Figure 5.593: Hypergraph of the reformulation corresponding to the automaton of the
MIN WIDTH VALLEY constraint
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5.267 MINIMUM

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint MINIMUM(MIN, VARIABLES)

Synonym MIN.

Arguments MIN : dvar

VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose MIN is the minimum value of the collection of domain variables VARIABLES.

Example (2, 〈3, 2, 7, 2, 6〉)
(7, 〈8, 8, 7, 8, 7〉)

The first MINIMUM constraint holds since its first argument MIN = 2 is set to the
minimum value of the collection 〈3, 2, 7, 2, 6〉.

3

2

7

2

6

8 8

7

8

7

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to MIN as well as to the var attribute of
all items of VARIABLES.

Arg. properties • Functional dependency: MIN determined by VARIABLES.

• Aggregate: MIN(min), VARIABLES(union).

Usage In some project scheduling problems one has to introduce dummy activities that corre-
spond, for example, to the starting time of a given set of activities. In this context one can
use the MINIMUM constraint to get the minimum starting time of a set of tasks.

Remark Note that MINIMUM is a constraint and not just a function that computes the minimum value
of a collection of variables: potential values of MIN influence the variables of VARIABLES,
and reciprocally potential values that can be assigned to variables of VARIABLES influence
MIN.

The MINIMUM constraint is called MIN in JaCoP (http://www.jacop.eu/).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/
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Algorithm A filtering algorithm for the MINIMUM constraint is described in [29].

The MINIMUM constraint is entailed if all the following conditions hold:

1. MIN is fixed.

2. At least one variable of VARIABLES is assigned value MIN.

3. All variables of VARIABLES have their minimum values greater than or equal to value
MIN.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for MINIMUM: domains 0..n

2 3 4 5 6 7 8

10−0.4

10−0.2

100

100.2

100.4
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d
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Solution density for MINIMUM


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0.9
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1.1
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Length
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Solution density for MINIMUM

Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 5 37 369 4651 70993 1273609 26269505
1 3 19 175 2101 31031 543607 11012415
2 1 7 65 781 11529 201811 4085185
3 - 1 15 211 3367 61741 1288991
4 - - 1 31 665 14197 325089
5 - - - 1 63 2059 58975
6 - - - - 1 127 6305
7 - - - - - 1 255
8 - - - - - - 1

Solution count for MINIMUM: domains 0..n
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0 0.2 0.4 0.6 0.8 1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for MINIMUM

size 6
size 7
size 8

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for MINIMUM

size 6
size 7
size 8

Systems MIN in Choco, MIN in Gecode, MIN in JaCoP, MINIMUM in MiniZinc, MINIMUM in
SICStus.


Systems
References to the constraint in some concrete constraint programming systems.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#minimum
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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Used in MINIMUM GREATER THAN, NEXT ELEMENT, NEXT GREATER ELEMENT.

See also common keyword: MAXIMUM (order constraint).

comparison swapped: MAXIMUM.

generalisation: MINIMUM MODULO (variable replaced by variablemod constant).

implied by: AND.

implies: BETWEEN MIN MAX, IN.

soft variant: MINIMUM EXCEPT 0 (value 0 is ignored), OPEN MINIMUM (open con-
straint).

specialisation: MIN N (minimum or order n replaced by absolute minimum).

uses in its reformulation: CYCLE.

Keywords characteristic of a constraint: minimum, maxint, automaton, automaton without coun-
ters, reified automaton constraint.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint.

filtering: glue matrix, arc-consistency, entailment.

modelling: functional dependency.

Cond. implications MINIMUM(MIN, VARIABLES)
with first(VARIABLES.var) > MIN

and last(VARIABLES.var) > MIN

implies DEEPEST VALLEY(DEPTH, VARIABLES).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var < variables2.var

)
Graph property(ies) ORDER(0, MAXINT, var) = MIN

Graph model The condition variables1.key = variables2.key holds if and only if variables1 and
variables2 corresponds to the same vertex. It is used in order to enforce to keep all the
vertices of the initial graph. ORDER(0, MAXINT, var) refers to the source vertices of the
graph, i.e., those vertices that do not have any predecessor.

Parts (A) and (B) of Figure 5.594 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the ORDER graph property,
the vertices of rank 0 (without considering the loops) of the final graph are outlined with a
thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=2

1:3

3:7

5:6

2:2 4:2

(A) (B)

Figure 5.594: Initial and final graph of the MINIMUM constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.595 depicts a first counter free deterministic automaton associated with the
MINIMUM constraint. Let VARi be the ith variable of the VARIABLES collection. To each
pair (MIN, VARi) corresponds a signature variable Si as well as the following signature con-
straint: (MIN < VARi ⇔ Si = 0) ∧ (MIN = VARi ⇔ Si = 1) ∧ (MIN > VARi ⇔ Si = 2).

s t

MIN < VARi

MIN = VARi

MIN < VARi

MIN = VARi

Figure 5.595: Counter free automaton of the MINIMUM constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

MIN

VAR1 VAR2 VARn

Figure 5.596: Hypergraph of the reformulation corresponding to the counter free au-
tomaton of the MINIMUM constraint

Figure 5.597 depicts a second counter free non deterministic automaton associated with the
MINIMUM constraint, where the argument MIN is also part of the sequence passed to the
automaton.

Figure 5.599 depicts a third deterministic automaton with one counter associated with the
MINIMUM constraint, where the argument MIN is unified to the final value of the counter.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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The sequence of variables
VAR1 VAR2 . . . VAR|VARIABLES| MIN
is passed to the automaton

s4 s3 s2 s1

t

4

3

2

1

4

3, 4

2

1

3

2, 3, 4

1

2

1, 2, 3, 4

1

Figure 5.597: Counter free non deterministic automaton of the
MINIMUM(MIN, VARIABLES) constraint assuming that the union of the domain
of the variables is the set {1, 2, 3, 4} and that the elements of VARIABLES are first
passed to the automaton followed by MIN (state si means that no value strictly less
than value i was found and that value i was already encountered at least once)

Q0 = s4 Q1

VAR1 VAR2

Qn

VARn

Qn+1 = t

MIN

Figure 5.598: Hypergraph of the reformulation corresponding to the counter free non
deterministic automaton of the MINIMUM constraint

MIN = Cs{C ← +∞}

0,
{C ← min(C, VARi)}

s

s min
(−→
C ,
←−
C
)

Glue matrix where
−→
C and

←−
C resp. represent the counter

value C at the end of a prefix and at the end of the cor-
responding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.599: Automaton (with one counter) of the MINIMUM constraint and its glue
matrix



1806 MINIMUM

C0 = +∞

Q0 = s

C1

Q1

VAR1 VAR2

Cn = MIN

Qn = s

VARn

Figure 5.600: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the MINIMUM constraint: since all states variables Q0, Q1, . . . , Qn are
fixed to the unique state s of the automaton, the transitions constraints share only the
counter variable C and the constraint network is Berge-acyclic
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5.268 MINIMUM EXCEPT 0
I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from MINIMUM.

Constraint MINIMUM EXCEPT 0(MIN, VARIABLES, DEFAULT)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)
DEFAULT : int

Restrictions MIN > 0
MIN ≤ DEFAULT

|VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ DEFAULT

DEFAULT > 0

Purpose

All variables of the collection VARIABLES are assigned a value that belongs to inter-
val [0, DEFAULT]. MIN is the minimum value of the collection of domain variables
VARIABLES, ignoring all variables that take 0 as value. When all variables of the collec-
tion VARIABLES are assigned value 0, MIN is set to the default value DEFAULT.

Example (3, 〈3, 7, 6, 7, 4, 7〉 , 1000000)
(2, 〈3, 2, 0, 7, 2, 6〉 , 1000000)
(1000000, 〈0, 0, 0, 0, 0, 0〉 , 1000000)

The three examples of the MINIMUM EXCEPT 0 constraint respectively hold since:

• Within the first example, MIN is set to the minimum value 3 of the collection
〈3, 7, 6, 7, 4, 7〉.

• Within the second example, MIN is set to the minimum value 2 (ignoring value 0) of
the collection 〈3, 2, 0, 7, 2, 6〉.

• Finally within the third example, MIN is set to the default value 1000000 since all
items of the collection 〈0, 0, 0, 0, 0, 0〉 are set to 0.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
ATLEAST(1, VARIABLES, 0)

Typical model nval(VARIABLES.var) > 2
ATLEAST(2, VARIABLES, 0)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical conditions on the sample of a problem.
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Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

Arg. properties Functional dependency: MIN determined by VARIABLES and DEFAULT.

Remark The joker value 0 makes sense only because we restrict the variables of the VARIABLES

collection to take non-negative values.

Reformulation By (1) associating to each variable Vi (i ∈ [1, |VARIABLES|]) of the VARIABLES collection
a rank variableRi ∈ [0, |VARIABLES|−1] with the reified constraintRi = 1⇔ Vi = MIN,
and by creating for each pair of variables Vi, Vj (i, j < i ∈ [1, |VARIABLES|]) the reified
constraints
Vi < Vj ⇔ Ri < Rj ,
Vi = Vj ⇔ Ri = Rj ,
Vi > Vj ⇔ Ri > Rj ,

and by (2) creating the reified constraint
V1 = 0 ∧ V2 = 0 ∧ · · · ∧ Vn = 0⇒ MIN = DEFAULT,

one can reformulate the MINIMUM EXCEPT 0 constraint in term of 3 ·
|VARIABLES|·(|VARIABLES|−1)

2
+ 2 reified constraints.

See also hard version: MINIMUM (value 0 is not ignored any more).

Keywords characteristic of a constraint: joker value, minimum, automaton, automaton without
counters, reified automaton constraint.

constraint arguments: pure functional dependency.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint.

modelling: functional dependency.

Cond. implications MINIMUM EXCEPT 0(MIN, VARIABLES, DEFAULT)
with maxval(VARIABLES.var) < DEFAULT

implies ATMOST(N, VARIABLES, VALUE).


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0

•
∨( variables1.key = variables2.key,

variables1.var < variables2.var

)
Graph property(ies) ORDER(0, DEFAULT, var) = MIN

Graph model Because of the first two conditions of the arc constraint, all vertices that correspond to 0
will be removed from the final graph.

Parts (A) and (B) of Figure 5.601 respectively show the initial and final graph of the second
example of the Example slot. Since we use the ORDER graph property, the vertices of
rank 0 (without considering the loops) of the final graph are outlined with a thick circle.

VARIABLES

1

2

3

4

5

6

ORDER(0,DEFAULT,var)=2

1:3

4:7

6:6

2:2 5:2

(A) (B)

Figure 5.601: Initial and final graph of the MINIMUM EXCEPT 0 constraint

Since the graph associated with the third example does not contain any vertex, ORDER
returns the default value DEFAULT.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.602 depicts the automaton associated with the MINIMUM EXCEPT 0 constraint.
Let VARi be the ith variable of the VARIABLES collection. To each pair (MIN, VARi) corre-
sponds a signature variable Si as well as the following signature constraint:

((VARi = 0) ∧ (MIN 6= DEFAULT))⇔ Si = 0 ∧
((VARi = 0) ∧ (MIN = DEFAULT))⇔ Si = 1 ∧
((VARi 6= 0) ∧ (MIN = VARi))⇔ Si = 2 ∧
((VARi 6= 0) ∧ (MIN < VARi))⇔ Si = 3 ∧
((VARi 6= 0) ∧ (MIN > VARi))⇔ Si = 4.

s

j k

VARi = 0 ∧ MIN 6= DEFAULT VARi 6= 0 ∧ MIN < VARi

VARi 6= 0 ∧ MIN = VARi VARi = 0 ∧ MIN = DEFAULT

VARi = 0 ∧ MIN = DEFAULT

VARi = 0 ∧ MIN 6= DEFAULT

VARi 6= 0 ∧ MIN = VARi
VARi 6= 0 ∧ MIN < VARi

VARi = 0 ∧ MIN = DEFAULT

Figure 5.602: Automaton of the MINIMUM EXCEPT 0 constraint

Q0 = s Q1

S1 S2

Qn ∈ {j, k}

Sn

MIN

VAR1 VAR2 VARn

Figure 5.603: Hypergraph of the reformulation corresponding to the automaton of the
MINIMUM EXCEPT 0 constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.269 MINIMUM GREATER THAN

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint MINIMUM GREATER THAN(VAR1, VAR2, VARIABLES)

Arguments VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR1 > VAR2

|VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR1 is the smallest value strictly greater than VAR2 of the collection of variables
VARIABLES: this concretely means that there exists at least one variable of VARIABLES
that takes a value strictly greater than VAR2.

Example (5, 3, 〈8, 5, 3, 8〉)

The MINIMUM GREATER THAN constraint holds since value 5 is the smallest value
strictly greater than value 3 among values 8, 5, 3 and 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetry Items of VARIABLES are permutable.

Arg. properties Aggregate: VAR1(min), VAR2(id), VARIABLES(union).

Reformulation Let V1, V2, . . . , V|VARIABLES| denote the variables of the collection of variables
VARIABLES. By creating the extra variables M and U1, U2, . . . , U|VARIABLES|, the
MINIMUM GREATER THAN constraint can be expressed in term of the following con-
straints:

1. MAXIMUM(M, VARIABLES),

2. VAR1 > VAR2,

3. VAR1 ≤M ,

4. Vi ≤ VAR2⇒ Ui = M (i ∈ [1, |VARIABLES|]),

5. Vi > VAR2⇒ Ui = Vi (i ∈ [1, |VARIABLES|]),


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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6. MINIMUM(VAR1, 〈U1, U2, . . . , U|VARIABLES|〉).

See also common keyword: NEXT GREATER ELEMENT (order constraint).

implied by: NEXT GREATER ELEMENT.

related: NEXT ELEMENT (identify an element in a table).

Keywords characteristic of a constraint: minimum, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: order constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col(ITEM−collection(var−dvar), [item(var− VAR2)])

Arc input(s) ITEM VARIABLES

Arc generator PRODUCT 7→collection(item, variables)

Arc arity 2

Arc constraint(s) item.var < variables.var

Graph property(ies) NARC> 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets MINIMUM(VAR1, variables)

Graph model Similar to the NEXT GREATER ELEMENT constraint, except that there is no order on the
variables of the collection VARIABLES.

Parts (A) and (B) of Figure 5.604 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final graph
are stressed in bold. The source and the sinks of the final graph respectively correspond to
the variable VAR2 and to the variables of the VARIABLES collection that are strictly greater
than VAR2. VAR1 is set to the smallest value of the var attribute of the sinks of the final
graph.

ITEM

VARIABLES

1

1234

NARC=3

1:3

1:8 2:5 4:8

(A) (B)

Figure 5.604: Initial and final graph of the MINIMUM GREATER THAN constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.605 depicts the automaton associated with the MINIMUM GREATER THAN con-
straint. Let VARi be the ith variable of the VARIABLES collection. To each triple
(VAR1, VAR2, VARi) corresponds a signature variable Si as well as the following signature
constraint:

((VARi < VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 0 ∧
((VARi = VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 1 ∧
((VARi > VAR1) ∧ (VARi ≤ VAR2))⇔ Si = 2 ∧
((VARi < VAR1) ∧ (VARi > VAR2))⇔ Si = 3 ∧
((VARi = VAR1) ∧ (VARi > VAR2))⇔ Si = 4 ∧
((VARi > VAR1) ∧ (VARi > VAR2))⇔ Si = 5.

The automaton is constructed in order to fulfil the following conditions:

• We look for an item of the VARIABLES collection such that vari = VAR1 and vari >
VAR2,

• There should not exist any item of the VARIABLES collection such that vari < VAR1

and vari > VAR2.

s

t

VARi < VAR1 ∧ VARi ≤ VAR2

VARi = VAR1 ∧ VARi ≤ VAR2

VARi > VAR1 ∧ VARi ≤ VAR2

VARi > VAR1 ∧ VARi > VAR2

VARi = VAR1 ∧ VARi > VAR2

VARi < VAR1 ∧ VARi ≤ VAR2

VARi = VAR1 ∧ VARi ≤ VAR2

VARi > VAR1 ∧ VARi ≤ VAR2

VARi = VAR1 ∧ VARi > VAR2

VARi > VAR1 ∧ VARi > VAR2

Figure 5.605: Automaton of the MINIMUM GREATER THAN constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Q0 = s Q1

S1 S2

Qn = t

Sn

VAR1

VAR2

VAR1 VAR2 VARn

Figure 5.606: Hypergraph of the reformulation corresponding to the counter free non
deterministic automaton of the MINIMUM GREATER THAN constraint
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5.270 MINIMUM MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from MINIMUM.

Constraint MINIMUM MODULO(MIN, VARIABLES, M)

Arguments MIN : dvar

VARIABLES : collection(var−dvar)
M : int

Restrictions |VARIABLES| > 0
M > 0
required(VARIABLES, var)

Purpose MIN is a minimum value of the collection of domain variables VARIABLES according to
the following partial ordering: (X mod M) < (Y mod M).

Example (6, 〈9, 1, 7, 6, 5〉 , 3)
(9, 〈9, 1, 7, 6, 5〉 , 3)

The MINIMUM MODULO constraints hold since MIN is respectively set to values 6
and 9, where 6 mod 3 = 0 and 9 mod 3 = 0 are both less than or equal to all the
expressions 9 mod 3 = 0, 1 mod 3 = 1, 7 mod 3 = 1, 6 mod 3 = 0, and 5 mod 3 = 2.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
M > 1
M <maxval(VARIABLES.var)

Symmetry Items of VARIABLES are permutable.

Arg. properties Functional dependency: MIN determined by VARIABLES and M.

See also comparison swapped: MAXIMUM MODULO.

specialisation: MINIMUM (variable mod constant replaced by variable).

Keywords characteristic of a constraint: modulo, maxint, minimum.

constraint arguments: pure functional dependency.

constraint type: order constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s)
∨( variables1.key = variables2.key,

variables1.var mod M < variables2.var mod M

)
Graph property(ies) ORDER(0, MAXINT, var) = MIN

Graph model We use a similar definition that the one that was utilised for the MINIMUM constraint.
Within the arc constraint we replace the condition X < Y by the condition (X mod M) <
(Y mod M).

Parts (A) and (B) of Figure 5.607 respectively show the initial and final graph associated
with the second example of the Example slot. Since we use the ORDER graph property,
the vertex of rank 0 (without considering the loops) associated with value 9 is outlined with
a thick circle.

VARIABLES

1

2

3

4

5

ORDER(0,MAXINT,var)=9

1:9

2:1 3:7

5:5

4:6

(A) (B)

Figure 5.607: Initial and final graph of the MINIMUM MODULO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.271 MINIMUM WEIGHT ALLDIFFERENT

I B C J
DESCRIPTION LINKS GRAPH

Origin [182]

Constraint MINIMUM WEIGHT ALLDIFFERENT(VARIABLES, MATRIX, COST)

Synonyms MINIMUM WEIGHT ALLDIFF, MINIMUM WEIGHT ALLDISTINCT,
MIN WEIGHT ALLDIFF, MIN WEIGHT ALLDIFFERENT, MIN WEIGHT ALLDISTINCT.

Arguments VARIABLES : collection(var−dvar)
MATRIX : collection(i−int, j−int, c−int)
COST : dvar

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
VARIABLES.var ≥ 1
VARIABLES.var ≤ |VARIABLES|
required(MATRIX, [i, j, c])
increasing seq(MATRIX, [i, j])
MATRIX.i ≥ 1
MATRIX.i ≤ |VARIABLES|
MATRIX.j ≥ 1
MATRIX.j ≤ |VARIABLES|
|MATRIX| = |VARIABLES| ∗ |VARIABLES|

Purpose

All variables of the VARIABLES collection should take a distinct value located within
interval [1, |VARIABLES|]. In addition COST is equal to the sum of the costs associated
with the fact that we assign value i to variable j. These costs are given by the matrix
MATRIX.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



〈2, 3, 1, 4〉 ,

〈

i− 1 j− 1 c− 4,
i− 1 j− 2 c− 1,
i− 1 j− 3 c− 7,
i− 1 j− 4 c− 0,
i− 2 j− 1 c− 1,
i− 2 j− 2 c− 0,
i− 2 j− 3 c− 8,
i− 2 j− 4 c− 2,
i− 3 j− 1 c− 3,
i− 3 j− 2 c− 2,
i− 3 j− 3 c− 1,
i− 3 j− 4 c− 6,
i− 4 j− 1 c− 0,
i− 4 j− 2 c− 0,
i− 4 j− 3 c− 6,
i− 4 j− 4 c− 5

〉
, 17


The MINIMUM WEIGHT ALLDIFFERENT constraint holds since the cost 17 corresponds to
the sum MATRIX[(1−1) ·4+2].c+MATRIX[(2−1) ·4+3].c+MATRIX[(3−1) ·4+1].c+
MATRIX[(4−1) ·4+4].c = MATRIX[2].c+MATRIX[7].c+MATRIX[9].c+MATRIX[16].c =
1 + 8 + 3 + 5.

All solutions Figure 5.608 gives all solutions to the following non ground instance of the
MINIMUM WEIGHT ALLDIFFERENT constraint:
V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [1, 6], V4 ∈ [2, 5], V5 ∈ [2, 3], V6 ∈ [1, 6], V ∈ [0, 25],
MINIMUM WEIGHT ALLDIFFERENT(〈V1, V2, V3, V4, V5, V6〉,

〈1 1 5, 1 2 0, 1 3 1, 1 4 1, 1 5 3, 1 6 0,
2 1 2, 2 2 7, 2 3 0, 2 4 2, 2 5 5, 2 6 1,
3 1 3, 3 2 3, 3 3 6, 3 4 6, 3 5 0, 3 6 9,
4 1 4, 4 2 3, 4 3 0, 4 4 0, 4 5 0, 4 6 2,
5 1 2, 5 2 0, 5 3 6, 5 4 3, 5 5 7, 5 6 2,
6 1 5, 6 2 4, 6 3 5, 6 4 4, 6 5 5, 6 6 4〉, C).

Typical |VARIABLES| > 1
range(MATRIX.c) > 1
MATRIX.c > 0

Arg. properties Functional dependency: COST determined by VARIABLES and MATRIX.

Algorithm The Hungarian method for the assignment problem [254] can be used for evaluating the
bounds of the COST variable. A filtering algorithm is described in [388]. It can be used for
handling both side of the MINIMUM WEIGHT ALLDIFFERENT constraint:

• Evaluating a lower bound of the COST variable and pruning the variables of the
VARIABLES collection in order to not exceed the maximum value of COST.

• Evaluating an upper bound of the COST variable and pruning the variables of the
VARIABLES collection in order to not be under the minimum value of COST.

Systems ALL DIFFERENT in SICStus, ALL DISTINCT in SICStus.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.

http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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¬ (〈4, 2, 1, 5, 3, 6〉, 21)
 (〈4, 3, 1, 5, 2, 6〉, 8)
® (〈4, 3, 6, 5, 2, 1〉, 15)

¬

21

5 0 1 1 3 0

2 7 0 2 5 1

3 3 6 6 0 9

4 3 0 0 0 2

2 0 6 3 7 2

5 4 5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4 5 6



8

5 0 1 1 3 0

2 7 0 2 5 1

3 3 6 6 0 9

4 3 0 0 0 2

2 0 6 3 7 2

5 4 5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4 5 6

®

15

5 0 1 1 3 0

2 7 0 2 5 1

3 3 6 6 0 9

4 3 0 0 0 2

2 0 6 3 7 2

5 4 5 4 5 4





V1

V2

V3

V4

V5

V6

1 2 3 4 5 6

Figure 5.608: All solutions corresponding to the non ground example of the
MINIMUM WEIGHT ALLDIFFERENT constraint of the All solutions slot

See also attached to cost variant: ALLDIFFERENT.

common keyword: GLOBAL CARDINALITY WITH COSTS (cost filtering con-
straint,weighted assignment), SUM OF WEIGHTS OF DISTINCT VALUES (weighted
assignment), WEIGHTED PARTIAL ALLDIFF (cost filtering constraint,weighted assign-
ment).

Keywords application area: assignment.

characteristic of a constraint: core.

filtering: cost filtering constraint, Hungarian method for the assignment problem.

final graph structure: one succ.

modelling: cost matrix, functional dependency.

problems: weighted assignment.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.key

Graph property(ies) • NTREE= 0

• SUM WEIGHT ARC

(
MATRIX

[∑(
(variables1.key− 1) ∗ |VARIABLES|,
variables1.var

)]
.c

)
= COST

Graph model Since each variable takes one value, and because of the arc constraint variables1 =
variables.key, each vertex of the initial graph belongs to the final graph and has exactly
one successor. Therefore the sum of the out-degrees of the vertices of the final graph is
equal to the number of vertices of the final graph. Since the sum of the in-degrees is equal
to the sum of the out-degrees, it is also equal to the number of vertices of the final graph.
Since NTREE = 0, each vertex of the final graph belongs to a circuit. Therefore each
vertex of the final graph has at least one predecessor. Since we saw that the sum of the
in-degrees is equal to the number of vertices of the final graph, each vertex of the final
graph has exactly one predecessor. We conclude that the final graph consists of a set of
vertex-disjoint elementary circuits.

Finally the graph constraint expresses that the COST variable is equal to the sum of the
elementary costs associated with each variable-value assignment. All these elementary
costs are recorded in the MATRIX collection. More precisely, the cost cij is recorded in the
attribute c of the ((i − 1) · |VARIABLES)| + j)th entry of the MATRIX collection. This is
ensured by the increasing restriction that enforces that the items of the MATRIX collection
are sorted in lexicographically increasing order according to attributes i and j.

VARIABLES

1

2

3

4 NARC=4
SUM_WEIGHT_ARC=1+8+3+5=17

1:2

2:3

1

3:1

8

3

4:4 5

(A) (B)

Figure 5.609: Initial and final graph of the MINIMUM WEIGHT ALLDIFFERENT con-
straint

Parts (A) and (B) of Figure 5.609 respectively show the initial and final graph associated
with the Example slot. Since we use the SUM WEIGHT ARC graph property, the


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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arcs of the final graph are stressed in bold. We also indicate their corresponding weights.
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5.272 MULTI GLOBAL CONTIGUITY

I B C J DESCRIPTION LINKS

Origin Derived from GLOBAL CONTIGUITY.

Constraint MULTI GLOBAL CONTIGUITY(VARIABLES)

Synonym MULTI CONTIGUITY.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0

Purpose Enforce all variables of the VARIABLES collection to be assigned a value greater than or
equal to 0. In addition, each value v strictly greater than 0 should appear contiguously.

Example (〈0, 2, 2, 1, 1, 0, 0, 5〉)

The MULTI GLOBAL CONTIGUITY constraint holds since the sequence 0 2 2 1 1 0 0 5
contains no more than one group of contiguous 1, no more than one group of contiguous
2, and no more than one group of contiguous 5.

Typical |VARIABLES| > 3

Typical model nval(VARIABLES.var) > 2
ATLEAST(2, VARIABLES, 0)

Symmetry Items of VARIABLES can be reversed.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 55 413 3656 37147 425069 5400481

Number of solutions for MULTI GLOBAL CONTIGUITY: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Typical model
Typical conditions on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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See also common keyword: GROUP (sequence).

implied by: ALL EQUAL, ALLDIFFERENT, ALLDIFFERENT EXCEPT 0, DECREASING,
GLOBAL CONTIGUITY, INCREASING.


See also
Related constraints grouped by semantics links.
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Keywords combinatorial object: sequence.

constraint type: predefined constraint.


Keywords
Related keywords grouped by meta-keywords.
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5.273 MULTI INTER DISTANCE

I B C J DESCRIPTION LINKS

Origin [313]

Constraint MULTI INTER DISTANCE(VARIABLES, LIMIT, DIST)

Synonyms MULTI ALL MIN DISTANCE, MULTI ALL MIN DIST, SLIDING ATMOST,
ATMOST SLIDING.

Arguments VARIABLES : collection(var−dvar)
LIMIT : int

DIST : int

Restrictions required(VARIABLES, var)
LIMIT > 0
DIST > 0

Purpose Enforce that at most LIMIT variables of the collection VARIABLES are assigned values
in any set consisting of DIST consecutive integer values.

Example (〈4, 0, 9, 4, 7〉 , 2, 3) 0 4

4

7

9

9

1 2 3 5 6 8 10 11 120 4 7 9
4

1

2 ≤ 2

The MULTI INTER DISTANCE constraint holds since, for each set of DIST = 3
consecutive values, no more than LIMIT = 2 variables of the VARIABLES collection
〈4, 0, 9, 4, 7〉 are assigned a value from that set:

• At most two, in fact one, variables of the VARIABLES collection are assigned a value
from the set {0, 1, 2}.

• At most two, in fact zero, variables of the VARIABLES collection are assigned a value
from the set {1, 2, 3}.

• At most two, in fact two, variables of the VARIABLES collection are assigned a value
from the set {2, 3, 4}.

• At most two, in fact two, variables of the VARIABLES collection are assigned a value
from the set {3, 4, 5}.

• At most two, in fact two, variables of the VARIABLES collection are assigned a value
from the set {4, 5, 6}.

• At most two, in fact one, variables of the VARIABLES collection are assigned a value
from the set {5, 6, 7}.

• At most two, in fact one, variables of the VARIABLES collection are assigned a value
from the set {6, 7, 8}.

• At most two, in fact two, variables of the VARIABLES collection are assigned a value
from the set {7, 8, 9}.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical LIMIT > 1
LIMIT < |VARIABLES|
DIST > 1
DIST <range(VARIABLES.var)

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

• LIMIT can be increased.

• MINDIST can be decreased to any value ≥ 1.

Arg. properties Contractible wrt. VARIABLES.

Usage The MULTI INTER DISTANCE constraint was tested for scheduling tasks that all have the
same fixed duration in the context of air traffic management.

Algorithm P. Ouellet and C.-G. Quimper came up with a cubic time complexity algorithm achieving
bound-consistency in [313].

See also generalisation: CUMULATIVE (line segment, of same length, replaced by
line segment).

specialisation: ALL MIN DIST (LIMIT parameter set to 1),
CARDINALITY ATMOST (window of DIST consecutive values replaced by window
of size 1).

Keywords application area: air traffic management.

constraint type: predefined constraint, value constraint, scheduling constraint.

filtering: bound-consistency.

modelling: at most.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.274 MULTIPLE

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint MULTIPLE(X, Y, C)

Arguments X : dvar

Y : dvar

C : int

Restrictions X 6= 0
Y 6= 0
C > 0

Purpose Enforce max(|X|, |Y|) = C ·min(|X|, |Y|), (with |X| 6= 0 and |Y| 6= 0).

Example (8,−2, 4)

The MULTIPLE constraint holds since max(|8|, | − 2|) = 4 ·min(|8|, | − 2|).

Typical C > 1

Arg. properties Functional dependency: C determined by X and Y.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Keywords
Related keywords grouped by meta-keywords.
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5.275 NAND

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint NAND(VAR, VARIABLES)

Synonym CLAUSE.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = ¬(VAR1 ∧ VAR2 ∧ · · · ∧ VARn).

Example (1, 〈0, 0〉)
(1, 〈0, 1〉)
(1, 〈1, 0〉)
(0, 〈1, 1〉)
(1, 〈1, 0, 1〉)

Symmetry Items of VARIABLES are permutable.

Arg. properties • Functional dependency: VAR determined by VARIABLES.

• Contractible wrt. VARIABLES when VAR = 0.

• Extensible wrt. VARIABLES when VAR = 1.

• Aggregate: VAR(∨), VARIABLES(union).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 8 16 32 64 128 256

Number of solutions for NAND: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 4 8 16 32 64 128 256

Parameter
value

0 1 1 1 1 1 1 1
1 3 7 15 31 63 127 255

Solution count for NAND: domains 0..n

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
10−8
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Systems CLAUSE in Choco, CLAUSE in Gecode, #/\ in SICStus.

See also common keyword: AND, EQUIVALENT, IMPLY, NOR, OR, XOR (Boolean constraint).

implies: ATLEAST NVALUE.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Cond. implications NAND(VAR, VARIABLES)
with |VARIABLES| > 2

implies SOME EQUAL(VARIABLES).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/
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Automaton Figure 5.610 depicts the automaton associated with the NAND constraint. To the first argu-
ment VAR of the NAND constraint corresponds the first signature variable. To each variable
VARi of the second argument VARIABLES of the NAND constraint corresponds the next
signature variable. There is no signature constraint.

s

i

j

k

VAR = 1

VAR = 0

VARi = 1

VARi = 0

VARi = 1

VARi = 1

VARi = 0

Figure 5.610: Automaton of the NAND constraint

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {j, k}

VARn

Figure 5.611: Hypergraph of the reformulation corresponding to the automaton of the
NAND constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.276 NCLASS

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from NVALUE.

Constraint NCLASS(NCLASS, VARIABLES, PARTITIONS)

Type VALUES : collection(val−int)

Arguments NCLASS : dvar

VARIABLES : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
NCLASS ≥ 0
NCLASS ≤ min(|VARIABLES|, |PARTITIONS|)
NCLASS ≤range(VARIABLES.var)
required(VARIABLES, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose Number of partitions of the collection PARTITIONS such that at least one value is as-
signed to at least one variable of the collection VARIABLES.

Example (2, 〈3, 2, 7, 2, 6〉 , 〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉)

Note that the values of 〈3, 2, 7, 2, 6〉 occur within partitions p − 〈1, 3〉 and p − 〈2, 6〉 but
not within p − 〈4〉. Consequently, the NCLASS constraint holds since its first argument
NCLASS is set to value 2.

Typical NCLASS > 1
NCLASS < |VARIABLES|
NCLASS <range(VARIABLES.var)
|VARIABLES| > |PARTITIONS|

Symmetries • Items of VARIABLES are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

• All occurrences of two distinct tuples of values in VARIABLES.var or
PARTITIONS.p.val can be swapped; all occurrences of a tuple of values in
VARIABLES.var or PARTITIONS.p.val can be renamed to any unused tuple of
values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties • Functional dependency: NCLASS determined by VARIABLES and PARTITIONS.

• Extensible wrt. VARIABLES when NCLASS = |PARTITIONS|.

Algorithm [29, 46].

See also related: NEQUIVALENCE (variable ∈ partition replaced by
variable mod constant), NINTERVAL (variable ∈ partition replaced by
variable/constant), NPAIR (variable ∈ partition replaced by pair of
variables).

specialisation: NVALUE (variable ∈ partition replaced by variable).

used in graph description: IN SAME PARTITION.

Keywords characteristic of a constraint: partition.

constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSCC= NCLASS

Graph model Parts (A) and (B) of Figure 5.612 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a class of values that was assigned to some variables of the VARIABLES

collection. We effectively use two classes of values that respectively correspond to values
{3} and {2, 6}. Note that we do not consider value 7 since it does not belong to the
different classes of values we gave: all corresponding arc constraints do not hold.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3 2:2

4:2

5:6

(A) (B)

Figure 5.612: Initial and final graph of the NCLASS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.277 NEQ

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint NEQ(VAR1, VAR2)

Synonym REL.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that two variables are not equal.

Example (1, 8)

The NEQ constraint holds since 1 is not equal to 8.

Symmetries • Arguments are permutable w.r.t. permutation (VAR1, VAR2).

• A value in VAR1 or VAR2 can be renamed to any unused value.

Systems NEQ in Choco, REL in Gecode, #\= in SICStus.

See also common keyword: GEQ, LEQ (binary constraint,arithmetic constraint).

generalisation: NEQ CST (constant added), NOT ALL EQUAL.

implied by: GT, LT.

negation: EQ.

system of constraints: ALLDIFFERENT.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.278 NEQ CST

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint NEQ CST(VAR1, VAR2, CST2)

Arguments VAR1 : dvar

VAR2 : dvar

CST2 : int

Purpose Enforce the fact that the first variable is different from the sum of the second variable
and the constant.

Example (8, 2, 7)

The NEQ CST constraint holds since 8 is different from 2 + 7.

Typical CST2 6= 0
VAR1 6= VAR2 + CST2

Symmetries • Arguments are permutable w.r.t. permutation (VAR1) (VAR2, CST2).

• One and the same constant can be added to VAR1 and VAR2.

• One and the same constant can be added to VAR1 and CST2.

See also negation: EQ CST.

specialisation: NEQ (constant removed).

Keywords characteristic of a constraint: disequality.

constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.279 NEQUIVALENCE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from NVALUE.

Constraint NEQUIVALENCE(NEQUIV, M, VARIABLES)

Arguments NEQUIV : dvar

M : int

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NEQUIV ≥ min(1, |VARIABLES|)
NEQUIV ≤ min(M, |VARIABLES|)
NEQUIV ≤range(VARIABLES.var)
M > 0

Purpose NEQUIV is the number of distinct rests obtained by dividing the variables of the collection
VARIABLES by M.

Example (2, 3, 〈3, 2, 5, 6, 15, 3, 3〉)

Since the expressions 3 mod 3 = 0, 2 mod 3 = 2, 5 mod 3 = 2, 6 mod 3 = 0,
15 mod 3 = 0, 3 mod 3 = 0, and 3 mod 3 = 0 involve two distinct values (values 0 and
2), the first argument NEQUIV of the NEQUIVALENCE constraint is set to value 2.

Typical NEQUIV > 1
NEQUIV < |VARIABLES|
NEQUIV <range(VARIABLES.var)
M > 1
M <maxval(VARIABLES.var)

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value u of VARIABLES.var can be replaced by any other value
v such that v is congruent to u modulo M.

Arg. properties • Functional dependency: NEQUIV determined by M and VARIABLES.

• Contractible wrt. VARIABLES when NEQUIV = 1 and |VARIABLES| > 0.

• Contractible wrt. VARIABLES when NEQUIV = |VARIABLES|.
• Extensible wrt. VARIABLES when NEQUIV = M.

Algorithm Since constraints X = Y and X ≡ Y ( modM) are similar, one should also use a similar
algorithm as the one [29, 46] provided for constraint NVALUE.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also related: NCLASS (variable mod constant replaced by variable ∈ partition),
NINTERVAL (variable mod constant replaced by variable/constant),
NPAIR (variable mod constant replaced by pair of variables).

specialisation: NVALUE (variable mod constant replaced by variable).

Keywords constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSCC= NEQUIV

Graph model Parts (A) and (B) of Figure 5.613 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to one equivalence class: We have two equivalence classes that respectively
correspond to values {3, 6, 15} and {2, 5}.

VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

4:6

5:15

6:3

7:3

2:2

3:5

(A) (B)

Figure 5.613: Initial and final graph of the NEQUIVALENCE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.280 NEXT ELEMENT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint NEXT ELEMENT(THRESHOLD, INDEX, TABLE, VAL)

Arguments THRESHOLD : dvar

INDEX : dvar

TABLE : collection(index−int, value−dvar)
VAL : dvar

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE|
THRESHOLD < INDEX

required(TABLE, [index, value])
|TABLE| > 0
TABLE.index ≥ 1
TABLE.index ≤ |TABLE|
distinct(TABLE, index)

Purpose INDEX is the smallest entry of TABLE strictly greater than THRESHOLD containing value
VAL.

Example

 2, 3,

〈 index− 1 value− 1,
index− 2 value− 8,
index− 3 value− 9,
index− 4 value− 5,
index− 5 value− 9

〉
, 9


The NEXT ELEMENT constraint holds since 3 is the smallest entry located after
entry 2 that contains value 9.

Typical |TABLE| > 1
range(TABLE.value) > 1

Usage Originally introduced for modelling the fact that a nucleotide has to be consumed as soon
as possible at cycle INDEX after a given cycle represented by variable THRESHOLD.

See also related: MINIMUM GREATER THAN (identify an element in a table),
NEXT GREATER ELEMENT (allow to iterate over the values of a table).

Keywords characteristic of a constraint: minimum, automaton, automaton without counters, reified
automaton constraint, derived collection.

constraint network structure: centered cyclic(3) constraint network(1).

constraint type: data constraint.

modelling: table.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col

(
ITEM−collection(index−dvar, value−dvar),
[item(index− THRESHOLD, value− VAL)]

)
Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index < table.index
• item.value = table.value

Graph property(ies) NARC> 0

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TABLE.index)]

) 
Constraint(s) on sets MINIMUM(INDEX, variables)

Graph model Parts (A) and (B) of Figure 5.614 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.

ITEM

TABLE

1

12345

NARC=2

1:2,9

3:3,9 5:5,9

(A) (B)

Figure 5.614: Initial and final graph of the NEXT ELEMENT constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.615 depicts the automaton associated with the NEXT ELEMENT constraint. Let Ik
and Vk respectively be the index and the value attributes of the kth item of the TABLE

collections. To each quintuple (THRESHOLD, INDEX, VAL, Ik, Vk) corresponds a signature
variable Sk as well as the following signature constraint:

((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL))⇔ Sk = 0 ∧
((Ik ≤ THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL))⇔ Sk = 1 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL))⇔ Sk = 2 ∧
((Ik ≤ THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL))⇔ Sk = 3 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL))⇔ Sk = 4 ∧
((Ik ≤ THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL))⇔ Sk = 5 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk = VAL))⇔ Sk = 6 ∧
((Ik > THRESHOLD) ∧ (Ik < INDEX) ∧ (Vk 6= VAL))⇔ Sk = 7 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk = VAL))⇔ Sk = 8 ∧
((Ik > THRESHOLD) ∧ (Ik = INDEX) ∧ (Vk 6= VAL))⇔ Sk = 9 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk = VAL))⇔ Sk = 10 ∧
((Ik > THRESHOLD) ∧ (Ik > INDEX) ∧ (Vk 6= VAL))⇔ Sk = 11.

The automaton is constructed in order to fulfil the following conditions:

• We look for an item of the TABLE collection such that INDEXi > THRESHOLD and
INDEXi = INDEX and VALUEi = VAL,

• There should not exist any item of the TABLE collection such that INDEXi >
THRESHOLD and INDEXi < INDEX and VALUEi = VAL.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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s

t

INDEXi ≤ THRESHOLD ∧ INDEXi < INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi < INDEX ∧ VALUEi 6= VAL

INDEXi ≤ THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi 6= VAL

INDEXi ≤ THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi < INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi = VAL

INDEXi > THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi < INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi < INDEX ∧ VALUEi 6= VAL

INDEXi ≤ THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi 6= VAL

INDEXi ≤ THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi = VAL

INDEXi ≤ THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi < INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi = VAL

INDEXi > THRESHOLD ∧ INDEXi = INDEX ∧ VALUEi 6= VAL

INDEXi > THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi = VAL

INDEXi > THRESHOLD ∧ INDEXi > INDEX ∧ VALUEi 6= VAL

Figure 5.615: Automaton of the NEXT ELEMENT constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

THRESHOLD

INDEX

VAL

VALUE1 VALUE2 VALUEn

Figure 5.616: Hypergraph of the reformulation corresponding to the automaton of the
NEXT ELEMENT constraint
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5.281 NEXT GREATER ELEMENT

I B C J DESCRIPTION LINKS GRAPH

Origin M. Carlsson

Constraint NEXT GREATER ELEMENT(VAR1, VAR2, VARIABLES)

Arguments VAR1 : dvar

VAR2 : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR1 < VAR2

|VARIABLES| > 0
required(VARIABLES, var)

Purpose
VAR2 is the value strictly greater than VAR1 located at the smallest possible entry of the
table TABLE. In addition, the variables of the collection VARIABLES are sorted in strictly
increasing order.

Example (7, 8, 〈3, 5, 8, 9〉)

The NEXT GREATER ELEMENT constraint holds since:

• VAR2 is fixed to the first value 8 strictly greater than VAR1 = 7,

• The var attributes of the items of the collection VARIABLES are sorted in strictly
increasing order.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Usage Originally introduced in [106] for modelling the fact that a nucleotide has to be consumed
as soon as possible at cycle VAR2 after a given cycle VAR1.

Remark Similar to the MINIMUM GREATER THAN constraint, except for the fact that the var at-
tributes are sorted.

Reformulation Let V1, V2, . . . , V|VARIABLES| denote the variables of the collection of variables
VARIABLES. By creating the extra variables M and U1, U2, . . . , U|VARIABLES|, the
NEXT GREATER ELEMENT constraint can be expressed in term of the following con-
straints:

1. V1 < V2 < · · · < V|VARIABLES|

2. MAXIMUM(M, VARIABLES),

3. VAR2 > VAR1,

4. VAR2 ≤M ,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.



NEXT GREATER ELEMENT 1857

5. Vi ≤ VAR1⇒ Ui = M (i ∈ [1, |VARIABLES|]),

6. Vi > VAR1⇒ Ui = Vi (i ∈ [1, |VARIABLES|]),

7. MINIMUM(VAR2, 〈U1, U2, . . . , U|VARIABLES|〉).

See also common keyword: MINIMUM GREATER THAN (order constraint).

implies: MINIMUM GREATER THAN.

related: NEXT ELEMENT (allow to iterate over the values of a table).

Keywords characteristic of a constraint: minimum, derived collection.

constraint type: order constraint, data constraint.

modelling: table.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col(V−collection(var−dvar), [item(var− VAR1)])

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Arc input(s) V VARIABLES

Arc generator PRODUCT 7→collection(v, variables)

Arc arity 2

Arc constraint(s) v.var < variables.var

Graph property(ies) NARC> 0

Sets SUCC 7→ [source, variables]

Constraint(s) on sets MINIMUM(VAR2, variables)

Graph model Parts (A) and (B) of Figure 5.617 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property, the arcs of the final graph are stressed in bold.

V

VARIABLES

1

1234

NARC=2

1:7

3:8 4:9

(A) (B)

Figure 5.617: Initial and final graph of the NEXT GREATER ELEMENT constraint

Signature Since the first graph constraint uses the PATH arc generator on the VARIABLES collection,
the number of arcs of the corresponding initial graph is equal to |VARIABLES|−1. Therefore
the maximum number of arcs of the final graph is equal to |VARIABLES|−1. For this reason
we can rewrite NARC = |VARIABLES|−1 to NARC ≥ |VARIABLES|−1 and simplify
NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.282 NINTERVAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from NVALUE.

Constraint NINTERVAL(NVAL, VARIABLES, SIZE INTERVAL)

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)
SIZE INTERVAL : int

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
SIZE INTERVAL > 0

Purpose
Consider the intervals of the form [SIZE INTERVAL · k, SIZE INTERVAL · k +
SIZE INTERVAL − 1] where k is an integer. NVAL is the number of intervals for which
at least one value is assigned to at least one variable of the collection VARIABLES.

Example (2, 〈3, 1, 9, 1, 9〉 , 4)

In the example, the third argument SIZE INTERVAL = 4 defines the following
family of intervals [4 · k, 4 · k + 3], where k is an integer. Values 3, 1, 9, 1 and 9 are
respectively located within intervals [0, 3], [0, 3], [8, 11], [0, 3] and [8, 11]. Since we only
use the two intervals [0, 3] and [8, 11] the first argument of the NINTERVAL constraint is
set to value 2.

Typical NVAL > 1
NVAL < |VARIABLES|
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES.var)
(nval(VARIABLES.var) + SIZE INTERVAL− 1)/SIZE INTERVAL < NVAL

Symmetries • Items of VARIABLES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Arg. properties • Functional dependency: NVAL determined by VARIABLES and SIZE INTERVAL.

• Contractible wrt. VARIABLES when NVAL = 1 and |VARIABLES| > 0.

• Contractible wrt. VARIABLES when NVAL = |VARIABLES|.

Usage The NINTERVAL constraint is useful for counting the number of actually used periods, no
matter how many time each period is used. A period can, for example, stand for a hour or
for a day.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm [29, 46].

See also related: NCLASS (variable/constant replaced by variable ∈ partition),
NEQUIVALENCE (variable/constant replaced by variable mod constant),
NPAIR (variable/constant replaced by pair of variables).

specialisation: NVALUE (variable/constant replaced by variable).

Keywords constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, interval, functional dependency.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) NSCC= NVAL

Graph model Parts (A) and (B) of Figure 5.618 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the differ-
ent strongly connected components of the final graph. Each strongly connected compo-
nent corresponds to those values of an interval that are assigned to some variables of the
VARIABLES collection. The values 1, 3 and the value 9, which respectively correspond to
intervals [0, 3] and [8, 11], are assigned to the variables of the VARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

2:1

4:1

3:9

5:9

(A) (B)

Figure 5.618: Initial and final graph of the NINTERVAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.283 NO PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from PEAK.

Constraint NO PEAK(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm is a
peak if and only if there exists an i (1 < i ≤ k) such that Vi−1 < Vi and Vi = Vi+1 =
· · · = Vk and Vk > Vk+1. The total number of peaks of the sequence of variables
VARIABLES is equal to 0.

Example (〈1, 1, 4, 8, 8〉)

The NO PEAK constraint holds since the sequence 1 1 4 8 8 does not contain any
peak.

11
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Figure 5.619: Illustration of the Example slot: a sequence of five variables V1, V2, V3,
V4, V5 respectively fixed to values 1, 1, 4, 8, 8 without any peak

Typical |VARIABLES| > 3
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.
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Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 50 295 1792 11088 69498 439791

Number of solutions for NO PEAK: domains 0..n

2 3 4 5 6 7 8

10−2

10−1

100

Length

O
bs

er
ve

d
de

ns
ity

Solution density for NO PEAK


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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See also comparison swapped: NO VALLEY.

generalisation: PEAK (introduce a variable counting the number of peaks).

implied by: DECREASING, INCREASING.

implies: ALL EQUAL PEAK MAX.

related: VALLEY.

Keywords characteristic of a constraint: automaton, automaton without counters, automaton with
same input symbol, reified automaton constraint.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(1).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.620 depicts the automaton associated with the NO PEAK constraint. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signa-
ture variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

s : stationary/decreasing mode ({> | =}∗)
t : increasing mode (< {< | =}∗)

STATE SEMANTICS

s t

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1

VARi = VARi+1

VARi < VARi+1

Figure 5.620: Automaton of the NO PEAK constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.621: Hypergraph of the reformulation corresponding to the automaton of
the NO PEAK constraint (since all states of the automaton are accepting there is no
restriction on the last variable Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.284 NO VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from VALLEY.

Constraint NO VALLEY(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (1 < i ≤ k) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vk and Vk < Vk+1. The total number of valleys of the sequence of
variables VARIABLES is equal to 0.

Example (〈1, 1, 4, 8, 8, 2〉)

The NO VALLEY constraint holds since the sequence 1 1 4 8 8 2 does not contain
any valley.
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Figure 5.622: Illustration of the Example slot: a sequence of five variables V1, V2, V3,
V4, V5, V6 respectively fixed to values 1, 1, 4, 8, 8, 2 without any valley

Typical |VARIABLES| > 3
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.
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Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 50 295 1792 11088 69498 439791

Number of solutions for NO VALLEY: domains 0..n

2 3 4 5 6 7 8

10−2

10−1

100

Length
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ity

Solution density for NO VALLEY


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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See also comparison swapped: NO PEAK.

generalisation: VALLEY (introduce a variable counting the number of valleys).

implied by: DECREASING, GLOBAL CONTIGUITY, INCREASING.

implies: ALL EQUAL VALLEY MIN.

related: PEAK.

Keywords characteristic of a constraint: automaton, automaton without counters, automaton with
same input symbol, reified automaton constraint.

combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(1).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.623 depicts the automaton associated with the NO VALLEY constraint. To each
pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(VARi < VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔
Si = 2).

s : stationary/increasing mode ({< | =}∗)
t : decreasing mode (> {> | =}∗)

STATE SEMANTICS

s t

VARi = VARi+1

VARi < VARi+1

VARi > VARi+1

VARi = VARi+1

VARi > VARi+1

Figure 5.623: Automaton of the NO VALLEY constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.624: Hypergraph of the reformulation corresponding to the automaton of
the NO VALLEY constraint (since all states of the automaton are accepting there is no
restriction on the last variable Qn−1)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.285 NON OVERLAP SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [42]

Constraint NON OVERLAP SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonyms NON OVERLAP, NON OVERLAPPING.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi andOj do not overlap with respect
to a set of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among
a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted
box is described by a box in a K-dimensional space at a given offset (from the origin of
the shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An object Oi does not overlap an object Oj with respect to a set of dimensions depicted
by DIMS if and only if, for all shifted box si associated with Oi and for all shifted box
sj associated with Oj , there exists a dimension d ∈ DIMS such that the start of si in
dimension d is greater than or equal to the end of sj in dimension d, or the start of sj in
dimension d is greater than or equal to the end of si in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈4, 1〉 ,
oid− 2 sid− 3 x− 〈2, 2〉 ,
oid− 3 sid− 4 x− 〈5, 4〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈1, 1〉 ,
sid− 1 t− 〈1, 0〉 l− 〈1, 3〉 ,
sid− 1 t− 〈0, 2〉 l− 〈1, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈1, 2〉 ,
sid− 4 t− 〈0, 0〉 l− 〈1, 1〉

〉


Figure 5.625 shows the objects of the example. Since O1 and O2 do not overlap,
since O1 and O3 do not overlap, and since O2 and O3 also do not overlap, the
NON OVERLAP SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

• SBOXES.l.v can be decreased to any value ≥ 1.

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark In addition from preventing objects to overlap, the DISJOINT SBOXES constraint also en-
forces that borders and corners of objects are not directly in contact.

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES,
COVERS SBOXES (geometrical constraint between shifted boxes), DIFFN (geometrical
constraint,non-overlapping), DISJOINT SBOXES, EQUAL SBOXES (geometrical constraint


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.
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S1

(A) Shapes of the
first object

S2

S3

(B) Shape of the
second object

S4

(C) Shape of the
third object

1 32 4 5

3

1

2

4

O1

O2

O3

(D) Three objects where O1 does neither overlap O2 nor O3

and where O2 and O3 also do not overlap

O1: oid− 1 sid− 1 x− 〈4, 1〉
O2: oid− 2 sid− 3 x− 〈2, 2〉
O3: oid− 3 sid− 4 x− 〈5, 4〉

OBJECTS

Figure 5.625: (D) the three pairwise non-overlapping objects O1, O2, O3 of the Ex-
ample slot respectively assigned shapes S1, S3, S4; (A), (B), (C) shapes S1, S2, S3

and S4 are respectively made up from 3, 3, 1 and 1 disjoint shifted box.

between shifted boxes), GEOST, GEOST TIME (geometrical constraint,non-overlapping),
INSIDE SBOXES, MEET SBOXES, OVERLAP SBOXES (geometrical constraint between
shifted boxes), VISIBLE (geometrical constraint).

implied by: DISJOINT SBOXES.

Keywords constraint type: logic.

geometry: geometrical constraint, non-overlapping.


Keywords
Related keywords grouped by meta-keywords.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• non overlap sboxes(Dims, O1, S1, O2, S2)
def
=

∃D ∈ Dims

∨


end(O1, S1, D) ≤

origin

 O2,
S2,
D

 ,

end(O2, S2, D) ≤

origin

 O1,
S1,
D




• non overlap objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∀S2 ∈ sboxes

( [
O2.sid

] )
non overlap sboxes


Dims,
O1,
S1,
O2,
S2


• all non overlap(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects

(
OIDS

)
O1.oid <
O2.oid

⇒

non overlap objects

 Dims,
O1,
O2


• all non overlap(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.286 NOR

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint NOR(VAR, VARIABLES)

Synonym CLAUSE.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = ¬(VAR1 ∨ VAR2 ∨ · · · ∨ VARn).

Example (1, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(0, 〈1, 1〉)
(0, 〈1, 0, 1〉)

Symmetry Items of VARIABLES are permutable.

Arg. properties • Functional dependency: VAR determined by VARIABLES.

• Contractible wrt. VARIABLES when VAR = 1.

• Extensible wrt. VARIABLES when VAR = 0.

• Aggregate: VAR(∧), VARIABLES(union).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 8 16 32 64 128 256

Number of solutions for NOR: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 4 8 16 32 64 128 256

Parameter
value

0 3 7 15 31 63 127 255
1 1 1 1 1 1 1 1

Solution count for NOR: domains 0..n

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
10−8

10−7

10−6

10−5

10−4

10−3

Parameter value as fraction of length
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Solution density for NOR

size 6
size 7
size 8
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Systems REIFIEDXNOR in Choco, CLAUSE in Gecode, #\/ in SICStus.

See also common keyword: AND, EQUIVALENT, IMPLY, NAND, OR, XOR (Boolean constraint).

implies: ATLEAST NVALUE, SOFT ALL EQUAL MIN CTR.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Cond. implications NOR(VAR, VARIABLES)
with |VARIABLES| > 2

implies SOME EQUAL(VARIABLES).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/
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Automaton Figure 5.626 depicts the automaton associated with the NOR constraint. To the first argu-
ment VAR of the NOR constraint corresponds the first signature variable. To each variable
VARi of the second argument VARIABLES of the NOR constraint corresponds the next sig-
nature variable. There is no signature constraint.

s

i

j k

VAR = 1

VAR = 0

VARi = 0

VARi = 0

VARi = 1

VARi = 0

VARi = 1

Figure 5.626: Automaton of the NOR constraint

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {i, k}

VARn

Figure 5.627: Hypergraph of the reformulation corresponding to the automaton of the
NOR constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.287 NOT ALL EQUAL

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin CHIP

Constraint NOT ALL EQUAL(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 1

Purpose The variables of the collection VARIABLES should take more than a single value.

Example (〈3, 1, 3, 3, 3〉)

The NOT ALL EQUAL constraint holds since the collection 〈3, 1, 3, 3, 3〉 involves
more than one value (i.e., values 1 and 3).

Typical |VARIABLES| > 2
nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Extensible wrt. VARIABLES.

Algorithm If the intersection of the domains of the variables of the VARIABLES collection is empty the
NOT ALL EQUAL constraint is entailed. Otherwise, when only a single variable V remains
not fixed, remove the unique value (unique since the constraint is not entailed) taken by the
other variables from the domain of V .

Reformulation The NOT ALL EQUAL(VARIABLES) constraint can be expressed as
ATLEAST NVALUE(2, VARIABLES).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 6 60 620 7770 117642 2097144 43046712

Number of solutions for NOT ALL EQUAL: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Systems REL in Gecode.

See also generalisation: NVALUE (introduce a variable for counting the number of distinct values).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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implied by: ALLDIFFERENT.

negation: ALL EQUAL.

specialisation: NEQ (when go down to two variables).

used in reformulation: ATLEAST NVALUE.

Keywords characteristic of a constraint: disequality, automaton, automaton without counters, rei-
fied automaton constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency.

final graph structure: equivalence.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC> 1

Graph model Parts (A) and (B) of Figure 5.628 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value that is assigned to some variables of the VARIABLES collection. The
NOT ALL EQUAL holds since the final graph contains more than one strongly connected
component.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3

3:3

4:3

5:3

2:1

(A) (B)

Figure 5.628: Initial and final graph of the NOT ALL EQUAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.629 depicts the automaton associated with the NOT ALL EQUAL constraint. To
each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds
a signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
VARi = VARi+1 ⇔ Si.

s t

VARi = VARi+1

VARi 6= VARi+1

VARi = VARi+1

VARi 6= VARi+1

Figure 5.629: Automaton of the NOT ALL EQUAL constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1 = t

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.630: Hypergraph of the reformulation corresponding to the automaton of the
NOT ALL EQUAL constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.288 NOT IN

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from IN.

Constraint NOT IN(VAR, VALUES)

Arguments VAR : dvar

VALUES : collection(val−int)

Restrictions required(VALUES, val)
distinct(VALUES, val)

Purpose Enforce VAR to be assigned a value different from the values of the VALUES collection.

Example (2, 〈1, 3〉)

The constraint NOT IN holds since the value of its first argument VAR = 2 does not
occur within the collection 〈1, 3〉.

Typical |VALUES| > 1

Symmetries • Items of VALUES are permutable.

• One and the same constant can be added to VAR as well as to the val attribute of
all items of VALUES.

Arg. properties Contractible wrt. VALUES.

Remark Entailment occurs immediately after posting this constraint and removing all values in
VALUES from VAR.

Systems NOTMEMBER in Choco, REL in Gecode.

Used in GROUP.

See also negation: IN.

Keywords characteristic of a constraint: disequality, automaton, automaton without counters, rei-
fied automaton constraint, derived collection.

constraint arguments: unary constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: value constraint.

filtering: arc-consistency, entailment.

modelling: excluded, domain definition.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Derived Collection
col(VARIABLES−collection(var−dvar), [item(var− VAR)])

Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) NARC= 0

Graph model Figure 5.631 shows the initial graph associated with the Example slot. Since we use the
NARC = 0 graph property the corresponding final graph is empty.

VARIABLES

VALUES

1

12

Figure 5.631: Initial graph of the NOT IN constraint (the final graph is empty)

Signature Since 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 to
NARC ≤ 0. This leads to simplify NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.632 depicts the automaton associated with the NOT IN constraint. Let VALi be the
val attribute of the ith item of the VALUES collection. To each pair (VAR, VALi) corresponds
a 0-1 signature variable Si as well as the following signature constraint: VAR = VALi ⇔ Si.

s VAR 6= VALi

Figure 5.632: Automaton of the NOT IN constraint

Q0 = s Q1

S1 S2

Qn = s

Sn

VAR

Figure 5.633: Hypergraph of the reformulation corresponding to the automaton of the
NOT IN constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.289 NPAIR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from NVALUE.

Constraint NPAIR(NPAIRS, PAIRS)

Arguments NPAIRS : dvar

PAIRS : collection(x−dvar, y−dvar)

Restrictions NPAIRS ≥ min(1, |PAIRS|)
NPAIRS ≤ |PAIRS|
required(PAIRS, [x, y])

Purpose NPAIRS is the number of distinct pairs of values assigned to the pairs of variables of the
collection PAIRS.

Example

 2,

〈 x− 3 y− 1,
x− 1 y− 5,
x− 3 y− 1,
x− 3 y− 1,
x− 1 y− 5

〉 
The NPAIR constraint holds since its first argument NPAIRS = 2 is set to the num-
ber of distinct pairs 〈x− 3 y− 1〉 and 〈x− 1 y− 5〉 of its second argument PAIRS.

Typical NPAIRS > 1
NPAIRS < |PAIRS|
|PAIRS| > 1
range(PAIRS.x) > 1
range(PAIRS.y) > 1

Symmetries • Items of PAIRS are permutable.

• Attributes of PAIRS are permutable w.r.t. permutation (x, y) (permutation applied
to all items).

• All occurrences of two distinct tuples of values of NPAIRS can be swapped; all
occurrences of a tuple of values of NPAIRS can be renamed to any unused tuple of
values.

Arg. properties • Functional dependency: NPAIRS determined by PAIRS.

• Contractible wrt. PAIRS when NPAIRS = 1 and |PAIRS| > 0.

• Contractible wrt. PAIRS when NPAIRS = |PAIRS|.

Remark This is an example of a number of distinct values constraint where there is more than one
attribute that is associated with each vertex of the final graph.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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See also related: NCLASS (pair of variables replaced by variable ∈ partition),
NEQUIVALENCE (pair of variables replaced by variable mod constant),
NINTERVAL (pair of variables replaced by variable/constant).

specialisation: NVALUE (pair of variables replaced by variable).

Keywords characteristic of a constraint: pair.

constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) PAIRS

Arc generator CLIQUE 7→collection(pairs1, pairs2)

Arc arity 2

Arc constraint(s) • pairs1.x = pairs2.x
• pairs1.y = pairs2.y

Graph property(ies) NSCC= NPAIRS

Graph model Parts (A) and (B) of Figure 5.634 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a pair of values that is assigned to some pairs of variables of the PAIRS

collection. In our example we have the following pairs of values: 〈x − 3 y − 1〉 and
〈x− 1 y− 5〉.

PAIRS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:3,1

3:3,1

4:3,1

2:1,5

5:1,5

(A) (B)

Figure 5.634: Initial and final graph of the NPAIR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.290 NSET OF CONSECUTIVE VALUES

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint NSET OF CONSECUTIVE VALUES(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 1
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose N is the number of set of consecutive values used by the variables of the collection
VARIABLES.

Example (2, 〈3, 1, 7, 1, 1, 2, 8〉)
(7, 〈3, 1, 5, 7, 9, 11, 13〉)
(1, 〈3, 3, 3, 3, 3, 3, 3〉)

In the first example, the two parts 3, 1, 1, 1, 2 and 7, 8 take respectively their values
in the following sets of consecutive values {1, 2, 3} and {7, 8}. Consequently, the
corresponding NSET OF CONSECUTIVE VALUES constraint holds since its first argument
N = 2 is set to the number of sets of consecutive values.

Typical N > 1
|VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: N determined by VARIABLES.

Usage Used for specifying the fact that the values have to be used in a compact way is achieved
by setting N to 1.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for NSET OF CONSECUTIVE VALUES: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 7 34 217 1716 16159 176366 2187637
2 2 30 372 4740 65010 969066 15695624
3 - - 36 1320 34920 842520 19989900
4 - - - - 1560 109200 5047560
5 - - - - - - 126000

Solution count for NSET OF CONSECUTIVE VALUES: domains 0..n
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size 6
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size 8
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
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size 6
size 7
size 8

See also common keyword: MAX SIZE SET OF CONSECUTIVE VAR,
MIN SIZE SET OF CONSECUTIVE VAR (consecutive values).

Keywords characteristic of a constraint: consecutive values.

constraint arguments: pure functional dependency.

constraint type: value constraint.

final graph structure: strongly connected component.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) ≤ 1

Graph property(ies) NSCC= N

Graph model Since the arc constraint is symmetric each strongly connected component of the final graph
corresponds exactly to one connected component of the final graph.

Parts (A) and (B) of Figure 5.635 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NSCC graph property, we
show the two strongly connected components of the final graph.

VARIABLES

1

2

3

4

5

6

7

NSCC=2

SCC#1 SCC#2

1:3

6:2

2:1

4:1

5:1

3:7

7:8

(A) (B)

Figure 5.635: Initial and final graph of the NSET OF CONSECUTIVE VALUES con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.291 NUMBER DIGIT

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint NUMBER DIGIT(N, VARIABLES, B)

Arguments N : dvar

VARIABLES : collection(var−dvar)
B : int

Restrictions N ≥ 0
|VARIABLES| ≥ 1
|VARIABLES| ≤ 9
VARIABLES.var ≥ 0
VARIABLES.var ≤ B− 1
B ≥ 2
B ≤ 10

Purpose Enforce N to be equal to the digits of VARIABLES in base B.

Example (1234, 〈1, 2, 3, 4〉 , 10)

The NUMBER DIGIT constraint holds since 1234 is equal to 1 · 103 + 2 · 102 + 3 · 10 + 4.

Arg. properties Functional dependency: N determined by VARIABLES and B.

Keywords constraint arguments: pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Keywords
Related keywords grouped by meta-keywords.
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5.292 NVALUE

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [314]

Constraint NVALUE(NVAL, VARIABLES)

Synonyms CARDINALITY ON ATTRIBUTES VALUES, VALUES.

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
NVAL ≤range(VARIABLES.var)

Purpose NVAL is the number of distinct values taken by the variables of the collection VARIABLES.

Example (4, 〈3, 1, 7, 1, 6〉)
(1, 〈6, 6, 6, 6, 6〉)
(5, 〈6, 3, 0, 2, 9〉)

• The first NVALUE constraint holds
since its first argument NVAL = 4
is set to the number of distinct val-
ues occurring within the collection
〈3, 1, 7, 1, 6〉.

• The second NVALUE constraint holds
since its first argument NVAL = 1
is set to the number of distinct val-
ues occurring within the collection
〈6, 6, 6, 6, 6〉.

• The third NVALUE constraint holds
since its first argument NVAL = 5
is set to the number of distinct val-
ues occurring within the collection
〈6, 3, 0, 2, 9〉.

31

first value

12, 14

second value

73

third value

65

fourth value

61, 62, 63, 64, 65

first value

61

first value

32

second value

03

third value

24

fourth value

95

fifth value

All solutions Figure 5.636 gives all solutions to the following non ground instance of the NVALUE con-
straint: N ∈ [1, 2], V1 ∈ [2, 4], V2 ∈ [1, 2], V3 ∈ [2, 4], NVALUE(N, 〈V1, V2, V3〉).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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¬ (1, 〈2,2,2〉)
 (2, 〈2,1,2〉)
® (2, 〈2,2,3〉)
¯ (2, 〈2,2,4〉)
° (2, 〈3,1,3〉)

± (2, 〈3,2,2〉)
² (2, 〈3,2,3〉)
³ (2, 〈4,1,4〉)
´ (2, 〈4,2,2〉)
µ (2, 〈4,2,4〉)

Figure 5.636: All solutions corresponding to the non ground example of the NVALUE
constraint of the All solutions slot

Typical NVAL > 1
NVAL < |VARIABLES|
|VARIABLES| > 1

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties • Functional dependency: NVAL determined by VARIABLES.

• Contractible wrt. VARIABLES when NVAL = 1 and |VARIABLES| > 0.

• Contractible wrt. VARIABLES when NVAL = |VARIABLES|.

Usage The NVALUE constraint allows relaxing the ALLDIFFERENT constraint by restricting its
first argument NVAL to be close, but not necessarily equal, to the number of variables of the
VARIABLES collection.

A classical example from the early 1850s is the dominating queens chess puzzle problem:
Place a number of queens on an n by n chessboard in such a way that all cells of the
chessboard are either attacked by a queen or are occupied by a queen. A queen can attack
all cells located on the same column, on the same row or on the same diagonal. Part (A)
of Figure 5.637 illustrates a set of five queens which together attack all of the cells of an
8 by 8 chessboard. The dominating queens problem can be modelled by just one NVALUE

constraint:

• We first label the different cells of the chessboard from 1 to n2.

• We then associate to each cell c of the chessboard a domain variable. Its ini-
tial domain is set to the labels of the cells that can attack cell c. For instance,
in the context of an 8 by 8 chessboard, the initial domain of V29 will be set to
{2,5,8,11,13,15,20..22,25..32,36..38,43,45,47,50,53,56,57,61} (see the green cells
of part (B) of Figure 5.637).

• Finally, we post the constraint NVALUE(Q, 〈var− V1, var− V2, . . . , var− Vn2〉)
where Q is a domain variable in [1, n2] that gives the total number of queens used
for controlling all cells of the chessboard. Note that variable Q should be passed
to a minimisation procedure to get the smallest possible number of queens. For
the solution depicted by Part (A) of Figure 5.637, the label in each cell of Part (C)
of Figure 5.637 gives the value assigned to the corresponding variable. Note that,


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Q

Q

Q

Q

Q

(A)

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

(B)

46 29 35 12 29 46 35 29

12 46 29 12 29 35 29 23

35 23 35 29 29 29 23 23

29 29 29 29 29 29 29 29

35 35 35 29 29 29 35 35

46 35 29 35 29 46 29 46

35 29 35 12 29 46 46 29

29 23 35 46 29 35 23 46

(C)

Figure 5.637: Modelling the dominating queens problem with a single NVALUE con-
straint; (A) a solution to the dominating queens problem, (B) the initial domain (in
bold) of the variable associated with cell 29: in a solution the value j assigned to the
variable associated with cell i represents the label of the cell attacking cell i (i.e. in a
solution one of the selected queens is located on cell j), (C) the value of each cell in the
model with a single NVALUE constraint corresponding to the solution depicted in (A).

since a given cell can be attacked by several queens, we have also other assignments
corresponding to the solution depicted by Part (A) of Figure 5.637.

To conclude note that, since we are only interested to restrict the maximum number of
distinct values, we may replace the NVALUE constraint by the ATMOST NVALUE constraint.

The NVALUE constraint occurs also in many practical applications. In the context of
timetabling one wants to set up a limit on the maximum number of activity types it is
possible to perform. For frequency allocation problems, one optimisation criterion is to
minimise the number of distinct frequencies that you use all over the entire network.

The NVALUE constraint generalises several constraints like:

• ALLDIFFERENT(VARIABLES): in order to get the ALLDIFFERENT constraint, one has
to set NVAL to the total number of variables.

• NOT ALL EQUAL(VARIABLES): in order to get the NOT ALL EQUAL constraint, one
has to set the minimum value of NVAL to 2.

• ALL EQUAL(VARIABLES): in order to get the ALL EQUAL constraint, one has to set
the maximum value of NVAL to 1.

Remark This constraint appears in [314, page 339] under the name of Cardinality on Attributes
Values. The NVALUE constraint is called VALUES in JaCoP (http://www.jacop.eu/).
A constraint called K DIFF enforcing that a set of variables takes at least k distinct values
appears in the PhD thesis of J.-C. Régin [352].

It was shown in [75] that, finding out whether a NVALUE constraint has a solution or not is
NP-hard. This was achieved by reduction from 3-SAT. In the same article, it is also shown,
by reduction from minimum hitting set cardinality, that computing a sharp lower bound on
NVAL is NP-hard.

Both reformulations of the COLOURED CUMULATIVE constraint and of the
COLOURED CUMULATIVES constraint use the NVALUE constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/


NVALUE 1907

Algorithm A first filtering algorithm for the NVALUE constraint was described in [29]. Assuming
that the minimum value of variable NVAL is not constrained at all, two algorithms that
both achieve bound-consistency were provided one year later in [46]. Under the same
assumption, algorithms that partially take into account holes in the domains of the variables
of the VARIABLES collection are described in [46, 68].

Reformulation A model, involving linear inequalities constraints, preserving bound-consistency was in-
troduced in [79].

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for NVALUE: domains 0..n
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Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 3 4 5 6 7 8 9
2 6 36 140 450 1302 3528 9144
3 - 24 360 3000 18900 101136 486864
4 - - 120 3600 54600 588000 5143824
5 - - - 720 37800 940800 15876000
6 - - - - 5040 423360 16087680
7 - - - - - 40320 5080320
8 - - - - - - 362880

Solution count for NVALUE: domains 0..n
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Systems NVALUES in Gecode, NVALUE in MiniZinc, NVALUE in SICStus.

Used in TRACK.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#nvalue
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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See also assignment dimension added: ASSIGN AND NVALUES.

common keyword: AMONG, AMONG DIFF 0, COUNT, GLOBAL CARDINALITY,
MAX NVALUE, MIN NVALUE (counting constraint), NVALUES EXCEPT 0 (counting con-
straint,number of distinct values).

cost variant: SUM OF WEIGHTS OF DISTINCT VALUES (introduce a weight for each
value and replace number of distinct values by sum of weights associated with distinct
values).

generalisation: NCLASS (variable replaced by variable ∈ partition),
NEQUIVALENCE (variable replaced by variable mod constant),
NINTERVAL (variable replaced by variable/constant), NPAIR (variable re-
placed by pair of variables), NVALUES (replace an equality with the number of distinct
values by a comparison with the number of distinct values), NVECTOR (variable replaced
by vector).

implied by: INCREASING NVALUE.

implies: ATLEAST NVALUE (= NVAL replaced by ≥ NVAL), ATMOST NVALUE (= NVAL

replaced by ≤ NVAL).

related: BALANCE (restriction on how balanced an assignment is),
COLOURED CUMULATIVE (restrict number of distinct colours on each maximum clique
of the interval graph associated with the tasks), COLOURED CUMULATIVES (restrict
number of distinct colours on each maximum clique of the interval graph associ-
ated with the tasks assigned to the same machine), INCREASING NVALUE CHAIN,
K ALLDIFFERENT (necessary condition for two overlapping ALLDIFFERENT constraints),
SOFT ALLDIFFERENT VAR.

shift of concept: NVALUE ON INTERSECTION.

soft variant: NVALUES EXCEPT 0 (value 0 is ignored).

specialisation: ALL EQUAL (enforce to have one single value), ALLDIFFERENT (enforce a
number of distinct values equal to the number of variables), NOT ALL EQUAL (enforce to
have at least two distinct values).

uses in its reformulation: CONSECUTIVE VALUES, CYCLE, MIN N.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: 3-SAT, minimum hitting set cardinality.

constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

filtering: bound-consistency, convex bipartite graph.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values, functional
dependency.

problems: domination.

puzzles: dominating queens.

Cond. implications NVALUE(NVAL, VARIABLES)
with INCREASING(VARIABLES)

implies INCREASING NVALUE(NVAL, VARIABLES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.



NVALUE 1911

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC= NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.638 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NSCC graph property
we show the different strongly connected components of the final graph. Each strongly
connected component corresponds to a value that is assigned to some variables of the
VARIABLES collection. The 4 following values 1, 3, 6 and 7 are used by the variables
of the VARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=4

SCC#1 SCC#2 SCC#3 SCC#4

1:3 2:1

4:1

3:7 5:6

(A) (B)

Figure 5.638: Initial and final graph of the NVALUE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.639 depicts the automaton associated with the NVALUE constraint. To each item
of the collection VARIABLES corresponds a signature variable Si that is equal to 0.

AMONG DIFF 0(N, C)

s{C[ ]← 0} 0,
{C[VARi]← C[VARi] + 1}

Figure 5.639: Automaton of the NVALUE constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint NVALUE(0, 〈0, 0, 0, 0〉) hold?

B. Does the constraint NVALUE(3, 〈1, 2, 3〉) hold?

C. Does the constraint NVALUE(3, 〈1, 2, 3, 3〉) hold?

aHint: go back to the definition of NVALUE.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:
N ∈ {1, 5},
V1 ∈ [3, 5], V2 ∈ [3, 4], V3 ∈ [2, 5],
V4 ∈ [3, 3], V5 ∈ [3, 4], V6 ∈ [3, 7],
NVALUE(N, 〈V1, V2, V3, V4, V5, V6〉).

aHint: identify the smallest and largest possible values of N , enumerate
solutions in lexicographic order.

EXERCISE 3 (identifying infeasible values wrt the at most side)a

Identify all variable-value pairs (Vi, val) (1 ≤ i ≤ 6), such that the
following constraint has no solution when variable Vi is assigned value
val :

N ∈ [0, 2],
V1 ∈ [2, 4], V2 ∈ [2, 5], V3 ∈ [4, 5],
V4 ∈ [4, 7], V5 ∈ [5, 8], V6 ∈ [6, 9],
NVALUE(N, 〈V1, V2, V3, V4, V5, V6〉).

aHint: are variables equivalent wrt a given value?


Automaton
Explicit description in terms of automaton of the meaning of the constraint.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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EXERCISE 4 (identifying infeasible variable-value pairs wrt the at
least side)a

Identify all variable-value pairs (Vi, val) (1 ≤ i ≤ 6), such that the
following constraint has no solution when variable Vi is assigned value
val :

N ∈ [5, 6],
V1 ∈ [2, 4], V2 ∈ [2, 3], V3 ∈ [4, 5],
V4 ∈ [2, 3], V5 ∈ [2, 3], V6 ∈ [5, 6],
NVALUE(N, 〈V1, V2, V3, V4, V5, V6〉).

aHint: find out how to compute the maximum number of distinct values.

EXERCISE 5 (variable-based degree of violation)a

Compute the variable-based degree of violationb of the following con-
straints:

A. NVALUE(4, 〈2, 2, 2, 2〉),

B. NVALUE(3, 〈3, 1, 5, 2, 3〉).

aHint: take advantage of the functional dependency.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in
order to satisfy the constraint.

EXERCISE 6 (variations of dominating
knights)a

A. Provide a model involving only one
NVALUE constraint for showing that
the cardinality of the dominating
setb of the knight graph of a 4 by 4
chessboard does not exceed 4.

B. Show how to modify your model
for also considering the fact that
each knight must be protected by at
least one other knight. Show that
the number of required knights does
not exceed 6.

aHint: model the knight graph with a set of
variables; in a domination problem whats mat-
ters for each vertex v is which vertices attack
v.

bGiven a graph G a dominating set D is
a subset of the vertices of G such that every
vertex of G either belongs to D or is adjacent
to a vertex of G.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

4× 4 knight graph
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SOLUTION TO EXERCISE 1

A. No, since 〈0, 0, 0, 0〉 contains just one distinct value (and not 0
distinct values as stated by the first argument).

B. Yes, since 〈1, 2, 3〉 contains 3 distinct values as stated by the first
argument.

C. Yes, since 〈1, 2, 3, 3〉 contains 3 distinct values as stated by the
first argument.

SOLUTION TO EXERCISE 2

N, 〈V1, V2, V3, V4, V5, V6〉

¬ (1, 〈3, 3, 3, 3, 3, 3〉)
 (5, 〈5, 3, 2, 3, 4, 6〉)
® (5, 〈5, 3, 2, 3, 4, 7〉)
¯ (5, 〈5, 4, 2, 3, 3, 6〉)
° (5, 〈5, 4, 2, 3, 3, 7〉)
± (5, 〈5, 4, 2, 3, 4, 6〉)
² (5, 〈5, 4, 2, 3, 4, 7〉)

the seven solutions

A. Value 3 being the only common value to variables V1, V2, V3,
V4, V5, V6, we get a single solution where N is set to 1,
i.e. solution ¬.

B. A matching of cardinality 5 is given by V1 = 5, V2 = 3,
V3 = 2, V4 = 3, V5 = 4, V6 = 6. It is maximum since variables
V1, V2, V3, V4, V5 have to be assigned one of the four values 2,
3, 4 and 5, and since values 6 and 7 can only be assigned to
variable V6. In any maximum matching we have that:

(a) Since variable V6 is the only variable that can be
assigned values 6 or 7, we have V6 = 6 or V6 = 7.

(b) Since variable V3 is the only variable that can be
assigned value 2, we have V3 = 2.

(c) Now that V3 is assigned value 2 and that V6 is assigned
values 6 or 7, variable V1 is the only variable that can be
assigned value 5, we have V1 = 5.

Finally combining the fact that variables V2, V5 have to be
assigned a distinct value in {3, 4} and variable V6 a value in
{6, 7} we obtain the remaining six solutions , ®, ¯, °, ±, ².
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SOLUTION TO EXERCISE 3

The constraint forces that at most two distinct values are assigned to
variables V1, V2, . . . , V6, i.e. there is no restriction coming from N on
the minimum number of distinct values. In this context, a value val as-
signed to one of the variables Vi (1 ≤ i ≤ 6) can be assigned to any
other variable Vi without increasing the number of distinct values. Con-
sequently a value val that is not removed (resp. removed) from a vari-
able Vi (1 ≤ i ≤ 6) can also not be removed (resp. removed) from
a variable Vj (j 6= i, 1 ≤ j ≤ 6). Let us successively study the val-
ues that can not be removed and the values that can be removed from
V1, V2, . . . , V6.

A. [FEASIBLE VALUES ]

Consider the three solutions
NVALUE(2, 〈4, 4, 4, 4, 6, 6〉),
NVALUE(2, 〈4, 4, 4, 4, 7, 7〉),
NVALUE(2, 〈4, 4, 4, 4, 8, 8〉).

All values used in the previous
solutions (i.e., values 4, 6, 7, 8)
can not be removed from
V1, V2, . . . , V6.

B. [ INFEASIBLE VALUES ]

We now show that 2 cannot be
assigned to any variable. If 2
can be used then we assign 2
to all variables that have 2 in
their domains, i.e., V1 and V2.
Now in order not to exceed two
distinct values, the remaining
variables V3, V4, V5, V6 must
have a value in common, which
is not the case. We can show in
the same way that values 3, 5
and 9 cannot be assigned to any
variable.

Finally since V1, V2, . . . , V6 do not have any value in common,
N can only be equal to 2.

V1 V2 V3 V4 V5 V6

1

4

6

7

8

2

3

5

9

Vi

Vi

Vi

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj pruned
from dom(Vi)
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SOLUTION TO EXERCISE 4

The constraint forces that at least five distinct values are assigned to
variables V1, V2, . . . , V6, i.e. there is no restriction coming from N on
the maximum number of distinct values. Consequently identifying infeasi-
ble variable-value pairs is equivalent to finding edges that do not belong
to any matchinga of cardinality greater than or equal to the minimum
value of N in the variable-value bipartite graph G(V,E) associated with
the NVALUE constraint (the vertices V of G are defined by the variables
V1, V2, . . . , V6 and by the values 2, 3, . . . , 6, while the edges E are de-
fined by the pairs (Vi, val), (1 ≤ i ≤ 6) such that val ∈ dom(Vi)).

A. [MAXIMUM MATCHING ]

The solution nvalue(5, 〈4, 2, 5, 3, 2, 6〉)
corresponds to a matching of cardina-
lity 5 shown in red on the variable-value
graph. This matching is maximum since
|dom(V1) ∪ dom(V2) ∪ · · · ∪ dom(V6)|
= 5. Therefore N can only be equal to 5.

B. [ INFEASIBLE EDGES ]

¬ Since |dom(V2) ∪ dom(V4)| = 2,
V1 must be assigned value 4
in any maximum matching.

 Since V1 must be assigned
value 4 in any maximum
matching and since dom(V3)
= {4, 5}, V3 must be assigned
value 5 in any maximum mat-
ching.

® Since V3 must be assigned
value 5 in any maximum
matching and since dom(V6)
= {5, 6}, V6 must be assigned
value 6 in any maximum mat-
ching.

C. Finally, V2, V4, V5 must be assigned two distinct values from
{2, 3} in any maximum matching.

aA matching of a graph G is a set of edges of G such that no two edges have
a vertex in common.

V1 V2 V3 V4 V5 V6

2

3

4

5

6

¬  ®

Vi

Vi

Vi

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj pruned
from dom(Vi)

V1

V2

V3

V4

V5

V6

2

3

4

5

6
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SOLUTION TO EXERCISE 5

For a violated NVALUE constraint it is always possible to change a sin-
gle variable to get a feasible solution. This is done by setting the first
argument of the NVALUE constraint to the number of distinct values oc-
curring in the second argument.

A. The degree of violation is equal to 1 since the first argument needs
to be set to 1 in order to obtain a solution.

NVALUE(

1

4, 〈2, 2, 2, 2〉)

B. The degree of violation is equal to 1 since the first argument needs
to be set to 4 in order to obtain a solution.

NVALUE(

4

3, 〈3, 1, 5, 2, 3〉)

Note that in this example we have other possibilities such as

NVALUE(3, 〈3, 1,
1

5, 2, 3〉)
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SOLUTION TO EXERCISE 6

A. Each vertex of the 4× 4 knight graph is represented by a variable whose
domain is set to the labels of its adjacent vertices as well as to its own label.
Consequently we get the following 16 variables with their corresponding
initial domains:
V1 ∈ {1, 7, 10}, V2 ∈ {2, 8, 9, 11}, V3 ∈ {3, 5, 10, 12},
V4 ∈ {4, 6, 11}, V5 ∈ {3, 5, 11, 14}, V6 ∈ {4, 6, 12, 13, 15},
V7 ∈ {1, 7, 9, 14, 16}, V8 ∈ {2, 8, 10, 15}, V9 ∈ {2, 7, 9, 15},
V10 ∈ {1, 3, 8, 10, 16}, V11 ∈ {2, 4, 5, 11, 13}, V12 ∈ {3, 6, 12, 14},
V13 ∈ {6, 11, 13}, V14 ∈ {5, 7, 12, 14}, V15 ∈ {6, 8, 9, 15},
V16 ∈ {7, 10, 16}.

We introduce a variable N ∈ {1, 2, 3, 4} that provides the number of knights
actually used and state the following constraint:

nvalue(N, 〈V1, V2, V3, V4, V5, V6, V7, V8, V9,
V10, V11, V12, V13, V14, V15, V16〉)

In the previous constraint the assignment Vi = j means that a knight is
located on vertex j and that vertex j attacks vertex i. Consequently the total
number of distinct values in 〈V1, V2, . . . , V16〉 is equal to the total number of
used knights. The assignment
N = 4,
V1 = 7, V2 = 11, V3 = 10, V4 = 6,
V5 = 11, V6 = 6, V7 = 7, V8 = 10,
V9 = 7, V10 = 10, V11 = 11, V12 = 6,
V13 = 6, V14 = 7, V15 = 6, V16 = 7

corresponds to the solution depicted on the right.

B. Since a knight cannot protect itself, we only need to remove from the initial
domain of each variable the label corresponding to its cell. The assignment
N = 6,
V1 = 7, V2 = 8, V3 = 5, V4 = 6,
V5 = 14, V6 = 15, V7 = 14, V8 = 15,
V9 = 7, V10 = 8, V11 = 5, V12 = 6,
V13 = 6, V14 = 5, V15 = 6, V16 = 7

corresponds to the solution depicted on the right.

N N
N N

N N N N

N N
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5.293 NVALUE ON INTERSECTION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from COMMON and NVALUE.

Constraint NVALUE ON INTERSECTION(NVAL, VARIABLES1, VARIABLES2)

Arguments NVAL : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)
NVAL ≥ 0
NVAL ≤ |VARIABLES1|
NVAL ≤ |VARIABLES2|
NVAL ≤range(VARIABLES1.var)
NVAL ≤range(VARIABLES2.var)

Purpose NVAL is the number of distinct values that both occur in the VARIABLES1 and
VARIABLES2 collections.

Example (2, 〈1, 9, 1, 5〉 , 〈2, 1, 9, 9, 6, 9〉)

Note that the two collections 〈1, 9, 1, 5〉 and 〈2, 1, 9, 9, 6, 9〉 share two values in
common (i.e., values 1 and 9). Consequently the NVALUE ON INTERSECTION constraint
holds since its first argument NVAL is set to 2.

Typical NVAL > 0
NVAL < |VARIABLES1|
NVAL < |VARIABLES2|
NVAL <range(VARIABLES1.var)
NVAL <range(VARIABLES2.var)
|VARIABLES1| > 1
|VARIABLES2| > 1

Symmetries • Arguments are permutable w.r.t. permutation (NVAL)
(VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties • Functional dependency: NVAL determined by VARIABLES1 and VARIABLES2.

• Contractible wrt. VARIABLES1 when NVAL = 0.

• Contractible wrt. VARIABLES2 when NVAL = 0.

See also common keyword: ALLDIFFERENT ON INTERSECTION, COMMON,
SAME INTERSECTION (constraint on the intersection).

root concept: NVALUE.

Keywords constraint arguments: pure functional dependency.

constraint type: counting constraint, constraint on the intersection.

final graph structure: connected component.

modelling: number of distinct values, functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NCC= NVAL

Graph model Parts (A) and (B) of Figure 5.640 respectively show the initial and final graph associated
with the Example slot. Since we use the NCC graph property we show the connected
components of the final graph. The variable NVAL is equal to this number of connected
components. Note that all the vertices corresponding to the variables that take values 5,
2 or 6 were removed from the final graph since there is no arc for which the associated
equality constraint holds.

VARIABLES1

VARIABLES2

1

1234 56

234

NCC=2

CC#1 CC#2

1:1

2:1

3:1 2:9

3:9 4:9 6:9

(A) (B)

Figure 5.640: Initial and final graph of the NVALUE ON INTERSECTION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.294 NVALUES

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by NVALUE and COUNT.

Constraint NVALUES(VARIABLES, RELOP, LIMIT)

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values assigned to the variables of the VARIABLES

collection. Enforce condition N RELOP LIMIT to hold.

Example (〈4, 5, 5, 4, 1, 5〉 ,=, 3)

The NVALUES constraint holds since the number of distinct values occurring within
the collection 〈4, 5, 5, 4, 1, 5〉 is equal (i.e., RELOP is set to =) to its third argument
LIMIT = 3.

Typical |VARIABLES| > 1
LIMIT > 1
LIMIT < |VARIABLES|
RELOP ∈ [=, <,≥, >,≤]

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties • Contractible wrt. VARIABLES when RELOP ∈ [<,≤].

• Contractible wrt. VARIABLES when RELOP ∈ [=], LIMIT = 1 and
|VARIABLES| > 0.

• Contractible wrt. VARIABLES when RELOP ∈ [=] and LIMIT = |VARIABLES|.
• Extensible wrt. VARIABLES when RELOP ∈ [≥, >].

Usage Used in the Constraint(s) on sets slot for defining some constraints like
ASSIGN AND NVALUES, CIRCUIT CLUSTER or COLOURED CUMULATIVE.

Reformulation The NVALUES(VARIABLES, RELOP , LIMIT) constraint can be expressed in term of the
conjunction NVALUE(NV , VARIABLES) ∧ NV RELOP LIMIT.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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Systems NVALUES in Gecode.

Used in ASSIGN AND NVALUES, CIRCUIT CLUSTER, COLOURED CUMULATIVE,
COLOURED CUMULATIVES.

See also assignment dimension added: ASSIGN AND NVALUES.

common keyword: NVALUES EXCEPT 0 (counting constraint,number of distinct values).

specialisation: NVALUE (replace a comparison with the number of distinct values by an
equality with the number of distinct values).

Keywords constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values.

problems: domination.

Cond. implications NVALUES(VARIABLES, RELOP, LIMIT)
with minval(VARIABLES.var) > 0

implies NVALUES EXCEPT 0(VARIABLES, RELOP, LIMIT).


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.641 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value that is assigned to some variables of the VARIABLES collection. The
3 following values 1, 4 and 5 are used by the variables of the VARIABLES collection.

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:5

5:1

(A) (B)

Figure 5.641: Initial and final graph of the NVALUES constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.295 NVALUES EXCEPT 0
I B C J DESCRIPTION LINKS GRAPH

Origin Derived from NVALUES.

Constraint NVALUES EXCEPT 0(VARIABLES, RELOP, LIMIT)

Arguments VARIABLES : collection(var−dvar)
RELOP : atom

LIMIT : dvar

Restrictions required(VARIABLES, var)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct values, different from 0, assigned to the variables of the
VARIABLES collection. Enforce condition N RELOP LIMIT to hold.

Example (〈4, 5, 5, 4, 0, 1〉 ,=, 3)

The NVALUES EXCEPT 0 constraint holds since the number of distinct values, dif-
ferent from 0, occurring within the collection 〈4, 5, 5, 4, 0, 1〉 is equal (i.e., RELOP is set
to =) to its third argument LIMIT = 3.

Typical |VARIABLES| > 1
LIMIT > 1
LIMIT < |VARIABLES|
ATLEAST(1, VARIABLES, 0)
RELOP ∈ [=, <,≥, >,≤]

Typical model ATLEAST(2, VARIABLES, 0)

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var that are both different
from 0 can be swapped; all occurrences of a value of VARIABLES.var that is dif-
ferent from 0 can be renamed to any unused value that is also different from 0.

Arg. properties • Contractible wrt. VARIABLES when RELOP ∈ [<,≤].

• Extensible wrt. VARIABLES when RELOP ∈ [≥, >].

Reformulation The NVALUES EXCEPT 0(〈V1, V2, . . . , V|VARIABLES|〉, RELOP , LIMIT) constraint can be ex-
pressed in term of the conjunction NVALUE(NV1 , 〈0, V1, V2, . . . , V|VARIABLES|〉) ∧ NV1 −
1 RELOP LIMIT.

Used in CYCLE OR ACCESSIBILITY.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.
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See also common keyword: ASSIGN AND NVALUES (number of distinct values),
NVALUE, NVALUES (counting constraint,number of distinct values).

Keywords characteristic of a constraint: joker value.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component.

modelling: number of distinct values.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables1.var = variables2.var

Graph property(ies) NSCC RELOP LIMIT

Graph model Parts (A) and (B) of Figure 5.642 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a value distinct from 0 that is assigned to some variables of the VARIABLES
collection. Beside value 0, the 3 following values 1, 4 and 5 are assigned to the variables
of the VARIABLES collection.

VARIABLES

1

2

3

4

5

6

NSCC=3

SCC#1 SCC#2 SCC#3

1:4

4:4

2:5

3:5

6:1

(A) (B)

Figure 5.642: Initial and final graph of the NVALUES EXCEPT 0 constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.296 NVECTOR

I B C J DESCRIPTION LINKS GRAPH

Origin Introduced by G. Chabert as a generalisation of NVALUE

Constraint NVECTOR(NVEC, VECTORS)

Synonyms NVECTORS, NPOINT, NPOINTS.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose
NVEC is the number of distinct tuples of values taken by the vectors of the collection
VECTORS. Two tuples of values 〈A1, A2, . . . , Am〉 and 〈B1, B2, . . . , Bm〉 are distinct
if and only if there exist an integer i ∈ [1,m] such that Ai 6= Bi.

Example

 2,

〈 vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉

〉 
The NVECTOR constraint holds since its first argument NVEC = 2 is set to the
number of distinct tuples of values (i.e., tuples 〈5, 6〉 and 〈9, 3〉) occurring within the
collection VECTORS. Figure 5.643 depicts with a thick rectangle a possible initial domain
for each of the five vectors and with a grey circle each tuple of values of the corresponding
solution.

Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetries • Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

• All occurrences of two distinct tuples of values of VECTORS.vec can be swapped;
all occurrences of a tuple of values of VECTORS.vec can be renamed to any unused
tuple of values.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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〈
vec− 〈C11, C12〉,
vec− 〈C21, C22〉,
vec− 〈C31, C32〉,
vec− 〈C41, C42〉,
vec− 〈C51, C52〉

〉
VECTORS (not yet fixed)

2,

〈
vec− 〈5, 6〉,
vec− 〈5, 6〉,
vec− 〈9, 3〉,
vec− 〈5, 6〉,
vec− 〈9, 3〉

〉
VECTORS (fixed)

Figure 5.643: Possible initial domains (C11 ∈ [1, 6], C12 ∈ [2, 6], C21 ∈ [3, 5],
C22 ∈ [6, 9], C31 ∈ [4, 10], C32 ∈ [1, 4], C41 ∈ [5, 9], C42 ∈ [3, 7], C51 ∈ [9, 11],
C52 ∈ [0, 5]) and solution corresponding to the Example slot: we have two distinct
vectors (NVEC = 2)

Arg. properties • Functional dependency: NVEC determined by VECTORS.

• Contractible wrt. VECTORS when NVEC = 1 and |VECTORS| > 0.

• Contractible wrt. VECTORS when NVEC = |VECTORS|.

Remark It was shown in [118, 117] that, finding out whether a NVECTOR constraint has a solution
or not is NP-hard (i.e., the restriction to the rectangle case and to the atmost side of the
NVECTOR were considered for this purpose). This was achieved by reduction from the
rectangle clique partition problem.

Reformulation Assume the collection VECTORS is not empty (otherwise NVEC = 0). In this context, let
n and m respectively denote the number of vectors of the collection VECTORS and the
number of components of each vector. Furthermore, let αi = min(C1i, C2i, . . . , Cni),
βi = max(C1i, C2i, . . . , Cni), γi = βi − αi + 1, (i ∈ [1,m]). By associating to each
vector

〈Ck1, Ck2, . . . , Ckm〉, (k ∈ [1, n])

a variable

Dk =
∑

1≤i≤m

 ∏
i<j≤m

γj

 · (Cki − αi)
 ,

the constraint
NVECTOR(NVEC,

〈vec− 〈C11, C12, . . . , C1m〉,
vec− 〈C21, C22, . . . , C2m〉,
. . . . . . . . . . . . . . . . . . . . . . . .
vec− 〈Cn1, Cn2, . . . , Cnm〉〉)


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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can be expressed in term of the constraint
NVALUE(NVEC, 〈D1, D2, . . . , Dn〉).

Note that the previous reformulation does not work anymore if the variables have a
continuous domain, or if an overflow occurs while propagating the equality constraint
Dk =

∑
1≤i≤m

((∏
i<j≤m γj

)
· (Cki − αi)

)
(i.e., the number of components m is too

big).

When using this reformulation with respect to the Example slot we first introduce D1 =
1·6−3+(4·5−20)) = 3,D2 = 1·6−3+(4·5−20)) = 3,D3 = 1·3−3+(4·9−20)) = 16,
D4 = 1 · 6− 3 + (4 · 5− 20)) = 3, D5 = 1 · 3− 3 + (4 · 9− 20)) = 16 and then get the
constraint NVALUE(2, 〈3, 3, 16, 3, 16〉).

See also common keyword: LEX EQUAL, ORDERED ATLEAST NVECTOR,
ORDERED ATMOST NVECTOR (vector).

generalisation: NVECTORS (replace an equality with the number of distinct vectors by a
comparison with the number of distinct nvectors).

implied by: ORDERED NVECTOR.

implies: ATLEAST NVECTOR (= NVEC replaced by ≥ NVEC), ATMOST NVECTOR (=
NVEC replaced by ≤ NVEC).

specialisation: NVALUE (vector replaced by variable).

Keywords application area: SLAM problem.

characteristic of a constraint: vector.

complexity: rectangle clique partition.

constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.

problems: domination.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX EQUAL(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC= NVEC

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.644 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection.
The 2 following tuple of values 〈5, 6〉 and 〈9, 3〉 are used by the vectors of the VECTORS

collection.

VECTORS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:5
  6

2:5
  6

4:5
  6

3:9
  3

5:9
  3

(A) (B)

Figure 5.644: Initial and final graph of the NVECTOR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.297 NVECTORS

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by NVECTOR and COUNT.

Constraint NVECTORS(VECTORS, RELOP, LIMIT)

Synonym NPOINTS.

Type VECTOR : collection(var−dvar)

Arguments VECTORS : collection(vec− VECTOR)
RELOP : atom

LIMIT : dvar

Restrictions |VECTOR| ≥ 1
required(VECTORS, vec)
same size(VECTORS, vec)
RELOP ∈ [=, 6=, <,≥, >,≤]

Purpose Let N be the number of distinct tuples of values taken by the vectors of the VECTORS

collection. Enforce condition N RELOP LIMIT to hold.

Example


〈 vec− 〈5, 6〉 ,

vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉

〉
,=, 2


The NVECTORS constraint holds since the number of distinct tuples of values (i.e., tuples
〈5, 6〉 and 〈9, 3〉) occurring within the collection VECTORS is equal (i.e., RELOP is set to =)
to its third argument LIMIT = 2.

Typical |VECTOR| > 1
|VECTORS| > 1
RELOP ∈ [=, <,≥, >,≤]
LIMIT > 1
LIMIT < |VECTORS|

Symmetries • Items of VECTORS are permutable.

• Items of VECTORS.vec are permutable (same permutation used).

• All occurrences of two distinct values of VECTORS.vec can be swapped; all occur-
rences of a value of VECTORS.vec can be renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties • Contractible wrt. VECTORS when RELOP ∈ [<,≤].

• Extensible wrt. VECTORS when RELOP ∈ [≥, >].

Reformulation The NVECTORS(VECTORS, RELOP , LIMIT) constraint can be expressed in term of the con-
junction NVECTOR(NV , VECTORS) ∧ NV RELOP LIMIT.

See also specialisation: NVECTOR (replace a comparison with the number of distinct vectors by an
equality with the number of distinct vectors).

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, value partitioning constraint.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes.

problems: domination.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1938 NVECTORS

Arc input(s) VECTORS

Arc generator CLIQUE 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX EQUAL(vectors1.vec, vectors2.vec)

Graph property(ies) NSCC RELOP LIMIT

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.645 respectively show the initial and final graph associated
with the Example slot. Since we use the NSCC graph property we show the different
strongly connected components of the final graph. Each strongly connected component
corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection.
The 2 following tuple of values 〈5, 6〉 and 〈9, 3〉 are used by the vectors of the VECTORS

collection.

VECTORS

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:5
  6

2:5
  6

4:5
  6

3:9
  3

5:9
  3

(A) (B)

Figure 5.645: Initial and final graph of the NVECTORS constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.298 NVISIBLE FROM END

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from NVISIBLE FROM START

Constraint NVISIBLE FROM END(N, VARIABLES)

Synonyms NVISIBLE, NVISIBLE FROM RIGHT.

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
N ≥ min(1, |VARIABLES|)
N ≤ |VARIABLES|

Purpose
The ith (1 ≤ i ≤ |VARIABLES|) variable of the sequence VARIABLES is visible if and
only if all variables after the ith variable are strictly smaller than the ith variable itself.
N is the total number of visible variables of the sequence of variables VARIABLES.

Example (2, 〈1, 6, 2, 1, 4, 8, 2〉)
(1, 〈3, 6, 2, 1, 4, 8, 8〉)
(7, 〈9, 8, 7, 5, 4, 3, 2〉)

The first NVISIBLE FROM END constraint holds since the sequence 1 6 2 1 4 8 2
contains two visible items that respectively correspond to the seventh and sixth items.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: N determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for NVISIBLE FROM END: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 6 30 225 2275 29008 446964 8080425
2 3 30 305 3675 52794 889056 17238570
3 - 4 90 1610 29400 583548 12780180
4 - - 5 210 6020 158760 4238367
5 - - - 6 420 18060 661500
6 - - - - 7 756 46410
7 - - - - - 8 1260
8 - - - - - - 9

Solution count for NVISIBLE FROM END: domains 0..n
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See also implies: ATLEAST NVALUE.

related: NVISIBLE FROM START (count from the start of the sequence rather than from
the end).

Keywords combinatorial object: sequence.

constraint arguments: pure functional dependency.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1944 NVISIBLE FROM END

Automaton Figure 5.646 depicts the automaton associated with the NVISIBLE FROM END constraint.

C = N

s

{
M ← 0,
C ← 0

}
t

0,
{M ← VARi, C ← 1}

0, M < VARi ⇒
M ← VARi,
C ← C + 1


0, M ≥ VARi ⇒

M ←M,
C ← C


Figure 5.646: Automaton of the NVISIBLE FROM END constraint with two counters
M and C, where M records the largest value encountered so far, and C the number of
visible values from the right hand side of the sequence VAR1, VAR2, . . . , VARn (i.e., the
sequence VARn, VARn−1, . . . , VAR1 is passed to the automaton)

C0 = 0

M0 = 0

Q0 = s

C1

M1

Q1

VARn VARn−1

Cn = N

Mn

Qn ∈ {s, t}

VAR1

Figure 5.647: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the NVISIBLE FROM END constraint (since all states of the automaton
are accepting there is no restriction on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.299 NVISIBLE FROM START

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from a puzzle called skyscraper

Constraint NVISIBLE FROM START(N, VARIABLES)

Synonyms NVISIBLE, NVISIBLE FROM LEFT.

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
N ≥ min(1, |VARIABLES|)
N ≤ |VARIABLES|

Purpose
The ith (1 ≤ i ≤ |VARIABLES|) variable of the sequence VARIABLES is visible if and
only if all variables before the ith variable are strictly smaller than the ith variable itself.
N is the total number of visible variables of the sequence of variables VARIABLES.

Example (3, 〈1, 6, 2, 1, 4, 8, 2〉)
(1, 〈8, 6, 2, 1, 4, 8, 2〉)
(7, 〈0, 2, 3, 5, 6, 7, 9〉)

The first NVISIBLE FROM START constraint holds since the sequence 1 6 2 1 4 8 2
contains three visible items that respectively correspond to the first, second and sixth
items.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: N determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for NVISIBLE FROM START: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 6 30 225 2275 29008 446964 8080425
2 3 30 305 3675 52794 889056 17238570
3 - 4 90 1610 29400 583548 12780180
4 - - 5 210 6020 158760 4238367
5 - - - 6 420 18060 661500
6 - - - - 7 756 46410
7 - - - - - 8 1260
8 - - - - - - 9

Solution count for NVISIBLE FROM START: domains 0..n
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See also implied by: INCREASING NVALUE.

implies: ATLEAST NVALUE.

related: NVISIBLE FROM END (count from the end of the sequence rather than from the
start).

Keywords combinatorial object: sequence.

constraint arguments: pure functional dependency.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.648 depicts the automaton associated with the NVISIBLE FROM START constraint.

C = N

s

{
M ← 0,
C ← 0

}
t

0,
{M ← VARi, C ← 1}

0, M < VARi ⇒
M ← VARi,
C ← C + 1


0, M ≥ VARi ⇒

M ←M,
C ← C


Figure 5.648: Automaton of the NVISIBLE FROM START constraint with two counters
M and C, where M records the largest value encountered so far, and C the number of
visible values from the left hand side of the sequence VAR1, VAR2, . . . , VARn

C0 = 0

M0 = 0

Q0 = s

C1

M1

Q1

VAR1 VAR2

Cn = N

Mn

Qn ∈ {s, t}

VARn

Figure 5.649: Hypergraph of the reformulation corresponding to the automaton (with
two counters) of the NVISIBLE FROM START constraint (since all states of the automa-
ton are accepting there is no restriction on the last variable Qn)


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.300 OPEN ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin [438]

Constraint OPEN ALLDIFFERENT(S, VARIABLES)

Synonyms OPEN ALLDIFF, OPEN ALLDISTINCT, OPEN DISTINCT.

Arguments S : svar

VARIABLES : collection(var−dvar)

Restrictions S ≥ 1
S ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
Let V be the variables of the collection VARIABLES for which the corresponding position
belongs to the set S. Positions are numbered from 1. Enforce all variables of V to take
distinct values.

Example ({2, 3, 4}, 〈9, 1, 9, 3〉)

The OPEN ALLDIFFERENT constraint holds since the last three (i.e., S = {2, 3, 4})
values of the collection 〈9, 1, 9, 3〉 are distinct.

Typical |VARIABLES| > 2

Symmetry All occurrences of two distinct values of VARIABLES.var can be swapped; all occur-
rences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Suffix-contractible wrt. VARIABLES.

Usage In their article [438], W.-J. van Hoeve and J.-C. Régin motivate the OPEN ALLDIFFERENT

constraint by the following scheduling problem. Consider a set of activities (where each
activity has a fixed duration 1 and a start variable) that can be processed on two factory
lines such that all the activities that will be processed on a given line must be pairwise
distinct. This can be modelled by using one OPEN ALLDIFFERENT constraint for each line,
involving all the start variables as well as a set variable whose final value specifies the set
of activities assigned to that specific factory line.

Note that this can also be directly modelled by a single DIFFN constraint. This is done by
introducing an assignment variable for each activity. The initial domain of each assignment
variable consists of two values that respectively correspond to the two factory lines.

Algorithm A slight adaptation of the flow model that handles the original GLOBAL CARDINALITY

constraint [353] is described in [438]. The rightmost part of Figure 3.29 illustrates this
flow model.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also common keyword: SIZE MAX SEQ ALLDIFFERENT,
SIZE MAX STARTING SEQ ALLDIFFERENT (all different,disequality).

generalisation: OPEN GLOBAL CARDINALITY (control the number of occurrence of each
active value14 with a counter variable), OPEN GLOBAL CARDINALITY LOW UP (control
the number of occurrence of each active value with an interval).

hard version: ALLDIFFERENT.

used in graph description: IN SET.

Keywords characteristic of a constraint: all different, disequality.

constraint arguments: constraint involving set variables.

constraint type: open constraint, soft constraint, value constraint.

filtering: flow.

14An active value corresponds to a value occuring at a position mentionned in the set S.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = variables2.var
• IN SET(variables1.key, S)
• IN SET(variables2.key, S)

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate a clique with an equality constraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one. Variables for which the corresponding position does not belong to the set
S are removed from the final graph by the second and third conditions of the arc-constraint.

Parts (A) and (B) of Figure 5.650 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected components of the final graph. The OPEN ALLDIFFERENT

holds since all the strongly connected components have at most one vertex: a value is used
at most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

2:1 3:9 4:3

(A) (B)

Figure 5.650: Initial and final graph of the OPEN ALLDIFFERENT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.301 OPEN AMONG

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from AMONG and OPEN GLOBAL CARDINALITY.

Constraint OPEN AMONG(S, NVAR, VARIABLES, VALUES)

Arguments S : svar

NVAR : dvar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions S ≥ 1
S ≤ |VARIABLES|
NVAR ≥ 0
NVAR ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)

Purpose
Let V be the variables of the collection VARIABLES for which the corresponding position
belongs to the set S. Positions are numbered from 1. NVAR is the number of variables of
V that take their values in VALUES.

Example ({2, 3, 4, 5}, 3, 〈8, 5, 5, 4, 1〉 , 〈1, 5, 8〉)

The OPEN AMONG constraint holds since within the last four values (i.e., S = {2, 3, 4, 5})
of 〈8, 5, 5, 4, 1〉 exactly 3 values belong to the set of values {1, 5, 8}.

Typical NVAR > 0
NVAR < |VARIABLES|
|VARIABLES| > 1
|VALUES| > 1
|VARIABLES| > |VALUES|

Symmetries • Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that belongs to VALUES.val (resp.
does not belong to VALUES.val) can be replaced by any other value in VALUES.val
(resp. not in VALUES.val).

Arg. properties • Functional dependency: NVAR determined by S, VARIABLES and VALUES.

• Suffix-contractible wrt. VARIABLES when NVAR = 0.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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See also common keyword: OPEN ATLEAST, OPEN ATMOST (open constraint,value constraint),
OPEN GLOBAL CARDINALITY (open constraint,counting constraint).

hard version: AMONG.

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: open constraint, value constraint, counting constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • IN(variables.var, VALUES)
• IN SET(variables.key, S)

Graph property(ies) NARC= NVAR

Graph model The arc constraint corresponds to the conjunction of unary constraints
IN(variables.var, VALUES) and IN SET(variables.key, S) defined in this cata-
logue. Consequently we employ the SELF arc generator in order to produce an initial
graph with a single loop on each vertex.

Parts (A) and (B) of Figure 5.651 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

12345

NARC=3

2:5 3:5 5:1

(A) (B)

Figure 5.651: Initial and final graph of the OPEN AMONG constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.302 OPEN ATLEAST

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ATLEAST and OPEN GLOBAL CARDINALITY.

Constraint OPEN ATLEAST(S, N, VARIABLES, VALUE)

Arguments S : svar

N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions S ≥ 1
S ≤ |VARIABLES|
N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
Let V be the variables of the collection VARIABLES for which the corresponding position
belongs to the set S. Positions are numbered from 1. At least N variables of V are
assigned value VALUE.

Example ({2, 3, 4}, 2, 〈4, 2, 4, 4〉 , 4)

The OPEN ATLEAST constraint holds since, within the last three (i.e., S = {2, 3, 4}) values
of the collection 〈4, 2, 4, 4〉, at least N = 2 values are equal to value VALUE = 4.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • N can be decreased to any value ≥ 0.

• An occurrence of a value of VARIABLES.var that is different from VALUE can be
replaced by any other value.

Arg. properties Suffix-extensible wrt. VARIABLES.

See also common keyword: OPEN AMONG, OPEN GLOBAL CARDINALITY (open con-
straint,value constraint).

comparison swapped: OPEN ATMOST.

hard version: ATLEAST.

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: open constraint, value constraint.

modelling: at least.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUE

• IN SET(variables.key, S)

Graph property(ies) NARC≥ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex. Variables for
which the corresponding position does not belong to the set S are removed from the final
graph by the second condition of the arc-constraint.

Parts (A) and (B) of Figure 5.652 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=2

3:4 4:4

(A) (B)

Figure 5.652: Initial and final graph of the OPEN ATLEAST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.303 OPEN ATMOST

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ATMOST and OPEN GLOBAL CARDINALITY.

Constraint OPEN ATMOST(S, N, VARIABLES, VALUE)

Arguments S : svar

N : int

VARIABLES : collection(var−dvar)
VALUE : int

Restrictions S ≥ 1
S ≤ |VARIABLES|
N ≥ 0
required(VARIABLES, var)

Purpose
Let V be the variables of the collection VARIABLES for which the corresponding position
belongs to the set S. Positions are numbered from 1. At most N variables of V are
assigned value VALUE.

Example ({2, 3, 4}, 1, 〈2, 2, 4, 5〉 , 2)

The OPEN ATMOST constraint holds since, within the last three (i.e., S = {2, 3, 4})
values of the collection 〈2, 2, 4, 5〉, at most N = 1 value is equal to value VALUE = 2.

Typical N > 0
N < |VARIABLES|
|VARIABLES| > 1

Symmetries • N can be increased.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
that is different from VALUE.

Arg. properties Suffix-contractible wrt. VARIABLES.

See also common keyword: OPEN AMONG, OPEN GLOBAL CARDINALITY (open con-
straint,value constraint).

comparison swapped: OPEN ATLEAST.

hard version: ATMOST.

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: open constraint, value constraint.

modelling: at most.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUE

• IN SET(variables.key, S)

Graph property(ies) NARC≤ N

Graph model Since each arc constraint involves only one vertex (VALUE is fixed), we employ the SELF
arc generator in order to produce a graph with a single loop on each vertex. Variables for
which the corresponding position does not belong to the set S are removed from the final
graph by the second condition of the arc-constraint.

Parts (A) and (B) of Figure 5.653 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

VARIABLES

1234

NARC=1

2:2

(A) (B)

Figure 5.653: Initial and final graph of the OPEN ATMOST constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.304 OPEN GLOBAL CARDINALITY

I B C J DESCRIPTION LINKS GRAPH

Origin [438]

Constraint OPEN GLOBAL CARDINALITY(S, VARIABLES, VALUES)

Synonyms OPEN GCC, OGCC.

Arguments S : svar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions S ≥ 1
S ≤ |VARIABLES|
required(VARIABLES, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES|

Purpose
Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by exactly
VALUES[i].noccurrence variables of the VARIABLES collection for which the corre-
sponding position belongs to the set S. Positions are numbered from 1.

Example


{2, 3, 4},
〈3, 3, 8, 6〉 ,〈

val− 3 noccurrence− 1,
val− 5 noccurrence− 0,
val− 6 noccurrence− 1

〉


The OPEN GLOBAL CARDINALITY constraint holds since:

• Values 3, 5 and 6 respectively occur 1, 0 and 1 times within the collection 〈3, 3, 8, 6〉
(the first item 3 of 〈3, 3, 8, 6〉 is ignored since value 1 does not belong to the first
argument S = {2, 3, 4} of the OPEN GLOBAL CARDINALITY constraint).

• No constraint was specified for value 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
range(VALUES.noccurrence) > 1
|VARIABLES| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

Usage In their article [438], W.-J. van Hoeve and J.-C. Régin motivate the
OPEN GLOBAL CARDINALITY constraint by the following scheduling problem.
Consider a set of activities (where each activity has a fixed duration 1 and a start
variable) that can be processed on two factory lines such that all the activities that will be
processed on a given line must be pairwise distinct. This can be modelled by using one
OPEN GLOBAL CARDINALITY constraint for each line, involving all the start variables
as well as a set variable whose final value specifies the set of activities assigned to that
specific factory line.

Note that this can also be directly modelled by a single DIFFN constraint. This is done by
introducing an assignment variable for each activity. The initial domain of each assignment
variable consists of two values that respectively correspond to the two factory lines.

Remark In their article [438], W.-J. van Hoeve and J.-C. Régin consider the case where we have no
counter variables for the values, but rather some lower and upper bounds (i.e., in fact the
OPEN GLOBAL CARDINALITY LOW UP constraint).

Algorithm A slight adaptation of the flow model that handles the original GLOBAL CARDINALITY

constraint [353] is described in [438].

See also common keyword: GLOBAL CARDINALITY LOW UP (assignment,counting constraint),
OPEN AMONG (open constraint,counting constraint),
OPEN ATLEAST, OPEN ATMOST (open constraint,value constraint).

hard version: GLOBAL CARDINALITY.

specialisation: OPEN ALLDIFFERENT (each active value15 should occur at most once),
OPEN GLOBAL CARDINALITY LOW UP (variable replaced by fixed interval).

used in graph description: IN SET.

Keywords application area: assignment.

constraint arguments: constraint involving set variables.

constraint type: open constraint, value constraint, counting constraint.

filtering: flow.

15An active value corresponds to a value occuring at a position mentionned in the set S.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• IN SET(variables.key, S)

Graph property(ies) NVERTEX= VALUES.noccurrence

Graph model Since we want to express one unary constraint for each value we use the “For all items of
VALUES” iterator. The only difference with the graph model of the GLOBAL CARDINALITY

constraint is the arc constraint where we also specify that the position of the considered
variable should belong to the first argument S.

Part (A) of Figure 5.654 shows the initial graphs associated with each value 3, 5 and 6 of
the VALUES collection of the Example slot. Part (B) of Figure 5.654 shows the two corre-
sponding final graphs respectively associated with values 3 and 6 that are both assigned to
those variables of the VARIABLES collection for which the index belongs to S (since value
5 is not assigned to any variable of the VARIABLES collection the final graph associated
with value 5 is empty). Since we use the NVERTEX graph property, the vertices of the
final graphs are stressed in bold.

VARIABLES

1234

3:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

2:3 4:6

(A) (B)

Figure 5.654: Initial and final graph of the OPEN GLOBAL CARDINALITY constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.305 OPEN GLOBAL CARDINALITY LOW UP

I B C J DESCRIPTION LINKS GRAPH

Origin [438]

Constraint OPEN GLOBAL CARDINALITY LOW UP(S, VARIABLES, VALUES)

Arguments S : svar

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions S ≥ 1
S ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose
Each value VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least
VALUES[i].omin and at most VALUES[i].omax variables of the VARIABLES collection for
which the corresponding position belongs to the set S. Positions are numbered from 1.

Example


{2, 3, 4},
〈3, 3, 8, 6〉 ,〈

val− 3 omin− 1 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉


The OPEN GLOBAL CARDINALITY LOW UP constraint holds since:

• Values 3, 5 and 6 are respectively used 1 (1 ≤ 1 ≤ 3), 0 (0 ≤ 0 ≤ 1) and 1
(1 ≤ 1 ≤ 2) times within the collection 〈3, 3, 8, 6〉 (the first item 3 of 〈3, 3, 8, 6〉
is ignored since value 1 does not belong to the first argument S = {2, 3, 4} of the
OPEN GLOBAL CARDINALITY LOW UP constraint).

• No constraint was specified for value 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax ≤ |VARIABLES|
|VARIABLES| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VALUES are permutable.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

Usage In their article [438], W.-J. van Hoeve and J.-C. Régin motivate the
OPEN GLOBAL CARDINALITY LOW UP constraint by the following scheduling problem.
Consider a set of activities (where each activity has a fixed duration 1 and a start
variable) that can be processed on two factory lines such that all the activities that will be
processed on a given line must be pairwise distinct. This can be modelled by using one
OPEN GLOBAL CARDINALITY LOW UP constraint for each line, involving all the start
variables as well as a set variable whose final value specifies the set of activities assigned
to that specific factory line.

Note that this can also be directly modelled by a single DIFFN constraint. This is done by
introducing an assignment variable for each activity. The initial domain of each assignment
variable consists of two values that respectively correspond to the two factory lines.

Algorithm A slight adaptation of the flow model that handles the original GLOBAL CARDINALITY

constraint [353] is described in [438].

See also common keyword: GLOBAL CARDINALITY (assignment,counting constraint).

generalisation: OPEN GLOBAL CARDINALITY (fixed interval replaced by
variable).

hard version: GLOBAL CARDINALITY LOW UP.

specialisation: OPEN ALLDIFFERENT (each active value16 should occur at most once).

used in graph description: IN SET.

Keywords application area: assignment.

constraint arguments: constraint involving set variables.

constraint type: open constraint, value constraint, counting constraint.

filtering: flow.

16An active value corresponds to a value occuring at a position mentionned in the set S.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) • variables.var = VALUES.val
• IN SET(variables.key, S)

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For
all items of VALUES” iterator. The only difference from the graph model of the
GLOBAL CARDINALITY LOW UP constraint is the arc constraint where we also specify
that the position of the considered variable should belong to the first argument S.

Part (A) of Figure 5.655 shows the initial graphs associated with each value 3, 5 and 6 of
the VALUES collection of the Example slot. Part (B) of Figure 5.655 shows the two corre-
sponding final graphs respectively associated with values 3 and 6 that are both assigned to
the variables of the VARIABLES collection (since value 5 is not assigned to any variable of
the VARIABLES collection the final graph associated with value 5 is empty). Since we use
the NVERTEX graph property, the vertices of the final graphs are stressed in bold.

VARIABLES

1234

3:NVERTEX=1, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

2:3 4:6

(A) (B)

Figure 5.655: Initial and final graph of the OPEN GLOBAL CARDINALITY LOW UP
constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.306 OPEN MAXIMUM

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from MAXIMUM

Constraint OPEN MAXIMUM(MAX, VARIABLES)

Arguments MAX : dvar

VARIABLES : collection(var−dvar, bool−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, [var, bool])
VARIABLES.bool ≥ 0
VARIABLES.bool ≤ 1

Purpose MAX is the maximum value of the variables VARIABLES[i].var, (1 ≤ i ≤ |VARIABLES|)
for which VARIABLES[i].bool = 1 (at least one of the Boolean variables is set to 1).

Example

 5,

〈 var− 3 bool− 1,
var− 1 bool− 0,
var− 7 bool− 0,
var− 5 bool− 1,
var− 5 bool− 1

〉 
The OPEN MAXIMUM constraint holds since its first argument MAX = 5 is set to
the maximum value of values 3, 1, 7, 5, 5 for which the corresponding Boolean 1, 0, 0, 1, 1
is set to 1 (i.e., values 3, 5, 5).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to MAX as well as to the var attribute of
all items of VARIABLES.

See also comparison swapped: OPEN MINIMUM.

hard version: MAXIMUM.

used in graph description: IN SET.

Keywords characteristic of a constraint: maximum, automaton, automaton without counters, reified
automaton constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint, open constraint, open automaton constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.656 depicts the automaton associated with the OPEN MAXIMUM constraint. Let
VARi, Bi be the ith item of the VARIABLES collection. To each triple (MAX, VARi, Bi) cor-
responds a signature variable Si as well as the following signature constraint: (Bi =
1 ∧ MAX < VARi ⇔ Si = 0) ∧ (Bi = 1 ∧ MAX = VARi ⇔ Si = 1) ∧ (Bi = 1 ∧ MAX >
VARi ⇔ Si = 2) ∧ (Bi = 0∧ MAX < VARi ⇔ Si = 3) ∧ (Bi = 0∧ MAX = VARi ⇔ Si =
4) ∧ (Bi = 0 ∧ MAX > VARi ⇔ Si = 5).

s

t

Bi = 1 ∧ MAX > VARiBi = 0

Bi = 1 ∧ MAX = VARi

Bi = 1 ∧ MAX > VARiBi = 0

Bi = 1 ∧ MAX = VARi

Figure 5.656: Automaton of the OPEN MAXIMUM constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

MAX

B1

VAR1

B2

VAR2

Bn

VARn

Figure 5.657: Hypergraph of the reformulation corresponding to the automaton of the
OPEN MAXIMUM constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.307 OPEN MINIMUM

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from MINIMUM

Constraint OPEN MINIMUM(MIN, VARIABLES)

Arguments MIN : dvar

VARIABLES : collection(var−dvar, bool−dvar)

Restrictions |VARIABLES| > 0
required(VARIABLES, [var, bool])
VARIABLES.bool ≥ 0
VARIABLES.bool ≤ 1

Purpose MIN is the minimum value of the variables VARIABLES[i].var, (1 ≤ i ≤ |VARIABLES|)
for which VARIABLES[i].bool = 1 (at least one of the Boolean variables is set to 1).

Example

 3,

〈 var− 3 bool− 1,
var− 1 bool− 0,
var− 7 bool− 0,
var− 5 bool− 1,
var− 5 bool− 1

〉 
The OPEN MINIMUM constraint holds since its first argument MIN = 3 is set to the
minimum value of values 3, 1, 7, 5, 5 for which the corresponding Boolean 1, 0, 0, 1, 1 is
set to 1 (i.e., values 3, 5, 5).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES are permutable.

• One and the same constant can be added to MIN as well as to the var attribute of
all items of VARIABLES.

Remark The OPEN MINIMUM constraint is used in the reformulation of the TREE RANGE con-
straint.

See also comparison swapped: OPEN MAXIMUM.

hard version: MINIMUM.

used in graph description: IN SET.

uses in its reformulation: TREE RANGE.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: minimum, automaton, automaton without counters, reified
automaton constraint.

constraint network structure: centered cyclic(1) constraint network(1).

constraint type: order constraint, open constraint, open automaton constraint.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Figure 5.658 depicts the automaton associated with the OPEN MINIMUM constraint. Let
VARi, Bi be the ith item of the VARIABLES collection. To each triple (MIN, VARi, Bi)
corresponds a signature variable Si as well as the following signature constraint: (Bi =
1 ∧ MIN < VARi ⇔ Si = 0) ∧ (Bi = 1 ∧ MIN = VARi ⇔ Si = 1) ∧ (Bi = 1 ∧ MIN >
VARi ⇔ Si = 2) ∧ (Bi = 0∧ MIN < VARi ⇔ Si = 3) ∧ (Bi = 0∧ MIN = VARi ⇔ Si =
4) ∧ (Bi = 0 ∧ MIN > VARi ⇔ Si = 5).

s

t

Bi = 1 ∧ MIN < VARiBi = 0

Bi = 1 ∧ MIN = VARi

Bi = 1 ∧ MIN < VARiBi = 0

Bi = 1 ∧ MIN = VARi

Figure 5.658: Automaton of the OPEN MINIMUM constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

MIN

B1

VAR1

B2

VAR2

Bn

VARn

Figure 5.659: Hypergraph of the reformulation corresponding to the automaton of the
OPEN MINIMUM constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.308 OPPOSITE SIGN

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint OPPOSITE SIGN(VAR1, VAR2)

Arguments VAR1 : dvar

VAR2 : dvar

Restriction

Purpose Enforce the fact that the product of the first and second variables is less than or equal to
0.

Example (6,−3)

The OPPOSITE SIGN constraint holds since 6 and −3 do not have the same sign.

Typical VAR1 6= 0

Symmetry Arguments are permutable w.r.t. permutation (VAR1, VAR2).

See also comparison swapped: SAME SIGN.

implies (if swap arguments): ABS VALUE.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



OPPOSITE SIGN 1979



1980 OR

5.309 OR

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint OR(VAR, VARIABLES)

Synonym REL.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2, . . . , VARn (n ≥ 2). Enforce
VAR = VAR1 ∨ VAR2 ∨ · · · ∨ VARn.

Example (0, 〈0, 0〉)
(1, 〈0, 1〉)
(1, 〈1, 0〉)
(1, 〈1, 1〉)
(1, 〈1, 0, 1〉)

Symmetry Items of VARIABLES are permutable.

Arg. properties • Functional dependency: VAR determined by VARIABLES.

• Contractible wrt. VARIABLES when VAR = 0.

• Extensible wrt. VARIABLES when VAR = 1.

• Aggregate: VAR(∨), VARIABLES(union).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 8 16 32 64 128 256

Number of solutions for OR: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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1982 OR

Length (n) 2 3 4 5 6 7 8
Total 4 8 16 32 64 128 256

Parameter
value

0 1 1 1 1 1 1 1
1 3 7 15 31 63 127 255

Solution count for OR: domains 0..n

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
10−8

10−7

10−6

10−5

10−4

10−3

Parameter value as fraction of length
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Solution density for OR
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Systems REIFIEDOR in Choco, REL in Gecode, ORBOOL in JaCoP, #\/ in SICStus.

See also common keyword: AND, CLAUSE OR, EQUIVALENT, IMPLY, NAND, NOR, XOR (Boolean
constraint).

implies: ATLEAST NVALUE, MAXIMUM.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: disjunction, functional dependency.

Cond. implications • OR(VAR, VARIABLES)
with |VARIABLES| > 2

implies SOME EQUAL(VARIABLES).

• OR(VAR, VARIABLES)
with VAR = 0

implies NOR(VAR, VARIABLES)
when VAR = 1.

• OR(VAR, VARIABLES)
with VAR = 1

implies NOR(VAR, VARIABLES)
when VAR = 0.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/
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Automaton Figure 5.660 depicts a first deterministic automaton without counter associated with the OR

constraint. To the first argument VAR of the OR constraint corresponds the first signature
variable. To each variable VARi of the second argument VARIABLES of the OR constraint
corresponds the next signature variable. There is no signature constraint.

s

i

j k

VAR = 0

VAR = 1

VARi = 0

VARi = 0

VARi = 1

VARi = 0

VARi = 1

Figure 5.660: Counter free automaton of the OR constraint

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {i, k}

VARn

Figure 5.661: Hypergraph of the reformulation corresponding to the automaton of the
OR constraint

Figure 5.662 depicts a second deterministic automaton with one counter associated with
the OR constraint, where the argument VAR is unified to the final value of the counter.

VAR = C

s{C ← 0} t

VARi = 0

VARi = 1,
{C ← 1}

VARi = 0

VARi = 1

Figure 5.662: Automaton (with one counter) of the OR constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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C0 = 0

Q0 = s

C1

Q1

VAR1 VAR2

Cn = VAR

Qn

VARn

Figure 5.663: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the OR constraint (since all states of the automaton are accepting there
is no restriction on the last variable Qn)
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5.310 ORCHARD

I B C J DESCRIPTION LINKS GRAPH

Origin [235]

Constraint ORCHARD(NROW, TREES)

Arguments NROW : dvar

TREES : collection(index−int, x−dvar, y−dvar)

Restrictions NROW ≥ 0
TREES.index ≥ 1
TREES.index ≤ |TREES|
required(TREES, [index, x, y])
distinct(TREES, index)
TREES.x ≥ 0
TREES.y ≥ 0

Purpose
Orchard problem [235]:

“Your aid I want, Nine trees to plant, In rows just half a score, And let
there be, In each row, three—Solve this: I ask no more!”

Example


10,

〈
index− 1 x− 0 y− 0,
index− 2 x− 4 y− 0,
index− 3 x− 8 y− 0,
index− 4 x− 2 y− 4,
index− 5 x− 4 y− 4,
index− 6 x− 6 y− 4,
index− 7 x− 0 y− 8,
index− 8 x− 4 y− 8,
index− 9 x− 8 y− 8

〉


The 10 alignments of 3 trees correspond to the following triples of trees: (1, 2, 3),
(1, 4, 8), (1, 5, 9), (2, 4, 7), (2, 5, 8), (2, 6, 9), (3, 5, 7), (3, 6, 8), (4, 5, 6), (7, 8, 9).
Figure 5.664 shows the 9 trees and the 10 alignments corresponding to the example.

Typical NROW > 0
|TREES| > 3

Symmetries • Items of TREES are permutable.

• Attributes of TREES are permutable w.r.t. permutation (index) (x, y) (permuta-
tion applied to all items).

• One and the same constant can be added to the x attribute of all items of TREES.

• One and the same constant can be added to the y attribute of all items of TREES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Figure 5.664: Nine trees with 10 alignments of 3 trees

Arg. properties Functional dependency: NROW determined by TREES.

Keywords characteristic of a constraint: hypergraph.

constraint arguments: pure functional dependency.

geometry: geometrical constraint, alignment.

modelling: functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TREES

Arc generator CLIQUE(<) 7→collection(trees1, trees2, trees3)

Arc arity 3

Arc constraint(s)
∑ trees1.x ∗ trees2.y− trees1.x ∗ trees3.y,

trees1.y ∗ trees3.x− trees1.y ∗ trees2.x,
trees2.x ∗ trees3.y− trees2.y ∗ trees3.x

 = 0

Graph property(ies) NARC= NROW

Graph model The arc generator CLIQUE(<) with an arity of three is used in order to generate all
the arcs of the directed hypergraph. Each arc is an ordered triple of trees. We use the
restriction < in order to generate a single arc for each set of three trees. This is required,
since otherwise we would count more than once a given alignment of three trees. The
formula used within the arc constraint expresses the fact that the three points of respective
coordinates (trees1.x, trees1.y), (trees2.x, trees2.y) and (trees3.x, trees3.y) are
aligned. It corresponds to the development of the expression:∣∣∣∣∣∣

trees1.x trees2.y 1
trees2.x trees2.y 1
trees3.x trees3.y 1

∣∣∣∣∣∣ = 0


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.311 ORDER

I B C J DESCRIPTION LINKS

Origin Derived from SORT PERMUTATION

Constraint ORDER(VECTORS, PERMUTATION)

Type VECTOR : collection(var−dvar)

Arguments VECTORS : collection(vec− VECTOR)
PERMUTATION : collection(var−dvar)

Restrictions |VECTOR| ≥ 1
|VECTORS| ≥ 1
required(VECTORS, vec)
same size(VECTORS, vec)
required(PERMUTATION, var)
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
|PERMUTATION| = |VECTORS|

Purpose Given a collection of distinct VECTORS, enforces PERMUTATION.var[i] to be equal to the
position of vector VECTORS.vec[i] within the sorted vectors of the collection VECTORS.

Example



〈
vec− 〈1, 1, 2, 2〉 ,
vec− 〈2, 1, 2, 1〉 ,
vec− 〈2, 1, 1, 1〉 ,
vec− 〈1, 1, 1, 2〉 ,
vec− 〈1, 2, 2, 1〉 ,
vec− 〈1, 1, 1, 1〉 ,
vec− 〈2, 2, 1, 1〉 ,
vec− 〈2, 1, 1, 2〉

〉
,

〈3, 7, 5, 2, 4, 1, 8, 6〉


The ORDER constraint holds since:

• The vector 〈1, 1, 2, 2〉 is in the third position of the sorted collection VECTORS,

• The vector 〈2, 1, 2, 1〉 is in the seventh position of the sorted collection VECTORS,

• The vector 〈2, 1, 1, 1〉 is in the fifth position of the sorted collection VECTORS,

• The vector 〈1, 1, 1, 2〉 is in the second position of the sorted collection VECTORS,

• The vector 〈1, 2, 2, 1〉 is in the fourth position of the sorted collection VECTORS,

• The vector 〈1, 1, 1, 1〉 is in the first position of the sorted collection VECTORS,

• The vector 〈2, 2, 1, 1〉 is in the eigth position of the sorted collection VECTORS,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• The vector 〈2, 1, 1, 2〉 is in the sixth position of the sorted collection VECTORS.

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties Functional dependency: PERMUTATION determined by VECTORS.

See also common keyword: SORT PERMUTATION (sort, permutation).

Keywords characteristic of a constraint: sort.

combinatorial object: permutation.

constraint type: predefined constraint.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



1992 ORDERED ATLEAST NVECTOR

5.312 ORDERED ATLEAST NVECTOR

I B C J DESCRIPTION LINKS GRAPH

Origin Conjoin ATLEAST NVECTOR and LEX CHAIN LESSEQ.

Constraint ORDERED ATLEAST NVECTOR(NVEC, VECTORS)

Synonyms ORDERED ATLEAST NVECTORS, ORDERED ATLEAST NPOINT,
ORDERED ATLEAST NPOINTS.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ 0
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

Enforces the following two conditions:

1. The number of distinct tuples of values taken by the vectors of the col-
lection VECTORS is greater than or equal to NVEC. Two tuples of values
〈A1, A2, . . . , Am〉 and 〈B1, B2, . . . , Bm〉 are distinct if and only if there exist
an integer i ∈ [1,m] such that Ai 6= Bi.

2. For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS

collection we have that VECTORi is lexicographically less than or equal to
VECTORi+1. Given two vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉
and 〈Y0, . . . , Yn−1〉, ~X is lexicographically less than or equal to ~Y if and only
if n = 0 or X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn−1〉 is lexicographically less
than or equal to 〈Y1, . . . , Yn−1〉.

Example

 2,

〈 vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈9, 4〉

〉 
The ORDERED ATLEAST NVECTOR constraint holds since:

1. The collection VECTORS involves at least 2 distinct tuples of values (i.e., in fact the 3
distinct tuples 〈5, 6〉, 〈9, 3〉 and 〈9, 4〉).

2. The vectors of the collection VECTORS are sorted in increasing lexicographical order.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VECTOR| > 1
NVEC > 0
NVEC < |VECTORS|
|VECTORS| > 1

Symmetry NVEC can be decreased to any value ≥ 0.

Reformulation The ORDERED ATLEAST NVECTOR constraint can be reformulated as a conjunction of a
ATLEAST NVECTOR and a LEX CHAIN LESSEQ constraints.

See also common keyword: NVECTOR (vector).

comparison swapped: ORDERED ATMOST NVECTOR.

implied by: ORDERED NVECTOR (≥ NVEC replaced by = NVEC).

implies: ATLEAST NVECTOR, LEX CHAIN LESSEQ (NVEC of constraint
ORDERED ATLEAST NVECTOR removed).

used in graph description: LEX LESS, LEX LESSEQ.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

symmetry: symmetry.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESSEQ(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESS(vectors1.vec, vectors2.vec)

Graph property(ies) NCC≥ NVEC

Graph model Parts (A) and (B) of Figure 5.665 respectively show the initial and final graph of the second
graph constraint associated with the Example slot. Since we use the NCC graph property
in this second graph constraint, we show the different connected components of the final
graph. Each strongly connected component corresponds to a tuple of values that is assigned
to some vectors of the VECTORS collection. The 3 following tuple of values 〈5, 6〉, 〈9, 3〉
and 〈9, 4〉 are used by the vectors of the VECTORS collection.

VECTORS

1

2

3

4

5

NCC=3

CC#1
CC#2 CC#3

1:5
  6

2:5
  6

3:5
  6

4 5

(A) (B)

Figure 5.665: Initial and final graph of the ORDERED ATLEAST NVECTOR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.313 ORDERED ATMOST NVECTOR

I B C J DESCRIPTION LINKS GRAPH

Origin Conjoin ATMOST NVECTOR and LEX CHAIN LESSEQ.

Constraint ORDERED ATMOST NVECTOR(NVEC, VECTORS)

Synonyms ORDERED ATMOST NVECTORS, ORDERED ATMOST NPOINT,
ORDERED ATMOST NPOINTS.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

Enforces the following two conditions:

1. The number of distinct tuples of values taken by the vectors of the collection
VECTORS is less than or equal to NVEC. Two tuples of values 〈A1, A2, . . . , Am〉
and 〈B1, B2, . . . , Bm〉 are distinct if and only if there exist an integer i ∈ [1,m]
such that Ai 6= Bi.

2. For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS

collection we have that VECTORi is lexicographically less than or equal to
VECTORi+1. Given two vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉
and 〈Y0, . . . , Yn−1〉, ~X is lexicographically less than or equal to ~Y if and only
if n = 0 or X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn−1〉 is lexicographically less
than or equal to 〈Y1, . . . , Yn−1〉.

Example

 3,

〈 vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈9, 3〉

〉 
The ORDERED ATMOST NVECTOR constraint holds since:

1. The collection VECTORS involves at most 3 distinct tuples of values (i.e., in fact the
2 distinct tuples 〈5, 6〉 and 〈9, 3〉).

2. The vectors of the collection VECTORS are sorted in increasing lexicographical order.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Symmetry NVEC can be increased.

Arg. properties Contractible wrt. VECTORS.

Reformulation The ORDERED ATMOST NVECTOR constraint can be reformulated as a conjunction of a
ATMOST NVECTOR and a LEX CHAIN LESSEQ constraints.

See also common keyword: NVECTOR (vector).

comparison swapped: ORDERED ATLEAST NVECTOR.

implied by: ORDERED NVECTOR (≤ NVEC replaced by = NVEC).

implies: ATMOST NVECTOR, LEX CHAIN LESSEQ (NVEC of constraint
ORDERED ATMOST NVECTOR removed).

used in graph description: LEX LESS, LEX LESSEQ.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

symmetry: symmetry.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESSEQ(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESS(vectors1.vec, vectors2.vec)

Graph property(ies) NCC≤ NVEC

Graph model Parts (A) and (B) of Figure 5.666 respectively show the initial and final graph of the second
graph constraint associated with the Example slot. Since we use the NCC graph property
in this second graph constraint, we show the different connected components of the final
graph. Each strongly connected component corresponds to a tuple of values that is assigned
to some vectors of the VECTORS collection. The 2 following tuple of values 〈5, 6〉 and 〈9, 3〉
are used by the vectors of the VECTORS collection.

VECTORS

1

2

3

4

5

NCC=2

CC#1 CC#2

1:5
  6

2:5
  6

3:5
  6

4:9
  3

5:9
  3

(A) (B)

Figure 5.666: Initial and final graph of the ORDERED ATMOST NVECTOR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.314 ORDERED GLOBAL CARDINALITY

I B C J DESCRIPTION LINKS GRAPH

Origin [323]

Constraint ORDERED GLOBAL CARDINALITY(VARIABLES, VALUES)

Usual name ORDGCC

Synonym ORDERED GCC.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omax−int)

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omax])
increasing seq(VALUES, [val])
VALUES.omax ≥ 0
VALUES.omax ≤ |VARIABLES|

Purpose

For each i ∈ [1, |VALUES|], the values of the corresponding set of values VALUES[j].val
(i ≤ j ≤ |VALUES|) should be taken by at most VALUES[i].omax variables of the
VARIABLES collection.
From that previous definition, the omax attributes are decreasing.

Example
(
〈2, 0, 1, 0, 0〉 ,
〈val− 0 omax− 5, val− 1 omax− 3, val− 2 omax− 1〉

)
The ORDERED GLOBAL CARDINALITY constraint holds since the values of the
three sets of values {0, 1, 2}, {1, 2} and {2} are respectively used no more than 5, 3 and 1
times within the collection 〈2, 0, 1, 0, 0〉.

Symmetry Items of VARIABLES are permutable.

Arg. properties Contractible wrt. VALUES.

Usage The ORDERED GLOBAL CARDINALITY can be used in order to restrict the way we assign
the values of the VALUES collection to the variables of the VARIABLES collection. It ex-
presses the fact that, when we use a value v, we implicitly also use all values that are less
than or equal to v. As depicted by Figure 5.667 this is the case, for example, for a soft cumu-
lative constraint where we want to control the shape of cumulative profile by providing for
each instant i a variable hi that gives the height of the cumulative profile at instant i. These
variables hi are passed as the first argument of the ORDERED GLOBAL CARDINALITY

constraint. Then the omax attribute of the j-th item of the VALUES collection gives the
maximum number of instants for which the height of the cumulative profile is greater than
or equal to value VALUES[j].val. In Figure 5.667 we should have:


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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• no more than 1 height variable greater than or equal to 2,

• no more than 3 height variables greater than or equal to 1,

• no more than 5 height variables greater than or equal to 0.
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Figure 5.667: (A) A cumulative profile wrt two tasks ¬ and , and its correspond-
ing height variables h1, h2, . . . , h5 giving at each instant how many resource is used
(B) profile of value utilisation of the height variables (e.g., value 1 is assigned to vari-
ables h3, h2, h4 and therefore used three times)

Remark The original definition of the ORDERED GLOBAL CARDINALITY constraint mentions a
third argument, namely the minimum number of occurrences of the smallest value. We
omit it since it is redundant.

An other closely related constraint, the COST ORDERED GLOBAL CARDINALITY con-
straint was introduced in [323] in order to model the fact that overloads costs may depend
of the instant where they occur.

Algorithm A filtering algorithm achieving arc-consistency inO(|VARIABLES|+|VALUES|) is described
in [323]. It is based on the equivalence between the following two statements:

1. the ORDERED GLOBAL CARDINALITY constraint has a solution,

2. all variables of the VARIABLES collection assigned to their respective minimum val-
ues correspond to a solution to the ORDERED GLOBAL CARDINALITY constraint.

Reformulation The ORDERED GLOBAL CARDINALITY(〈var− V1, var− V2, . . . , var− V|VARIABLES|〉,
〈val − v1 omax − o1, val − v2 omax − o2, . . . , val − v|VALUES| omax − o|VALUES|〉) con-
straint can be reformulated into a GLOBAL CARDINALITY(〈var−V1, var−V2, . . . , var−
V|VARIABLES|〉, 〈val − v1 noccurrence − N1, val − v2 noccurrence − N2, . . . , val −
v|VALUES| noccurrence−N|VALUES|〉) and |VALUES| sliding linear inequalities constraints of
the form:
N1 +N2 + · · ·+N|VALUES| ≤ o1,

N2 + · · ·+N|VALUES| ≤ o2,
. . . . . . . . . . . . . . . . . . ,
N|VALUES| ≤ o|VALUES|.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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However, with the next example, T. Petit and J.-C. Régin have shown that this reformulation
hinders propagation:

1. V1 ∈ {0, 1}, V2 ∈ {0, 1}, V3 ∈ {0, 1, 2}, V4 ∈ {2, 3}, V5 ∈ {2, 3}.
2. GLOBAL CARDINALITY( 〈V1, V2, V3, V4, V5〉, 〈val − 1 noccurrence − N1,

val− 2 noccurrence−N2, val− 3 noccurrence−N3〉 ),

3. N1 +N2 +N3 ≤ 3 ∧N2 +N3 ≤ 2 ∧N3 ≤ 2.

The previous reformulation does not remove value 2 from the domain of variable V3.

See also related: CUMULATIVE (controlling the shape of the cumulative profile for breaking sym-
metry), GLOBAL CARDINALITY LOW UP, INCREASING GLOBAL CARDINALITY (the or-
der is imposed on the main variables, and not on the count variables).

root concept: GLOBAL CARDINALITY.

Keywords application area: assignment.

constraint type: value constraint, order constraint.

filtering: arc-consistency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var ≥ VALUES.val

Graph property(ies) NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items
of VALUES” iterator. Part (A) of Figure 5.668 shows the initial graphs associated with
each value 0, 1 and 2 of the VALUES collection of the Example slot. Part (B) of Fig-
ure 5.668 shows the corresponding final graph associated with value 0. Since we use the
NVERTEX graph property, the vertices of the final graph is stressed in bold.

VARIABLES

12345

0:NVERTEX=5, 1:NVERTEX=2, 2:NVERTEX=1

VALUES:0

1:22:03:14:05:0

(A) (B)

Figure 5.668: Initial and final graph of the ORDERED GLOBAL CARDINALITY con-
straint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.315 ORDERED NVECTOR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from NVECTOR.

Constraint ORDERED NVECTOR(NVEC, VECTORS)

Synonyms ORDERED NVECTORS, ORDERED NPOINT, ORDERED NPOINTS.

Type VECTOR : collection(var−dvar)

Arguments NVEC : dvar

VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
NVEC ≥ min(1, |VECTORS|)
NVEC ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose

Enforces the following two conditions:

1. NVEC is the number of distinct tuples of values assigned to the vectors
of the collection VECTORS. Two tuples of values 〈A1, A2, . . . , Am〉 and
〈B1, B2, . . . , Bm〉 are distinct if and only if there exist an integer i ∈ [1,m]
such that Ai 6= Bi.

2. For each pair of consecutive vectors VECTORi and VECTORi+1 of the VECTORS

collection we have that VECTORi is lexicographically less than or equal to
VECTORi+1. Given two vectors, ~X and ~Y of n components, 〈X0, . . . , Xn−1〉
and 〈Y0, . . . , Yn−1〉, ~X is lexicographically less than or equal to ~Y if and only
if n = 0 or X0 < Y0 or X0 = Y0 and 〈X1, . . . , Xn−1〉 is lexicographically less
than or equal to 〈Y1, . . . , Yn−1〉.

Example

 2,

〈 vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈5, 6〉 ,
vec− 〈9, 3〉 ,
vec− 〈9, 3〉

〉 
The ORDERED NVECTOR constraint holds since:

1. Its first argument NVEC = 2 is set to the number of distinct tuples of values (i.e., tu-
ples 〈5, 6〉 and 〈9, 3〉) occurring within the collection VECTORS.

2. The vectors of the collection VECTORS are sorted in increasing lexicographical order.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VECTOR| > 1
NVEC > 1
NVEC < |VECTORS|
|VECTORS| > 1

Arg. properties • Functional dependency: NVEC determined by VECTORS.

• Contractible wrt. VECTORS when NVEC = 1 and |VECTORS| > 0.

• Contractible wrt. VECTORS when NVEC = |VECTORS|.

Reformulation The ORDERED NVECTOR constraint can be reformulated as a conjunction of a NVECTOR

and a LEX CHAIN LESSEQ constraints.

See also implies: LEX CHAIN LESSEQ (NVEC of constraint ORDERED NVECTOR removed),
NVECTOR, ORDERED ATLEAST NVECTOR (= NVEC replaced by ≥ NVEC),
ORDERED ATMOST NVECTOR (= NVEC replaced by ≤ NVEC).

related: INCREASING NVALUE CHAIN.

root concept: INCREASING NVALUE.

used in graph description: LEX LESS, LEX LESSEQ.

Keywords characteristic of a constraint: vector.

constraint type: counting constraint, order constraint.

modelling: functional dependency.

symmetry: symmetry.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESSEQ(vectors1.vec, vectors2.vec)

Graph property(ies) NARC= |VECTORS| − 1

Arc input(s) VECTORS

Arc generator PATH 7→collection(vectors1, vectors2)

Arc arity 2

Arc constraint(s) LEX LESS(vectors1.vec, vectors2.vec)

Graph property(ies) NCC= NVEC

Graph model Parts (A) and (B) of Figure 5.669 respectively show the initial and final graph of the second
graph constraint associated with the Example slot. Since we use the NCC graph property
in this second graph constraint, we show the different connected components of the final
graph. Each strongly connected component corresponds to a tuple of values that is assigned
to some vectors of the VECTORS collection. The 2 following tuple of values 〈5, 6〉 and 〈9, 3〉
are used by the vectors of the VECTORS collection.

VECTORS
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CC#1 CC#2

1:5
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2:5
  6

3:5
  6

4:9
  3

5:9
  3
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Figure 5.669: Initial and final graph of the ORDERED NVECTOR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.316 ORTH LINK ORI SIZ END

I B C J DESCRIPTION LINKS GRAPH

Origin Used by several constraints between orthotopes

Constraint ORTH LINK ORI SIZ END(ORTHOTOPE)

Argument ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end

Purpose Enforce for each item of the ORTHOTOPE collection the constraint ori + siz = end.

Example (〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉)

The ORTH LINK ORI SIZ END constraint holds since the two items 〈ori − 2 siz −
2 end − 4〉 and 〈ori − 1 siz − 3 end − 4〉 respectively verify the conditions 2 + 2 = 4
and 1 + 3 = 4.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0

Symmetries • Items of ORTHOTOPE are permutable.

• One and the same constant can be added to the ori and end attributes of all items
of ORTHOTOPE.

• One and the same constant can be added to the siz and end attributes of all items
of ORTHOTOPE.

Arg. properties • Functional dependency: ORTHOTOPE.ori determined by ORTHOTOPE.siz and
ORTHOTOPE.end.

• Functional dependency: ORTHOTOPE.siz determined by ORTHOTOPE.ori and
ORTHOTOPE.end.

• Functional dependency: ORTHOTOPE.end determined by ORTHOTOPE.ori and
ORTHOTOPE.siz.

• Contractible wrt. ORTHOTOPE.

Usage Used in the Arc constraint(s) slot for defining some constraints like DIFFN,
PLACE IN PYRAMID or ORTHS ARE CONNECTED.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Used in DIFFN, ORTH ON THE GROUND, ORTH ON TOP OF ORTH, ORTHS ARE CONNECTED,
TWO ORTH ARE IN CONTACT, TWO ORTH COLUMN, TWO ORTH DO NOT OVERLAP,
TWO ORTH INCLUDE.

Keywords constraint arguments: pure functional dependency.

constraint type: decomposition.

geometry: orthotope.

modelling: functional dependency.


Used in
List of constraints that use this constraint in their description.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPE

Arc generator SELF 7→collection(orthotope)

Arc arity 1

Arc constraint(s) orthotope.ori + orthotope.siz = orthotope.end

Graph property(ies) NARC= |ORTHOTOPE|

Graph model Parts (A) and (B) of Figure 5.670 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loops of the final
graph are stressed in bold.

ORTHOTOPE

12

NARC=2

1:2,2,4 2:1,3,4

(A) (B)

Figure 5.670: Initial and final graph of the ORTH LINK ORI SIZ END constraint

Signature Since we use the SELF arc generator on the ORTHOTOPE collection the number of arcs of
the initial graph is equal to |ORTHOTOPE|. Therefore the maximum number of arcs of the
final graph is also equal to |ORTHOTOPE|. For this reason we can rewrite the graph property
NARC = |ORTHOTOPE| to NARC ≥ |ORTHOTOPE| and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.317 ORTH ON THE GROUND

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining PLACE IN PYRAMID.

Constraint ORTH ON THE GROUND(ORTHOTOPE, VERTICAL DIM)

Arguments ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)
VERTICAL DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE|
ORTH LINK ORI SIZ END(ORTHOTOPE)

Purpose The ori attribute of the VERTICAL DIMth item of the ORTHOTOPES collection should be
fixed to one.

Example (〈ori− 1 siz− 2 end− 3, ori− 2 siz− 3 end− 5〉 , 1)

The ORTH ON THE GROUND constraint holds since the ori attribute of its 1th item
〈ori− 1 siz− 2 end− 3〉 (i.e., 1th item since VERTICAL DIM = 1) is set to one.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0

Used in PLACE IN PYRAMID.

Keywords geometry: geometrical constraint, orthotope.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Used in
List of constraints that use this constraint in their description.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPE

Arc generator SELF 7→collection(orthotope)

Arc arity 1

Arc constraint(s) • orthotope.key = VERTICAL DIM

• orthotope.ori = 1

Graph property(ies) NARC= 1

Graph model Parts (A) and (B) of Figure 5.671 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the loop of the final
graph is stressed in bold.

ORTHOTOPE

12

NARC=1

1:1,2,3

(A) (B)

Figure 5.671: Initial and final graph of the ORTH ON THE GROUND constraint

Signature Since all the key attributes of the ORTHOTOPES collection are distinct, because of the first
condition of the arc constraint, and since we use the SELF arc generator the final graph
contains at most one arc. Therefore we can rewrite the graph property NARC = 1 to
NARC ≥ 1 and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.318 ORTH ON TOP OF ORTH

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining PLACE IN PYRAMID.

Constraint ORTH ON TOP OF ORTH(ORTHOTOPE1, ORTHOTOPE2, VERTICAL DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

VERTICAL DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
VERTICAL DIM ≥ 1
VERTICAL DIM ≤ |ORTHOTOPE1|
ORTH LINK ORI SIZ END(ORTHOTOPE1)
ORTH LINK ORI SIZ END(ORTHOTOPE2)

Purpose

ORTHOTOPE1 is located on top of ORTHOTOPE2 which concretely means:

• In each dimension different from VERTICAL DIM the projection of ORTHOTOPE1
is included in the projection of ORTHOTOPE2.

• In the dimension VERTICAL DIM the origin of ORTHOTOPE1 coincide with the end
of ORTHOTOPE2.

Example
(
〈ori− 5 siz− 2 end− 7, ori− 3 siz− 3 end− 6〉 ,
〈ori− 3 siz− 5 end− 8, ori− 1 siz− 2 end− 3〉 , 2

)
As illustrated by Figure 5.672 the orthotope ORTHOTOPE1 (rectangle R1 coloured in
pink) is on top of ORTHOTOPE2 (rectangle R2 coloured in blue) according to the hypothesis
that the vertical dimension corresponds to dimension 2 (i.e., VERTICAL DIM = 2). This
stands from the fact that the following conditions hold:

• ORTHOTOPE2[2].ori + ORTHOTOPE2[2].siz = 1 + 2 = ORTHOTOPE1[2].ori,

• ORTHOTOPE2[1].ori = 3 ≤ ORTHOTOPE1[1].ori = 5,

• ORTHOTOPE1[1].end = 7 ≤ ORTHOTOPE2[1].end = 8.

Consequently, the ORTH ON TOP OF ORTH constraint holds.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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1 2 4 6 9 103 5 7 8

ORTHOTOPE2[1].ori

ORTHOTOPE1[1].ori

ORTHOTOPE2[1].end

ORTHOTOPE1[1].end
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ORTHOTOPE2[2].ori

ORTHOTOPE1[2].ori
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ORTHOTOPE2[1].ori
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Figure 5.672: Illustration of the relation on top of of the Example slot (R1 on top of
R2 wrt dimension VERTICAL DIM = 2)

Used in PLACE IN PYRAMID.

Keywords constraint type: logic.

geometry: geometrical constraint, non-overlapping, orthotope.


Used in
List of constraints that use this constraint in their description.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key 6= VERTICAL DIM

• orthotope2.ori ≤ orthotope1.ori
• orthotope1.end ≤ orthotope2.end

Graph property(ies) NARC= |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.key = VERTICAL DIM

• orthotope1.ori = orthotope2.end

Graph property(ies) NARC= 1

Graph model The first and second graph constraints respectively express the first and second conditions
stated in the Purpose slot defining the ORTH ON TOP OF ORTH constraint.

Parts (A) and (B) of Figure 5.673 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property, the unique arc of the final graph is stressed in bold.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

2:3,3,6

2:1,2,3

(A) (B)

Figure 5.673: Initial and final graph of the ORTH ON TOP OF ORTH constraint

Signature Consider the second graph constraint. Since all the key attributes of the ORTHOTOPE1

collection are distinct, because of the arc constraint orthotope1.key = VERTICAL DIM,
and since we use the PRODUCT (=) arc generator the final graph contains at most one
arc. Therefore we can rewrite the graph property NARC = 1 to NARC ≥ 1 and
simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.319 ORTHS ARE CONNECTED

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint ORTHS ARE CONNECTED(ORTHOTOPES)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Argument ORTHOTOPES : collection(orth− ORTHOTOPE)

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)

Purpose

There should be a single group of connected orthotopes. Two orthotopes touch each
other (i.e., are connected) if they overlap in all dimensions except one, and if, for the
dimension where they do not overlap, the distance between the two orthotopes is equal
to 0.

Example


〈 orth− 〈ori− 2 siz− 4 end− 6, ori− 2 siz− 2 end− 4〉 ,

orth− 〈ori− 1 siz− 2 end− 3, ori− 4 siz− 3 end− 7〉 ,
orth− 〈ori− 6 siz− 3 end− 9, ori− 1 siz− 2 end− 3〉 ,
orth− 〈ori− 6 siz− 2 end− 8, ori− 3 siz− 2 end− 5〉

〉 
Figure 5.674 shows the rectangles associated with the example. One can note that:

• Rectangle 2 touch rectangle 1,

• Rectangle 1 touch rectangle 2, rectangle 3 and rectangle 4,

• Rectangle 4 touch rectangle 1 and rectangle 3,

• Rectangle 3 touch rectangle 1 and rectangle 4.

Consequently, since we have a single group of connected rectangles, the
ORTHS ARE CONNECTED constraint holds.

Typical |ORTHOTOPE| > 1
|ORTHOTOPES| > 1

Symmetries • Items of ORTHOTOPES are permutable.

• Items of ORTHOTOPES.orth are permutable (same permutation used).

• One and the same constant can be added to the ori and end attributes of all items
of ORTHOTOPES.orth.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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1
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R1

R2

R3

R4

R1: 〈ori− 2 siz− 4 end− 6, ori− 2 siz− 2 end− 4〉
R2: 〈ori− 1 siz− 2 end− 3, ori− 4 siz− 3 end− 7〉
R3: 〈ori− 6 siz− 3 end− 9, ori− 1 siz− 2 end− 3〉
R4: 〈ori− 6 siz− 2 end− 8, ori− 3 siz− 2 end− 5〉

ORTHOTOPES (rectangles)

Figure 5.674: The four connected rectangles of the Example slot: contacts between
rectangles are shown in pink

Usage In floor planning problem there is a typical constraint, that states that one should be able to
access every room from any room.

See also implies: DIFFN.

used in graph description: ORTH LINK ORI SIZ END, TWO ORTH ARE IN CONTACT.

Keywords geometry: geometrical constraint, touch, contact, non-overlapping, orthotope.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPES

Arc generator SELF 7→collection(orthotopes)

Arc arity 1

Arc constraint(s) ORTH LINK ORI SIZ END(orthotopes.orth)

Graph property(ies) NARC= |ORTHOTOPES|

Arc input(s) ORTHOTOPES

Arc generator CLIQUE( 6=) 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s) TWO ORTH ARE IN CONTACT(orthotopes1.orth, orthotopes2.orth)

Graph property(ies) • NVERTEX= |ORTHOTOPES|
• NCC= 1

Graph model Parts (A) and (B) of Figure 5.675 respectively show the initial and final graph associated
with the Example slot.Since we use the NVERTEX graph property the vertices of the
final graph are stressed in bold. Since we also use the NCC graph property we show the
unique connected component of the final graph. An arc between two vertices indicates that
two rectangles are in contact.

ORTHOTOPES

1

2

3

4
NVERTEX=4

NCC=1

SCC#1

1:2,4,6
  2,2,4

2:1,2,3
  4,3,7

3:6,3,9
  1,2,3

4:6,2,8
  3,2,5

(A) (B)

Figure 5.675: Initial and final graph of the ORTHS ARE CONNECTED constraint

Signature Since the first graph constraint uses the SELF arc generator on the ORTHOTOPES col-
lection the corresponding initial graph contains |ORTHOTOPES| arcs. Therefore the final
graph of the first graph constraint contains at most |ORTHOTOPES| arcs and we can rewrite
NARC = |ORTHOTOPES| to NARC ≥ |ORTHOTOPES|. So we can simplify NARC to
NARC.

Consider now the second graph constraint. Since its corresponding initial graph con-
tains |ORTHOTOPES| vertices, its final graph has a maximum number of vertices also


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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equal to |ORTHOTOPES|. Therefore we can rewrite NVERTEX = |ORTHOTOPES| to
NVERTEX ≥ |ORTHOTOPES| and simplify NVERTEX to NVERTEX. From the
graph property NVERTEX = |ORTHOTOPES| and from the restriction |ORTHOTOPES| >
0 the final graph is not empty. Therefore it contains at least one connected component. So
we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.
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5.320 OVERLAP SBOXES

I B C J DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [349]

Constraint OVERLAP SBOXES(K, DIMS, OBJECTS, SBOXES)

Synonym OVERLAP.

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid−int, sid−dvar, x− VARIABLES)
SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K > 0
DIMS ≥ 0
DIMS < K

increasing seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

Holds if, for each pair of objects (Oi, Oj), i < j, Oi overlaps Oj with respect to a set
of dimensions depicted by DIMS. Oi and Oj are objects that take a shape among a set
of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box
is described by a box in a K-dimensional space at a given offset (from the origin of the
shape) with given sizes. More precisely, a shifted box is an entity defined by its shape
id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted boxes
sharing the same shape id. An object is an entity defined by its unique object identifier
oid, shape id sid and origin x.
An objectOi overlaps an objectOj with respect to a set of dimensions depicted by DIMS
if and only if, there exists a shifted box si associated with Oi and there exists a shifted
box sj associated with Oj , such that (1) there exists a dimension d ∈ DIMS where the
end of Oi in dimension d is strictly greater than the start of Oj in dimension d, and
(2) the end of Oj in dimension d is strictly greater than the start of Oi in dimension d.

Example



2, {0, 1},〈
oid− 1 sid− 1 x− 〈1, 1〉 ,
oid− 2 sid− 2 x− 〈3, 2〉 ,
oid− 3 sid− 3 x− 〈2, 4〉

〉
,

〈
sid− 1 t− 〈0, 0〉 l− 〈4, 5〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 3〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉

〉


Figure 5.676 shows the objects of the example. Since O1 overlaps both O2 and
O3, and since O2 overlaps O3, the OVERLAP SBOXES constraint holds.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation
used).

• SBOXES.l.v can be increased.

Arg. properties Suffix-contractible wrt. OBJECTS.

Remark One of the eight relations of the Region Connection Calculus [349].

See also common keyword: CONTAINS SBOXES, COVEREDBY SBOXES, COVERS SBOXES,
DISJOINT SBOXES, EQUAL SBOXES, INSIDE SBOXES, MEET SBOXES (rcc8),
NON OVERLAP SBOXES (geometrical constraint,logic).

Keywords constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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S1

(A) Shape of the
first object

S2

(B) Shape of the
second object

S3

(C) Shape of the
third object

4 5 61 2 3

3

5

1

2

4

O1

O2

O3

(D) Three objects where O1 both overlaps O2 and O3

and where O2 overlaps O3

O1: oid− 1 sid− 1 x− 〈1, 1〉
O2: oid− 2 sid− 2 x− 〈3, 2〉
O3: oid− 3 sid− 3 x− 〈2, 4〉

OBJECTS

Figure 5.676: (D) the three mutually overlapping objects O1, O2, O3 of the Example
slot respectively assigned shapes S1, S2, S3; (A), (B), (C) shapes S1, S2 and S3 are
made up from a single shifted box.
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Logic
• origin(O1, S1, D)

def
= O1.x(D) + S1.t(D)

• end(O1, S1, D)
def
= O1.x(D) + S1.t(D) + S1.l(D)

• overlap sboxes(Dims, O1, S1, O2, S2)
def
=

∀D ∈ Dims

∧
end(O1, S1, D) >
origin(O2, S2, D)

,

end(O2, S2, D) >
origin(O1, S1, D)


• overlap objects(Dims, O1, O2)

def
=

∀S1 ∈ sboxes([O1.sid])
∃S2 ∈ sboxes

( [
O2.sid

] )
overlap sboxes


Dims,
O1,
S1,
O2,
S2


• all overlap(Dims, OIDS)

def
=

∀O1 ∈ objects(OIDS)
∀O2 ∈ objects(OIDS)

O1.oid <
O2.oid

⇒

overlap objects

 Dims,
O1,
O2


• all overlap(DIMENSIONS, OIDS)


Logic
Explicit description in terms of first order logic formulae of the meaning of the constraint.
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5.321 PATH

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from BINARY TREE.

Constraint PATH(NPATH, NODES)

Arguments NPATH : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NPATH ≥ 1
NPATH ≤ |NODES|
required(NODES, [index, succ])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Cover the digraph G described by the NODES collection with NPATH paths in such a way
that each vertex of G belongs to exactly one path.

2 3 5 1

8 6

4 7

1 8 2 7

3645

1 2 3 4

5678

Example


3,

〈
index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 6

〉



1,

〈
index− 1 succ− 8,
index− 2 succ− 7,
index− 3 succ− 6,
index− 4 succ− 5,
index− 5 succ− 5,
index− 6 succ− 4,
index− 7 succ− 3,
index− 8 succ− 2

〉



8,

〈
index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉



Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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The first PATH constraint holds since its second argument corresponds to the 3
(i.e., the first argument of the PATH constraint) paths depicted by Figure 5.677.

1|15|13|52|3

6|68|6

7|74|7

index− 1 succ− 1
index− 2 succ− 3
index− 3 succ− 5
index− 4 succ− 7
index− 5 succ− 1
index− 6 succ− 6
index− 7 succ− 7
index− 8 succ− 6

NODES

Figure 5.677: The three paths corresponding to the first example of the Example
slot; each vertex contains the information index|succ where succ is the index of its
successor in the path (by convention one of the extremities of a path points to itself).

All solutions Figure 5.678 gives all solutions to the following non ground instance of the PATH con-
straint: NPATH ∈ {1, 3}, S1 ∈ [3, 4], S2 ∈ [1, 2], S3 ∈ [1, 3], S4 ∈ [2, 4],
PATH(NPATH, 〈1 S1, 2 S2, 3 S3, 4 S4〉).

¬ (1, 〈31,12,33,24〉)
 (3, 〈31,22,33,44〉)
® (1, 〈41,12,23,44〉)
¯ (1, 〈41,12,33,34〉)
° (1, 〈41,22,13,24〉)
± (1, 〈41,22,23,34〉)
² (3, 〈41,22,33,44〉)

4 2 1 3
¬

1 3 2 4


3 2 1 4
®

2 1 4 3
¯

3 1 4 2
°

1 4 3 2
±

1 4 2 3
²

Figure 5.678: All solutions corresponding to the non ground example of the PATH con-
straint of the All solutions slot; in the left-hand side the index attributes are displayed
as indices of the succ attribute, while in the right-hand side they are directly displayed
within each node.

Typical NPATH < |NODES|
|NODES| > 1


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: NPATH determined by NODES.

Reformulation The PATH constraint can be expressed in term of (1) a set of |NODES|2 reified constraints
for avoiding circuit between more than one node and of (2) |NODES| reified constraints and
of one sum constraint for counting the paths and of (3) a set of |NODES|2 reified constraints
and of |NODES| inequalities constraints for enforcing the fact that each vertex has at most
two children.

1. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a
variable Ri that takes its value within interval [1, |NODES|]. This variable represents
the rank of vertex NODES[i] within a solution. It is used to prevent the creation of
circuit involving more than one vertex as explained now. For each pair of vertices
NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES collection we create a reified
constraint of the form NODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .
The purpose of this constraint is to express the fact that, if there is an arc from vertex
NODES[i] to another vertex NODES[j], then Ri should be strictly less than Rj .

2. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-
ate a 0-1 variable Bi and state the following reified constraint NODES[i].succ =
NODES[i].index ⇔ Bi in order to force variable Bi to be set to value 1 if and
only if there is a loop on vertex NODES[i]. Finally we create a constraint NPATH =
B1 +B2 + · · ·+B|NODES| for stating the fact that the number of paths is equal to the
number of loops of the graph.

3. For each pair of vertices NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES

collection we create a 0-1 variable Bij and state the following reified constraint
NODES[i].succ = NODES[j].index ∧ i 6= j ⇔ Bij . Variable Bij is set to value 1 if
and only if there is an arc from NODES[i] to NODES[j]. Then for each vertex NODES[j]
(j ∈ [1, |NODES|]) we create a constraint of the formB1j+B2j+· · ·+B|NODES|j ≤ 1.

A second reformulation of the PATH constraint in term of two TREE constraints
and one INVERSE EXCEPT LOOP constraint is described in the Usage slot of the
INVERSE EXCEPT LOOP constraint.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 3 13 73 501 4051 37633 394353

Number of solutions for PATH: domains 0..n


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 3 13 73 501 4051 37633 394353

Parameter
value

1 2 6 24 120 720 5040 40320
2 1 6 36 240 1800 15120 141120
3 - 1 12 120 1200 12600 141120
4 - - 1 20 300 4200 58800
5 - - - 1 30 630 11760
6 - - - - 1 42 1176
7 - - - - - 1 56
8 - - - - - - 1

Solution count for PATH: domains 0..n
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See also common keyword: CIRCUIT (graph partitioning constraint, one succ),
DOM REACHABILITY (path), PATH FROM TO (path, select an induced subgraph so
that there is a path from a given vertex to an other given vertex), PROPER CIRCUIT (graph
partitioning constraint, one succ).

generalisation: BINARY TREE (at most one child replaced by at most two children),
TEMPORAL PATH (vertices are located in time, and to each arc corresponds a precedence
constraint), TREE (at most one child replaced by no limit on the number of children).

implies: BINARY TREE.

related: BALANCE PATH (counting number of paths versus controlling how balanced the
paths are).

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
• NCC= NPATH

•MAX ID≤ 1

Graph class ONE SUCC

Graph model We use the same graph constraint as for the BINARY TREE constraint, except that we re-
place the graph property MAX ID≤ 2, which constraints the maximum in-degree of the
final graph to not exceed 2 by MAX ID≤ 1. MAX ID does not consider loops: This
is why we do not have any problem with the final node of each path.

Parts (A) and (B) of Figure 5.679 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NCC graph property, we
display the three connected components of the final graph. Each of them corresponds to
a path. Since we use the MAX ID graph property, we also show with a double circle a
vertex that has a maximum number of predecessors.

The PATH constraint holds since all strongly connected components of the final graph have
no more than one vertex, since NPATH =NCC= 3 and since MAX ID= 1.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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NODES

1

2

3

4

5

6

7

8
MAX_NSCC=1, NCC=3

MAX_ID=1

CC#1 CC#2 CC#3

1:1,1

2:2,3

3:3,5

5:5,1

4:4,7

7:7,7 6:6,6

8:8,6

(A) (B)

Figure 5.679: Initial and final graph of the PATH constraint
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5.322 PATH FROM TO

I B C J DESCRIPTION LINKS GRAPH

Origin [6]

Constraint PATH FROM TO(FROM, TO, NODES)

Usual name PATH

Arguments FROM : int

TO : int

NODES : collection(index−int, succ−svar)

Restrictions FROM ≥ 1
FROM ≤ |NODES|
TO ≥ 1
TO ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Select some arcs of a digraph G so that there is still a path between two given vertices
of G.

Example

 4, 3,

〈 index− 1 succ− ∅,
index− 2 succ− ∅,
index− 3 succ− {5},
index− 4 succ− {5},
index− 5 succ− {2, 3}

〉 
The PATH FROM TO constraint holds since within the digraph G corresponding to
the item of the NODES collection there is a path from vertex FROM = 4 to vertex TO = 3:
this path starts from vertex 4, enters vertex 5, and ends up in vertex 3.

Typical FROM 6= TO

|NODES| > 2

Symmetry Items of NODES are permutable.

Remark Within [140] an undirected version of the PATH FROM TO constraint was proposed under
the name UNDIRECTED PATH.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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See also common keyword: DOM REACHABILITY (path),
LINK SET TO BOOLEANS (constraint involving set variables),
PATH, TEMPORAL PATH (path).

used in graph description: IN SET.

Keywords combinatorial object: path.

constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph property(ies) PATH FROM TO(index, FROM, TO) = 1

Graph model Within the context of the Example slot, part (A) of Figure 5.680 shows the initial graph
from which we choose to start. It is derived from the set associated with each vertex.
Each set describes the potential values of the succ attribute of a given vertex. Part (B)
of Figure 5.680 gives the final graph associated with the Example slot. Since we use the
PATH FROM TO graph property we show on the final graph the following informa-
tion:

• The vertices that respectively correspond to the start and the end of the required path
are stressed in bold.

• The arcs on the required path are also stressed in bold.

The PATH FROM TO constraint holds since there is a path from vertex 4 to vertex 3 (4 and
3 refer to the index attribute of a vertex).

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

PATH_FROM_TO(index,4,3)=1

4:4,{5}

5:5,{2,3}

3:3,{5} 2:2,{}

(A) (B)

Figure 5.680: Initial and final graph of the PATH FROM TO set constraint

Signature Since the maximum value returned by the graph property PATH FROM TO
is equal to 1 we can rewrite PATH FROM TO(index, FROM, TO) = 1
to PATH FROM TO(index, FROM, TO) ≥ 1. Therefore we simplify
PATH FROM TO to PATH FROM TO.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.323 PATTERN

I B C J DESCRIPTION LINKS AUTOMATON

Origin [92]

Constraint PATTERN(VARIABLES, PATTERNS)

Type PATTERN : collection(var−int)

Arguments VARIABLES : collection(var−dvar)
PATTERNS : collection(pat− PATTERN)

Restrictions required(PATTERN, var)
PATTERN.var ≥ 0
CHANGE(0, PATTERN,=)
|PATTERN| > 1
required(VARIABLES, var)
required(PATTERNS, pat)
|PATTERNS| > 0
same size(PATTERNS, pat)

Purpose

We quote the definition from the original article [92, page 157] introducing the PATTERN

constraint:

“We call a k-pattern (k > 1) any sequence of k elements such that
no two successive elements have the same value. Consider a set V =
{v1, v2, . . . , vm} and a sequence s = s1 s2 . . . sn of elements of V . In
this context, a stretch is a maximum subsequence of variables of s which
all have the same value. Consider now the sequence vi1 vi2 . . . vil of
the types of the successive stretches that appear in s. Let P be a set of
k-patterns. s satisfies P if and only if every subsequence of k elements in
vi1 vi2 . . . , vil belongs to P .”

Example
(
〈1, 1, 2, 2, 2, 1, 3, 3〉 ,
〈pat− 〈1, 2, 1〉 , pat− 〈1, 2, 3〉 , pat− 〈2, 1, 3〉〉

)
The PATTERN constraint holds since, as depicted by Figure 5.681, all its sequences
of three consecutive stretches correspond to one of the 3-patterns given in the PATTERNS

collection.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.



PATTERN 2039

1 1 2 2 2 1 3 3

1 1 2 2 2 1

2 2 2 1 3 3

1 2 1

1 2 3

2 1 3

VARIABLES

PATTERNS

3-pattern PATTERNS[1]:

3-pattern PATTERNS[2]:

3-pattern PATTERNS[3]:

decomposition of the sequence
in terms of overlapping 3-patterns

︷ ︸︸ ︷str
etc

h of
1

︷ ︸︸ ︷str
etc

h of
2

︷︸︸︷str
etc

h of
1

︷ ︸︸ ︷str
etc

h of
3

Figure 5.681: The sequence of the Example slot, its four stretches and the correspond-
ing two 3-patterns 1 2 1 and 2 1 3

Symmetries • Items of PATTERNS are permutable.

• Items of VARIABLES and PATTERNS.pat are simultaneously reversable.

• All occurrences of two distinct tuples of values in VARIABLES.var or
PATTERNS.pat.var can be swapped; all occurrences of a tuple of values in
VARIABLES.var or PATTERNS.pat.var can be renamed to any unused tuple of
values.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Usage The PATTERN constraint was originally introduced within the context of staff scheduling.
In this context, the value of the ith variable of the VARIABLES collection corresponds to
the type of shift performed by a person on the ith day. A stretch is a maximum sequence
of consecutive variables that are all assigned to the same value. The PATTERN constraint
imposes that each sequence of k consecutive stretches belongs to a given list of patterns.

Remark A generalisation of the PATTERN constraint to the REGULAR constraint enforcing the fact
that a sequence of variables corresponds to a regular expression is presented in [317].

See also common keyword: GROUP (timetabling constraint),
SLIDING DISTRIBUTION (sliding sequence constraint),
STRETCH CIRCUIT, STRETCH PATH (sliding sequence constraint,timetabling constraint),
STRETCH PATH PARTITION (sliding sequence constraint).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: arc-consistency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Automaton Taking advantage that all k-patterns have the same length k, it is straightforward to con-
struct an automaton that only accepts solutions of the PATTERN constraint. Figure 5.682
depicts the automaton associated with the PATTERN constraint of the Example slot. The
construction can be done in three steps:

• First, build a prefix tree of all the k-patterns. In the context of our example, this gives
all arcs of Figure 5.682, except self loops and the arc from s3 to s7.

• Second, find out the transitions that exit a leave of the tree. For this purpose we
remove the first symbol of the corresponding k-pattern, add at the end of the re-
maining k-pattern a symbol corresponding to a stretch value, and check whether the
new pattern belongs or not to the set of k-patterns of the PATTERN constraint. When
the new pattern belongs to the set of k-patterns we add a corresponding transition.
For instance, in the context of our example, consider the leave s3 that is associated
with the 3-pattern 1, 2, 1. We remove the first symbol 1 and get 2, 1. We then try to
successively add the stretch values 1, 2 and 3 to the end of 2, 1 and check if the cor-
responding patterns 2, 1, 1, 2, 1, 2 and 2, 1, 3 belong or not to our set of 3-patterns.
Since only 2, 1, 3 is a 3-pattern we add a new transition between the corresponding
leaves of the prefix tree (i.e., a transition from s3 to s7).

• Third, in order to take into account that each value of a k-pattern corresponds in
fact to a given stretch value (i.e., several consecutive values that are assigned the
same value), we add a self loop to all non-source states with a transition label that
corresponds to the transition label of their entering arcs.

s0

s5 s1

s6 s2

s7 s4 s3

2 1

2

1

1

2

1

3

2

3

3 3 1

3

1

Figure 5.682: Automaton of the PATTERN constraint of the Example slot


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.324 PEAK

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from INFLEXION.

Constraint PEAK(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose

A variable Vk (1 < k < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a peak if and only if there exists an i (with 1 < i ≤ k) such that Vi−1 < Vi and
Vi = Vi+1 = · · · = Vk and Vk > Vk+1. N is the total number of peaks of the sequence
of variables VARIABLES.

Example (2, 〈1, 1, 4, 8, 6, 2, 7, 1〉)
(0, 〈1, 1, 4, 4, 4, 6, 7, 7〉)
(4, 〈1, 5, 4, 9, 4, 6, 2, 7, 6〉)

The first PEAK constraint holds since the sequence 1 1 4 8 6 2 7 1 contains two
peaks that respectively correspond to the variables that are assigned to values 8 and 7.

1 1

4

8

6

2

7

1 1 1

4 4 4

6
7 7

1

5
4

9

4

6

2

7
6

first
peak

second
peak

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

5

6

7

8

1 1

4

8

6

2

7

1

variables

va
lu

es

Figure 5.683: Illustration of the first example of the Example slot: a sequence of eight
variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 1, 1, 4, 8, 6, 2, 7, 1
and its corresponding two peaks (N = 2)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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All solutions Figure 5.684 gives all solutions to the following non ground instance of the PEAK con-
straint: N ∈ [1, 2], V1 ∈ [1, 2], V2 = 2, V3 ∈ [1, 2], V4 ∈ [1, 2], V5 ∈ [2, 3],
PEAK(N, 〈V1, V2, V3, V4, V5〉).

¬ (1, 〈1,2, 1, 1, 2〉)
 (1, 〈1,2, 1, 1, 3〉)
® (1, 〈1,2, 1, 2, 2〉)
¯ (1, 〈1,2, 1, 2, 3〉)
° (1, 〈1,2,2, 1, 2〉)
± (1, 〈1,2,2, 1, 3〉)

Figure 5.684: All solutions corresponding to the non ground example of the PEAK
constraint of the All solutions slot where each peak is coloured in orange

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Functional dependency: N determined by VARIABLES.

• Contractible wrt. VARIABLES when N = 0.

Usage Useful for constraining the number of peaks of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the PEAK constraint cannot be currently
described with the graph-based representation. However, this would not hold anymore if
we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for PEAK: domains 0..n


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 9 50 295 1792 11088 69498 439791
1 - 14 330 5313 73528 944430 11654622
2 - - - 671 33033 1010922 24895038
3 - - - - - 72302 6057270

Solution count for PEAK: domains 0..n

0 0.1 0.2 0.3 0.4

10−2

10−1

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for PEAK

size 6
size 7
size 8



2046 PEAK

0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for PEAK

size 6
size 7
size 8

See also common keyword: HIGHEST PEAK, INFLEXION, MIN DIST BETWEEN INFLEXION,
MIN SURF PEAK, MIN WIDTH PEAK (sequence).

comparison swapped: VALLEY.

generalisation: BIG PEAK (a tolerance parameter is added for counting only big peaks).

related: ALL EQUAL PEAK, ALL EQUAL PEAK MAX, DECREASING PEAK,
INCREASING PEAK, NO VALLEY.

specialisation: NO PEAK (the variable counting the number of peaks is set to 0 and re-
moved).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

Cond. implications • PEAK(N, VARIABLES)
with N > 0

implies ATLEAST NVALUE(NVAL, VARIABLES)
when NVAL = 2.

• PEAK(N, VARIABLES)
implies INFLEXION(N, VARIABLES)

when N = PEAK(VARIABLES.var)+VALLEY(VARIABLES.var).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Automaton Figure 5.685 depicts the automaton associated with the PEAK constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

s : stationary/decreasing mode ({> | =}∗)
u : increasing mode (< {< | =}∗)

STATE SEMANTICS

N = Cs{C ← 0} u

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1

VARi = VARi+1

VARi < VARi+1

VARi > VARi+1,
{C ← C + 1}

Figure 5.685: Automaton of the PEAK constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = N

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.686: Hypergraph of the reformulation corresponding to the automaton of the
PEAK constraint (since all states of the automaton are accepting there is no restriction
on the last variable Qn−1)

Glue matrix where
−→
C and

←−
C resp. represent the counter value C at

the end of a prefix and at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

s ({> | =}∗) u (< {< | =}∗)

s ({> | =}∗)
−→
C +

←−
C

−→
C +

←−
C

u (< {< | =}∗)

−→
C +

←−
C

−→
C + 1 +

←−
C

Figure 5.687: Glue matrix of the PEAK constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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PEAK(N = 2, 〈1, 1, 4, 8, 6, 2, 7, 1〉)

PEAK

( −→
N3 = 0,
〈1, 1, 4, 8〉

)
PEAK

( ←−
N4 = 1,

〈8, 6, 2, 7, 1〉

)
glue matrix entry associated with the state pair (u, u):

N =
−→
C3 + 1 +

←−
C4 = 0 + 1 + 1 = 2

Figure 5.688: Illustrating the use of the state pair (u, u) of the glue matrix for linking N
with the counters variables obtained after reading the prefix 1, 1, 4, 8 and corresponding
suffix 8, 6, 2, 7, 1 of the sequence 1, 1, 4, 8, 6, 2, 7, 1; note that the suffix 8, 6, 2, 7, 1 (in
pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for
i = 0) and the evolution (for i > 0) of the state of the automaton and of its counter C
upon reading the prefix 1, 1, 4, 8 (resp. the suffix 1, 7, 2, 6, 8).
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5.325 PERIOD

I B C J DESCRIPTION LINKS

Origin N. Beldiceanu

Constraint PERIOD(PERIOD, VARIABLES, CTR)

Arguments PERIOD : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let us note V0, V1, . . . , Vm−1 the variables of the VARIABLES collection. PERIOD is
the period of the sequence V0 V1 . . . Vm−1 according to constraint CTR . This means
that PERIOD is the smallest natural number such that Vi CTR Vi+PERIOD holds for all i ∈
0, 1, . . . ,m− PERIOD− 1.

Example (3, 〈1, 1, 4, 1, 1, 4, 1, 1〉 ,=)

The PERIOD constraint holds since, as depicted by Figure 5.689, its first argument
PERIOD = 3 is equal (i.e., since CTR is set to =) to the period of the sequence
1 1 4 1 1 4 1 1.

1 1 4 1 1 4 1 1

Figure 5.689: A sequence of period 3

Typical PERIOD > 1
PERIOD < |VARIABLES|
|VARIABLES| > 2
range(VARIABLES.var) > 1
CTR ∈ [=]

Symmetries • Items of VARIABLES can be reversed.

• Items of VARIABLES can be shifted.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties • Functional dependency: PERIOD determined by VARIABLES and CTR.

• Contractible wrt. VARIABLES when CTR ∈ [=] and PERIOD = 1.

• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Algorithm When CTR corresponds to the equality constraint, a potentially incomplete filtering algo-
rithm based on 13 deductions rules is described in [60]. The generalisation of these rules
to the case where CTR is not the equality constraint is discussed.

See also generalisation: PERIOD VECTORS (variable replaced by vector).

implies: PERIOD EXCEPT 0.

soft variant: PERIOD EXCEPT 0 (value 0 can match any other value).

Keywords combinatorial object: periodic, sequence.

constraint arguments: pure functional dependency.

constraint type: predefined constraint, timetabling constraint, scheduling constraint.

filtering: border.

modelling: functional dependency.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.326 PERIOD EXCEPT 0
I B C J DESCRIPTION LINKS

Origin Derived from PERIOD.

Constraint PERIOD EXCEPT 0(PERIOD, VARIABLES, CTR)

Arguments PERIOD : dvar

VARIABLES : collection(var−dvar)
CTR : atom

Restrictions PERIOD ≥ 1
PERIOD ≤ |VARIABLES|
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Let us note V0, V1, . . . , Vm−1 the variables of the VARIABLES collection. PERIOD is the
period of the sequence V0 V1 . . . Vm−1 according to constraint CTR . This means that
PERIOD is the smallest natural number such that Vi CTR Vi+PERIOD∨Vi = 0∨Vi+PERIOD =
0 holds for all i ∈ 0, 1, . . . ,m− PERIOD− 1.

Example (3, 〈1, 1, 4, 1, 1, 0, 1, 1〉 ,=)

The PERIOD EXCEPT 0 constraint holds since, as depicted by Figure 5.690, its first
argument PERIOD = 3 is equal (i.e., since CTR is set to =) to the period of the sequence
1 1 4 1 1 0 1 1; value 0 is assumed to be equal to any other value.

1 1 4 1 1 1 10

Figure 5.690: A sequence that has a period of 3 when we assume that value 0 can
match to any other value

Typical PERIOD > 1
PERIOD < |VARIABLES|
|VARIABLES| > 2
range(VARIABLES.var) > 1
ATLEAST(1, VARIABLES, 0)
CTR ∈ [=]

Typical model ATLEAST(2, VARIABLES, 0)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.
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Symmetries • Items of VARIABLES can be reversed.

• Items of VARIABLES can be shifted.

• All occurrences of two distinct values of VARIABLES.var that are both different
from 0 can be swapped; all occurrences of a value of VARIABLES.var that is dif-
ferent from 0 can be renamed to any unused value that is also different from 0.

Arg. properties • Functional dependency: PERIOD determined by VARIABLES and CTR.

• Contractible wrt. VARIABLES when CTR ∈ [=] and PERIOD = 1.

• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Usage Useful for timetabling problems where a person should repeat some work pattern over an
over except when he is unavailable for some reason. The value 0 represents the fact that he
is unavailable, while the other values are used in the work pattern.

Algorithm See [60].

See also hard version: PERIOD.

implied by: PERIOD.

Keywords characteristic of a constraint: joker value.

combinatorial object: periodic, sequence.

constraint arguments: pure functional dependency.

constraint type: predefined constraint, timetabling constraint, scheduling constraint.

modelling: functional dependency.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.327 PERIOD VECTORS

I B C J DESCRIPTION LINKS

Origin Derived from PERIOD

Constraint PERIOD VECTORS(PERIOD, VECTORS, CTRS)

Types VECTOR : collection(var−dvar)
CTR : atom

Arguments PERIOD : dvar

VECTORS : collection(vec− VECTOR)
CTRS : collection(ctr− CTR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
CTR ∈ [=, 6=, <,≥, >,≤]
PERIOD ≥ 1
PERIOD ≤ |VECTORS|
required(VECTORS, vec)
same size(VECTORS, vec)
required(CTRS, ctr)
|CTRS| = |VECTOR|

Purpose

Let us note VECTOR0, VECTOR1, . . . , VECTORn−1 the vectors of the VECTORS collec-
tion, and d the number of components of each vector (all vectors have the same size).
PERIOD is the period of the sequence of vectors VECTOR0, VECTOR1, . . . , VECTORn−1

according to constraints CTRS. This means that PERIOD is the smallest nat-
ural number such that ∀i ∈ [0, n − PERIOD − 1],∀j ∈ [0, d − 1] :
VECTORi.vec[j] CTRS[j] VECTORi+PERIOD.vec[j].

Example


3,

〈
vec− 〈1, 0〉 ,
vec− 〈1, 5〉 ,
vec− 〈4, 4〉 ,
vec− 〈1, 0〉 ,
vec− 〈1, 5〉 ,
vec− 〈4, 4〉 ,
vec− 〈1, 0〉 ,
vec− 〈1, 5〉

〉
,

〈=,=〉


The PERIOD VECTORS constraint holds since its first argument PERIOD = 3 is
equal (i.e., since CTRS is set to 〈=,=〉) to the period of the sequence vec − 〈1, 0〉,
vec − 〈1, 5〉, vec − 〈4, 4〉, vec − 〈1, 0〉, vec − 〈1, 5〉, vec − 〈4, 4〉, vec − 〈1, 0〉,
vec− 〈1, 5〉.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical CTR ∈ [=]
|VECTOR| > 1
PERIOD > 1
PERIOD < |VECTORS|
|VECTORS| > 2

Symmetry Items of VECTORS can be reversed.

Arg. properties • Functional dependency: PERIOD determined by VECTORS and CTRS.

• Prefix-contractible wrt. VECTORS.

• Suffix-contractible wrt. VECTORS.

See also specialisation: PERIOD (vector replaced by variable).

Keywords characteristic of a constraint: vector.

combinatorial object: periodic, sequence.

constraint arguments: pure functional dependency.

constraint type: predefined constraint.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.328 PERMUTATION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ALLDIFFERENT CONSECUTIVE VALUES.

Constraint PERMUTATION(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
minval(VARIABLES.var) = 1
maxval(VARIABLES.var) = |VARIABLES|

Purpose Enforce all variables of the collection VARIABLES to take distinct values between 1 and
the total number of variables.

Example (〈3, 2, 1, 4〉)

The PERMUTATION constraint holds since all the values 3, 2, 1 and 4 are distinct,
and since they all belong to interval [1, 4] where 4 is the total number of variables.

3
2

1

4

Typical |VARIABLES| > 2

Symmetries • Items of VARIABLES are permutable.

• Two distinct values of VARIABLES.var can be swapped.

Usage See Usage slot of ALLDIFFERENT.

Algorithm See Algorithm slot of ALLDIFFERENT.

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 2 6 24 120 720 5040 40320 362880 3628800

Number of solutions for PERMUTATION: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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See also implied by: PROPER CIRCUIT.

implies: ALLDIFFERENT CONSECUTIVE VALUES.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: all different, disequality, sort based reformulation.

combinatorial object: permutation.

constraint type: value constraint.

final graph structure: one succ.

Cond. implications • PERMUTATION(VARIABLES)
implies BALANCE(BALANCE, VARIABLES)

when BALANCE = 0.

• PERMUTATION(VARIABLES)
implies CHANGE(NCHANGE, VARIABLES, CTR)

when NCHANGE = |VARIABLES| − 1
and CTR ∈ [ 6=].

• PERMUTATION(VARIABLES)
implies CIRCULAR CHANGE(NCHANGE, VARIABLES, CTR)

when NCHANGE = |VARIABLES|
and CTR ∈ [ 6=].

• PERMUTATION(VARIABLES)
implies LENGTH LAST SEQUENCE(LEN, VARIABLES)

when LEN = 1.

• PERMUTATION(VARIABLES)
implies LENGTH FIRST SEQUENCE(LEN, VARIABLES)

when LEN = 1.

• PERMUTATION(VARIABLES)
implies LONGEST CHANGE(SIZE, VARIABLES, CTR)

when SIZE = |VARIABLES|
and CTR ∈ [ 6=].

• PERMUTATION(VARIABLES)
implies MAX N(MAX, RANK, VARIABLES)

when MAX = |VARIABLES| − RANK.

• PERMUTATION(VARIABLES)
implies MIN N(MIN, RANK, VARIABLES)

when MIN = RANK + 1.

• PERMUTATION(VARIABLES)
implies MIN NVALUE(MIN, VARIABLES)

when MIN = 1.

• PERMUTATION(VARIABLES)
implies MIN SIZE FULL ZERO STRETCH(MINSIZE, VARIABLES)

when MINSIZE = |VARIABLES|.

• PERMUTATION(VARIABLES)
implies NINTERVAL(NVAL, VARIABLES, SIZE INTERVAL)

when NVAL = (|VARIABLES|+ SIZE INTERVAL)/SIZE INTERVAL.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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• PERMUTATION(VARIABLES)
implies RANGE CTR(VARIABLES, CTR, R)

when CTR ∈ [≤]
and R = |VARIABLES|.

• PERMUTATION(VARIABLES)
implies SOFT ALLDIFFERENT CTR(C, VARIABLES).

• PERMUTATION(VARIABLES)
implies SOFT ALL EQUAL MAX VAR(N, VARIABLES)

when N ≤ |VARIABLES| − 1.

• PERMUTATION(VARIABLES)
implies SOFT ALL EQUAL MIN VAR(N, VARIABLES)

when N ≥ |VARIABLES| − 1.

• PERMUTATION(VARIABLES)
implies SUM CTR(VARIABLES, CTR, VAR)

when CTR ∈ [=]
and VAR = |VARIABLES| ∗ (|VARIABLES|+ 1)/2.

• PERMUTATION(VARIABLES)
with |VARIABLES| > 2
and first(VARIABLES.var) >minval(VARIABLES.var)
and last(VARIABLES.var) >minval(VARIABLES.var)

implies DEEPEST VALLEY(DEPTH, VARIABLES)
when DEPTH =minval(VARIABLES.var).

• PERMUTATION(VARIABLES)
with |VARIABLES| > 2
and first(VARIABLES.var) = 1

implies DEEPEST VALLEY(DEPTH, VARIABLES)
when DEPTH = 2.

• PERMUTATION(VARIABLES)
with |VARIABLES| > 2
and last(VARIABLES.var) = 1

implies DEEPEST VALLEY(DEPTH, VARIABLES)
when DEPTH = 2.

• PERMUTATION(VARIABLES)
with |VARIABLES| > 2
and first(VARIABLES.var) <maxval(VARIABLES.var)
and last(VARIABLES.var) <maxval(VARIABLES.var)

implies HIGHEST PEAK(HEIGHT, VARIABLES)
when HEIGHT =maxval(VARIABLES.var).

• PERMUTATION(VARIABLES)
with |VARIABLES| > 2
and first(VARIABLES.var) = |VARIABLES|

implies HIGHEST PEAK(HEIGHT, VARIABLES)
when HEIGHT = |VARIABLES| − 1.
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• PERMUTATION(VARIABLES)
with |VARIABLES| > 2
and last(VARIABLES.var) = |VARIABLES|

implies HIGHEST PEAK(HEIGHT, VARIABLES)
when HEIGHT = |VARIABLES| − 1.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ 1

Graph class ONE SUCC

Graph model We generate a clique with an equality constraint between each pair of vertices (including a
vertex and itself) and state that the size of the largest strongly connected component should
not exceed one. Finally the restrictions express the fact that all values are between 1 and
the total number of variables.

Parts (A) and (B) of Figure 5.691 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one
of the largest strongly connected component of the final graph. The PERMUTATION holds
since all the strongly connected components have at most one vertex: a value is used at
most once.

VARIABLES

1

2

3

4

MAX_NSCC=1

MAX_NSCC

1:3 2:2 3:1 4:4

(A) (B)

Figure 5.691: Initial and final graph of the PERMUTATION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.329 PLACE IN PYRAMID

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint PLACE IN PYRAMID(ORTHOTOPES, VERTICAL DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPES : collection(orth− ORTHOTOPE)
VERTICAL DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
required(ORTHOTOPES, orth)
same size(ORTHOTOPES, orth)
VERTICAL DIM ≥ 1
DIFFN(ORTHOTOPES)

Purpose

For each pair of orthotopes (O1, O2) of the collection ORTHOTOPES, O1 and O2 do not
overlap (two orthotopes do not overlap if there exists at least one dimension where their
projections do not overlap). In addition, each orthotope of the collection ORTHOTOPES

should be supported by one other orthotope or by the ground. The vertical dimension is
given by the parameter VERTICAL DIM.

Example



〈
orth− 〈ori− 1 siz− 3 end− 4, ori− 1 siz− 2 end− 3〉 ,
orth− 〈ori− 1 siz− 2 end− 3, ori− 3 siz− 3 end− 6〉 ,

orth−
〈

ori− 5 siz− 6 end− 11,
ori− 1 siz− 2 end− 3

〉
,

orth− 〈ori− 5 siz− 2 end− 7, ori− 3 siz− 2 end− 5〉 ,

orth−
〈

ori− 8 siz− 3 end− 11,
ori− 3 siz− 2 end− 5

〉
,

orth−
〈

ori− 8 siz− 2 end− 10,
ori− 5 siz− 2 end− 7

〉
〉
, 2


Figure 5.692 depicts the placement associated with the example, where the ith item
of the ORTHOTOPES collection is represented by the rectangle Ri. The PLACE IN PYRAMID

constraint holds since the rectangles do not overlap and since rectangles R1, R2, R3, R4,
R5, and R6 are respectively supported by the ground, R1, the ground, R3, R3, and R5.

Typical |ORTHOTOPE| > 1
ORTHOTOPE.siz > 0
|ORTHOTOPES| > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Figure 5.692: Solution corresponding to the Example slot

Symmetry Items of ORTHOTOPES are permutable.

Usage The DIFFN constraint is not enough if one wants to produce a placement where no orthotope
floats in the air. This constraint is usually handled with a heuristic during the enumeration
phase.

See also used in graph description: ORTH ON THE GROUND, ORTH ON TOP OF ORTH.

Keywords constraint type: logic.

geometry: geometrical constraint, non-overlapping, orthotope.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPES

Arc generator CLIQUE 7→collection(orthotopes1, orthotopes2)

Arc arity 2

Arc constraint(s)
∨


∧( orthotopes1.key = orthotopes2.key,
ORTH ON THE GROUND(orthotopes1.orth, VERTICAL DIM)

)
,

∧
orthotopes1.key 6= orthotopes2.key,

ORTH ON TOP OF ORTH

 orthotopes1.orth,
orthotopes2.orth,
VERTICAL DIM





Graph property(ies) NARC= |ORTHOTOPES|

Graph model The arc constraint of the graph constraint forces one of the following conditions:

• If the arc connects the same orthotope O then the ground directly supports O,

• Otherwise, if we have an arc from an orthotope O1 to a distinct orthotope O2,
the condition is: O1 is on top of O2 (i.e., in all dimensions, except dimension
VERTICAL DIM, the projection of O1 is included in the projection of O2, while in
dimension VERTICAL DIM the projection ofO1 is located after the projection ofO2).

Parts (A) and (B) of Figure 5.693 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

ORTHOTOPES

1

2

3

4

5

6

NARC=6

1:1,3,4
  1,2,3

2:1,2,3
  3,3,6

3:5,6,11
  1,2,3

4:5,2,7
  3,2,5

5:8,3,11
  3,2,5

6:8,2,10
  5,2,7

(A) (B)

Figure 5.693: Initial and final graph of the PLACE IN PYRAMID constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.330 POLYOMINO

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [206].

Constraint POLYOMINO(CELLS)

Argument CELLS : collection


index−int,
right−dvar,
left−dvar,
up−dvar,
down−dvar



Restrictions CELLS.index ≥ 1
CELLS.index ≤ |CELLS|
|CELLS| ≥ 1
required(CELLS, [index, right, left, up, down])
distinct(CELLS, index)
CELLS.right ≥ 0
CELLS.right ≤ |CELLS|
CELLS.left ≥ 0
CELLS.left ≤ |CELLS|
CELLS.up ≥ 0
CELLS.up ≤ |CELLS|
CELLS.down ≥ 0
CELLS.down ≤ |CELLS|

Purpose

Enforce all cells of the collection CELLS to be connected and to form a single block.
Each cell is defined by the following attributes:

1. The index attribute of the cell, which is an integer between 1 and the total number
of cells, is unique for each cell.

2. The right attribute that is the index of the cell located immediately to the right
of that cell (or 0 if no such cell exists).

3. The left attribute that is the index of the cell located immediately to the left of
that cell (or 0 if no such cell exists).

4. The up attribute that is the index of the cell located immediately on top of that
cell (or 0 if no such cell exists).

5. The down attribute that is the index of the cell located immediately above that cell
(or 0 if no such cell exists).

This corresponds to a polyomino [206].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example


〈 index− 1 right− 0 left− 0 up− 2 down− 0,

index− 2 right− 3 left− 0 up− 0 down− 1,
index− 3 right− 0 left− 2 up− 4 down− 0,
index− 4 right− 5 left− 0 up− 0 down− 3,
index− 5 right− 0 left− 4 up− 0 down− 0

〉 
The POLYOMINO constraint holds since all the cells corresponding to the items of
the CELLS collection form one single group of connected cells: the ith (i ∈ [1, 4]) cell is
connected to the (i+ 1)th cell. Figure 5.694 shows the corresponding polyomino.

1

2 3

4 5

Figure 5.694: Polyomino corresponding to the Example slot where each cell contains
the index of the corresponding item within the CELLS collection

Symmetries • Items of CELLS are permutable.

• Attributes of CELLS are permutable w.r.t. permutation (index) (right, left)
(up) (down) (permutation applied to all items).

• Attributes of CELLS are permutable w.r.t. permutation (index) (right) (left)
(up, down) (permutation applied to all items).

• Attributes of CELLS are permutable w.r.t. permutation (index)
(up, left, down, right) (permutation applied to all items).

Usage Enumeration of polyominoes.

Keywords combinatorial object: pentomino.

final graph structure: strongly connected component.

geometry: geometrical constraint.

puzzles: pentomino.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) CELLS

Arc generator CLIQUE( 6=) 7→collection(cells1, cells2)

Arc arity 2

Arc constraint(s)
∨


∧( cells1.right = cells2.index,
cells2.left = cells1.index

)
,∧( cells1.left = cells2.index,

cells2.right = cells1.index

)
,

cells1.up = cells2.index ∧ cells2.down = cells1.index,
cells1.down = cells2.index ∧ cells2.up = cells1.index


Graph property(ies) • NVERTEX= |CELLS|

• NCC= 1

Graph model The graph constraint models the fact that all the cells are connected. We use the
CLIQUE(6=) arc generator in order to only consider connections between two distinct
cells. The first graph property NVERTEX = |CELLS| avoid the case isolated cells,
while the second graph property NCC = 1 enforces to have a single group of connected
cells.

Parts (A) and (B) of Figure 5.695 respectively show the initial and final graph associated
with the Example slot. Since we use the NVERTEX graph property the vertices of the
final graph are stressed in bold. Since we also use the NCC graph property we show the
unique connected component of the final graph. An arc between two vertices indicates that
two cells are directly connected.

CELLS

1

2

3

4

5 NVERTEX=5
NCC=1

CC#1

1:1,0,0,2,0

2:2,3,0,0,1

3:3,0,2,4,0

4:4,5,0,0,3

5:5,0,4,0,0

(A) (B)

Figure 5.695: Initial and final graph of the POLYOMINO constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Signature From the graph property NVERTEX = |CELLS| and from the restriction |CELLS| ≥ 1
we have that the final graph is not empty. Therefore it contains at least one connected
component. So we can rewrite NCC = 1 to NCC ≤ 1 and simplify NCC to NCC.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.331 POWER

I B C J DESCRIPTION LINKS

Origin [146]

Constraint POWER(X, N, Y)

Synonym XEXPYEQZ.

Arguments X : dvar

N : dvar

Y : dvar

Restrictions X ≥ 0
N ≥ 0
Y ≥ 0

Purpose Enforce the fact that Y is equal to XN.

Example (2, 3, 8)

The POWER constraint holds since 8 is equal to 23.

Typical X > 1
N > 1
N < 5
Y > 1

Arg. properties Functional dependency: Y determined by X and N.

Algorithm In [146] a filtering algorithm for the POWER constraint was automatically derived from the
algorithm that multiplies X by itself N times by using constructive disjunction and abstract
interpretation in order to approximate the behaviour of the while loop of that algorithm.

Systems XEXPYEQZ in JaCoP.

See also common keyword: GCD (abstract interpretation).

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: arithmetic constraint, predefined constraint.

filtering: abstract interpretation.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
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5.332 PRECEDENCE

I B C J DESCRIPTION LINKS GRAPH

Origin Scheduling

Constraint PRECEDENCE(TASKS)

Argument TASKS : collection(origin−dvar, duration−dvar)

Restrictions required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose
All consecutive pairs of tasks of the collection TASKS should be ordered (i.e., the end of
the first task of a pair should be less than or equal to the start of the second task of the
same pair).

Example


〈 origin− 1 duration− 3,

origin− 4 duration− 0,
origin− 5 duration− 2,
origin− 8 duration− 1

〉 
Since the tasks are ordered (i.e., 1 + 3 ≤ 4, 4 + 0 ≤ 5, 5 + 2 ≤ 8) the PRECEDENCE

constraint holds.

Typical |TASKS| > 2
TASKS.duration ≥ 1

Symmetries • TASKS.duration can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

Arg. properties Contractible wrt. TASKS.

See also common keyword: INCREASING (order constraint).

implies: DISJUNCTIVE.

implies (items to collection): LEX CHAIN LESSEQ.

Keywords constraint type: decomposition, order constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator PATH 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin + tasks1.duration ≤ tasks2.origin

Graph property(ies) NARC= |TASKS| − 1

Graph model Since we are only interested by the constraints linking two consecutive items of the collec-
tion TASKS we use PATH to generate the arcs of the initial graph.

Parts (A) and (B) of Figure 5.696 respectively show the initial and final graph of the first
example of the Example slot. Since we use the NARC graph property, the arcs of the
final graph are stressed in bold.

TASKS

1

2

3

4

NARC=3

1:1,3

2:4,0

3:5,2

4:8,1

(A) (B)

Figure 5.696: Initial and final graph of the PRECEDENCE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.333 PRODUCT CTR

I B C J DESCRIPTION LINKS GRAPH

Origin Arithmetic constraint.

Constraint PRODUCT CTR(VARIABLES, CTR, VAR)

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Constraint the product of a set of domain variables. More precisely, let P denote the
product of the variables of the VARIABLES collection. Enforce the following constraint
to hold: P CTR VAR.

Example (〈2, 1, 4〉 ,=, 8)

The PRODUCT CTR constraint holds since its last argument VAR = 8 is equal (i.e., CTR is
set to =) to 2 · 1 · 4.

Typical |VARIABLES| > 1
|VARIABLES| < 10
range(VARIABLES.var) > 1
VARIABLES.var 6= 0
CTR ∈ [=, <,≥, >,≤]
VAR 6= 0

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤] and
minval(VARIABLES.var) > 0.

• Aggregate: VARIABLES(union), CTR(id), VAR(∗) when CTR ∈ [=].

Used in CUMULATIVE PRODUCT.

See also common keyword: RANGE CTR, SUM CTR (arithmetic constraint).

Keywords characteristic of a constraint: product.

constraint type: arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) PROD(VARIABLES, var) CTR VAR

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint always holds.

Parts (A) and (B) of Figure 5.697 respectively show the initial and final graph associated
with the Example slot. Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

PROD(VARIABLES,var)=2*1*4=8

1:2 2:1 3:4

(A) (B)

Figure 5.697: Initial and final graph of the PRODUCT CTR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.334 PROPER CIRCUIT

I B C J DESCRIPTION LINKS

Origin Derived from CIRCUIT

Constraint PROPER CIRCUIT(NODES)

Synonym CIRCUIT.

Argument NODES : collection(index−int, succ−dvar)

Restrictions |NODES| > 1
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose Enforce to cover a digraph G described by the NODES collection with one circuit visiting
once a subset of the vertices of G.

Example


〈 index− 1 succ− 2,

index− 2 succ− 3,
index− 3 succ− 1,
index− 4 succ− 4

〉 
The PROPER CIRCUIT constraint holds since its NODES argument depicts the fol-
lowing circuit visiting successively the vertices 1, 2, 3 and 1 (i.e., node 4 is not visited).

1 2

34

All solutions Figure 5.698 gives all solutions to the following non ground instance of the
PROPER CIRCUIT constraint: S1 ∈ [2, 4], S2 ∈ [1, 2], S3 ∈ [1, 4], S4 ∈ [2, 4],
PROPER CIRCUIT(〈1 S1, 2 S2, 3 S3, 4 S4〉).

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 1 5 20 84 409 2365 16064 125664 1112073

Number of solutions for PROPER CIRCUIT: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Counting
Information on the solution density.
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¬ (〈21,12,33,44〉)
 (〈31,12,23,44〉)
® (〈31,12,43,24〉)
¯ (〈31,22,13,44〉)
° (〈41,12,23,34〉)
± (〈41,12,33,24〉)
² (〈41,22,13,34〉)

1 2

34

¬
1 3

24



1 3

42

®
1 3

24

¯

1 4

32

°
1 4

23

±
1 4

32

²

Figure 5.698: All solutions corresponding to the non ground example of the
PROPER CIRCUIT constraint of the All solutions slot; in the left-hand side the index

attributes are displayed as indices of the succ attribute, while in the right-hand side
they are directly displayed within each node.
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2 4 6 8 10

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Length
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ity

Solution density for PROPER CIRCUIT

See also common keyword: ALLDIFFERENT (permutation), CIRCUIT (permutation, one succ),
PATH (graph partitioning constraint, one succ).

implied by: CIRCUIT.

implies: PERMUTATION, TWIN.

implies (items to collection): LEX ALLDIFFERENT.

Keywords combinatorial object: permutation.

constraint type: predefined constraint, graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck.

final graph structure: circuit, one succ.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.335 PROPER FOREST

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from TREE, [52].

Constraint PROPER FOREST(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, neighbour−svar)

Restrictions NTREES ≥ 0
required(NODES, [index, neighbour])
|NODES|mod 2 = 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.neighbour ≥ 1
NODES.neighbour ≤ |NODES|
NODES.neighbour 6= NODES.index

Purpose
Cover an undirected graph G by a set of NTREES trees (i.e., a tree is a connected graph
without cycles that contains at least two vertices [114]) in such a way that each vertex of
G belongs to one distinct tree.

Example


3,

〈
index− 1 neighbour− {3, 6},
index− 2 neighbour− {9},
index− 3 neighbour− {1, 5, 7},
index− 4 neighbour− {9},
index− 5 neighbour− {3},
index− 6 neighbour− {1},
index− 7 neighbour− {3},
index− 8 neighbour− {10},
index− 9 neighbour− {2, 4},
index− 10 neighbour− {8}

〉


The PROPER FOREST constraint holds since the undirected graph associated with
the items of the NODES collection corresponds to a forest containing NTREES = 3 trees:
each tree respectively involves the vertices {1, 3, 5, 6, 7}, {2, 4, 9} and {8, 10}.

1 3 5

6 7

9 2

4 8 10

Typical NTREES > 0
|NODES| > 1

Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: NTREES determined by NODES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Remark Extension to the minimum spanning tree constraint is described in [152, 360, 363].

Algorithm A filtering algorithm for the PROPER FOREST constraint was proposed by N. Beldiceanu
et al. in [52]. It achieves hybrid-consistency and its running time is dominated by the
complexity of finding all edges that do not belong to any maximum cardinality matching
in an undirected n-vertex, m-edge graph, i.e., O(m · n). A second filtering algorithm with
a worst-case time complexity of O(m · p), where p is the number of maximum extreme
sets of the graph, based on Gallai-Edmonds decomposition [190, 159] was proposed by
R. Cymer in [140].

Systems TREE in Choco.

See also common keyword: TREE (connected component,tree).

Keywords characteristic of a constraint: undirected graph.

constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: hybrid-consistency.

final graph structure: connected component, tree, no cycle, symmetric.

modelling: functional dependency.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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Arc input(s) NODES

Arc generator CLIQUE( 6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.neighbour)

Graph property(ies) • NVERTEX= (NARC+2 ∗ NTREES)/2
• NCC= NTREES

• NVERTEX= |NODES|

Graph class SYMMETRIC

Graph model The graph constraint forces the following conditions:

• Each connected component of the final graph has n vertices and 2 ·(n−1) arcs. This
is equivalent to the fact that each connected component has not any cycle.

• Since we use the CLIQUE( 6=) arc-generator and since, by definition, the final graph
does not contain any isolated vertex, each connected component of the final graph
involves more than one vertex.

• The number of connected components of the final graph is equal to NCC.

• All the vertices of the initial graph belong to the final graph.

• The final graph is symmetric.

Parts (A) and (B) of Figure 5.699 respectively show the initial and final graph associated
with the Example slot. For each connected component we display its number of arcs as
well as its number of vertices. The PROPER FOREST constraint holds since the final graph
has NTREES = NCC = 3 connected components and no cycle.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

NODES

1

2

3

4

5

6

7

8

9

10

(B)

CC#1:NARC=8,NVERTEX=5
CC#2:NARC=4,NVERTEX=3
CC#3:NARC=2,NVERTEX=2

NCC=3

CC#1 CC#2 CC#3

1:1,{3,6}

3:3,{1,5,7} 6:6,{1}

5:5,{3} 7:7,{3}

2:2,{9}

9:9,{2,4}

4:4,{9} 8:8,{10}

10:10,{8}

Figure 5.699: Initial and final graph of the PROPER FOREST constraint
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5.336 RANGE CTR

I B C J DESCRIPTION LINKS GRAPH

Origin Arithmetic constraint.

Constraint RANGE CTR(VARIABLES, CTR, R)

Arguments VARIABLES : collection(var−dvar)
CTR : atom

R : dvar

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the difference between the maximum value and the minimum value of a set
of domain variables. More precisely, let RANGE denote the difference between the largest
and the smallest variables of the VARIABLES collection plus one. Enforce the following
constraint to hold: RANGE CTR R.

Example (〈1, 9, 4〉 ,=, 9)

The RANGE CTR constraint holds since max(1, 9, 4) − min(1, 9, 4) + 1 is equal
(i.e., CTR is set to =) to its last argument R = 9.

V1 V2 V3

2

3

5

6

7

8

10

1

4

9

variables

va
lu

es

R
=

9
−

1
+

1
=

9

minimum value:

maximum value:

Figure 5.700: Illustration of the Example slot: three variables respectively fixed to
values 1, 9 and 4, and their corresponding range R = 9


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤].

• Extensible wrt. VARIABLES when CTR ∈ [≥, >].

Used in SHIFT.

See also common keyword: PRODUCT CTR, SUM CTR (arithmetic constraint).

Keywords characteristic of a constraint: range.

constraint type: arithmetic constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) RANGE(VARIABLES, var) CTR R

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint always holds.

Parts (A) and (B) of Figure 5.701 respectively show the initial and final graph associated
with the Example slot. Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

RANGE(VARIABLES,var)=9-1+1=9

1:1 2:9 3:4

(A) (B)

Figure 5.701: Initial and final graph of the RANGE CTR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.337 RELAXED SLIDING SUM

I B C J DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint RELAXED SLIDING SUM(ATLEAST, ATMOST, LOW, UP, SEQ, VARIABLES)

Arguments ATLEAST : int

ATMOST : int

LOW : int

UP : int

SEQ : int

VARIABLES : collection(var−dvar)

Restrictions ATLEAST ≥ 0
ATMOST ≥ ATLEAST

ATMOST ≤ |VARIABLES| − SEQ + 1
UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose There are between ATLEAST and ATMOST sequences of SEQ consecutive variables of the
collection VARIABLES such that the sum of the variables of the sequence is in [LOW, UP].

Example (3, 4, 3, 7, 4, 〈2, 4, 2, 0, 0, 3, 4〉)

Within the sequence 2 4 2 0 0 3 4 we have exactly 3 subsequences of SEQ = 4
consecutive values such that their sums is located within the interval [LOW, UP] = [3, 7]:
subsequences 4 2 0 0, 2 0 0 3 and 0 0 3 4. Consequently the RELAXED SLIDING SUM

constraint holds since the number of such subsequences is located within the interval
[ATLEAST, ATMOST] = [3, 4].

Typical SEQ > 1
SEQ < |VARIABLES|
range(VARIABLES.var) > 1
ATLEAST > 0 ∨ ATMOST < |VARIABLES| − SEQ + 1

Symmetries • ATLEAST can be decreased to any value ≥ 0.

• ATMOST can be increased to any value ≤ |VARIABLES| − SEQ + 1.

• Items of VARIABLES can be reversed.

Algorithm [32].


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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See also hard version: SLIDING SUM.

used in graph description: SUM CTR (the sliding constraint).

Keywords characteristic of a constraint: hypergraph.

combinatorial object: sequence.

constraint type: sliding sequence constraint, soft constraint, relaxation.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) • SUM CTR(collection,≥, LOW)
• SUM CTR(collection,≤, UP)

Graph property(ies) • NARC≥ ATLEAST

• NARC≤ ATMOST

Graph model Parts (A) and (B) of Figure 5.702 respectively show the initial and final graph associated
with the Example slot. For each vertex of the graph we show its corresponding position
within the collection of variables. The constraint associated with each arc corresponds to
a conjunction of two sum ctr constraints involving 4 consecutive variables. In Part (B),
we did not put vertex 1 since the single arc constraint that mentions vertex 1 does not hold
(i.e., the sum 2 + 4 + 2 + 0 = 8 is not located in interval [3, 7]). However, the directed
hypergraph contains 3 arcs, so the RELAXED SLIDING SUM constraint is satisfied since it
was requested to have between 3 and 4 arcs.

1 2 3 4 5 6 7• • • •

(A)

2:4 3:2 4:0 5:0 6:3 7:4• • •

(B)

Figure 5.702: (A) Initial and (B) final graph of the
RELAXED SLIDING SUM(3, 4, 3, 7,4, 〈2,4,2,0,0,3,4〉) constraint of the Ex-
ample slot where each ellipse represents an hyperedge involving SEQ = 4 vertices
(e.g., the rightmost ellipse represents the constraint 0 + 0 + 3 + 4 ∈ [3, 7])


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.338 REMAINDER

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint REMAINDER(Q, D, R)

Synonyms MODULO, MOD.

Arguments Q : dvar

D : dvar

R : dvar

Restrictions Q ≥ 0
D > 0
R ≥ 0
R < D

Purpose Enforce R to be equal to the remainder of the division of Q by D.

Example (15, 2, 1)

The REMAINDER constraint holds since 1 is the rest of the division of 15 by 2.

Arg. properties Functional dependency: R determined by Q and D.

Keywords constraint arguments: ternary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Keywords
Related keywords grouped by meta-keywords.
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5.339 ROOTS

I B C J DESCRIPTION LINKS GRAPH

Origin [69]

Constraint ROOTS(S, T, VARIABLES)

Arguments S : svar

T : svar

VARIABLES : collection(var−dvar)

Restrictions S ≤ |VARIABLES|
required(VARIABLES, var)

Purpose S is the set of indices of the variables in the collection VARIABLES taking their values in
T; S = {i | VARIABLES[i].var ∈ T}. Positions are numbered from 1.

Example ({2, 4, 5}, {2, 3, 8}, 〈1, 3, 1, 2, 3〉)

The ROOTS constraint holds since values 2 and 3 in T occur in the collection 〈1, 3, 1, 2, 3〉
only at positions S = {2, 4, 5}. The value 8 ∈ T does not occur within the collection
〈1, 3, 1, 2, 3〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Usage Bessière et al. showed [69] that many counting and occurence constraints can be spec-
ified with two global primitives: ROOTS and RANGE. For example, the COUNT con-
straint can be decomposed into one ROOTS constraint: COUNT(VAL, VARS, OP, NVAR) iff
ROOTS(S, {VAL}, VARS) ∧ |S| OP NVAR.

ROOTS does not count but collects the set of variables using particular values. It provides
then a way of channeling. ROOTS generalises, for example, the LINK SET TO BOOLEANS

constraint, LINK SET TO BOOLEANS(S, BOOLEANS) iff ROOTS(S, {1}, BOOLEANS.bool),
or may be used instead of the DOMAIN CONSTRAINT.

Other examples of reformulations are given in [73].

Algorithm In [72], Bessière et al. shows that enforcing hybrid-consistency on ROOTS is NP-hard.
They consider the decomposition of ROOTS into a network of ternary constraints: ∀i, i ∈
S ⇒ VARIABLES[i].var ∈ T and VARIABLES[i].var ⇒ T ∧ i ∈ S. Enforcing bound
consistency on the decomposition achieves bound consistency on ROOTS. Enforcing hybrid
consistency on the decomposition achieves at least bound consistency on ROOTS, until
hybrid consistency in some special cases:

• dom(VARIABLES[i].var) ⊂ T, ∀i ∈ S,

• dom(VARIABLES[i].var) ∩ T = ∅, ∀i 6∈ S,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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• VARIABLES are ground,

• T is ground.

Enforcing hybrid consistency on the decomposition can be done in O(nd) with n =
|VARIABLES| and d the maximum domain size of VARIABLES[i].var and T.

Systems ROOTS in Gecode, ROOTS in MiniZinc.

See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables).

related: AMONG (can be expressed with ROOTS), ASSIGN AND NVALUES (can be ex-
pressed with ROOTS and RANGE), ATLEAST, ATMOST (can be expressed with ROOTS),
COMMON (can be expressed with ROOTS and RANGE), COUNT (can be expressed with
ROOTS), DOMAIN CONSTRAINT, GLOBAL CARDINALITY, GLOBAL CONTIGUITY (can
be expressed with ROOTS), SYMMETRIC ALLDIFFERENT, USES (can be expressed with
ROOTS and RANGE).

Keywords characteristic of a constraint: disequality.

constraint arguments: constraint involving set variables.

constraint type: counting constraint, value constraint, decomposition.

filtering: hybrid-consistency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#roots
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Derived Collection
col(SETS−collection(s−svar, t−svar), [item(s− S, t− T)])

Arc input(s) SETS VARIABLES

Arc generator PRODUCT 7→collection(sets, variables)

Arc arity 2

Arc constraint(s) IN SET(variables.key, sets.s)⇔
IN SET(variables.var, sets.t)

Graph property(ies) NARC= |VARIABLES|

SETS

VARIABLES

1

12345

NARC=5

1:{2,4,5},{2,3,8}

1:1 2:3 3:1 4:2 5:3

(A) (B)

Figure 5.703: Initial and final graph of the ROOTS constraint

Graph model


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.340 SAME

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint SAME(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose The variables of the VARIABLES2 collection correspond to the variables of the
VARIABLES1 collection according to a permutation.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈9, 1, 1, 1, 2, 5〉)

The SAME constraint holds since values 1, 2, 5 and 9 have the same number of oc-
currences within both collections 〈1, 9, 1, 5, 2, 1〉 and 〈9, 1, 1, 1, 2, 5〉. Figure 5.704
illustrates this correspondence.

1 9 1 5 2 1
1 2 3 4 5 6

9 1 1 1 2 5
1 2 3 4 5 6

VARIABLES1

VARIABLES2

Figure 5.704: Illustration of the correspondence between the items of the VARIABLES1
and of the VARIABLES2 collections of the Example slot

All solutions Figure 5.705 gives all solutions to the following non ground instance of the SAME con-
straint: U1 ∈ [0, 2], U2 ∈ [1, 2], U3 ∈ [1, 2], V1 ∈ [0, 1], V2 ∈ [2, 4], V3 ∈ [2, 3],
SAME(〈U1, U2, U3〉, 〈V1, V2, V3〉).

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ (〈0,2,2〉, 〈0,2,2〉)
 (〈1,2,2〉, 〈1,2,2〉)
® (〈2,1,2〉, 〈1,2,2〉)
¯ (〈2,2,1〉, 〈1,2,2〉)

Figure 5.705: All solutions corresponding to the non ground example of the SAME
constraint of the All solutions slot where identical values are coloured in the same way
in both collections

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Arg. properties Aggregate: VARIABLES1(union), VARIABLES2(union).

Usage The SAME constraint can be used in the following contexts:

• Pairing problems taken from [54]. The organisation Doctors Without Borders has a
list of doctors and a list of nurses, each of whom volunteered to go on one mission
in the next year. Each volunteer specifies a list of possible dates and each mission
involves one doctor and one nurse. The task is to produce a list of pairs such that
each pair includes a doctor and a nurse who are available at the same date and each
volunteer appears in exactly one pair. The problem is modelled by a SAME(D =
d1, d2, . . . , dm, N = n1, n2, . . . , nm) constraint where each doctor is represented
by a domain variable in D and each nurse by a domain variable in N . For a given
doctor or nurse the corresponding domain variable gives the dates when the person
is available. When the number of nurses is different from the number of doctors we
replace the SAME constraint by a USED BY constraint.

• Timetabling problems where we wish to produce fair schedules for different persons
is a second use of the SAME constraint. Assume we need to generate a plan over a
period of D consecutive days for P persons. For each day d and each person p we
need to decide whether person p works in the morning shift, in the afternoon shift,
in the night shift or does not work at all on day d. In a fair schedule, the number
of morning shifts should be the same for all the persons. The same condition holds
for the afternoon and the night shifts as well as for the days off. We create for each
person p the sequence of variables vp,1, vp,2, . . . , vp,D . vp,D is equal to one of 0, 1, 2
and 3, depending on whether person p does not work, works in the morning, in the
afternoon or during the night on day d. We can use P−1 SAME constraints to express
the fact that v1,1, v1,2, . . . , v1,D should be a permutation of vp,1, vp,2, . . . , vp,D for
each (1 < p ≤ P ).

• The SAME constraint can also be used as a channelling constraint for modelling the
following recurring pattern: given the number of 1s in each line and each column of


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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a 0-1 matrixM with n rows and m columns, reconstruct the matrix. This pattern
usually occurs with additional constraints about compatible positions of the 1s, or
about the overall shape reconstructed from all the 1’s (e.g., convexity, connectivity).
If we restrict ourselves to the basic pattern there is an O(mn) algorithm for recon-
structing a m · n matrix from its horizontal and vertical directions [189]. We show
how to model this pattern with the SAME constraint. Let li (1 ≤ i ≤ n) and cj
(1 ≤ j ≤ m) denote respectively, the required number of 1s in the ith row and the
jth column ofM. We number the entries of the matrix as shown in the left-hand side
of 5.706. For row i we create li domain variables vik where k ∈ [1, li]. Similarly,
for each column j we create cj domain variables ujk where k ∈ [1, ci]. The domain
of each variable contains the set of entries that belong to the row or column that the
variable corresponds to. Thus, each domain variable represents a 1 that appears in
the designated row or column. Let V be the set of variables corresponding to rows
and U be the set of variables corresponding to columns. To make sure that each 1
is placed in a different entry, we impose the constraint ALLDIFFERENT(U). In ad-
dition, the constraint SAME(U ,V) enforces that the 1s exactly coincide on the rows
and the columns. A solution is shown on the right-hand side of 5.706. Note that
the SAME AND GLOBAL CARDINALITY constraint allows one to model the matrix
reconstruction problem without the additional ALLDIFFERENT constraint.

1 1 2 3 4

3 5 6 7 8

1 1 1 1

v11 ∈ {1, 5}

v21 ∈ {2, 6} v31 ∈ {3, 7}

v41 ∈ {4, 8}

u11 ∈ {1, 2, 3, 4}

u21 ∈ {5, 6, 7, 8}

u22 ∈ {5, 6, 7, 8}

u23 ∈ {5, 6, 7, 8}

SAME(〈u11, u21, u22, u23〉, 〈v11, v21, v22, v23〉)

0 0 1 0

1 1 0 1

SAME(〈5, 6, 3, 8〉, 〈3, 5, 6, 8〉)

Figure 5.706: Modelling the 0-1 matrix reconstruction problem with the SAME con-
straint (variable u11 corresponds to the position of value 1 in the first row, variables
u21, u22, u23 correspond to the position of value 1 in the second row, and variables
v11, v21, v31, v41 respectively to the positions of value 1 in the first, second, third and
fourth columns)

Remark The SAME constraint is a relaxed version of the SORT constraint introduced in [308]. We
do not enforce the second collection of variables to be sorted in increasing order.

If we interpret the collections VARIABLES1 and VARIABLES2 as two multisets vari-
ables [251], the SAME constraint can be considered as an equality constraint between two
multisets variables.

The SAME constraint can be modelled by two GLOBAL CARDINALITY constraints. For
example, the SAME constraint

SAME

( 〈
var− x1, var− x2

〉
,〈

var− y1, var− y2

〉
,

)


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.
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where the union of the domains of the different variables is {1, 2, 3, 4} corresponds to the
conjunction of the following two GLOBAL CARDINALITY constraints:

GLOBAL CARDINALITY


〈
var− x1, var− x2

〉
,〈 val− 1 noccurrence− c1,

val− 2 noccurrence− c2,
val− 3 noccurrence− c3,
val− 4 noccurrence− c4

〉


GLOBAL CARDINALITY


〈
var− y1, var− y2

〉
,〈 val− 1 noccurrence− c1,

val− 2 noccurrence− c2,
val− 3 noccurrence− c3,
val− 4 noccurrence− c4

〉


As shown by the next example, the consistency for all variables of the two
GLOBAL CARDINALITY constraints does not implies consistency for the corresponding
SAME constraint. This is the case, for example, when the domains of x1, x2, y1 and y2

is respectively equal to {1, 2}, {3, 4}, {1, 2, 3, 4} and {3, 4}. The conjunction of the two
GLOBAL CARDINALITY constraints does not remove values 3 and 4 from y1.

In his PhD thesis, W.-J. van Hoeve introduces a soft version of the SAME constraint where
the cost is the minimum number of variables to assign differently in order to get back
to a solution [434, page 78]. In the context of the SAME constraint this violation cost
corresponds to the difference between the number of variables in VARIABLES1 and the
number of values that both occur in VARIABLES1 and in VARIABLES2 (provided that one
value of VARIABLES1 matches at most one value of VARIABLES2).

Algorithm In [53, 54, 55, 242], it is shown how to model this constraint by a flow network that
enables to compute arc-consistency and bound-consistency. The rightmost part of Fig-
ure 3.31 illustrates this flow model. Unlike the networks used for ALLDIFFERENT and
GLOBAL CARDINALITY, the network now has three sets of nodes, so the algorithms are
more complex, in particular the efficient bound-consistency algorithm.

More recently [138, 139] presents a second filtering algorithm also achieving arc-
consistency based on a mapping of the solutions to the SAME constraint to perfect match-
ings in a bipartite intersection graph derived from the domain of the variables of the con-
straint in the following way. To each variable of the VARIABLES1 and VARIABLES2 col-
lection corresponds a vertex of the intersection graph. There is an edge between a vertex
associated with a variable of the VARIABLES1 collection and a vertex associated with a
variable of the VARIABLES2 collection if and only if the corresponding variables have at
least one value in common in their domains.

Reformulation The SAME(VARIABLES1, VARIABLES2) constraint can be reformulated as the conjunction
SORT(VARIABLES1, SORTED VARIABLES) ∧ SORT(VARIABLES2, SORTED VARIABLES).

Used in K SAME.

See also generalisation: CORRESPONDENCE (PERMUTATION parameter added),
SAME INTERVAL (variable replaced by variable/constant),
SAME MODULO (variable replaced by variable mod constant),
SAME PARTITION (variable replaced by variable ∈ partition).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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implied by: LEX EQUAL, SAME AND GLOBAL CARDINALITY,
SAME AND GLOBAL CARDINALITY LOW UP, SORT.

implies: SAME INTERSECTION, USED BY.

related to a common problem: COLORED MATRIX (matrix reconstruction problem).

soft variant: SOFT SAME VAR (variable-based violation measure).

system of constraints: K SAME.

used in reformulation: SORT.

Keywords characteristic of a constraint: sort based reformulation, automaton, automaton with array
of counters.

combinatorial object: permutation, multiset.

constraint arguments: constraint between two collections of variables.

filtering: bipartite matching, flow, arc-consistency, bound-consistency, DFS-bottleneck.

modelling: channelling constraint, equality between multisets.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.707 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. The SAME constraint holds since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.707: Initial and final graph of the SAME constraint
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Automaton To each item of the collection VARIABLES1 corresponds a signature variable Si that is
equal to 0. To each item of the collection VARIABLES2 corresponds a signature variable
Si+|VARIABLES1| that is equal to 1.

ARITH(C,=, 0)

s{C[ ]← 0}

t

0,
{C[VARi]← C[VARi] + 1}

1,
{C[VARi]← C[VARi]− 1}

1,
{C[VARi]← C[VARi]− 1}

Figure 5.708: Automaton of the SAME constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.341 SAME AND GLOBAL CARDINALITY

I B C J DESCRIPTION LINKS GRAPH

Origin Conjoin SAME and GLOBAL CARDINALITY

Constraint SAME AND GLOBAL CARDINALITY(VARIABLES1, VARIABLES2, VALUES)

Synonyms SGCC, SAME GCC, SAME AND GCC, SWC, SAME WITH CARDINALITIES.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
VALUES : collection(val−int, noccurrence−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(VALUES, [val, noccurrence])
distinct(VALUES, val)
VALUES.noccurrence ≥ 0
VALUES.noccurrence ≤ |VARIABLES1|

Purpose

The variables of the VARIABLES2 collection correspond to the variables of
the VARIABLES1 collection according to a permutation. In addition, each
value VALUES[i].val (with i ∈ [1, |VALUES|]) should be taken by exactly
VALUES[i].noccurrence variables of the VARIABLES1 collection. Finally, each variable
of VARIABLES1 should be assigned a value of VALUES[i].val (with i ∈ [1, |VALUES|]).

Example



〈1, 9, 1, 5, 2, 1〉 ,
〈9, 1, 1, 1, 2, 5〉 ,

〈 val− 1 noccurrence− 3,
val− 2 noccurrence− 1,
val− 5 noccurrence− 1,
val− 7 noccurrence− 0,
val− 9 noccurrence− 1

〉


The SAME AND GLOBAL CARDINALITY constraint holds since:

• The values 1, 9, 1, 5, 2, 1 assigned to VARIABLES1 correspond to a permutation of
the values 9, 1, 1, 1, 2, 5 assigned to VARIABLES2.

• The values 1, 2, 5, 7 and 6 are respectively used 3, 1, 1, 0 and 1 times.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VALUES| > 1
range(VALUES.noccurrence) > 1
|VARIABLES1| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2)
(VALUES).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• Items of VALUES are permutable.

• An occurrence of a value of VARIABLES1.var or VARIABLES2.var that does not
belong to VALUES.val can be replaced by any other value that also does not belong
to VALUES.val.

• All occurrences of two distinct values in VARIABLES1.var, VARIABLES2.var or
VALUES.val can be swapped; all occurrences of a value in VARIABLES1.var,
VARIABLES2.var or VALUES.val can be renamed to any unused value.

Arg. properties Contractible wrt. VALUES.

Usage See the SAME AND GLOBAL CARDINALITY LOW UP constraint.

Algorithm The filtering algorithm presented in [56] can be reused for pruning the variables of
the VARIABLES1 and the VARIABLES2 collection. This algorithm does not restrict the
noccurrence variables of the VALUES collection.

See also implies: GLOBAL CARDINALITY, SAME.

related: K ALLDIFFERENT (two overlapping ALLDIFFERENT plus restriction on values).

specialisation: SAME AND GLOBAL CARDINALITY LOW UP (variable replaced by
fixed interval).

Keywords application area: assignment.

combinatorial object: permutation, multiset.

constraint arguments: constraint between two collections of variables.

constraint type: value constraint.

filtering: flow.

modelling: equality between multisets.

problems: demand profile.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

For all items of VALUES:

Arc input(s) VARIABLES1

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) NVERTEX= VALUES.noccurrence

Graph model Parts (A) and (B) of Figure 5.709 respectively show the initial and final graph associated
with the first graph constraint of the Example slot. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of them corresponds to an
equivalence class according to the arc constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.709: Initial and final graph of the SAME AND GLOBAL CARDINALITY con-
straint
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5.342 SAME AND GLOBAL CARDINALITY LOW UP

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME and GLOBAL CARDINALITY LOW UP

Constraint SAME AND GLOBAL CARDINALITY LOW UP(VARIABLES1, VARIABLES2, VALUES)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES1|
VALUES.omin ≤ VALUES.omax

Purpose

The variables of the VARIABLES2 collection correspond to the variables of the
VARIABLES1 collection according to a permutation. In addition, each value
VALUES[i].val (with i ∈ [1, |VALUES|]) should be taken by at least VALUES[i].omin and
at most VALUES[i].omax variables of the VARIABLES1 collection. Finally, each variable
of VARIABLES1 should be assigned a value of VALUES[i].val (with i ∈ [1, |VALUES|]).

Example



〈1, 9, 1, 5, 2, 1〉 ,
〈9, 1, 1, 1, 2, 5〉 ,

〈 val− 1 omin− 2 omax− 3,
val− 2 omin− 1 omax− 1,
val− 5 omin− 1 omax− 1,
val− 7 omin− 0 omax− 2,
val− 9 omin− 1 omax− 1

〉


The SAME AND GLOBAL CARDINALITY LOW UP constraint holds since:

• The values 1, 9, 1, 5, 2, 1 assigned to |VARIABLES1| correspond to a permutation of
the values 9, 1, 1, 1, 2, 5 assigned to |VARIABLES2|.

• The values 1, 2, 5, 7 and 6 are respectively used 3 (2 ≤ 3 ≤ 3), 1 (1 ≤ 1 ≤ 1), 1
(1 ≤ 1 ≤ 1), 0 (0 ≤ 0 ≤ 2) and 1 (1 ≤ 1 ≤ 1) times.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES1|
VALUES.omax > 0
VALUES.omax < |VARIABLES1|
|VARIABLES1| > |VALUES|

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2)
(VALUES).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var or VARIABLES2.var that does not
belong to VALUES.val can be replaced by any other value that also does not belong
to VALUES.val.

• Items of VALUES are permutable.

• VALUES.omin can be decreased to any value ≥ 0.

• VALUES.omax can be increased to any value ≤ |VARIABLES1|.
• All occurrences of two distinct values in VARIABLES1.var, VARIABLES2.var or

VALUES.val can be swapped; all occurrences of a value in VARIABLES1.var,
VARIABLES2.var or VALUES.val can be renamed to any unused value.

Arg. properties Contractible wrt. VALUES.

Usage The SAME AND GLOBAL CARDINALITY LOW UP constraint can be used for modelling
the following assignment problem with a single constraint. The organisation Doctors With-
out Borders has a list of doctors and a list of nurses, each of whom volunteered to go on one
rescue mission. Each volunteer specifies a list of possible dates and each mission should
include one doctor and one nurse. In addition we have for each date the minimum and
maximum number of missions that should be effectively done. The task is to produce a list
of pairs such that each pair includes a doctor and a nurse who are available on the same date
and each volunteer appears in exactly one pair so that for each day we build the required
number of missions.

Algorithm In [56], the flow network that was used to model the SAME constraint [53, 54] is extended
to support the cardinalities. Figure 3.32 illustrates this flow model. Then, algorithms are
developed to compute arc-consistency and bound-consistency.

See also generalisation: SAME AND GLOBAL CARDINALITY (fixed interval replaced by
variable).

implies: GLOBAL CARDINALITY LOW UP, GLOBAL CARDINALITY LOW UP NO LOOP,
SAME.

Keywords application area: assignment.

combinatorial object: permutation, multiset.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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constraint arguments: constraint between two collections of variables.

constraint type: value constraint.

filtering: bound-consistency, arc-consistency, flow.

modelling: equality between multisets.

problems: demand profile.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

For all items of VALUES:

Arc input(s) VARIABLES1

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Parts (A) and (B) of Figure 5.710 respectively show the initial and final graph associated
with the first graph constraint of the Example slot. Since we use the NSOURCE and
NSINK graph properties, the source and sink vertices of the final graph are stressed
with a double circle. Since there is a constraint on each connected component of the final
graph we also show the different connected components. Each of them corresponds to an
equivalence class according to the arc constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3 CC#4

1:1

2:1 3:14:1

3:16:1 2:9

1:9

4:5

6:5

5:2

5:2

Figure 5.710: Initial and final graph of the
SAME AND GLOBAL CARDINALITY LOW UP constraint
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5.343 SAME INTERSECTION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME and COMMON.

Constraint SAME INTERSECTION(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose Each value, which occurs both in the VARIABLES1 and in the VARIABLES2 collections,
has the same number of occurrences in VARIABLES1 as well as in VARIABLES2.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈9, 1, 1, 1, 3, 5, 8〉)

First note that the values, which occur both in VARIABLES1 = 〈1, 9, 1, 5, 2, 1〉 as
well as in VARIABLES2 = 〈9, 1, 1, 1, 3, 5, 8〉 correspond to values 1, 5, and 9. Conse-
quently, the SAME INTERSECTION constraint holds since these values 1, 5, and 9 have the
same number of occurrences in both collections (i.e., they respectively occur 3, 1, and 1
times within VARIABLES1 and VARIABLES2).

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

See also common keyword: COMMON, NVALUE ON INTERSECTION (constraint on the intersec-
tion).

implied by: ALLDIFFERENT ON INTERSECTION, SAME.

Keywords constraint arguments: constraint between two collections of variables.

constraint type: constraint on the intersection.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) for all connected components: NSOURCE=NSINK

Graph model Parts (A) and (B) of Figure 5.711 respectively show the initial and final graph associated
with the Example slot. The SAME INTERSECTION constraint holds since each connected
component of the final graph has the same number of sources and sinks. Note that all the
vertices corresponding to the variables that take values 2, 3 or 8 were removed from the
final graph since there is no arc for which the associated equality constraint holds.

VARIABLES1

VARIABLES2

1

123456 7

2 3456

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1

CC#1 CC#2 CC#3

1:1

2:1 3:1 4:1

3:16:1 2:9

1:9

4:5

6:5

(A) (B)

Figure 5.711: Initial and final graph of the SAME INTERSECTION constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.344 SAME INTERVAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME.

Constraint SAME INTERVAL(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose
Let Ni (respectively Mi) denote the number of variables of the collection VARIABLES1

(respectively VARIABLES2) that take a value in the interval [SIZE INTERVAL ·
i, SIZE INTERVAL · i+ SIZE INTERVAL− 1. For all integer i we have Ni = Mi.

Example (〈1, 7, 6, 0, 1, 7〉 , 〈8, 8, 8, 0, 1, 2〉 , 3)

In the example, the third argument SIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Consequently the values
of the collection 〈1, 7, 6, 0, 1, 7〉 are respectively located within intervals [0, 2], [6, 8],
[6, 8], [0, 2], [0, 2], [6, 8]. Therefore intervals [0, 2] and [6, 8] are respectively used 3 and
3 times. Similarly, the values of the collection 〈8, 8, 8, 0, 1, 2〉 are respectively located
within intervals [6, 8], [6, 8], [6, 8], [0, 2], [0, 2], [0, 2]. As before intervals [0, 2] and [6, 8]
are respectively used 3 and 3 times. Consequently the SAME INTERVAL constraint holds.
Figure 5.712 illustrates this correspondence.

[0, 2] [6, 8] [6, 8] [0, 2] [0, 2] [6, 8]

[6, 8] [6, 8] [6, 8] [0, 2] [0, 2] [0, 2]

1 7 6 0 1 7

1 2 3 4 5 6

8 8 8 0 1 2
1 2 3 4 5 6

VARIABLES1

VARIABLES2

intervals

intervals

Figure 5.712: Illustration of the correspondence between the items of the VARIABLES1
and of the VARIABLES2 collections of the Example slot


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2)
(SIZE INTERVAL).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Arg. properties Aggregate: VARIABLES1(union), VARIABLES2(union), SIZE INTERVAL(id).

Algorithm See algorithm of the SAME constraint.

Used in K SAME INTERVAL.

See also implies: USED BY INTERVAL.

soft variant: SOFT SAME INTERVAL VAR (variable-based violation measure).

specialisation: SAME (variable/constant replaced by variable).

system of constraints: K SAME INTERVAL.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation.

constraint arguments: constraint between two collections of variables.

modelling: interval.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.713 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. The SAME INTERVAL constraint holds since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)
CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:0 5:16:2

4:05:1 2:7

1:8 2:83:8

3:66:7

Figure 5.713: Initial and final graph of the SAME INTERVAL constraint
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5.345 SAME MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME.

Constraint SAME MODULO(VARIABLES1, VARIABLES2, M)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of
variables of VARIABLES1 (respectively VARIABLES2) that haveR as a rest when divided
by M. For all R in [0, M− 1] we have that N1R = N2R.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈6, 4, 1, 1, 5, 5〉 , 3)

The values of the first collection 〈1, 9, 1, 5, 2, 1〉 are respectively associated with
the equivalence classes 1 mod 3 = 1, 9 mod 3 = 0, 1 mod 3 = 1, 5 mod 3 = 2,
2 mod 3 = 2, 1 mod 3 = 1. Therefore the equivalence classes 0, 1, and 2 are respectively
used 1, 3, and 2 times. Similarly, the values of the second collection 〈6, 4, 1, 1, 5, 5〉
are respectively associated with the equivalence classes 6 mod 3 = 0, 4 mod 3 = 1,
1 mod 3 = 1, 1 mod 3 = 1, 5 mod 3 = 2, 5 mod 3 = 2. Therefore the equivalence classes
0, 1, and 2 are respectively used 1, 3, and 2 times. Consequently the SAME MODULO

constraint holds. Figure 5.714 illustrates this correspondence.

1 0 1 2 2 1

0 1 1 1 2 2

1 9 1 5 2 1

1 2 3 4 5 6

6 4 1 1 5 5
1 2 3 4 5 6

VARIABLES1

VARIABLES2

equivalence classes

equivalence classes

Figure 5.714: Illustration of the correspondence between the items of the VARIABLES1
and of the VARIABLES2 collections of the Example slot


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2) (M).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value u of VARIABLES.var can be replaced by any other value
v such that v is congruent to u modulo M.

Arg. properties Aggregate: VARIABLES1(union), VARIABLES2(union), M(id).

Used in K SAME MODULO.

See also implies: USED BY MODULO.

soft variant: SOFT SAME MODULO VAR (variable-based violation measure).

specialisation: SAME (variable mod constant replaced by variable).

system of constraints: K SAME MODULO.

Keywords characteristic of a constraint: sort based reformulation, modulo.

combinatorial object: permutation.

constraint arguments: constraint between two collections of variables.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.715 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. The SAME MODULO constraint holds since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=2,NSINK=2

CC#1 CC#2 CC#3

1:1

2:4 3:14:1

3:16:1 2:9

1:6

4:5

5:5 6:5

5:2

Figure 5.715: Initial and final graph of the SAME MODULO constraint
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5.346 SAME PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME.

Constraint SAME PARTITION(VARIABLES1, VARIABLES2, PARTITIONS)

Type VALUES : collection(val−int)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number
of variables of VARIABLES1 (respectively VARIABLES2) that take their values in the
ith partition of the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have
N1 i = N2 i.

Example

 〈1, 2, 6, 3, 1, 2〉 ,〈6, 6, 2, 3, 1, 3〉 ,
〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉


The different values of the collection 〈1, 2, 6, 3, 1, 2〉 are respectively associated
with the partitions p− 〈1, 3〉, p− 〈2, 6〉, p− 〈2, 6〉, p− 〈1, 3〉, p− 〈1, 3〉, and p− 〈2, 6〉.
Therefore partitions p−〈1, 3〉 and p−〈2, 6〉 are respectively used 3 and 3 times. Similarly,
the different values of the collection 〈6, 6, 2, 3, 1, 3〉 are respectively associated with the
partitions p−〈2, 6〉, p−〈2, 6〉, p−〈2, 6〉, p−〈1, 3〉, p−〈1, 3〉, and p−〈1, 3〉. As before
partitions p− 〈1, 3〉 and p− 〈2, 6〉 are respectively used 3 and 3 times. Consequently the
SAME PARTITION constraint holds. Figure 5.716 illustrates this correspondence.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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〈1, 3〉 〈2, 6〉 〈2, 6〉 〈1, 3〉 〈1, 3〉 〈2, 6〉

〈2, 6〉 〈2, 6〉 〈2, 6〉 〈1, 3〉 〈1, 3〉 〈1, 3〉

1 2 6 3 1 2

1 2 3 4 5 6

6 6 2 3 1 3
1 2 3 4 5 6

VARIABLES1

VARIABLES2

partitions

partitions

Figure 5.716: Illustration of the correspondence between the items of the VARIABLES1
and of the VARIABLES2 collections of the Example slot

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2)
(PARTITIONS).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

Arg. properties Aggregate: VARIABLES1(union), VARIABLES2(union), PARTITIONS(id).

Used in K SAME PARTITION.

See also implies: USED BY PARTITION.

soft variant: SOFT SAME PARTITION VAR (variable-based violation measure).

specialisation: SAME (variable ∈ partition replaced by variable).

system of constraints: K SAME PARTITION.

used in graph description: IN SAME PARTITION.

Keywords characteristic of a constraint: sort based reformulation, partition.

combinatorial object: permutation.

constraint arguments: constraint between two collections of variables.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.717 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. The SAME PARTITION constraint holds since:

• Each connected component of the final graph has the same number of sources and of
sinks.

• The number of sources of the final graph is equal to |VARIABLES1|.
• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since isolated vertices are elim-
inated from the final graph, we make the following observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)
CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=3,NSINK=3

CC#1 CC#2

1:1

4:3 5:16:3

4:35:1 2:2

1:6 2:63:2

3:66:2

Figure 5.717: Initial and final graph of the SAME PARTITION constraint
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5.347 SAME REMAINDER

I B C J DESCRIPTION LINKS

Origin learning

Constraint SAME REMAINDER(VARIABLES, Q, R)

Arguments VARIABLES : collection(var−dvar)
Q : dvar

R : dvar

Restrictions |VARIABLES| > 0
required(VARIABLES, [var])
VARIABLES.var ≥ 0
Q > 1
Q ≤maxval(VARIABLES.var)
R ≥ 0
R < Q

Purpose All variables of the VARIABLES collection have the same remainder R when divided by
Q.

Example (〈4, 6, 4, 8〉 , 2, 0)
(〈4, 1, 4, 7〉 , 3, 1)

The first SAME REMAINDER constraint holds since all variables are even, i.e. Q = 2 and
R = 0. The second SAME REMAINDER constraint holds since, when divided by Q = 3 all
variables have a remainder R equal to 1.

Typical |VARIABLES| > 2
Q < 10

Symmetry Items of VARIABLES are permutable.

Keywords constraint type: arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Keywords
Related keywords grouped by meta-keywords.
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5.348 SAME SIGN

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint SAME SIGN(VAR1, VAR2)

Arguments VAR1 : dvar

VAR2 : dvar

Restriction

Purpose Enforce the fact that the product of the first and second variables is greater than or equal
to 0.

Example (7, 1)

The SAME SIGN constraint holds since 7 and 1 have the same sign.

Typical VAR1 6= 0
VAR2 6= 0

Symmetry Arguments are permutable w.r.t. permutation (VAR1, VAR2).

See also comparison swapped: OPPOSITE SIGN.

implied by: DIVISIBLE OR, EQ, SIGN OF.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.349 SCALAR PRODUCT

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint SCALAR PRODUCT(LINEARTERM, CTR, VAL)

Synonyms EQUATION, LINEAR, SUM WEIGHT, WEIGHTEDSUM.

Arguments LINEARTERM : collection(coeff−int, var−dvar)
CTR : atom

VAL : dvar

Restrictions required(LINEARTERM, [coeff, var])
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint a linear term defined as the sum of products of coefficients and variables.
More precisely, let S denote the sum of the product between a coefficient and its variable
of the different items of the LINEARTERM collection. Enforce the following constraint to
hold: S CTR VAL.

Example
(
〈coeff− 1 var− 1, coeff− 3 var− 1, coeff− 1 var− 4〉 ,=, 8

)
The SCALAR PRODUCT constraint holds since the condition 1 · 1 + 3 · 1 + 1 · 4 = 8 is
satisfied.

Typical |LINEARTERM| > 1
range(LINEARTERM.coeff) > 1
range(LINEARTERM.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetries • Items of LINEARTERM are permutable.

• Attributes of LINEARTERM are permutable w.r.t. permutation (coeff, var) (per-
mutation not necessarily applied to all items).

Arg. properties • Contractible wrt. LINEARTERM when CTR ∈ [<,≤],
minval(LINEARTERM.coeff) ≥ 0 and minval(LINEARTERM.var) ≥ 0.

• Extensible wrt. LINEARTERM when CTR ∈ [≥, >],
minval(LINEARTERM.coeff) ≥ 0 and minval(LINEARTERM.var) ≥ 0.

• Aggregate: LINEARTERM(union), CTR(id), VAL(+).

Remark The SCALAR PRODUCT constraint is called LINEAR in Gecode (http://www.gecode.
org/). It is called SUM WEIGHT in JaCoP (http://www.jacop.eu/). In the 2008 CSP
solver competition the SCALAR PRODUCT constraint was called WEIGHTEDSUM and re-
quired VAL to be fixed.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.gecode.org/
http://www.jacop.eu/


SCALAR PRODUCT 2135

Algorithm Most filtering algorithms first merge multiple occurrences of identical variables in order
to potentially make more deductions. When CTR corresponds to the less than or equal
to constraint, a filtering algorithm achieving bound-consistency for the SCALAR PRODUCT

constraint with large numbers of variables is described in [214].

Systems EQUATION in Choco, LINEAR in Gecode, SUMWEIGHT in JaCoP, SCALAR PRODUCT in
SICStus.

See also specialisation: SUM CTR (arithmetic constraint where all coefficients are equal to 1).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.

filtering: duplicated variables.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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5.350 SEQUENCE FOLDING

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin J. Pearson

Constraint SEQUENCE FOLDING(LETTERS)

Argument LETTERS : collection(index−int, next−dvar)

Restrictions |LETTERS| ≥ 1
required(LETTERS, [index, next])
LETTERS.index ≥ 1
LETTERS.index ≤ |LETTERS|
increasing seq(LETTERS, index)
LETTERS.next ≥ 1
LETTERS.next ≤ |LETTERS|

Purpose

Express the fact that a sequence is folded in a way that no crossing occurs. A sequence
is modelled by a collection of letters. For each letter l1 of a sequence, we indicate the
next letter l2 located after l1 that is directly in contact with l1 (l1 itself if such a letter
does not exist).

Example



〈
index− 1 next− 1,
index− 2 next− 8,
index− 3 next− 3,
index− 4 next− 5,
index− 5 next− 5,
index− 6 next− 7,
index− 7 next− 7,
index− 8 next− 8,
index− 9 next− 9

〉


Figure 5.718 gives the folded sequence associated with the previous example. Each
number represents the index of an item. The SEQUENCE FOLDING constraint holds since
no crossing occurs.

Typical |LETTERS| > 2
range(LETTERS.next) > 1

Usage Motivated by RNA folding [178].

See also implies (items to collection): LEX ALLDIFFERENT, LEX CHAIN LESS.

Keywords application area: bioinformatics.

characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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1
2

3

4

5
6

7

8

9

index− 1 next− 1
index− 2 next− 8
index− 3 next− 3
index− 4 next− 5
index− 5 next− 5
index− 6 next− 7
index− 7 next− 7
index− 8 next− 8
index− 9 next− 9

LETTERS

Figure 5.718: Folded sequence (in blue) of the Example slot: links from a letter to a
distinct letter are represented by a dashed arc, while self-loops are not drawn

combinatorial object: sequence.

constraint type: decomposition.

geometry: geometrical constraint.
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Arc input(s) LETTERS

Arc generator SELF 7→collection(letters)

Arc arity 1

Arc constraint(s) letters.next ≥ letters.index

Graph property(ies) NARC= |LETTERS|

Arc input(s) LETTERS

Arc generator CLIQUE(<) 7→collection(letters1, letters2)

Arc arity 2

Arc constraint(s)
∨( letters2.index ≥ letters1.next,

letters2.next ≤ letters1.next

)
Graph property(ies) NARC= |LETTERS| ∗ (|LETTERS| − 1)/2

Graph model Parts (A) and (B) of Figure 5.719 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

LETTERS

1

2

3

4

5

6

7

8

9

NARC=36

1:1,1

2:2,8

3:3,3

4:4,5

5:5,5

6:6,7

7:7,7

8:8,8

9:9,9

(A) (B)

Figure 5.719: Initial and final graph of the SEQUENCE FOLDING constraint

Signature Consider the first graph constraint. Since we use the SELF arc generator on the LETTERS
collection the maximum number of arcs of the final graph is equal to |LETTERS|. Therefore


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.



SEQUENCE FOLDING 2139

we can rewrite the graph property NARC = |LETTERS| to NARC ≥ |LETTERS| and
simplify NARC to NARC.

Consider now the second graph constraint. Since we use the CLIQUE(<) arc generator
on the LETTERS collection the maximum number of arcs of the final graph is equal to
|LETTERS| · (|LETTERS| − 1)/2. Therefore we can rewrite the graph property NARC =
|LETTERS| ·(|LETTERS|−1)/2 to NARC ≥ |LETTERS| ·(|LETTERS|−1)/2 and simplify
NARC to NARC.
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Automaton Figure 5.720 depicts the automaton associated with the SEQUENCE FOLDING constraint.
Consider the ith and the jth (i < j) items of the collection LETTERS. Let INDEXi
and NEXTi respectively denote the index and the next attributes of the ith item of the
collection LETTERS. Similarly, let INDEXj and NEXTj respectively denote the index

and the next attributes of the jth item of the collection LETTERS. To each quadruple
(INDEXi, NEXTi, INDEXj , NEXTj) corresponds a signature variable Si,j , which takes its
value in {0, 1, 2}, as well as the following signature constraint:

(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi ≤ NEXTj)⇔ Si,j = 0 ∧
(INDEXi ≤ NEXTi) ∧ (INDEXj ≤ NEXTj) ∧ (NEXTi > INDEXj) ∧ (NEXTj ≤ NEXTi) ⇔
Si,j = 1.

s

INDEXi < INDEXj ∧
INDEXi ≤ NEXTi ∧
INDEXj ≤ NEXTj ∧
NEXTi ≤ INDEXj

INDEXi < INDEXj ∧
INDEXi ≤ NEXTi ∧
INDEXj ≤ NEXTj ∧
NEXTi > INDEXj ∧
NEXTj ≤ NEXTi

Figure 5.720: Automaton of the SEQUENCE FOLDING constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.351 SET VALUE PRECEDE

I B C J DESCRIPTION LINKS

Origin [269]

Constraint SET VALUE PRECEDE(S, T, VARIABLES)

Arguments S : int

T : int

VARIABLES : collection(var−svar)

Restrictions S 6= T

required(VARIABLES, var)

Purpose
If there exists a set variable v1 of VARIABLES such that S does not belong to v1 and T

does, then there also exists a set variable v2 preceding v1 such that S belongs to v2 and
T does not.

Example (2, 1, 〈var− {0, 2}, var− {0, 1}, var− ∅, var− {1}〉)
(0, 1, 〈var− {0, 2}, var− {0, 1}, var− ∅, var− {1}〉)
(0, 2, 〈var− {0, 2}, var− {0, 1}, var− ∅, var− {1}〉)
(0, 4, 〈var− {0, 2}, var− {0, 1}, var− ∅, var− {1}〉)

The following examples are taken from [268, page 58]:

• The SET VALUE PRECEDE(2, 1, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since the
first occurrence of value 2 precedes the first occurrence of value 1 (i.e., the set {0, 2}
occurs before the set {0, 1}).

• The SET VALUE PRECEDE(0, 1, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since the
first occurrence of value 0 precedes the first occurrence of value 1 (i.e., the set {0, 2}
occurs before the set {0, 1}).

• The SET VALUE PRECEDE(0, 2, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since
“there is no set in 〈{0, 2}, {0, 1}, {}, {1}〉 that contains 2 but not 0”.

• The SET VALUE PRECEDE(0, 4, 〈{0, 2}, {0, 1}, {}, {1}〉) constraint holds since no
set in 〈{0, 2}, {0, 1}, {}, {1}〉 contains value 4.

Typical S < T

|VARIABLES| > 1

Arg. properties Suffix-contractible wrt. VARIABLES.

Algorithm A filtering algorithm for maintaining value precedence on a sequence of set variables is
presented in [269]. Its complexity is linear to the number of variables of the collection
VARIABLES.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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Systems PRECEDE in Gecode.

See also specialisation: INT VALUE PRECEDE (sequence of set variables replaced by
sequence of domain variables).

Keywords constraint arguments: constraint involving set variables.

constraint type: order constraint.

symmetry: symmetry, indistinguishable values, value precedence.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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5.352 SHIFT

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint SHIFT(MIN BREAK, MAX RANGE, TASKS)

Arguments MIN BREAK : int

MAX RANGE : int

TASKS : collection(origin−dvar, end−dvar)

Restrictions MIN BREAK > 0
MAX RANGE > 0
required(TASKS, [origin, end])
TASKS.origin < TASKS.end

Purpose

The difference between the end of the last task of a shift and the origin of the first task
of a shift should not exceed the quantity MAX RANGE. Two tasks t1 and t2 belong to the
same shift if at least one of the following conditions is true:

• Task t2 starts after the end of task t1 at a distance that is less than or equal to the
quantity MIN BREAK,

• Task t1 starts after the end of task t2 at a distance that is less than or equal to the
quantity MIN BREAK.

• Task t1 overlaps task t2.

Example

 6, 8,

〈 origin− 17 end− 20,
origin− 7 end− 10,
origin− 2 end− 4,
origin− 21 end− 22,
origin− 5 end− 6

〉 
Figure 5.721 represents the different tasks of the example. Each task is drawn as a
rectangle with its corresponding id attribute in the middle. We indicate the distance
between two consecutive tasks of a same shift and note that it is less than or equal to
MIN BREAK = 6. Since each shift has a range that is less than or equal to MAX RANGE = 8,
the SHIFT constraint holds (the range of a shift is the difference between the end of the last
task of the shift and the origin of the first task of the shift).

All solutions Figure 5.722 gives all solutions to the following non ground instance of the SHIFT

constraint: MIN BREAK = 2, MAX RANGE = 5, O1 ∈ [1, 2], E1 ∈ [1, 4], O2 ∈
[1, 4], E2 ∈ [1, 2], O3 ∈ [4, 7], E3 ∈ [4, 5], O4 ∈ [7, 9], E4 ∈ [0, 9],
SHIFT(MIN BREAK, MAX RANGE, 〈O1 E1, O2 E2, O3 E3, O4 E4〉).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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® °  ¬ ¯

1 1 1

first shift
range = 8

≤ MAX RANGE = 8

break = 7

≥ MIN BREAK = 6

second shift
range = 5

≤ MAX RANGE = 8

0 1 3 4 6 8 92 5 7 10 11 12 13 14 15 16 18 19 20 22 2317 21

¬ origin− 17 end− 20 ¯ origin− 21 end− 22
 origin− 7 end− 10 ° origin− 5 end− 6
® origin− 2 end− 4

TASKS

Figure 5.721: The two shifts of the Example slot

¬ (〈1 2,1 2,4 5,8 9〉)
 (〈1 3,1 2,4 5,8 9〉)
® (〈1 4,1 2,4 5,8 9〉)
¯ (〈2 3,1 2,4 5,8 9〉)
° (〈2 4,1 2,4 5,8 9〉)

0 1 2 3 4 5 6 7 8 9

shift 1 shift 2 shift 3

¬

0 1 2 3 4 5 6 7 8 9

shift 1 shift 2



0 1 2 3 4 5 6 7 8 9

®

shift 1 shift 2

0 1 2 3 4 5 6 7 8 9

shift 1 shift 2

¯

0 1 2 3 4 5 6 7 8 9

shift 1 shift 2

°

Figure 5.722: All solutions corresponding to the non ground example of the SHIFT
constraint of the All solutions slot, where tasks belonging to the same shift are coloured
with the same colour

Typical MIN BREAK > 1
MAX RANGE > 1
MIN BREAK < MAX RANGE

|TASKS| > 2

Symmetries • Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

Usage The shift constraint can be used in machine scheduling problems where one has to shut
down a machine for maintenance purpose after a given maximum utilisation of that ma-
chine. In this case the MAX RANGE parameter indicates the maximum possible utilisation of
the machine before maintenance, while the MIN BREAK parameter gives the minimum time
needed for maintenance.

The shift constraint can also be used for timetabling problems where the rest period of a
person can move in time. In this case MAX RANGE indicates the maximum possible working


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.
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time for a person, while MIN BREAK specifies the minimum length of the break that follows
a working time period.

See also common keyword: SLIDING TIME WINDOW (temporal constraint).

used in graph description: RANGE CTR.

Keywords constraint type: scheduling constraint, timetabling constraint, temporal constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) • tasks.end ≥ tasks.origin
• tasks.end− tasks.origin ≤ MAX RANGE

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s)
∨


∧( tasks2.origin ≥ tasks1.end,
tasks2.origin− tasks1.end ≤ MIN BREAK

)
,∧( tasks1.origin ≥ tasks2.end,

tasks1.origin− tasks2.end ≤ MIN BREAK

)
,∧( tasks2.origin < tasks1.end,

tasks1.origin < tasks2.end

)


Sets CC 7→ variables− col

 VARIABLES−collection(var−dvar),[
item(var− TASKS.origin),
item(var− TASKS.end)

]  
Constraint(s) on sets RANGE CTR(variables,≤, MAX RANGE)

Graph model The first graph constraint forces the following two constraints between the attributes of
each task:

• The end of a task should not be situated before its start,

• The duration of a task should not be greater than the MAX RANGE parameter.

The second graph constraint decomposes the final graph in connected components where
each component corresponds to a given shift. Finally, the Constraint(s) on sets slot re-
stricts the stretch of each shift.

Parts (A) and (B) of Figure 5.723 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the set generator CC
we show the two connected components of the final graph. They respectively correspond
to the two shifts that are displayed in Figure 5.721.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore
we can rewrite the graph property NARC = |TASKS| to NARC ≥ |TASKS| and simplify
NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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TASKS

1

2

3

4

5

SET#1 SET#2

1:17,20

4:21,22

2:7,10

3:2,4

5:5,6

(A) (B)

Figure 5.723: Initial and final graph of the SHIFT constraint
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5.353 SIGN OF

I B C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint SIGN OF(S, X)

Usual name SIGN

Arguments S : dvar

X : dvar

Restrictions S ≥ −1
S ≤ 1

Purpose

According to the value of the first variable S, restrict the sign of the second variable X:

• When S = −1, X should be negative (i.e., X < 0).

• When S = 0, X is also equal to 0.

• When S = +1, X should be positive (i.e., X > 0).

Example (−1,−8)
(0, 0)
(1, 8)

• The first SIGN OF constraint holds since S = −1 and X = −8 is negative.

• The second SIGN OF constraint holds since S = 0 and X = 0 is neither negative,
neither positive.

• The second SIGN OF constraint holds since S = +1 and X = 8 is positive.

Typical S 6= 0
X 6= 0

Arg. properties Functional dependency: S determined by X.

See also implies: SAME SIGN, ZERO OR NOT ZERO.

Keywords constraint arguments: binary constraint, pure functional dependency.

constraint type: predefined constraint, arithmetic constraint.

filtering: arc-consistency.

modelling: functional dependency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.354 SIZE MAX SEQ ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint SIZE MAX SEQ ALLDIFFERENT(SIZE, VARIABLES)

Synonyms SIZE MAXIMAL SEQUENCE ALLDIFF, SIZE MAXIMAL SEQUENCE ALLDISTINCT,
SIZE MAXIMAL SEQUENCE ALLDIFFERENT.

Arguments SIZE : dvar

VARIABLES : collection(var−dvar)

Restrictions SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose SIZE is the size of the maximal sequence (among all possible sequences of consecutive
variables of the collection VARIABLES) for which the ALLDIFFERENT constraint holds.

Example (4, 〈2, 2, 4, 5, 2, 7, 4〉)
(1, 〈2, 2, 2, 2, 2, 2, 2〉)
(2, 〈2, 2, 4, 4, 4, 7, 4〉)
(7, 〈2, 0, 4, 6, 5, 7, 3〉)

The first SIZE MAX SEQ ALLDIFFERENT constraint holds since the constraint
ALLDIFFERENT(〈var − 4, var − 5, var − 2, var − 7〉) holds and since the following
three constraints do not hold:

• ALLDIFFERENT(〈var− 2, var− 2, var− 4, var− 5, var− 2〉),

• ALLDIFFERENT(〈var− 2, var− 4, var− 5, var− 2, var− 7〉),

• ALLDIFFERENT(〈var− 4, var− 5, var− 2, var− 7, var− 4〉).

Typical SIZE > 2
SIZE < |VARIABLES|
range(VARIABLES.var) > 1

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: SIZE determined by VARIABLES.

Counting


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721
Number of solutions for SIZE MAX SEQ ALLDIFFERENT: domains 0..n
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 3 4 5 6 7 8 9
2 6 36 200 1050 5922 34104 208224
3 - 24 300 3480 38640 428400 4981032
4 - - 120 2520 45360 801360 14028336
5 - - - 720 22680 571200 13728960
6 - - - - 5040 221760 7378560
7 - - - - - 40320 2358720
8 - - - - - - 362880

Solution count for SIZE MAX SEQ ALLDIFFERENT: domains 0..n
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size 8

See also common keyword: ALLDIFFERENT, OPEN ALLDIFFERENT,
SIZE MAX STARTING SEQ ALLDIFFERENT (all different,disequality).

implies: ATLEAST NVALUE.

Keywords characteristic of a constraint: all different, disequality, hypergraph.

combinatorial object: sequence.

constraint arguments: pure functional dependency.

constraint type: sliding sequence constraint, conditional constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH N 7→collection

Arc arity ∗

Arc constraint(s) ALLDIFFERENT(collection)

Graph property(ies) NARC= SIZE

Graph model Note that this is an example of global constraint where the arc constraints do not have the
same arity. However they correspond to the same type of constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.355 SIZE MAX STARTING SEQ ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by SIZE MAX SEQ ALLDIFFERENT.

Constraint SIZE MAX STARTING SEQ ALLDIFFERENT(SIZE, VARIABLES)

Synonyms SIZE MAXIMAL STARTING SEQUENCE ALLDIFF,
SIZE MAXIMAL STARTING SEQUENCE ALLDISTINCT,
SIZE MAXIMAL STARTING SEQUENCE ALLDIFFERENT.

Arguments SIZE : dvar

VARIABLES : collection(var−dvar)

Restrictions SIZE ≥ 0
SIZE ≤ |VARIABLES|
required(VARIABLES, var)

Purpose
SIZE is the size of the maximal sequence (among all sequences of consecutive variables
of the collection VARIABLES starting at position one) for which the ALLDIFFERENT con-
straint holds.

Example (4, 〈9, 2, 4, 5, 2, 7, 4〉)
(7, 〈9, 2, 4, 5, 1, 7, 8〉)
(6, 〈9, 2, 4, 5, 1, 7, 9〉)

The first SIZE MAX STARTING SEQ ALLDIFFERENT constraint holds since the con-
straint ALLDIFFERENT(〈var − 9, var − 2, var − 4, var − 5〉) holds and since
ALLDIFFERENT(〈var− 9, var− 2, var− 4, var− 5, var− 2〉) does not hold.

Typical SIZE > 2
SIZE < |VARIABLES|
range(VARIABLES.var) > 1

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Functional dependency: SIZE determined by VARIABLES.

Remark A conditional constraint [296] with the specific structure that one can relax the constraints
on the last variables of the collection VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for SIZE MAX STARTING SEQ ALLDIFFERENT: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

1 3 16 125 1296 16807 262144 4782969
2 6 24 200 2160 28812 458752 8503056
3 - 24 180 2160 30870 516096 9920232
4 - - 120 1440 23520 430080 8817984
5 - - - 720 12600 268800 6123600
6 - - - - 5040 120960 3265920
7 - - - - - 40320 1270080
8 - - - - - - 362880

Solution count for SIZE MAX STARTING SEQ ALLDIFFERENT: domains 0..n
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See also common keyword: ALLDIFFERENT, OPEN ALLDIFFERENT,
SIZE MAX SEQ ALLDIFFERENT (all different,disequality).

implies: ATLEAST NVALUE.

Keywords characteristic of a constraint: all different, disequality, hypergraph.

combinatorial object: sequence.

constraint arguments: pure functional dependency.

constraint type: sliding sequence constraint, open constraint, conditional constraint.

modelling: functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 1 7→collection

Arc arity ∗

Arc constraint(s) ALLDIFFERENT(collection)

Graph property(ies) NARC= SIZE

Graph model Note that this is an example where the arc constraints do not have the same arity. However
they correspond to the same constraint.

Parts (A) and (B) of Figure 5.724 respectively show the initial and final graph associated
with the first example of the Example slot.

1 2 3 4 5 6 7• • • • • • •

(A)

1:9 2:2 3:4 4:5• • • •

(B)

Figure 5.724: (A) Initial and (B) final graph of the
SIZE MAX STARTING SEQ ALLDIFFERENT(4, 〈9, 2, 4, 5, 2, 7, 4〉) constraint of
the first example of the Example slot where each ellipse represents an hyperedge
corresponding to an ALLDIFFERENT constraint (e.g., the fourth ellipse represents the
constraint ALLDIFFERENT〈9, 2, 4, 5〉)


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.356 SLIDING CARD SKIP0
I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint SLIDING CARD SKIP0(ATLEAST, ATMOST, VARIABLES, VALUES)

Arguments ATLEAST : int

ATMOST : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int)

Restrictions ATLEAST ≥ 0
ATLEAST ≤ |VARIABLES|
ATMOST ≥ 0
ATMOST ≤ |VARIABLES|
ATMOST ≥ ATLEAST

required(VARIABLES, var)
required(VALUES, val)
distinct(VALUES, val)
VALUES.val 6= 0

Purpose

Let n be the total number of variables of the collection VARIABLES. A maximum non-
zero set of consecutive variables Xi..Xj(1 ≤ i ≤ j ≤ n) is defined in the following
way:

• All variables Xi, . . . , Xj take a non-zero value,

• i = 1 or Xi−1 is equal to 0,

• j = n or Xj+1 is equal to 0.

Enforces that each maximum non-zero set of consecutive variables of the collection
VARIABLES contains at least ATLEAST and at most ATMOST values from the collection of
values VALUES.

Example (2, 3, 〈0, 7, 2, 9, 0, 0, 9, 4, 9〉 , 〈7, 9〉)

The SLIDING CARD SKIP0 constraint holds since the two maximum non-zero set of
consecutive values 7 2 9 and 9 4 9 of its third argument 〈0, 7, 2, 9, 0, 0, 9, 4, 9〉 take both 2
(2 ∈ [ATLEAST, ATMOST] = [2, 3]) values within the set of values 〈7, 9〉.

Typical |VARIABLES| > 1
|VALUES| > 0
|VARIABLES| > |VALUES|
ATLEAST(1, VARIABLES, 0)
ATLEAST > 0 ∨ ATMOST < |VARIABLES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.



SLIDING CARD SKIP0 2165

Symmetries • ATLEAST can be decreased to any value ≥ 0.

• ATMOST can be increased to any value ≤ |VARIABLES|.
• Items of VARIABLES can be reversed.

• An occurrence of a value different from 0 of VARIABLES.var that belongs to
VALUES.val (resp. does not belong to VALUES.val ) can be replaced by any other
value different from 0 in VALUES.val (resp. not in VALUES.val).

Usage This constraint is useful in timetabling problems where the variables are interpreted as the
type of job that a person does on consecutive days. Value 0 represents a rest day and one
imposes a cardinality constraint on periods that are located between rest periods.

Remark One cannot initially state a GLOBAL CARDINALITY constraint since the rest days are not
yet allocated. One can also not use an AMONG SEQ constraint since it does not hold for the
sequences of consecutive variables that contains at least one rest day.

See also related: AMONG (counting constraint on the full sequence),
GLOBAL CARDINALITY (counting constraint for different values on the full sequence).

specialisation: AMONG LOW UP (maximal sequences replaced by the full sequence).

Keywords characteristic of a constraint: automaton, automaton with counters.

combinatorial object: sequence.

constraint network structure: alpha-acyclic constraint network(2).

constraint type: timetabling constraint, sliding sequence constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var 6= 0
• variables2.var 6= 0

Sets CC 7→ [variables]

Constraint(s) on sets AMONG LOW UP(ATLEAST, ATMOST, variables, VALUES)

Graph model Note that the arc constraint will produce the different sequences of consecutive variables
that do not contain any 0. The CC set generator produces all the connected components of
the final graph.

Parts (A) and (B) of Figure 5.725 respectively show the initial and final graph associated
with the Example slot. Since we use the set generator CC we show the two connected com-
ponents of the final graph. Since these two connected components both contains between 2
and 3 variables that take their values in {7, 9} the SLIDING CARD SKIP0 constraint holds.

VARIABLES

1

2

3

4

5

6

7

8

9

SET#1 SET#2

2:7

3:2

4:9

7:9

8:4

9:9

(A) (B)

Figure 5.725: Initial and final graph of the SLIDING CARD SKIP0 constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.726 depicts the automaton associated with the SLIDING CARD SKIP0 constraint.
To each variable VARi of the collection VARIABLES corresponds a signature variable Si.
The following signature constraint links VARi and Si:

(VARi = 0)⇔ Si = 0 ∧
(VARi 6= 0 ∧ VARi /∈ VALUES)⇔ Si = 1 ∧
(VARi 6= 0 ∧ VARi ∈ VALUES)⇔ Si = 2.

min(C,L) ≥ ATLEAST,
max(C,U) ≤ ATMOST

s

 C ← ATLEAST,
L← ATLEAST,
U ← ATMOST



t

VARi = 0

VARi 6= 0 ∧ NOT IN(VARi, VALUES),
{C ← 0}

VARi 6= 0 ∧ IN(VARi, VALUES),
{C ← 1}

VARi = 0,{
L← min(L,C),
U ← max(U,C)

}

VARi 6= 0 ∧ IN(VARi, VALUES),
{C ← C + 1} VARi 6= 0 ∧ NOT IN(VARi, VALUES)

Figure 5.726: Automaton of the SLIDING CARD SKIP0 constraint
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Figure 5.727: Hypergraph of the reformulation corresponding to the automaton of the
SLIDING CARD SKIP0 constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.357 SLIDING DISTRIBUTION

I B C J DESCRIPTION LINKS GRAPH

Origin [362]

Constraint SLIDING DISTRIBUTION(SEQ, VARIABLES, VALUES)

Arguments SEQ : int

VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ SEQ

VALUES.omin ≤ VALUES.omax

Purpose
For each sequence of SEQ consecutive variables of the VARIABLES collection, each value
VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and at
most VALUES[i].omax variables.

Example


4, 〈0, 5, 0, 6, 5, 0, 0〉 ,

〈 val− 0 omin− 1 omax− 2,
val− 1 omin− 0 omax− 4,
val− 4 omin− 0 omax− 4,
val− 5 omin− 1 omax− 2,
val− 6 omin− 0 omax− 2

〉


The SLIDING DISTRIBUTION constraint holds since:

• On the first sequence of 4 consecutive values 0 5 0 6 values 0, 1, 4, 5 and 6 are
respectively used 2, 0, 0, 1 and 1 times.

• On the second sequence of 4 consecutive values 5 0 6 5 values 0, 1, 4, 5 and 6 are
respectively used 1, 0, 0, 2 and 1 times.

• On the third sequence of 4 consecutive values 0 6 5 0 values 0, 1, 4, 5 and 6 are
respectively used 2, 0, 0, 1 and 1 times.

• On the fourth sequence of 4 consecutive values 6 5 0 0 values 0, 1, 4, 5 and 6 are
respectively used 2, 0, 0, 1 and 1 times.

Typical SEQ > 1
SEQ < |VARIABLES|
|VARIABLES| > |VALUES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES can be reversed.

• An occurrence of a value of VARIABLES.var that does not belong to VALUES.val
can be replaced by any other value that also does not belong to VALUES.val.

• Items of VALUES are permutable.

• VALUES.omin can be decreased to any value ≥ 0.

• VALUES.omax can be increased to any value ≤ SEQ.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Arg. properties • Contractible wrt. VARIABLES when SEQ = 1.

• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

• Contractible wrt. VALUES.

See also common keyword: PATTERN, SLIDING SUM, STRETCH CIRCUIT,
STRETCH PATH (sliding sequence constraint).

part of system of constraints: GLOBAL CARDINALITY LOW UP.

specialisation: AMONG SEQ (individual values replaced by single set of values).

used in graph description: GLOBAL CARDINALITY LOW UP.

Keywords characteristic of a constraint: hypergraph.

combinatorial object: sequence.

constraint type: decomposition, sliding sequence constraint, system of constraints.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) GLOBAL CARDINALITY LOW UP(collection, VALUES)

Graph property(ies) NARC= |VARIABLES| − SEQ + 1

Graph model Note that the SLIDING DISTRIBUTION constraint is a constraint where the arc constraints
do not have an arity of 2.

Parts (A) and (B) of Figure 5.728 respectively show the initial and final graph associated
with the Example slot. Since all arc constraints hold (i.e., because of the graph property
NARC = |VARIABLES| − SEQ + 1) the final graph corresponds to the initial graph.

1 2 3 4 5 6 7• • • •

(A)

1:0 2:5 3:0 4:6 5:5 6:0 7:0• • • •

(B)

Figure 5.728: (A) Initial and (B) final graph of the
SLIDING DISTRIBUTION(4, 〈0,5,0,6,5,0,0〉, 〈0 1 2, 1 0 4, 4 0 4, 5 1 2, 6 0 2〉)
constraint of the Example slot where each ellipse represents an hyperedge involving
SEQ = 4 vertices (to each ellipse corresponds a GLOBAL CARDINALITY LOW UP
constraint)


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.358 SLIDING SUM

I B C J DESCRIPTION LINKS GRAPH

Origin CHIP

Constraint SLIDING SUM(LOW, UP, SEQ, VARIABLES)

Synonym SEQUENCE.

Arguments LOW : int

UP : int

SEQ : int

VARIABLES : collection(var−dvar)

Restrictions UP ≥ LOW

SEQ > 0
SEQ ≤ |VARIABLES|
required(VARIABLES, var)

Purpose Constrains all sequences of SEQ consecutive variables of the collection VARIABLES so
that the sum of the variables belongs to interval [LOW, UP].

Example (3, 7, 4, 〈1, 4, 2, 0, 0, 3, 4〉)

The example considers all sliding sequences of SEQ = 4 consecutive values of
〈1, 4, 2, 0, 0, 3, 4〉 collection and constraints the sum to be in [LOW, UP] = [3, 7].
The SLIDING SUM constraint holds since the sum associated with the corresponding
subsequences 1 4 2 0, 4 2 0 0, 2 0 0 3, and 0 0 3 4 are respectively 7, 6, 5 and 7.

Typical LOW ≥ 0
UP > 0
SEQ > 1
SEQ < |VARIABLES|
VARIABLES.var ≥ 0
UP <sum(VARIABLES.var)

Symmetry Items of VARIABLES can be reversed.

Arg. properties • Contractible wrt. VARIABLES when SEQ = 1.

• Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Algorithm Beldiceanu and Carlsson [32] have proposed a first incomplete filtering algorithm for the
SLIDING SUM constraint. In 2008, Maher et al. showed in [284] that the SLIDING SUM


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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constraint has a solution “if and only there are no negative cycles in the flow graph asso-
ciated with the dual linear program” that encodes the conjunction of inequalities. They
derive a bound-consistency filtering algorithm from this fact.

Systems SLIDING SUM in MiniZinc.

See also common keyword: SLIDING DISTRIBUTION (sliding sequence constraint).

part of system of constraints: SUM CTR.

soft variant: RELAXED SLIDING SUM.

used in graph description: SUM CTR.

Keywords characteristic of a constraint: hypergraph, sum.

combinatorial object: sequence.

constraint type: decomposition, sliding sequence constraint, system of constraints.

filtering: linear programming, flow, bound-consistency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#sliding_sum
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Arc input(s) VARIABLES

Arc generator PATH 7→collection

Arc arity SEQ

Arc constraint(s) • SUM CTR(collection,≥, LOW)
• SUM CTR(collection,≤, UP)

Graph property(ies) NARC= |VARIABLES| − SEQ + 1

Graph model We use SUM CTR as an arc constraint. SUM CTR takes a collection of domain variables as
its first argument.

Parts (A) and (B) of Figure 5.729 respectively show the initial and final graph associated
with the Example slot. Since all arc constraints hold (i.e., because of the graph property
NARC = |VARIABLES| − SEQ + 1) the final graph corresponds to the initial graph.

1 2 3 4 5 6 7• • • •

(A)

1:1 2:4 3:2 4:0 5:0 6:3 7:4• • • •

(B)

Figure 5.729: (A) Initial and (B) final graph of the
SLIDING SUM(3, 7,4, 〈1,4,2,0,0,3,4〉) constraint of the Example slot where
each ellipse represents an hyperedge involving SEQ = 4 vertices (e.g., the first ellipse
represents the constraint 1 + 4 + 2 + 0 ∈ [3, 7])

Signature Since we use the PATH arc generator with an arity of SEQ on the items of the VARIABLES
collection, the expression |VARIABLES| − SEQ + 1 corresponds to the maximum num-
ber of arcs of the final graph. Therefore we can rewrite the graph property NARC =
|VARIABLES| − SEQ + 1 to NARC ≥ |VARIABLES| − SEQ + 1 and simplify NARC to
NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.359 SLIDING TIME WINDOW

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint SLIDING TIME WINDOW(WINDOW SIZE, LIMIT, TASKS)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, duration−dvar)

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose For any time window of size WINDOW SIZE, the intersection of all the tasks of the col-
lection TASKS with this time window is less than or equal to a given limit LIMIT.

Example

 9, 6,

〈 origin− 10 duration− 3,
origin− 5 duration− 1,
origin− 6 duration− 2,
origin− 14 duration− 2,
origin− 2 duration− 2

〉 
The lower part of Figure 5.730 indicates the different tasks on the time axis. Each
task is drawn as a rectangle with its corresponding identifier in the middle. Finally
the upper part of Figure 5.730 shows the different time windows and the respective
contribution of the tasks in these time windows. Note that we only need to focus on those
time windows starting at the start of one of the tasks. A line with two arrows depicts each
time window. The two arrows indicate the start and the end of the time window. At the left
of each time window we give its occupation. Since this occupation is always less than or
equal to the limit 6, the SLIDING TIME WINDOW constraint holds.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT <sum(TASKS.duration)
|TASKS| > 1
TASKS.duration > 0

Symmetries • WINDOW SIZE can be decreased.

• LIMIT can be increased.

• Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of
TASKS.

• TASKS.duration can be decreased to any value ≥ 0.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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°  ® ¬ ¯

2≤ LIMIT = 6

WINDOW SIZE = 9

3 + 2≤ LIMIT = 6

WINDOW SIZE = 9

2 + 3 + 1≤ LIMIT = 6

WINDOW SIZE = 9

1 + 2 + 3≤ LIMIT = 6

WINDOW SIZE = 9

2 + 1 + 2 + 1≤ LIMIT = 6

WINDOW SIZE = 9

0 1 3 4 7 8 92 5 6 11 12 13 15 16 17 18 19 20 21 22 2310 14

¬ origin− 10 duration− 3 ¯ origin− 14 duration− 2
 origin− 5 duration− 1 ° origin− 2 duration− 2
® origin− 6 duration− 2

TASKS

Figure 5.730: Time windows and their uses for the five tasks of the Example slot

Arg. properties Contractible wrt. TASKS.

Usage The SLIDING TIME WINDOW constraint is useful for timetabling problems in order to put
an upper limit on the total work over sliding time windows.

Reformulation The SLIDING TIME WINDOW constraint can be expressed in term of a set of |TASKS|2
reified constraints and of |TASKS| linear inequalities constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-
tion we create a variable Inter ij which is set to the intersection of TASKS[j] with the
time windowWi of size WINDOW SIZE that starts at instant TASKS[i].origin:

• If i = j (i.e., TASKS[i] and TASKS[j] coincide):
– Inter ij = min(TASKS[i].duration, WINDOW SIZE).

• If i 6= j and TASKS[j].origin + TASKS[j].duration < TASKS[i].origin
(i.e., TASKS[j] for sure ends before the time windowWi):

– Inter ij = 0.
• If i 6= j and TASKS[j].origin > TASKS[i].origin + WINDOW SIZE − 1

(i.e., TASKS[j] for sure starts after the time windowWi):
– Inter ij = 0.

• Otherwise (i.e., TASKS[j] can potentially overlap the time windowWi):


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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– Inter ij = max(0,min(TASKS[i].origin +
WINDOW SIZE, TASKS[j].origin + TASKS[j].duration) −
max(TASKS[i].origin, TASKS[j].origin)).

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we create a linear inequality constraint
Inter i1 + Inter i2 + · · ·+ Inter i|TASKS| ≤ LIMIT.

See also common keyword: SHIFT (temporal constraint).

related: SLIDING TIME WINDOW SUM (sum of intersections of tasks with sliding time
window replaced by sum of the points of intersecting tasks with sliding time window).

used in graph description: SLIDING TIME WINDOW FROM START.

Keywords constraint type: sliding sequence constraint, temporal constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.origin ≤ tasks2.origin
• tasks2.origin− tasks1.origin < WINDOW SIZE

Sets SUCC 7→ [source, tasks]

Constraint(s) on sets SLIDING TIME WINDOW FROM START


WINDOW SIZE,
LIMIT,
tasks,
source.origin


Graph model We generate an arc from a task t1 to a task t2 if task t2 does not start before task t1 and

if task t2 intersects the time window that starts at the origin of task t1. Each set generated
by SUCC corresponds to all tasks that intersect in time the time window that starts at the
origin of a given task.

Parts (A) and (B) of Figure 5.731 respectively show the initial and final graph associated
with the Example slot. In the final graph, the successors of a given task t correspond to the
set of tasks that do not start before task t and intersect the time window that starts at the
origin of task t.

TASKS

1

2

3

4

5

1:10,3

4:14,2

2:5,1

3:6,2

5:2,2

(A) (B)

Figure 5.731: Initial and final graph of the SLIDING TIME WINDOW constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.360 SLIDING TIME WINDOW FROM START

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining SLIDING TIME WINDOW.

Constraint SLIDING TIME WINDOW FROM START(WINDOW SIZE, LIMIT, TASKS, START)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, duration−dvar)
START : dvar

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, duration])
TASKS.duration ≥ 0

Purpose The sum of the intersections of all the tasks of the TASKS collection with interval
[START, START + WINDOW SIZE− 1] is less than or equal to LIMIT.

Example

 9, 6,

〈
origin− 10 duration− 3,
origin− 5 duration− 1,
origin− 6 duration− 2

〉
, 5


The intersections of tasks 〈id − 1 origin − 10 duration − 3〉, 〈id − 2 origin −
5 duration − 1〉, and 〈id − 3 origin − 6 duration − 2〉 with interval
[START, START + WINDOW SIZE − 1] = [5, 5 + 9 − 1] = [5, 13] are respectively
equal to 3, 1, and 2 (i.e., the three tasks of the TASKS collection are in fact included within
interval [5, 13]). Consequently, the SLIDING TIME WINDOW FROM START constraint
holds since the sum 3 + 1 + 2 of these intersections does not exceed the value of its second
argument LIMIT = 6.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT < WINDOW SIZE

|TASKS| > 1
TASKS.duration > 0

Symmetries • WINDOW SIZE can be decreased.

• LIMIT can be increased.

• Items of TASKS are permutable.

• TASKS.duration can be decreased to any value ≥ 0.

• One and the same constant can be added to START as well as to the origin at-
tribute of all items of TASKS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Contractible wrt. TASKS.

Reformulation Similar to the reformulation of SLIDING TIME WINDOW.

Used in SLIDING TIME WINDOW.

Keywords characteristic of a constraint: derived collection.

constraint type: sliding sequence constraint, temporal constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection
col(S−collection(var−dvar), [item(var− START)])

Arc input(s) S TASKS

Arc generator PRODUCT 7→collection(s, tasks)

Arc arity 2

Arc constraint(s) TRUE

Graph property(ies) SUM WEIGHT ARC

 max

 0,
min

(
s.var + WINDOW SIZE,
tasks.origin + tasks.duration

)
−

max(s.var, tasks.origin)

  ≤ LIMIT

Graph model Since we use the TRUE arc constraint the final and the initial graph are identical. The unique
source of the final graph corresponds to the interval [START, START + WINDOW SIZE− 1].
Each sink of the final graph represents a given task of the TASKS collection. We associate to
each arc the value given by the intersection of the task associated with one of the extremities
of the arc with the time window [START, START + WINDOW SIZE − 1]. Finally, the graph
property SUM WEIGHT ARC sums up all the valuations of the arcs and check that
it does not exceed a given limit.

Parts (A) and (B) of Figure 5.732 respectively show the initial and final graph associated
with the Example slot. To each arc of the final graph we associate the intersection of the
corresponding sink task with interval [START, START+ WINDOW SIZE− 1]. The constraint
SLIDING TIME WINDOW FROM START holds since the sum of the previous intersections
does not exceed LIMIT.

S

TASKS

1

123

SUM_WEIGHT_ARC=3+1+2=6

1:5

1:10,3

3

2:5,1

1

3:6,2

2

(A) (B)

Figure 5.732: Initial and final graph of the SLIDING TIME WINDOW FROM START
constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.361 SLIDING TIME WINDOW SUM

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SLIDING TIME WINDOW.

Constraint SLIDING TIME WINDOW SUM(WINDOW SIZE, LIMIT, TASKS)

Arguments WINDOW SIZE : int

LIMIT : int

TASKS : collection(origin−dvar, end−dvar, npoint−dvar)

Restrictions WINDOW SIZE > 0
LIMIT ≥ 0
required(TASKS, [origin, end, npoint])
TASKS.origin ≤ TASKS.end
TASKS.npoint ≥ 0

Purpose For any time window of size WINDOW SIZE, the sum of the points of the tasks of the
collection TASKS that overlap that time window do not exceed a given limit LIMIT.

Example

 9, 16,

〈 origin− 10 end− 13 npoint− 2,
origin− 5 end− 6 npoint− 3,
origin− 6 end− 8 npoint− 4,
origin− 14 end− 16 npoint− 5,
origin− 2 end− 4 npoint− 6

〉 
The lower part of Figure 5.733 indicates the different tasks on the time axis. Each
task is drawn as a rectangle with its corresponding identifier in the middle. Finally
the upper part of Figure 5.733 shows the different time windows and the respective
contribution of the tasks in these time windows. A line with two arrows depicts each time
window. The two arrows indicate the start and the end of the time window. At the right
of each time window we give its occupation. Since this occupation is always less than or
equal to the limit 16, the SLIDING TIME WINDOW SUM constraint holds.

Typical WINDOW SIZE > 1
LIMIT > 0
LIMIT <sum(TASKS.npoint)
|TASKS| > 1
TASKS.origin < TASKS.end
TASKS.npoint > 0


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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TASKS

Figure 5.733: Time windows and their uses for the five tasks of the Example slot

Symmetries • WINDOW SIZE can be decreased.

• LIMIT can be increased.

• Items of TASKS are permutable.

• TASKS.npoint can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.

Arg. properties Contractible wrt. TASKS.

Usage This constraint may be used for timetabling problems in order to put an upper limit on the
cumulated number of points in a shift.

Reformulation The SLIDING TIME WINDOW SUM constraint can be expressed in term of a set of |TASKS|2
reified constraints and of |TASKS| linear inequalities constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS

collection we create a variable Point ij which is set to TASKS[j].npoint if
TASKS[j] intersects the time windowWi of size WINDOW SIZE that starts at instant
TASKS[i].origin, or 0 otherwise:


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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• If i = j (i.e., TASKS[i] and TASKS[j] coincide):
– Point ij = TASKS[i].npoint.

• If i 6= j and TASKS[j].end < TASKS[i].origin (i.e., TASKS[j] for sure ends
before the time windowWi):

– Point ij = 0.
• If i 6= j and TASKS[j].origin > TASKS[i].origin + WINDOW SIZE − 1

(i.e., TASKS[j] for sure starts after the time windowWi):
– Point ij = 0.

• Otherwise (i.e., TASKS[j] can potentially overlap the time windowWi):
– Point ij = min(1,max(0,min(TASKS[i].origin +

WINDOW SIZE, TASKS[j].end)−max(TASKS[i].origin, TASKS[j].origin)))·
TASKS[j].npoint.

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we create a linear inequality constraint
Point i1 + Point i2 + · · ·+ Point i|TASKS| ≤ LIMIT.

See also related: SLIDING TIME WINDOW (sum of the points of intersecting tasks with sliding time
window replaced by sum of intersections of tasks with sliding time window).

used in graph description: SUM CTR.

Keywords characteristic of a constraint: time window, sum.

constraint type: sliding sequence constraint, temporal constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS

Arc generator CLIQUE 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.end ≤ tasks2.end
• tasks2.origin− tasks1.end < WINDOW SIZE− 1

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.npoint)]

) 
Constraint(s) on sets SUM CTR(variables,≤, LIMIT)

Graph model We generate an arc from a task t1 to a task t2 if task t2 does not end before the end of task
t1 and if task t2 intersects the time window that starts at the last instant of task t1. Each
set generated by SUCC corresponds to all tasks that intersect in time the time window that
starts at instant end− 1, where end is the end of a given task.

Parts (A) and (B) of Figure 5.734 respectively show the initial and final graph associated
with the Example slot. In the final graph, the successors of a given task t correspond to
the set of tasks that both do not end before the end of task t, and intersect the time window
that starts at the end− 1 of task t.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection the maximum number of arcs of the final graph is equal to |TASKS|. Therefore we
can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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TASKS
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5

1:10,13,2

4:14,16,5

2:5,6,3

3:6,8,4

5:2,4,6

(A) (B)

Figure 5.734: Initial and final graph of the SLIDING TIME WINDOW SUM constraint
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5.362 SMOOTH

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from CHANGE.

Constraint SMOOTH(NCHANGE, TOLERANCE, VARIABLES)

Arguments NCHANGE : dvar

TOLERANCE : int

VARIABLES : collection(var−dvar)

Restrictions NCHANGE ≥ 0
NCHANGE < |VARIABLES|
TOLERANCE ≥ 0
required(VARIABLES, var)

Purpose NCHANGE is the number of times that |X−Y | > TOLERANCE holds;X and Y correspond
to consecutive variables of the collection VARIABLES.

Example (1, 2, 〈1, 3, 4, 5, 2〉)

In the example we have one change between values 5 and 2 since the difference in
absolute value is greater than the tolerance (i.e., |5− 2| > 2). Consequently the NCHANGE
argument is fixed to 1 and the SMOOTH constraint holds.

Typical TOLERANCE > 0
|VARIABLES| > 3
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Functional dependency: NCHANGE determined by TOLERANCE and VARIABLES.

• Prefix-contractible wrt. VARIABLES when NCHANGE = 0.

• Suffix-contractible wrt. VARIABLES when NCHANGE = 0.

• Prefix-contractible wrt. VARIABLES when NCHANGE = |VARIABLES| − 1.

• Suffix-contractible wrt. VARIABLES when NCHANGE = |VARIABLES| − 1.

Usage This constraint is useful for the following problems:


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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• Assume that VARIABLES corresponds to the number of people that work on consecu-
tive weeks. One may not normally increase or decrease too drastically the number of
people from one week to the next week. With the SMOOTH constraint you can state
a limit on the number of drastic changes.

• Assume you have to produce a set of orders, each order having a specific attribute.
You want to generate the orders in such a way that there is not a too big difference
between the values of the attributes of two consecutive orders. If you cannot achieve
this on two given specific orders, this would imply a set-up or a cost. Again, with the
SMOOTH constraint, you can control this kind of drastic changes.

Algorithm A first incomplete algorithm is described in [32]. The sketch of a filtering algorithm for the
conjunction of the SMOOTH and the STRETCH constraints based on dynamic programming
achieving arc-consistency is mentioned by Lars Hellsten in [219, page 60].

Reformulation The SMOOTH constraint can be reformulated with the SEQ BIN constraint [321] that we
now introduce. Given N a domain variable, X a sequence of domain variables, and C

and B two binary constraints, SEQ BIN(N, X, C, B) holds if (1) N is equal to the number
of C-stretches in the sequence X, and (2) B holds on any pair of consecutive variables in
X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant [316],
where the equality constraint is made explicit by replacing it by a binary constraint C,
i.e., a C-stretch is a maximal length subsequence of X for which the binary constraint C
is satisfied on consecutive variables. SMOOTH(NCHANGE, VARIABLES, TOLERANCE) can be
reformulated as N = N1 − 1 ∧ SEQ BIN(N1, X, |xi − xi+1| ≤ TOLERANCE, true), where
true is the universal constraint.

See also common keyword: CHANGE (number of changes in a sequence with respect to a binary
constraint).

related: DISTANCE.

Keywords characteristic of a constraint: automaton, automaton with counters, non-deterministic
automaton, non-deterministic automaton.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2), Berge-acyclic con-
straint network.

constraint type: timetabling constraint.

filtering: glue matrix, dynamic programming.

modelling: number of changes, functional dependency.

modelling exercises: n-Amazons.

puzzles: n-Amazons.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) abs(variables1.var− variables2.var) > TOLERANCE

Graph property(ies) NARC= NCHANGE

Graph model Parts (A) and (B) of Figure 5.735 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLES

1

2

3

4

5

NARC=1

4:5

5:2

(A) (B)

Figure 5.735: Initial and final graph of the SMOOTH constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.736 depicts a first automaton that only accepts all the solutions to the SMOOTH

constraint. This automaton uses a counter in order to record the number of satisfied con-
straints of the form (|VARi − VARi+1|) > TOLERANCE already encountered. To each pair
of consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a 0-
1 signature variable Si. The following signature constraint links VARi, VARi+1 and Si:
(|VARi − VARi+1|) > TOLERANCE⇔ Si = 1.

NCHANGE = C

s{C ← 0} |VARi − VARi+1| > TOLERANCE,
{C ← C + 1}

|VARi − VARi+1| ≤ TOLERANCE

s

s
−→
C +

←−
C

Glue matrix where
−→
C and

←−
C resp. represent the counter

value C at the end of a prefix and at the end of the cor-
responding reverse suffix that partitions the sequence
VARIABLES.

Figure 5.736: Automaton (with one counter) of the SMOOTH constraint and its glue
matrix

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = NCHANGE

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.737: Hypergraph of the reformulation corresponding to the automaton (with
one counter) of the SMOOTH constraint

Since the reformulation associated with the previous automaton is not Berge-acyclic, we
now describe a second counter free automaton that also only accepts all the solutions to
the SMOOTH constraint. Without loss of generality, assume that the collection of variables
VARIABLES contains at least two variables (i.e., |VARIABLES| ≥ 2). Let n, min , max , and
D respectively denote the number of variables of the collection VARIABLES, the smallest
value that can be assigned to the variables of VARIABLES, the largest value that can be
assigned to the variables of VARIABLES, and the union of the domains of the variables
of VARIABLES. Clearly, the maximum number of changes (i.e., the number of times the
constraint (|VARi−VARi+1|) > TOLERANCE (1 ≤ i < n) holds) cannot exceed the quantity
m = min(n−1, NCHANGE). The (m+1) · |D|+2 states of the automaton that only accepts
all the solutions to the SMOOTH constraint are defined in the following way:

• We have an initial state labelled by sI .

• We have m · |D| intermediate states labelled by sij (i ∈ D, j ∈ [0,m]). The first
subscript i of state sij corresponds to the value currently encountered. The second


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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subscript j denotes the number of already encountered satisfied constraints of the
form (|VARk − VARk+1|) > TOLERANCE from the initial state sI to the state sij .

• We have an accepting state labelled by sF .

Four classes of transitions are respectively defined in the following way:

1. There is a transition, labelled by i from the initial state sI to the state si0, (i ∈ D).

2. There is a transition, labelled by j, from every state sij , (i ∈ D, j ∈ [0,m]), to the
accepting state sF .

3. ∀i ∈ D, ∀j ∈ [0,m], ∀k ∈ D ∩ [max(min, i − TOLERANCE),min(max , i +
TOLERANCE)] there is a transition labelled by k from sij to skj (i.e., the counter j
does not change for values k that are too closed from value i).

4. ∀i ∈ D, ∀j ∈ [0,m − 1], ∀k ∈ D r [max(min, i − TOLERANCE),min(max , i +
TOLERANCE)] there is a transition labelled by k from sij to skj+1 (i.e., the counter j
is incremented by +1 for values k that are too far from i).

We have |D| transitions of type 1, |D| · (m+ 1) transitions of type 2, and at least |D|2 ·m
transitions of types 3 and 4. Since the maximum value of m is equal to n− 1, in the worst
case we have at least |D|2 · (n− 1) transitions. This leads to a worst case time complexity
of O(|D|2 · n2) if we use Pesant’s algorithm for filtering the REGULAR constraint [317].

Figure 5.738 depicts the corresponding counter free non deterministic automaton associ-
ated with the SMOOTH constraint under the hypothesis that (1) all variables of VARIABLES
are assigned a value in {0, 1, 2, 3}, (2) |VARIABLES| is equal to 4, and (3) TOLERANCE is
equal to 1.
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The sequence of variables VAR1 VAR2 VAR3 VAR4 NCHANGE is passed
to the automaton

Figure 5.738: Counter free non deterministic automaton of the
SMOOTH(NCHANGE, 1, 〈VAR1, VAR2, VAR3, VAR4〉) constraint assuming VARi ∈ [0, 3]
(1 ≤ i ≤ 3), with initial state sI and accepting state sF
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5.363 SOFT ALL EQUAL MAX VAR

I B C J DESCRIPTION LINKS GRAPH

Origin [158]

Constraint SOFT ALL EQUAL MAX VAR(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
N ≤ |VARIABLES|
required(VARIABLES, var)

Purpose

Let M be the number of occurrences of the most often assigned value to the variables of
the VARIABLES collection. N is less than or equal to the total number of variables of the
VARIABLES collection minus M (i.e., N is less than or equal to the minimum number of
variables that need to be reassigned in order to obtain a solution where all variables are
assigned a same value).

Example (1, 〈5, 1, 5, 5〉)

Within the collection 〈5, 1, 5, 5〉, 3 is the number of occurrences of the most as-
signed value. Consequently, the SOFT ALL EQUAL MAX VAR constraint holds since the
argument N = 1 is less than or equal to the total number of variables 4 minus 3.

Typical N > 0
N < |VARIABLES|
N < |VARIABLES|/10 + 2
|VARIABLES| > 1

Symmetries • N can be decreased to any value ≥ 0.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Algorithm [158].

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 15 148 1905 30006 555121 11758048 280310337

Number of solutions for SOFT ALL EQUAL MAX VAR: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 15 148 1905 30006 555121 11758048 280310337

Parameter
value

0 9 64 625 7776 117649 2097152 43046721
1 6 60 620 7770 117642 2097144 43046712
2 - 24 540 7620 117390 2096752 43046136
3 - - 120 6120 113610 2088520 43030008
4 - - - 720 83790 1992480 42771960
5 - - - - 5040 1345680 40194000
6 - - - - - 40320 24811920
7 - - - - - - 362880

Solution count for SOFT ALL EQUAL MAX VAR: domains 0..n
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size 6
size 7
size 8
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See also common keyword: SOFT ALL EQUAL MIN CTR, SOFT ALL EQUAL MIN VAR,
SOFT ALLDIFFERENT CTR, SOFT ALLDIFFERENT VAR (soft constraint).

hard version: ALL EQUAL.

implied by: XOR.

related: ATMOST NVALUE.

Keywords constraint type: soft constraint, value constraint, relaxation, variable-based violation mea-
sure.

filtering: arc-consistency, bound-consistency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≤ |VARIABLES| − N

Graph model We generate an initial graph with binary equalities constraints between each vertex and its
successors. The graph property states that N is less than or equal to the difference between
the total number of vertices of the initial graph and the number of vertices of the largest
strongly connected component of the final graph.

Parts (A) and (B) of Figure 5.739 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected components of the final graph.

VARIABLES

1

2

3

4

MAX_NSCC=3

MAX_NSCC

1:5

3:5

4:5

2:1

(A) (B)

Figure 5.739: Initial and final graph of the SOFT ALL EQUAL MAX VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.364 SOFT ALL EQUAL MIN CTR

I B C J DESCRIPTION LINKS GRAPH

Origin [216]

Constraint SOFT ALL EQUAL MIN CTR(N, VARIABLES)

Synonyms SOFT ALLDIFF MAX CTR, SOFT ALLDIFFERENT MAX CTR,
SOFT ALLDISTINCT MAX CTR.

Arguments N : int

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
N ≤ |VARIABLES| ∗ |VARIABLES| − |VARIABLES|
required(VARIABLES, var)

Purpose
Consider the equality constraints involving two distinct variables of the collection
VARIABLES. Among the previous set of constraints, N is less than or equal to the number
of equality constraints that hold.

Example (6, 〈5, 1, 5, 5〉)

Within the collection 〈5, 1, 5, 5〉 six equality constraints holds. Consequently, the
SOFT ALL EQUAL CTR constraint holds since the argument N = 6 is less than or equal to
the number of equality constraints that hold.

Typical N > 0
N < |VARIABLES| ∗ |VARIABLES| − |VARIABLES|
|VARIABLES| > 1

Symmetries • N can be decreased to any value ≥ 0.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Remark It was shown in [216] that, finding out whether the SOFT ALL EQUAL CTR constraint has a
solution or not is NP-hard. This was achieved by reduction from 3-dimensional-matching.
Hebrard et al. also identify a tractable class when no value occurs in more than two vari-
ables of the collection VARIABLES that is equivalent to the vertex matching problem. One
year later, [158] shows how to achieve bound-consistency in polynomial time.

See also common keyword: SOFT ALL EQUAL MAX VAR, SOFT ALL EQUAL MIN VAR,
SOFT ALLDIFFERENT CTR, SOFT ALLDIFFERENT VAR (soft constraint).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.
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hard version: ALL EQUAL.

implied by: AND, BALANCE, EQUIVALENT, NOR.

related: ATMOST NVALUE.

Keywords complexity: 3-dimensional-matching.

constraint type: soft constraint, value constraint, relaxation, decomposition-based viola-
tion measure.

filtering: bound-consistency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE( 6=) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC≥ N

Graph model We generate an initial graph with binary equalities constraints between each vertex and its
successors. We use the arc generator CLIQUE( 6=) in order to avoid considering equality
constraints between the same variable. The graph property states that N is less than or equal
to the number of equalities that hold in the final graph.

Parts (A) and (B) of Figure 5.740 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. Six equality constraints remain in the final graph.

VARIABLES

1

2

3

4

NARC=6

1:5

3:5

4:5

(A) (B)

Figure 5.740: Initial and final graph of the SOFT ALL EQUAL MIN CTR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.365 SOFT ALL EQUAL MIN VAR

I B C J DESCRIPTION LINKS GRAPH

Origin [158]

Constraint SOFT ALL EQUAL MIN VAR(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
required(VARIABLES, var)

Purpose

Let M be the number of occurrences of the most often assigned value to the variables
of the VARIABLES collection. N is greater than or equal to the total number of variables
of the VARIABLES collection minus M (i.e., N is greater than or equal to the minimum
number of variables that need to be reassigned in order to obtain a solution where all
variables are assigned a same value).

Example (1, 〈5, 1, 5, 5〉)

Within the collection 〈5, 1, 5, 5〉, 3 is the number of occurrences of the most as-
signed value. Consequently, the SOFT ALL EQUAL MIN VAR constraint holds since the
argument N = 1 is greater than or equal to the total number of variables 4 minus 3.

Typical N > 0
N < |VARIABLES|
N < |VARIABLES|/10 + 2
|VARIABLES| > 1

Symmetries • N can be increased.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Algorithm Let m denote the total number of potential values that can be assigned to the variables of
the VARIABLES collection. In [158], E. Hebrard et al. provides anO(m) filtering algorithm
achieving arc-consistency on the SOFT ALL EQUAL MIN VAR constraint. The same paper
also provides an algorithm with a lower complexity for achieving range consistency. Both
algorithms are based on the following ideas:

• In a first phase, they both compute an envelope of the union D of the domains of
the variables of the VARIABLES collection, i.e., an array A that indicates for each
potential value v of D, the maximum number of variables that could possibly be


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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assigned value v. Let max occ denote the maximum value over the entries of array
A, and let Vmax occ denote the set of values which all occur in max occ variables of
the VARIABLES collection. The quantity |VARIABLES| −max occ is a lower bound
of N.

• In a second phase, depending on the relative ordering between max occ and the min-
imum value of |VARIABLES| − N, i.e., |VARIABLES| − N, we have the three following
cases:

1. When max occ < |VARIABLES| − N, the constraint
SOFT ALL EQUAL MIN VAR simply fails since not enough variables of
the VARIABLES collection can be assigned the same value.

2. When max occ = |VARIABLES| − N, the constraint
SOFT ALL EQUAL MIN VAR can be satisfied. In this context, a value v
can be removed from the domain of a variable V of the VARIABLES collection
if and only if:
(a) value v does not belong to Vmax occ ,
(b) the domain of variable V contains all values of Vmax occ .
On the one hand, the first condition can be understand as the fact that value
v is not a value that allows the constraint to have at least |VARIABLES| − N

variables assigned the same value. On the other hand, the second condition can
be interpreted as the fact that variable V is absolutely required in order to have
at least |VARIABLES| − N variables assigned the same value.

3. When max occ > |VARIABLES| − N, the constraint
SOFT ALL EQUAL MIN VAR can be satisfied, but no value can be pruned.

Note that, in the context of range consistency, the first phase of the filtering algorithm can
be interpreted as a sweep algorithm were:

• On the one hand, the sweep status corresponds to the maximum number of occur-
rence of variables that can be assigned a given value.

• On the other hand, the event point series correspond to the minimum values of the
variables of the VARIABLES collection as well as to the maximum values (+1) of the
same variables.

Figure 5.741 illustrates the previous filtering algorithm on an example where N is equal to 1,
and where we have four variables V1, V2, V3 and V4 respectively taking their values within
intervals [1, 3], [3, 7], [0, 8] and [5, 6] (see Part (A) of Figure 5.741, where the values of each
variable are assigned a same colour that we retrieve in the other parts of Figure 5.741).

Part (B) of Figure 5.741 illustrates the first phase of the filtering algorithm, namely the
computation of the envelope of the domains of variables V1, V2, V3 and V4. The start
events s1, s2, s3, s4 (i.e., the events respectively associated with the minimum value of
variables V1, V2, V3, V4) where the envelope is increased by 1 are represented by the
character ↑. Similarly, the end events (i.e., the events e1, e2, e3, e4 respectively associated
with the maximum value (+1) of V1, V2, V3, V4 are represented by the character ↓). Since
the highest peak of the envelope is equal to 3 we have that max occ is equal to 3. The
values that allow to reach this highest peak are equal to Vmax occ = {3, 5, 6} (i.e., shown
in red in Part (B) of Figure 5.741).

Finally, Part (C) of Figure 5.741 illustrates the second phase of the filtering algorithm.
Since max occ = 3 is equal to |VARIABLES| − N = 4 − 1 we remove from the variables
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0 1 2 3 4 5 6 7 8 9

V1

V2

V3

V4

(A) Initial domains: one color
for the values of each variable

E.g., V4 can be assigned values 5 or 6.

0 1 2 3 4 5 6 7 8 90 1 2 4 7 8 93 5 6

s3 s1 s2 e1 s4 e4 e2 e3

max occ = 3

(B) Phase 1: computing the domains
envelope (in red) from the sorted
start and end events s3, s1, s2, e1,
s4, e4, e2, e3

Values 3, 5 and 6 represent the potentially

most used values: removing all values 3,

5 and 6 from a variable whose domain

contains all these three values does not allow

to get three variables from V1, V2, V3, V4

assigned to the same value.

0 1 2 4 7 8 93 5 6

V1

V4

V2

V3

(C) Phase 2: pruning the variables

Variables V2 and V3 are the only variables

whose domains contain {3, 5, 6}, and there-

fore candidate for pruning; each cross repre-

sents a pruned value.

Figure 5.741: Illustration of the two phases filtering algorithm of the
SOFT ALL EQUAL MIN VAR(1, 〈V1, V2, V3, V4〉) constraint with V1 ∈ [1, 3], V2 ∈
[3, 7], V3 ∈ [0, 8] and V4 ∈ [5, 6]

whose domains contain Vmax occ = {3, 5, 6} (i.e., variables V2 and V3) all values not in
Vmax occ = {3, 5, 6} (i.e., values 4, 7 for variable V2 and values 0, 1, 2, 4, 7, 8 for variable
V3).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 21 172 1845 24426 386071 7116320 150156873

Number of solutions for SOFT ALL EQUAL MIN VAR: domains 0..n


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 21 172 1845 24426 386071 7116320 150156873

Parameter
value

0 3 4 5 6 7 8 9
1 9 40 85 156 259 400 585
2 9 64 505 1656 4039 8632 16713
3 - 64 625 7056 33859 104672 274761
4 - - 625 7776 112609 751472 2852721
5 - - - 7776 117649 2056832 18234801
6 - - - - 117649 2097152 42683841
7 - - - - - 2097152 43046721
8 - - - - - - 43046721

Solution count for SOFT ALL EQUAL MIN VAR: domains 0..n

0 0.2 0.4 0.6 0.8 1

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for SOFT ALL EQUAL MIN VAR

size 6
size 7
size 8



SOFT ALL EQUAL MIN VAR 2211

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for SOFT ALL EQUAL MIN VAR

size 6
size 7
size 8

See also common keyword: SOFT ALL EQUAL MAX VAR, SOFT ALL EQUAL MIN CTR,
SOFT ALLDIFFERENT CTR, SOFT ALLDIFFERENT VAR (soft constraint).

hard version: ALL EQUAL.

implied by: XOR.

related: ATMOST NVALUE.

Keywords constraint type: soft constraint, value constraint, relaxation, variable-based violation mea-
sure.

filtering: arc-consistency, sweep.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) MAX NSCC≥ |VARIABLES| − N

Graph model We generate an initial graph with binary equalities constraints between each vertex and
its successors. The graph property states that N is greater than or equal to the difference
between the total number of vertices of the initial graph and the number of vertices of the
largest strongly connected component of the final graph.

Parts (A) and (B) of Figure 5.742 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX NSCC graph property we show one of
the largest strongly connected components of the final graph.

VARIABLES

1

2

3

4

MAX_NSCC=3

MAX_NSCC

1:5

3:5

4:5

2:1

(A) (B)

Figure 5.742: Initial and final graph of the SOFT ALL EQUAL MIN VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.366 SOFT ALLDIFFERENT CTR

I B C J DESCRIPTION LINKS GRAPH

Origin [325]

Constraint SOFT ALLDIFFERENT CTR(C, VARIABLES)

Synonyms SOFT ALLDIFF CTR, SOFT ALLDISTINCT CTR, SOFT ALLDIFF MIN CTR,
SOFT ALLDIFFERENT MIN CTR, SOFT ALLDISTINCT MIN CTR,
SOFT ALL EQUAL MAX CTR.

Arguments C : dvar

VARIABLES : collection(var−dvar)

Restrictions C ≥ 0
required(VARIABLES, var)

Purpose

Consider the disequality constraints involving two distinct variables VARIABLES[i].var
and VARIABLES[j].var (i < j) of the collection VARIABLES. Among the previous set
of constraints, C is greater than or equal to the number of disequality constraints that do
not hold.

Example (4, 〈5, 1, 9, 1, 5, 5〉)
(1, 〈5, 1, 9, 1, 2, 6〉)
(0, 〈5, 1, 9, 0, 2, 6〉)

Within the collection 〈5, 1, 9, 1, 5, 5〉 the first and fifth values, the first and sixth
values, the second and fourth values, and the fifth and sixth values are identical. Con-
sequently, the argument C = 4 is greater than or equal to the number of disequality
constraints that do not hold (i.e, 4) and the SOFT ALLDIFFERENT CTR constraint holds.

Typical C > 0
C ≤ |VARIABLES| ∗ (|VARIABLES| − 1)/2
|VARIABLES| > 1

Symmetries • C can be increased.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Contractible wrt. VARIABLES.

Usage A soft ALLDIFFERENT constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Remark The SOFT ALLDIFFERENT CTR constraint is called SOFT ALLDIFF MIN CTR or
SOFT ALL EQUAL MAX CTR in [158].

Algorithm Since it focus on the soft aspect of the ALLDIFFERENT constraint, the original article [325]
that introduces this constraint describes how to evaluate the minimum value of C and how
to prune according to the maximum value of C. The corresponding filtering algorithm does
not achieve arc-consistency. W.-J. van Hoeve [433] presents a new filtering algorithm that
achieves arc-consistency. This algorithm is based on a reformulation into a minimum-cost
flow problem.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 15 208 3625 72576 1630279 40632320 1114431777

Number of solutions for SOFT ALLDIFFERENT CTR: domains 0..n
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Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 15 208 3625 72576 1630279 40632320 1114431777

Parameter
value

0 6 24 120 720 5040 40320 362880
1 9 60 480 4320 42840 463680 5443200
2 - 60 540 6120 80640 1169280 18144000
3 - 64 620 7320 100590 1580880 27881280
4 - - 620 7620 113190 1933680 36666000
5 - - 620 7620 113190 1968960 39206160
6 - - 625 7770 116760 2051280 41111280
7 - - - 7770 117390 2086560 42522480
8 - - - 7770 117390 2086560 42628320
9 - - - 7770 117390 2088520 42769440

10 - - - 7776 117642 2095576 42938784
11 - - - - 117642 2096752 43023456
12 - - - - 117642 2096752 43025976
13 - - - - 117642 2096752 43030008
14 - - - - 117642 2096752 43030008
15 - - - - 117649 2097144 43044120
16 - - - - - 2097144 43046136
17 - - - - - 2097144 43046136
18 - - - - - 2097144 43046136
19 - - - - - 2097144 43046136
20 - - - - - 2097144 43046136
21 - - - - - 2097152 43046712
22 - - - - - - 43046712
23 - - - - - - 43046712
24 - - - - - - 43046712
25 - - - - - - 43046712
26 - - - - - - 43046712
27 - - - - - - 43046712
28 - - - - - - 43046721

Solution count for SOFT ALLDIFFERENT CTR: domains 0..n
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See also common keyword: SOFT ALL EQUAL MAX VAR, SOFT ALL EQUAL MIN CTR,
SOFT ALL EQUAL MIN VAR, SOFT ALLDIFFERENT VAR (soft constraint).

hard version: ALLDIFFERENT.


See also
Related constraints grouped by semantics links.
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implied by: EQUIVALENT, IMPLY.

implies: SOFT ALLDIFFERENT VAR.

related: ATMOST NVALUE.

Keywords characteristic of a constraint: all different, disequality.

constraint type: soft constraint, value constraint, relaxation, decomposition-based viola-
tion measure.

filtering: minimum cost flow.

modelling: degree of diversity of a set of solutions.

modelling exercises: degree of diversity of a set of solutions.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC≤ C

Graph model We generate an initial graph with binary equalities constraints between each vertex and its
successors. We use the arc generator CLIQUE(<) in order to avoid counting twice the
same equality constraint. The graph property states that C is greater than or equal to the
number of equalities that hold in the final graph.

Parts (A) and (B) of Figure 5.743 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold. Since four equality constraints remain in the final graph the cost
variable C is greater than or equal to 4.

VARIABLES

1

2

3

4

5

6

NARC=4

1:5

5:5

6:5

2:1

4:1

(A) (B)

Figure 5.743: Initial and final graph of the SOFT ALLDIFFERENT CTR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.367 SOFT ALLDIFFERENT VAR

I B C J DESCRIPTION LINKS GRAPH

Origin [325]

Constraint SOFT ALLDIFFERENT VAR(C, VARIABLES)

Synonyms SOFT ALLDIFF VAR, SOFT ALLDISTINCT VAR, SOFT ALLDIFF MIN VAR,
SOFT ALLDIFFERENT MIN VAR, SOFT ALLDISTINCT MIN VAR.

Arguments C : dvar

VARIABLES : collection(var−dvar)

Restrictions C ≥ 0
required(VARIABLES, var)

Purpose
C is greater than or equal to the minimum number of variables of the collection
VARIABLES for which the value needs to be changed in order that all variables of
VARIABLES take a distinct value.

Example (3, 〈5, 1, 9, 1, 5, 5〉)
(1, 〈5, 1, 9, 6, 5, 3〉)
(0, 〈8, 1, 9, 6, 5, 3〉)

Within the collection 〈5, 1, 9, 1, 5, 5〉 of the first example, 3 and 2 items are respec-
tively fixed to values 5 and 1. Therefore one must change the values of at least
(3 − 1) + (2 − 1) = 3 items to get back to 6 distinct values. Consequently, the
corresponding SOFT ALLDIFFERENT VAR constraint holds since its first argument C is
greater than or equal to 3.

Typical C > 0
2 ∗ C ≤ |VARIABLES|
|VARIABLES| > 1
SOME EQUAL(VARIABLES)

Symmetries • C can be increased.

• Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Contractible wrt. VARIABLES.

Usage A soft ALLDIFFERENT constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Remark Since it focus on the soft aspect of the ALLDIFFERENT constraint, the original article [325],
which introduce this constraint, describes how to evaluate the minimum value of C and how
to prune according to the maximum value of C.

The SOFT ALLDIFFERENT VAR constraint is called SOFT ALLDIFF MIN VAR in [158].

Algorithm A first filtering algorithm presented in [325] achieves arc-consistency. A second filtering
algorithm also achieving arc-consistency is described in [138, 139].

Reformulation By introducing a variable M that gives the number of distinct values used by variables of
the collection VARIABLES, the SOFT ALLDIFFERENT VAR(C, VARIABLES) constraint can
be expressed as a conjunction of the NVALUE(M, VARIABLES) constraint and of the linear
constraint C ≥ |VARIABLES| −M .

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 24 212 2470 35682 614600 12286024 279472266

Number of solutions for SOFT ALLDIFFERENT VAR: domains 0..n
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Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 24 212 2470 35682 614600 12286024 279472266

Parameter
value

0 6 24 120 720 5040 40320 362880
1 9 60 480 4320 42840 463680 5443200
2 9 64 620 7320 97440 1404480 21530880
3 - 64 625 7770 116340 1992480 37406880
4 - - 625 7776 117642 2093616 42550704
5 - - - 7776 117649 2097144 43037568
6 - - - - 117649 2097152 43046712
7 - - - - - 2097152 43046721
8 - - - - - - 43046721

Solution count for SOFT ALLDIFFERENT VAR: domains 0..n



SOFT ALLDIFFERENT VAR 2225

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for SOFT ALLDIFFERENT VAR

size 6
size 7
size 8

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for SOFT ALLDIFFERENT VAR

size 6
size 7
size 8

See also common keyword: SOFT ALL EQUAL MAX VAR, SOFT ALL EQUAL MIN CTR,
SOFT ALL EQUAL MIN VAR, SOFT ALLDIFFERENT CTR,
WEIGHTED PARTIAL ALLDIFF (soft constraint).


See also
Related constraints grouped by semantics links.
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hard version: ALLDIFFERENT.

implied by: ALL MIN DIST, ALLDIFFERENT MODULO, SOFT ALLDIFFERENT CTR.

related: ATMOST NVALUE, NVALUE.

Keywords characteristic of a constraint: all different, disequality.

constraint type: soft constraint, value constraint, relaxation, variable-based violation mea-
sure.

filtering: bipartite matching.

final graph structure: strongly connected component, equivalence.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC≥ |VARIABLES| − C

Graph model We generate a clique with binary equalities constraints between each pairs of vertices (this
include an arc between a vertex and itself) and we state that C is equal to the difference
between the total number of variables and the number of strongly connected components.

Parts (A) and (B) of Figure 5.744 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NSCC graph property
we show the different strongly connected components of the final graph. Each strongly
connected component of the final graph includes all variables that take the same value.
Since we have 6 variables and 3 strongly connected components the cost variable C is
greater than or equal to 6− 3.

VARIABLES
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Figure 5.744: Initial and final graph of the SOFT ALLDIFFERENT VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.368 SOFT CUMULATIVE

I B C J DESCRIPTION LINKS

Origin Derived from CUMULATIVE

Constraint SOFT CUMULATIVE(TASKS, LIMIT, INTERMEDIATE LEVEL, SURFACE ON TOP)

Arguments TASKS : collection


origin−dvar,
duration−dvar,
end−dvar,
height−dvar


LIMIT : int

INTERMEDIATE LEVEL : int

SURFACE ON TOP : dvar

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end
TASKS.height ≥ 0
LIMIT ≥ 0
INTERMEDIATE LEVEL ≥ 0
INTERMEDIATE LEVEL ≤ LIMIT

SURFACE ON TOP ≥ 0

Purpose

Consider a set T of n tasks described by the TASKS collection, where originj ,
durationj , endj , heightj are shortcuts for TASKS[j].origin, TASKS[j].duration,
TASKS[j].end, TASKS[j].height. In addition let α and β respectively denote the
earliest possible start over all tasks and the latest possible end over all tasks. The
SOFT CUMULATIVE constraint forces the three following conditions:

1. For each task TASKS[j] (1 ≤ j ≤ n) of T we have originj + durationj =
endj .

2. At each point in time, the cumulated height of the set of tasks that over-
lap that point, does not exceed a given limit LIMIT (i.e., ∀i ∈ [α, β] :∑
j∈[1,n]|originj≤i<endj

heightj ≤ LIMIT).

3. The surface of the profile resource utilisation, which is greater
than INTERMEDIATE LEVEL, is equal to SURFACE ON TOP (i.e.,∑
i∈[α,β] max(0, (

∑
j∈[1,n]|originj≤i<endj

heightj) − INTERMEDIATE LEVEL)

= SURFACE ON TOP).

Example

 〈
origin− 1 duration− 4 end− 5 height− 1,
origin− 1 duration− 1 end− 2 height− 2,
origin− 3 duration− 3 end− 6 height− 2

〉
, 3, 2, 3




Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.



SOFT CUMULATIVE 2229

Figure 5.745 shows the cumulated profile associated with the example. To each
task of the CUMULATIVE constraint corresponds a set of rectangles coloured with the
same colour: the sum of the lengths of the rectangles corresponds to the duration of
the task, while the height of the rectangles (i.e., all the rectangles associated with a
task have the same height) corresponds to the resource consumption of the task. The
SOFT CUMULATIVE constraint holds since:

1. For each task we have that its end is equal to the sum of its origin and its duration.

2. At each point in time we do not have a cumulated resource consumption strictly
greater than the upper limit LIMIT = 3 enforced by the second argument of the
SOFT CUMULATIVE constraint.

3. The surface of the cumulated profile located on top of the intermediate level
INTERMEDIATE LEVEL = 2 is equal to SURFACE ON TOP = 3.

¬

 ®

SURFACE ON TOP = 3

1 2 3 4 5 6 7

1

2

3 ≤ 3 (LIMIT)

= 2
(INTERMEDIATE LEVEL)

time

am
ou

nt
of

us
ed

re
so

ur
ce

¬ o− 1 d− 4 e− 5 h− 1
 o− 1 d− 1 e− 2 h− 2
® o− 3 d− 3 e− 6 h− 2

TASKS


o for origin,
d for duration,
e for end,
h for height



Figure 5.745: Resource consumption profile associated with the three tasks of the
Example slot, where parts on top of the intermediate level 2 are marked by a cross

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
LIMIT <sum(TASKS.height)
INTERMEDIATE LEVEL > 0
INTERMEDIATE LEVEL < LIMIT

SURFACE ON TOP > 0

Symmetries • Items of TASKS are permutable.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.

• LIMIT can be increased.

Remark The SOFT CUMULATIVE constraint was initially introduced in CHIP [133] as a variant
of the CUMULATIVE constraint. An extension of this constraint where one can restrict


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
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the surface on top of the intermediate level on different time intervals was first proposed
in [322] and was generalised in [127].

See also hard version: CUMULATIVE.

Keywords constraint type: predefined constraint, soft constraint, scheduling constraint, resource
constraint, temporal constraint, relaxation.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.369 SOFT SAME INTERVAL VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME INTERVAL

Constraint SOFT SAME INTERVAL VAR(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym SOFT SAME INTERVAL.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

Let Ni (respectively Mi) denote the number of variables of the collection VARIABLES1

(respectively VARIABLES2) that take a value in the interval [SIZE INTERVAL ·
i, SIZE INTERVAL · i + SIZE INTERVAL − 1. C is the minimum number of values to
change in the VARIABLES1 and VARIABLES2 collections so that for all integer i we have
Ni = Mi.

Example (4, 〈9, 9, 9, 9, 9, 1〉 , 〈9, 1, 1, 1, 1, 8〉 , 3)

In the example, the fourth argument SIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Consequently the values of the
collections 〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉 are respectively located within intervals
[9, 11], [9, 11], [9, 11], [9, 11], [9, 11], [0, 2] and intervals [9, 11], [0, 2], [0, 2], [0, 2], [0, 2],
[6, 8]. Since there is a correspondence between two pairs of intervals we must unset at least
6 − 2 items (6 is the number of items of the VARIABLES1 and VARIABLES2 collections).
Consequently, the SOFT SAME INTERVAL VAR constraint holds since its first argument C
is set to 6− 2.

Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (C) (VARIABLES1, VARIABLES2)
(SIZE INTERVAL).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

• An occurrence of a value of VARIABLES2.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Usage A soft SAME INTERVAL constraint.

Algorithm See algorithm of the SOFT SAME VAR constraint.

See also hard version: SAME INTERVAL.

implies: SOFT USED BY INTERVAL VAR.

Keywords constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

modelling: interval.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure 5.746 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT SAME INTERVAL VAR constraint holds since the cost 4 corresponds to the difference
between the number of variables of VARIABLES1 and the sum over the different connected
components of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.746: Initial and final graph of the SOFT SAME INTERVAL VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.370 SOFT SAME MODULO VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME MODULO

Constraint SOFT SAME MODULO VAR(C, VARIABLES1, VARIABLES2, M)

Synonym SOFT SAME MODULO.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of
variables of VARIABLES1 (respectively VARIABLES2) that haveR as a rest when divided
by M. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2
collections so that for all R in [0, M− 1] we have N1R = N2R.

Example (4, 〈9, 9, 9, 9, 9, 1〉 , 〈9, 1, 1, 1, 1, 8〉 , 3)

In the example, the values of the collections 〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉 are
respectively associated with the equivalence classes 9 mod 3 = 0, 9 mod 3 = 0,
9 mod 3 = 0, 9 mod 3 = 0, 9 mod 3 = 0, 1 mod 3 = 1 and 9 mod 3 = 0, 1 mod 3 = 1,
1 mod 3 = 1, 1 mod 3 = 1, 1 mod 3 = 1, 8 mod 3 = 2. Since there is a correspondence
between two pairs of equivalence classes we must unset at least 6 − 2 items (6 is the
number of items of the VARIABLES1 and VARIABLES2 collections). Consequently, the
SOFT SAME MODULO VAR constraint holds since its first argument C is set to 6− 2.

Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Arguments are permutable w.r.t. permutation (C) (VARIABLES1, VARIABLES2)
(M).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value u of VARIABLES1.var can be replaced by any other
value v such that v is congruent to u modulo M.

• An occurrence of a value u of VARIABLES2.var can be replaced by any other
value v such that v is congruent to u modulo M.

Usage A soft SAME MODULO constraint.

Algorithm See algorithm of the SOFT SAME VAR constraint.

See also hard version: SAME MODULO.

implies: SOFT USED BY MODULO VAR.

Keywords characteristic of a constraint: modulo.

constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure 5.747 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT SAME MODULO VAR constraint holds since the cost 4 corresponds to the difference
between the number of variables of VARIABLES1 and the sum over the different connected
components of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.747: Initial and final graph of the SOFT SAME MODULO VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.371 SOFT SAME PARTITION VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SAME PARTITION

Constraint SOFT SAME PARTITION VAR(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym SOFT SAME PARTITION.

Type VALUES : collection(val−int)

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number
of variables of VARIABLES1 (respectively VARIABLES2) that take their value in the ith

partition of the collection PARTITIONS. C is the minimum number of values to change
in the VARIABLES1 and VARIABLES2 collections so that for all i in [1, |PARTITIONS|]
we have N1 i = N2 i.

Example

 4, 〈9, 9, 9, 9, 9, 1〉 ,
〈9, 1, 1, 1, 1, 8〉 ,
〈p− 〈1, 2〉 , p− 〈9〉 , p− 〈7, 8〉〉


In the example, the values of the collections 〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉 are
respectively associated with the partitions p − 〈9〉, p − 〈9〉, p − 〈9〉, p − 〈9〉, p − 〈9〉,
p−〈1, 2〉 and p−〈9〉, p−〈1, 2〉, p−〈1, 2〉, p−〈1, 2〉, p−〈1, 2〉, p−〈7, 8〉. Since there
is a correspondence between two pairs of partitions we must unset at least 6 − 2 items (6
is the number of items of the VARIABLES1 and VARIABLES2 collections). Consequently,
the SOFT SAME PARTITION VAR constraint holds since its first argument C is set to 6− 2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Arguments are permutable w.r.t. permutation (C) (VARIABLES1, VARIABLES2)
(PARTITIONS).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES1.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

• An occurrence of a value of VARIABLES2.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

Usage A soft SAME PARTITION constraint.

Algorithm See algorithm of the SOFT SAME VAR constraint.

See also hard version: SAME PARTITION.

implies: SOFT USED BY PARTITION VAR.

Keywords characteristic of a constraint: partition.

constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



2242 SOFT SAME PARTITION VAR

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure 5.748 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT SAME PARTITION VAR constraint holds since the cost 4 corresponds to the differ-
ence between the number of variables of VARIABLES1 and the sum over the different con-
nected components of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.748: Initial and final graph of the SOFT SAME PARTITION VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.372 SOFT SAME VAR

I B C J DESCRIPTION LINKS GRAPH

Origin [434]

Constraint SOFT SAME VAR(C, VARIABLES1, VARIABLES2)

Synonym SOFT SAME.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions C ≥ 0
C ≤ |VARIABLES1|
|VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2

collections so that the variables of the VARIABLES2 collection correspond to the variables
of the VARIABLES1 collection according to a permutation.

Example (4, 〈9, 9, 9, 9, 9, 1〉 , 〈9, 1, 1, 1, 1, 8〉)

As illustrated by Figure 5.749, there is a correspondence between two pairs of val-
ues of the collections 〈9, 9, 9, 9, 9, 1〉 and 〈9, 1, 1, 1, 1, 8〉. Consequently, we must unset
at least 6 − 2 items (6 is the number of items of the VARIABLES1 and VARIABLES2

collections). The SOFT SAME VAR constraint holds since its first argument C is set to
6− 2.

9 9 9 9 9 1
1 2 3 4 5 6

9 1 1 1 1 8

C = 4

C = 4

1 2 3 4 5 6

VARIABLES1

VARIABLES2

Figure 5.749: Illustration of the partial correspondence between the items of the
VARIABLES1 and of the VARIABLES2 collections of the Example slot, i.e., C = 4 items
of the VARIABLES1 or of the VARIABLES2 collections need to be changed in order to
have a full correspondence


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical C > 0
|VARIABLES1| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1

Symmetries • Arguments are permutable w.r.t. permutation (C) (VARIABLES1, VARIABLES2).

• Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Usage A soft SAME constraint.

Algorithm A first filtering algorithm is described in [434, page 80]. A second filtering algorithm is
presented in [138, 139].

See also hard version: SAME.

implies: SOFT USED BY VAR.

Keywords constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

filtering: minimum cost flow, bipartite matching.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE= |VARIABLES1| − C

Graph model Parts (A) and (B) of Figure 5.750 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT SAME VAR constraint holds since the cost 4 corresponds to the difference between
the number of variables of VARIABLES1 and the sum over the different connected compo-
nents of the minimum number of sources and sinks.

(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B) NSINK_NSOURCE=min(5,1)+min(1,4)=2

1:9

1:9

2:9 3:9 4:9 5:9 6:1

2:1 3:1 4:1 5:1

Figure 5.750: Initial and final graph of the SOFT SAME VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.373 SOFT USED BY INTERVAL VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY INTERVAL.

Constraint SOFT USED BY INTERVAL VAR(C, VARIABLES1, VARIABLES2, SIZE INTERVAL)

Synonym SOFT USED BY INTERVAL.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

Let Ni (respectively Mi) denote the number of variables of the collection VARIABLES1

(respectively VARIABLES2) that take a value in the interval [SIZE INTERVAL ·
i, SIZE INTERVAL · i + SIZE INTERVAL − 1]. C is the minimum number of values
to change in the VARIABLES1 and VARIABLES2 collections so that for all integer i we
have Mi > 0⇒ Ni ≥Mi.

Example (2, 〈9, 1, 1, 8, 8〉 , 〈9, 9, 9, 1〉 , 3)

In the example, the fourth argument SIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Consequently the values
of the collections 〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉 are respectively located within intervals
[9, 11], [0, 2], [0, 2], [6, 8], [6, 8] and intervals [9, 11], [9, 11], [9, 11], [0, 2]. Since
there is a correspondence between two pairs of intervals we must unset at least 4 − 2
items (4 is the number of items of the VARIABLES2 collection). Consequently, the
SOFT USED BY INTERVAL VAR constraint holds since its first argument C is set to 4− 2.

Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

• An occurrence of a value of VARIABLES2.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Usage A soft USED BY INTERVAL constraint.

See also hard version: USED BY INTERVAL.

implied by: SOFT SAME INTERVAL VAR.

Keywords constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

modelling: interval.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure 5.751 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT USED BY INTERVAL VAR constraint holds since the cost 2 corresponds to the dif-
ference between the number of variables of VARIABLES2 and the sum over the different
connected components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.751: Initial and final graph of the SOFT USED BY INTERVAL VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.374 SOFT USED BY MODULO VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY MODULO

Constraint SOFT USED BY MODULO VAR(C, VARIABLES1, VARIABLES2, M)

Synonym SOFT USED BY MODULO.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose

For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of
variables of VARIABLES1 (respectively VARIABLES2) that haveR as a rest when divided
by M. C is the minimum number of values to change in the VARIABLES1 and VARIABLES2
collections so that for all R in [0, M− 1] we have N2R > 0⇒ N1R ≥ N2R.

Example (2, 〈9, 1, 1, 8, 8〉 , 〈9, 9, 9, 1〉 , 3)

In the example, the values of the collections 〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉 are re-
spectively associated with the equivalence classes 9 mod 3 = 0, 1 mod 3 = 1,
1 mod 3 = 1, 8 mod 3 = 2, 8 mod 3 = 2 and 9 mod 3 = 0, 9 mod 3 = 0, 9 mod 3 = 0,
1 mod 3 = 1. Since there is a correspondence between two pairs of equivalence classes we
must unset at least 4 − 2 items (4 is the number of items of the VARIABLES2 collection).
Consequently, the SOFT USED BY MODULO VAR constraint holds since its first argument
C is set to 4− 2.

Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value u of VARIABLES1.var can be replaced by any other
value v such that v is congruent to u modulo M.

• An occurrence of a value u of VARIABLES2.var can be replaced by any other
value v such that v is congruent to u modulo M.

Usage A soft USED BY MODULO constraint.

See also hard version: USED BY MODULO.

implied by: SOFT SAME MODULO VAR.

Keywords characteristic of a constraint: modulo.

constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure 5.752 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT USED BY MODULO VAR constraint holds since the cost 2 corresponds to the dif-
ference between the number of variables of VARIABLES2 and the sum over the different
connected components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.752: Initial and final graph of the SOFT USED BY MODULO VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.375 SOFT USED BY PARTITION VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY PARTITION.

Constraint SOFT USED BY PARTITION VAR(C, VARIABLES1, VARIABLES2, PARTITIONS)

Synonym SOFT USED BY PARTITION.

Type VALUES : collection(val−int)

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2
|VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number
of variables of VARIABLES1 (respectively VARIABLES2) that take their values in the ith

partition of the collection PARTITIONS. C is the minimum number of values to change
in the VARIABLES1 and VARIABLES2 collections so that for all i in [1, |PARTITIONS|]
we have N2 i > 0⇒ N1 i ≥ N2 i.

Example

 2, 〈9, 1, 1, 8, 8〉 ,
〈9, 9, 9, 1〉 ,
〈p− 〈1, 2〉 , p− 〈9〉 , p− 〈7, 8〉〉


In the example, the values of the collections 〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉 are re-
spectively associated with the partitions p − 〈9〉, p − 〈1, 2〉, p − 〈1, 2〉, p − 〈7, 8〉,
p − 〈7, 8〉 and p − 〈9〉, p − 〈9〉, p − 〈9〉, p − 〈1, 2〉. Since there is a correspondence
between two pairs of partitions we must unset at least 4 − 2 items (4 is the number of
items of the VARIABLES2 collection). Consequently, the SOFT USED BY PARTITION VAR

constraint holds since its first argument C is set to 4− 2.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES1.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

• An occurrence of a value of VARIABLES2.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

Usage A soft USED BY PARTITION constraint.

See also hard version: USED BY PARTITION.

implied by: SOFT SAME PARTITION VAR.

Keywords characteristic of a constraint: partition.

constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



2258 SOFT USED BY PARTITION VAR

Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure 5.753 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT USED BY PARTITION VAR constraint holds since the cost 2 corresponds to the dif-
ference between the number of variables of VARIABLES2 and the sum over the different
connected components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.753: Initial and final graph of the SOFT USED BY PARTITION VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.376 SOFT USED BY VAR

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY

Constraint SOFT USED BY VAR(C, VARIABLES1, VARIABLES2)

Synonym SOFT USED BY.

Arguments C : dvar

VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions C ≥ 0
C ≤ |VARIABLES2|
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
C is the minimum number of values to change in the VARIABLES1 and VARIABLES2

collections so that all the values of the variables of collection VARIABLES2 are used by
the variables of collection VARIABLES1.

Example (2, 〈9, 1, 1, 8, 8〉 , 〈9, 9, 9, 1〉)

As illustrated by Figure 5.754, there is a correspondence between two pairs of val-
ues of the collections 〈9, 1, 1, 8, 8〉 and 〈9, 9, 9, 1〉. Consequently, we must unset at
least 4 − 2 items (4 is the number of items of the VARIABLES2 collection). The
SOFT USED BY VAR constraint holds since its first argument C is set to 4− 2.

9 1 1 8 8
1 2 3 4 5

9 9 9 1

C = 2

1 2 3 4

VARIABLES1

VARIABLES2

Figure 5.754: Illustration of the partial correspondence between the items of the
VARIABLES2 = 〈9, 9, 9, 1〉 and of the VARIABLES1 = 〈9, 1, 1, 8, 8〉 collections of the
Example slot, i.e., C = 2 items of the VARIABLES2 or of the VARIABLES1 collections
need to be changed in order to cover all elements of VARIABLES2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical C > 0
|VARIABLES1| > 1
|VARIABLES2| > 1
range(VARIABLES1.var) > 1
range(VARIABLES2.var) > 1

Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Usage A soft USED BY constraint.

Algorithm A filtering algorithm achieving arc-consistency is described in [138, 139].

See also hard version: USED BY.

implied by: SOFT SAME VAR.

Keywords constraint arguments: constraint between two collections of variables.

constraint type: soft constraint, relaxation, variable-based violation measure.

filtering: bipartite matching.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK NSOURCE= |VARIABLES2| − C

Graph model Parts (A) and (B) of Figure 5.755 respectively show the initial and final graph associ-
ated with the Example slot. Since we use the NSINK NSOURCE graph property,
the source and sink vertices of the final graph are stressed with a double circle. The
SOFT USED BY VAR constraint holds since the cost 2 corresponds to the difference be-
tween the number of variables of VARIABLES2 and the sum over the different connected
components of the minimum number of sources and sinks.

VARIABLES1

VARIABLES2

1

1234

2345

NSINK_NSOURCE=min(1,3)+min(2,1)=2

1:9

1:9 2:9 3:9

2:1

4:1

3:1

(A) (B)

Figure 5.755: Initial and final graph of the SOFT USED BY VAR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.377 SOME EQUAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from ALLDIFFERENT

Constraint SOME EQUAL(VARIABLES)

Synonyms SOME EQ, NOT ALLDIFFERENT, NOT ALLDIFF, NOT ALLDISTINCT, NOT DISTINCT.

Argument VARIABLES : collection(var−dvar)

Restrictions required(VARIABLES, var)
|VARIABLES| > 1

Purpose Enforce at least two variables of the collection VARIABLES to be assigned the same value.

Example (〈1, 4, 1, 6〉)

The SOME EQUAL constraint holds since the first and the third variables are both
assigned the same value 1.

Typical |VARIABLES| > 2
nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped; all
occurrences of a value of VARIABLES.var can be renamed to any unused value.

Arg. properties Extensible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 3 40 505 7056 112609 2056832 42683841

Number of solutions for SOME EQUAL: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.



SOME EQUAL 2265
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Used in SOFT ALLDIFFERENT VAR.

See also negation: ALLDIFFERENT.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: sort based reformulation.

constraint type: value constraint.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator CLIQUE(<) 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NARC> 0

Graph model We generate a clique with an equality constraint between each pair of distinct vertices and
state that the number of arcs of the final graph should be strictly greater than 0.

Parts (A) and (B) of Figure 5.756 respectively show the initial and final graph associated
with the Example slot. The SOME EQUAL constraint holds since the final graph has at one
arc, i.e. two variables are assigned the same value.

VARIABLES

1

2

3

4

NARC=1

1:1

3:1

(A) (B)

Figure 5.756: Initial and final graph of the SOME EQUAL constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.378 SORT

I B C J DESCRIPTION LINKS GRAPH

Origin [308]

Constraint SORT(VARIABLES1, VARIABLES2)

Synonyms SORTEDNESS, SORTED, SORTING.

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| = |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
First, the variables of the collection VARIABLES2 correspond to a permutation of the
variables of VARIABLES1. Second, the variables of VARIABLES2 are sorted in increasing
order.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈1, 1, 1, 2, 5, 9〉)

The SORT constraint holds since:

• Values 1, 2, 5 and 9 have the same number of occurrences within both collections
〈1, 9, 1, 5, 2, 1〉 and 〈1, 1, 1, 2, 5, 9〉. Figure 5.757 illustrates this correspondence.

• The items of collection 〈1, 1, 1, 2, 5, 9〉 are sorted in increasing order.

1 9 1 5 2 1
1 2 3 4 5 6

1 1 1 2 5 9

1 2 3 4 5 6

VARIABLES1

VARIABLES2

Figure 5.757: Illustration of the correspondence between the items of the VARIABLES1
and of the VARIABLES2 collections of the Example slot (note that the items of the
VARIABLES2 are sorted in increasing order)

All solutions Figure 5.758 gives all solutions to the following non ground instance of the SORT con-
straint: V1 ∈ [2, 3], V2 ∈ [2, 3], V3 ∈ [1, 2], V4 ∈ [4, 5], V5 ∈ [2, 4], S1 ∈ [2, 3], S2 ∈
[2, 3], S3 ∈ [1, 3], S4 ∈ [4, 5], S5 ∈ [2, 5], SORT(〈V1, V2, V3, V4, V5〉, 〈S1, S2, S3, S4, S5〉).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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¬ (〈2,2,2,4,4〉, 〈2,2,2,4,4〉)

 (〈2,2,2,5,4〉, 〈2,2,2,4,5〉)

® (〈2,3,2,4,4〉, 〈2,2,3,4,4〉)

¯ (〈2,3,2,5,4〉, 〈2,2,3,4,5〉)

° (〈3,2,2,4,4〉, 〈2,2,3,4,4〉)

± (〈3,2,2,5,4〉, 〈2,2,3,4,5〉)

² (〈3,3,2,4,4〉, 〈2,3,3,4,4〉)

³ (〈3,3,2,5,4〉, 〈2,3,3,4,5〉)

Figure 5.758: All solutions corresponding to the non ground example of the SORT
constraint of the All solutions slot

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1

Symmetries • Items of VARIABLES1 are permutable.

• One and the same constant can be added to the var attributes of all items of
VARIABLES1 and VARIABLES2.

Arg. properties Functional dependency: VARIABLES2 determined by VARIABLES1.

Usage The SORT constraint was initially introduced by Older et al. [308] for expressing disjunc-
tive constraints in job-shop scheduling problems. It was also used by [22] for expressing
disjunctive constraints in an air traffic control application. However the main usage of the
SORT constraint, that was not foreseen when the SORT constraint was invented, is its use
in many reformulations. Many constraints involving one or several collections of variables
become much simpler to express when the variables of these collections are sorted. In ad-
dition these reformulations typically have a size that is linear in the number of variables
of the original constraint. This justifies why the SORT constraint is considered to be a
core constraint. As illustrative examples of these types of reformulations we successively
consider the ALLDIFFERENT and the SAME constraints:

• The ALLDIFFERENT(〈v1, v2, . . . , vn〉) constraint can be reformulated
as the conjunction SORT(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉) ∧
STRICTLY INCREASING(〈w1, w2, . . . , wn〉).

• The SAME(〈u1, u2, . . . , un〉, 〈v1, v2, . . . , vn〉) constraint can be reformu-
lated as the conjunction SORT(〈u1, u2, . . . , un〉, 〈w1, w2, . . . , wn〉) ∧
SORT(〈v1, v2, . . . , vn〉, 〈w1, w2, . . . , wn〉).

Remark A variant of this constraint called SORT PERMUTATION was introduced in [461]. In this
variant an additional list of domain variables represents the permutation that allows one to
go from VARIABLES1 to VARIABLES2.

Algorithm [85, 86, 292].


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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Systems SORTING in Choco, SORTED in Gecode, SORT in MiniZinc, SORTING in SICStus.

See also generalisation: SORT PERMUTATION (PERMUTATION parameter added).

implies: LEX GREATEREQ, SAME.

uses in its reformulation: ALLDIFFERENT, SAME.

Keywords application area: air traffic management.

characteristic of a constraint: core, sort.

combinatorial object: permutation.

constraint arguments: constraint between two collections of variables, pure functional
dependency.

filtering: bound-consistency.

modelling: functional dependency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#sort
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE=NSINK
• NSOURCE= |VARIABLES1|
• NSINK= |VARIABLES2|

Arc input(s) VARIABLES2

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var ≤ variables2.var

Graph property(ies) NARC= |VARIABLES2| − 1

Graph model Parts (A) and (B) of Figure 5.759 respectively show the initial and final graph associated
with the first graph constraint of the Example slot. Since it uses the NSOURCE and
NSINK graph properties, the source and sink vertices of this final graph are stressed with
a double circle. Since there is a constraint on each connected component of the final graph
we also show the different connected components. The SORT constraint holds since:

• Each connected component of the final graph of the first graph constraint has the
same number of sources and of sinks.

• The number of sources of the final graph of the first graph constraint is equal to
|VARIABLES1|.

• The number of sinks of the final graph of the first graph constraint is equal to
|VARIABLES2|.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly |VARIABLES1 − 1| arcs: all the inequalities constraints between
consecutive variables of VARIABLES2 holds.

Signature Consider the first graph constraint. Since the initial graph contains only sources and sinks,
and since isolated vertices are eliminated from the final graph, we make the following
observations:

• Sources of the initial graph cannot become sinks of the final graph,

• Sinks of the initial graph cannot become sources of the final graph.

From the previous observations and since we use the PRODUCT arc generator on the col-
lections VARIABLES1 and VARIABLES2, we have that the maximum number of sources and
sinks of the final graph is respectively equal to |VARIABLES1| and |VARIABLES2|. There-
fore we can rewrite NSOURCE = |VARIABLES1| to NSOURCE ≥ |VARIABLES1|
and simplify NSOURCE to NSOURCE. In a similar way, we can rewrite
NSINK = |VARIABLES2| to NSINK ≥ |VARIABLES2| and simplify NSINK to
NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234 56

2 3456

(B)

CC#1:NSOURCE=3,NSINK=3
CC#2:NSOURCE=1,NSINK=1
CC#3:NSOURCE=1,NSINK=1
CC#4:NSOURCE=1,NSINK=1

NSOURCE=6,NSINK=6

CC#1 CC#2 CC#3 CC#4

1:1

1:1 2:13:1

3:16:1 2:9

6:9

4:5

5:5

5:2

4:2

Figure 5.759: Initial and final graph of the SORT constraint
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Consider now the second graph constraint. Since we use the PATH arc generator with an
arity of 2 on the VARIABLES2 collection, the maximum number of arcs of the final graph
is equal to |VARIABLES2| − 1. Therefore we can rewrite the graph property NARC =
|VARIABLES2| − 1 to NARC ≥ |VARIABLES2| − 1 and simplify NARC to NARC.

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint SORT(〈1, 0, 0, 1〉, 〈0, 0, 1〉) hold?

B. Does the constraint SORT(〈3, 5, 3, 1〉, 〈1, 3, 5〉) hold?

C. Does the constraint SORT(〈2, 4, 2, 2, 4〉, 〈2, 2, 2, 4, 4〉) hold?

D. Does the constraint SORT(〈2, 4, 2, 2, 4〉, 〈4, 4, 2, 2, 2〉) hold?

aHint: go back to the definition of SORT.

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:
X1 ∈ [2, 4], X2 ∈ [2, 3], X3 ∈ [0, 5], X4 ∈ [6, 8], X5 ∈ [3, 6],
Y1 ∈ [3, 4], Y2 ∈ [2, 3], Y3 ∈ [0, 5], Y4 ∈ [6, 8], Y5 ∈ [3, 6],

SORT

(
〈X1, X2, X3, X4, X5〉,
〈Y1, Y2, Y3, Y4, Y5〉

)
.

aHint: first filter the bounds of the variables of the second argument with respect
to the chain of precedences; second, since the second argument can be computed from
the first one, focus on the variables of the first argument and enumerate solutions in
lexicographic order.


Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.
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SOLUTION TO EXERCISE 1

A. No, since 〈1, 0, 0, 1〉
and 〈0, 0, 1〉 do not
have the same number
of elements.

B. No, since 〈3, 5, 3, 1〉
and 〈1, 3, 5〉 do not
have the same number
of elements.

C. Yes, since 〈2, 2, 2, 4, 4〉
is a permutation of
〈2, 4, 2, 2, 4〉 and since
the elements 2, 2, 2, 4, 4 are
sorted in non-decreasing order.

D. No, since the elements
of 〈4, 4, 2, 2, 2〉 are
not sorted in non-decreasing
order.

1 0 10

1 2 43

0 0 1

1 2 3

3 5 13

1 2 43

1 3 5

1 2 3

2 4 2 2 4

1 2 3 4 5

2 2 2 4 4

1 2 3 4 5

2 4 2 2 4

1 2 3 4 5

4 4 2 2 2

1 2 3 4 5
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SOLUTION TO EXERCISE 2

〈X1, X2, X3, X4, X5〉, 〈Y1, Y2, Y3, Y4, Y5〉

¬ (〈3,3,3,6,6〉, 〈3,3,3,6,6〉)

 (〈3,3,4,6,6〉, 〈3,3,4,6,6〉)

® (〈3,3,5,6,6〉, 〈3,3,5,6,6〉)

¯ (〈4,3,3,6,6〉, 〈3,3,4,6,6〉)

the four solutions

3 3 3 6 6

1 2 3 4 5

3 3 3 6 6

1 2 3 4 5

solution ¬

3 3 4 6 6

1 2 3 4 5

3 3 4 6 6

1 2 3 4 5

solution 

3 3 5 6 6

1 2 3 4 5

3 3 5 6 6

1 2 3 4 5

solution ®

4 3 3 6 6

1 2 3 4 5

3 3 4 6 6

1 2 3 4 5

solution ¯
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5.379 SORT PERMUTATION

I B C J DESCRIPTION LINKS GRAPH

Origin [460]

Constraint SORT PERMUTATION(FROM, PERMUTATION, TO)

Usual name SORT

Synonyms EXTENDED SORTEDNESS, SORTEDNESS, SORTED, SORTING.

Arguments FROM : collection(var−dvar)
PERMUTATION : collection(var−dvar)
TO : collection(var−dvar)

Restrictions |PERMUTATION| = |FROM|
|PERMUTATION| = |TO|
PERMUTATION.var ≥ 1
PERMUTATION.var ≤ |PERMUTATION|
ALLDIFFERENT(PERMUTATION)
required(FROM, var)
required(PERMUTATION, var)
required(TO, var)

Purpose
The variables of collection FROM correspond to the variables of collection TO according
to the permutation PERMUTATION (i.e., FROM[i].var = TO[PERMUTATION[i].var].var).
The variables of collection TO are also sorted in increasing order.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈1, 6, 3, 5, 4, 2〉 , 〈1, 1, 1, 2, 5, 9〉)

The SORT PERMUTATION constraint holds since:

• – The first item FROM[1].var = 1 of collection FROM corresponds to the
PERMUTATION[1].var = 1th item of collection TO.

– The second item FROM[2].var = 9 of collection FROM corresponds to the
PERMUTATION[2].var = 6th item of collection TO.

– The third item FROM[3].var = 1 of collection FROM corresponds to the
PERMUTATION[3].var = 3th item of collection TO.

– The fourth item FROM[4].var = 5 of collection FROM corresponds to the
PERMUTATION[4].var = 5th item of collection TO.

– The fifth item FROM[5].var = 2 of collection FROM corresponds to the
PERMUTATION[5].var = 4th item of collection TO.

– The sixth item FROM[6].var = 1 of collection FROM corresponds to the
PERMUTATION[6].var = 2th item of collection TO.

• The items of collection TO = 〈1, 1, 1, 2, 5, 9〉 are sorted in increasing order.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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FROM PERMUTATION TO

Figure 5.760: Illustration of the correspondence between the items of the FROM and the
TO collections according to the permutation defined by the items of the PERMUTATION
collection of the Example slot (note that the items of the TO collection are sorted in
increasing order)

Typical |FROM| > 1
range(FROM.var) > 1
LEX DIFFERENT(FROM, TO)

Symmetry One and the same constant can be added to the var attributes of all items of FROM and TO.

Arg. properties Functional dependency: TO determined by FROM.

Remark Observe that the argument PERMUTATION of the SORT PERMUTATION constraint is not
completely determined by FROM and TO when the items of the collection FROM are not all
distinct. In other words this means that even though all items of the FROM and TO are
completely fixed, the permutation will not be completely determined when some items of
FROM are assigned the same value.

The SORT PERMUTATION constraint is referenced under the name SORTING in SICStus
Prolog.

Algorithm [461].

Reformulation Let n denote the number of variables in the collection FROM. The SORT PERMUTATION

constraint can be reformulated as a conjunction of the form:
ELEMENT(PERMUTATION[1], FROM, TO[1]),
ELEMENT(PERMUTATION[2], FROM, TO[2]),
. . .
ELEMENT(PERMUTATION[n], FROM, TO[n]),
ALLDIFFERENT(PERMUTATION),
INCREASING(TO).

To enhance the previous model, the following necessary condition was proposed by
P. Schaus. ∀i ∈ [1, n] :

∑j=n
j=1 (FROM[j] < TO[i]) ≤ i − 1 (i.e., at most i − 1 vari-

ables of the collection FROM are assigned a value strictly less than TO[i]). Similarly, we


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

http://www.sics.se/sicstus/
http://www.sics.se/sicstus/
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have that ∀i ∈ [1, n] :
∑j=n
j=1 (FROM[j] > TO[i]) ≥ n − i (i.e., at most n − i variables of

the collection FROM are assigned a value are strictly greater than TO[i]).

Systems SORTED in Gecode, SORTING in SICStus.

See also common keyword: ORDER (sort, permutation).

implies: CORRESPONDENCE.

specialisation: SORT (PERMUTATION parameter removed).

used in reformulation: ALLDIFFERENT, ELEMENT, INCREASING.

Keywords characteristic of a constraint: sort, derived collection.

combinatorial object: permutation.

constraint arguments: constraint between three collections of variables.

modelling: functional dependency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://www.sics.se/sicstus/
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Derived Collection
col

(
FROM PERMUTATION−collection(var−dvar, ind−dvar),
[item(var− FROM.var, ind− PERMUTATION.var)]

)
Arc input(s) FROM PERMUTATION TO

Arc generator PRODUCT 7→collection(from permutation, to)

Arc arity 2

Arc constraint(s) • from permutation.var = to.var
• from permutation.ind = to.key

Graph property(ies) NARC= |PERMUTATION|

Arc input(s) TO

Arc generator PATH 7→collection(to1, to2)

Arc arity 2

Arc constraint(s) to1.var ≤ to2.var

Graph property(ies) NARC= |TO| − 1

Graph model Parts (A) and (B) of Figure 5.761 respectively show the initial and final graph associ-
ated with the first graph constraint of the Example slot. In both graphs the source ver-
tices correspond to the items of the derived collection FROM PERMUTATION, while the sink
vertices correspond to the items of the TO collection. Since the first graph constraint
uses the NARC graph property, the arcs of its final graph are stressed in bold. The
SORT PERMUTATION constraint holds since:

• The first graph constraint holds since its final graph contains exactly PERMUTATION

arcs.

• Finally the second graph constraint holds also since its corresponding final graph
contains exactly |PERMUTATION − 1| arcs: all the inequalities constraints between
consecutive variables of TO holds.

Signature Consider the first graph constraint where we use the PRODUCT arc generator. Since all
the key attributes of the TO collection are distinct, and because of the second condition
from permutation.ind = to.key of the arc constraint, each vertex of the final graph has
at most one successor. Therefore the maximum number of arcs of the final graph is equal
to |PERMUTATION|. So we can rewrite the graph property NARC = |PERMUTATION| to
NARC ≥ |PERMUTATION| and simplify NARC to NARC.

Consider now the second graph constraint. Since we use the PATH arc generator with
an arity of 2 on the TO collection, the maximum number of arcs of the corresponding final
graph is equal to |TO| − 1. Therefore we can rewrite NARC = |TO| − 1 to NARC ≥
|TO| − 1 and simplify NARC to NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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FROM_PERMUTATION

TO

1

1234 56

2 3456

NARC=6

1:1,1

1:1

2:9,6

6:9

3:1,3

3:1

4:5,5

5:5

5:2,4

4:2

6:1,2

2:1

(A) (B)

Figure 5.761: Initial and final graph of the SORT PERMUTATION constraint
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5.380 STABLE COMPATIBILITY

I B C J DESCRIPTION LINKS GRAPH

Origin P. Flener, [49]

Constraint STABLE COMPATIBILITY(NODES)

Argument NODES : collection


index−int,
father−dvar,
prec−sint,
inc−sint


Restrictions required(NODES, [index, father, prec, inc])

NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.father ≥ 1
NODES.father ≤ |NODES|
NODES.prec ≥ 1
NODES.prec ≤ |NODES|
NODES.inc ≥ 1
NODES.inc ≤ |NODES|
NODES.inc > NODES.index

Purpose
Enforce the construction of a stably compatible supertree that is compatible with several
given trees. The notion of stable compatibility and its context are detailed in the Usage
slot.

Example



〈

ind− 1 f− 4 p− {11, 12} inc− ∅,
ind− 2 f− 3 p− {8, 9} inc− ∅,
ind− 3 f− 4 p− {2, 10} inc− ∅,
ind− 4 f− 5 p− {1, 3} inc− ∅,
ind− 5 f− 7 p− {4, 13} inc− ∅,
ind− 6 f− 2 p− {8, 14} inc− ∅,
ind− 7 f− 7 p− {6, 13} inc− ∅,
ind− 8 f− 6 p− ∅ inc− {9, 10, 11, 12, 13, 14},
ind− 9 f− 2 p− ∅ inc− {10, 11, 12, 13},
ind− 10 f− 3 p− ∅ inc− {11, 12, 13},
ind− 11 f− 1 p− ∅ inc− {12, 13},
ind− 12 f− 1 p− ∅ inc− {13},
ind− 13 f− 5 p− ∅ inc− {14},
ind− 14 f− 6 p− ∅ inc− ∅

〉


(
ind for index, f for father, p for prec

)
Figure 5.762 shows the two trees we want to merge. Note that the leaves a and f

occur in both trees.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Figure 5.762: The two trees to merge

The left part of Figure 5.763 gives one way to merge the two previous trees. This solution
corresponds to the ground instance provided by the example. Note that there exist 7 other
ways to merge these two trees. They are respectively depicted by Figures 5.763 to 5.766.
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Figure 5.763: First solution (corresponding to the ground instance of the example) and
second solution on how to merge the two trees T1 and T2 of Figure 5.762
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Figure 5.764: Third and fourth solutions on how to merge the two trees T1 and T2 of
Figure 5.762
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Figure 5.765: Fifth and sixth solutions on how to merge the two trees T1 and T2 of
Figure 5.762
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Figure 5.766: Seventh and eight solutions on how to merge the two trees T1 and T2 of
Figure 5.762

Typical |NODES| > 2
range(NODES.father) > 1

Symmetry Items of NODES are permutable.

Usage One objective of phylogeny is to construct the genealogy of the species, called the tree of
life, whose leaves represent the contemporary species and whose internal nodes represent
extinct species that are not necessarily named. An important problem in phylogeny is
the construction of a supertree [83] that is compatible with several given trees. There are
several definitions of tree compatibility in the literature:

• A tree T is strongly compatible with a tree T ′ if T ′ is topologically equivalent to a
subtree T that respects the node labelling. [305]

• A tree T is weakly compatible with a tree T ′ if T ′ can be obtained from T by a
series of arc contractions. [409]

• A tree T is stably compatible with a set S of trees if T is weakly compatible with
each tree in S and each internal node of T can be labelled by at least one correspond-
ing internal node of some tree in S.

For the supertree problem, strong and weak compatibility coincide if and only if all the
given trees are binary [305]. The existence of solutions is not lost when restricting weak
compatibility to stable compatibility.
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Figure 5.767: Supertree problem instance and two of its solutions

For example, the trees T1 and T2 of Figure 5.767 have T and T ′ as supertrees under both
weak and strong compatibility. As shown, all the internal nodes of T ′ can be labelled by


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.
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Figure 5.768: Three small phylogenetic trees

corresponding internal nodes of the two given trees, but this is not the case for the father of
b and g in T . Hence T and four other such supertrees are debatable because they speculate
about the existence of extinct species that were not in any of the given trees. Consider
also the three small trees in Figure 5.768: T3 and T4 have T4 as a supertree under weak
compatibility, as it suffices to contract the arc (3, 2) to get T3 from T4. However, T3 and
T4 have no supertree under strong compatibility, as the most recent common ancestor of b
and c, denoted by mrca(b, c), is the same as mrca(a, b) in T3, namely 1, but not the same
in T4, as mrca(b, c) = 3 is an evolutionary descendant of mrca(a, b) = 2. Also, T4 and
T5 have neither weakly nor strongly compatible supertrees.

Under strong compatibility, a first supertree algorithm was given in [4], with an application
for database management systems; it takes O(l2) time, where l is the number of leaves
in the given trees. Derived algorithms have emerged from phylogeny, for example, One-
Tree [305]. The first constraint program was proposed in [202], using standard, non-global
constraints. Under weak compatibility, a phylogenetic supertree algorithm can be found
in [409], for example. Under stable compatibility, the algorithm from computational lin-
guistics of [87] has supertree construction as special case.

See also root concept: TREE.

Keywords application area: bioinformatics, phylogeny.

constraint type: graph constraint.

final graph structure: tree.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.father = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
• NCC= 1
•MAX ID≤ 2
• PATH FROM TO(index, index, prec) = 1
• PATH FROM TO(index, index, inc) = 0
• PATH FROM TO(index, inc, index) = 0

Graph model To each distinct leave (i.e., each species) of the trees to merge corresponds a vertex of the
initial graph. To each internal vertex of the trees to merge corresponds also a vertex of the
initial graph. Each vertex of the initial graph has the following attributes:

• An index corresponding to a unique identifier.

• A father corresponding to the father of the vertex in the final tree. Since the leaves
of the trees to merge must remain leaves we remove the index value of all the leaves
from all the father variables.

• A set of precedence constraints corresponding to all the arcs of the trees to merge.

• A set of incomparability constraints corresponding to the incomparable vertices of
each tree to merge.

The arc constraint describes the fact that we link a vertex to its father variable. Finally we
use the following six graph properties on our final graph:

• The first graph property MAX NSCC ≤ 1 enforces the fact that the size of the
largest strongly connected component does not exceed one. This avoid having cir-
cuits containing more than one vertex. In fact the root of the merged tree is a strongly
connected component with a single vertex.

• The second graph property NCC = 1 imposes having only a single tree.

• The third graph property PATH FROM TO(index, index, prec) = 1 en-
forces for each vertex i a set of precedence constraints; for each vertex j of the
precedence set there is a path from i to j in the final graph.

• The fourth graph property MAX ID ≤ 2 enforces that the number of predecessors
(i.e., arcs from a vertex to itself are not counted) of each vertex does not exceed 2
(i.e., the final graph is a binary tree).

• The fifth and sixth graph properties PATH FROM TO(index, index, inc) =
0 and PATH FROM TO(index, inc, index) = 0 enforces for each vertex i a
set of incomparability constraints; for each vertex j of the incomparability set there
is neither a path from i to j, nor a path from j to i.

Figures 5.769 and 5.770 respectively show the precedence and the incomparability graphs
associated with the Example slot. As it contains too many arcs the initial graph is not
shown. Figures 5.763 shows the first solution satisfying all the precedence and incompara-
bility constraints.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Figure 5.769: Precedence graph associated with the two trees to merge described by
Figure 5.762
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Figure 5.770: Incomparability graph associated with the two trees to merge described
by Figure 5.762; the two cliques respectively correspond to the leaves of the two trees
to merge.
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5.381 STAGE ELEMENT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Choco, derived from ELEMENT.

Constraint STAGE ELEMENT(ITEM, TABLE)

Usual name STAGE ELT

Synonym STAGE ELEM.

Arguments ITEM : collection(index−dvar, value−dvar)
TABLE : collection(low−int, up−int, value−int)

Restrictions required(ITEM, [index, value])
|ITEM| = 1
|TABLE| > 0
required(TABLE, [low, up, value])
TABLE.low ≤ TABLE.up
increasing seq(TABLE, [low])

Purpose

Let lowi, upi and valuei respectively denote the values of the low, up and value

attributes of the ith item of the TABLE collection. First we have that: lowi ≤ upi and
upi + 1 = lowi+1.
Second, the STAGE ELEMENT constraint forces the following equivalence:
lowi ≤ ITEM.index ∧ ITEM.index ≤ upi ⇔ ITEM.value = valuei.

Example


〈index− 5 value− 6〉 ,〈 low− 3 up− 7 value− 6,

low− 8 up− 8 value− 8,
low− 9 up− 14 value− 2,
low− 15 up− 19 value− 9

〉


Figure 5.771 depicts the function associated with the items of the TABLE collection.
The STAGE ELEMENT constraint holds since:

• The value of ITEM[1].index is located between the values of the low and up at-
tributes of the first item of the TABLE collection (i.e., 5 ∈ [3, 7]).

• The value of ITEM[1].value corresponds to the value attribute of the first item of
the TABLE collection (i.e., 6).

Typical |TABLE| > 1
range(TABLE.value) > 1
TABLE.low < TABLE.up


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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¬ l− 3 u− 7 v− 6
 l− 8 u− 8 v− 8
® l− 9 u− 14 v− 2
¯ l− 15 u− 19 v− 9

TABLE

(
l for low, u for up,
v for value

)

Figure 5.771: Function defined on four intervals ¬, , ® and ¯ associated with the
TABLE collection of the Example slot for linking the index and value attributes of
the ITEM collection

Symmetry All occurrences of two distinct values in ITEM.value or TABLE.value can be swapped;
all occurrences of a value in ITEM.value or TABLE.value can be renamed to any unused
value.

Arg. properties • Functional dependency: ITEM.value determined by ITEM.index and TABLE.

• Suffix-extensible wrt. TABLE.

See also common keyword: ELEM, ELEMENT (data constraint).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: binary constraint, pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

modelling: table, functional dependency.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) TABLE

Arc generator PATH 7→collection(table1, table2)

Arc arity 2

Arc constraint(s) • table1.low ≤ table1.up
• table1.up + 1 = table2.low
• table2.low ≤ table2.up

Graph property(ies) NARC= |TABLE| − 1

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index ≥ table.low
• item.index ≤ table.up
• item.value = table.value

Graph property(ies) NARC= 1

Graph model The first graph constraint models the restrictions on the low and up attributes of the TABLE
collection, while the second graph constraint is similar to the one used for defining the
ELEMENT constraint.

Parts (A) and (B) of Figure 5.772 respectively show the initial and final graph associated
with the second graph constraint of the Example slot. Since we use the NARC graph
property, the unique arc of the final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:5,6

1:3,7,6

(A) (B)

Figure 5.772: Initial and final graph of the STAGE ELEMENT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.773 depicts the automaton associated with the STAGE ELEMENT constraint. Let
INDEX and VALUE respectively be the index and the value attributes of the unique
item of the ITEM collection. Let LOWi, UPi and VALUEi respectively be the low, the
up and the value attributes of the ith item of the TABLE collection. To each quintu-
ple (INDEX, VALUE, LOWi, UPi, VALUEi) corresponds a 0-1 signature variable Si as well as
the following signature constraint: ((LOWi ≤ INDEX) ∧ (INDEX ≤ UPi) ∧ (VALUE =
VALUEi))⇔ Si.

s

t

TABLE LOWi > ITEM INDEX ∨
ITEM INDEX > TABLE UPi ∨
ITEM VALUE 6= TABLE VALUEi

TABLE LOWi ≤ ITEM INDEX ∧
ITEM INDEX ≤ TABLE UPi ∧
ITEM VALUE = TABLE VALUEi

TABLE LOWi > ITEM INDEX ∨
ITEM INDEX > TABLE UPi ∨
ITEM VALUE 6= TABLE VALUEi

TABLE LOWi ≤ ITEM INDEX ∧
ITEM INDEX ≤ TABLE UPi ∧
ITEM VALUE = TABLE VALUEi

Figure 5.773: Automaton of the STAGE ELEMENT constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

ITEM INDEX

ITEM VALUE

Figure 5.774: Hypergraph of the reformulation corresponding to the automaton of the
STAGE ELEMENT constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.382 STRETCH CIRCUIT

I B C J DESCRIPTION LINKS GRAPH

Origin [316]

Constraint STRETCH CIRCUIT(VARIABLES, VALUES)

Usual name STRETCH

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, lmin−int, lmax−int)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≤ VALUES.lmax
VALUES.lmin ≤ |VARIABLES|
sum(VALUES.lmin) ≤ |VARIABLES|

Purpose

In order to define the meaning of the STRETCH PATH constraint, we first introduce
the notions of stretch and span. Let n be the number of variables of the collection
VARIABLES and let i, j (0 ≤ i < n, 0 ≤ j < n) be two positions within the collection
of variables VARIABLES such that the following conditions apply:

• If i ≤ j then all variables Xi, . . . , Xj take a same value from the set of values of
the val attribute.
If i > j then all variables Xi, . . . , Xn−1, X0, . . . , Xj take a same value from
the set of values of the val attribute.

• X(i−1) mod n is different from Xi.

• X(j+1) mod n is different from Xj .

We call such a set of variables a stretch. The span of the stretch is equal to
1 + (j − i) mod n, while the value of the stretch is Xi. We now define the condition
enforced by the STRETCH CIRCUIT constraint.

Each item (val − v, lmin − s, lmax − t) of the VALUES collection enforces the
minimum value s as well as the maximum value t for the span of a stretch of value v.

Note that:

1. Having an item (val− v, lmin− s, lmax− t) with s strictly greater than 0 does
not mean that value v should be assigned to one of the variables of collection
VARIABLES. It rather means that, when value v is used, all stretches of value v
must have a span that belong to interval [s, t].

2. A variable of the collection VARIABLES may be assigned a value that is not de-
fined in the VALUES collection.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example


〈6, 6, 3, 1, 1, 1, 6, 6〉 ,〈 val− 1 lmin− 2 lmax− 4,

val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6,
val− 6 lmin− 2 lmax− 4

〉


The STRETCH CIRCUIT constraint holds since the sequence 6 6 3 1 1 1 6 6 con-
tains three stretches 6 6 6 6, 3, and 1 1 1 respectively verifying the following conditions:

• The span of the first stretch 6 6 6 6 is located within interval [2, 4] (i.e., the limit
associated with value 6).

• The span of the second stretch 3 is located within interval [1, 6] (i.e., the limit asso-
ciated with value 3).

• The span of the third stretch 1 1 1 is located within interval [2, 4] (i.e., the limit
associated with value 1).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |VALUES|
|VALUES| > 1
VALUES.lmax ≤ |VARIABLES|

Symmetries • Items of VARIABLES can be shifted.

• Items of VALUES are permutable.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Usage The article [316], which originally introduced the STRETCH constraint, quotes rostering
problems as typical examples of use of this constraint.

Remark We split the origin STRETCH constraint into the STRETCH CIRCUIT and the
STRETCH PATH constraints that respectively use the PATH LOOP and CIRCUIT
LOOP arc generators. We also reorganise the parameters: the VALUES collection describes
the attributes of each value that can be assigned to the variables of the STRETCH CIRCUIT

constraint. Finally we skipped the pattern constraint that tells what values can follow a
given value.

Algorithm A first filtering algorithm was described in the original article of G. Pesant [316]. An
algorithm that also generates explanations is given in [371]. The first filtering algorithm
achieving arc-consistency is depicted in [219, 220]. This algorithm is based on dynamic
programming and handles the fact that some values can be followed by only a given subset
of values.

Reformulation The STRETCH CIRCUIT constraint can be reformulated in term of a STRETCH PATH con-
straint. Let LMAX denote the maximum value taken by the lmax attribute within the items
of the collection VALUES, let n be the number of variables of the collection VARIABLES, and
let δ = min(LMAX , n). The first and second arguments of the STRETCH PATH constraint
are created in the following way:


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.



2294 STRETCH CIRCUIT

• We pass to the STRETCH PATH the variables of the collection VARIABLES to which
we add the δ first variables of the collection VARIABLES.

• We pass to the STRETCH PATH the values of the collection VALUESwith the following
modification: to each value v for which the corresponding lmax attribute is greater
than or equal to n we reset its value to n+ δ.

Even if STRETCH PATH can achieve arc-consistency this reformulation may not achieve
arc-consistency since it duplicates variables.

Using this reformulation, the example
STRETCH CIRCUIT(〈6, 6, 3, 1, 1, 1, 6, 6〉,

〈val− 1 lmin− 2 lmax− 4, val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6, val− 6 lmin− 2 lmax− 4〉)

of the Example slot is reformulated as:
STRETCH PATH(〈6, 6, 3, 1, 1, 1, 6, 6, 6, 6, 3, 1, 1, 1〉,

〈val− 1 lmin− 2 lmax− 4, val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6, val− 6 lmin− 2 lmax− 4〉)

In the reformulation δ was equal to 6, and the VALUES collection was left unchanged since
no lmax attribute was equal to the number of variables of the VARIABLES collection (i.e., 8).

See also common keyword: GROUP (timetabling constraint),
PATTERN (sliding sequence constraint,timetabling constraint),
SLIDING DISTRIBUTION (sliding sequence constraint), STRETCH PATH (sliding sequence
constraint,timetabling constraint).

used in reformulation: STRETCH PATH.

Keywords characteristic of a constraint: cyclic.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: dynamic programming, arc-consistency, duplicated variables.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator CIRCUIT 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • NOT IN(MIN NCC, 1, VALUES.lmin− 1)
•MAX NCC≤ VALUES.lmax

Graph model Part (A) of Figure 5.775 shows the initial graphs associated with values 1, 2, 3 and 6 of the
Example slot. Part (B) of Figure 5.775 shows the corresponding final graphs associated
with values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES col-
lection the final graph associated with value 2 is empty. The STRETCH CIRCUIT constraint
holds since:

• For value 1 we have one connected component for which the number of vertices is
greater than or equal to 2 and less than or equal to 4,

• For value 2 we do not have any connected component,
• For value 3 we have one connected component for which the number of vertices is

greater than or equal to 1 and less than or equal to 6,
• For value 6 we have one connected component for which the number of vertices is

greater than or equal to 2 and less than or equal to 4.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=4,MAX_NCC=4

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3

1:6

2:6

7:6

8:6

(A) (B)

Figure 5.775: Initial and final graph of the STRETCH CIRCUIT constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.383 STRETCH PATH

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [316]

Constraint STRETCH PATH(VARIABLES, VALUES)

Usual name STRETCH

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, lmin−int, lmax−int)

Restrictions |VARIABLES| > 0
required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, lmin, lmax])
distinct(VALUES, val)
VALUES.lmin ≥ 0
VALUES.lmin ≤ VALUES.lmax
VALUES.lmin ≤ |VARIABLES|

Purpose

In order to define the meaning of the STRETCH PATH constraint, we first introduce
the notions of stretch and span. Let n be the number of variables of the collection
VARIABLES. Let Xi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the collec-
tion of variables VARIABLES such that the following conditions apply:

• All variables Xi, . . . , Xj take a same value from the set of values of the val

attribute,

• i = 1 or Xi−1 is different from Xi,

• j = n or Xj+1 is different from Xj .

We call such a set of variables a stretch. The span of the stretch is equal to j − i + 1,
while the value of the stretch is Xi. We now define the condition enforced by the
STRETCH PATH constraint.

Each item (val − v, lmin − s, lmax − t) of the VALUES collection enforces the
minimum value s as well as the maximum value t for the span of a stretch of value v
over consecutive variables of the VARIABLES collection.

Note that:

1. Having an item (val− v, lmin− s, lmax− t) with s strictly greater than 0 does
not mean that value v should be assigned to one of the variables of collection
VARIABLES. It rather means that, when value v is used, all stretches of value v
must have a span that belong to interval [s, t].

2. A variable of the collection VARIABLES may be assigned a value that is not de-
fined in the VALUES collection.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Usual name
The usual name of the constraint when, for some reason, it differs from the name of the catalogue entry.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example


〈6, 6, 3, 1, 1, 1, 6, 6〉 ,〈 val− 1 lmin− 2 lmax− 4,

val− 2 lmin− 2 lmax− 3,
val− 3 lmin− 1 lmax− 6,
val− 6 lmin− 2 lmax− 2

〉


The STRETCH PATH constraint holds since the sequence 6 6 3 1 1 1 6 6 contains
four stretches 6 6, 3, 1 1 1, and 6 6 respectively verifying the following conditions:

• The span of the first stretch 6 6 is located within interval [2, 2] (i.e., the limit associ-
ated with value 6).

• The span of the second stretch 3 is located within interval [1, 6] (i.e., the limit asso-
ciated with value 3).

• The span of the third stretch 1 1 1 is located within interval [2, 4] (i.e., the limit
associated with value 1).

• The span of the fourth stretch 6 6 is located within interval [2, 2] (i.e., the limit
associated with value 6).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |VALUES|
|VALUES| > 1
sum(VALUES.lmin) ≤ |VARIABLES|
VALUES.lmax ≤ |VARIABLES|

Symmetries • Items of VARIABLES can be reversed.

• Items of VALUES are permutable.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.

Usage The article [316], which originally introduced the STRETCH constraint, quotes rostering
problems as typical examples of use of this constraint.

Remark We split the original STRETCH constraint into the STRETCH PATH and the
STRETCH CIRCUIT constraints that respectively use the PATH LOOP and the
CIRCUIT LOOP arc generators. We also reorganise the parameters: the VALUES

collection describes the attributes of each value that can be assigned to the variables
of the STRETCH PATH constraint. Finally we skipped the pattern constraint that tells
what values can follow a given value. A extension of this constraint (i.e., stretch plus
pattern), called FORCED SHIFT STRETCH, where one can specify for each value v
with a 0-1 variable, whether it should occur at least once or not at all, was proposed
in [220]. By reduction to Hamiltonian path it was shown that enforcing arc-consistency
for FORCED SHIFT STRETCH is NP-hard [220].

Algorithm A first filtering algorithm was described in the original article of G. Pesant [316]. A second
filtering algorithm, based on dynamic programming, achieving arc-consistency is depicted
in [219, 220]. It also handles the fact that some values can be followed by only a given


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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subset of values. An other alternative achieving arc-consistency is to use the automaton
described in the Automaton slot.

Systems STRETCHPATH in Choco, STRETCH in JaCoP.

See also common keyword: CHANGE CONTINUITY, GROUP (timetabling con-
straint), GROUP SKIP ISOLATED ITEM (timetabling constraint,sequence),
MIN SIZE FULL ZERO STRETCH (sequence), PATTERN (sliding sequence con-
straint,timetabling constraint), SLIDING DISTRIBUTION (sliding sequence constraint),
STRETCH CIRCUIT (sliding sequence constraint,timetabling constraint).

generalisation: STRETCH PATH PARTITION (variable replaced by variable ∈
partition).

uses in its reformulation: STRETCH CIRCUIT.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

combinatorial object: sequence.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: dynamic programming, arc-consistency.

final graph structure: consecutive loops are connected.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
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For all items of VALUES:

Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)
LOOP 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) • variables1.var = VALUES.val
• variables2.var = VALUES.val

Graph property(ies) • NOT IN(MIN NCC, 1, VALUES.lmin− 1)
•MAX NCC≤ VALUES.lmax

Graph model Part (A) of Figure 5.776 shows the initial graphs associated with values 1, 2, 3 and 6 of the
Example slot. Part (B) of Figure 5.776 shows the corresponding final graphs associated
with values 1, 3 and 6. Since value 2 is not assigned to any variable of the VARIABLES

collection the final graph associated with value 2 is empty. The STRETCH PATH constraint
holds since:

• For value 1 we have one connected component for which the number of vertices 3 is
greater than or equal to 2 and less than or equal to 4,

• For value 2 we do not have any connected component,

• For value 3 we have one connected component for which the number of vertices 1 is
greater than or equal to 1 and less than or equal to 6,

• For value 6 we have two connected components that both contain two vertices: this
is greater than or equal to 2 and less than or equal to 2.

VARIABLES

1

2

3

4

5

6

7

8

1:MIN_NCC=3,MAX_NCC=3
3:MIN_NCC=1,MAX_NCC=1
6:MIN_NCC=2,MAX_NCC=2

VALUES:1 VALUES:3 VALUES:6

4:1

5:1

6:1

3:3 1:6

2:6

7:6

8:6

(A) (B)

Figure 5.776: Initial and final graph of the STRETCH PATH constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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During the presentation of this constraint at CP’2001 the following point was mentioned:
it could be useful to allow domain variables for the minimum and the maximum values
of a stretch. This could be achieved in the following way: the lmin (respectively lmax)
attribute would now be a domain variable that gives the size of the shortest (respectively
longest) stretch. Finally within the Graph property(ies) slot we would replace ≥ (and ≤)
by =.
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Automaton Let n and m respectively denote the quantities |VARIABLES| and |VALUES|. Furthermore,
let vali, lmini and lmaxi, (i ∈ [1,m]), respectively be shortcuts for the expressions
VALUES[i].val, VALUES[i].lmin and VALUES[i].lmax. Without loss of generality, we as-
sume that all the lmin attributes of the items of the VALUES collection are at least equal to
1. The following automaton A involving 1 + lmax1 + lmax2 + · · · + lmaxm states only
accepts solutions to the STRETCH PATH constraint. AutomatonA has the following states:

• an initial state s that is also an accepting state,

• ∀i ∈ [1,m], ∀j ∈ [1, lmini − 1], a non-accepting state si,j ,

• ∀i ∈ [1,m], ∀j ∈ [lmini, lmaxi], an accepting state si,j .

Transitions of A are defined in the following way:

• ∀i ∈ [1,m], a transition from s to si,1 labelled by condition Xl = vali,

• a transition from s to s labelled by condition Xl 6= val1 ∧Xl 6= val2 ∧ · · · ∧Xl 6=
valm,

• ∀i ∈ [1,m], ∀j ∈ [lmini, lmaxi], a transition from si,j to s labelled by condition
Xl 6= val1 ∧Xl 6= val2 ∧ · · · ∧Xl 6= valm,

• ∀i ∈ [1,m], ∀j ∈ [1, lmaxi−1], a transition from si,j to si,j+1 labelled by condition
Xl = vali,

• ∀i ∈ [1,m], ∀j ∈ [lmini, lmaxi], ∀k 6= i ∈ [1,m], a transition from si,j to sk,1
labelled by condition Xl = valk.

Figure 5.777 depicts the automaton associated with the STRETCH PATH constraint of the
Example slot. Transitions labels 0, 1, 2, 3 and 4 respectively correspond to the conditions
Xl 6= 1∧Xl 6= 2∧Xl 6= 3∧Xl 6= 6, Xl = 1, Xl = 2, Xl = 3, Xl = 6 (since values 1,
2, 3 and 6 respectively correspond to the values of the first, second, third and fourth item
of the VALUES collection). The STRETCH PATH constraint holds since the corresponding
sequence of visited states, s s41 s42 s31 s11 s12 s13 s41 s42, ends up in an accepting state
(i.e., accepting states are denoted graphically by a double circle in the figure).


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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Figure 5.777: Automaton of the STRETCH PATH constraint of the Example slot (states
related to a same stretch have the same colour)
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5.384 STRETCH PATH PARTITION

I B C J

DESCRIPTION LINKS

Origin Derived from STRETCH PATH.

Constraint STRETCH PATH PARTITION(VARIABLES, PARTLIMITS)

Synonym STRETCH.

Type VALUES : collection(val−int)

Arguments VARIABLES : collection(var−dvar)
PARTLIMITS : collection(p− VALUES, lmin−int, lmax−int)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES| > 0
required(VARIABLES, var)
|PARTLIMITS| > 0
required(PARTLIMITS, [p, lmin, lmax])
PARTLIMITS.lmin ≥ 0
PARTLIMITS.lmin ≤ PARTLIMITS.lmax
PARTLIMITS.lmin ≤ |VARIABLES|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.
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Purpose

In order to define the meaning of the STRETCH PATH PARTITION constraint, we first
introduce the notions of stretch and span. Let n be the number of variables of the col-
lection VARIABLES. Let Xi, . . . , Xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the
collection of variables VARIABLES such that the following conditions apply:

• All variables Xi, . . . , Xj take their values in the same partition of the
PARTLIMITS collection (i.e., ∃l ∈ [1, |PARTLIMITS|] such that ∀k ∈ [i, j] :
Xk ∈ PARTLIMITS[l].p),

• i = 1 or Xi−1 is different from Xi,

• j = n or Xj+1 is different from Xj .

We call such a set of variables a stretch. The span of the stretch is equal to j − i + 1,
while the value of the stretch is l. We now define the condition enforced by the
STRETCH PATH PARTITION constraint.

Each item PARTLIMITS[l] = (p − values, lmin − s, lmax − t) of the PARTLIMITS

collection enforces the minimum value s as well as the maximum value t for the span
of a stretch of value l over consecutive variables of the VARIABLES collection.

Note that:

1. Having an item PARTLIMITS[l] = (p − values, lmin − s, lmax − t) with s
strictly greater than 0 does not mean that values of values should be assigned to
one of the variables of collection VARIABLES. It rather means that, when a value
of values is used, all stretches of value l must have a span that belong to interval
[s, t].

2. A variable of the collection VARIABLES may be assigned a value that is not de-
fined in the attribute p of the PARTLIMITS collection.

Example

 〈1, 2, 0, 0, 2, 2, 2, 0〉 ,〈
p− 〈1, 2〉 lmin− 2 lmax− 4,
p− 〈3〉 lmin− 0 lmax− 2

〉 
The STRETCH PATH PARTITION constraint holds since the sequence 1 2 0 0 2 2 2 0
contains two stretches 1 2, and 2 2 2 respectively verifying the following conditions:

• The span of the first stretch 1 2 is located within interval [2, 4] (i.e., the limit associ-
ated with item PARTLIMITS[1]).

• The span of the second stretch 2 2 2 is located within interval [2, 4] (i.e., the limit
associated with item PARTLIMITS[1]).

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VARIABLES| > |PARTLIMITS|
|PARTLIMITS| > 1
sum(PARTLIMITS.lmin) ≤ |VARIABLES|
PARTLIMITS.lmax ≤ |VARIABLES|


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES can be reversed.

• Items of PARTLIMITS are permutable.

• Items of PARTLIMITS.p are permutable.

• All occurrences of two distinct tuples of values in VARIABLES.var or
PARLIMITS.p.val can be swapped; all occurrences of a tuple of values in
VARIABLES.var or PARLIMITS.p.val can be renamed to any unused tuple of val-
ues.

See also common keyword: PATTERN (sliding sequence constraint).

specialisation: STRETCH PATH (variable ∈ partition replaced by variable).

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint, partition.

combinatorial object: sequence.

constraint network structure: Berge-acyclic constraint network.

constraint type: timetabling constraint, sliding sequence constraint.

filtering: arc-consistency.

final graph structure: consecutive loops are connected.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.385 STRICT LEX2
I B C J DESCRIPTION LINKS

Origin [179]

Constraint STRICT LEX2(MATRIX)

Type VECTOR : collection(var−dvar)

Argument MATRIX : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
required(MATRIX, vec)
same size(MATRIX, vec)

Purpose
Given a matrix of domain variables, enforces that both adjacent rows, and adjacent
columns are lexicographically ordered (adjacent rows and adjacent columns cannot be
equal).

Example (〈vec− 〈2, 2, 3〉 , vec− 〈2, 3, 1〉〉)

The STRICT LEX2 constraint holds since:

• The first row 〈2, 2, 3〉 is lexicographically strictly less than the second row 〈2, 3, 1〉.

• The first column 〈2, 2〉 is lexicographically strictly less than the second column
〈2, 3〉.

• The second column 〈2, 3〉 is lexicographically strictly less than the third column
〈3, 1〉.

Typical |VECTOR| > 1
|MATRIX| > 1

Symmetry One and the same constant can be added to the var attribute of all items of MATRIX.vec.

Usage A symmetry-breaking constraint.

Reformulation The STRICT LEX2 constraint can be expressed as a conjunction of two LEX CHAIN LESS

constraints: A first LEX CHAIN LESS constraint on the MATRIX argument and a second
LEX CHAIN LESS constraint on the transpose of the MATRIX argument.

Systems STRICT LEX2 in MiniZinc.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Systems
References to the constraint in some concrete constraint programming systems.

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#strict_lex2
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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See also common keyword: ALLPERM, LEX LESSEQ (lexicographic order).

implies: LEX2, LEX CHAIN LESS.

part of system of constraints: LEX CHAIN LESS.

Keywords constraint type: predefined constraint, system of constraints, order constraint.

modelling: matrix, matrix model.

symmetry: symmetry, matrix symmetry, lexicographic order.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.386 STRICTLY DECREASING

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from STRICTLY INCREASING.

Constraint STRICTLY DECREASING(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are strictly decreasing.

Example (〈8, 4, 3, 1〉)

The STRICTLY DECREASING constraint holds since 8 > 4 > 3 > 1.

Typical |VARIABLES| > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 3 4 5 6 7 8 9 10 11

Number of solutions for STRICTLY DECREASING: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Systems INCREASINGNVALUE in Choco, REL in Gecode.

See also common keyword: INCREASING (order constraint).


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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comparison swapped: STRICTLY INCREASING.

implies: ALLDIFFERENT, DECREASING.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var > variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model Parts (A) and (B) of Figure 5.778 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:8

2:4

3:3

4:1

(A) (B)

Figure 5.778: Initial and final graph of the STRICTLY DECREASING constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.779 depicts the automaton associated with the STRICTLY DECREASING con-
straint. To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES

corresponds a 0-1 signature variable Si. The following signature constraint links VARi,
VARi+1 and Si: VARi ≤ VARi+1 ⇔ Si.

s VARi > VARi+1

Figure 5.779: Automaton of the STRICTLY DECREASING constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.780: Hypergraph of the reformulation corresponding to the automaton of the
STRICTLY DECREASING constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.387 STRICTLY INCREASING

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin KOALOG

Constraint STRICTLY INCREASING(VARIABLES)

Argument VARIABLES : collection(var−dvar)

Restriction required(VARIABLES, var)

Purpose The variables of the collection VARIABLES are strictly increasing.

Example (〈1, 3, 6, 8〉)

The STRICTLY INCREASING constraint holds since 1 < 3 < 6 < 8.

Typical |VARIABLES| > 2

Typical model nval(VARIABLES.var) > 2

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties Contractible wrt. VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 3 4 5 6 7 8 9 10 11

Number of solutions for STRICTLY INCREASING: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restriction
Additional condition refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Systems INCREASINGNVALUE in Choco, REL in Gecode.

Used in GOLOMB, INT VALUE PRECEDE CHAIN, MAX OCC OF TUPLES OF VALUES.


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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See also common keyword: DECREASING (order constraint).

comparison swapped: STRICTLY DECREASING.

implied by: GOLOMB.

implies: ALLDIFFERENT, INCREASING.

uses in its reformulation: ALLDIFFERENT.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: sliding cyclic(1) constraint network(1).

constraint type: decomposition, order constraint.

filtering: arc-consistency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES

Arc generator PATH 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var < variables2.var

Graph property(ies) NARC= |VARIABLES| − 1

Graph model Parts (A) and (B) of Figure 5.781 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

1

2

3

4

NARC=3

1:1

2:3

3:6

4:8

(A) (B)

Figure 5.781: Initial and final graph of the STRICTLY INCREASING constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.782 depicts the automaton associated with the STRICTLY INCREASING constraint.
To each pair of consecutive variables (VARi, VARi+1) of the collection VARIABLES corre-
sponds a 0-1 signature variable Si. The following signature constraint links VARi, VARi+1

and Si: VARi ≥ VARi+1 ⇔ Si.

s VARi < VARi+1

Figure 5.782: Automaton of the STRICTLY INCREASING constraint

Q0 = s Q1

S1

Q2

S2 S3

Qn−1 = s

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.783: Hypergraph of the reformulation corresponding to the automaton of the
STRICTLY INCREASING constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.388 STRONGLY CONNECTED

I B C J DESCRIPTION LINKS GRAPH

Origin [6]

Constraint STRONGLY CONNECTED(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Consider a digraph G described by the NODES collection. Select a subset of arcs of G so
that we have a single strongly connected component involving all vertices of G.

Example


〈 index− 1 succ− {2},

index− 2 succ− {3},
index− 3 succ− {2, 5},
index− 4 succ− {1},
index− 5 succ− {4}

〉 
The STRONGLY CONNECTED constraint holds since the NODES collection depicts a
graph involving a single strongly connected component (i.e., since we have a circuit
visiting successively the vertices 1, 2, 3, 5, and 4).

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Algorithm The sketch of a filtering algorithm for the STRONGLY CONNECTED constraint is given
in [151, page 89].

See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables).

implied by: CONNECTED.

related: CIRCUIT (one single strongly connected component in the final solution).

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: linear programming.

final graph structure: strongly connected component.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



STRONGLY CONNECTED 2323

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph property(ies) MIN NSCC= |NODES|

Graph model Part (A) of Figure 5.784 shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of the succ

attribute of a given vertex. Part (B) of Figure 5.784 gives the final graph associated with the
Example slot. The STRONGLY CONNECTED constraint holds since the final graph contains
a single strongly connected component mentioning every vertex of the initial graph.

NODES

1:1,{2,4}

2:2,{1,3,5}

4:4,{1,5}3:3,{2,5}

5:5,{2,3,4}

MIN_NSCC=5

MIN_NSCC

1:1,{2}

2:2,{3}

3:3,{2,5}

5:5,{4}

4:4,{1}

(A) (B)

Figure 5.784: Initial and final graph of the STRONGLY CONNECTED set constraint

Signature Since the maximum number of vertices of the final graph is equal to |NODES|we can rewrite
the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC to MIN NSCC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.389 SUBGRAPH ISOMORPHISM

I B C J DESCRIPTION LINKS

Origin [288]

Constraint SUBGRAPH ISOMORPHISM(NODES PATTERN, NODES TARGET, FUNCTION)

Arguments NODES PATTERN : collection(index−int, succ−sint)
NODES TARGET : collection(index−int, succ−svar)
FUNCTION : collection(image−dvar)

Restrictions required(NODES PATTERN, [index, succ])
NODES PATTERN.index ≥ 1
NODES PATTERN.index ≤ |NODES PATTERN|
distinct(NODES PATTERN, index)
NODES PATTERN.succ ≥ 1
NODES PATTERN.succ ≤ |NODES PATTERN|
required(NODES TARGET, [index, succ])
NODES TARGET.index ≥ 1
NODES TARGET.index ≤ |NODES TARGET|
distinct(NODES TARGET, index)
NODES TARGET.succ ≥ 1
NODES TARGET.succ ≤ |NODES TARGET|
required(FUNCTION, [image])
FUNCTION.image ≥ 1
FUNCTION.image ≤ |NODES TARGET|
distinct(FUNCTION, image)
|FUNCTION| = |NODES PATTERN|

Purpose

Given two directed graphs PATTERN and TARGET enforce a one to one correspondence,
defined by the function FUNCTION, between the vertices of the graph PATTERN and the
vertices of an induced subgraph of TARGET so that, if there is an arc from u to v in the
graph PATTERN, then there is also an arc from the image of u to the image of v in the
induced subgraph of TARGET. The vertices of both graphs are respectively defined by
the two collections of vertices NODES PATTERN and NODES TARGET. Within collection
NODES PATTERN the set of successors of each node is fixed, while this is not the case
for the collection NODES TARGET. This stems from the fact that the TARGET graph is not
fixed (i.e., the lower and upper bounds of the target graph are specified when we post the
SUBGRAPH ISOMORPHISM constraint, while the induced subgraph of a solution to the
SUBGRAPH ISOMORPHISM constraint corresponds to a graph for which the upper and
lower bounds are identical).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example



〈 index− 1 succ− {2, 4},
index− 2 succ− {1, 3, 4},
index− 3 succ− ∅,
index− 4 succ− ∅

〉
,

〈 index− 1 succ− ∅,
index− 2 succ− {3, 4, 5},
index− 3 succ− ∅,
index− 4 succ− {2, 5},
index− 5 succ− ∅

〉
,

〈4, 2, 3, 5〉


Figure 5.785 gives the pattern (see Part (A)) and target graph (see Part (B)) of the
Example slot as well as the one to one correspondence (see Part (C)) between the pattern
graph and the induced subgraph of the target graph. The SUBGRAPH ISOMORPHISM

constraint since:

• To the arc from vertex 1 to vertex 4 in the pattern graph corresponds the arc from
vertex 4 to 5 in the induced subgraph of the target graph.

• To the arc from vertex 1 to vertex 2 in the pattern graph corresponds the arc from
vertex 4 to 2 in the induced subgraph of the target graph.

• To the arc from vertex 2 to vertex 1 in the pattern graph corresponds the arc from
vertex 2 to 4 in the induced subgraph of the target graph.

• To the arc from vertex 2 to vertex 4 in the pattern graph corresponds the arc from
vertex 2 to 5 in the induced subgraph of the target graph.

• To the arc from vertex 2 to vertex 3 in the pattern graph corresponds the arc from
vertex 2 to 3 in the induced subgraph of the target graph.

Typical |NODES PATTERN| > 1
|NODES TARGET| > 1

Symmetries • Items of NODES PATTERN are permutable.

• Items of NODES TARGET are permutable.

Usage Within the context of constraint programming the constraint was used for finding symme-
tries [336, 338, 337].

Algorithm [423, 352, 265, 456].

See also related: GRAPH ISOMORPHISM.

Keywords constraint arguments: constraint involving set variables.

constraint type: predefined constraint, graph constraint.

symmetry: symmetry.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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1 2

34

¬ index− 1 succ− {2,4}
 index− 2 succ− {1,3,4}
® index− 3 succ− ∅
¯ index− 4 succ− ∅

NODES PATTERN

1 2 3

45

¬ index− 1 succ− ∅
 index− 2 succ− {1,3, 4, 5}
® index− 3 succ− ∅
¯ index− 4 succ− {1, 2, 5}
° index− 5 succ− {2, 4}

NODES TARGET

(A) (B)

¬ image− 4
 image− 2
® image− 3
¯ image− 5

FUNCTION

1 2

34

1 2 3

45



¬

®

¯

¬ index− 1 succ− {2,4}
 index− 2 succ− {1,3,4}
® index− 3 succ− ∅
¯ index− 4 succ− ∅

NODES PATTERN

¬ index− 1 succ− ∅
 index− 2 succ− {3,4,5}
® index− 3 succ− ∅
¯ index− 4 succ− {2,5}
° index− 5 succ− ∅

NODES TARGET

(C)

Figure 5.785: Illustration of the Example slot: (A) The pattern graph, (B) a possible
initial target graph – plain arcs must belong to the induced subgraph, while dotted arcs
may or may not belong to the induced subgraph – and (C) the correspondence, denoted
by thick dashed arcs, between the vertices of the pattern graph and the vertices of the
induced subgraph of the target graph. Within a set variable a bold value (respectively
a plain value) represents a value that for sure belong (respectively that may belong) to
the set.
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5.390 SUM

I B C J DESCRIPTION LINKS GRAPH

Origin [455].

Constraint sum(INDEX, SETS, CONSTANTS, S)

Synonym SUM PRED.

Arguments INDEX : dvar

SETS : collection(ind−int, set−sint)
CONSTANTS : collection(cst−int)
S : dvar

Restrictions |SETS| ≥ 1
required(SETS, [ind, set])
distinct(SETS, ind)
|CONSTANTS| ≥ 1
required(CONSTANTS, cst)

Purpose S is equal to the sum of the constants of CONSTANTS corresponding to the INDEXth set
of the SETS collection.

Example

 8,

〈 ind− 8 set− {2, 3},
ind− 1 set− {3},
ind− 3 set− {1, 4, 5},
ind− 6 set− {2, 4}

〉
,

〈4, 9, 1, 3, 1〉 , 10


The SUM constraint holds since its last argument S = 10 is equal to the sum of the
2th and 3th items of the collection 〈4, 9, 1, 3, 1〉. As illustrated by Figure 5.786, this
stems from the fact that its first argument INDEX = 8 corresponds to the value of the
ind attribute of the first item of the SETS collection. Consequently the corresponding set
{2, 3} is used for summing the 2th and 3th items of the CONSTANTS collection.

Typical |SETS| > 1
|CONSTANTS| > |SETS|
range(CONSTANTS.cst) > 1

Symmetry Items of SETS are permutable.

Arg. properties Functional dependency: S determined by INDEX, SETS and CONSTANTS.

Usage In his article introducing the SUM constraint, Tallys H. Yunes mentions the Sequence De-
pendent Cumulative Cost Problem as the subproblem that originally motivates this con-
straint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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8 ind− 8, set− {2, 3}

ind− 1, set− {3}

ind− 3, set− {1, 4, 5}

ind− 6, set− {2, 4}

cst− 4

cst− 3

cst− 1

cst− 9

cst− 1

10
1

2

3

4

1

2

3

4

5

+

INDEX SETS CONSTANTS S

Figure 5.786: Illustration of the correspondence between the arguments of the
SUM(INDEX, SETS, CONSTANTS, S) constraint in the context of the Example slot (from
right to left, S = 10 is equal to the sum of the constants 9 and 1 corresponding to the
indices 2 and 3 of the set for which the ind attribute is equal to INDEX = 8)

Remark The SUM constraint is called SUM PRED in MiniZinc (http://www.minizinc.org/).

Algorithm The article [455] gives the convex hull relaxation of the SUM constraint.

Systems SUM PRED in MiniZinc.

See also common keyword: ELEMENT (data constraint), SUM CTR, SUM SET (sum).

used in graph description: IN SET.

Keywords characteristic of a constraint: convex hull relaxation, sum.

constraint type: data constraint.

filtering: linear programming.

modelling: functional dependency.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.minizinc.org/
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#sum_pred
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html
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Arc input(s) SETS CONSTANTS

Arc generator PRODUCT 7→collection(sets, constants)

Arc arity 2

Arc constraint(s) • INDEX = sets.ind
• IN SET(constants.key, sets.set)

Graph property(ies) SUM(CONSTANTS, cst) = S

Graph model According to the value assigned to INDEX the arc constraint selects for the final graph:

• The INDEXth item of the SETS collection,

• The items of the CONSTANTS collection for which the key correspond to the indices
of the INDEXth set of the SETS collection.

Finally, since we use the SUM graph property on the cst attribute of the CONSTANTS

collection, the last argument S of the SUM constraint is equal to the sum of the constants
associated with the vertices of the final graph.

Parts (A) and (B) of Figure 5.787 respectively show the initial and final graph associated
with the Example slot. Since we use the SUM graph property we show the vertices from
which we compute S in a box.

SETS

CONSTANTS

1

12 345

234

SUM=9+1=10

1:8,{2,3}

2:9 3:1

(A) (B)

Figure 5.787: Initial and final graph of the SUM constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.391 SUM CTR

I B C J DESCRIPTION LINKS GRAPH

Origin Arithmetic constraint.

Constraint SUM CTR(VARIABLES, CTR, VAR)

Synonyms CONSTANT SUM, SUM, LINEAR, SCALAR PRODUCT.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Constraint the sum of a set of domain variables. More precisely, let S denote the sum of
the variables of the VARIABLES collection (when the collection is empty the correspond-
ing sum is equal to 0). Enforce the following constraint to hold: S CTR VAR.

Example (〈1, 1, 4〉 ,=, 6)

The SUM CTR constraint holds since the condition 1 + 1 + 4 = 6 is satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤] and
minval(VARIABLES.var) ≥ 0.

• Contractible wrt. VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0.

• Extensible wrt. VARIABLES when CTR ∈ [≥, >] and minval(VARIABLES.var) ≥
0.

• Extensible wrt. VARIABLES when CTR ∈ [<,≤] and maxval(VARIABLES.var) ≤
0.

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

Remark J.-C. Régin et al. show in [365, 366] how to handle a SUM CTR constraint subject of a set
of difference constraints.

When CTR corresponds to = this constraint is referenced under the names
CONSTANT SUM in KOALOG (http://www.koalog.com/php/index.php) and SUM

in JaCoP (http://www.jacop.eu/).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.jacop.eu/
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Systems EQUATION in Choco, LINEAR in Gecode, SCALAR PRODUCT in SICStus.

Used in BIN PACKING, CUMULATIVE, CUMULATIVE CONVEX,
CUMULATIVE WITH LEVEL OF PRIORITY, CUMULATIVES, INDEXED SUM,
INTERVAL AND SUM, RELAXED SLIDING SUM, SLIDING SUM,
SLIDING TIME WINDOW SUM.

See also assignment dimension added: INTERVAL AND SUM (assignment dimension correspond-
ing to intervals is added).

common keyword: ARITH SLIDING (arithmetic constraint), INCREASING SUM (sum),
PRODUCT CTR, RANGE CTR (arithmetic constraint), SUM, SUM CUBES CTR,
SUM POWERS4 CTR, SUM POWERS5 CTR, SUM POWERS6 CTR (sum),
SUM SET (arithmetic constraint), SUM SQUARES CTR (sum).

generalisation: SCALAR PRODUCT (arithmetic constraint where all coefficients are not
necessarly equal to 1).

implied by: ARITH SLIDING.

system of constraints: SLIDING SUM.

Keywords characteristic of a constraint: sum.

constraint type: arithmetic constraint.

heuristics: regret based heuristics, regret based heuristics in matrix problems.

Cond. implications • SUM CTR(VARIABLES, CTR, VAR)
with VARIABLES.var ≥ 0
and VARIABLES.var ≤ 1

implies SUM SQUARES CTR(VARIABLES, CTR, VAR)
when VARIABLES.var ≥ 0
and VARIABLES.var ≤ 1.

• SUM CTR(VARIABLES, CTR, VAR)
with VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1

implies SUM CUBES CTR(VARIABLES, CTR, VAR)
when VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1.

• SUM CTR(VARIABLES, CTR, VAR)
with VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1

implies SUM POWERS5 CTR(VARIABLES, CTR, VAR)
when VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1.

• SUM CTR(VARIABLES, CTR, VAR)
with CTR ∈ [=]
and INCREASING(VARIABLES)

implies INCREASING SUM(VARIABLES, VAR).


Systems
References to the constraint in some concrete constraint programming systems.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://www.sics.se/sicstus/
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Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) TRUE

Graph property(ies) SUM(VARIABLES, var) CTR VAR

Graph model Since we want to keep all the vertices of the initial graph we use the SELF arc generator
together with the TRUE arc constraint. This predefined arc constraint always holds.

Parts (A) and (B) of Figure 5.788 respectively show the initial and final graph associated
with the Example slot. Since we use the TRUE arc constraint both graphs are identical.

VARIABLES

123

SUM(VARIABLES,var)=1+1+4=6

1:1 2:1 3:4

(A) (B)

Figure 5.788: Initial and final graph of the SUM CTR constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.392 SUM CUBES CTR

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint SUM CUBES CTR(VARIABLES, CTR, VAR)

Synonyms SUM CUBES, SUM OF CUBES, SUM OF CUBES CTR.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the cubes of a set of domain variables. More precisely, let S denote
the sum of the cubes of the variables of the VARIABLES collection (when the collection
is empty the corresponding sum is equal to 0). Enforce the following constraint to hold:
S CTR VAR.

Example (〈1, 2, 2〉 ,=, 17)

The SUM CUBES CTR constraint holds since the condition 13 + 23 + 23 = 17 is
satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤] and
minval(VARIABLES.var) ≥ 0.

• Contractible wrt. VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0.

• Extensible wrt. VARIABLES when CTR ∈ [≥, >] and minval(VARIABLES.var) ≥
0.

• Extensible wrt. VARIABLES when CTR ∈ [<,≤] and maxval(VARIABLES.var) ≤
0.

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword: SUM CTR, SUM POWERS4 CTR, SUM POWERS5 CTR,
SUM POWERS6 CTR, SUM SQUARES CTR (sum).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.


Keywords
Related keywords grouped by meta-keywords.
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5.393 SUM FREE

I B C J DESCRIPTION LINKS

Origin [439]

Constraint SUM FREE(S)

Argument S : svar

Purpose Impose for all pairs of values (not necessarily distinct) i, j of the set S the fact that the
sum i+ j is not an element of S.

Example ({1, 3, 5, 9})

The SUM FREE({1, 3, 5, 9}) constraint holds since:

• 1 + 1 = 2 /∈ S, 1 + 3 = 4 /∈ S, 1 + 5 = 6 /∈ S, 1 + 9 = 10 /∈ S.

• 3 + 3 = 6 /∈ S, 3 + 5 = 8 /∈ S, 3 + 9 = 12 /∈ S.

• 5 + 5 = 10 /∈ S, 5 + 9 = 14 /∈ S.

Usage The SUM FREE constraint was introduced by W.-J. van Hoeve and A. Sabharwal in order
to model in a concise way Schur problems.

• On one hand, the first model has n domain variables xi (1 ≤ i ≤ n), where xi
corresponds to the subset in which element i occurs. The constraints xi = s ∧ xj =
s⇒ xi+j 6= s (s ∈ [1, k], i, j ∈ [1, n], i ≤ j, i+ j ≤ n) enforce that the k subsets
are sum-free. We have O(k · n2) such constraints.

• On the other hand, the model proposed by W.-J. van Hoeve and A. Sabharwal repre-
sents in an explicit way with a set variable Si (1 ≤ i ≤ n) each subset of the partition
we are looking for. Now, to express the fact that these k subsets are sum-free they
simply use k SUM FREE constraints of the form SUM FREE(Si).

While the two models have the same behaviour when we focus on the number of backtracks
the second model is much more efficient from a memory point of view.

Algorithm W.-J. van Hoeve and A. Sabharwal have proposed an algorithm that enforces bound-
consistency for the SUM FREE constraint in [439].

Keywords constraint arguments: unary constraint, constraint involving set variables.

constraint type: predefined constraint.

filtering: bound-consistency.

problems: Schur number.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Keywords
Related keywords grouped by meta-keywords.
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5.394 SUM OF INCREMENTS

I B C J DESCRIPTION LINKS

Origin [95]

Constraint SUM OF INCREMENTS(VARIABLES, LIMIT)

Synonyms INCREMENTS SUM, INCR SUM, SUM INCR, SUM INCREMENTS.

Arguments VARIABLES : collection(var−dvar)
LIMIT : dvar

Restrictions required(VARIABLES, var)
VARIABLES.var ≥ 0
LIMIT ≥ 0

Purpose

Given a collection of variables VARIABLES which can only be assigned non neg-
ative values, and a variable LIMIT, enforce the condition VARIABLES[1].var +∑|VARIABLES|
i=2 max(VARIABLES[i].var − VARIABLES[i − 1].var, 0) ≤ LIMIT.

VARIABLES[1].var stands from the fact that we assume an additional implicit 0 before
the first variable (i.e., VARIABLES[1].var = max(VARIABLES[1].var− 0, 0)).

Example (〈4, 4, 3, 4, 6〉 , 7)

The SUM OF INCREMENTS constraint holds since we have that 4 + max(4 − 4, 0) +
max(3− 4, 0) + max(4− 3, 0) + max(6− 4, 0) ≤ 7.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1
maxval(VARIABLES.var) > 0
LIMIT > 0
LIMIT ≤ |VARIABLES|∗range(VARIABLES.var)/2

Symmetries • One and the same constant can be added to VARIABLES.var and to LIMIT.

• Items of VARIABLES can be reversed.

• LIMIT can be increased.

Arg. properties • Prefix-contractible wrt. VARIABLES.

• Suffix-contractible wrt. VARIABLES.

Usage The SUM OF INCREMENTS was initially motivated by the problem of decomposing a ma-
trix of non-negative integers into a positive linear combination of matrices consisting of
only zeros and ones, where the ones occur consecutively in each row.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.
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Algorithm A O(|VARIABLES|) bound-consistency filtering algorithm for the SUM OF INCREMENTS

constraint is described in [95].

Reformulation The following reformulations are provided in [95]. Assuming VARIABLES[0].var is defined
as 0 (i.e., a zero is added before the first variable of the VARIABLES collection) we have:

•
∑|VARIABLES|
i=1 Si ≤ LIMIT with Di = VARIABLES[i].var − VARIABLES[i − 1].var

and Si = max(Di, 0) (1 ≤ i ≤ |VARIABLES|).

•
∑|VARIABLES|
i=1 Si ≤ LIMIT with VARIABLES[i].var − VARIABLES[i − 1].var ≤ Si

and Si ∈ [0, LIMIT] (1 ≤ i ≤ |VARIABLES|).

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 14 145 2875 51415 1210104 28573741 801944469

Number of solutions for SUM OF INCREMENTS: domains 0..n

2 3 4 5 6 7 8
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Solution density for SUM OF INCREMENTS


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 14 145 2875 51415 1210104 28573741 801944469

Parameter
value

0 1 1 1 1 1 1 1
1 4 7 11 16 22 29 37
2 9 23 51 101 183 309 493
3 - 54 156 396 904 1891 3679
4 - 60 375 1167 3235 8135 18835
5 - - 485 2848 9318 27483 74143
6 - - 563 4263 22981 77947 240751
7 - - 608 5568 38836 193742 675244
8 - - 625 6616 56703 359880 1688427
9 - - - 7314 74658 578511 3369015

10 - - - 7650 90639 837441 5865915
11 - - - 7720 102875 1115687 9220695
12 - - - 7755 110425 1386029 13354545
13 - - - - 113827 1619993 18051195
14 - - - - 115857 1795694 22965651
15 - - - - 116942 1908968 27670800
16 - - - - 117437 1988222 31755573
17 - - - - 117612 2039616 34989993
18 - - - - 117649 2069933 37574073
19 - - - - - 2085763 39526569
20 - - - - - 2092817 40912205
21 - - - - - 2095436 41827847
22 - - - - - 2096360 42386387
23 - - - - - 2096822 42700112
24 - - - - - 2097032 42865683
25 - - - - - - 42953199
26 - - - - - - 43002171
27 - - - - - - 43027581
28 - - - - - - 43039551
29 - - - - - - 43044507
30 - - - - - - 43046215
31 - - - - - - 43046656
32 - - - - - - 43046721

Solution count for SUM OF INCREMENTS: domains 0..n
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Keywords characteristic of a constraint: difference, sum.

constraint type: predefined constraint.

filtering: bound-consistency.


Keywords
Related keywords grouped by meta-keywords.
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5.395 SUM OF WEIGHTS OF DISTINCT VALUES

I B C J DESCRIPTION LINKS GRAPH

Origin [46]

Constraint SUM OF WEIGHTS OF DISTINCT VALUES(VARIABLES, VALUES, COST)

Synonym SWDV.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, weight−int)
COST : dvar

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, weight])
VALUES.weight ≥ 0
distinct(VALUES, val)
in attr(VARIABLES, var, VALUES, val)
COST ≥ 0

Purpose
All variables of the VARIABLES collection take a value in the VALUES collection. In
addition COST is the sum of the weight attributes associated with the distinct values
taken by the variables of VARIABLES.

Example


〈1, 6, 1〉 ,〈

val− 1 weight− 5,
val− 2 weight− 3,
val− 6 weight− 7

〉
, 12


The SUM OF WEIGHTS OF DISTINCT VALUES constraint holds since its last argu-
ment COST = 12 is equal to the sum 5 + 7 of the weights of the values 1 and 6 that occur
within the 〈1, 6, 1〉 collection.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
range(VALUES.weight) > 1
maxval(VALUES.weight) > 0

Symmetries • Items of VARIABLES are permutable.

• All occurrences of two distinct values of VARIABLES.var can be swapped.

• Items of VALUES are permutable.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val can be
swapped; all occurrences of a value in VARIABLES.var or VALUES.val can be
renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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Arg. properties Functional dependency: COST determined by VARIABLES and VALUES.

See also attached to cost variant: NVALUE (all values have a weight of 1).

common keyword: GLOBAL CARDINALITY WITH COSTS,
MINIMUM WEIGHT ALLDIFFERENT, WEIGHTED PARTIAL ALLDIFF (weighted as-
signment).

Keywords application area: assignment.

constraint arguments: pure functional dependency.

constraint type: relaxation.

filtering: cost filtering constraint.

modelling: functional dependency.

problems: domination, weighted assignment, facilities location problem.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) variables.var = values.val

Graph property(ies) • NSOURCE= |VARIABLES|
• SUM(VALUES, weight) = COST

Signature Since we use the PRODUCT arc generator, the number of sources of the final graph
cannot exceed the number of sources of the initial graph. Since the initial graph contains
|VARIABLES| sources, this number is an upper bound of the number of sources of the final
graph. Therefore we can rewrite NSOURCE = |VARIABLES| to NSOURCE ≥
|VARIABLES| and simplify NSOURCE to NSOURCE.

Parts (A) and (B) of Figure 5.789 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE graph property, the source vertices
of the final graph are shown in a double circle. Since we also use the SUM graph property
we show the vertices from which we compute the total cost in a box.

VARIABLES

VALUES

1

1 23

2 3

NSOURCE=3
SUM(VALUES,weight)=5+7=12

1:1

1:1,5

2:6

3:6,7

3:1

(A) (B)

Figure 5.789: Initial and final graph of the SUM OF WEIGHTS OF DISTINCT VALUES
constraint


Signature
Provides some explanations about the graph based signature of the constraint.
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5.396 SUM POWERS4 CTR

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint SUM POWERS4 CTR(VARIABLES, CTR, VAR)

Synonyms SUM POWERS4, SUM OF POWERS4, SUM OF POWERS4 CTR.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the power of four of a set of domain variables. More precisely, let S
denote the sum of the power of four of the variables of the VARIABLES collection (when
the collection is empty the corresponding sum is equal to 0). Enforce the following
constraint to hold: S CTR VAR.

Example (〈1, 1, 2〉 ,=, 18)

The SUM POWERS4 CTR constraint holds since the condition 14 + 14 + 24 = 18
is satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤].

• Extensible wrt. VARIABLES when CTR ∈ [≥, >].

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword: SUM CTR, SUM CUBES CTR, SUM POWERS5 CTR,
SUM POWERS6 CTR, SUM SQUARES CTR (sum).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.397 SUM POWERS5 CTR

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint SUM POWERS5 CTR(VARIABLES, CTR, VAR)

Synonyms SUM POWERS5, SUM OF POWERS5, SUM OF POWERS5 CTR.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the power of five of a set of domain variables. More precisely, let S
denote the sum of the power of five of the variables of the VARIABLES collection (when
the collection is empty the corresponding sum is equal to 0). Enforce the following
constraint to hold: S CTR VAR.

Example (〈1, 1, 2〉 ,=, 34)

The SUM POWERS5 CTR constraint holds since the condition 15 + 15 + 25 = 34
is satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤] and
minval(VARIABLES.var) ≥ 0.

• Contractible wrt. VARIABLES when CTR ∈ [≥, >] and
maxval(VARIABLES.var) ≤ 0.

• Extensible wrt. VARIABLES when CTR ∈ [≥, >] and minval(VARIABLES.var) ≥
0.

• Extensible wrt. VARIABLES when CTR ∈ [<,≤] and maxval(VARIABLES.var) ≤
0.

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword: SUM CTR, SUM CUBES CTR, SUM POWERS4 CTR,
SUM POWERS6 CTR, SUM SQUARES CTR (sum).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.
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Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.


Keywords
Related keywords grouped by meta-keywords.
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5.398 SUM POWERS6 CTR

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint SUM POWERS6 CTR(VARIABLES, CTR, VAR)

Synonyms SUM POWERS6, SUM OF POWERS6, SUM OF POWERS6 CTR.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the power of six of a set of domain variables. More precisely, let S
denote the sum of the power of six of the variables of the VARIABLES collection (when
the collection is empty the corresponding sum is equal to 0). Enforce the following
constraint to hold: S CTR VAR.

Example (〈1, 1, 2〉 ,=, 66)

The SUM POWERS6 CTR constraint holds since the condition 16 + 16 + 26 = 66
is satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤].

• Extensible wrt. VARIABLES when CTR ∈ [≥, >].

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword: SUM CTR, SUM CUBES CTR, SUM POWERS4 CTR,
SUM POWERS5 CTR, SUM SQUARES CTR (sum).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.399 SUM SET

I B C J DESCRIPTION LINKS GRAPH

Origin H. Cambazard

Constraint SUM SET(SV, VALUES, CTR, VAR)

Arguments SV : svar

VALUES : collection(val−int, coef−int)
CTR : atom

VAR : dvar

Restrictions required(VALUES, [val, coef])
distinct(VALUES, val)
VALUES.coef ≥ 0
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose
Let SUM denote the sum of the coef attributes of the VALUES collection for which the
corresponding values val occur in the set SV. Enforce the following constraint to hold:
SUM CTR VAR.

Example


{2, 3, 6},〈 val− 2 coef− 7,

val− 9 coef− 1,
val− 5 coef− 7,
val− 6 coef− 2

〉
,=, 9


The SUM SET constraint holds since the sum of the coef attributes 7 + 2 for which
the corresponding val attribute belongs to the first argument SV = {2, 3, 6} is equal
(i.e., since CTR is set to =) to its last argument VAR = 9.

Typical |VALUES| > 1
VALUES.coef > 0
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VALUES are permutable.

Systems WEIGHTS in Gecode.

See also common keyword: SUM, SUM CTR (sum).

Keywords characteristic of a constraint: sum.

constraint arguments: binary constraint, constraint involving set variables.

constraint type: arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
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Arc input(s) VALUES

Arc generator SELF 7→collection(values)

Arc arity 1

Arc constraint(s) IN SET(values.val, SV)

Graph property(ies) SUM(VALUES, coef) CTR VAR

Graph model Parts (A) and (B) of Figure 5.790 respectively show the initial and final graph associated
with the Example slot.

VALUES

1234

SUM=7+2=9

1:2,7 4:6,2

(A) (B)

Figure 5.790: Initial and final graph of the SUM SET constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



2358 SUM SQUARES CTR

5.400 SUM SQUARES CTR

I B C J DESCRIPTION LINKS

Origin Arithmetic constraint.

Constraint SUM SQUARES CTR(VARIABLES, CTR, VAR)

Synonyms SUM SQUARES, SUM OF SQUARES, SUM OF SQUARES CTR.

Arguments VARIABLES : collection(var−dvar)
CTR : atom

VAR : dvar

Restrictions required(VARIABLES, var)
CTR ∈ [=, 6=, <,≥, >,≤]

Purpose

Constraint the sum of the squares of a set of domain variables. More precisely, let
S denote the sum of the squares of the variables of the VARIABLES collection (when
the collection is empty the corresponding sum is equal to 0). Enforce the following
constraint to hold: S CTR VAR.

Example (〈1, 1, 4〉 ,=, 18)

The SUM SQUARES CTR constraint holds since the condition 12 + 12 + 42 = 18
is satisfied.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
CTR ∈ [=, <,≥, >,≤]

Symmetry Items of VARIABLES are permutable.

Arg. properties • Contractible wrt. VARIABLES when CTR ∈ [<,≤].

• Extensible wrt. VARIABLES when CTR ∈ [≥, >].

• Aggregate: VARIABLES(union), CTR(id), VAR(+).

See also common keyword: SUM CTR, SUM CUBES CTR, SUM POWERS4 CTR,
SUM POWERS5 CTR, SUM POWERS6 CTR (sum).

Keywords characteristic of a constraint: sum.

constraint type: predefined constraint, arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Cond. implications • SUM SQUARES CTR(VARIABLES, CTR, VAR)
with VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1

implies SUM POWERS4 CTR(VARIABLES, CTR, VAR)
when VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1.

• SUM SQUARES CTR(VARIABLES, CTR, VAR)
with VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1

implies SUM POWERS6 CTR(VARIABLES, CTR, VAR)
when VARIABLES.var ≥ −1
and VARIABLES.var ≤ 1.


Cond. implications
Conditional implications.
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5.401 SYMMETRIC

I B C J DESCRIPTION LINKS GRAPH

Origin [151]

Constraint SYMMETRIC(NODES)

Argument NODES : collection(index−int, succ−svar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose
Consider a digraph G described by the NODES collection. Select a subset of arcs of G so
that the corresponding graph is symmetric (i.e., if there is an arc from i to j, there is also
an arc from j to i).

Example


〈 index− 1 succ− {1, 2, 3},

index− 2 succ− {1, 3},
index− 3 succ− {1, 2},
index− 4 succ− {5, 6},
index− 5 succ− {4},
index− 6 succ− {4}

〉


The SYMMETRIC constraint holds since the NODES collection depicts a symmetric
graph.

1 2

3 4

5

6

Typical |NODES| > 2

Symmetry Items of NODES are permutable.

Algorithm The filtering algorithm for the SYMMETRIC constraint is given in [151, page 87]. It removes
(respectively imposes) the arcs (i, j) for which the arc (j, i) is not present (respectively is
present). It has an overall complexity of O(n+m) where n and m respectively denote the
number of vertices and the number of arcs of the initial graph.

See also common keyword: CONNECTED (symmetric).

used in graph description: IN SET.

Keywords constraint arguments: constraint involving set variables.

constraint type: graph constraint.

final graph structure: symmetric.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph class SYMMETRIC

Graph model Part (A) of Figure 5.791 shows the initial graph from which we start. It is derived from
the set associated with each vertex. Each set describes the potential values of the succ

attribute of a given vertex. Part (B) of Figure 5.791 gives the final graph associated with
the Example slot.

NODES

1:1,{1,2,3,4}

2:2,{1,3}

3:3,{1,2}

4:4,{1,5,6}

5:5,{4,6}

6:6,{4}

1:1,{1,2,3}

2:2,{1,3}

3:3,{1,2}

4:4,{5,6}

5:5,{4} 6:6,{4}

(A) (B)

Figure 5.791: Initial and final graph of the SYMMETRIC set constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.402 SYMMETRIC ALLDIFFERENT

I B C J DESCRIPTION LINKS GRAPH

Origin [356]

Constraint SYMMETRIC ALLDIFFERENT(NODES)

Synonyms SYMMETRIC ALLDIFF, SYMMETRIC ALLDISTINCT, SYMM ALLDIFFERENT,
SYMM ALLDIFF, SYMM ALLDISTINCT, ONE FACTOR, TWO CYCLE.

Argument NODES : collection(index−int, succ−dvar)

Restrictions |NODES|mod 2 = 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

All variables associated with the succ attribute of the NODES collection should be pair-
wise distinct. In addition enforce the following condition: if variable NODES[i].succ
takes value j with j 6= i then variable NODES[j].succ takes value i. This can be inter-
preted as a graph-covering problem where one has to cover a digraph G with circuits of
length two in such a way that each vertex of G belongs to a single circuit.

Example


〈 index− 1 succ− 3,

index− 2 succ− 4,
index− 3 succ− 1,
index− 4 succ− 2

〉 
The SYMMETRIC ALLDIFFERENT constraint holds since:

• NODES[1].succ = 3⇔ NODES[3].succ = 1,

• NODES[2].succ = 4⇔ NODES[4].succ = 2.

1 2

3 4

All solutions Figure 5.792 gives all solutions to the following non ground instance of the
SYMMETRIC ALLDIFFERENT constraint: S1 ∈ [1, 4], S2 ∈ [1, 3], S3 ∈ [1, 4], S4 ∈ [1, 3],
SYMMETRIC ALLDIFFERENT(〈1 S1, 2 S2, 3 S3, 4 S4〉).

Typical |NODES| ≥ 4

Symmetry Items of NODES are permutable.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.
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¬ (〈21,12,43,34〉)
 (〈41,32,23,14〉)

1 2

34

¬
1 2

34



Figure 5.792: All solutions corresponding to the non ground example of the
SYMMETRIC ALLDIFFERENT constraint of the All solutions slot; in the left-hand side
the index attributes are displayed as indices of the succ attribute, while in the right-
hand side they are directly displayed within each node.

Usage As it was reported in [356, page 420], this constraint is useful to express matches between
persons or between teams. The SYMMETRIC ALLDIFFERENTconstraint also appears im-
plicitly in the cycle cover problem and corresponds to the four conditions given in section
1 Modeling the Cycle Cover Problem of [319].

Remark This constraint is referenced under the name ONE FACTOR in [222] as well as in [420].
From a modelling point of view this constraint can be expressed with the CYCLE con-
straint [47] where one imposes the additional condition that each cycle has only two nodes.

Algorithm A filtering algorithm for the SYMMETRIC ALLDIFFERENT constraint was proposed by
J.-C. Régin in [356]. It achieves arc-consistency and its running time is dominated by the
complexity of finding all edges that do not belong to any maximum cardinality matching
in an undirected n-vertex, m-edge graph, i.e., O(m · n).

For the soft case of the SYMMETRIC ALLDIFFERENT constraint where the cost is the min-
imum number of variables to assign differently in order to get back to a solution, a filtering
algorithm achieving arc-consistency is described in [140, 139]. It has a complexity of
O(p · m), where p is the number of maximal extreme sets in the value graph associated
with the constraint and m is the number of edges. It iterates over extreme sets and not over
vertices as in the algorithm due to J.-C. Régin.

Reformulation The SYMMETRIC ALLDIFFERENT(NODES) constraint can be expressed in term of a
conjunction of |NODES|2 reified constraints of the form NODES[i].succ = j ⇔
NODES[j].succ = i (1 ≤ i, j ≤ |NODES|). The SYMMETRIC ALLDIFFERENT constraint
can also be reformulated as an INVERSE constraint as shown below:

SYMMETRIC ALLDIFFERENT


〈 index− 1 succ− s1,

index− 2 succ− s2,
...

...
index− n succ− sn

〉 

INVERSE


〈 index− 1 succ− s1 pred− s1,

index− 2 succ− s2 pred− s2,
...

...
...

index− n succ− sn pred− sn

〉 
A third reformulation using one ALLDIFFERENT constraint and n ELEMENT con-
straints is as follows. ALLDIFFERENT(〈s1, s2, . . . , sn〉), ∀i ∈ [1, n] : si 6= i,


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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ELEMENT(si, 〈s1, s2, . . . , sn〉, i). Figure 5.793 illustrates this third reformulation of the
SYMMETRIC ALLDIFFERENT constraint.

1 2

3 4

(A) ALLDIFFERENT(〈3, 4, 1, 2〉) two vertices do not point to the same vertex
3 6= 1, 4 6= 2, 1 6= 3, 2 6= 4 no self-loops
ELEMENT(3, 〈3, 4, 1, 2〉, 1) successor of vertex 1, vertex 3, goes back to 1
ELEMENT(4, 〈3, 4, 1, 2〉, 2) successor of vertex 2, vertex 4, goes back to 2
ELEMENT(1, 〈3, 4, 1, 2〉, 3) successor of vertex 3, vertex 1, goes back to 3
ELEMENT(2, 〈3, 4, 1, 2〉, 4) successor of vertex 4, vertex 2, goes back to 4

(B)

Figure 5.793: Illustrating the reformulation of the
SYMMETRIC ALLDIFFERENT(〈1 3, 2 4, 3 1, 4 2〉) constraint with a set of ELEMENT
constraints: (A) the figure of the Example slot, and (B) the corresponding constraints

Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 1 0 3 0 15 0 105 0 945

Number of solutions for SYMMETRIC ALLDIFFERENT: domains 0..n
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Solution density for SYMMETRIC ALLDIFFERENT


Counting
Information on the solution density.
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2 4 6 8 10

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1
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Solution density for SYMMETRIC ALLDIFFERENT

See also common keyword: ALLDIFFERENT, CYCLE, INVERSE (permutation).

implies: DERANGEMENT, SYMMETRIC ALLDIFFERENT EXCEPT 0,
SYMMETRIC ALLDIFFERENT LOOP.

implies (items to collection): K ALLDIFFERENT, LEX ALLDIFFERENT.

related: ROOTS.

Keywords application area: sport timetabling.

characteristic of a constraint: all different, disequality.

combinatorial object: permutation, involution, matching.

constraint type: graph constraint, timetabling constraint, graph partitioning constraint.

filtering: arc-consistency.

final graph structure: circuit.

modelling: cycle.

Cond. implications • SYMMETRIC ALLDIFFERENT(NODES)
implies BALANCE CYCLE(BALANCE, NODES)

when BALANCE = 0.

• SYMMETRIC ALLDIFFERENT(NODES)
implies CYCLE(NCYCLE, NODES)

when 2 ∗ NCYCLE = |NODES|.

• SYMMETRIC ALLDIFFERENT(NODES)
implies PERMUTATION(VARIABLES : NODES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) NODES

Arc generator CLIQUE( 6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.succ = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices.

Parts (A) and (B) of Figure 5.794 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

NARC=4

1:1,3

3:3,1

2:2,4

4:4,2

(A) (B)

Figure 5.794: Initial and final graph of the SYMMETRIC ALLDIFFERENT constraint

Signature Since all the index attributes of the NODES collection are distinct, and because of the first
condition nodes1.succ = nodes2.index of the arc constraint, each vertex of the final
graph has at most one successor. Therefore the maximum number of arcs of the final graph
is equal to the maximum number of vertices |NODES| of the final graph. So we can rewrite
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.403 SYMMETRIC ALLDIFFERENT EXCEPT 0
I B C J DESCRIPTION LINKS

Origin Derived from SYMMETRIC ALLDIFFERENT

Constraint SYMMETRIC ALLDIFFERENT EXCEPT 0(NODES)

Synonyms SYMMETRIC ALLDIFF EXCEPT 0, SYMMETRIC ALLDISTINCT EXCEPT 0,
SYMM ALLDIFFERENT EXCEPT 0, SYMM ALLDIFF EXCEPT 0,
SYMM ALLDISTINCT EXCEPT 0.

Argument NODES : collection(index−int, succ−dvar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 0
NODES.succ ≤ |NODES|

Purpose

Enforce the following three conditions:

1. ∀i ∈ [1, |NODES|], ∀j ∈ [1, |NODES|], (j 6= i): NODES[i].succ = 0 ∨
NODES[j].succ = 0 ∨ NODES[i].succ 6= NODES[j].succ.

2. ∀i ∈ [1, |NODES|] : NODES[i].succ 6= i.

3. NODES[i].succ = j ∧ j 6= i ∧ j 6= 0⇔ NODES[j].succ = i ∧ i 6= j ∧ i 6= 0.

Example


〈 index− 1 succ− 3,

index− 2 succ− 0,
index− 3 succ− 1,
index− 4 succ− 0

〉 
The SYMMETRIC ALLDIFFERENT EXCEPT 0 constraint holds since:

• NODES[1].succ = 3⇔ NODES[3].succ = 1,

• NODES[2].succ = 0 and value 2 is not assigned to any variable.

• NODES[4].succ = 0 and value 4 is not assigned to any variable.

1 2

3 4

Given 3 successor variables that have to be assigned a value in interval [0, 3], the solutions
to the SYMMETRIC ALLDIFFERENT EXCEPT 0 (〈index−1 succ−s1, index−2 succ−
s2, index− 3 succ− s3〉) constraint are 〈1 0, 2 0, 3 0〉, 〈1 0, 2 3, 3 2〉, 〈1 2, 2 1, 3 0〉, and
〈1 3, 2 0, 3 1〉.
Given 4 successor variables that have to be assigned a value in interval [0, 3], the solutions
to the SYMMETRIC ALLDIFFERENT EXCEPT 0 (〈index−1 succ−s1, index−2 succ−


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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s2, index − 3 succ − s3, index − 4 succ − s4〉) constraint are 〈1 0, 2 0, 3 0, 4 0〉,
〈1 0, 2 0, 3 4, 4 3〉, 〈1 0, 2 3, 3 2, 4 0〉, 〈1 0, 2 4, 3 0, 4 2〉, 〈1 2, 2 1, 3 0, 4 0〉,
〈1 2, 2 1, 3 4, 4 3〉, 〈1 3, 2 0, 3 1, 4 0〉, 〈1 3, 2 4, 3 1, 4 2〉, 〈1 4, 2 0, 3 0, 4 1〉,
〈1 4, 2 3, 3 2, 4 1〉.

All solutions Figure 5.795 gives all solutions to the following non ground in-
stance of the SYMMETRIC ALLDIFFERENT EXCEPT 0 constraint: S1 ∈
[0, 5], S2 ∈ [1, 3], S3 ∈ [1, 4], S4 ∈ [0, 3], S5 ∈ [0, 2],
SYMMETRIC ALLDIFFERENT EXCEPT 0(〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5〉).

¬ (〈01,32,23, 04, 05〉)
 (〈21,12,43,34, 05〉)
® (〈41,32,23,14, 05〉)
¯ (〈51,32,23, 04,15〉)

5 1 2

34¬

5 1 2

34

5 1 2

34®

5 1 2

34¯

Figure 5.795: All solutions corresponding to the non ground example of the
SYMMETRIC ALLDIFFERENT EXCEPT 0 constraint of the All solutions slot; in the
left-hand side the index attributes are displayed as indices of the succ attribute, while
in the right-hand side they are directly displayed within each node.

Typical |NODES| ≥ 4
minval(NODES.succ) = 0
maxval(NODES.succ) > 0

Symmetry Items of NODES are permutable.

Usage Within the context of sport scheduling, NODES[i].succ = j (with i, j ∈ [1, |NODES|], i 6= j)
is interpreted as the fact that team i plays against team j, while NODES[i].succ = 0 (with
i ∈ [1, |NODES|]) is interpreted as the fact that team i does not play at all.

Algorithm An arc-consistency filtering algorithm for the SYMMETRIC ALLDIFFERENT EXCEPT 0
constraint is described in [140, 139]. The algorithm is based on the following facts:

• First, one can map solutions to the SYMMETRIC ALLDIFFERENT EXCEPT 0 con-
straint to perfect (g, f)-matchings in a non-bipartite graph derived from the domain
of the variables of the constraint where g(x) = 0, f(x) = 1 for vertices x which
have 0 in their domains, and g(x) = f(x) = 1 for all the remaining vertices. A
perfect (g, f)-matchingM of a graph is a subset of edges such that every vertex x is
incident with the number of edges inM between g(x) and f(x).

• Second, Gallai-Edmonds decomposition [190, 159] allows us to find out all edges
that do not belong to any perfect (g, f)-matchings, and therefore prune the corre-
sponding variables.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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Reformulation Let n denotes the number nodes of the NODES collection, and let si (with i ∈ [1, n])
denotes NODES[i].succ. The SYMMETRIC ALLDIFFERENT EXCEPT 0(NODES) constraint
can be expressed in term of a conjunction of one ALLDIFFERENT EXCEPT 0 constraint
and n ELEMENT constraints as follows. ALLDIFFERENT EXCEPT 0(〈s1, s2, . . . , sn〉),
∀i ∈ [1, n] : si 6= i, ti = si + 1, ELEMENT(ti, 〈i, s1, s2, . . . , sn〉, i). Note the intro-
duction of the intermediate variables ti (with i ∈ [1, n]) motivated by the need to have an
index starting at 1 rather than 0 in the ELEMENT constraint. Figure 5.796 illustrates this
reformulation of the SYMMETRIC ALLDIFFERENT EXCEPT 0 constraint.

1 2

3 4

(A) ALLDIFFERENT EXCEPT 0(〈3, 0, 1, 0〉) two vertices do not point to the same vertex
3 6= 1, 0 6= 2, 1 6= 3, 0 6= 4 no self-loops
ELEMENT(3 + 1, 〈1, 3, 0, 1, 0〉, 1) successor of vertex 1, vertex 3, goes back to 1
ELEMENT(0 + 1, 〈2, 3, 0, 1, 0〉, 2) successor of vertex 2 is undefined
ELEMENT(1 + 1, 〈3, 3, 0, 1, 0〉, 3) successor of vertex 3, vertex 1, goes back to 3
ELEMENT(0 + 1, 〈4, 3, 0, 1, 0〉, 4) successor of vertex 4 is undefined

(B)

Figure 5.796: Illustrating the reformulation of the
SYMMETRIC ALLDIFFERENT EXCEPT 0(〈1 3, 2 0, 3 1, 4 0〉) constraint with a
set of ELEMENT constraints: (A) the figure of the Example slot, and (B) the
corresponding constraints

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 2 4 10 26 76 232 764

Number of solutions for SYMMETRIC ALLDIFFERENT EXCEPT 0: domains 0..n

2 3 4 5 6 7 8

10−5

10−4

10−3

10−2

10−1
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Solution density for SYMMETRIC ALLDIFFERENT EXCEPT 0


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.
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Solution density for SYMMETRIC ALLDIFFERENT EXCEPT 0

See also implied by: SYMMETRIC ALLDIFFERENT.

implies (items to collection): K ALLDIFFERENT, LEX ALLDIFFERENT.

Keywords application area: sport timetabling.

characteristic of a constraint: joker value.

combinatorial object: matching.

constraint type: predefined constraint, timetabling constraint.

Cond. implications SYMMETRIC ALLDIFFERENT EXCEPT 0(NODES)
implies ALLDIFFERENT EXCEPT 0(VARIABLES : NODES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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5.404 SYMMETRIC ALLDIFFERENT LOOP

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from SYMMETRIC ALLDIFFERENT

Constraint SYMMETRIC ALLDIFFERENT LOOP(NODES)

Synonyms SYMMETRIC ALLDIFF LOOP, SYMMETRIC ALLDISTINCT LOOP,
SYMM ALLDIFFERENT LOOP, SYMM ALLDIFF LOOP, SYMM ALLDISTINCT LOOP.

Argument NODES : collection(index−int, succ−dvar)

Restrictions required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

All variables associated with the succ attribute of the NODES collection should be pair-
wise distinct. In addition enforce the following condition: if variable NODES[i].succ is
assigned value j then variable NODES[j].succ is assigned value i. Note that i and j are
not necessarily distinct. This can be interpreted as a graph-covering problem where one
has to cover a digraphG with circuits of length two or one in such a way that each vertex
of G belongs to a single circuit.

Example


〈 index− 1 succ− 1,

index− 2 succ− 4,
index− 3 succ− 3,
index− 4 succ− 2

〉 
The SYMMETRIC ALLDIFFERENT LOOP constraint holds since:

• We have two loops respectively corresponding to NODES[1].succ = 1 and
NODES[3].succ = 3.

• We have one circuit of length 2 corresponding to NODES[2].succ = 4 ⇔
NODES[4].succ = 2.

1 2

3 4

Figure 5.797 provides a second example involving a SYMMETRIC ALLDIFFERENT LOOP

constraint.

All solutions Figure 5.798 gives all solutions to the following non ground instance of the
SYMMETRIC ALLDIFFERENT LOOP constraint: S1 ∈ [2, 5], S2 ∈ [1, 3], S3 ∈ [1, 4], S4 ∈
[2, 4], S5 ∈ [1, 5], SYMMETRIC ALLDIFFERENT LOOP(〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5〉).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(A)

1|16 2|3 3|2 4|13

5|5 6|10 7|11 8|8

9|9 10|6 11|7 12|12

13|4 14|15 15|14 16|1

(B)

index− 1 succ− 16
index− 2 succ− 3
index− 3 succ− 2
index− 4 succ− 13
index− 5 succ− 5
index− 6 succ− 10
index− 7 succ− 11
index− 8 succ− 8
index− 9 succ− 9
index− 10 succ− 6
index− 11 succ− 7
index− 12 succ− 12
index− 13 succ− 4
index− 14 succ− 15
index− 15 succ− 14
index− 16 succ− 1

NODES

(C)

Figure 5.797: (A) Magic square Duerer where cells that belong to a same cycle are
coloured identically by a colour different from grey; each cell has an index in its upper
left corner (in red) and a value (in blue). (B) Corresponding graph where there is an
arc from node i to node j if and only if the value of cell i is equal to the index of cell j.
(C) Collection of nodes passed to the SYMMETRIC ALLDIFFERENT LOOP constraint:
the four self-loops of the graph correspond to the four grey cells of the magic square
such that the value of the cell (in blue) is equal to the index of the cell (in red).

Typical |NODES| ≥ 4

Symmetry Items of NODES are permutable.

Algorithm An arc-consistency filtering algorithm for the SYMMETRIC ALLDIFFERENT LOOP con-
straint is described in [140, 139]. The algorithm is based on the following ideas:

• First, one can map solutions to the SYMMETRIC ALLDIFFERENT LOOP constraint
to perfect (g, f)-matchings in a non-bipartite graph derived from the domain of the
variables of the constraint where g(x) = 0, f(x) = 1 for vertices x which have a
self-loop, and g(x) = f(x) = 1 for all the remaining vertices. A perfect (g, f)-
matchingM of a graph is a subset of edges such that every vertex x is incident with
the number of edges inM between g(x) and f(x).


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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¬ (〈21,12,33,44,55〉)
 (〈21,12,43,34,55〉)
® (〈31,22,13,44,55〉)
¯ (〈51,22,33,44,15〉)
° (〈51,22,43,34,15〉)
± (〈51,32,23,44,15〉)

5 1 2

34

¬

5 1 2

34



5 1 3

24

®

3 1 5

24

¯

5 1 3

42

°

5 1 2

34

±

Figure 5.798: All solutions corresponding to the non ground example of the
SYMMETRIC ALLDIFFERENT LOOP constraint of the All solutions slot; in the left-
hand side the index attributes are displayed as indices of the succ attribute and self
loops are coloured in red, while in the right-hand side the index attributes are directly
displayed within each node.

• Second, Gallai-Edmonds decomposition [190, 159] allows us to find out all edges
that do not belong any perfect (g, f)-matchings, and therefore prune the correspond-
ing variables.

Reformulation Let n denotes the number nodes of the NODES collection, and let si (with i ∈
[1, n]) denotes NODES[i].succ. The SYMMETRIC ALLDIFFERENT LOOP(NODES) con-
straint can be expressed in term of a conjunction of one ALLDIFFERENT constraint
and n ELEMENT constraints. ALLDIFFERENT(〈s1, s2, . . . , sn〉), ∀i ∈ [1, n] :

ELEMENT(si, 〈s1, s2, . . . , sn〉, i). Figure 5.799 illustrates this reformulation of the
SYMMETRIC ALLDIFFERENT LOOP constraint.

1 2

3 4

(A) ALLDIFFERENT(〈1, 4, 3, 2〉) two vertices do not point to the same vertex
ELEMENT(1, 〈1, 4, 3, 2〉, 1) successor of vertex 1 is vertex 1, a self-loop
ELEMENT(4, 〈1, 4, 3, 2〉, 2) successor of vertex 2, vertex 4, goes back to 2
ELEMENT(3, 〈1, 4, 3, 2〉, 3) successor of vertex 3 is vertex 3, a self-loop
ELEMENT(2, 〈1, 4, 3, 2〉, 4) successor of vertex 4, vertex 2, goes back to 4

(B)

Figure 5.799: Illustrating the reformulation of the
SYMMETRIC ALLDIFFERENT LOOP(〈1 1, 2 4, 3 3, 4 2〉) constraint with a set of
ELEMENT constraints: (A) the figure of the Example slot, and (B) the corresponding
constraints


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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Counting

Length (n) 2 3 4 5 6 7 8 9 10
Solutions 2 4 10 26 76 232 764 2620 9496

Number of solutions for SYMMETRIC ALLDIFFERENT LOOP: domains 0..n
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Solution density for SYMMETRIC ALLDIFFERENT LOOP


Counting
Information on the solution density.
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Solution density for SYMMETRIC ALLDIFFERENT LOOP

See also implied by: SYMMETRIC ALLDIFFERENT.

implies: TWIN.

implies (items to collection): LEX ALLDIFFERENT.

Keywords characteristic of a constraint: all different, disequality.

combinatorial object: permutation, involution, matching.

constraint type: graph constraint, graph partitioning constraint.

final graph structure: circuit.

modelling: cycle.

Cond. implications SYMMETRIC ALLDIFFERENT LOOP(NODES)
implies PERMUTATION(VARIABLES : NODES).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes2.succ = nodes1.index

Graph property(ies) NARC= |NODES|

Graph model In order to express the binary constraint that links two vertices one has to make explicit the
identifier of the vertices.

Parts (A) and (B) of Figure 5.800 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

NODES

1

2

3

4

NARC=4

1:1,1 2:2,4

4:4,2

3:3,3

(A) (B)

Figure 5.800: Initial and final graph of the SYMMETRIC ALLDIFFERENT LOOP con-
straint

Signature Since all the index attributes of the NODES collection are distinct, and because of the first
condition nodes1.succ = nodes2.index of the arc constraint, each vertex of the final
graph has at most one successor. Therefore the maximum number of arcs of the final graph
is equal to the maximum number of vertices |NODES| of the final graph. So we can rewrite
NARC = |NODES| to NARC ≥ |NODES| and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.405 SYMMETRIC CARDINALITY

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from GLOBAL CARDINALITY by W. Kocjan.

Constraint SYMMETRIC CARDINALITY(VARS, VALS)

Arguments VARS : collection(idvar−int, var−svar, l−int, u−int)
VALS : collection(idval−int, val−svar, l−int, u−int)

Restrictions required(VARS, [idvar, var, l, u])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.l ≥ 0
VARS.l ≤ VARS.u
VARS.u ≤ |VALS|
required(VALS, [idval, val, l, u])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.l ≥ 0
VALS.l ≤ VALS.u
VALS.u ≤ |VARS|

Purpose
Put in relation two sets: for each element of one set gives the corresponding elements of
the other set to which it is associated. In addition, it constraints the number of elements
associated with each element to be in a given interval.

Example



〈 idvar− 1 var− {3} l− 0 u− 1,
idvar− 2 var− {1} l− 1 u− 2,
idvar− 3 var− {1, 2} l− 1 u− 2,
idvar− 4 var− {1, 3} l− 2 u− 3

〉
,

〈 idval− 1 val− {2, 3, 4} l− 3 u− 4,
idval− 2 val− {3} l− 1 u− 1,
idval− 3 val− {1, 4} l− 1 u− 2,
idval− 4 val− ∅ l− 0 u− 1

〉


The SYMMETRIC CARDINALITY constraint holds since:

• 3 ∈ VARS[1].var⇔ 1 ∈ VALS[3].val,

• 1 ∈ VARS[2].var⇔ 2 ∈ VALS[1].val,

• 1 ∈ VARS[3].var⇔ 3 ∈ VALS[1].val,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• 2 ∈ VARS[3].var⇔ 3 ∈ VALS[2].val,

• 1 ∈ VARS[4].var⇔ 4 ∈ VALS[1].val,

• 3 ∈ VARS[4].var⇔ 4 ∈ VALS[3].val,

• The number of elements of VARS[1].var = {3} belongs to interval [0, 1],

• The number of elements of VARS[2].var = {1} belongs to interval [1, 2],

• The number of elements of VARS[3].var = {1, 2} belongs to interval [1, 2],

• The number of elements of VARS[4].var = {1, 3} belongs to interval [2, 3],

• The number of elements of VALS[1].val = {2, 3, 4} belongs to interval [3, 4],

• The number of elements of VALS[2].val = {3} belongs to interval [1, 1],

• The number of elements of VALS[3].val = {1, 4} belongs to interval [1, 2],

• The number of elements of VALS[4].val = ∅ belongs to interval [0, 1].

Typical |VARS| > 1
|VALS| > 1

Symmetries • Items of VARS are permutable.

• Items of VALS are permutable.

Usage The most simple example of applying SYMMETRIC GCC is a variant of personnel assign-
ment problem, where one person can be assigned to perform between n and m (n ≤ m)
jobs, and every job requires between p and q (p ≤ q) persons. In addition every job
requires different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,

• For each job we create an item of the VALS collection,

• There is an arc between a person and the particular job if this person is qualified to
perform it.

Remark The SYMMETRIC GCC constraint generalises the GLOBAL CARDINALITY constraint by
allowing a variable to take more than one value.

Algorithm A first flow-based arc-consistency algorithm for the SYMMETRIC CARDINALITY con-
straint is described in [252]. A second arc-consistency filtering algorithm exploiting match-
ing theory [157] is described in [138, 139].

See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables).

generalisation: SYMMETRIC GCC (fixed interval replaced by variable).

root concept: GLOBAL CARDINALITY.

used in graph description: IN SET.

Keywords application area: assignment.

combinatorial object: relation.

constraint arguments: constraint involving set variables.

constraint type: decomposition, timetabling constraint.

filtering: flow, bipartite matching.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARS VALS

Arc generator PRODUCT 7→collection(vars, vals)

Arc arity 2

Arc constraint(s) • IN SET(vars.idvar, vals.val)⇔IN SET(vals.idval, vars.var)
• vars.l ≤ card set(vars.var)
• vars.u ≥ card set(vars.var)
• vals.l ≤ card set(vals.val)
• vals.u ≥ card set(vals.val)

Graph property(ies) NARC= |VARS| ∗ |VALS|

Graph model The graph model used for the SYMMETRIC CARDINALITY is similar to the one used in the
DOMAIN CONSTRAINT or in the LINK SET TO BOOLEANS constraints: we use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Parts (A) and (B) of Figure 5.801 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, all the arcs of the final
graph are stressed in bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},0,1

1:1,{2,3,4},3,4 2:2,{3},1,13:3,{1,4},1,2 4:4,{},0,1

2:2,{1},1,23:3,{1,2},1,2 4:4,{1,3},2,3

(A) (B)

Figure 5.801: Initial and final graph of the SYMMETRIC CARDINALITY constraint

Signature Since we use the PRODUCT arc generator on the collections VARS and VALS, the number
of arcs of the initial graph is equal to |VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to |VARS| · |VALS| and we can rewrite NARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.406 SYMMETRIC GCC

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from GLOBAL CARDINALITY by W. Kocjan.

Constraint SYMMETRIC GCC(VARS, VALS)

Synonym SGCC.

Arguments VARS : collection(idvar−int, var−svar, nocc−dvar)
VALS : collection(idval−int, val−svar, nocc−dvar)

Restrictions required(VARS, [idvar, var, nocc])
|VARS| ≥ 1
VARS.idvar ≥ 1
VARS.idvar ≤ |VARS|
distinct(VARS, idvar)
VARS.nocc ≥ 0
VARS.nocc ≤ |VALS|
required(VALS, [idval, val, nocc])
|VALS| ≥ 1
VALS.idval ≥ 1
VALS.idval ≤ |VALS|
distinct(VALS, idval)
VALS.nocc ≥ 0
VALS.nocc ≤ |VARS|

Purpose
Put in relation two sets: for each element of one set gives the corresponding elements of
the other set to which it is associated. In addition, enforce a cardinality constraint on the
number of occurrences of each value.

Example



〈 idvar− 1 var− {3} nocc− 1,
idvar− 2 var− {1} nocc− 1,
idvar− 3 var− {1, 2} nocc− 2,
idvar− 4 var− {1, 3} nocc− 2

〉
,

〈 idval− 1 val− {2, 3, 4} nocc− 3,
idval− 2 val− {3} nocc− 1,
idval− 3 val− {1, 4} nocc− 2,
idval− 4 val− ∅ nocc− 0

〉


The SYMMETRIC GCC constraint holds since:

• 3 ∈ VARS[1].var⇔ 1 ∈ VALS[3].val,

• 1 ∈ VARS[2].var⇔ 2 ∈ VALS[1].val,

• 1 ∈ VARS[3].var⇔ 3 ∈ VALS[1].val,


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonym
A synonym for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• 2 ∈ VARS[3].var⇔ 3 ∈ VALS[2].val,

• 1 ∈ VARS[4].var⇔ 4 ∈ VALS[1].val,

• 3 ∈ VARS[4].var⇔ 4 ∈ VALS[3].val,

• The number of elements of VARS[1].var = {3} is equal to 1,

• The number of elements of VARS[2].var = {1} is equal to 1,

• The number of elements of VARS[3].var = {1, 2} is equal to 2,

• The number of elements of VARS[4].var = {1, 3} is equal to 2,

• The number of elements of VALS[1].val = {2, 3, 4} is equal to 3,

• The number of elements of VALS[2].val = {3} is equal to 1,

• The number of elements of VALS[3].val = {1, 4} is equal to 2,

• The number of elements of VALS[4].val = ∅ is equal to 0.

Typical |VARS| > 1
|VALS| > 1

Symmetries • Items of VARS are permutable.

• Items of VALS are permutable.

Usage The most simple example of applying SYMMETRIC GCC is a variant of personnel assign-
ment problem, where one person can be assigned to perform between n and m (n ≤ m)
jobs, and every job requires between p and q (p ≤ q) persons. In addition every job
requires different kind of skills. The previous problem can be modelled as follows:

• For each person we create an item of the VARS collection,

• For each job we create an item of the VALS collection,

• There is an arc between a person and the particular job if this person is qualified to
perform it.

Remark The SYMMETRIC GCC constraint generalises the GLOBAL CARDINALITY constraint by
allowing a variable to take more than one value. It corresponds to a variant of the
SYMMETRIC CARDINALITY constraint described in [252] where the occurrence variables
of the VARS and VALS collections are replaced by fixed intervals.

See also common keyword: LINK SET TO BOOLEANS (constraint involving set variables).

root concept: GLOBAL CARDINALITY.

specialisation: SYMMETRIC CARDINALITY (variable replaced by fixed interval).

used in graph description: IN SET.

Keywords application area: assignment.

combinatorial object: relation.

constraint arguments: constraint involving set variables.

constraint type: decomposition, timetabling constraint.

filtering: flow.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARS VALS

Arc generator PRODUCT 7→collection(vars, vals)

Arc arity 2

Arc constraint(s) • IN SET(vars.idvar, vals.val)⇔IN SET(vals.idval, vars.var)
• vars.nocc = card set(vars.var)
• vals.nocc = card set(vals.val)

Graph property(ies) NARC= |VARS| ∗ |VALS|

Graph model The graph model used for the SYMMETRIC GCC is similar to the one used in the
DOMAIN CONSTRAINT or in the LINK SET TO BOOLEANS constraints: we use an equiva-
lence in the arc constraint and ask all arc constraints to hold.

Parts (A) and (B) of Figure 5.802 respectively show the initial and final graph. Since we
use the NARC graph property, all the arcs of the final graph are stressed in bold.

VARS

VALS

1

1234

234

NARC=16

1:1,{3},1

1:1,{2,3,4},3 2:2,{3},13:3,{1,4},2 4:4,{},0

2:2,{1},13:3,{1,2},2 4:4,{1,3},2

(A) (B)

Figure 5.802: Initial and final graph of the SYMMETRIC GCC constraint

Signature Since we use the PRODUCT arc generator on the collections VARS and VALS, the number
of arcs of the initial graph is equal to |VARS| · |VALS|. Therefore the maximum number
of arcs of the final graph is also equal to |VARS| · |VALS| and we can rewrite NARC =
|VARS| · |VALS| to NARC ≥ |VARS| · |VALS|. So we can simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.407 TASKS INTERSECTION

I B C J DESCRIPTION LINKS

Origin Inspired by video summarization.

Constraint TASKS INTERSECTION(INTERSECTION, TASKS1, TASKS2)

Synonyms INTERSECTION BETWEEN SEQUENCES OF TASKS,
INTERSECTION BETWEEN INTERVALS, INTERSECTION BETWEEN TASKS CHAINS.

Arguments INTERSECTION : dvar

TASKS1 : collection(origin−dvar, duration−dvar, end−dvar)
TASKS2 : collection(origin−dvar, duration−dvar, end−dvar)

Restrictions INTERSECTION ≥ 0
require at least(2, TASKS1, [origin, duration, end])
require at least(2, TASKS2, [origin, duration, end])
TASKS1.duration ≥ 0
TASKS2.duration ≥ 0
TASKS1.origin ≤ TASKS1.end
TASKS2.origin ≤ TASKS2.end
INTERSECTION ≤sum(TASKS1.duration)
INTERSECTION ≤sum(TASKS2.duration)

Purpose

INTERSECTION is the intersection between two collections of ordered tasks TASKS1 and
TASKS2:

1. ∀s ∈ [1, |TASKS1|] : TASKS1[s].end = TASKS1[s].origin +
TASKS1[s].duration,

2. ∀t ∈ [1, |TASKS2|] : TASKS2[t].end = TASKS2[t].origin +
TASKS2[t].duration,

3. ∀s ∈ [1, |TASKS1| − 1] : TASKS1[s].end ≤ TASKS1[s+ 1].origin,

4. ∀t ∈ [1, |TASKS2| − 1] : TASKS2[t].end ≤ TASKS2[t+ 1].origin,

5. INTERSECTION =
∑
s∈[1,|TASKS1|]
t∈[1,|TASKS2|]

max (βs,t − αs,t, 0) with

αs,t = max

(
TASKS1[s].origin,
TASKS2[t].origin

)
, βs,t = min

(
TASKS1[s].end,
TASKS2[t].end

)
.

Example


3,

〈
origin− 2 duration− 2 end− 4,
origin− 7 duration− 2 end− 9,
origin− 9 duration− 0 end− 9

〉
,

〈
origin− 1 duration− 3 end− 4,
origin− 5 duration− 1 end− 6,
origin− 8 duration− 2 end− 10

〉


As illustrated by Figure 5.803, the constraint holds since:


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• The first task of TASKS1 is included within the first task of TASKS2 and therefore
contributes from its total duration 2 to the overall intersection.

• While the second task of TASKS1 does not intersect the first and second tasks of
TASKS2, it has a non empty intersection of 1 with the third task of TASKS2.

• The third task of TASKS1 does not contribute to the overall intersection since its
duration is equal to zero.

The overall intersection 3 is equal to 2 + 1 + 0.

¬ o− 2 d− 2 e− 4
 o− 7 d− 2 e− 9
® o− 9 d− 0 e− 9

TASKS1

(
o for origin, d for duration, e for end

)
(a) o− 1 d− 3 e− 4
(b) o− 5 d− 1 e− 6
(c) o− 8 d− 2 e− 10

TASKS2

(
o for origin, d for duration, e for end

)
¬ 

(a) (b) (c)

0 1 2 3 4 5 6 7 8 9 10 11 12 time

INTERSECTION = 2 + 1 + 0

Figure 5.803: The TASKS INTERSECTION solution to the Example slot

All solutions Figure 5.804 gives all solutions to the following non ground in-
stance of the TASKS INTERSECTION constraint: O1 ∈ [0, 1], D1 ∈
[0, 6], E1 ∈ [3, 5], O2 ∈ [0, 6], D2 ∈ [1, 3], E2 ∈ [0, 9],
TASKS INTERSECTION(2, 〈O1 D1 E1, O2 D2 E2〉, 〈1 3 4, 5 1 6, 8 2 10〉).

¬ (2, 〈0 3 3, 4 1 5〉)
 (2, 〈0 3 3, 6 1 7〉)
® (2, 〈0 3 3, 6 2 8〉)
¯ (2, 〈1 2 3, 4 1 5〉)
° (2, 〈1 2 3, 6 1 7〉)
± (2, 〈1 2 3, 6 2 8〉)

0 1 2 3 4 5 6 7 8 9

¬

0 1 2 3 4 5 6 7 8 9



0 1 2 3 4 5 6 7 8 9

®

0 1 2 3 4 5 6 7 8 9

¯

0 1 2 3 4 5 6 7 8 9

°

0 1 2 3 4 5 6 7 8 9

±

Figure 5.804: All solutions corresponding to the non ground example of the
TASKS INTERSECTION constraint of the All solutions slot

Typical INTERSECTION > 0
|TASKS1| > 1
|TASKS2| > 1
range(TASKS1.duration) > 1
range(TASKS2.duration) > 1

Arg. properties Functional dependency: INTERSECTION determined by TASKS1 and TASKS2.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).
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Keywords constraint type: predefined constraint, scheduling constraint.

filtering: minimum task duration.

modelling: zero-duration task.


Keywords
Related keywords grouped by meta-keywords.
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5.408 TEMPORAL PATH

I B C J DESCRIPTION LINKS GRAPH

Origin ILOG

Constraint TEMPORAL PATH(NPATH, NODES)

Arguments NPATH : dvar

NODES : collection


index−int,
succ−dvar,
start−dvar,
end−dvar


Restrictions NPATH ≥ 1

NPATH ≤ |NODES|
required(NODES, [index, succ, start, end])
|NODES| > 0
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|
NODES.start ≤ NODES.end

Purpose

LetG be the digraph described by the NODES collection. PartitionGwith a set of disjoint
paths such that each vertex of the graph belongs to a single path. In addition, for all pairs
of consecutive vertices of a path we have a precedence constraint that enforces the end
associated with the first vertex to be less than or equal to the start related to the second
vertex.

Example


2,

〈
index− 1 succ− 2 start− 0 end− 1,
index− 2 succ− 6 start− 3 end− 5,
index− 3 succ− 4 start− 0 end− 3,
index− 4 succ− 5 start− 4 end− 6,
index− 5 succ− 7 start− 7 end− 8,
index− 6 succ− 6 start− 7 end− 9,
index− 7 succ− 7 start− 9 end− 10

〉


The TEMPORAL PATH constraint holds since:

• The items of the NODES collection represent the two (NPATH = 2) paths 1→ 2→ 6
and 3→ 4→ 5→ 7.

• As illustrated by Figure 5.805, all precedences between adjacent vertices of a same
path hold: each item i (1 ≤ i ≤ 7) of the NODES collection is represented by a
rectangle starting and ending at instants NODES[i].start and NODES[i].end; the num-
ber within each rectangle designates the index of the corresponding item within the
NODES collection.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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® ¯ ° ²

time1 2 50 3 4 6 7 8 9 1110

¬  ±

time2 4 6 80 1 3 5 7 9 10 11

¬ index− 1 succ− 2 start− 0 end− 1
 index− 2 succ− 6 start− 3 end− 5
® index− 3 succ− 4 start− 0 end− 3
¯ index− 4 succ− 5 start− 4 end− 6
° index− 5 succ− 7 start− 7 end− 8
± index− 6 succ− 6 start− 7 end− 9
² index− 7 succ− 7 start− 9 end− 10

NODES

Figure 5.805: The two paths of the Example slot represented as two sequences of
tasks

Typical NPATH < |NODES|
|NODES| > 1
NODES.start < NODES.end

Symmetries • Items of NODES are permutable.

• One and the same constant can be added to the start and end attributes of all
items of NODES.

Arg. properties Functional dependency: NPATH determined by NODES.

Remark This constraint is related to the PATH constraint of Ilog Solver. It can also be directly
expressed with the CYCLE [47] constraint of CHIP by using the diff nodes and the origin
parameters. A generic model based on linear programming that handles paths, trees and
cycles is presented in [255].

Reformulation The TEMPORAL PATH(NPATH, NODES) constraint can be expressed in term of a conjunc-
tion of one PATH constraint, |NODES| ELEMENT constraints, and |NODES| inequalities con-
straints:

• We pass to the PATH constraint the number of path variable NPATH as well as the
items of the NODES collection form which we remove the start and end attributes.

• To the i-th (1 ≤ i ≤ |NODES|) item of the NODES collection, we create a variable
Startsucci and an ELEMENT(NODES[i].succ, 〈Ti,1, Ti,2, . . . , Ti,NODES〉,Startsucci )
constraint, where Ti,j = NODES[i].start if i 6= j and Ti,i = NODES[i].end oth-
erwise.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

http://www.ilog.com
http://www.cosytec.com
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• Finaly to the i-th (1 ≤ i ≤ |NODES|) item of the NODES collection, we also create an
inequality constraint NODES[i].end ≤ Startsucci . Note that, since Ti,i was initialised
to NODES[i].end, the inequality NODES[i].end ≤ Ti,j holds when i = j.

With respect to the Example slot we get the following conjunction of constraints:
PATH(2, 〈index− 1 succ− 2, index− 2 succ− 6, index− 3 succ− 4,

index− 4 succ− 5, index− 5 succ− 7, index− 6 succ− 6,
index− 7 succ− 7〉),

ELEMENT(2, 〈1, 3, 0, 4, 7, 7, 9〉, 3),
ELEMENT(6, 〈1, 5, 0, 4, 7, 7, 9〉, 7),
ELEMENT(4, 〈1, 5, 3, 4, 7, 7, 9〉, 4),
ELEMENT(5, 〈1, 5, 3, 6, 7, 7, 9〉, 7),
ELEMENT(7, 〈1, 5, 3, 6, 8, 7, 9〉, 9),
ELEMENT(6, 〈1, 5, 3, 6, 8, 9, 9〉, 9),
ELEMENT(7, 〈1, 5, 3, 6, 8, 9, 10〉, 10),
1 ≤ 3, 5 ≤ 7, 3 ≤ 4, 6 ≤ 7, 8 ≤ 9, 9 ≤ 9, 10 ≤ 10.

See also common keyword: PATH FROM TO (path).

implies (items to collection): ATLEAST NVECTOR.

specialisation: PATH (time dimension removed).

Keywords combinatorial object: path.

constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component.

modelling: sequence dependent set-up, functional dependency.

modelling exercises: sequence dependent set-up.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) • nodes1.succ = nodes2.index
• nodes1.succ = nodes1.index ∨ nodes1.end ≤ nodes2.start
• nodes1.start ≤ nodes1.end
• nodes2.start ≤ nodes2.end

Graph property(ies) •MAX ID≤ 1
• NCC= NPATH

• NVERTEX= |NODES|

Graph model The arc constraint is a conjunction of four conditions that respectively correspond to:

• A constraint that links the successor variable of a first vertex to the index attribute of
a second vertex,

• A precedence constraint that applies on one vertex and its distinct successor,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the departure of an arc,

• One precedence constraint between the start and the end of the vertex that corre-
sponds to the arrival of an arc.

We use the following three graph properties in order to enforce the partitioning of the graph
in distinct paths:

• The first property MAX ID≤ 1 enforces that each vertex has no more than one
predecessor (MAX ID does not consider loops),

• The second property NCC= NPATH ensures that we have the required number of
paths,

• The third property NVERTEX= |NODES| enforces that, for each vertex, the start
is not located after the end.

Parts (A) and (B) of Figure 5.806 respectively show the initial and final graph associated
with the Example slot. Since we use the MAX ID, the NCC and the NVERTEX
graph properties we display the following information on the final graph:

• We show with a double circle a vertex that has the maximum number of predecessors.

• We show the two connected components corresponding to the two paths.

• We put in bold the vertices.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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NODES

1

2

3

4

5

6

7

MAX_ID=1,NCC=2,NVERTEX=7

CC#1 CC#2

1:1,2,0,1

2:2,6,3,5

6:6,6,7,9

3:3,4,0,3

4:4,5,4,6

5:5,7,7,8

7:7,7,9,10

(A) (B)

Figure 5.806: Initial and final graph of the TEMPORAL PATH constraint
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5.409 TOUR

I B C J DESCRIPTION LINKS GRAPH

Origin [6]

Constraint TOUR(NODES)

Synonyms ATOUR, CYCLE.

Argument NODES : collection(index−int, succ−svar)

Restrictions |NODES| ≥ 3
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)

Purpose Enforce to cover an undirected graphG described by the NODES collection with a Hamil-
tonian cycle.

Example


〈 index− 1 succ− {2, 4},

index− 2 succ− {1, 3},
index− 3 succ− {2, 4},
index− 4 succ− {1, 3}

〉 
The TOUR constraint holds since its NODES argument depicts the following Hamil-
tonian cycle visiting successively the vertices 1, 2, 3 and 4.

1 2

34

Symmetry Items of NODES are permutable.

Algorithm When the number of vertices is odd (i.e., |NODES| is odd) a necessary condition is that the
graph is not bipartite. Other necessary conditions for filtering the TOUR constraint are given
in [140, 139].

See also common keyword: CIRCUIT (graph partitioning constraint,Hamiltonian), CYCLE (graph
constraint), LINK SET TO BOOLEANS (constraint involving set variables).

used in graph description: IN SET.

Keywords characteristic of a constraint: undirected graph.

combinatorial object: matching.

constraint arguments: constraint involving set variables.

constraint type: graph constraint.

filtering: DFS-bottleneck, linear programming.

problems: Hamiltonian.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



TOUR 2397

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)⇔
IN SET(nodes1.index, nodes2.succ)

Graph property(ies) NARC= |NODES| ∗ |NODES| − |NODES|

Arc input(s) NODES

Arc generator CLIQUE(6=) 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) IN SET(nodes2.index, nodes1.succ)

Graph property(ies) •MIN NSCC= |NODES|
•MIN ID= 2
•MAX ID= 2
•MIN OD= 2
•MAX OD= 2

Graph model The first graph property enforces the subsequent condition: If we have an arc from the ith

vertex to the jth vertex then we have also an arc from the jth vertex to the ith vertex. The
second graph property enforces the following constraints:

• We have one strongly connected component containing |NODES| vertices,

• Each vertex has exactly two predecessors and two successors.

Part (A) of Figure 5.807 shows the initial graph from which we start. It is derived from the
set associated with each vertex. Each set describes the potential values of the succ attribute
of a given vertex. Part (B) of Figure 5.807 gives the final graph associated with the Ex-
ample slot. The TOUR constraint holds since the final graph corresponds to a Hamiltonian
cycle.

Signature Since the maximum number of vertices of the final graph is equal to |NODES|, we can rewrite
the graph property MIN NSCC = |NODES| to MIN NSCC ≥ |NODES| and simplify
MIN NSCC to MIN NSCC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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NODES

1:1,{2,3,4}

2:2,{1,3,4}

3:3,{1,2,4}

4:4,{1,2,3}

MIN_NSCC=4
MIN_ID=2
MAX_ID =2
MIN_OD=2
MAX_OD=2

MIN_NSCC

1:1,{2,4}

2:2,{1,3}

4:4,{1,3}

3:3,{2,4}

(A) (B)

Figure 5.807: Initial and final graph of the TOUR set constraint
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5.410 TRACK

I B C J DESCRIPTION LINKS GRAPH

Origin [285]

Constraint TRACK(NTRAIL, TASKS)

Arguments NTRAIL : int

TASKS : collection(trail−int, origin−dvar, end−dvar)

Restrictions NTRAIL > 0
NTRAIL ≤ |TASKS|
|TASKS| > 0
required(TASKS, [trail, origin, end])
TASKS.origin ≤ TASKS.end

Purpose
The TRACK constraint forces that, at each point in time overlapped by at least one task,
the number of distinct values of the trail attribute of the set of tasks that overlap that
point, is equal to NTRAIL.

Example

 2,

〈 trail− 1 origin− 1 end− 2,
trail− 2 origin− 1 end− 2,
trail− 1 origin− 2 end− 4,
trail− 2 origin− 2 end− 3,
trail− 2 origin− 3 end− 4

〉 
Figure 5.808 represents the tasks of the example: to the ith task of the TASKS

collection corresponds a rectangle labelled by i. The TRACK constraint holds since:

• The first and second tasks both overlap instant 1 and have a respective trail of 1 and
2. This makes two distinct values for the trail attribute at instant 1.

• The third and fourth tasks both overlap instant 2 and have a respective trail of 1 and
2. This makes two distinct values for the trail attribute at instant 2.

• The third and fifth tasks both overlap instant 3 and have a respective trail of 1 and 2.
This makes two distinct values for the trail attribute at instant 3.

Typical NTRAIL < |TASKS|
|TASKS| > 1
range(TASKS.trail) > 1
TASKS.origin < TASKS.end

Symmetries • Items of TASKS are permutable.

• All occurrences of two distinct values of TASKS.trail can be swapped; all occur-
rences of a value of TASKS.trail can be renamed to any unused value.

• One and the same constant can be added to the origin and end attributes of all
items of TASKS.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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¬ ®

 ¯ °

time

NTRAIL =

0 1 2 3 4 5

#
tr

ai
ls

1

2

1 2

colour codes (trail):

¬ trail− 1 origin− 1 end− 2
 trail− 2 origin− 1 end− 2
® trail− 1 origin− 2 end− 4
¯ trail− 2 origin− 2 end− 3
° trail− 2 origin− 3 end− 4

TASKS

Figure 5.808: The tasks associated with the example of the Example slot, at each
instant we have two distinct values for the trail attribute (NTRAIL = 2)

Reformulation The TRACK constraint can be expressed in term of a set of reified constraints and of 2 ·
|TASKS| NVALUE constraints:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-
tion we create a variable T origin

ij which is set to the trail attribute of task TASKS[j]
if task TASKS[j] overlaps the origin attribute of task TASKS[i], and to the trail at-
tribute of task TASKS[i] otherwise:

• If i = j:
– T origin

ij = TASKS[i].trail.
• If i 6= j:

– T origin
ij = TASKS[i].trail ∨ T origin

ij = TASKS[j].trail.
– ((TASKS[j].origin ≤ TASKS[i].origin ∧

TASKS[j].end > TASKS[i].origin) ∧ (T origin
ij = TASKS[j].trail)) ∨

((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (T origin

ij = TASKS[i].trail))

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we impose the number of distinct trails
associated with the tasks that overlap the origin of task TASKS[i] (TASKS[i] overlaps
its own origin) to be equal to NTRAIL:
NVALUE(NTRAIL, 〈T origin

i1 , T origin
i2 , . . . , T origin

i|TASKS|〉).

3. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS collec-
tion we create a variable T end

ij which is set to the trail attribute of task TASKS[j] if
task TASKS[j] overlaps the end attribute of task TASKS[i], and to the trail attribute
of task TASKS[i] otherwise:

• If i = j:
– T end

ij = TASKS[i].trail.
• If i 6= j:

– T end
ij = TASKS[i].trail ∨ T end

ij = TASKS[j].trail.
– ((TASKS[j].origin ≤ TASKS[i].end− 1 ∧

TASKS[j].end > TASKS[i].end− 1) ∧ (T end
ij = TASKS[j].trail)) ∨

((TASKS[j].origin > TASKS[i].end− 1 ∨
TASKS[j].end ≤ TASKS[i].end− 1) ∧ (T end

ij = TASKS[i].trail))

4. For each task TASKS[i] (i ∈ [1, |TASKS|]) we impose the number of distinct trails
associated with the tasks that overlap the end of task TASKS[i] (TASKS[i] overlaps its


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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own end) to be equal to NTRAIL:
NVALUE(NTRAIL, 〈T end

i1 , T end
i2 , . . . , T end

i|TASKS|〉).

With respect to the Example slot we get the following conjunction of NVALUE constraints:

• The NVALUE(2, 〈1, 2, 1, 1, 1〉) constraint corresponding to the trail attributes of
the tasks that overlap the origin of the first task (i.e., instant 1) that has a trail of 1.

• The NVALUE(2, 〈1, 2, 2, 2, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the origin of the second task (i.e., instant 1) that has a trail of 2.

• The NVALUE(2, 〈1, 1, 1, 2, 1〉) constraint corresponding to the trail attributes of
the tasks that overlap the origin of the third task (i.e., instant 2) that has a trail of 1.

• The NVALUE(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the origin of the fourth task (i.e., instant 2) that has a trail of 2.

• The NVALUE(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the origin of the fifth task (i.e., instant 3) that has a trail of 2.

• The NVALUE(2, 〈1, 2, 1, 1, 1〉) constraint corresponding to the trail attributes of
the tasks that overlap the last instant of the first task (i.e., instant 1) that has a trail of
1.

• The NVALUE(2, 〈1, 2, 2, 2, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the last instant of the second task (i.e., instant 1) that has a trail
of 2.

• The NVALUE(2, 〈1, 1, 1, 1, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the last instant of the third task (i.e., instant 3) that has a trail
of 1.

• The NVALUE(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the last instant of the fourth task (i.e., instant 2) that has a trail
of 2.

• The NVALUE(2, 〈2, 2, 1, 2, 2〉) constraint corresponding to the trail attributes of
the tasks that overlap the last instant of the fifth task (i.e., instant 3) that has a trail of
2.

See also common keyword: COLOURED CUMULATIVE (resource constraint).

implies (items to collection): ATLEAST NVECTOR.

used in graph description: NVALUE.

Keywords characteristic of a constraint: derived collection.

constraint type: timetabling constraint, resource constraint, temporal constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection

col



TIME POINTS−collection

 origin−dvar,
end−dvar,
point−dvar

 ,
item

 origin− TASKS.origin,
end− TASKS.end,
point− TASKS.origin

 ,

item

 origin− TASKS.origin,
end− TASKS.end,
point− TASKS.end− 1






Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin ≤ tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TIME POINTS TASKS

Arc generator PRODUCT 7→collection(time points, tasks)

Arc arity 2

Arc constraint(s) • time points.end > time points.origin
• tasks.origin ≤ time points.point
• time points.point < tasks.end

Sets SUCC 7→ source,

variables− col

(
VARIABLES−collection(var−dvar),
[item(var− TASKS.trail)]

) 
Constraint(s) on sets NVALUE(NTRAIL, variables)

Graph model Parts (A) and (B) of Figure 5.809 respectively show the initial and final graph of the second
graph constraint of the Example slot.

Signature Consider the first graph constraint. Since we use the SELF arc generator on the TASKS

collection, the maximum number of arcs of the final graph is equal to |TASKS|. Therefore
we can rewrite NARC = |TASKS| to NARC ≥ |TASKS| and simplify NARC to
NARC.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.



2404 TRACK

(A)

TIME_POINTS

TASKS

1

12 345

23456 78910

(B)

TIME_POINTS

TASKS

1:1,2,1

1:1,1,22:2,1,2

2:1,2,13:1,2,14:1,2,15:2,4,2

3:1,2,4 4:2,2,3

6:2,4,3

5:2,3,4

7:2,3,28:2,3,29:3,4,310:3,4,3

Figure 5.809: Initial and final graph of the TRACK constraint
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5.411 TREE

I B C J DESCRIPTION LINKS GRAPH

Origin N. Beldiceanu

Constraint TREE(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 1
NTREES ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Given a digraph G described by the NODES collection, cover G by a set of NTREES trees
in such a way that each vertex of G belongs to one distinct tree. The edges of the trees
are directed from their leaves to their respective roots.

1

5

2 3 8

6

7

4

1 2 3 4

5 6 7 8

6

1

2 3 4

5 7 8

Example


2,

〈
index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉



8,

〈
index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉



7,

〈
index− 1 succ− 6,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉



Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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The first TREE constraint holds since the graph associated with the items of the
NODES collection corresponds to two trees (i.e., NTREES = 2): each tree respectively
involves the vertices {1, 2, 3, 5, 6, 8} and {4, 7}. They are depicted by Figure 5.810.

1|1

5|1

2|5 3|5 8|5

6|1

7|7

4|7

index− 1 succ− 1
index− 2 succ− 5
index− 3 succ− 5
index− 4 succ− 7
index− 5 succ− 1
index− 6 succ− 1
index− 7 succ− 7
index− 8 succ− 5

NODES

Figure 5.810: The two trees corresponding to the first example of the Example slot;
each vertex contains the information index|succ where succ is the index of its father
in the tree (by convention the father of the root is the root itself).

All solutions Figure 5.811 gives all solutions to the following non ground instance of the TREE con-
straint: NTREES ∈ [3, 4], S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [1, 4], S4 ∈ [2, 4],
TREE(NTREES, 〈1 S1, 2 S2, 3 S3, 4 S4〉).

¬ (3, 〈11,12,33,44〉)
 (3, 〈11,22,13,44〉)
® (3, 〈11,22,23,44〉)
¯ (3, 〈11,22,33,24〉)
° (3, 〈11,22,33,34〉)
± (4, 〈11,22,33,44〉)
² (3, 〈11,22,43,44〉)
³ (3, 〈11,32,33,44〉)
´ (3, 〈21,22,33,44〉)

1

2

3 4

¬

1

3

2 4



1 2

3

4

®

1 2

4

3

¯

1 2 3

4°

1 2 3

4 ±

1 2 4

3²

1 3

2

4

³

2

1

3 4

´

Figure 5.811: All solutions corresponding to the non ground example of the TREE
constraint of the All solutions slot, where all vertices of a same tree are coloured by
the same colour; in the left-hand side the index attributes are displayed as indices of
the succ attribute, while in the right-hand side they are directly displayed within each
node.

Typical NTREES < |NODES|
|NODES| > 2


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetry Items of NODES are permutable.

Arg. properties Functional dependency: NTREES determined by NODES.

Remark Given a complete digraph of n vertices as well as an unrestricted number of trees NTREES,
the total number of solutions to the corresponding TREE constraint corresponds to the se-
quence A000272 of the On-Line Encyclopaedia of Integer Sequences [403].

In the context of an undirected weighted graph, extension of the TREE constraint to the
minimum spanning tree constraint is described in [152, 360, 363].

Algorithm An arc-consistency filtering algorithm for the TREE constraint is described in [48]. This
algorithm is based on a necessary and sufficient condition that we now depict.

To any TREE constraint we associate the digraph G = (V,E), where:

• To each item NODES[i] of the NODES collection corresponds a vertex vi of G.

• For every pair of items (NODES[i], NODES[j]) of the NODES collection, where i and j
are not necessarily distinct, there is an arc from vi to vj in E if and only if j is a
potential value of NODES[i].succ.

A strongly connected component C of G is called a sink component if all the successors
of all vertices of C belong to C. Let MINTREES and MAXTREES respectively denote the
number of sink components of G and the number of vertices of G with a loop.

The TREE constraint has a solution if and only if:

• Each sink component of G contains at least one vertex with a loop,

• The domain of NTREES has at least one value within interval [MINTREES, MAXTREES].

Inspired by the idea of using dominators used in [234] for getting a linear time algorithm
for computing strong articulation points of a digraph G, the worst case complexity of
the algorithm proposed in [48] was also enhanced in a similar way by J.-G. Fages and
X. Lorca [167].

Reformulation The TREE constraint can be expressed in term of (1) a set of |NODES|2 reified constraints
for avoiding circuit between more than one node and of (2) |NODES| reified constraints and
of one sum constraint for counting the trees:

1. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a
variable ri that takes its value within interval [1, |NODES|]. This variable represents
the rank of vertex NODES[i] within a solution. It is used to prevent the creation of
circuit involving more than one vertex as explained now. For each pair of vertices
NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES collection we create a reified
constraint of the form NODES[i].succ = NODES[j].index ∧ i 6= j ⇒ ri > rj . The
purpose of this constraint is to express the fact that, if there is an arc from vertex
NODES[i] to another vertex NODES[j], then ri should be strictly greater than rj .

2. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-
ate a 0-1 variable bi and state the following reified constraint NODES[i].succ =
NODES[i].index ⇔ bi in order to force variable bi to be set to value 1 if and only
if there is a loop on vertex NODES[i]. Finally we create a constraint NTREES =
b1 + b2 + · · · + b|NODES| for stating the fact that the number of trees is equal to the
number of loops of the graph.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

http://oeis.org/A000272
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1

5

2

s2 = 5⇒ r2 > r5

3

8

s8 = 5⇒ r8 > r5

6

s3 = 5⇒ r3 > r5

s5 = 1⇒ r5 > r1 s6 = 1⇒ r6 > r1
7

4

s4 = 7⇒ r4 > r7

Figure 5.812: Illustrating the reformulation of the TREE constraint with rank vari-
ables for preventing the creation of circuits involving more than one vertex: the two
trees corresponding to the first example of the Example slot with the link between the
successor variables s1, s2, . . . , s8 and the rank variables r1, r2, . . . , r8

Figure 5.812 illustrates this reformulation on the first example of the Example slot.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 3 16 125 1296 16807 262144 4782969

Number of solutions for TREE: domains 0..n

2 3 4 5 6 7 8
10−1

10−0.9

10−0.8

10−0.7

10−0.6

10−0.5

Length

O
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er
ve

d
de

ns
ity

Solution density for TREE


Counting
Information on the solution density.
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2 3 4 5 6 7 8

0.1

0.15

0.2

0.25

0.3

0.35

Length

O
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er
ve

d
de
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ity

Solution density for TREE

Length (n) 2 3 4 5 6 7 8
Total 3 16 125 1296 16807 262144 4782969

Parameter
value

1 2 9 64 625 7776 117649 2097152
2 1 6 48 500 6480 100842 1835008
3 - 1 12 150 2160 36015 688128
4 - - 1 20 360 6860 143360
5 - - - 1 30 735 17920
6 - - - - 1 42 1344
7 - - - - - 1 56
8 - - - - - - 1

Solution count for TREE: domains 0..n
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0.2 0.4 0.6 0.8 1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for TREE

size 6
size 7
size 8

0.2 0.4 0.6 0.8 1

0

2

4

6

·10−2

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for TREE

size 6
size 7
size 8

Systems TREE in Choco.

See also common keyword: CYCLE, GRAPH CROSSING, MAP (graph partitioning constraint),


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
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PROPER FOREST (connected component,tree).

implied by: BINARY TREE.

implies (items to collection): ATLEAST NVECTOR.

related: BALANCE TREE (counting number of trees versus controlling
how balanced the trees are), GLOBAL CARDINALITY LOW UP NO LOOP,
GLOBAL CARDINALITY NO LOOP (can be used for restricting number of children
since discard loops associated with tree roots).

shift of concept: STABLE COMPATIBILITY, TREE RANGE, TREE RESOURCE.

specialisation: BINARY TREE (no limit on the number of children replaced by at most two
children), PATH (no limit on the number of children replaced by at most one child).

uses in its reformulation: TREE RANGE, TREE RESOURCE.

Keywords constraint type: graph constraint, graph partitioning constraint.

filtering: DFS-bottleneck, strong articulation point, arc-consistency.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.


Keywords
Related keywords grouped by meta-keywords.



TREE 2413

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
• NCC= NTREES

Graph model We use the graph property MAX NSCC ≤ 1 in order to specify the fact that the size
of the largest strongly connected component should not exceed one. In fact each root of
a tree is a strongly connected component with a single vertex. The second graph property
NCC = NTREES enforces the number of trees to be equal to the number of connected
components.

Parts (A) and (B) of Figure 5.813 respectively show the initial and final graph associated
with the first example of the Example slot. Since we use the NCC graph property, we
display the two connected components of the final graph. Each of them corresponds to a
tree. The TREE constraint holds since all strongly connected components of the final graph
have no more than one vertex and since NTREES = NCC = 2.

NODES

1

2

3

4

5

6

7

8

MAX_NSCC=1,NCC=2

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 5.813: Initial and final graph of the TREE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.412 TREE RANGE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from TREE.

Constraint TREE RANGE(NTREES, R, NODES)

Arguments NTREES : dvar

R : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 0
R ≥ 0
R < |NODES|
|NODES| > 0
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose
Cover the digraph G described by the NODES collection with NTREES trees in such a way
that each vertex ofG belongs to one distinct tree. R is the difference between the longest
and the shortest paths (from a leaf to a root) of the final graph.

1

6 5

8 3 2

7

4
Example


2, 1,

〈
index− 1 succ− 1,
index− 2 succ− 5,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉


The TREE RANGE constraint holds since the graph associated with the items of the
NODES collection corresponds to two trees (i.e., NTREES = 2): each tree respectively
involves the vertices {1, 2, 3, 5, 6, 8} and {4, 7}. Furthermore R = 1 is set to the difference
between the longest path (for example, 2 → 5 → 1) and the shortest path (for example,
4 → 7) from a leaf to a root. Figure 5.814 provides the two trees associated with the
example.

All solutions Figure 5.815 gives all solutions to the following non ground instance of the TREE RANGE

constraint: NTREES ∈ [3, 4], R = 2, S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [1, 4], S4 ∈ [2, 3],
S5 ∈ [3, 4], S6 ∈ [4, 5], TREE RANGE(NTREES, R, 〈S1, S2, S3, S4, S5, S6〉).


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.
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1|1

6|1 5|1

8|5 3|5 2|5 ra
ng

e=
1

7|7

4|7

index− 1 succ− 1
index− 2 succ− 5
index− 3 succ− 5
index− 4 succ− 7
index− 5 succ− 1
index− 6 succ− 1
index− 7 succ− 7
index− 8 succ− 5

NODES

Figure 5.814: The two trees corresponding to the Example slot; each vertex contains
the information index|succ where succ is the index of its father in the tree (by con-
vention the father of the root is the root itself); the longest and shortest paths from a
leaf to a root are respectively shown by thick orange and yellow line segments and have
a length of 2 and 1; consequently the range is equal to 1.

¬ (3,2, 〈11,22,33,24,35,46〉)
 (3,2, 〈11,22,33,24,35,56〉)
® (3,2, 〈11,22,33,24,45,46〉)
¯ (3,2, 〈11,22,33,34,35,46〉)
° (3,2, 〈11,22,33,34,35,56〉)
± (3,2, 〈11,22,33,34,45,46〉)

1 2

4

6

3

5

2 = 3− 1
¬

1 2

4

3

5

6

2 = 3− 1


1 2

4

5 6

3

2 = 3− 1
®

1 2 3

4

6

5

2 = 3− 1
¯

1 2 3

4 5

6

2 = 3− 1
°

1 2 3

4

5 6

2 = 3− 1
±

Figure 5.815: All solutions corresponding to the non ground example of the
TREE RANGE constraint of the All solutions slot, where all vertices of a same tree
are coloured by the same colour; in the left-hand side the index attributes are dis-
played as indices of the succ attribute, while in the right-hand side they are directly
displayed within each node; the bottom left part of each subfigure shows how the R

argument (in red) is related to the longest and to the smallest paths from any leaf to the
corresponding root.

Typical NTREES < |NODES|
|NODES| > 2


Typical
Typical conditions on the arguments of the constraint.
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Symmetry Items of NODES are permutable.

Arg. properties • Functional dependency: NTREES determined by NODES.

• Functional dependency: R determined by NODES.

Reformulation By introducing a distance variable Di, an occurrence variable Oi and a leave variable Li
(1 ≤ i ≤ |NODES|) for each item i of the NODES collection, where:

• Di represents the number of vertices from i to the root of the corresponding tree,

• Oi gives the number of occurrences of value i within variables
NODES[1].succ, NODES[2].succ, . . . , NODES[n].succ,

• Li is set to 1 if item i corresponds to a leave (i.e., Oi > 0) and 0 otherwise,

the TREE RANGE(NTREES, R, NODES) constraint can be expressed in term of a conjunction
of one TREE constraint, |NODES| ELEMENT constraints, |NODES| linear constraints, one
GLOBAL CARDINALITY constraint, |NODES| reified constraints, one OPEN MINIMUM, one
MAXIMUM and one linear constraint, where:

• The TREE constraint models the fact that we have a forest of NTREES trees.

• Each ELEMENT constraint provides the link between the attribute succ of the i-th
item and the distance variable DNODES[i].succ associated with item NODES[i].succ.

• Each linear constraint associated with the i-th item states that the difference between
the distance variable Di and the distance variable DNODES[i].succ is equal to 1.

• The GLOBAL CARDINALITY constraint provides the number of oc-
currences Oi of value i (1 ≤ i ≤ |NODES|) within variables
NODES[1].succ, NODES[2].succ, . . . , NODES[|NODES|].succ. Note that, when
Oi is equal to 0, the corresponding i-th item is a leave of one of the NTREES trees.

• Each reified constraint of the form Li ⇔ Oi > 0 makes the link between the i-th
occurrence variable Oi and the i-th leave variable Li.

• The OPEN MINIMUM constraint computes the minimum distance MIN from the leaves
to the corresponding roots. The leave variable Li is used in order to select only the
distance variables corresponding to leaves.

• The MAXIMUM constraint computes the maximum distance MAX from the vertices to
the roots. Since the maximum is achieved by a leave we do not need to focus just on
the leaves as it was the case for the minimum distance MIN.

• The linear constraint MAX− MIN = R links together argument R to the minimum and
maximum distances.

With respect to the Example slot we get the following conjunction of constraints:
TREE(2, 〈index− 1 succ− 1, index− 2 succ− 5,

index− 3 succ− 5, index− 4 succ− 7,
index− 5 succ− 1, index− 6 succ− 1,
index− 7 succ− 7, index− 8 succ− 5〉),

DOMAIN(〈D1, D2, D3, D4, D5, D6, D7, D8〉, 0, 8),
DS1 ∈ [0, 8], ELEMENT(1, 〈0, D2, D3, D4, D5, D6, D7, D8〉, DS1), D1 − 0 = 1,
DS2 ∈ [0, 8], ELEMENT(5, 〈1, 0, D3, D4, D5, D6, D7, D8〉, DS2), D2 −D5 = 1,
DS3 ∈ [0, 8], ELEMENT(5, 〈1, D2, 0, D4, D5, D6, D7, D8〉, DS3), D3 −D5 = 1,


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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DS4 ∈ [0, 8], ELEMENT(7, 〈1, D2, D3, 0, D5, D6, D7, D8〉, DS4), D4 −D7 = 1,
DS5 ∈ [0, 8], ELEMENT(1, 〈1, D2, D3, D4, 0, D6, D7, D8〉, DS5), D5 − 1 = 1,
DS6 ∈ [0, 8], ELEMENT(1, 〈1, 3, 3, D4, 2, 0, D7, D8〉, DS6), D6 − 1 = 1,
DS7 ∈ [0, 8], ELEMENT(7, 〈1, 3, 3, D4, 2, 2, 0, D8〉, DS7), D7 − 0 = 1,
DS8 ∈ [0, 8], ELEMENT(5, 〈1, 3, 3, 2, 2, 2, 1, 0〉, DS8), D8 − 2 = 1,
GLOBAL CARDINALITY(〈1, 5, 5, 7, 1, 1, 7, 5〉, 〈val− 1 noccurrence− 3,

val− 2 noccurrence− 0,
val− 3 noccurrence− 0,
val− 4 noccurrence− 0,
val− 5 noccurrence− 3,
val− 6 noccurrence− 0,
val− 7 noccurrence− 2,
val− 8 noccurrence− 0〉),

1⇔ 3 > 0, 0⇔ 0 > 0, 0⇔ 0 > 0, 0⇔ 0 > 0,
1⇔ 3 > 0, 0⇔ 0 > 0, 1⇔ 2 > 0, 0⇔ 0 > 0,
OPEN MINIMUM(MIN, 〈var− 3 bool− 1, var− 0 bool− 0,

var− 0 bool− 0, var− 0 bool− 0,
var− 3 bool− 1, var− 0 bool− 0,
var− 2 bool− 1, var− 0 bool− 0〉),

MAXIMUM(MAX, 〈1, 3, 3, 2, 2, 2, 1, 3〉),
MAX− MIN = R = 1.

See also related: BALANCE (balanced tree versus balanced assignment).

root concept: TREE.

used in reformulation: DOMAIN, ELEMENT, GLOBAL CARDINALITY, MAXIMUM,
OPEN MINIMUM, TREE.

Keywords constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component, tree.

modelling: balanced tree, functional dependency.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) •MAX NSCC≤ 1
• NCC= NTREES

• RANGE DRG= R

Graph model Parts (A) and (B) of Figure 5.816 respectively show the initial and final graph associated
with the Example slot. Since we use the RANGE DRG graph property, we respectively dis-
play the longest and shortest paths of the final graph with a bold and a dash line.

NODES

1

2

3

4

5

6

7

8 MAX_NSCC=1,NCC=2
RANGE_DRG=2-1=1

CC#1 CC#2

1:1,1

2:2,5

5:5,1

3:3,5

6:6,1

8:8,5 4:4,7

7:7,7

(A) (B)

Figure 5.816: Initial and final graph of the TREE RANGE constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.413 TREE RESOURCE

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from TREE.

Constraint TREE RESOURCE(RESOURCE, TASK)

Arguments RESOURCE : collection(id−int, nb task−dvar)
TASK : collection(id−int, father−dvar, resource−dvar)

Restrictions |RESOURCE| > 0
required(RESOURCE, [id, nb task])
RESOURCE.id ≥ 1
RESOURCE.id ≤ |RESOURCE|
distinct(RESOURCE, id)
RESOURCE.nb task ≥ 0
RESOURCE.nb task ≤ |TASK|
required(TASK, [id, father, resource])
TASK.id > |RESOURCE|
TASK.id ≤ |RESOURCE|+ |TASK|
distinct(TASK, id)
TASK.father ≥ 1
TASK.father ≤ |RESOURCE|+ |TASK|
TASK.resource ≥ 1
TASK.resource ≤ |RESOURCE|

Purpose

Cover a digraph G in such a way that each vertex belongs to one distinct tree. Each
tree is made up from one resource vertex and several task vertices. The resource ver-
tices correspond to the roots of the different trees. For each resource a domain variable
nb task indicates how many task-vertices belong to the corresponding tree. For each
task a domain variable resource gives the identifier of the resource that can handle the
task.

Example



〈
id− 1 nb task− 4,
id− 2 nb task− 0,
id− 3 nb task− 1

〉
,

〈 id− 4 father− 8 resource− 1,
id− 5 father− 3 resource− 3,
id− 6 father− 8 resource− 1,
id− 7 father− 1 resource− 1,
id− 8 father− 1 resource− 1

〉


The TREE RESOURCE constraint holds since the graph associated with the items of
the RESOURCE and the TASK collections corresponds to 3 trees (i.e., |RESOURCE| = 3):
each tree respectively involves the vertices {1, 4, 6, 7, 8}, {2} and {3, 5}. They are
depicted by Figure 5.817, where resource and task vertices are respectively coloured in
blue and pink.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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RESOURCES

TASKS

i− 1 n− 4
i− 2 n− 0
i− 3 n− 1

(
i for id,
n for nb task

)

i− 4 f− 8 r− 1
i− 5 f− 3 r− 3
i− 6 f− 8 r− 1
i− 7 f− 1 r− 1
i− 8 f− 1 r− 1 i for id,
f for father,
r for resource



1|4

7|1|1 8|1|1

4|8|1 6|8|1

2|0 3|1

5|3|3

Figure 5.817: The three trees corresponding to the Example slot; each resource
vertex (in blue) contains the information id|nb task where nb task is the num-
ber of tasks in the tree, while each task vertex (in pink) contains the information
id|father|resource where father is the index of its father in the tree and resource
is the index of the corresponding root task in the tree.

Typical |RESOURCE| > 0
|TASK| > |RESOURCE|

Symmetries • Items of RESOURCE are permutable.

• Items of TASK are permutable.

Reformulation The TREE RESOURCE(RESOURCE, TASK) constraint can be expressed in term of a conjunc-
tion of one TREE constraint, |TASK| ELEMENT constraints and one GLOBAL CARDINALITY

constraint:

• The TREE constraint expresses the fact that we have a well formed tree.

• The ELEMENT constraint is used for expressing the link between the father attribute
of an item of the TASK collection and its corresponding resource attribute.

• The GLOBAL CARDINALITY constraint is used to link the resource attribute of the
items of the TASK collection with the nb task attribute of the items of the RESOURCE
collection.

With respect to the Example slot we get the following conjunction of constraints:
TREE(3, 〈index− 1 succ− 1,

index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 8,
index− 5 succ− 3,
index− 6 succ− 8,
index− 7 succ− 1,
index− 8 succ− 1〉),

ELEMENT(8, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.
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ELEMENT(3, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 3),
ELEMENT(8, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
ELEMENT(1, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
ELEMENT(1, 〈1, 2, 3, 1, 3, 1, 1, 1〉, 1),
GLOBAL CARDINALITY(〈1, 3, 1, 1, 1〉,

〈val− 1 noccurrence− 4,
val− 2 noccurrence− 0,
val− 3 noccurrence− 1〉).

See also root concept: TREE.

used in reformulation: ELEMENT, GLOBAL CARDINALITY, TREE.

Keywords characteristic of a constraint: derived collection.

constraint type: graph constraint, resource constraint, graph partitioning constraint.

final graph structure: tree, connected component.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection

col



RESOURCE TASK−collection

 index−int,
succ−dvar,
name−dvar

 ,
item

 index− RESOURCE.id,
succ− RESOURCE.id,
name− RESOURCE.id

 ,

item

 index− TASK.id,
succ− TASK.father,
name− TASK.resource






Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name

Graph property(ies) •MAX NSCC≤ 1
• NCC= |RESOURCE|
• NVERTEX= |RESOURCE|+ |TASK|

For all items of RESOURCE:

Arc input(s) RESOURCE TASK

Arc generator CLIQUE 7→collection(resource task1, resource task2)

Arc arity 2

Arc constraint(s) • resource task1.succ = resource task2.index
• resource task1.name = resource task2.name
• resource task1.name = RESOURCE.id

Graph property(ies) NVERTEX= RESOURCE.nb task + 1

Graph model For the second graph constraint, part (A) of Figure 5.818 shows the initial graphs associated
with resources 1, 2 and 3 of the Example slot. For the second graph constraint, part (B)
of Figure 5.818 shows the corresponding final graphs associated with resources 1, 2 and 3.
Since we use the NVERTEX graph property, the vertices of the final graphs are stressed
in bold. To each resource corresponds a tree of respectively 4, 0 and 1 task-vertices.

Signature Since the initial graph of the first graph constraint contains |RESOURCE| + |TASK| ver-
tices, the corresponding final graph cannot have more than |RESOURCE| + |TASK| vertices.
Therefore we can rewrite the graph property NVERTEX = |RESOURCE| + |TASK| to
NVERTEX ≥ |RESOURCE|+ |TASK| and simplify NVERTEX to NVERTEX.


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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RESOURCE_TASK

1

2

3

4

5

6

7

8
1:NVERTEX=5
2:NVERTEX=1
3:NVERTEX=2

RESOURCE:1 RESOURCE:2 RESOURCE:3

1:1,1,1

4:4,8,1

8:8,1,1

6:6,8,1

7:7,1,1

2:2,2,2

3:3,3,3

5:5,3,3

(A) (B)

Figure 5.818: Initial and final graph of the TREE RESOURCE constraint
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5.414 TWIN

I B C J DESCRIPTION LINKS

Origin Pairs of variables related by hiden ELEMENT constraints sharing the same table.

Constraint TWIN(PAIRS)

Argument PAIRS : collection(x−dvar, y−dvar)

Restrictions required(PAIRS, x)
required(PAIRS, y)
|PAIRS| > 0

Purpose Enforce the condition PAIRS[i].x = u ∧ PAIRS[i].y = v (i ∈ [1, |PAIRS|]) ⇒ ∀j ∈
[1, |PAIRS|] : PAIRS[j].x = u⇔ PAIRS[j].y = v.

Example


〈 x− 1 y− 8,

x− 9 y− 6,
x− 1 y− 8,
x− 5 y− 0,
x− 6 y− 7,
x− 9 y− 6

〉


The TWIN constraint holds since 1 is paired with 8, 9 is paired with 6, 5 is paired
with 0, 6 is paired with 7.

Typical |PAIRS| > 1
|PAIRS| >nval(PAIRS.x)
|PAIRS| >nval(PAIRS.y)
nval(PAIRS.x) > 1
nval(PAIRS.y) > 1
nval(PAIRS.x) =nval(PAIRS.y)
nval(PAIRS.x) < |PAIRS|
nval(PAIRS.y) < |PAIRS|

Arg. properties Contractible wrt. PAIRS.

See also implied by: CIRCUIT, DERANGEMENT, PROPER CIRCUIT,
SYMMETRIC ALLDIFFERENT LOOP.

related: ELEMENT (pairs linked by an element with the same table).

Keywords characteristic of a constraint: pair.

constraint type: predefined constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.415 TWO LAYER EDGE CROSSING

I B C J DESCRIPTION LINKS GRAPH

Origin Inspired by [212].

Constraint TWO LAYER EDGE CROSSING


NCROSS,
VERTICES LAYER1,
VERTICES LAYER2,
EDGES


Arguments NCROSS : dvar

VERTICES LAYER1 : collection(id−int, pos−dvar)
VERTICES LAYER2 : collection(id−int, pos−dvar)
EDGES : collection(id−int, vertex1−int, vertex2−int)

Restrictions NCROSS ≥ 0
required(VERTICES LAYER1, [id, pos])
VERTICES LAYER1.id ≥ 1
VERTICES LAYER1.id ≤ |VERTICES LAYER1|
distinct(VERTICES LAYER1, id)
distinct(VERTICES LAYER1, pos)
required(VERTICES LAYER2, [id, pos])
VERTICES LAYER2.id ≥ 1
VERTICES LAYER2.id ≤ |VERTICES LAYER2|
distinct(VERTICES LAYER2, id)
distinct(VERTICES LAYER2, pos)
required(EDGES, [id, vertex1, vertex2])
EDGES.id ≥ 1
EDGES.id ≤ |EDGES|
distinct(EDGES, id)
EDGES.vertex1 ≥ 1
EDGES.vertex1 ≤ |VERTICES LAYER1|
EDGES.vertex2 ≥ 1
EDGES.vertex2 ≤ |VERTICES LAYER2|

Purpose NCROSS is the number of line segments intersections.

Example


2, 〈id− 1 pos− 1, id− 2 pos− 2〉 ,
〈id− 1 pos− 3, id− 2 pos− 1, id− 3 pos− 2〉 ,〈

id− 1 vertex1− 2 vertex2− 2,
id− 2 vertex1− 2 vertex2− 3,
id− 3 vertex1− 1 vertex2− 1

〉


Figure 5.819 provides a picture of the example, where one can see the two line
segments intersections. Each line segment of Figure 5.819 is labelled with its identifier and


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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corresponds to an item of the EDGES collection. The two vertices on top of Figure 5.819
correspond to the items of the VERTICES LAYER1 collection, while the three other vertices
are associated with the items of VERTICES LAYER2.

1 2
1 2

31 2
2 3 1

31 2

VERTICES LAYER1

id

pos

pos

id

E
D
G
E
S

VERTICES LAYER2

NCROSS= 2

Figure 5.819: Intersection between line segments join-
ing two layers of the Example slot for the constraint
TWO LAYER EDGE CROSSING(NCROSS, VERTICES LAYER1, VERTICES LAYER2, EDGES)

Typical |VERTICES LAYER1| > 1
|VERTICES LAYER2| > 1
|EDGES| ≥ |VERTICES LAYER1|
|EDGES| ≥ |VERTICES LAYER2|

Symmetries • Arguments are permutable w.r.t. permutation (NCROSS)
(VERTICES LAYER1, VERTICES LAYER2) (EDGES).

• Items of VERTICES LAYER1 are permutable.

• Items of VERTICES LAYER2 are permutable.

Arg. properties Functional dependency: NCROSS determined by VERTICES LAYER1, VERTICES LAYER2

and EDGES.

Remark The two-layer edge crossing minimisation problem was proved to be NP-hard in [195].

See also common keyword: CROSSING, GRAPH CROSSING (line segments intersection).

Keywords characteristic of a constraint: derived collection.

constraint arguments: pure functional dependency.

geometry: geometrical constraint, line segments intersection.

miscellaneous: obscure.

modelling: functional dependency.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Derived Collection

col

 EDGES EXTREMITIES−collection(layer1−dvar, layer2−dvar),[
item

(
layer1− EDGES.vertex1(VERTICES LAYER1, pos, id),
layer2− EDGES.vertex2(VERTICES LAYER2, pos, id)

) ] 
Arc input(s) EDGES EXTREMITIES

Arc generator CLIQUE(<) 7→collection(edges extremities1, edges extremities2)

Arc arity 2

Arc constraint(s)
∨

∧( edges extremities1.layer1 < edges extremities2.layer1,
edges extremities1.layer2 > edges extremities2.layer2

)
,∧( edges extremities1.layer1 > edges extremities2.layer1,

edges extremities1.layer2 < edges extremities2.layer2

)


Graph property(ies) NARC= NCROSS

Graph model As usual for the two-layer edge crossing problem [212], [24], positions of the vertices
on each layer are represented as a permutation of the vertices. We generate a derived
collection that, for each edge, contains the position of its extremities on both layers. In
the arc generator we use the restriction < in order to generate a single arc for each pair of
segments. This is required, since otherwise we would count more than once a line segments
intersection.

Parts (A) and (B) of Figure 5.820 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

EDGES_EXTREMITIES

1

2

3

NARC=2

3:1,3

1:2,1 2:2,2

(A) (B)

Figure 5.820: Initial and final graph of the TWO LAYER EDGE CROSSING constraint


Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.416 TWO ORTH ARE IN CONTACT

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin [369], used for defining ORTHS ARE CONNECTED.

Constraint TWO ORTH ARE IN CONTACT(ORTHOTOPE1, ORTHOTOPE2)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz > 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
ORTH LINK ORI SIZ END(ORTHOTOPE1)
ORTH LINK ORI SIZ END(ORTHOTOPE2)

Purpose

Enforce the following conditions on two orthotopes O1 and O2:

• For all dimensions i, except one dimension, the projections of O1 and O2 onto i
have a non-empty intersection.

• For all dimensions i, the distance between the projections of O1 and O2 onto i is
equal to 0.

Example
(
〈ori− 1 siz− 3 end− 4, ori− 5 siz− 2 end− 7〉 ,
〈ori− 3 siz− 2 end− 5, ori− 2 siz− 3 end− 5〉

)
Figure 5.821 shows the two rectangles of the example. The TWO ORTH ARE IN CONTACT

constraint holds since the two rectangles are in contact: the contact is depicted by a pink
line-segment.

Typical |ORTHOTOPE| > 1

Symmetries • Arguments are permutable w.r.t. permutation (ORTHOTOPE1, ORTHOTOPE2).

• Items of ORTHOTOPE1 and ORTHOTOPE2 are permutable (same permutation used).

Used in ORTHS ARE CONNECTED.

See also implies: TWO ORTH DO NOT OVERLAP.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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R1: 〈ori− 1 siz− 3 end− 4, ori− 5 siz− 2 end− 7〉
R2: 〈ori− 3 siz− 2 end− 5, ori− 2 siz− 3 end− 5〉

ORTHOTOPES (rectangles)

Figure 5.821: The two rectangles that are in contact of the Example slot where the
contact is shown in pink

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: logic.

filtering: arc-consistency.

geometry: geometrical constraint, touch, contact, non-overlapping, orthotope.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) • orthotope1.end > orthotope2.ori
• orthotope2.end > orthotope1.ori

Graph property(ies) NARC= |ORTHOTOPE1| − 1

Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) max

(
0,

max(orthotope1.ori, orthotope2.ori)−
min(orthotope1.end, orthotope2.end)

)
= 0

Graph property(ies) NARC= |ORTHOTOPE1|

Graph model Parts (A) and (B) of Figure 5.822 respectively show the initial and final graph associated
with the first graph constraint of the Example slot. Since we use the NARC graph prop-
erty, the unique arc of the final graph is stressed in bold. It corresponds to the fact that the
projection onto dimension 1 of the two rectangles of the example overlap.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

1:3,2,5

(A) (B)

Figure 5.822: Initial and final graph of the TWO ORTH ARE IN CONTACT constraint

Signature Consider the second graph constraint. Since we use the arc generator PRODUCT (=
) on the collections ORTHOTOPE1 and ORTHOTOPE2, and because of the restriction
|ORTHOTOPE1| = |ORTHOTOPE2|, the maximum number of arcs of the corresponding final
graph is equal to |ORTHOTOPE1|. Therefore we can rewrite the graph property NARC =
|ORTHOTOPE1| to NARC ≥ |ORTHOTOPE1| and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Automaton Figure 5.823 depicts the automaton associated with the TWO ORTH ARE IN CONTACT

constraint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end

attributes of the ith item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i re-
spectively be the ori, the siz and the end attributes of the ith item of the ORTHOTOPE2

collection. To each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a
signature variable Si, which takes its value in {0, 1, 2}, as well as the following signature
constraint:

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i))⇔ Si = 0

((SIZ1i > 0) ∧ (SIZ2i > 0) ∧ (END1i = ORI2i ∨ END2i = ORI1i))⇔ Si = 1.

s

t

SIZ1i > 0 ∧ SIZ2i > 0 ∧
END1i > ORI2i ∧ END2i > ORI1i

SIZ1i > 0 ∧ SIZ2i > 0 ∧
(END1i = ORI2i ∨ END2i = ORI1i)

SIZ1i > 0 ∧ SIZ2i > 0 ∧
END1i > ORI2i ∧ END2i > ORI1i

Figure 5.823: Automaton of the TWO ORTH ARE IN CONTACT constraint

Q0 = s Q1

S1 S2

Qn = t

Sn

ORI11

SIZ11

END11

ORI21

SIZ21

END21

ORI12

SIZ12

END12

ORI22

SIZ22

END22

ORI1n

SIZ1n

END1n

ORI2n

SIZ2n

END2n

Figure 5.824: Hypergraph of the reformulation corresponding to the automaton of the
TWO ORTH ARE IN CONTACT constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.417 TWO ORTH COLUMN

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining DIFFN COLUMN.

Constraint TWO ORTH COLUMN(ORTHOTOPE1, ORTHOTOPE2, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
ORTH LINK ORI SIZ END(ORTHOTOPE1)
ORTH LINK ORI SIZ END(ORTHOTOPE2)
DIM > 0
DIM ≤ |ORTHOTOPE1|

Purpose

Let P1 and P2 respectively denote the projections of ORTHOTOPE1 and ORTHOTOPE2

onto dimension DIM. If P1 and P2 overlap then the size of their intersection is equal
to the size of ORTHOTOPE1 in dimension DIM, as well as to the size of ORTHOTOPE2 in
dimension DIM.

Example
(
〈ori− 1 siz− 3 end− 4, ori− 1 siz− 1 end− 2〉 ,
〈ori− 4 siz− 2 end− 6, ori− 1 siz− 3 end− 4〉 , 1

)

Typical |ORTHOTOPE| > 1

Symmetry Arguments are permutable w.r.t. permutation (ORTHOTOPE1, ORTHOTOPE2) (DIM).

Used in DIFFN COLUMN.

See also implies: TWO ORTH INCLUDE.

related: DIFFN (an extension of the DIFFN constraint).

Keywords constraint type: logic.

geometry: geometrical constraint, positioning constraint, orthotope, guillotine cut.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:1,3,4

(A) (B)

Figure 5.825: Initial and final graph of the TWO ORTH COLUMN constraint
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Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)
∧


orthotope1.key = DIM,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

⇒

∧
min(orthotope1.end, orthotope2.end)−
max(orthotope1.ori, orthotope2.ori)

=

orthotope1.siz
,

orthotope1.siz = orthotope2.siz


Graph property(ies) NARC= 1
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5.418 TWO ORTH DO NOT OVERLAP

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin Used for defining DIFFN.

Constraint TWO ORTH DO NOT OVERLAP(ORTHOTOPE1, ORTHOTOPE2)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
ORTH LINK ORI SIZ END(ORTHOTOPE1)
ORTH LINK ORI SIZ END(ORTHOTOPE2)

Purpose For two orthotopes O1 and O2 enforce that there exists at least one dimension i such
that the projections on i of O1 and O2 do not overlap.

Example
(
〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉 ,
〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 6〉

)
Figure 5.826 represents the respective position of the two rectangles of the exam-
ple. The coordinates of the leftmost lowest corner of each rectangle are stressed in bold.
The TWO ORTH DO NOT OVERLAP constraint holds since the two rectangles do not
overlap.

Typical |ORTHOTOPE| > 1

Symmetries • Arguments are permutable w.r.t. permutation (ORTHOTOPE1, ORTHOTOPE2).

• Items of ORTHOTOPE1 and ORTHOTOPE2 are permutable (same permutation used).

• ORTHOTOPE1.siz can be decreased to any value ≥ 0.

• ORTHOTOPE2.siz can be decreased to any value ≥ 0.

Used in DIFFN.

See also implied by: TWO ORTH ARE IN CONTACT.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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R1: 〈ori− 2 siz− 2 end− 4, ori− 1 siz− 3 end− 4〉
R2: 〈ori− 4 siz− 4 end− 8, ori− 3 siz− 3 end− 6〉

ORTHOTOPES (rectangles)

Figure 5.826: The two non overlapping rectangles of the Example slot

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: logic.

filtering: arc-consistency, constructive disjunction.

final graph structure: bipartite, no loop.

geometry: geometrical constraint, non-overlapping, orthotope.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator SYMMETRIC PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s) orthotope1.end ≤ orthotope2.ori ∨ orthotope1.siz = 0

Graph property(ies) NARC≥ 1

Graph class • BIPARTITE
• NO LOOP

Graph model We build an initial graph where each arc corresponds to the fact that, either the projection
of an orthotope on a given dimension is empty, either it is located before the projection in
the same dimension of the other orthotope. Finally we ask that at least one arc constraint
remains in the final graph.

Parts (A) and (B) of Figure 5.827 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the unique arc of the final
graph is stressed in bold. It corresponds to the fact that the projection in dimension 1 of
the first orthotope is located before the projection in dimension 1 of the second orthotope.
Therefore the two orthotopes do not overlap.

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:2,2,4

1:4,4,8

(A) (B)

Figure 5.827: Initial and final graph of the TWO ORTH DO NOT OVERLAP constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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Automaton Figure 5.828 depicts the automaton associated with the TWO ORTH DO NOT OVERLAP

constraint. Let ORI1i, SIZ1i and END1i respectively be the ori, the siz and the end

attributes of the ith item of the ORTHOTOPE1 collection. Let ORI2i, SIZ2i and END2i
respectively be the ori, the siz and the end attributes of the ith item of the ORTHOTOPE2
collection. To each sextuple (ORI1i, SIZ1i, END1i, ORI2i, SIZ2i, END2i) corresponds a 0-
1 signature variable Si as well as the following signature constraint: ((SIZ1i > 0) ∧
(SIZ2i > 0) ∧ (END1i > ORI2i) ∧ (END2i > ORI1i))⇔ Si.

s

t

SIZ1i > 0 ∧ SIZ2i > 0 ∧
END1i > ORI2i ∧ END2i > ORI1i

SIZ1i = 0 ∨ SIZ2i = 0 ∨
END1i ≤ ORI2i ∨ END2i ≤ ORI1i

SIZ1i > 0 ∧ SIZ2i > 0 ∧
END1i > ORI2i ∧ END2i > ORI1i

SIZ1i = 0 ∨ SIZ2i = 0 ∨
END1i ≤ ORI2i ∨ END2i ≤ ORI1i

Figure 5.828: Automaton of the TWO ORTH DO NOT OVERLAP constraint
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Figure 5.829: Hypergraph of the reformulation corresponding to the automaton of the
TWO ORTH DO NOT OVERLAP constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.419 TWO ORTH INCLUDE

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining DIFFN INCLUDE.

Constraint TWO ORTH INCLUDE(ORTHOTOPE1, ORTHOTOPE2, DIM)

Type ORTHOTOPE : collection(ori−dvar, siz−dvar, end−dvar)

Arguments ORTHOTOPE1 : ORTHOTOPE

ORTHOTOPE2 : ORTHOTOPE

DIM : int

Restrictions |ORTHOTOPE| > 0
require at least(2, ORTHOTOPE, [ori, siz, end])
ORTHOTOPE.siz ≥ 0
ORTHOTOPE.ori ≤ ORTHOTOPE.end
|ORTHOTOPE1| = |ORTHOTOPE2|
ORTH LINK ORI SIZ END(ORTHOTOPE1)
ORTH LINK ORI SIZ END(ORTHOTOPE2)
DIM > 0
DIM ≤ |ORTHOTOPE1|

Purpose
Let P1 and P2 respectively denote the projections of ORTHOTOPE1 and ORTHOTOPE2

onto dimension DIM. If P1 and P2 overlap then, either P1 is included in P2, either P2 is
included in P1.

Example
(
〈ori− 1 siz− 3 end− 4, ori− 1 siz− 1 end− 2〉 ,
〈ori− 1 siz− 2 end− 3, ori− 2 siz− 3 end− 5〉 , 1

)

ORTHOTOPE1

ORTHOTOPE2

1

1

2

2

NARC=1

1:1,3,4

2:2,3,5

(A) (B)

Figure 5.830: Initial and final graph of the TWO ORTH INCLUDE constraint


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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Typical |ORTHOTOPE| > 1

Symmetry Arguments are permutable w.r.t. permutation (ORTHOTOPE1, ORTHOTOPE2) (DIM).

Used in DIFFN INCLUDE.

See also implied by: TWO ORTH COLUMN.

related: DIFFN (an extension of the DIFFN constraint).

Keywords constraint type: logic.

geometry: geometrical constraint, positioning constraint, orthotope.


Typical
Typical condition on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) ORTHOTOPE1 ORTHOTOPE2

Arc generator PRODUCT (=) 7→collection(orthotope1, orthotope2)

Arc arity 2

Arc constraint(s)
∧


orthotope1.key = DIM,
orthotope1.ori < orthotope2.end,
orthotope2.ori < orthotope1.end,
orthotope1.siz > 0,
orthotope2.siz > 0

⇒
min(orthotope1.end, orthotope2.end)−
max(orthotope1.ori, orthotope2.ori)

=

min(orthotope1.siz, orthotope2.siz)

Graph property(ies) NARC= 1
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5.420 USED BY

I B C J DESCRIPTION LINKS GRAPH AUTOMATON

Origin N. Beldiceanu

Constraint USED BY(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose All the values of the variables of collection VARIABLES2 are used by the variables of
collection VARIABLES1.

Example (〈1, 9, 1, 5, 2, 1〉 , 〈1, 1, 2, 5〉)

The USED BY constraint holds since, for each value occurring within the
collection VARIABLES2 = 〈1, 1, 2, 5〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 1, 5, 2, 1〉 is greater than or equal to its number of occurrences
within VARIABLES2:

• Value 1 occurs 3 times within 〈1, 9, 1, 5, 2, 1〉 and 2 times within 〈1, 1, 2, 5〉.

• Value 2 occurs 1 times within 〈1, 9, 1, 5, 2, 1〉 and 1 times within 〈1, 1, 2, 5〉.

• Value 5 occurs 1 times within 〈1, 9, 1, 5, 2, 1〉 and 1 times within 〈1, 1, 2, 5〉.

All solutions Figure 5.831 gives all solutions to the following non ground instance of the USED BY

constraint: U1 ∈ {1, 5}, U2 ∈ [1, 2], U3 ∈ [1, 2], V1 ∈ [0, 2], V2 ∈ [2, 4],
USED BY(〈U1, U2, U3〉, 〈V1, V2〉).

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1

Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.
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¬ (〈1,1,2〉, 〈1,2〉)
 (〈1,2,1〉, 〈1,2〉)
® (〈1,2,2〉, 〈1,2〉)
¯ (〈1,2,2〉, 〈2,2〉)
° (〈5,1,2〉, 〈1,2〉)
± (〈5,2,1〉, 〈1,2〉)
² (〈5,2,2〉, 〈2,2〉)

Figure 5.831: All solutions corresponding to the non ground example of the USED BY
constraint of the All solutions slot where identical values are coloured in the same way
in both collections

Arg. properties • Contractible wrt. VARIABLES2.

• Extensible wrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union).

Algorithm As described in [53] we can pad VARIABLES2 with dummy variables such that its cardi-
nality will be equal to that cardinality of VARIABLES1. The domain of a dummy variable
contains all of the values. Then, we have a SAME constraint between the two sets. Direct
arc-consistency and bound-consistency algorithms based on a flow model are also proposed
in [53, 55, 242]. The leftmost part of Figure 3.31 illustrates this flow model.

More recently [138, 139] presents a second filtering algorithm also achieving arc-
consistency based on a mapping of the solutions to the USED BY constraint to var-perfect
matchings17 in a bipartite intersection graph derived from the domain of the variables of
the constraint in the following way. To each variable of the VARIABLES1 and VARIABLES2

collection corresponds a vertex of the intersection graph. There is an edge between a ver-
tex associated with a variable of the VARIABLES1 collection and a vertex associated with
a variable of the VARIABLES2 collection if and only if the corresponding variables have at
least one value in common in their domains.

Reformulation The USED BY(〈var−U1 var−U2, . . . , var−U|VARIABLES1|〉, 〈var−V1 var−V2, . . . , var−
V|VARIABLES2|〉) constraint can be expressed in term of a conjunction of |VARIABLES2| reified
constraints of the form:∑

1≤j≤|VARIABLES1|(Vi = Uj) ≥
∑

1≤j≤|VARIABLES2|(Vi = Vj) (i ∈ [1, |VARIABLES2|]).

Used in INT VALUE PRECEDE CHAIN, K USED BY.

See also generalisation: USED BY INTERVAL (variable replaced by variable/constant),
USED BY MODULO (variable replaced by variable mod constant),
USED BY PARTITION (variable replaced by variable ∈ partition).

implied by: SAME.

implies: USES.

17A var-perfect matching is a maximum matching covering all vertices corresponding to the variables of
VARIABLES2.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.
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soft variant: SOFT USED BY VAR (variable-based violation measure).

system of constraints: K USED BY.

Keywords characteristic of a constraint: sort based reformulation, automaton, automaton with array
of counters.

combinatorial object: multiset.

constraint arguments: constraint between two collections of variables.

filtering: flow, bipartite matching, arc-consistency, bound-consistency, DFS-bottleneck.

modelling: inclusion.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) • for all connected components: NSOURCE≥NSINK
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.832 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to
the arc constraint. Note that the vertex corresponding to the variable assigned to value 9
was removed from the final graph since there is no arc for which the associated equality
constraint holds. The USED BY constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234

2 3456

(B)
CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1

NSINK=4
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1:1 2:1
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4:5
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Figure 5.832: Initial and final graph of the USED BY constraint
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Automaton Figure 5.833 depicts the automaton associated with the USED BY constraint. To each item
of the collection VARIABLES1 corresponds a signature variable Si that is equal to 0. To
each item of the collection VARIABLES2 corresponds a signature variable Si+|VARIABLES1|
that is equal to 1.

ARITH(C,≥, 0)

s{C[ ]← 0}

t

0,
{C[VARi]← C[VARi]− 1}

1,
{C[VARi]← C[VARi] + 1}

1,
{C[VARi]← C[VARi] + 1}

Figure 5.833: Automaton of the USED BY constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.421 USED BY INTERVAL

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY.

Constraint USED BY INTERVAL(VARIABLES1, VARIABLES2, SIZE INTERVAL)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
SIZE INTERVAL : int

Restrictions |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
SIZE INTERVAL > 0

Purpose

Let Ni (respectively Mi) denote the number of variables of the collection VARIABLES1

(respectively VARIABLES2) that take a value in the interval [SIZE INTERVAL ·
i, SIZE INTERVAL · i + SIZE INTERVAL − 1]. For all integer i we have Mi > 0 ⇒
Ni ≥Mi.

Example (〈1, 9, 1, 8, 6, 2〉 , 〈1, 0, 7, 7〉 , 3)

In the example, the third argument SIZE INTERVAL = 3 defines the following
family of intervals [3 · k, 3 · k + 2], where k is an integer. Consequently the values of
the collection VARIABLES2 = 〈1, 0, 7, 7〉 are respectively located within intervals [0, 2],
[0, 2], [6, 8], [6, 8]. Therefore intervals [0, 2] and [6, 8] are respectively used 2 and 2 times.

Similarly, the values of the collection VARIABLES1 = 〈1, 9, 1, 8, 6, 2〉 are respectively
located within intervals [0, 2], [9, 11], [0, 2], [6, 8], [6, 8], [0, 2]. Therefore intervals [0, 2],
[6, 8] and [9, 11] are respectively used 3, 2 and 1 times.

Consequently, the USED BY INTERVAL constraint holds since, for each interval associ-
ated with the collection VARIABLES2 = 〈1, 0, 7, 7〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 1, 8, 6, 2〉 is greater than or equal to its number of occurrences within
VARIABLES2:

• Interval [0, 2] occurs 3 times within 〈1, 9, 1, 8, 6, 2〉 and 2 times within 〈1, 0, 7, 7〉.
• Interval [6, 8] occurs 2 times within 〈1, 9, 1, 8, 6, 2〉 and 2 times within 〈1, 0, 7, 7〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
SIZE INTERVAL > 1
SIZE INTERVAL <range(VARIABLES1.var)
SIZE INTERVAL <range(VARIABLES2.var)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value of VARIABLES1.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

• An occurrence of a value of VARIABLES2.var that belongs to the k-th interval, of
size SIZE INTERVAL, can be replaced by any other value of the same interval.

Arg. properties • Contractible wrt. VARIABLES2.

• Extensible wrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union), SIZE INTERVAL(id).

Reformulation The USED BY INTERVAL(〈var−U1 var−U2, . . . , var−U|VARIABLES1|〉, 〈var−V1 var−
V2, . . . , var− V|VARIABLES2|〉, SIZE INTERVAL) constraint can be expressed by introducing
|VARIABLES1|+ |VARIABLES2| quotient variables
Ui = SIZE INTERVAL·Pi+Ri,Ri ∈ [0, SIZE INTERVAL−1] (i ∈ [1, |VARIABLES1|]),
Vi = SIZE INTERVAL·Qi+Si, Si ∈ [0, SIZE INTERVAL−1] (i ∈ [1, |VARIABLES2|]),

in term of a conjunction of |VARIABLES2| reified constraints of the form:∑
1≤j≤|VARIABLES1|(Qi = Pj) ≥

∑
1≤j≤|VARIABLES2|(Qi = Qj) (i ∈ [1, |VARIABLES2|]).

Used in K USED BY INTERVAL.

See also implied by: SAME INTERVAL.

soft variant: SOFT USED BY INTERVAL VAR (variable-based violation measure).

specialisation: USED BY (variable/constant replaced by variable).

system of constraints: K USED BY INTERVAL.

Keywords characteristic of a constraint: sort based reformulation.

constraint arguments: constraint between two collections of variables.

modelling: inclusion, interval.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var/SIZE INTERVAL =
variables2.var/SIZE INTERVAL

Graph property(ies) • for all connected components: NSOURCE≥NSINK
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.834 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The USED BY INTERVAL constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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(A)

VARIABLES1

VARIABLES2

1

1234

2 3456

(B)
CC#1:NSINK=2,CC#2:NSINK=1,CC#3:NSINK=1

NSINK=4

CC#1 CC#2 CC#3

1:1

1:1 2:0

3:16:2 4:8

4:7

5:6

3:7

Figure 5.834: Initial and final graph of the USED BY INTERVAL constraint
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5.422 USED BY MODULO

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY.

Constraint USED BY MODULO(VARIABLES1, VARIABLES2, M)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
M : int

Restrictions |VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
M > 0

Purpose
For each integer R in [0, M − 1], let N1R (respectively N2R) denote the number of
variables of VARIABLES1 (respectively VARIABLES2) that haveR as a rest when divided
by M. For all R in [0, M− 1] we have N2R > 0⇒ N1R ≥ N2R.

Example (〈1, 9, 4, 5, 2, 1〉 , 〈7, 1, 2, 5〉 , 3)

The values of the collection VARIABLES2 = 〈7, 1, 2, 5〉 are respectively associated
with the equivalence classes 7 mod 3 = 1, 1 mod 3 = 1, 2 mod 3 = 2, 5 mod 3 = 2.
Therefore the equivalence classes 1 and 2 are respectively used 2 and 2 times.

Similarly, the values of the collection VARIABLES1 = 〈1, 9, 4, 5, 2, 1〉 associated with the
equivalence classes 1 mod 3 = 1, 9 mod 3 = 0, 4 mod 3 = 1, 5 mod 3 = 2, 2 mod 3 = 2,
1 mod 3 = 1. Therefore the equivalence classes 0, 1 and 2 are respectively used 1, 3 and
2 times.

Consequently, the USED BY MODULO constraint holds since, for each equivalence class
associated with the collection VARIABLES2 = 〈7, 1, 2, 5〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 4, 5, 2, 1〉 is greater than or equal to its number of occurrences within
VARIABLES2:

• The equivalence class 1 occurs 3 times within 〈1, 9, 4, 5, 2, 1〉 and 2 times within
〈7, 1, 2, 5〉.

• The equivalence class 2 occurs 2 times within 〈1, 9, 4, 5, 2, 1〉 and 2 times within
〈7, 1, 2, 5〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
M > 1
M <maxval(VARIABLES1.var)
M <maxval(VARIABLES2.var)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• An occurrence of a value u of VARIABLES1.var can be replaced by any other
value v such that v is congruent to u modulo M.

• An occurrence of a value u of VARIABLES2.var can be replaced by any other
value v such that v is congruent to u modulo M.

Arg. properties • Contractible wrt. VARIABLES2.

• Extensible wrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union), M(id).

Used in K USED BY MODULO.

See also implied by: SAME MODULO.

soft variant: SOFT USED BY MODULO VAR (variable-based violation measure).

specialisation: USED BY (variable mod constant replaced by variable).

system of constraints: K USED BY MODULO.

Keywords characteristic of a constraint: modulo, sort based reformulation.

constraint arguments: constraint between two collections of variables.

modelling: inclusion.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var mod M = variables2.var mod M

Graph property(ies) • for all connected components: NSOURCE≥NSINK
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.835 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The USED BY MODULO constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Figure 5.835: Initial and final graph of the USED BY MODULO constraint
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5.423 USED BY PARTITION

I B C J DESCRIPTION LINKS GRAPH

Origin Derived from USED BY.

Constraint USED BY PARTITION(VARIABLES1, VARIABLES2, PARTITIONS)

Type VALUES : collection(val−int)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)
PARTITIONS : collection(p− VALUES)

Restrictions |VALUES| ≥ 1
required(VALUES, val)
distinct(VALUES, val)
|VARIABLES1| ≥ |VARIABLES2|
required(VARIABLES1, var)
required(VARIABLES2, var)
required(PARTITIONS, p)
|PARTITIONS| ≥ 2

Purpose

For each integer i in [1, |PARTITIONS|], let N1 i (respectively N2 i) denote the number
of variables of VARIABLES1 (respectively VARIABLES2) that take their values in the
ith partition of the collection PARTITIONS. For all i in [1, |PARTITIONS|] we have
N2 i > 0⇒ N1 i ≥ N2 i.

Example

 〈1, 9, 1, 6, 2, 3〉 ,〈1, 3, 6, 6〉 ,
〈p− 〈1, 3〉 , p− 〈4〉 , p− 〈2, 6〉〉


The different values of the collection VARIABLES2 = 〈1, 3, 6, 6〉 are respectively
associated with the partitions p− 〈1, 3〉, p− 〈1, 3〉, p− 〈2, 6〉, and p − 〈2, 6〉. Therefore
partitions p− 〈1, 3〉 and p− 〈2, 6〉 are respectively used 2 and 2 times.

Similarly, the different values of the collection VARIABLES1 = 〈1, 9, 1, 6, 2, 3〉 (except
value 9, which does not occur in any partition) are respectively associated with the parti-
tions p − 〈1, 3〉, p − 〈1, 3〉, p − 〈2, 6〉, p − 〈2, 6〉, and p − 〈1, 3〉. Therefore partitions
p− 〈1, 3〉 and p− 〈2, 6〉 are respectively used 3 and 2 times.

Consequently, the USED BY PARTITION constraint holds since, for each partition asso-
ciated with the collection VARIABLES2 = 〈1, 3, 6, 6〉, its number of occurrences within
VARIABLES1 = 〈1, 9, 1, 6, 2, 3〉 is greater than or equal to its number of occurrences within
VARIABLES2:

• Partition p − 〈1, 3〉 occurs 3 times within 〈1, 9, 1, 6, 2, 3〉 and 2 times within
〈1, 3, 6, 6〉.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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• Partition p − 〈2, 6〉 occurs 2 times within 〈1, 9, 1, 6, 2, 3〉 and 2 times within
〈1, 3, 6, 6〉.

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
|VARIABLES1| > |PARTITIONS|
|VARIABLES2| > |PARTITIONS|

Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• Items of PARTITIONS are permutable.

• Items of PARTITIONS.p are permutable.

• An occurrence of a value of VARIABLES1.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

• An occurrence of a value of VARIABLES2.var can be replaced by any other value
that also belongs to the same partition of PARTITIONS.

Arg. properties • Contractible wrt. VARIABLES2.

• Extensible wrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union), PARTITIONS(id).

Used in K USED BY PARTITION.

See also implied by: SAME PARTITION.

soft variant: SOFT USED BY PARTITION VAR (variable-based violation measure).

specialisation: USED BY (variable ∈ partition replaced by variable).

system of constraints: K USED BY PARTITION.

used in graph description: IN SAME PARTITION.

Keywords characteristic of a constraint: partition, sort based reformulation.

constraint arguments: constraint between two collections of variables.

modelling: inclusion.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) IN SAME PARTITION(variables1.var, variables2.var, PARTITIONS)

Graph property(ies) • for all connected components: NSOURCE≥NSINK
• NSINK= |VARIABLES2|

Graph model Parts (A) and (B) of Figure 5.836 respectively show the initial and final graph associated
with the Example slot. Since we use the NSOURCE and NSINK graph properties,
the source and sink vertices of the final graph are stressed with a double circle. Since there
is a constraint on each connected component of the final graph we also show the different
connected components. Each of them corresponds to an equivalence class according to the
arc constraint. Note that the vertex corresponding to the variable that takes value 9 was
removed from the final graph since there is no arc for which the associated equivalence
constraint holds. The USED BY PARTITION constraint holds since:

• For each connected component of the final graph the number of sources is greater
than or equal to the number of sinks.

• The number of sinks of the final graph is equal to |VARIABLES2|.

Signature Since the initial graph contains only sources and sinks, and since sources of the initial graph
cannot become sinks of the final graph, we have that the maximum number of sinks of the
final graph is equal to |VARIABLES2|. Therefore we can rewrite NSINK = |VARIABLES2|
to NSINK ≥ |VARIABLES2| and simplify NSINK to NSINK.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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Figure 5.836: Initial and final graph of the USED BY PARTITION constraint
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5.424 USES

I B C J DESCRIPTION LINKS GRAPH

Origin [69]

Constraint USES(VARIABLES1, VARIABLES2)

Arguments VARIABLES1 : collection(var−dvar)
VARIABLES2 : collection(var−dvar)

Restrictions min(1, |VARIABLES1|) ≥ min(1, |VARIABLES2|)
required(VARIABLES1, var)
required(VARIABLES2, var)

Purpose
The set of values assigned to the variables of the collection of variables VARIABLES2 is
included within the set of values assigned to the variables of the collection of variables
VARIABLES1.

Example (〈3, 3, 4, 6〉 , 〈3, 4, 4, 4, 4〉)

The USES constraint holds since the set of values {3, 4} assigned to the items of
collection 〈3, 4, 4, 4, 4〉 is included within the set of values {3, 4, 6} occurring within
〈3, 3, 4, 6〉.

V
A

R I A B L E S 2

VARIABLES1

4
3

6

All solutions Figure 5.837 gives all solutions to the following non ground instance of the USES constraint:
U1 ∈ [0, 1], U2 ∈ [1, 2], V1 ∈ [0, 2], V2 ∈ [2, 4], V3 ∈ [2, 4], USES(〈U1, U2〉, 〈V1, V2, V3〉).

¬ (〈0,2〉, 〈0,2,2〉)
 (〈0,2〉, 〈2,2,2〉)
® (〈1,2〉, 〈1,2,2〉)
¯ (〈1,2〉, 〈2,2,2〉)

Figure 5.837: All solutions corresponding to the non ground example of the USES
constraint of the All solutions slot where identical values are coloured in the same way
in both collections

Typical |VARIABLES1| > 1
range(VARIABLES1.var) > 1
|VARIABLES2| > 1
range(VARIABLES2.var) > 1
|VARIABLES1| ≤ |VARIABLES2|


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES1 are permutable.

• Items of VARIABLES2 are permutable.

• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var
can be swapped; all occurrences of a value in VARIABLES1.var or
VARIABLES2.var can be renamed to any unused value.

Arg. properties • Contractible wrt. VARIABLES2.

• Extensible wrt. VARIABLES1.

• Aggregate: VARIABLES1(union), VARIABLES2(union).

Remark It was shown in [69] that, finding out whether a USES constraint has a solution or not is
NP-hard. This was achieved by reduction from 3-SAT.

See also generalisation: COMMON.

implied by: USED BY.

related: ROOTS.

Keywords complexity: 3-SAT.

constraint arguments: constraint between two collections of variables.

final graph structure: acyclic, bipartite, no loop.

modelling: inclusion.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES1 VARIABLES2

Arc generator PRODUCT 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSINK= |VARIABLES2|

Graph class • ACYCLIC
• BIPARTITE
• NO LOOP

Graph model Parts (A) and (B) of Figure 5.838 respectively show the initial and final graph associated
with the Example slot. Since we use the NSINK graph property, the sink vertices of the
final graph are stressed with a double circle. Note that all the vertices corresponding to the
variables that take values 9 or 2 were removed from the final graph since there is no arc for
which the associated equality constraint holds.

(A)

VARIABLES1

VARIABLES2

1

12 345

234

(B) NSINK=5

1:3

1:3

2:3 3:4

2:4 3:4 4:4 5:4

Figure 5.838: Initial and final graph of the USES constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.
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5.425 VALLEY

I B C J DESCRIPTION LINKS AUTOMATON

Origin Derived from INFLEXION.

Constraint VALLEY(N, VARIABLES)

Arguments N : dvar

VARIABLES : collection(var−dvar)

Restrictions N ≥ 0
2 ∗ N ≤ max(|VARIABLES| − 1, 0)
required(VARIABLES, var)

Purpose

A variable Vv (1 < v < m) of the sequence of variables VARIABLES = V1, . . . , Vm
is a valley if and only if there exists an i (with 1 < i ≤ v) such that Vi−1 > Vi and
Vi = Vi+1 = · · · = Vv and Vv < Vv+1. N is the total number of valleys of the sequence
of variables VARIABLES.

Example (1, 〈1, 1, 4, 8, 8, 2, 7, 1〉)
(0, 〈1, 1, 4, 5, 8, 8, 4, 1〉)
(4, 〈1, 0, 4, 0, 8, 2, 4, 1, 2〉)

The first VALLEY constraint holds since the sequence 1 1 4 8 8 2 7 1 contains one
valley that corresponds to the variable that is assigned to value 2.

1 1

4

8 8

2

7

1 1 1

4
5

8 8

4

1
1
0

4

0

8

2

4

1
2

unique
valley

V1 V2 V3 V4 V5 V6 V7 V8

1

2

3

4

5

6

7

8

1 1

4

8 8

2

7

1

variables

va
lu

es

Figure 5.839: Illustration of the first example of the Example slot: a sequence of eight
variables V1, V2, V3, V4, V5, V6, V7, V8 respectively fixed to values 1, 1, 4, 8, 8, 2, 7, 1
and its corresponding unique valley (N = 1)


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.
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All solutions Figure 5.840 gives all solutions to the following non ground instance of the VALLEY

constraint: N ∈ [1, 2], V1 ∈ [0, 1], V2 ∈ [0, 2], V3 ∈ [0, 2], V4 ∈ [0, 1],
VALLEY(N, 〈V1, V2, V3, V4〉).

¬ (1, 〈0, 1,0, 1〉)
 (1, 〈0, 2,0, 1〉)
® (1, 〈1,0,0, 1〉)
¯ (1, 〈1,0, 1, 0〉)
° (1, 〈1,0, 1, 1〉)
± (1, 〈1,0, 2, 0〉)
² (1, 〈1,0, 2, 1〉)
³ (1, 〈1, 1,0, 1〉)
´ (1, 〈1, 2,0, 1〉)

Figure 5.840: All solutions corresponding to the non ground example of the VALLEY
constraint of the All solutions slot where each valley is coloured in orange

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Typical model nval(VARIABLES.var) > 2

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties • Functional dependency: N determined by VARIABLES.

• Contractible wrt. VARIABLES when N = 0.

Usage Useful for constraining the number of valleys of a sequence of domain variables.

Remark Since the arity of the arc constraint is not fixed, the VALLEY constraint cannot be currently
described with the graph-based representation. However, this would not hold anymore if
we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 9 64 625 7776 117649 2097152 43046721

Number of solutions for VALLEY: domains 0..n


All solutions
Example of all solutions for a non ground instance of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Typical model
Typical condition on the sample of a problem.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Counting
Information on the solution density.
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Length (n) 2 3 4 5 6 7 8
Total 9 64 625 7776 117649 2097152 43046721

Parameter
value

0 9 50 295 1792 11088 69498 439791
1 - 14 330 5313 73528 944430 11654622
2 - - - 671 33033 1010922 24895038
3 - - - - - 72302 6057270

Solution count for VALLEY: domains 0..n
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0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

Parameter value as fraction of length

O
bs

er
ve

d
de

ns
ity

Solution density for VALLEY
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See also common keyword: DEEPEST VALLEY, INFLEXION, MIN DIST BETWEEN INFLEXION,
MIN WIDTH VALLEY (sequence).

comparison swapped: PEAK.

generalisation: BIG VALLEY (a tolerance parameter is added for counting only big val-
leys).

related: ALL EQUAL VALLEY, ALL EQUAL VALLEY MIN, DECREASING VALLEY,
INCREASING VALLEY, NO PEAK.

specialisation: NO VALLEY (the variable counting the number of valleys is set to 0 and
removed).

Keywords characteristic of a constraint: automaton, automaton with counters, automaton with same
input symbol.

combinatorial object: sequence.

constraint arguments: reverse of a constraint, pure functional dependency.

constraint network structure: sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

Cond. implications • VALLEY(N, VARIABLES)
with N > 0

implies ATLEAST NVALUE(NVAL, VARIABLES)
when NVAL = 2.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


Cond. implications
Conditional implications.
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• VALLEY(N, VARIABLES)
implies INFLEXION(N, VARIABLES)

when N =PEAK(VARIABLES.var) + VALLEY(VARIABLES.var).
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Automaton Figure 5.841 depicts the automaton associated with the VALLEY constraint. To each pair of
consecutive variables (VARi, VARi+1) of the collection VARIABLES corresponds a signature
variable Si. The following signature constraint links VARi, VARi+1 and Si: (VARi <
VARi+1 ⇔ Si = 0) ∧ (VARi = VARi+1 ⇔ Si = 1) ∧ (VARi > VARi+1 ⇔ Si = 2).

s : stationary/increasing mode ({< | =}∗)
u : decreasing mode (> {> | =}∗)

STATE SEMANTICS

N = Cs{C ← 0} u

VARi = VARi+1

VARi < VARi+1

VARi > VARi+1

VARi = VARi+1

VARi > VARi+1

VARi < VARi+1,
{C ← C + 1}

Figure 5.841: Automaton of the VALLEY constraint

C0 = 0

Q0 = s

C1

Q1

S1

C2

Q2

S2 S3

Cn−1 = N

Qn−1

Sn−1

VAR1 VAR2 VAR3 VARn−1 VARn

Figure 5.842: Hypergraph of the reformulation corresponding to the automaton of the
VALLEY constraint (since all states of the automaton are accepting there is no restriction
on the last variable Qn−1)

Glue matrix where
−→
C and

←−
C resp. represent the counter value C at

the end of a prefix and at the end of the corresponding reverse suffix
that partitions the sequence VARIABLES.

s ({< | =}∗) u (> {> | =}∗)

s ({< | =}∗)
−→
C +

←−
C

−→
C +

←−
C

u (> {> | =}∗)

−→
C +

←−
C

−→
C + 1 +

←−
C

Figure 5.843: Glue matrix of the VALLEY constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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VALLEY(N = 1, 〈1, 1, 4, 8, 8, 2, 7, 1〉)

VALLEY

( −→
N5 = 0,

〈1, 1, 4, 8, 8, 2〉

)
VALLEY

( ←−
N2 = 0,
〈1, 7, 2〉

)
glue matrix entry associated with the state pair (u, u):

N =
−→
C5 + 1 +

←−
C2 = 0 + 1 + 0 = 1

Figure 5.844: Illustrating the use of the state pair (u, u) of the glue matrix for linking
N with the counters variables obtained after reading the prefix 1, 1, 4, 8, 8, 2 and corre-
sponding suffix 2, 7, 1 of the sequence 1, 1, 4, 8, 8, 2, 7, 1; note that the suffix 2, 7, 1 (in
pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for
i = 0) and the evolution (for i > 0) of the state of the automaton and its counter C
upon reading the prefix 1, 1, 4, 8, 8, 2 (resp. the reverse suffix 1, 7, 2).
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5.426 VEC EQ TUPLE

I B C J DESCRIPTION LINKS GRAPH

Origin Used for defining IN RELATION.

Constraint VEC EQ TUPLE(VARIABLES, TUPLE)

Arguments VARIABLES : collection(var−dvar)
TUPLE : collection(val−int)

Restrictions required(VARIABLES, var)
required(TUPLE, val)
|VARIABLES| = |TUPLE|

Purpose Enforce a vector of domain variables to be equal to a tuple of values.

Example (〈5, 3, 3〉 , 〈5, 3, 3〉)

The VEC EQ TUPLE constraint holds since the first, the second and the third items
of VARIABLES = 〈5, 3, 3〉 are respectively equal to the first, the second and the third items
of TUPLE = 〈5, 3, 3〉.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
range(TUPLE.val) > 1

Symmetries • Arguments are permutable w.r.t. permutation (VARIABLES, TUPLE).

• Items of VARIABLES and TUPLE are permutable (same permutation used).

Arg. properties Contractible wrt. VARIABLES and TUPLE (remove items from same position).

Used in IN RELATION.

See also generalisation: LEX EQUAL (integer replaced by variable in second argument).

implies: LEX EQUAL.

Keywords characteristic of a constraint: tuple.

constraint type: value constraint.

filtering: arc-consistency.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Used in
List of constraints that use this constraint in their description.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES TUPLE

Arc generator PRODUCT (=) 7→collection(variables, tuple)

Arc arity 2

Arc constraint(s) variables.var = tuple.val

Graph property(ies) NARC= |VARIABLES|

Graph model Parts (A) and (B) of Figure 5.845 respectively show the initial and final graph associated
with the Example slot. Since we use the NARC graph property, the arcs of the final
graph are stressed in bold.

VARIABLES

TUPLE

1

1

2

2

3

3

NARC=3

1:5

1:5

2:3

2:3

3:3

3:3

(A) (B)

Figure 5.845: Initial and final graph of the VEC EQ TUPLE constraint

Signature Since we use the arc generator PRODUCT (=) on the collections VARIABLES and TUPLE,
and because of the restriction |VARIABLES| = |TUPLE|, the maximum number of arcs of
the final graph is equal to |VARIABLES|. Therefore we can rewrite the graph property
NARC = |VARIABLES| to NARC ≥ |VARIABLES| and simplify NARC to NARC.


Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Signature
Provides some explanations about the graph based signature of the constraint.
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5.427 VISIBLE

I B C J

DESCRIPTION LINKS

Origin Extension of accessibility parameter of DIFFN.

Constraint VISIBLE(K, DIMS, FROM, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)
DIMDIR : collection(dim−int, dir−int)

Arguments K : int

DIMS : sint

FROM : DIMDIR

OBJECTS : collection


oid−int,
sid−dvar,
x− VARIABLES,
start−dvar,
duration−dvar,
end−dvar


SBOXES : collection


sid−int,
t− INTEGERS,
l− POSITIVES,
f− DIMDIR




Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.


Arguments
Arguments of the constraint and their corresponding types.
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Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
required(DIMDIR, [dim, dir])
|DIMDIR| > 0
|DIMDIR| ≤ K + K

distinct(DIMDIR, [])
DIMDIR.dim ≥ 0
DIMDIR.dim < K

DIMDIR.dir ≥ 0
DIMDIR.dir ≤ 1
K ≥ 0
DIMS ≥ 0
DIMS < K

distinct(OBJECTS, oid)
required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Purpose

Holds if and only if:

1. The difference between the end in time and the start in time of each object is equal
to its duration in time.

2. Given a collection of potential observations places FROM, where each observation
place is specified by a dimension (i.e., an integer between 0 and k − 1) and by
a direction (i.e., an integer between 0 and 1), and given for each shifted box of
SBOXES a set of visible faces, enforce that at least one visible face of each shifted
box associated with an object o ∈ OBJECTS should be entirely visible from at
least one observation place of FROM at time o.start as well as at time o.end−1.
This notion is defined in a more formal way in the Remark slot.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.
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Example


2, {0, 1},
〈dim− 0 dir− 1〉 ,〈

oid− 1 sid− 1 x− 〈1, 2〉 s− 8 d− 8 e− 16,
oid− 2 sid− 2 x− 〈4, 2〉 s− 1 d− 15 e− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉




2, {0, 1},
〈dim− 0 dir− 1〉 ,〈

oid− 1 sid− 1 x− 〈1, 2〉 s− 1 d− 8 e− 9,
oid− 2 sid− 2 x− 〈4, 2〉 s− 1 d− 15 e− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉




2, {0, 1},
〈dim− 0 dir− 1〉 ,〈

oid− 1 sid− 1 x− 〈1, 1〉 s− 1 d− 15 e− 16,
oid− 2 sid− 2 x− 〈2, 2〉 s− 6 d− 6 e− 12

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉




2, {0, 1},
〈dim− 0 dir− 1〉 ,〈

oid− 1 sid− 1 x− 〈4, 1〉 s− 1 d− 8 e− 9,
oid− 2 sid− 2 x− 〈1, 2〉 s− 1 d− 15 e− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉




2, {0},
〈dim− 0 dir− 1〉 ,〈

oid− 1 sid− 1 x− 〈2, 1〉 s− 1 d− 8 e− 9,
oid− 2 sid− 2 x− 〈4, 3〉 s− 1 d− 15 e− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 f− 〈dim− 0 dir− 1〉

〉


(
s for start, d for duration, e for end

)
The five previous examples correspond respectively to parts (I), (II) of Figure 5.847, to
parts (III) and (IV) of Figure 5.848, and to Figure 5.849. Before introducing these five
examples Figure 5.846 first illustrates the notion of observations places and of visible
faces.

We first need to introduce a number of definitions in order to illustrate the notion of visibil-
ity.

Definition 1. Consider two distinct objects o and o′ of the VISIBLE constraint (i.e., o, o′ ∈
iobjects) as well as an observation place defined by the pair 〈dim, dir〉 ∈ FROM. The
object o is masked by the object o′ according to the observation place 〈dim, dir〉 if there
exist two shifted boxes s and s′ respectively associated with o and o′ such that conditions A,
B, C, D and E all hold:

• (A) o.duration > 0∧ o′.duration > 0∧ o.end > o′.start∧ o′.end > o.start
(i.e., the time intervals associated with o and o′ intersect).

• (B) Discarding dimension dim, s and s′ intersect in all dimensions specified by DIMS
(i.e., objects o and o′ are in vis-à-vis).


Example
One or several examples of ground solutions of the constraint.
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Figure 5.846: Entirely visible faces (depicted by a thick line) of rectangles ¬, , ®, ¯,
°, ± and ² from the four observation places 〈dim = 0, dir = 1〉, 〈dim = 0, dir =
0〉, 〈dim = 1, dir = 1〉 and 〈dim = 1, dir = 0〉 (depicted by a small triangle)

• (C) If dir = 0

then o.x[dim] + s.t[dim] ≥ o′.x[dim] + s′.t[dim] + s′.l[dim]

else o′.x[dim] + s′.t[dim] ≥ o.x[dim] + s.t[dim] + s.l[dim] (i.e., in dimension dim,
o and o′ are ordered in the wrong way according to direction dir).

• (D) o.start > o′.start ∨ o.end < o′.end (i.e., instants o.start or o.end are
located within interval [o′.start, o′.end]; we consider also condition A.).

• (E) The observation place 〈dim, dir〉 occurs within the list of visible faces asso-
ciated with the face attribute f of the shifted box s (i.e., the pair 〈dim, dir〉 is a
potentially visible face of o).

Definition 2. Consider an object o of the collection OBJECTS as well as a possible ob-
servation place defined by the pair 〈dim, dir〉. The object o is masked according to the
observation place 〈dim, dir〉 if and only if at least one of the following conditions holds:

• No shifted box associated with o has the pair 〈dim, dir〉 as one of its potentially
visible face.

• The object o is masked according to the possible observation place 〈dim, dir〉 by
another object o′.

Figures 5.847, 5.848, and 5.849 respectively illustrate Definition 1 in the context of an ob-
servation place (depicted by a triangle) that is equal to the pair 〈dim = 0, dir = 1〉. Note
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that, in the context of Figure 5.849, as the DIMS parameter of the VISIBLE constraint only
mentions dimension 0 (and not dimension 1), one object may be masked by another object
even though the two objects do not intersect in any dimension: i.e., only their respective
ordering in the dimension dim = 0 as well as their positions in time matter.

Definition 3. Consider an object o of the collection OBJECTS as well as a possible ob-
servation place defined by the pair 〈dim, dir〉. The object o is masked according to the
observation place 〈dim, dir〉 if and only if at least one of the following conditions holds:

• No shifted box associated with o has the pair 〈dim, dir〉 as one of its potentially
visible face.

• The object o is masked according to the possible observation place 〈dim, dir〉 by
another object o′.

Definition 4. An object of the collection OBJECTS constraint is masked according to a set
of possible observation places FROM if it is masked according to each observation place of
FROM.

We are now in position to define the VISIBLE constraint.

Definition 5. Given a VISIBLE(K, DIMS, FROM, OBJECTS, SBOXES) constraint, the VISIBLE

constraint holds if none of the objects of OBJECTS is masked according to the dimensions
of DIMS and to the set of possible observation places defined by FROM.
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2, {0, 1}, 〈dim− 0 dir− 1〉,〈

oid− o sid− 1 x− 〈1, 2〉 start− 8 duration− 8 end− 16,
oid− o′ sid− 2 x− 〈4, 2〉 start− 1 duration− 15 end− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉
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o is masked by o′ according to 〈dim = 0, dir = 1〉 since:
(A) o and o′ intersect in time,
(B) o and o′ intersect in dimension 1,
(C) in dimension 0, o′ starts after the end of o,
(D) the start in time of o is located after the start in time of o′,
(E) 〈dim = 0, dir = 1〉 is a potentially visible face of o.


2, {0, 1}, 〈dim− 0 dir− 1〉,〈

oid− o sid− 1 x− 〈1, 2〉 start− 1 duration− 8 end− 9,
oid− o′ sid− 2 x− 〈4, 2〉 start− 1 duration− 15 end− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉
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o is masked by o′ according to 〈dim = 0, dir = 1〉 since:
(A) o and o′ intersect in time,
(B) o and o′ intersect in dimension 1,
(C) in dimension 0, o′ starts after the end of o,
(D) the end in time of o is located before the end in time of o′,
(E) 〈dim = 0, dir = 1〉 is a potentially visible face of o.

(I)

(II)

Figure 5.847: Illustration of Definition 1: two examples (I) and (II) where an object o
is masked by an object o′ according to dimensions {0, 1} and to the observation place
〈dim = 0, dir = 1〉 because (A) o and o′ intersect in time, (B) o and o′ intersect
in dimension 1, (C) o and o′ are not well ordered according to the observation place,
(D) there exists an instant where o′ if present (but not o) and (E) 〈dim = 0, dir = 1〉
is a potentially visible face of o.
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2, {0, 1}, 〈dim− 0 dir− 1〉,〈

oid− o sid− 1 x− 〈1, 1〉 start− 1 duration− 15 end− 16,
oid− o′ sid− 2 x− 〈2, 2〉 start− 6 duration− 6 end− 12

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉
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o is not masked by o′ according to 〈dim = 0, dir = 1〉 since:
(A) Even though o and o′ intersect in time,
(B) and even though o and o′ intersect in dimension 1,
(C) and even though, in dimension 0, o′ starts after the end of o,
(E) and even though 〈dim = 0, dir = 1〉 is a potentially visible face of o,

condition (D) does not hold.


2, {0, 1}, 〈dim− 0 dir− 1〉,〈

oid− o sid− 1 x− 〈4, 1〉 start− 1 duration− 8 end− 9,
oid− o′ sid− 2 x− 〈1, 2〉 start− 1 duration− 15 end− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉,
sid− 2 t− 〈0, 0〉 l− 〈2, 3〉 f− 〈dim− 0 dir− 1〉

〉
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o is not masked by o′ according to 〈dim = 0, dir = 1〉 since:
(A) Even though o and o′ intersect in time,
(B) and even though o and o′ intersect in dimension 1, and even
(D) though the end in time of o is located before the end in time of o′,
(E) and even though 〈dim = 0, dir = 1〉 is a potentially visible face of o,

condition (C) does not hold.

(III)

(IV)

Figure 5.848: Illustration of Definition 1: two examples (III) and (IV) where an object
o is not masked by an object o′ according to the observation place 〈dim = 0, dir = 1〉.
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2, {0}, 〈dim− 0 dir− 1〉,〈

oid− o sid− 1 x− 〈2, 1〉 start− 1 duration− 8 end− 9,
oid− o′ sid− 2 x− 〈4, 3〉 start− 1 duration− 15 end− 16

〉
,〈

sid− 1 t− 〈0, 0〉 l− 〈1, 2〉 f− 〈dim− 0 dir− 1〉,
sid− 2 t− 〈0, 0〉 l− 〈2, 2〉 f− 〈dim− 0 dir− 1〉

〉
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o is masked by o′ according to 〈dim = 0, dir = 1〉 since:

A. o and o′ intersect in time,

B. in dimension 0, o′ starts after the end of o,

C. the end in time of o is located before the end in time of o′,

D. 〈dim = 0, dir = 1〉 is a potentially visible face of o.

Figure 5.849: Illustration of Definition 1: the case where an object o is masked by an
object o′ according to dimension 0 and to the observation place 〈dim = 0, dir = 1〉
because: (A) o and o′ intersect in time, (C) o and o′ are not well ordered according to
the observation place and (D) there exists an instant where o′ if present (but not o) and
(E) 〈dim = 0, dir = 1〉 is a potentially visible face of o.
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Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

Usage We now give several typical concrete uses of the VISIBLE constraint, which all mention the
DIFFST as well as the VISIBLE constraints:

• Figure 5.850 corresponds to a ship loading problem where containers are piled within
a ship by a crane each time the ship visits a given harbour. In this context we have
first to express the fact that a container can only be placed on top of an already
placed container and second, that a container can only be taken away if no con-
tainer is placed on top of it. These two conditions are expressed by a single VISIBLE

constraint for which the DIMS parameter mentions all three dimensions of the place-
ment space and the FROM parameter mentions the pair 〈dim = 2, dir = 1〉 as its
unique observation place. In addition we also use a DIFFST constraint for expressing
non-overlapping.



3, {0, 1, 2}, 〈dim− 2 dir− 1〉,

〈 oid− 1 sid− 1 x− 〈1, 1, 1〉 start− 0 duration− 17 end− 17,
oid− 2 sid− 1 x− 〈1, 1, 3〉 start− 0 duration− 8 end− 8,
oid− 3 sid− 1 x− 〈4, 1, 1〉 start− 0 duration− 8 end− 8,
oid− 4 sid− 1 x− 〈1, 1, 3〉 start− 8 duration− 9 end− 17,
oid− 5 sid− 1 x− 〈4, 1, 1〉 start− 8 duration− 16 end− 24,
oid− 6 sid− 1 x− 〈1, 1, 1〉 start− 17 duration− 7 end− 24

〉
,

〈
sid− 1 t− 〈0, 0, 0〉 l− 〈2, 4, 2〉 f− 〈dim− 2 dir− 1〉

〉
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Figure 5.850: Illustration of the ship loading problem

• Figure 5.851 corresponds to a container loading/unloading problem in the context
of a pick-up delivery problem where the loading/unloading takes place with respect


Typical
Typical condition on the arguments of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.
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to the front door of the container. Beside the DIFFST constraint used for expressing
non-overlapping, we use two distinct VISIBLE constraints:

– The first VISIBLE constraint takes care of the location of the front door of the
container (each object o has to be loaded/unloaded without moving around any
other object, i.e., objects that are in the vis-à-vis of o according to the front door
of the container). This is expressed by a single VISIBLE constraint for which the
DIMS parameter mentions all three dimensions of the placement space and the
FROM parameter mentions the pair 〈dim = 1, dir = 0〉 as its unique observation
place.

– The second VISIBLE constraint takes care of the gravity dimension (i.e., each
object that has to be loaded should not be put under another object, and recip-
rocally each object that has to be unloaded should not be located under another
object). This is expressed by the same VISIBLE constraint that was used for the
ship loading problem, i.e., a VISIBLE constraint for which the DIMS parameter
mentions all three dimensions of the placement space and the FROM parameter
mentions the pair 〈dim = 2, dir = 1〉 as its unique observation place.

• Figure 5.852 corresponds to a pallet loading problem where one has to place six
objects on a pallet. Each object corresponds to a parallelepiped that has a bar code on
one of its four sides (i.e., the sides that are different from the top and the bottom of the
parallelepiped). If, for some reason, an object has no bar code then we simply remove
it from the objects that will be passed to the VISIBLE constraint: this is the case, for
example, for the sixth object. In this context the constraint to enforce (beside the
non-overlapping constraint between the parallelepipeds that are assigned to a same
pallet) is the fact that the bar code of each object should be visible (i.e., visible from
one of the four sides of the pallet). This is expressed by the VISIBLE constraint given
in Part (F) of Figure 5.852.

Remark The VISIBLE constraint is a generalisation of the ACCESSIBILITY constraint initially intro-
duced in the context of the DIFFN constraint.

See also common keyword: DIFFN (geometrical constraint),
GEOST, GEOST TIME (geometrical constraint,sweep),
NON OVERLAP SBOXES (geometrical constraint).

Keywords constraint type: decomposition, predefined constraint.

filtering: sweep.

geometry: geometrical constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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3, {0, 1, 2}, 〈dim− 1 dir− 0〉,

〈
oid− 1 sid− 1 x− 〈1, 2, 3〉 start− 0 duration− 8 end− 8,
oid− 2 sid− 2 x− 〈1, 3, 3〉 start− 0 duration− 8 end− 8,
oid− 3 sid− 3 x− 〈1, 1, 1〉 start− 0 duration− 17 end− 17,
oid− 4 sid− 4 x− 〈4, 1, 1〉 start− 0 duration− 17 end− 17,
oid− 5 sid− 5 x− 〈1, 2, 3〉 start− 8 duration− 9 end− 17,
oid− 6 sid− 6 x− 〈3, 1, 1〉 start− 8 duration− 12 end− 24,
oid− 7 sid− 3 x− 〈1, 1, 1〉 start− 17 duration− 7 end− 24

〉
,

〈 sid− 1 t− 〈0, 0, 0〉 l− 〈2, 1, 1〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 2 t− 〈0, 0, 0〉 l− 〈2, 2, 2〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 3 t− 〈0, 0, 0〉 l− 〈2, 4, 2〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 4 t− 〈0, 0, 0〉 l− 〈2, 4, 1〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 5 t− 〈0, 0, 0〉 l− 〈2, 3, 1〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 6 t− 〈0, 0, 0〉 l− 〈1, 2, 2〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉

〉
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3, {0, 1, 2}, 〈dim− 2 dir− 1〉,

〈
oid− 1 sid− 1 x− 〈1, 2, 3〉 start− 0 duration− 8 end− 8,
oid− 2 sid− 2 x− 〈1, 3, 3〉 start− 0 duration− 8 end− 8,
oid− 3 sid− 3 x− 〈1, 1, 1〉 start− 0 duration− 17 end− 17,
oid− 4 sid− 4 x− 〈4, 1, 1〉 start− 0 duration− 17 end− 17,
oid− 5 sid− 5 x− 〈1, 2, 3〉 start− 8 duration− 9 end− 17,
oid− 6 sid− 6 x− 〈3, 1, 1〉 start− 8 duration− 12 end− 24,
oid− 7 sid− 3 x− 〈1, 1, 1〉 start− 17 duration− 7 end− 24

〉
,

〈 sid− 1 t− 〈0, 0, 0〉 l− 〈2, 1, 1〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 2 t− 〈0, 0, 0〉 l− 〈2, 2, 2〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 3 t− 〈0, 0, 0〉 l− 〈2, 4, 2〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 4 t− 〈0, 0, 0〉 l− 〈2, 4, 1〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 5 t− 〈0, 0, 0〉 l− 〈2, 3, 1〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉,
sid− 6 t− 〈0, 0, 0〉 l− 〈1, 2, 2〉 f− 〈dim− 1 dir− 0, dim− 2 dir− 1〉

〉
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Figure 5.851: Illustration of the pick-up delivery problem
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s1

(A)

Potential shapes of
objects o1 and o2

s2 s3

(B)

Potential shapes of
objects o3 and o4

s4 s5

(C)

Shape of
object o5

s6

(D)

Shape of
object o6

o5

o3 o6 o4

o1 o2

(E)



3, {0, 1, 2}, 〈dim − 0 dir − 0, dim − 0 dir − 1, dim − 1 dir − 0, dim − 1 dir − 1〉,

〈 oid − o1 sid − s1 x − 〈1, 4, 1〉 start − 0 duration − 1 end − 1,
oid − o2 sid − s1 x − 〈3, 4, 1〉 start − 0 duration − 1 end − 1,
oid − o3 sid − s2 x − 〈1, 2, 1〉 start − 0 duration − 1 end − 1,
oid − o4 sid − s2 x − 〈4, 1, 1〉 start − 0 duration − 1 end − 1,
oid − o5 sid − s3 x − 〈1, 1, 1〉 start − 0 duration − 1 end − 1,
oid − o6 sid − s4 x − 〈2, 2, 1〉 start − 0 duration − 1 end − 1

〉
,

〈
sid − s1 t − 〈0, 0, 0〉 l − 〈2, 3, 1〉 f − 〈dim − 0 dir − 0, dim − 0 dir − 1〉,
sid − s2 t − 〈0, 0, 0〉 l − 〈3, 2, 1〉 f − ∠dim − 1 dir − 0, dim − 1 dir − 1〉,
sid − s3 t − 〈0, 0, 0〉 l − 〈1, 2, 1〉 f − 〈dim − 0 dir − 0, dim − 0 dir − 1〉,
sid − s4 t − 〈0, 0, 0〉 l − 〈2, 1, 1〉 f − 〈dim − 1 dir − 0, dim − 1 dir − 1〉,

sid − s5 t − 〈0, 0, 0〉 l − 〈3, 1, 1〉 f −
〈

dim − 0 dir − 0, dim − 0 dir − 1,
dim − 1 dir − 0, dim − 1 dir − 1

〉
,

sid − s6 t − 〈0, 0, 0〉 l − 〈2, 2, 1〉 f − 〈〉,

〉



VISIBLE

(F)

Figure 5.852: Illustration of the pallet loading problem
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5.428 WEIGHTED PARTIAL ALLDIFF

I B C J DESCRIPTION LINKS GRAPH

Origin [417, page 71]

Constraint WEIGHTED PARTIAL ALLDIFF(VARIABLES, UNDEFINED, VALUES, COST)

Synonyms WEIGHTED PARTIAL ALLDIFFERENT, WEIGHTED PARTIAL ALLDISTINCT, WPA.

Arguments VARIABLES : collection(var−dvar)
UNDEFINED : int

VALUES : collection(val−int, weight−int)
COST : dvar

Restrictions required(VARIABLES, var)
|VALUES| > 0
required(VALUES, [val, weight])
in attr(VARIABLES, var, VALUES, val)
distinct(VALUES, val)

Purpose

All variables of the VARIABLES collection that are not assigned to value UNDEFINED

must have pairwise distinct values from the val attribute of the VALUES collection. In
addition COST is the sum of the weight attributes associated with the values assigned to
the variables of VARIABLES. Within the VALUES collection, value UNDEFINED must be
explicitly defined with a weight of 0.

Example



〈4, 0, 1, 2, 0, 0〉 , 0,

〈 val− 0 weight− 0,
val− 1 weight− 2,
val− 2 weight−−1,
val− 4 weight− 7,
val− 5 weight−−8,
val− 6 weight− 2

〉
, 8


The WEIGHTED PARTIAL ALLDIFF constraint holds since:

• No value, except value UNDEFINED = 0, is used more than once.

• COST = 8 is equal to the sum of the weights 2, −1 and 7 of the values 1, 2 and 4
assigned to the variables of VARIABLES = 〈4, 0, 1, 2, 0, 0〉.

Typical |VARIABLES| > 0
ATLEAST(1, VARIABLES, UNDEFINED)
|VARIABLES| ≤ |VALUES|+ 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.
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Symmetries • Items of VARIABLES are permutable.

• Items of VALUES are permutable.

• All occurrences of two distinct values in VARIABLES.var or VALUES.val that are
both different from UNDEFINED can be swapped; all occurrences of a value in
VARIABLES.var or VALUES.val that is different from UNDEFINED can be renamed
to any unused value that is also different from UNDEFINED.

Arg. properties Functional dependency: COST determined by VARIABLES and VALUES.

Usage In his PhD thesis [417, pages 71–72], Sven Thiel describes the following three potential
scenarios of the WEIGHTED PARTIAL ALLDIFF constraint:

• Given a set of tasks (i.e., the items of the VARIABLES collection), assign to each task a
resource (i.e., an item of the VALUES collection). Except for the resource associated
with value UNDEFINED, every resource can be used at most once. The cost of a
resource is independent from the task to which the resource is assigned. The cost of
value UNDEFINED is equal to 0. The total cost COST of an assignment corresponds
to the sum of the costs of the resources effectively assigned to the tasks. Finally we
impose an upper bound on the total cost.

• Given a set of persons (i.e., the items of the VARIABLES collection), select for each
person an offer (i.e., an item of the VALUES collection). Except for the offer associ-
ated with value UNDEFINED, every offer should be selected at most once. The profit
associated with an offer is independent from the person that selects the offer. The
profit of value UNDEFINED is equal to 0. The total benefit COST is equal to the sum
of the profits of the offers effectively selected. In addition we impose a lower bound
on the total benefit.

• The last scenario deals with an application to an over-constraint problem involving
the ALLDIFFERENT constraint. Allowing some variables to take an ”undefined” value
is done by setting all weights of all the values different from UNDEFINED to 1. As
a consequence all variables assigned to a value different from UNDEFINED will have
to take distinct values. The COST variable allows one to control the number of such
variables.

Remark It was shown in [417, page 104] that, finding out whether the
WEIGHTED PARTIAL ALLDIFF constraint has a solution or not is NP-hard. This
was achieved by reduction from subset sum.

Algorithm A filtering algorithm is given in [417, pages 73–104]. After showing that, deciding whether
the WEIGHTED PARTIAL ALLDIFF has a solution is NP-complete, [417, pages 105–106]
gives the following results of his filtering algorithm with respect to consistency under the
3 scenarios previously described:

• For scenario 1, if there is no restriction of the lower bound of the COST variable,
the filtering algorithm achieves arc-consistency for all variables of the VARIABLES

collection (but not for the COST variable itself).

• For scenario 2, if there is no restriction of the upper bound of the COST variable,
the filtering algorithm achieves arc-consistency for all variables of the VARIABLES

collection (but not for the COST variable itself).


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Usage
Typical usage of the constraint.


Remark
Miscellaneous comments about the constraint that do not fit in the other slots.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.
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• Finally, for scenario 3, the filtering algorithm achieves arc-consistency for all vari-
ables of the VARIABLES collection as well as for the COST variable.

See also attached to cost variant: ALLDIFFERENT, ALLDIFFERENT EXCEPT 0.

common keyword: GLOBAL CARDINALITY WITH COSTS (weighted assignment),
MINIMUM WEIGHT ALLDIFFERENT (cost filtering constraint,weighted assignment),
SOFT ALLDIFFERENT VAR (soft constraint),
SUM OF WEIGHTS OF DISTINCT VALUES (weighted assignment).

Keywords application area: assignment.

characteristic of a constraint: all different, joker value.

complexity: subset sum.

constraint type: soft constraint, relaxation.

filtering: cost filtering constraint.

modelling: functional dependency.

problems: weighted assignment.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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Arc input(s) VARIABLES VALUES

Arc generator PRODUCT 7→collection(variables, values)

Arc arity 2

Arc constraint(s) • variables.var 6= UNDEFINED

• variables.var = values.val

Graph property(ies) •MAX ID≤ 1
• SUM(VALUES, weight) = COST

Graph model Parts (A) and (B) of Figure 5.853 respectively show the initial and final graph associated
with the Example slot. Since we also use the SUM graph property we show the vertices
of the final graph from which we compute the total cost in a box.

VARIABLES

VALUES

1

1234 56

2 3456

SUM(VALUES,weight)=2-1+7=8

1:4

4:4,7

3:1

2:1,2

4:2

3:2,-1

(A) (B)

Figure 5.853: Initial and final graph of the WEIGHTED PARTIAL ALLDIFF constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



2496 XOR

5.429 XOR

I B C J DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint XOR(VAR, VARIABLES)

Synonyms ODD, REL.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| = 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose Let VARIABLES be a collection of 0-1 variables VAR1, VAR2. Enforce VAR = (VAR1 6=
VAR2).

Example (0, 〈0, 0〉)
(1, 〈0, 1〉)
(1, 〈1, 0〉)
(0, 〈1, 1〉)

Symmetry Items of VARIABLES are permutable.

Arg. properties Functional dependency: VAR determined by VARIABLES.

Counting

Length (n) 2 3 4 5 6 7 8
Solutions 4 0 0 0 0 0 0

Number of solutions for XOR: domains 0..n


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Counting
Information on the solution density.
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Length (n) 2
Total 4

Parameter
value

0 2
1 2

Solution count for XOR: domains 0..n
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Systems REIFIEDXOR in Choco, REL in Gecode, XORBOOL in JaCoP, #\ in SICStus.

See also common keyword: AND, EQUIVALENT, IMPLY, NAND, NOR, OR (Boolean constraint).

implies: ATLEAST NVALUE, SOFT ALL EQUAL MAX VAR, SOFT ALL EQUAL MIN VAR.

Keywords characteristic of a constraint: automaton, automaton without counters, reified automaton
constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.


Systems
References to the constraint in some concrete constraint programming systems.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/
http://jacopguide.osolpro.com/guideJaCoP.html
http://www.jacop.eu/
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/
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Automaton Figure 5.854 depicts the automaton associated with the XOR constraint. To the first argu-
ment VAR of the XOR constraint corresponds the first signature variable. To each variable
VARi of the second argument VARIABLES of the XOR constraint corresponds the next sig-
nature variable. There is no signature constraint.

s

i j

k l

t

VAR = 0 VAR = 1

VAR1 = 0 VAR1 = 0

VAR2 = 0 VAR2 = 1

VAR1 = 1 VAR1 = 1

Figure 5.854: Automaton of the XOR constraint

Q0 = s Q1

VAR

Q2

VAR1

Q3 = t

VAR2

Figure 5.855: Hypergraph of the reformulation corresponding to the automaton of the
XOR constraint


Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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5.430 ZERO OR NOT ZERO

I C J DESCRIPTION LINKS

Origin Arithmetic.

Constraint ZERO OR NOT ZERO(VAR1, VAR2)

Synonyms ZEROS OR NOT ZEROS, NOT ZERO OR ZERO, NOT ZEROS OR ZEROS.

Arguments VAR1 : dvar

VAR2 : dvar

Purpose Enforce the fact that either both variables are equal to 0, or both variables are not equal
to 0.

Example (1, 8)

The ZERO OR NOT ZERO constraint holds since values 1 and 8 are both not equal
to zero.

Symmetry Arguments are permutable w.r.t. permutation (VAR1, VAR2).

See also implied by: ABS VALUE, DIVISIBLE OR, EQ, SIGN OF.

implies (if swap arguments): ABS VALUE.

Keywords constraint arguments: binary constraint.

constraint type: predefined constraint, arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Arguments
Arguments of the constraint and their corresponding types.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.
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5.431 ZERO OR NOT ZERO VECTORS

C J DESCRIPTION LINKS

Origin Tournament scheduling

Constraint ZERO OR NOT ZERO VECTORS(VECTORS)

Synonyms ZEROS OR NOT ZEROS VECTORS, NOT ZERO OR ZERO VECTORS,
NOT ZEROS OR ZEROS VECTORS.

Type VECTOR : collection(var−dvar)

Argument VECTORS : collection(vec− VECTOR)

Restrictions |VECTOR| ≥ 1
required(VECTOR, var)
|VECTORS| ≥ 1
required(VECTORS, vec)
same size(VECTORS, vec)

Purpose
Given a collection of vectors enforces for each vector that either all its components are
equal to 0, or all its components are different from 0. In addition imposes that at least
one 0 is used.

Example


〈 vec− 〈5, 6〉 ,

vec− 〈5, 6〉 ,
vec− 〈0, 0〉 ,
vec− 〈9, 3〉 ,
vec− 〈0, 0〉

〉 
The ZERO OR NOT ZERO VECTORS constraint holds since:

• Both components of the first vector 〈5, 6〉 are different from 0.

• Both components of the second vector 〈5, 6〉 are different from 0.

• Both components of the third vector 〈0, 0〉 are equal to 0.

• Both components of the fourth vector 〈9, 3〉 are different from 0.

• Both components of the fifth vector 〈0, 0〉 are equal to 0.

Typical |VECTOR| > 1
|VECTORS| > 1

Arg. properties Contractible wrt. VECTORS.

Keywords characteristic of a constraint: vector.

constraint type: predefined constraint, arithmetic constraint.


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Synonyms
List of synonyms for the name of the constraint.


Type
Declaration of a new compound data type that will be used for defining the type of one or several arguments of the constraint.


Argument
Argument of the constraint and its corresponding type.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Typical
Typical conditions on the arguments of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Keywords
Related keywords grouped by meta-keywords.
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Legend for the Description

This section provides the list of restrictions, of arc generators, of graph parameters
and of set generators sorted in alphabetic order with the page where they are defined.
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Restrictions :

• Term1 Comparison Term2 p. 22
• distinct p. 19
• in attr p. 18
• in list p. 18
• increasing seq p. 19

• non increasing size p. 20

• required p. 20

• require at least p. 21

• same size p. 21

Arc generators :

• CHAIN p. 62

• CIRCUIT p. 62

• CLIQUE p. 62

• CLIQUE(C) p. 63

• CYCLE p. 63

• GRID p. 63

• LOOP p. 63

• PATH p. 63

• PATH 1 p. 64

• PATH N p. 64

• PRODUCT p. 64

• PRODUCT (C) p. 64

• SELF p. 64

• SYMMETRIC PRODUCT p. 64

• SYMMETRIC PRODUCT (C) p. 64

• VOID p. 65

Graph parameters :

• DISTANCE p. 78

• MAX DRG p. 70

• MAX ID p. 70

• MAX NCC p. 70

• MAX NSCC p. 70

• MAX OD, p. 71

• MIN DRG p. 71

• MIN ID p. 71

• MIN NCC p. 71

• MIN NSCC p. 72

• MIN OD p. 72

• NARC p. 72

• NARC NO LOOP p. 72

• NCC p. 72

• NSCC p. 73

• NSINK p. 73

• NSINK NSOURCE p. 73

• NSOURCE p. 74

• NTREE p. 74

• NVERTEX p. 74

• ORDER p. 75

• PATH FROM TO p. 75

• PROD p. 76

• RANGE p. 77

• RANGE DRG p. 74

• RANGE NCC p. 74

• RANGE NSCC p. 75

• SUM p. 78

• SUM WEIGHT ARC p. 78

Set generators :

• ALL VERTICES p. 84
• CC p. 84
• PATH LENGTH p. 84

• PRED p. 85

• SUCC p. 85
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B.1 abs value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518
B.2 all balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2519
B.3 all differ from at least k pos . . . . . . . . . . . . . . . . . . 2522
B.4 all differ from at most k pos . . . . . . . . . . . . . . . . . . 2531
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B.1 abs value
♦ META-DATA:

ctr_predefined(abs_value).

ctr_date(abs_value,[’20100821’]).

ctr_origin(abs_value,’Arithmetic.’,[]).

ctr_usual_name(abs_value,abs).

ctr_synonyms(abs_value,[absolute_value]).

ctr_arguments(abs_value,[’Y’-dvar,’X’-dvar]).

ctr_restrictions(abs_value,[’Y’>=0]).

ctr_example(abs_value,abs_value(8,-8)).

ctr_eval(abs_value,[checker(abs_value_c),builtin(abs_value_b)]).

ctr_pure_functional_dependency(abs_value,[]).

ctr_functional_dependency(abs_value,1,[2]).

abs_value_c(Y,X) :-
check_type(int,Y),
check_type(int,X),
Y is abs(X).

abs_value_b(Y,X) :-
check_type(dvar,Y),
check_type(dvar,X),
X#>=0#/\Y#=X#\/X#<0#/\X+Y#=0.
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B.2 all balance

♦ META-DATA:

ctr_predefined(all_balance).

ctr_date(all_balance,[’20141014’]).

ctr_origin(
all_balance,
derived from %c in \cite{BessiereHebrardKatsirelosKiziltanPicardCantinQuimperWalsh14},
[balance]).

ctr_arguments(
all_balance,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
all_balance,
[’BALANCE’>=0,
’BALANCE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=1,
’VARIABLES’ˆvar=<’M’,
’M’>=1,
’M’=<size(’VARIABLES’)]).

ctr_example(
all_balance,
[all_balance(

2,
[[var-3],[var-1],[var-2],[var-1],[var-1]],
3),

all_balance(
3,
[[var-3],[var-1],[var-2],[var-1],[var-1]],
4)]).

ctr_typical(
all_balance,
[’BALANCE’=<2+size(’VARIABLES’)/10,size(’VARIABLES’)>2]).

ctr_typical_model(all_balance,[nval(’VARIABLES’ˆvar)>2]).

ctr_eval(
all_balance,
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[checker(all_balance_c),reformulation(all_balance_r)]).

ctr_pure_functional_dependency(all_balance,[]).

ctr_functional_dependency(all_balance,1,[2,3]).

all_balance_c(BALANCE,VARIABLES,M) :-
check_type(dvar,BALANCE),
collection(VARIABLES,[int(1,M)]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
N>0,
BALANCE#>=0,
BALANCE#=<N,
check_type(int(1,N),M),
samsort(VARS,SVARS),
SVARS=[V|R],
min_max_seq_size0(R,M,1,V,N,1,MIN,MAX),
BALANCE#=MAX-MIN.

min_max_seq_size0([],M,C,_28658,BestMin,BestMax,ResMin,ResMax) :-
!,
( M=1 ->

ResMin is min(C,BestMin)
; ResMin is 0
),
ResMax is max(C,BestMax).

min_max_seq_size0([V|R],M,C,V,BestMin,BestMax,ResMin,ResMax) :-
!,
C1 is C+1,
min_max_seq_size0(

R,
M,
C1,
V,
BestMin,
BestMax,
ResMin,
ResMax).

min_max_seq_size0([V|R],M,C,Prev,BestMin,BestMax,ResMin,ResMax) :-
C>0,
V=\=Prev,
NewBestMin is min(C,BestMin),
NewBestMax is max(C,BestMax),
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NewM is M-1,
min_max_seq_size0(

R,
NewM,
1,
V,
NewBestMin,
NewBestMax,
ResMin,
ResMax).

all_balance_r(BALANCE,VARIABLES,M) :-
check_type(dvar,BALANCE),
collection(VARIABLES,[dvar(1,M)]),
length(VARIABLES,N),
N>0,
BALANCE#>=0,
BALANCE#=<N,
check_type(int(1,N),M),
create_nocc_vars(1,M,N,VALS,OCCS),
eval(global_cardinality(VARIABLES,VALS)),
Vmin is(N+M-1)//M,
MIN in 0..Vmin,
eval(minimum(MIN,OCCS)),
Vmax is N//M,
MAX in Vmax..N,
eval(maximum(MAX,OCCS)),
BALANCE+MIN#=MAX,
M1 is M-1,
M*MAX-M1*BALANCE#=<N,
M*MIN+M1*BALANCE#>=N,
Diff is 1+Vmax-Vmin,
BALANCE#\=Diff.
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B.3 all differ from at least k pos

♦ META-DATA:

ctr_date(
all_differ_from_at_least_k_pos,
[’20030820’,’20040530’,’20060803’]).

ctr_origin(
all_differ_from_at_least_k_pos,
Inspired by \cite{Frutos97}.,
[]).

ctr_types(
all_differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_differ_from_at_least_k_pos,
[’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_differ_from_at_least_k_pos,
[required(’VECTOR’,var),
size(’VECTOR’)>=1,
size(’VECTOR’)>=’K’,
’K’>=0,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
all_differ_from_at_least_k_pos,
all_differ_from_at_least_k_pos(

2,
[[vec-[[var-2],[var-5],[var-2],[var-0]]],
[vec-[[var-3],[var-6],[var-2],[var-1]]],
[vec-[[var-3],[var-6],[var-1],[var-0]]]])).

ctr_typical(
all_differ_from_at_least_k_pos,
[’K’>0,size(’VECTORS’)>1]).

ctr_exchangeable(
all_differ_from_at_least_k_pos,
[items(’VECTORS’,all),items_sync(’VECTORS’ˆvec,all)]).
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ctr_graph(
all_differ_from_at_least_k_pos,
[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[differ_from_at_least_k_pos(

K,
vectors1ˆvec,
vectors2ˆvec)],

[’NARC’=size(’VECTORS’)*size(’VECTORS’)-size(’VECTORS’)],
[’NO_LOOP’,’SYMMETRIC’]).

ctr_eval(
all_differ_from_at_least_k_pos,
[reformulation(all_differ_from_at_least_k_pos_r),
checker(all_differ_from_at_least_k_pos_c),
density(all_differ_from_at_least_k_pos_d)]).

ctr_contractible(
all_differ_from_at_least_k_pos,
[],
VECTORS,
any).

ctr_extensible(
all_differ_from_at_least_k_pos,
[],
’VECTORS’ˆvec,
any).

ctr_cond_imply(
all_differ_from_at_least_k_pos,
atleast_nvector,
[’K’=<size(’VECTORS’)],
[],
id).

all_differ_from_at_least_k_pos_r(K,VECTORS) :-
integer(K),
K>=0,
all_differ_from_at_least_k_pos_rr(VECTORS,K).

all_differ_from_at_least_k_pos_c(K,[]) :-
!,
integer(K),
K>=0.
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all_differ_from_at_least_k_pos_c(0,VECTORS) :-
!,
collection(VECTORS,[col([int])]),
VECTORS=[[_41188-VECTOR]|_41184],
length(VECTOR,N),
N>=1,
same_size(VECTORS).

all_differ_from_at_least_k_pos_c(1,VECTORS) :-
!,
collection(VECTORS,[col([int])]),
VECTORS=[[_41188-VECTOR]|_41184],
length(VECTOR,N),
N>=1,
same_size(VECTORS),
length(VECTORS,L),
sort(VECTORS,SVECTORS),
length(SVECTORS,L).

all_differ_from_at_least_k_pos_c(K,VECTORS) :-
integer(K),
VECTORS=[[_41180-VECTOR]|_41176],
length(VECTOR,N),
K=N,
!,
N>=1,
collection(VECTORS,[col([int])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
transpose(VECTS,TVECTS),
length(VECTORS,M),
all_differ_from_at_least_k_pos_distinct_comp(TVECTS,M).

all_differ_from_at_least_k_pos_c(K,VECTORS) :-
integer(K),
collection(VECTORS,[col([int])]),
VECTORS=[[_41192-VECTOR]|_41188],
length(VECTOR,N),
N>=1,
N>=K,
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
all_differ_from_at_least_k_pos_cc(VECTS,N,K).

all_differ_from_at_least_k_pos_distinct_comp([],_41159) :-
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!.

all_differ_from_at_least_k_pos_distinct_comp([L|R],N) :-
sort(L,S),
length(S,N),
all_differ_from_at_least_k_pos_distinct_comp(R,N).

all_differ_from_at_least_k_pos_check_pairs([],_41159,_41160) :-
!.

all_differ_from_at_least_k_pos_check_pairs(
[_41161],
_41527,
_41574) :-

!.

all_differ_from_at_least_k_pos_check_pairs(
[t(I,J)-_41165,t(I,J)-K|R],
CUR,
LIMIT) :-

!,
NEXT is CUR+1,
NEXT=<LIMIT,
all_differ_from_at_least_k_pos_check_pairs(

[t(I,J)-K|R],
NEXT,
LIMIT).

all_differ_from_at_least_k_pos_check_pairs(
[_41161,t(I,J)-K|R],
_CUR,
LIMIT) :-

all_differ_from_at_least_k_pos_check_pairs(
[t(I,J)-K|R],
1,
LIMIT).

all_differ_from_at_least_k_pos_gen_pairs([],_41159,[],_41161) :-
!.

all_differ_from_at_least_k_pos_gen_pairs([L|R],Id,CONT,RES) :-
all_differ_from_at_least_k_pos_gen_pair(

L,
Id,
Id1,
CONT,
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NEW_CONT),
all_differ_from_at_least_k_pos_gen_pairs(

R,
Id1,
NEW_CONT,
RES).

all_differ_from_at_least_k_pos_gen_pair([],Id,Id,CONT,CONT) :-
!.

all_differ_from_at_least_k_pos_gen_pair(
[X|Y],
Id,
NewId,
CONT,
NEW_CONT) :-

all_differ_from_at_least_k_pos_gen_pair(
Y,
X,
Id,
Id1,
CONT,
CCONT),

all_differ_from_at_least_k_pos_gen_pair(
Y,
Id1,
NewId,
CCONT,
NEW_CONT).

all_differ_from_at_least_k_pos_gen_pair(
[],
_41461,
Id,
Id,
CONT,
CONT) :-

!.

all_differ_from_at_least_k_pos_gen_pair(
[X|Y],
Z,
Id,
NewId,
CONT,
CCONT) :-
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MIN is min(X,Z),
MAX is max(X,Z),
CONT=[t(MIN,MAX)-Id|NEW_CONT],
Id1 is Id+1,
all_differ_from_at_least_k_pos_gen_pair(

Y,
Z,
Id1,
NewId,
NEW_CONT,
CCONT).

all_differ_from_at_least_k_pos_length([],LEN,LEN) :-
!.

all_differ_from_at_least_k_pos_length([L|R],CUR,RES) :-
length(L,N),
NEXT is CUR+N*(N-1)//2,
all_differ_from_at_least_k_pos_length(R,NEXT,RES).

all_differ_from_at_least_k_pos_regroup([],[]) :-
!.

all_differ_from_at_least_k_pos_regroup([t(Val,Pos,Id)|Y],RES) :-
all_differ_from_at_least_k_pos_prefix(

[t(Val,Pos,Id)|Y],
t(Val,Pos,Id),
P,
Rest),

( length(P,1) ->
RES=R

; RES=[P|R]
),
all_differ_from_at_least_k_pos_regroup(Rest,R).

all_differ_from_at_least_k_pos_prefix(
[t(Val,Pos,Id)|Y],
t(Val,Pos,Jd),
[Id|S],
R) :-

!,
all_differ_from_at_least_k_pos_prefix(

Y,
t(Val,Pos,Jd),
S,
R).



2528 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

all_differ_from_at_least_k_pos_prefix(L,_41156,[],L).

all_differ_from_at_least_k_pos_gen_triples([],_41159,[],_41161) :-
!.

all_differ_from_at_least_k_pos_gen_triples(
[VECTOR|R],
ID,
CONTINUATION,
TRIPLES) :-

all_differ_from_at_least_k_pos_gen_triples1(
VECTOR,
1,
ID,
CONTINUATION,
NEW_CONTINUATION,
TRIPLES),

ID1 is ID+1,
all_differ_from_at_least_k_pos_gen_triples(

R,
ID1,
NEW_CONTINUATION,
TRIPLES).

all_differ_from_at_least_k_pos_gen_triples1(
[],
_41451,
_41498,
CONTINUATION,
CONTINUATION,
_41635) :-

!.

all_differ_from_at_least_k_pos_gen_triples1(
[V|R],
I,
ID,
CONTINUATION,
NEW_CONTINUATION,
TRIPLES) :-

CONTINUATION=[t(V,I,ID)|CONT],
I1 is I+1,
all_differ_from_at_least_k_pos_gen_triples1(

R,
I1,
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ID,
CONT,
NEW_CONTINUATION,
TRIPLES).

all_differ_from_at_least_k_pos_rr([],_41159) :-
!.

all_differ_from_at_least_k_pos_rr([[_41165-VECTOR1]|R],K) :-
length(VECTOR1,N),
N>=1,
N>=K,
all_differ_from_at_least_k_pos_rr(R,VECTOR1,K),
all_differ_from_at_least_k_pos_rr(R,K).

all_differ_from_at_least_k_pos_rr([],_41156,_41157).

all_differ_from_at_least_k_pos_rr(
[[_41166-VECTOR2]|R],
VECTOR1,
K) :-

eval(differ_from_at_least_k_pos(K,VECTOR1,VECTOR2)),
all_differ_from_at_least_k_pos_rr(R,VECTOR1,K).

all_differ_from_at_least_k_pos_cc([],_41159,_41160) :-
!.

all_differ_from_at_least_k_pos_cc([VECTOR1|R],N,K) :-
all_differ_from_at_least_k_pos_cc(R,VECTOR1,N,K),
all_differ_from_at_least_k_pos_cc(R,N,K).

all_differ_from_at_least_k_pos_cc([],_41156,_41157,_41158).

all_differ_from_at_least_k_pos_cc([VECTOR2|R],VECTOR1,N,K) :-
all_differ_from_at_least_k_pos_check(

VECTOR1,
VECTOR2,
N,
K),

all_differ_from_at_least_k_pos_cc(R,VECTOR1,N,K).

all_differ_from_at_least_k_pos_check([],[],_41160,0) :-
!.

all_differ_from_at_least_k_pos_check([U|R],[V|S],N,K) :-
( U=V ->
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NewK is K
; NewK is K-1
),
( NewK=<0 ->

true
; NewN is N-1,

NewK=<NewN,
all_differ_from_at_least_k_pos_check(R,S,NewN,NewK)

).

all_differ_from_at_least_k_pos_d(0,_41159,[]) :-
!.

all_differ_from_at_least_k_pos_d(
Density,
K,
[[_41170-VECTOR]|_41166]) :-

length(VECTOR,Available),
Density is K/Available.
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B.4 all differ from at most k pos

♦ META-DATA:

ctr_date(all_differ_from_at_most_k_pos,[’20120228’]).

ctr_origin(
all_differ_from_at_most_k_pos,
Inspired by %c.,
[all_differ_from_at_least_k_pos]).

ctr_types(
all_differ_from_at_most_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_differ_from_at_most_k_pos,
[’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_differ_from_at_most_k_pos,
[required(’VECTOR’,var),
size(’VECTOR’)>=1,
size(’VECTOR’)>=’K’,
’K’>=0,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
all_differ_from_at_most_k_pos,
all_differ_from_at_most_k_pos(

2,
[[vec-[[var-0],[var-3],[var-0],[var-6]]],
[vec-[[var-0],[var-3],[var-4],[var-1]]],
[vec-[[var-0],[var-3],[var-4],[var-6]]]])).

ctr_typical(
all_differ_from_at_most_k_pos,
[’K’>0,’K’<size(’VECTOR’),size(’VECTORS’)>1]).

ctr_exchangeable(
all_differ_from_at_most_k_pos,
[items(’VECTORS’,all),items_sync(’VECTORS’ˆvec,all)]).

ctr_graph(
all_differ_from_at_most_k_pos,
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[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[differ_from_at_most_k_pos(’K’,vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)*size(’VECTORS’)-size(’VECTORS’)],
[’NO_LOOP’,’SYMMETRIC’]).

ctr_eval(
all_differ_from_at_most_k_pos,
[reformulation(all_differ_from_at_most_k_pos_r),
checker(all_differ_from_at_most_k_pos_c)]).

ctr_contractible(
all_differ_from_at_most_k_pos,
[],
VECTORS,
any).

ctr_contractible(
all_differ_from_at_most_k_pos,
[],
’VECTORS’ˆvec,
any).

all_differ_from_at_most_k_pos_r(K,VECTORS) :-
integer(K),
K>=0,
all_differ_from_at_most_k_pos_rr(VECTORS,K).

all_differ_from_at_most_k_pos_c(K,[]) :-
!,
integer(K),
K>=0.

all_differ_from_at_most_k_pos_c(K,VECTORS) :-
integer(K),
K>=0,
VECTORS=[[_39498-VECTOR]|_39494],
length(VECTOR,N),
N>=1,
N>=K,
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
all_differ_from_at_most_k_pos_cc(VECTS,N,K).

all_differ_from_at_most_k_pos_rr([],_39471) :-
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!.

all_differ_from_at_most_k_pos_rr([[_39477-VECTOR1]|R],K) :-
length(VECTOR1,N),
N>=1,
N>=K,
all_differ_from_at_most_k_pos_rr(R,VECTOR1,K),
all_differ_from_at_most_k_pos_rr(R,K).

all_differ_from_at_most_k_pos_rr([],_39468,_39469).

all_differ_from_at_most_k_pos_rr(
[[_39478-VECTOR2]|R],
VECTOR1,
K) :-

eval(differ_from_at_most_k_pos(K,VECTOR1,VECTOR2)),
all_differ_from_at_most_k_pos_rr(R,VECTOR1,K).

all_differ_from_at_most_k_pos_cc([],_39471,_39472) :-
!.

all_differ_from_at_most_k_pos_cc([VECTOR1|R],N,K) :-
all_differ_from_at_most_k_pos_cc(R,VECTOR1,N,K),
all_differ_from_at_most_k_pos_cc(R,N,K).

all_differ_from_at_most_k_pos_cc([],_39468,_39469,_39470).

all_differ_from_at_most_k_pos_cc([VECTOR2|R],VECTOR1,N,K) :-
all_differ_from_at_most_k_pos_check(

VECTOR1,
VECTOR2,
N,
K),

all_differ_from_at_most_k_pos_cc(R,VECTOR1,N,K).

all_differ_from_at_most_k_pos_check([],[],_39472,0) :-
!.

all_differ_from_at_most_k_pos_check([U|R],[V|S],N,K) :-
( U=V ->

NewK is K
; NewK is K-1,

NewK>=0
),
NewN is N-1,
( NewN=<NewK ->
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true
; all_differ_from_at_most_k_pos_check(R,S,NewN,NewK)
).
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B.5 all differ from exactly k pos

♦ META-DATA:

ctr_date(all_differ_from_exactly_k_pos,[’20120227’]).

ctr_origin(
all_differ_from_exactly_k_pos,
Inspired by %c.,
[all_differ_from_at_least_k_pos]).

ctr_types(
all_differ_from_exactly_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_differ_from_exactly_k_pos,
[’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_differ_from_exactly_k_pos,
[required(’VECTOR’,var),
size(’VECTOR’)>=1,
size(’VECTOR’)>=’K’,
’K’>=0,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
all_differ_from_exactly_k_pos,
all_differ_from_exactly_k_pos(

2,
[[vec-[[var-0],[var-3],[var-0],[var-6]]],
[vec-[[var-0],[var-3],[var-4],[var-1]]],
[vec-[[var-9],[var-3],[var-4],[var-6]]]])).

ctr_typical(
all_differ_from_exactly_k_pos,
[’K’>0,’K’<size(’VECTOR’),size(’VECTORS’)>1]).

ctr_exchangeable(
all_differ_from_exactly_k_pos,
[items(’VECTORS’,all),items_sync(’VECTORS’ˆvec,all)]).

ctr_graph(
all_differ_from_exactly_k_pos,



2536 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[differ_from_exactly_k_pos(’K’,vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)*size(’VECTORS’)-size(’VECTORS’)],
[’NO_LOOP’,’SYMMETRIC’]).

ctr_eval(
all_differ_from_exactly_k_pos,
[reformulation(all_differ_from_exactly_k_pos_r),
checker(all_differ_from_exactly_k_pos_c)]).

ctr_contractible(
all_differ_from_exactly_k_pos,
[],
VECTORS,
any).

ctr_cond_imply(
all_differ_from_exactly_k_pos,
atleast_nvector,
[’K’=<size(’VECTORS’)],
[],
id).

all_differ_from_exactly_k_pos_r(K,[]) :-
!,
integer(K),
K=0.

all_differ_from_exactly_k_pos_r(K,[_VECTOR]) :-
!,
integer(K),
K=0.

all_differ_from_exactly_k_pos_r(K,VECTORS) :-
integer(K),
K>=0,
all_differ_from_exactly_k_pos_rr(VECTORS,K).

all_differ_from_exactly_k_pos_c(K,[]) :-
!,
check_type(dvar,K),
K=0.

all_differ_from_exactly_k_pos_c(K,VECTORS) :-
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check_type(dvar,K),
K#>=0,
length(VECTORS,L),
( integer(K) ->

true
; L>1 ->

true
; K=0
),
VECTORS=[[_41351-VECTOR]|_41347],
length(VECTOR,N),
N>=1,
N#>=K,
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
all_differ_from_exactly_k_pos_cc(VECTS,N,K).

all_differ_from_exactly_k_pos_rr([],_41292) :-
!.

all_differ_from_exactly_k_pos_rr([[_41298-VECTOR1]|R],K) :-
length(VECTOR1,N),
N>=1,
N#>=K,
all_differ_from_exactly_k_pos_rr(R,VECTOR1,K),
all_differ_from_exactly_k_pos_rr(R,K).

all_differ_from_exactly_k_pos_rr([],_41289,_41290).

all_differ_from_exactly_k_pos_rr(
[[_41299-VECTOR2]|R],
VECTOR1,
K) :-

eval(differ_from_exactly_k_pos(K,VECTOR1,VECTOR2)),
all_differ_from_exactly_k_pos_rr(R,VECTOR1,K).

all_differ_from_exactly_k_pos_cc([],_41292,_41293) :-
!.

all_differ_from_exactly_k_pos_cc([VECTOR1|R],N,K) :-
all_differ_from_exactly_k_pos_cc(R,VECTOR1,N,K),
all_differ_from_exactly_k_pos_cc(R,N,K).

all_differ_from_exactly_k_pos_cc([],_41289,_41290,_41291).

all_differ_from_exactly_k_pos_cc([VECTOR2|R],VECTOR1,N,K) :-
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( integer(K) ->
all_differ_from_exactly_k_pos_check(

VECTOR1,
VECTOR2,
N,
K)

; count_differ_k_pos(VECTOR1,VECTOR2,0,K)
),
all_differ_from_exactly_k_pos_cc(R,VECTOR1,N,K).

all_differ_from_exactly_k_pos_check([],[],_41293,0) :-
!.

all_differ_from_exactly_k_pos_check([U|R],[V|S],N,K) :-
( U=V ->

NewK is K
; NewK is K-1,

NewK>=0
),
NewN is N-1,
NewK=<NewN,
all_differ_from_exactly_k_pos_check(R,S,NewN,NewK).

count_differ_k_pos([],[],C,C) :-
!.

count_differ_k_pos([U|R],[V|S],C,K) :-
( U=V ->

NewC is C
; NewC is C+1
),
count_differ_k_pos(R,S,NewC,K).
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B.6 all equal

♦ META-DATA:

ctr_date(all_equal,[’20081005’,’20100418’]).

ctr_origin(
all_equal,
Derived from %c,
[soft_all_equal_min_ctr]).

ctr_synonyms(all_equal,[rel]).

ctr_arguments(all_equal,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>0]).

ctr_example(
all_equal,
all_equal([[var-5],[var-5],[var-5],[var-5]])).

ctr_typical(
all_equal,
[size(’VARIABLES’)>2,minval(’VARIABLES’ˆvar)=\=0]).

ctr_typical_model(all_equal,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
all_equal,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
all_equal,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
all_equal,
[checker(all_equal_c),reformulation(all_equal_r)]).
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ctr_contractible(all_equal,[],’VARIABLES’,any).

ctr_cond_imply(
all_equal,
some_equal,
[size(’VARIABLES’)>1],
[],
id).

ctr_sol(all_equal,2,0,2,3,-).

ctr_sol(all_equal,3,0,3,4,-).

ctr_sol(all_equal,4,0,4,5,-).

ctr_sol(all_equal,5,0,5,6,-).

ctr_sol(all_equal,6,0,6,7,-).

ctr_sol(all_equal,7,0,7,8,-).

ctr_sol(all_equal,8,0,8,9,-).

all_equal_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
all_equal2(VARS).

all_equal_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_equal1(VARS).

all_equal1([]).

all_equal1([_45435]) :-
!.

all_equal1([V1,V2|R]) :-
V1#=V2,
all_equal1([V2|R]).

all_equal2([V,V|R]) :-
!,
all_equal2([V|R]).
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all_equal2([_45435]) :-
!.

all_equal2([]).
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B.7 all equal except 0

♦ META-DATA:

ctr_date(all_equal_except_0,[’20141009’]).

ctr_origin(all_equal_except_0,’Derived from %c’,[all_equal]).

ctr_arguments(
all_equal_except_0,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_equal_except_0,
[required(’VARIABLES’,var),size(’VARIABLES’)>0]).

ctr_example(
all_equal_except_0,
all_equal_except_0([[var-5],[var-0],[var-5],[var-5]])).

ctr_typical(all_equal_except_0,[size(’VARIABLES’)>1]).

ctr_typical_model(
all_equal_except_0,
[atleast(2,’VARIABLES’,0),nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
all_equal_except_0,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_eval(
all_equal_except_0,
[checker(all_equal_except_0_c),
automata(all_equal_except_a)]).

ctr_contractible(all_equal_except_0,[],’VARIABLES’,any).

all_equal_except_0_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
all_equal_except_01(VARS,0).

all_equal_except_01([],_24106) :-
!.
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all_equal_except_01([0|R],U) :-
!,
all_equal_except_01(R,U).

all_equal_except_01([V|R],0) :-
!,
all_equal_except_01(R,V).

all_equal_except_01([V|R],V) :-
all_equal_except_01(R,V).

all_equal_except_a([]) :-
!.

all_equal_except_a(VARIABLES) :-
collection(VARIABLES,[dvar]),
VARIABLES=[_24122|_24123],
all_equal_except_signature(VARIABLES,SIGNATURE,VARS),
automaton(

VARS,
VARi,
SIGNATURE,
[source(s),source(t),sink(t)],
[arc(s,0,s),
arc(s,1,t,[VARi]),
arc(t,0,t),
arc(t,1,t,(C#=VARi->[C]))],

[C],
[0],
[_24200]).

all_equal_except_signature([],[],[]).

all_equal_except_signature([[var-VAR]|VARs],[S|Ss],[VAR|Ts]) :-
VAR#\=0#<=>S,
all_equal_except_signature(VARs,Ss,Ts).
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B.8 all equal peak

♦ META-DATA:

ctr_date(all_equal_peak,[’20130107’]).

ctr_origin(
all_equal_peak,
Derived from %c and %c.,
[peak,all_equal]).

ctr_arguments(
all_equal_peak,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_equal_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
all_equal_peak,
all_equal_peak(

[[var-1],
[var-5],
[var-5],
[var-4],
[var-3],
[var-5],
[var-2],
[var-7]])).

ctr_typical(
all_equal_peak,
[size(’VARIABLES’)>=5,
range(’VARIABLES’ˆvar)>1,
peak(’VARIABLES’ˆvar)>=2]).

ctr_typical_model(all_equal_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
all_equal_peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
all_equal_peak,
[checker(all_equal_peak_c),



2545

automaton(all_equal_peak_a),
automaton_with_signature(all_equal_peak_a_s)]).

ctr_contractible(all_equal_peak,[],’VARIABLES’,prefix).

ctr_contractible(all_equal_peak,[],’VARIABLES’,suffix).

ctr_cond_imply(
all_equal_peak,
some_equal,
[peak(’VARIABLES’ˆvar)>1],
[],
id).

ctr_cond_imply(
all_equal_peak,
not_all_equal,
[peak(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(all_equal_peak,2,0,2,9,-).

ctr_sol(all_equal_peak,3,0,3,64,-).

ctr_sol(all_equal_peak,4,0,4,625,-).

ctr_sol(all_equal_peak,5,0,5,7330,-).

ctr_sol(all_equal_peak,6,0,6,93947,-).

ctr_sol(all_equal_peak,7,0,7,1267790,-).

ctr_sol(all_equal_peak,8,0,8,17908059,-).

ctr_sol(all_equal_peak,9,0,9,266201992,-).

all_equal_peak_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
all_equal_peak_c(s,VARS,0).

all_equal_peak_c(s,[V1,V2|R],A) :-
V1>=V2,
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!,
all_equal_peak_c(s,[V2|R],A).

all_equal_peak_c(s,[_34075,V2|R],A) :-
!,
all_equal_peak_c(i,[V2|R],A).

all_equal_peak_c(i,[V1,V2|R],A) :-
V1=<V2,
!,
all_equal_peak_c(i,[V2|R],A).

all_equal_peak_c(i,[V1,V2|R],_34074) :-
!,
all_equal_peak_c(j,[V2|R],V1).

all_equal_peak_c(j,[V1,V2|R],A) :-
V1>=V2,
!,
all_equal_peak_c(j,[V2|R],A).

all_equal_peak_c(j,[_34075,V2|R],A) :-
!,
all_equal_peak_c(k,[V2|R],A).

all_equal_peak_c(k,[V1,V2|R],A) :-
V1=<V2,
!,
all_equal_peak_c(k,[V2|R],A).

all_equal_peak_c(k,[V1,V2|R],V1) :-
!,
all_equal_peak_c(j,[V2|R],V1).

all_equal_peak_c(_34069,[_34072],_34071).

ctr_automaton_signature(
all_equal_peak,
all_equal_peak_a,
pair_signature(1,signature)).

all_equal_peak_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
all_equal_peak_a_s(FLAG,VARIABLES,SIGNATURE).

all_equal_peak_a_s(FLAG,VARIABLES,SIGNATURE) :-
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collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
VARi,
SIGNATURE,
[source(s),sink(i),sink(j),sink(k),sink(s)],
[arc(s,1,s),
arc(s,2,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,i),
arc(i,2,j,[VARi,F]),
arc(j,1,j),
arc(j,2,j),
arc(j,0,k),
arc(k,0,k),
arc(k,1,k),
arc(k,2,j,(Altitude#=VARi->[Altitude,F])),
arc(k,2,j,(Altitude#\=VARi->[Altitude,0]))],

[Altitude,F],
[0,1],
[_34259,FLAG]).
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B.9 all equal peak max

♦ META-DATA:

ctr_date(all_equal_peak_max,[’20130107’]).

ctr_origin(
all_equal_peak_max,
Derived from %c and %c.,
[peak,all_equal]).

ctr_arguments(
all_equal_peak_max,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_equal_peak_max,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
all_equal_peak_max,
all_equal_peak_max(

[[var-1],
[var-5],
[var-5],
[var-4],
[var-3],
[var-5],
[var-2],
[var-5]])).

ctr_typical(
all_equal_peak_max,
[size(’VARIABLES’)>=5,
range(’VARIABLES’ˆvar)>1,
peak(’VARIABLES’ˆvar)>=2]).

ctr_typical_model(all_equal_peak_max,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
all_equal_peak_max,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
all_equal_peak_max,
[checker(all_equal_peak_max_c),
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automaton(all_equal_peak_max_a),
automaton_with_signature(all_equal_peak_max_a_s)]).

ctr_contractible(all_equal_peak_max,[],’VARIABLES’,prefix).

ctr_contractible(all_equal_peak_max,[],’VARIABLES’,suffix).

ctr_cond_imply(
all_equal_peak_max,
some_equal,
[peak(’VARIABLES’ˆvar)>1],
[],
id).

ctr_cond_imply(
all_equal_peak_max,
not_all_equal,
[peak(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(all_equal_peak_max,2,0,2,9,-).

ctr_sol(all_equal_peak_max,3,0,3,64,-).

ctr_sol(all_equal_peak_max,4,0,4,605,-).

ctr_sol(all_equal_peak_max,5,0,5,6707,-).

ctr_sol(all_equal_peak_max,6,0,6,81648,-).

ctr_sol(all_equal_peak_max,7,0,7,1065542,-).

ctr_sol(all_equal_peak_max,8,0,8,14829903,-).

all_equal_peak_max_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
last(VARS,LastVAR),
all_equal_peak_max_c(s,VARS,LastVAR).

all_equal_peak_max_c(s,[V1,V2|R],A) :-
V1>=V2,
!,
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all_equal_peak_max_c(s,[V2|R],A).

all_equal_peak_max_c(s,[_32663,V2|R],A) :-
!,
all_equal_peak_max_c(i,[V2|R],A).

all_equal_peak_max_c(i,[V1,V2|R],A) :-
V1=<V2,
!,
all_equal_peak_max_c(i,[V2|R],A).

all_equal_peak_max_c(i,[V1,V2|R],_32662) :-
!,
all_equal_peak_max_c(j,[V2|R],V1).

all_equal_peak_max_c(j,[V1,V2|R],A) :-
V1>=V2,
!,
all_equal_peak_max_c(j,[V2|R],A).

all_equal_peak_max_c(j,[V1,V2|R],A) :-
!,
A>=V1,
all_equal_peak_max_c(k,[V2|R],A).

all_equal_peak_max_c(k,[V1,V2|R],A) :-
V1=<V2,
!,
A>=V1,
all_equal_peak_max_c(k,[V2|R],A).

all_equal_peak_max_c(k,[A,V2|R],A) :-
!,
all_equal_peak_max_c(j,[V2|R],A).

all_equal_peak_max_c(_32660,[LastVAR],A) :-
A>=LastVAR.

ctr_automaton_signature(
all_equal_peak_max,
all_equal_peak_max_a,
pair_signature(1,signature)).

all_equal_peak_max_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
all_equal_peak_max_a_s(FLAG,VARIABLES,SIGNATURE).
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all_equal_peak_max_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
pair_first_last_signature(VARIABLES,VARS,LastVAR),
automaton(

VARS,
VARi,
SIGNATURE,
[source(s),sink(i),sink(j),sink(k),sink(s)],
[arc(s,1,s),
arc(s,2,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,i),
arc(i,2,j,[VARi,F]),
arc(j,1,j),
arc(j,2,j),
arc(j,0,k,(Altitude#>=VARi->[Altitude,F])),
arc(j,0,k,(Altitude#<VARi->[Altitude,0])),
arc(k,0,k,(Altitude#>=VARi->[Altitude,F])),
arc(k,0,k,(Altitude#<VARi->[Altitude,0])),
arc(k,1,k,(Altitude#>=VARi->[Altitude,F])),
arc(k,1,k,(Altitude#<VARi->[Altitude,0])),
arc(k,2,j,(Altitude#=VARi->[Altitude,F])),
arc(k,2,j,(Altitude#\=VARi->[Altitude,0]))],

[Altitude,F],
[LastVAR,1],
[A,FL]),

FLAG#<=>FL#/\A#>=LastVAR.
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B.10 all equal valley

♦ META-DATA:

ctr_date(all_equal_valley,[’20130108’]).

ctr_origin(
all_equal_valley,
Derived from %c and %c.,
[valley,all_equal]).

ctr_arguments(
all_equal_valley,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_equal_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
all_equal_valley,
all_equal_valley(

[[var-1],
[var-5],
[var-5],
[var-4],
[var-2],
[var-2],
[var-6],
[var-2],
[var-7]])).

ctr_typical(
all_equal_valley,
[size(’VARIABLES’)>=5,
range(’VARIABLES’ˆvar)>1,
valley(’VARIABLES’ˆvar)>=2]).

ctr_typical_model(all_equal_valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
all_equal_valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
all_equal_valley,
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[checker(all_equal_valley_c),
automaton(all_equal_valley_a),
automaton_with_signature(all_equal_valley_a_s)]).

ctr_contractible(all_equal_valley,[],’VARIABLES’,prefix).

ctr_contractible(all_equal_valley,[],’VARIABLES’,suffix).

ctr_cond_imply(
all_equal_valley,
some_equal,
[valley(’VARIABLES’ˆvar)>1],
[],
id).

ctr_cond_imply(
all_equal_valley,
not_all_equal,
[valley(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(all_equal_valley,2,0,2,9,-).

ctr_sol(all_equal_valley,3,0,3,64,-).

ctr_sol(all_equal_valley,4,0,4,625,-).

ctr_sol(all_equal_valley,5,0,5,7330,-).

ctr_sol(all_equal_valley,6,0,6,93947,-).

ctr_sol(all_equal_valley,7,0,7,1267790,-).

ctr_sol(all_equal_valley,8,0,8,17908059,-).

all_equal_valley_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
all_equal_valley_c(s,VARS,0).

all_equal_valley_c(s,[V1,V2|R],A) :-
V1=<V2,
!,
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all_equal_valley_c(s,[V2|R],A).

all_equal_valley_c(s,[_33896,V2|R],A) :-
!,
all_equal_valley_c(i,[V2|R],A).

all_equal_valley_c(i,[V1,V2|R],A) :-
V1>=V2,
!,
all_equal_valley_c(i,[V2|R],A).

all_equal_valley_c(i,[V1,V2|R],_33895) :-
!,
all_equal_valley_c(j,[V2|R],V1).

all_equal_valley_c(j,[V1,V2|R],A) :-
V1=<V2,
!,
all_equal_valley_c(j,[V2|R],A).

all_equal_valley_c(j,[_33896,V2|R],A) :-
!,
all_equal_valley_c(k,[V2|R],A).

all_equal_valley_c(k,[V1,V2|R],A) :-
V1>=V2,
!,
all_equal_valley_c(k,[V2|R],A).

all_equal_valley_c(k,[V1,V2|R],V1) :-
!,
all_equal_valley_c(j,[V2|R],V1).

all_equal_valley_c(_33893,[_33896],_33895) :-
!.

all_equal_valley_c(_33890,[],_33892).

ctr_automaton_signature(
all_equal_valley,
all_equal_valley_a,
pair_signature(1,signature)).

all_equal_valley_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
all_equal_valley_a_s(FLAG,VARIABLES,SIGNATURE).
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all_equal_valley_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
VARi,
SIGNATURE,
[source(s),sink(i),sink(j),sink(k),sink(s)],
[arc(s,1,s),
arc(s,0,s),
arc(s,2,i),
arc(i,2,i),
arc(i,1,i),
arc(i,0,j,[VARi,F]),
arc(j,1,j),
arc(j,0,j),
arc(j,2,k),
arc(k,2,k),
arc(k,1,k),
arc(k,0,j,(Altitude#=VARi->[Altitude,F])),
arc(k,0,j,(Altitude#\=VARi->[Altitude,0]))],

[Altitude,F],
[0,1],
[_34080,FLAG]).
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B.11 all equal valley min

♦ META-DATA:

ctr_date(all_equal_valley_min,[’20130108’]).

ctr_origin(
all_equal_valley_min,
Derived from %c and %c.,
[valley,all_equal]).

ctr_arguments(
all_equal_valley_min,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_equal_valley_min,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
all_equal_valley_min,
all_equal_valley_min(

[[var-2],
[var-5],
[var-5],
[var-4],
[var-2],
[var-2],
[var-6],
[var-2],
[var-7]])).

ctr_typical(
all_equal_valley_min,
[size(’VARIABLES’)>=5,
range(’VARIABLES’ˆvar)>1,
valley(’VARIABLES’ˆvar)>=2]).

ctr_typical_model(
all_equal_valley_min,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
all_equal_valley_min,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).
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ctr_eval(
all_equal_valley_min,
[checker(all_equal_valley_min_c),
automaton(all_equal_valley_min_a),
automaton_with_signature(all_equal_valley_min_a_s)]).

ctr_contractible(all_equal_valley_min,[],’VARIABLES’,prefix).

ctr_contractible(all_equal_valley_min,[],’VARIABLES’,suffix).

ctr_cond_imply(
all_equal_valley_min,
some_equal,
[valley(’VARIABLES’ˆvar)>1],
[],
id).

ctr_cond_imply(
all_equal_valley_min,
not_all_equal,
[valley(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(all_equal_valley_min,2,0,2,9,-).

ctr_sol(all_equal_valley_min,3,0,3,64,-).

ctr_sol(all_equal_valley_min,4,0,4,605,-).

ctr_sol(all_equal_valley_min,5,0,5,6707,-).

ctr_sol(all_equal_valley_min,6,0,6,81648,-).

ctr_sol(all_equal_valley_min,7,0,7,1065542,-).

ctr_sol(all_equal_valley_min,8,0,8,14829903,-).

all_equal_valley_min_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
last(VARS,LastVAR),
all_equal_valley_min_c(s,VARS,LastVAR).
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all_equal_valley_min_c(s,[V1,V2|R],A) :-
V1=<V2,
!,
all_equal_valley_min_c(s,[V2|R],A).

all_equal_valley_min_c(s,[_32725,V2|R],A) :-
!,
all_equal_valley_min_c(i,[V2|R],A).

all_equal_valley_min_c(i,[V1,V2|R],A) :-
V1>=V2,
!,
all_equal_valley_min_c(i,[V2|R],A).

all_equal_valley_min_c(i,[V1,V2|R],_32724) :-
!,
all_equal_valley_min_c(j,[V2|R],V1).

all_equal_valley_min_c(j,[V1,V2|R],A) :-
V1=<V2,
!,
all_equal_valley_min_c(j,[V2|R],A).

all_equal_valley_min_c(j,[V1,V2|R],A) :-
!,
A=<V1,
all_equal_valley_min_c(k,[V2|R],A).

all_equal_valley_min_c(k,[V1,V2|R],A) :-
V1>=V2,
!,
A=<V1,
all_equal_valley_min_c(k,[V2|R],A).

all_equal_valley_min_c(k,[A,V2|R],A) :-
!,
all_equal_valley_min_c(j,[V2|R],A).

all_equal_valley_min_c(_32722,[LastVAR],A) :-
A=<LastVAR.

ctr_automaton_signature(
all_equal_valley_min,
all_equal_valley_min_a,
pair_signature(1,signature)).
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all_equal_valley_min_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
all_equal_valley_min_a_s(FLAG,VARIABLES,SIGNATURE).

all_equal_valley_min_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
pair_first_last_signature(VARIABLES,VARS,LastVAR),
automaton(

VARS,
VARi,
SIGNATURE,
[source(s),sink(i),sink(j),sink(k),sink(s)],
[arc(s,1,s),
arc(s,0,s),
arc(s,2,i),
arc(i,2,i),
arc(i,1,i),
arc(i,0,j,[VARi,F]),
arc(j,1,j),
arc(j,0,j),
arc(j,2,k,(Altitude#=<VARi->[Altitude,F])),
arc(j,2,k,(Altitude#>VARi->[Altitude,0])),
arc(k,2,k,(Altitude#=<VARi->[Altitude,F])),
arc(k,2,k,(Altitude#>VARi->[Altitude,0])),
arc(k,1,k,(Altitude#=<VARi->[Altitude,F])),
arc(k,1,k,(Altitude#>VARi->[Altitude,0])),
arc(k,0,j,(Altitude#=VARi->[Altitude,F])),
arc(k,0,j,(Altitude#\=VARi->[Altitude,0]))],

[Altitude,F],
[LastVAR,1],
[A,FL]),

FLAG#<=>FL#/\A#=<LastVAR.
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B.12 all incomparable

♦ META-DATA:

ctr_date(all_incomparable,[’20120202’]).

ctr_origin(
all_incomparable,
Inspired by incomparable rectangles.,
[]).

ctr_synonyms(all_incomparable,[all_incomparables]).

ctr_types(all_incomparable,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
all_incomparable,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
all_incomparable,
[required(’VECTOR’,var),
size(’VECTOR’)>=1,
required(’VECTORS’,vec),
size(’VECTORS’)>=1,
same_size(’VECTORS’,vec)]).

ctr_example(
all_incomparable,
all_incomparable(

[[vec-[[var-1],[var-18]]],
[vec-[[var-2],[var-16]]],
[vec-[[var-3],[var-13]]],
[vec-[[var-4],[var-11]]],
[vec-[[var-5],[var-10]]],
[vec-[[var-6],[var-9]]],
[vec-[[var-7],[var-7]]]])).

ctr_typical(
all_incomparable,
[size(’VECTOR’)>1,
size(’VECTORS’)>1,
size(’VECTORS’)>size(’VECTOR’)]).

ctr_exchangeable(all_incomparable,[items(’VECTORS’,all)]).
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ctr_graph(
all_incomparable,
[’VECTORS’],
2,
[’CLIQUE’(=\=)>>collection(vectors1,vectors2)],
[incomparable(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)*size(’VECTORS’)-size(’VECTORS’)],
[’NO_LOOP’,’SYMMETRIC’]).

ctr_eval(
all_incomparable,
[reformulation(all_incomparable_r),
checker(all_incomparable_c)]).

ctr_contractible(all_incomparable,[],’VECTORS’,any).

ctr_cond_imply(
all_incomparable,
k_disjoint,
[size(’VECTOR’)=2],
[],
same).

ctr_cond_imply(
all_incomparable,
twin,
[size(’VECTOR’)=2],
[],
same).

all_incomparable_r(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
VECTS=[VEC|_53928],
length(VEC,N),
N>=1,
all_incomparable(VECTS,N).

all_incomparable([_53895],_53894) :-
!.

all_incomparable(_53893,1) :-
!,
fail.
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all_incomparable(VECTS,_53894) :-
all_incomparable1(VECTS,NEW_PVARS),
flattern(VECTS,VARS),
when(ground(VARS),once(labeling([],NEW_PVARS))).

all_incomparable1([],[]).

all_incomparable1([_53892],[]).

all_incomparable1([V,W|R],P) :-
all_incomparable2([W|R],V,P1),
all_incomparable1([W|R],P2),
append(P1,P2,P).

all_incomparable2([],_53891,[]).

all_incomparable2([V|R],U,P) :-
all_incomparable3(U,V,PUV),
all_incomparable2(R,U,PR),
append(PUV,PR,P).

all_incomparable3(U,V,PUV) :-
length(U,N),
length(V,N),
N>1,
length(PU,N),
length(PV,N),
domain(PU,1,N),
domain(PV,1,N),
get_minimum(U,MinU),
get_maximum(U,MaxU),
get_minimum(V,MinV),
get_maximum(V,MaxV),
length(SU,N),
length(SV,N),
domain(SU,MinU,MaxU),
domain(SV,MinV,MaxV),
sorting(U,PU,SU),
sorting(V,PV,SV),
all_incomparable4(SU,SV,Cond1),
all_incomparable4(SV,SU,Cond2),
call(Cond1),
call(Cond2),
append(PU,PV,PUV).

all_incomparable4([],[],0).
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all_incomparable4([U|R],[V|S],U#>V#\/T) :-
all_incomparable4(R,S,T).

all_incomparable_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
VECTS=[VEC|_53928],
length(VEC,N),
N>=1,
all_incomparable_check(VECTS,N).

all_incomparable_check([_53895],_53894) :-
!.

all_incomparable_check(_53893,1) :-
!,
fail.

all_incomparable_check(VECTS,_53894) :-
all_incomparablec1(VECTS).

all_incomparablec1([]) :-
!.

all_incomparablec1([_53894]) :-
!.

all_incomparablec1([V|R]) :-
all_incomparablec2(R,V),
all_incomparablec1(R).

all_incomparablec2([],_53894) :-
!.

all_incomparablec2([V|R],U) :-
incomparablec(U,V),
all_incomparablec2(R,U).
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B.13 all min dist

♦ META-DATA:

ctr_date(all_min_dist,[’20050508’,’20060803’]).

ctr_origin(all_min_dist,’\\cite{Regin97}’,[]).

ctr_synonyms(all_min_dist,[minimum_distance,inter_distance]).

ctr_arguments(
all_min_dist,
[’MINDIST’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
all_min_dist,
[’MINDIST’>0,
size(’VARIABLES’)<2#\/’MINDIST’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var)]).

ctr_example(
all_min_dist,
all_min_dist(2,[[var-5],[var-1],[var-9],[var-3]])).

ctr_typical(all_min_dist,[’MINDIST’>1,size(’VARIABLES’)>1]).

ctr_exchangeable(
all_min_dist,
[vals([’MINDIST’],int(>=(1)),>,dontcare,dontcare),
items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
all_min_dist,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>=’MINDIST’],
[’NARC’=size(’VARIABLES’)*(size(’VARIABLES’)-1)/2],
[’ACYCLIC’,’NO_LOOP’]).

ctr_eval(
all_min_dist,
[checker(all_min_dist_c),reformulation(all_min_dist_r)]).



2565

ctr_contractible(all_min_dist,[],’VARIABLES’,any).

ctr_cond_imply(
all_min_dist,
soft_all_equal_max_var,
[],
[’N’>=size(’VARIABLES’)-1],
[none,’VARIABLES’]).

ctr_sol(all_min_dist,2,0,2,8,[1-6,2-2]).

ctr_sol(all_min_dist,3,0,3,24,[1-24]).

ctr_sol(all_min_dist,4,0,4,120,[1-120]).

ctr_sol(all_min_dist,5,0,5,720,[1-720]).

ctr_sol(all_min_dist,6,0,6,5040,[1-5040]).

ctr_sol(all_min_dist,7,0,7,40320,[1-40320]).

ctr_sol(all_min_dist,8,0,8,362880,[1-362880]).

all_min_dist_c(MINDIST,[]) :-
!,
integer(MINDIST),
MINDIST>0.

all_min_dist_c(MINDIST,VARIABLES) :-
integer(MINDIST),
MINDIST>0,
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
( VARS=[_60493,_60495|_60496] ->

samsort(VARS,SVARS),
all_dist_geq_mindist(SVARS,MINDIST)

; true
).

all_dist_geq_mindist([V1,V2|R],MINDIST) :-
!,
Dist is V2-V1,
Dist>=MINDIST,
all_dist_geq_mindist([V2|R],MINDIST).

all_dist_geq_mindist(_60448,_60449).
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all_min_dist_r(MINDIST,[]) :-
!,
integer(MINDIST),
MINDIST>0.

all_min_dist_r(MINDIST,VARIABLES) :-
integer(MINDIST),
MINDIST>0,
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
( N>1 ->

list_dvar_range(VARS,RANGE),
MINDIST#<RANGE,
all_min_dist1(VARIABLES,MINDIST)

; true
).

all_min_dist1([],_60449).

all_min_dist1([[_60458-VAR1]|R],MINDIST) :-
all_min_dist2(R,VAR1,MINDIST),
all_min_dist1(R,MINDIST).

all_min_dist2([],_60449,_60450).

all_min_dist2([[_60459-VAR2]|R],VAR1,MINDIST) :-
abs(VAR1-VAR2)#>=MINDIST,
all_min_dist2(R,VAR1,MINDIST).
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B.14 alldifferent

♦ META-DATA:

ctr_date(
alldifferent,
[20000128,
20030820,
20040530,
20060803,
20081227,
20090521]).

ctr_origin(alldifferent,’\\cite{Lauriere78}’,[]).

ctr_synonyms(
alldifferent,
[alldiff,
alldistinct,
distinct,
bound_alldifferent,
bound_alldiff,
bound_distinct,
rel]).

ctr_arguments(alldifferent,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(alldifferent,[required(’VARIABLES’,var)]).

ctr_example(
alldifferent,
alldifferent([[var-5],[var-1],[var-9],[var-3]])).

ctr_typical(alldifferent,[size(’VARIABLES’)>2]).

ctr_exchangeable(
alldifferent,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
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[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent,
[checker(alldifferent_c),
builtin(alldifferent_b),
reformulation(alldifferent_r1),
reformulation(alldifferent_r2)]).

ctr_contractible(alldifferent,[],’VARIABLES’,any).

ctr_cond_imply(alldifferent,lex_alldifferent,[],[],int_to_col).

ctr_cond_imply(
alldifferent,
soft_alldifferent_ctr,
[],
[],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent,
balance,
[],
[’BALANCE’=0],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent,
soft_all_equal_max_var,
[],
[’N’<size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent,
soft_all_equal_min_var,
[],
[’N’>size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent,
change,
[],
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[’NCHANGE’=size(’VARIABLES’)-1,in_list(’CTR’,[=\=])],
[none,’VARIABLES’,none]).

ctr_cond_imply(
alldifferent,
circular_change,
[],
[’NCHANGE’=size(’VARIABLES’),in_list(’CTR’,[=\=])],
[none,’VARIABLES’,none]).

ctr_cond_imply(
alldifferent,
longest_change,
[],
[’SIZE’=size(’VARIABLES’),in_list(’CTR’,[=\=])],
[none,’VARIABLES’,none]).

ctr_cond_imply(
alldifferent,
length_first_sequence,
[size(’VARIABLES’)>0],
[’LEN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent,
length_last_sequence,
[size(’VARIABLES’)>0],
[’LEN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent,
min_nvalue,
[size(’VARIABLES’)>0],
[’MIN’=1],
[none,’VARIABLES’]).

ctr_sol(alldifferent,2,0,2,6,-).

ctr_sol(alldifferent,3,0,3,24,-).

ctr_sol(alldifferent,4,0,4,120,-).

ctr_sol(alldifferent,5,0,5,720,-).
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ctr_sol(alldifferent,6,0,6,5040,-).

ctr_sol(alldifferent,7,0,7,40320,-).

ctr_sol(alldifferent,8,0,8,362880,-).

ctr_sol(alldifferent,9,0,9,3628800,-).

ctr_sol(alldifferent,10,0,10,39916800,-).

alldifferent_c([V,V|_95468]) :-
!,
fail.

alldifferent_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(VARS,N),
length(SVARS,N).

alldifferent_b(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_distinct(VARS).

alldifferent_r1(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MIN),
get_maximum(VARS,MAX),
length(VARS,N),
length(L,N),
domain(L,MIN,MAX),
gen_collection(L,var,SORTED_VARIABLES),
eval(sort(VARIABLES,SORTED_VARIABLES)),
eval(strictly_increasing(SORTED_VARIABLES)).

alldifferent_r2(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MIN),
get_maximum(VARS,MAX),
alldifferent_r20(MIN,MAX,VARS).

alldifferent_r20(L,MAX,_95464) :-
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L>MAX,
!.

alldifferent_r20(L,MAX,VARS) :-
alldifferent_r21(L,MAX,VARS),
L1 is L+1,
alldifferent_r20(L1,MAX,VARS).

alldifferent_r21(L,U,_95464) :-
L>U,
!.

alldifferent_r21(L,U,VARS) :-
alldifferent_r22(VARS,L,U,T),
S is U-L+1,
call(T#=<S),
U1 is U-1,
alldifferent_r21(L,U1,VARS).

alldifferent_r22([],_95463,_95464,0) :-
!.

alldifferent_r22([Vi|R],L,U,Bilu+S) :-
Vi in L..U#<=>Bilu,
alldifferent_r22(R,L,U,S).
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B.15 alldifferent between sets

♦ META-DATA:

ctr_date(
alldifferent_between_sets,
[’20030820’,’20051008’,’20060803’]).

ctr_origin(alldifferent_between_sets,’ILOG’,[]).

ctr_synonyms(
alldifferent_between_sets,
[all_null_intersect,
alldiff_between_sets,
alldistinct_between_sets,
alldiff_on_sets,
alldistinct_on_sets,
alldifferent_on_sets]).

ctr_arguments(
alldifferent_between_sets,
[’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
alldifferent_between_sets,
[required(’VARIABLES’,var)]).

ctr_example(
alldifferent_between_sets,
alldifferent_between_sets(

[[var-{3,5}],[var-{}],[var-{3}],[var-{3,5,7}]])).

ctr_typical(alldifferent_between_sets,[size(’VARIABLES’)>2]).

ctr_exchangeable(
alldifferent_between_sets,
[items(’VARIABLES’,all)]).

ctr_graph(
alldifferent_between_sets,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[eq_set(variables1ˆvar,variables2ˆvar)],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).
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ctr_contractible(alldifferent_between_sets,[],’VARIABLES’,any).
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B.16 alldifferent consecutive values

♦ META-DATA:

ctr_date(alldifferent_consecutive_values,[’20080618’]).

ctr_origin(
alldifferent_consecutive_values,
Derived from %c.,
[alldifferent]).

ctr_arguments(
alldifferent_consecutive_values,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_consecutive_values,
[required(’VARIABLES’,var),alldifferent(’VARIABLES’)]).

ctr_example(
alldifferent_consecutive_values,
alldifferent_consecutive_values(

[[var-5],[var-4],[var-3],[var-6]])).

ctr_typical(
alldifferent_consecutive_values,
[size(’VARIABLES’)>2]).

ctr_exchangeable(
alldifferent_consecutive_values,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
alldifferent_consecutive_values,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’RANGE’(’VARIABLES’,var)=size(’VARIABLES’)-1],
[]).

ctr_eval(
alldifferent_consecutive_values,
[checker(alldifferent_consecutive_values_c),
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reformulation(alldifferent_consecutive_values_r)]).

ctr_cond_imply(
alldifferent_consecutive_values,
among_diff_0,
[minval(’VARIABLES’ˆvar)=<0,maxval(’VARIABLES’ˆvar)>=0],
[’NVAR’=size(’VARIABLES’)-1],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
among_diff_0,
[minval(’VARIABLES’ˆvar)>0],
[’NVAR’=size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
among_diff_0,
[maxval(’VARIABLES’ˆvar)<0],
[’NVAR’=size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
balance,
[],
[’BALANCE’=0],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
length_first_sequence,
[size(’VARIABLES’)>0],
[’LEN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
length_last_sequence,
[size(’VARIABLES’)>0],
[’LEN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
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max_n,
[],
[’MAX’=maxval(’VARIABLES’ˆvar)-’RANK’],
[none,none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
min_n,
[],
[’MIN’=minval(’VARIABLES’ˆvar)+’RANK’],
[none,none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
min_nvalue,
[size(’VARIABLES’)>0],
[’MIN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
ninterval,
[minval(’VARIABLES’ˆvar)=0],
[NVAL=
(size(’VARIABLES’)+’SIZE_INTERVAL’-1)/’SIZE_INTERVAL’],
[none,’VARIABLES’,none]).

ctr_cond_imply(
alldifferent_consecutive_values,
range_ctr,
[],
[in_list(’CTR’,[=<]),’R’=size(’VARIABLES’)],
[none,none,’VARIABLES’]).

ctr_cond_imply(
alldifferent_consecutive_values,
soft_alldifferent_ctr,
[],
[],
[none,’VARIABLES’]).

ctr_sol(alldifferent_consecutive_values,2,0,2,4,-).

ctr_sol(alldifferent_consecutive_values,3,0,3,12,-).

ctr_sol(alldifferent_consecutive_values,4,0,4,48,-).
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ctr_sol(alldifferent_consecutive_values,5,0,5,240,-).

ctr_sol(alldifferent_consecutive_values,6,0,6,1440,-).

ctr_sol(alldifferent_consecutive_values,7,0,7,10080,-).

ctr_sol(alldifferent_consecutive_values,8,0,8,80640,-).

ctr_sol(alldifferent_consecutive_values,9,0,9,725760,-).

ctr_sol(alldifferent_consecutive_values,10,0,10,7257600,-).

alldifferent_consecutive_values_c([V,V|_41441]) :-
!,
fail.

alldifferent_consecutive_values_c([]) :-
!.

alldifferent_consecutive_values_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(VARS,N),
length(SVARS,N),
min_member(MIN,VARS),
max_member(MAX,VARS),
N is MAX-MIN+1.

alldifferent_consecutive_values_r([]) :-
!.

alldifferent_consecutive_values_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_different(VARS),
minimum(MIN,VARS),
maximum(MAX,VARS),
length(VARIABLES,N),
N#=MAX-MIN+1.
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B.17 alldifferent cst

♦ META-DATA:

ctr_date(alldifferent_cst,[’20051104’,’20060803’]).

ctr_origin(alldifferent_cst,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(alldifferent_cst,[alldiff_cst,alldistinct_cst]).

ctr_arguments(
alldifferent_cst,
[’VARIABLES’-collection(var-dvar,cst-int)]).

ctr_restrictions(
alldifferent_cst,
[required(’VARIABLES’,[var,cst])]).

ctr_example(
alldifferent_cst,
alldifferent_cst(

[[var-5,cst-0],
[var-1,cst-1],
[var-9,cst-0],
[var-3,cst-4]])).

ctr_typical(
alldifferent_cst,
[size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
2*range(’VARIABLES’ˆvar)<3*size(’VARIABLES’),
range(’VARIABLES’ˆcst)>1]).

ctr_exchangeable(
alldifferent_cst,
[items(’VARIABLES’,all),
attrs(’VARIABLES’,[[var,cst]]),
translate([’VARIABLES’ˆvar]),
translate([’VARIABLES’ˆcst])]).

ctr_graph(
alldifferent_cst,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar+variables1ˆcst=
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variables2ˆvar+variables2ˆcst],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_cst,
[checker(alldifferent_cst_c),
reformulation(alldifferent_cst_r)]).

ctr_contractible(alldifferent_cst,[],’VARIABLES’,any).

alldifferent_cst_r(VARIABLES) :-
collection(VARIABLES,[dvar,int]),
get_attr1(VARIABLES,VARS),
get_attr2(VARIABLES,CSTS),
gen_varcst(VARS,CSTS,VARCSTS),
all_different(VARCSTS).

alldifferent_cst_c(VARIABLES) :-
collection(VARIABLES,[int,int]),
get_attr12_sum(VARIABLES,SUMS),
sort(SUMS,SORTED),
length(SUMS,N),
length(SORTED,N).
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B.18 alldifferent except 0

♦ META-DATA:

ctr_date(
alldifferent_except_0,
[’20000128’,’20030820’,’20040530’,’20060803’]).

ctr_origin(
alldifferent_except_0,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_except_0,
[alldiff_except_0,alldistinct_except_0]).

ctr_arguments(
alldifferent_except_0,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_except_0,
[required(’VARIABLES’,var)]).

ctr_example(
alldifferent_except_0,
alldifferent_except_0(

[[var-5],[var-0],[var-1],[var-9],[var-0],[var-3]])).

ctr_typical(
alldifferent_except_0,
[size(’VARIABLES’)>2,
atleast(2,’VARIABLES’,0),
range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(
alldifferent_except_0,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
alldifferent_except_0,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_graph(
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alldifferent_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1],
[]).

ctr_eval(
alldifferent_except_0,
[reformulation(alldifferent_except_0_r),
checker(alldifferent_except_0_c),
density(alldifferent_except_0_d)]).

ctr_contractible(alldifferent_except_0,[],’VARIABLES’,any).

ctr_sol(alldifferent_except_0,2,0,2,7,-).

ctr_sol(alldifferent_except_0,3,0,3,34,-).

ctr_sol(alldifferent_except_0,4,0,4,209,-).

ctr_sol(alldifferent_except_0,5,0,5,1546,-).

ctr_sol(alldifferent_except_0,6,0,6,13327,-).

ctr_sol(alldifferent_except_0,7,0,7,130922,-).

ctr_sol(alldifferent_except_0,8,0,8,1441729,-).

alldifferent_except_0_c([[var-V],[var-V]|_53043]) :-
V=\=0,
!,
fail.

alldifferent_except_0_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
filter_zeros(VARS,L),
sort(L,SL),
length(L,N),
length(SL,N).

filter_zeros([],[]) :-
!.
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filter_zeros([0|R],S) :-
!,
filter_zeros(R,S).

filter_zeros([X|R],[X|S]) :-
filter_zeros(R,S).

alldifferent_except_0_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
alldifferent_except_01(VARS).

alldifferent_except_01([]).

alldifferent_except_01([_53033]) :-
!.

alldifferent_except_01([V1|R]) :-
alldifferent_except_01(R,V1),
alldifferent_except_01(R).

alldifferent_except_01([],_53030).

alldifferent_except_01([V2|R],V1) :-
V1#=0#\/V2#=0#\/V1#\=V2,
alldifferent_except_01(R,V1).

alldifferent_except_0_d(Density,VARIABLES) :-
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(VARS,N),
length(SVARS,S),
Density is S/N.
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B.19 alldifferent interval

♦ META-DATA:

ctr_date(alldifferent_interval,[’20030820’,’20060803’]).

ctr_origin(
alldifferent_interval,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_interval,
[alldiff_interval,alldistinct_interval]).

ctr_arguments(
alldifferent_interval,
[’VARIABLES’-collection(var-dvar),’SIZE_INTERVAL’-int]).

ctr_restrictions(
alldifferent_interval,
[required(’VARIABLES’,var),’SIZE_INTERVAL’>0]).

ctr_example(
alldifferent_interval,
alldifferent_interval([[var-2],[var-4],[var-10]],3)).

ctr_typical(
alldifferent_interval,
[size(’VARIABLES’)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<max(3,range(’VARIABLES’ˆvar))]).

ctr_exchangeable(
alldifferent_interval,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
all,
dontcare),

vals(
[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=\=,
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all,
in)]).

ctr_graph(
alldifferent_interval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_interval,
[checker(alldifferent_interval_c),
reformulation(alldifferent_interval_r),
density(alldifferent_interval_d)]).

ctr_contractible(alldifferent_interval,[],’VARIABLES’,any).

ctr_sol(alldifferent_interval,2,0,2,10,[1-6,2-4]).

ctr_sol(alldifferent_interval,3,0,3,24,[1-24]).

ctr_sol(alldifferent_interval,4,0,4,120,[1-120]).

ctr_sol(alldifferent_interval,5,0,5,720,[1-720]).

ctr_sol(alldifferent_interval,6,0,6,5040,[1-5040]).

ctr_sol(alldifferent_interval,7,0,7,40320,[1-40320]).

ctr_sol(alldifferent_interval,8,0,8,362880,[1-362880]).

alldifferent_interval_c(VARIABLES,SIZE_INTERVAL) :-
collection(VARIABLES,[int]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES,VARS),
gen_quotient_fix(VARS,SIZE_INTERVAL,QUOTIENT),
( QUOTIENT=[V,V|_53822] ->

fail
; sort(QUOTIENT,SORTED),

length(QUOTIENT,N),
length(SORTED,N)



2585

).

alldifferent_interval_r(VARIABLES,SIZE_INTERVAL) :-
collection(VARIABLES,[dvar]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES,VARS),
gen_quotient(VARS,SIZE_INTERVAL,QUOTVARS),
all_different(QUOTVARS).

alldifferent_interval_d(Density,VARIABLES,SIZE_INTERVAL) :-
get_attr1(VARIABLES,VARS),
min_member(Min,VARS),
max_member(Max,VARS),
NormalizedMin is Min//SIZE_INTERVAL,
NormalizedMax is Max//SIZE_INTERVAL,
Available is NormalizedMax-NormalizedMin+1,
length(VARS,Needed),
Density is Needed/Available.
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B.20 alldifferent modulo

♦ META-DATA:

ctr_date(alldifferent_modulo,[’20030820’,’20060803’]).

ctr_origin(
alldifferent_modulo,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_modulo,
[alldiff_modulo,alldistinct_modulo]).

ctr_arguments(
alldifferent_modulo,
[’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
alldifferent_modulo,
[required(’VARIABLES’,var),’M’>0,’M’>=size(’VARIABLES’)]).

ctr_example(
alldifferent_modulo,
alldifferent_modulo([[var-25],[var-1],[var-14],[var-3]],5)).

ctr_typical(alldifferent_modulo,[size(’VARIABLES’)>2,’M’>1]).

ctr_exchangeable(
alldifferent_modulo,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],mod(’M’),=,all,dontcare),
vals([’VARIABLES’ˆvar],mod(’M’),=\=,all,in)]).

ctr_graph(
alldifferent_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_modulo,
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[reformulation(alldifferent_modulo_r)]).

ctr_contractible(alldifferent_modulo,[],’VARIABLES’,any).

ctr_sol(alldifferent_modulo,2,0,2,4,[2-4]).

ctr_sol(alldifferent_modulo,3,0,3,12,[3-12]).

ctr_sol(alldifferent_modulo,4,0,4,48,[4-48]).

ctr_sol(alldifferent_modulo,5,0,5,240,[5-240]).

ctr_sol(alldifferent_modulo,6,0,6,1440,[6-1440]).

ctr_sol(alldifferent_modulo,7,0,7,10080,[7-10080]).

ctr_sol(alldifferent_modulo,8,0,8,80640,[8-80640]).

alldifferent_modulo_r(VARIABLES,M) :-
collection(VARIABLES,[dvar]),
integer(M),
M>0,
length(VARIABLES,N),
M>=N,
get_attr1(VARIABLES,VARS),
gen_remainder(VARS,M,REMVARS),
all_different(REMVARS).
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B.21 alldifferent on intersection

♦ META-DATA:

ctr_date(alldifferent_on_intersection,[’20040530’,’20060803’]).

ctr_origin(
alldifferent_on_intersection,
Derived from %c and %c.,
[common,alldifferent]).

ctr_synonyms(
alldifferent_on_intersection,
[alldiff_on_intersection,alldistinct_on_intersection]).

ctr_arguments(
alldifferent_on_intersection,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_on_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_example(
alldifferent_on_intersection,
alldifferent_on_intersection(

[[var-5],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-6],[var-9],[var-6],[var-2]])).

ctr_typical(
alldifferent_on_intersection,
[size(’VARIABLES1’)>1,size(’VARIABLES2’)>1]).

ctr_exchangeable(
alldifferent_on_intersection,
[args([[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).
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ctr_graph(
alldifferent_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NCC’=<2],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
alldifferent_on_intersection,
[reformulation(alldifferent_on_intersection_r)]).

ctr_contractible(
alldifferent_on_intersection,
[],
VARIABLES1,
any).

ctr_contractible(
alldifferent_on_intersection,
[],
VARIABLES2,
any).

alldifferent_on_intersection_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
alldifferent_on_intersection(VARS1,1,VARS1,VARS2).

alldifferent_on_intersection([],_47379,_47380,_47381).

alldifferent_on_intersection([VAR1|R1],I,VARS1,VARS2) :-
alldifferent_on_intersection(

VARS2,
1,
VAR1,
I,
VARS1,
VARS2),

I1 is I+1,
alldifferent_on_intersection(R1,I1,VARS1,VARS2).

alldifferent_on_intersection(
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[],
_47661,
_47708,
_47755,
_47802,
_47849).

alldifferent_on_intersection([VAR2|R2],J,VAR1,I,VARS1,VARS2) :-
alldifferent_on_intersection1(VARS1,1,VAR1,I,VAR2,J),
alldifferent_on_intersection1(VARS2,1,VAR2,J,VAR1,I),
J1 is J+1,
alldifferent_on_intersection(R2,J1,VAR1,I,VARS1,VARS2).

alldifferent_on_intersection1(
[],
_47661,
_47708,
_47755,
_47802,
_47849).

alldifferent_on_intersection1([VAR|R],K,VAR1,I,VAR2,J) :-
K=\=I,
!,
VAR1#=VAR2#=>VAR#\=VAR1,
K1 is K+1,
alldifferent_on_intersection1(R,K1,VAR1,I,VAR2,J).

alldifferent_on_intersection1([_47387|R],K,VAR1,I,VAR2,J) :-
K=:=I,
K1 is K+1,
alldifferent_on_intersection1(R,K1,VAR1,I,VAR2,J).
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B.22 alldifferent partition

♦ META-DATA:

ctr_date(alldifferent_partition,[’20030820’,’20060803’]).

ctr_origin(
alldifferent_partition,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_partition,
[alldiff_partition,alldistinct_partition]).

ctr_types(
alldifferent_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
alldifferent_partition,
[’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
alldifferent_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES’)=<size(’PARTITIONS’),
required(’VARIABLES’,var),
size(’PARTITIONS’)>=2,
required(’PARTITIONS’,p)]).

ctr_example(
alldifferent_partition,
alldifferent_partition(

[[var-6],[var-3],[var-4]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(alldifferent_partition,[size(’VARIABLES’)>2]).

ctr_exchangeable(
alldifferent_partition,
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[items(’VARIABLES’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
all,
dontcare),

vals([’VARIABLES’ˆvar],part(’PARTITIONS’),=\=,all,in)]).

ctr_graph(
alldifferent_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
alldifferent_partition,
[reformulation(alldifferent_partition_r)]).

ctr_contractible(alldifferent_partition,[],’VARIABLES’,any).

alldifferent_partition_r(VARIABLES,PARTITIONS) :-
collection(VARIABLES,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
get_attr1(VARIABLES,VARS),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(VARIABLES,N),
length(PARTITIONS,M),
N=<M,
M>1,
length(PVALS,LPVALS),
get_partition_var(VARS,PVALS,PVARS,LPVALS,0),
all_different(PVARS).
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B.23 alldifferent same value

♦ META-DATA:

ctr_date(
alldifferent_same_value,
[’20000128’,’20030820’,’20060803’]).

ctr_origin(
alldifferent_same_value,
Derived from %c.,
[alldifferent]).

ctr_synonyms(
alldifferent_same_value,
[alldiff_same_value,alldistinct_same_value]).

ctr_arguments(
alldifferent_same_value,
[’NSAME’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
alldifferent_same_value,
[’NSAME’>=0,
’NSAME’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
alldifferent_same_value,
alldifferent_same_value(

2,
[[var-7],[var-3],[var-1],[var-5]],
[[var-1],[var-3],[var-1],[var-7]])).

ctr_typical(
alldifferent_same_value,
[’NSAME’<size(’VARIABLES1’),size(’VARIABLES1’)>2]).

ctr_exchangeable(
alldifferent_same_value,
[items_sync(’VARIABLES1’,’VARIABLES2’,all),
vals(
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[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
alldifferent_same_value,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’(’CLIQUE’,’LOOP’,=)>>
collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1,’NARC_NO_LOOP’=’NSAME’],
[]).

ctr_eval(
alldifferent_same_value,
[reformulation(alldifferent_same_value_r)]).

ctr_functional_dependency(alldifferent_same_value,1,[2,3]).

ctr_cond_imply(
alldifferent_same_value,
differ_from_exactly_k_pos,
[2*’NSAME’=size(’VARIABLES1’)],
[],
id).

alldifferent_same_value_r(NSAME,VARIABLES1,VARIABLES2) :-
check_type(dvar,NSAME),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
NSAME#>=0,
NSAME#=<N1,
N1=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
all_different(VARS1),
alldifferent_same_value1(VARS1,VARS2,SUMBOOLS),
call(NSAME#=SUMBOOLS).

alldifferent_same_value1([],[],0).
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alldifferent_same_value1([V1|R1],[V2|R2],B+R) :-
V1#=V2#<=>B,
alldifferent_same_value1(R1,R2,R).
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B.24 allperm

♦ META-DATA:

ctr_date(allperm,[’20031008’,’20070916’]).

ctr_origin(
allperm,
\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02},
[]).

ctr_synonyms(allperm,[all_perm,all_permutations]).

ctr_types(allperm,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(allperm,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
allperm,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
allperm,
allperm(

[[vec-[[var-1],[var-2],[var-3]]],
[vec-[[var-3],[var-1],[var-2]]]])).

ctr_typical(allperm,[size(’VECTOR’)>1,size(’MATRIX’)>1]).

ctr_exchangeable(allperm,[translate([’MATRIX’ˆvecˆvar])]).

ctr_graph(
allperm,
[’MATRIX’],
2,
[’CLIQUE’(<)>>collection(matrix1,matrix2)],
[matrix1ˆkey=1,
matrix2ˆkey>1,
lex_lesseq_allperm(matrix1ˆvec,matrix2ˆvec)],
[’NARC’=size(’MATRIX’)-1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(allperm,[checker(allperm_c),reformulation(allperm_r)]).
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ctr_contractible(allperm,[],’MATRIX’ˆvec,suffix).

allperm_c(MATRIX) :-
collection(MATRIX,[col([int])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
MAT=[FIRST_ROW|R],
allperm_c1(R,FIRST_ROW).

allperm_c1([],_42120) :-
!.

allperm_c1([CUR_ROW|R],FIRST_ROW) :-
create_pairs(CUR_ROW,PAIRS),
keysort(PAIRS,SORTED_ROW),
remove_key_from_collection(SORTED_ROW,SORTED),
lex_lesseq_c1(FIRST_ROW,SORTED),
allperm_c1(R,FIRST_ROW).

allperm_r(MATRIX) :-
collection(MATRIX,[col([dvar])]),
same_size(MATRIX),
MATRIX=[[vec-F]|R],
allperm_sorted(R,S),
allperm_order(S,F).

allperm_sorted([],[]).

allperm_sorted([[vec-X]|R],[S|T]) :-
get_attr1(X,L),
get_minimum(L,MIN),
get_maximum(L,MAX),
length(X,LX),
length(Y,LX),
domain(Y,MIN,MAX),
gen_collection(Y,var,S),
eval(sort(X,S)),
allperm_sorted(R,T).

allperm_order([],_42117).

allperm_order([X|R],F) :-
eval(lex_lesseq(F,X)),
allperm_order(R,F).
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B.25 among

♦ META-DATA:

ctr_date(among,[’20000128’,’20030820’,’20040807’,’20060804’]).

ctr_origin(among,’\\cite{BeldiceanuContejean94}’,[]).

ctr_synonyms(among,[between,count]).

ctr_arguments(
among,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
among,
among(

3,
[[var-4],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8]])).

ctr_typical(
among,
[’NVAR’>0,
’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
among,
[items(’VARIABLES’,all),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
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=,
dontcare,
dontcare)]).

ctr_graph(
among,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar in ’VALUES’],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among,
[checker(among_c),
reformulation(among_r),
automaton(among_a)]).

ctr_pure_functional_dependency(among,[]).

ctr_functional_dependency(among,1,[2,3]).

ctr_contractible(among,[’NVAR’=0],’VARIABLES’,any).

ctr_contractible(
among,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among,[],[+,union,sunion]).

among_c(N,VARIABLES,VALUES) :-
integer(N),
N>=0,
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
all_different(VALS),
among_c1(VARIABLES,N,VALS).

among_c1([[var-V]|R],N,VALS) :-
!,
integer(V),
( memberchk(V,VALS) ->

N1 is N-1,
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N1>=0
; N1 is N
),
among_c1(R,N1,VALS).

among_c1([],0,_57522).

among_r(NVAR,VARIABLES,VALUES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
all_different(VALS),
among1(VARS,VALS,SUM_BVARS),
call(NVAR#=SUM_BVARS).

among1([],_57521,0).

among1([V|R],VALS,B+S) :-
build_or_var_in_values(VALS,V,OR),
call(OR#<=>B),
among1(R,VALS,S).

among_a(FLAG,NVAR,VARIABLES,VALUES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VALUES,LIST_VALUES),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
among_signature(VARIABLES,SIGNATURE,SET_OF_VALUES),
automaton(

SIGNATURE,
_59826,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
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[COUNT]),
COUNT#=NVAR#<=>FLAG.

among_signature([],[],_57522).

among_signature([[var-VAR]|VARs],[S|Ss],SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
among_signature(VARs,Ss,SET_OF_VALUES).
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B.26 among diff 0

♦ META-DATA:

ctr_date(among_diff_0,[’20040807’,’20060804’]).

ctr_origin(
among_diff_0,
Used in the automaton of %c.,
[nvalue]).

ctr_arguments(
among_diff_0,
[’NVAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
among_diff_0,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
among_diff_0,
[among_diff_0(

3,
[[var-0],[var-5],[var-5],[var-0],[var-1]]),

among_diff_0(
0,
[[var-0],[var-0],[var-0],[var-0],[var-0]]),

among_diff_0(
1,
[[var-0],[var-0],[var-0],[var-6],[var-0]])]).

ctr_typical(
among_diff_0,
[’NVAR’>0,
’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
atleast(1,’VARIABLES’,0),
2*among_diff_0(’VARIABLES’ˆvar)>size(’VARIABLES’)]).

ctr_typical_model(among_diff_0,[atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
among_diff_0,
[items(’VARIABLES’,all),
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vals(
[’VARIABLES’ˆvar],
int(=\=(0)),
=\=,
dontcare,
dontcare)]).

ctr_graph(
among_diff_0,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=\=0],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among_diff_0,
[checker(among_diff_0_c),
reformulation(among_diff_0_r),
automaton(among_diff_0_a)]).

ctr_pure_functional_dependency(among_diff_0,[]).

ctr_functional_dependency(among_diff_0,1,[2]).

ctr_contractible(among_diff_0,[’NVAR’=0],’VARIABLES’,any).

ctr_contractible(
among_diff_0,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_diff_0,[],[+,union]).

ctr_sol(among_diff_0,2,0,2,9,[0-1,1-4,2-4]).

ctr_sol(among_diff_0,3,0,3,64,[0-1,1-9,2-27,3-27]).

ctr_sol(among_diff_0,4,0,4,625,[0-1,1-16,2-96,3-256,4-256]).

ctr_sol(
among_diff_0,
5,
0,
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5,
7776,
[0-1,1-25,2-250,3-1250,4-3125,5-3125]).

ctr_sol(
among_diff_0,
6,
0,
6,
117649,
[0-1,1-36,2-540,3-4320,4-19440,5-46656,6-46656]).

ctr_sol(
among_diff_0,
7,
0,
7,
2097152,
[0-1,
1-49,
2-1029,
3-12005,
4-84035,
5-352947,
6-823543,
7-823543]).

ctr_sol(
among_diff_0,
8,
0,
8,
43046721,
[0-1,
1-64,
2-1792,
3-28672,
4-286720,
5-1835008,
6-7340032,
7-16777216,
8-16777216]).

among_diff_0_c(NVAR,VARIABLES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[int]),
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get_attr1(VARIABLES,VARS),
length(VARS,N),
NVAR#>=0,
NVAR#=<N,
among_diff_0_c(VARS,0,NVAR).

among_diff_0_c([V|R],C,NVAR) :-
!,
( V=0 ->

among_diff_0_c(R,C,NVAR)
; C1 is C+1,

among_diff_0_c(R,C1,NVAR)
).

among_diff_0_c([],NVAR,NVAR).

among_diff_0_counters_check([V|R],C,[D|S]) :-
!,
( V=0 ->

D=C
; D is C+1
),
among_diff_0_counters_check(R,D,S).

among_diff_0_counters_check([],_61462,[]).

among_diff_0_r(NVAR,VARIABLES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
among_diff_01(VARS,SUM_BVARS),
call(NVAR#=SUM_BVARS).

among_diff_01([],0).

among_diff_01([V|R],B+S) :-
V#\=0#<=>B,
among_diff_01(R,S).

among_diff_0_a(FLAG,NVAR,VARIABLES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
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NVAR#>=0,
NVAR#=<N,
among_diff_0_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_63099,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_diff_0_signature([],[]).

among_diff_0_signature([[var-VAR]|VARs],[S|Ss]) :-
VAR#\=0#<=>S,
among_diff_0_signature(VARs,Ss).
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B.27 among interval

♦ META-DATA:

ctr_date(among_interval,[’20030820’,’20040530’,’20060804’]).

ctr_origin(among_interval,’Derived from %c.’,[among]).

ctr_arguments(
among_interval,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’LOW’-int,
’UP’-int]).

ctr_restrictions(
among_interval,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’LOW’=<’UP’]).

ctr_example(
among_interval,
among_interval(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
3,
5)).

ctr_typical(
among_interval,
[’NVAR’>0,
’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
’LOW’<’UP’,
’LOW’=<maxval(’VARIABLES’ˆvar),
’UP’>=minval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
among_interval,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’LOW’ in ’UP’),
=,
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dontcare,
dontcare)]).

ctr_graph(
among_interval,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’LOW’=<variablesˆvar,variablesˆvar=<’UP’],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among_interval,
[reformulation(among_interval_r),
automaton(among_interval_a)]).

ctr_pure_functional_dependency(among_interval,[]).

ctr_functional_dependency(among_interval,1,[2,3,4]).

ctr_contractible(among_interval,[’NVAR’=0],’VARIABLES’,any).

ctr_contractible(
among_interval,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_interval,[],[+,union,id,id]).

among_interval_r(NVAR,VARIABLES,LOW,UP) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
integer(LOW),
integer(UP),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
LOW=<UP,
among_interval1(VARS,SUM_BVARS,LOW,UP),
call(NVAR#=SUM_BVARS).

among_interval1([],0,_42060,_42061).
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among_interval1([V|R],B+S,LOW,UP) :-
V#>=LOW#/\V#=<UP#<=>B,
among_interval1(R,S,LOW,UP).

among_interval_a(FLAG,NVAR,VARIABLES,LOW,UP) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
integer(LOW),
integer(UP),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
LOW=<UP,
among_interval_signature(VARIABLES,SIGNATURE,LOW,UP),
automaton(

SIGNATURE,
_44223,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_interval_signature([],[],_42060,_42061).

among_interval_signature([[var-VAR]|VARs],[S|Ss],LOW,UP) :-
LOW#=<VAR#/\VAR#=<UP#<=>S,
among_interval_signature(VARs,Ss,LOW,UP).
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B.28 among low up

♦ META-DATA:

ctr_date(among_low_up,[’20030820’,’20040530’,’20060804’]).

ctr_origin(among_low_up,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
among_low_up,
[’LOW’-int,
’UP’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_low_up,
[’LOW’>=0,
’LOW’=<size(’VARIABLES’),
’UP’>=0,
’UP’=<size(’VARIABLES’),
’UP’>=’LOW’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
among_low_up,
among_low_up(

1,
2,
[[var-9],[var-2],[var-4],[var-5]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
among_low_up,
[’LOW’<size(’VARIABLES’),
’UP’>0,
’LOW’<’UP’,
size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’),
’LOW’>0#\/’UP’<size(’VARIABLES’)]).

ctr_exchangeable(
among_low_up,
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[items(’VARIABLES’,all),
items(’VALUES’,all),
vals([’LOW’],int(>=(0)),>,dontcare,dontcare),
vals(

[’UP’],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
among_low_up,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’>=’LOW’,’NARC’=<’UP’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
among_low_up,
[reformulation(among_low_up_r),automaton(among_low_up_a)]).

ctr_contractible(among_low_up,[’UP’=0],’VARIABLES’,any).

ctr_contractible(
among_low_up,
[’UP’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_low_up,[],[+,+,union,sunion]).

ctr_cond_imply(
among_low_up,
among_low_up,
[distinct(’VARIABLES’,var)],
[],
[’LOW’,’UP’,’VALUES’,’VARIABLES’]).
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among_low_up_r(LOW,UP,VARIABLES,VALUES) :-
integer(LOW),
integer(UP),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
LOW>=0,
LOW=<N,
UP>=0,
UP=<N,
UP>=LOW,
all_different(VALS),
among_low_up1(VARS,VALS,SUM_BVARS),
call(LOW#=<SUM_BVARS),
call(UP#>=SUM_BVARS).

among_low_up1([],_49694,0).

among_low_up1([V|R],VALS,B+S) :-
build_or_var_in_values(VALS,V,OR),
call(OR#<=>B),
among_low_up1(R,VALS,S).

among_low_up_a(FLAG,LOW,UP,VARIABLES,VALUES) :-
integer(LOW),
integer(UP),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VALUES,LIST_VALUES),
length(VARIABLES,N),
LOW>=0,
LOW=<N,
UP>=0,
UP=<N,
UP>=LOW,
all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
among_low_up_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

NVAR in LOW..UP,
automaton(

SIGNATURE,
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_53178,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_low_up_signature([],[],_49695).

among_low_up_signature([[var-VAR]|VARs],[S|Ss],SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
among_low_up_signature(VARs,Ss,SET_OF_VALUES).
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B.29 among modulo

♦ META-DATA:

ctr_date(among_modulo,[’20030820’,’20040530’,’20060804’]).

ctr_origin(among_modulo,’Derived from %c.’,[among]).

ctr_arguments(
among_modulo,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’REMAINDER’-int,
’QUOTIENT’-int]).

ctr_restrictions(
among_modulo,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’REMAINDER’>=0,
’REMAINDER’<’QUOTIENT’,
’QUOTIENT’>0]).

ctr_example(
among_modulo,
among_modulo(

3,
[[var-4],[var-5],[var-8],[var-4],[var-1]],
0,
2)).

ctr_typical(
among_modulo,
[’NVAR’>0,
’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
’QUOTIENT’>1,
’QUOTIENT’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
among_modulo,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’QUOTIENT’ mod ’REMAINDER’),
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=,
dontcare,
dontcare)]).

ctr_graph(
among_modulo,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar mod ’QUOTIENT’=’REMAINDER’],
[’NARC’=’NVAR’],
[]).

ctr_eval(
among_modulo,
[reformulation(among_modulo_r),automaton(among_modulo_a)]).

ctr_pure_functional_dependency(among_modulo,[]).

ctr_functional_dependency(among_modulo,1,[2,3,4]).

ctr_contractible(among_modulo,[’NVAR’=0],’VARIABLES’,any).

ctr_contractible(
among_modulo,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_modulo,[],[+,union,id,id]).

among_modulo_r(NVAR,VARIABLES,REMAINDER,QUOTIENT) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
integer(REMAINDER),
integer(QUOTIENT),
NVAR#>=0,
NVAR#=<N,
REMAINDER>=0,
REMAINDER<QUOTIENT,
QUOTIENT>0,
gen_remainder(VARS,QUOTIENT,REMVARS),
among_modulo1(REMVARS,REMAINDER,SUM_BVARS),
call(NVAR#=SUM_BVARS).
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among_modulo1([],_41767,0).

among_modulo1([V|R],REMAINDER,B+S) :-
V#=REMAINDER#<=>B,
among_modulo1(R,REMAINDER,S).

among_modulo_a(FLAG,NVAR,VARIABLES,REMAINDER,QUOTIENT) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
integer(REMAINDER),
integer(QUOTIENT),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
REMAINDER>=0,
REMAINDER<QUOTIENT,
QUOTIENT>0,
among_modulo_signature(

VARIABLES,
SIGNATURE,
REMAINDER,
QUOTIENT),

automaton(
SIGNATURE,
_44609,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

among_modulo_signature([],[],_41768,_41769).

among_modulo_signature(
[[var-VAR]|VARs],
[S|Ss],
REMAINDER,
QUOTIENT) :-

VAR mod QUOTIENT#=REMAINDER#<=>S,
among_modulo_signature(VARs,Ss,REMAINDER,QUOTIENT).
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B.30 among seq

♦ META-DATA:

ctr_date(among_seq,[’20000128’,’20030820’]).

ctr_origin(among_seq,’\\cite{BeldiceanuContejean94}’,[]).

ctr_synonyms(among_seq,[sequence]).

ctr_arguments(
among_seq,
[’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
among_seq,
[’LOW’>=0,
’LOW’=<size(’VARIABLES’),
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’>=’LOW’,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
among_seq,
among_seq(

1,
2,
4,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-5],
[var-7],
[var-2]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
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among_seq,
[’LOW’<’SEQ’,
’UP’>0,
’SEQ’>1,
’SEQ’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’),
’LOW’>0#\/’UP’<’SEQ’]).

ctr_exchangeable(
among_seq,
[items(’VARIABLES’,reverse),
items(’VALUES’,all),
vals([’LOW’],int(>=(0)),>,dontcare,dontcare),
vals([’UP’],int(=<(’SEQ’)),<,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
among_seq,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[among_low_up(’LOW’,’UP’,collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1],
[]).

ctr_eval(
among_seq,
[checker(among_seq_c),reformulation(among_seq_r)]).

ctr_contractible(among_seq,[’UP’=0],’VARIABLES’,any).

ctr_contractible(among_seq,[’SEQ’=1],’VARIABLES’,any).

ctr_contractible(among_seq,[],’VARIABLES’,prefix).

ctr_contractible(among_seq,[],’VARIABLES’,suffix).

among_seq_r(LOW,UP,SEQ,VARIABLES,VALUES) :-
integer(LOW),
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integer(UP),
integer(SEQ),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
LOW>=0,
LOW=<N,
SEQ>0,
SEQ>=LOW,
SEQ=<N,
all_different(VALS),
among_seq1(LOW,UP,SEQ,VARIABLES,VALUES).

among_seq1(_LOW,_UP,SEQ,VARIABLES,_VALUES) :-
length(VARIABLES,N),
N<SEQ,
!.

among_seq1(LOW,UP,SEQ,VARIABLES,VALUES) :-
length(VARIABLES,N),
N>=SEQ,
among_seq2(VARIABLES,SEQ,SEQVARIABLES),
eval(among_low_up(LOW,UP,SEQVARIABLES,VALUES)),
VARIABLES=[_38047|RVARIABLES],
among_seq1(LOW,UP,SEQ,RVARIABLES,VALUES).

among_seq2(_37993,0,[]) :-
!.

among_seq2([VAR|VARS],SEQ,[VAR|RVARS]) :-
SEQ>0,
SEQ1 is SEQ-1,
among_seq2(VARS,SEQ1,RVARS).

among_seq_c(LOW,UP,SEQ,VARIABLES,VALUES) :-
integer(LOW),
integer(UP),
integer(SEQ),
collection(VARIABLES,[int]),
collection(VALUES,[int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
LOW>=0,
LOW=<N,
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SEQ>0,
SEQ>=LOW,
SEQ=<N,
sort(VALS,SVALS),
length(VALS,M),
length(SVALS,M),
among_seq_check(

VARS,
SEQ,
CONTINUATION,
CONTINUATION,
0,
LOW,
UP,
VALS).

among_seq_check(
[],
_38282,
_38329,
_38376,
_38423,
_38470,
_38517,
_38564) :-

!.

among_seq_check([V|R],I,BUFFER,CONT,SUM,LOW,UP,VALS) :-
( memberchk(V,VALS) ->

IN=1,
SUM1 is SUM+1

; IN=0,
SUM1 is SUM

),
CONT=[IN|CONT1],
I1 is I-1,
( I1<0 ->

BUFFER=[OUT|RBUFFER],
SUM2 is SUM1-OUT,
SUM2>=LOW,
SUM2=<UP,
among_seq_check(

R,
I1,
RBUFFER,
CONT1,
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SUM2,
LOW,
UP,
VALS)

; ( I1=0 ->
SUM1>=LOW,
SUM1=<UP

; true
),
among_seq_check(R,I1,BUFFER,CONT1,SUM1,LOW,UP,VALS)

).
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B.31 among var

♦ META-DATA:

ctr_date(among_var,[’20090418’]).

ctr_origin(among_var,’Generalisation of %c’,[among]).

ctr_arguments(
among_var,
[’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-dvar)]).

ctr_restrictions(
among_var,
[’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val)]).

ctr_example(
among_var,
among_var(

3,
[[var-4],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8],[val-1]])).

ctr_typical(
among_var,
[size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
among_var,
[items(’VARIABLES’,all),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare),

vals(
[’VARIABLES’ˆvar],
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comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
among_var,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NSOURCE’=’NVAR’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(among_var,[reformulation(among_var_r)]).

ctr_pure_functional_dependency(among_var,[]).

ctr_functional_dependency(among_var,1,[2,3]).

ctr_contractible(among_var,[’NVAR’=0],’VARIABLES’,any).

ctr_contractible(
among_var,
[’NVAR’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_aggregate(among_var,[],[+,union,union]).

among_var_r(NVAR,VARIABLES,[]) :-
!,
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
NVAR=0.

among_var_r(NVAR,VARIABLES,VALUES) :-
check_type(dvar,NVAR),
collection(VARIABLES,[dvar]),
collection(VALUES,[dvar]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
length(VARIABLES,N),
NVAR#>=0,
NVAR#=<N,
among_var1(VARS,VALS,SUM_BVARS),
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call(NVAR#=SUM_BVARS).

among_var1([],_45749,0).

among_var1([V|R],VALS,B+S) :-
build_or_var_in_values(VALS,V,OR),
call(OR#<=>B),
among_var1(R,VALS,S).
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B.32 and

♦ META-DATA:

ctr_date(and,[’20051226’]).

ctr_origin(and,’Logic’,[]).

ctr_synonyms(and,[rel]).

ctr_arguments(
and,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
and,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
and,
[and(0,[[var-0],[var-0]]),
and(0,[[var-0],[var-1]]),
and(0,[[var-1],[var-0]]),
and(1,[[var-1],[var-1]]),
and(0,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(and,[items(’VARIABLES’,all)]).

ctr_eval(
and,
[checker(and_c),reformulation(and_r),automaton(and_a)]).

ctr_pure_functional_dependency(and,[]).

ctr_functional_dependency(and,1,[2]).

ctr_extensible(and,[’VAR’=0],’VARIABLES’,any).

ctr_aggregate(and,[],[#/\,union]).

ctr_cond_imply(
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and,
some_equal,
[size(’VARIABLES’)>2],
[],
[’VARIABLES’]).

ctr_cond_imply(and,nand,[’VAR’=0],[’VAR’=1],[none,’VARIABLES’]).

ctr_cond_imply(and,nand,[’VAR’=1],[’VAR’=0],[none,’VARIABLES’]).

ctr_sol(and,2,0,2,4,[0-3,1-1]).

ctr_sol(and,3,0,3,8,[0-7,1-1]).

ctr_sol(and,4,0,4,16,[0-15,1-1]).

ctr_sol(and,5,0,5,32,[0-31,1-1]).

ctr_sol(and,6,0,6,64,[0-63,1-1]).

ctr_sol(and,7,0,7,128,[0-127,1-1]).

ctr_sol(and,8,0,8,256,[0-255,1-1]).

and_c(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[int(0,1)]),
length(VARIABLES,N),
N>=2,
get_attr1(VARIABLES,VARS),
and_c1(VARS,VAR).

and_c1([],1) :-
!.

and_c1([0|_47649],0) :-
!.

and_c1([_47648|R],VAR) :-
and_c1(R,VAR).

and_counters_check([V|R],init,[-|S]) :-
!,
and_counters_check(R,V,S).

and_counters_check([0|R],_47647,[0|S]) :-



2627

!,
and_counters_check(R,0,S).

and_counters_check([1|R],C,[C|S]) :-
!,
and_counters_check(R,C,S).

and_counters_check([],_47644,[]).

and_r(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,N),
N>=2,
get_attr1(VARIABLES,VARS),
and1(VARS,ANDVARS),
call(ANDVARS#<=>VAR).

and1([VAR],VAR) :-
!.

and1([VAR|VARS],VAR#/\S) :-
and1(VARS,S).

and_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,N),
N>=2,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_49670,
LIST_VARIABLES,
[source(s),sink(k),sink(j)],
[arc(s,0,i),
arc(s,1,j),
arc(i,0,k),
arc(i,1,i),
arc(k,0,k),
arc(k,1,k),
arc(j,1,j)],

[],
[],
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[]),
automaton_bool(FLAG,[0,1],AUTOMATON).
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B.33 arith

♦ META-DATA:

ctr_date(arith,[’20040814’,’20060804’]).

ctr_origin(
arith,
Used in the definition of several automata,
[]).

ctr_synonyms(arith,[rel]).

ctr_arguments(
arith,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
arith,
arith([[var-4],[var-5],[var-7],[var-4],[var-5]],<,9)).

ctr_typical(arith,[size(’VARIABLES’)>1,in_list(’RELOP’,[=])]).

ctr_exchangeable(
arith,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,dontcare,in)]).

ctr_graph(
arith,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’RELOP’(variablesˆvar,’VALUE’)],
[’NARC’=size(’VARIABLES’)],
[]).

ctr_eval(arith,[reformulation(arith_r),automaton(arith_a)]).
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ctr_contractible(arith,[],’VARIABLES’,any).

ctr_cond_imply(
arith,
range_ctr,
[in_list(’RELOP’,[<]),minval(’VARIABLES’ˆvar)>=0],
[in_list(’CTR’,[<])],
id).

arith_r(VARIABLES,RELOP,VALUE) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
get_attr1(VARIABLES,VARS),
arith1(VARS,RELOP,VALUE).

arith1([],_48072,_48073).

arith1([VAR|RVARS],RELOP,VALUE) :-
call_term_relop_value(VAR,RELOP,VALUE),
arith1(RVARS,RELOP,VALUE).

arith_a(FLAG,VARIABLES,RELOP,VALUE) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
arith_signature(VARIABLES,SIGNATURE,RELOP,VALUE),
AUTOMATON=
automaton(

SIGNATURE,
_49585,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

arith_signature([],[],_48073,_48074).

arith_signature([[var-VAR]|VARs],[S|Ss],=,VALUE) :-
!,
VAR#=VALUE#<=>S,
arith_signature(VARs,Ss,=,VALUE).
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arith_signature([[var-VAR]|VARs],[S|Ss],=\=,VALUE) :-
!,
VAR#\=VALUE#<=>S,
arith_signature(VARs,Ss,=\=,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],<,VALUE) :-
!,
VAR#<VALUE#<=>S,
arith_signature(VARs,Ss,<,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],>=,VALUE) :-
!,
VAR#>=VALUE#<=>S,
arith_signature(VARs,Ss,>=,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],>,VALUE) :-
!,
VAR#>VALUE#<=>S,
arith_signature(VARs,Ss,>,VALUE).

arith_signature([[var-VAR]|VARs],[S|Ss],=<,VALUE) :-
VAR#=<VALUE#<=>S,
arith_signature(VARs,Ss,=<,VALUE).
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B.34 arith or

♦ META-DATA:

ctr_date(arith_or,[’20040814’,’20060804’]).

ctr_origin(
arith_or,
Used in the definition of several automata,
[]).

ctr_arguments(
arith_or,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_or,
[required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
arith_or,
arith_or(

[[var-0],[var-1],[var-0],[var-0],[var-1]],
[[var-0],[var-0],[var-0],[var-1],[var-0]],
=,
0)).

ctr_typical(
arith_or,
[size(’VARIABLES1’)>0,in_list(’RELOP’,[=])]).

ctr_exchangeable(
arith_or,
[args([[’VARIABLES1’,’VARIABLES2’],[’RELOP’],[’VALUE’]]),
items_sync(’VARIABLES1’,’VARIABLES2’,all)]).

ctr_graph(
arith_or,
[’VARIABLES1’,’VARIABLES2’],
2,
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[’PRODUCT’(=)>>collection(variables1,variables2)],
[’RELOP’(variables1ˆvar,’VALUE’)#\/
’RELOP’(variables2ˆvar,’VALUE’)],
[’NARC’=size(’VARIABLES1’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
arith_or,
[reformulation(arith_or_r),automaton(arith_or_a)]).

ctr_contractible(arith_or,[],[’VARIABLES1’,’VARIABLES2’],any).

arith_or_r(VARIABLES1,VARIABLES2,RELOP,VALUE) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
arith_or1(VARS1,VARS2,RELOP,VALUE).

arith_or1([],[],_45716,_45717).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],=,VALUE) :-
!,
VAR1#=VALUE#\/VAR2#=VALUE,
arith_or1(RVAR1,RVAR2,=,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],=\=,VALUE) :-
!,
VAR1#\=VALUE#\/VAR2#\=VALUE,
arith_or1(RVAR1,RVAR2,=\=,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],<,VALUE) :-
!,
VAR1#<VALUE#\/VAR2#<VALUE,
arith_or1(RVAR1,RVAR2,[VAR2|RVAR2],<,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],>=,VALUE) :-
!,
VAR1#>=VALUE#\/VAR2#>=VALUE,
arith_or1(RVAR1,RVAR2,[VAR2|RVAR2],>=,VALUE).
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arith_or1([VAR1|RVAR1],[VAR2|RVAR2],>,VALUE) :-
!,
VAR1#>VALUE#\/VAR2#>VALUE,
arith_or1(RVAR1,RVAR2,[VAR2|RVAR2],>,VALUE).

arith_or1([VAR1|RVAR1],[VAR2|RVAR2],=<,VALUE) :-
VAR1#=<VALUE#\/VAR2#=<VALUE,
arith_or1(RVAR1,RVAR2,=<,VALUE).

arith_or_a(FLAG,VARIABLES1,VARIABLES2,RELOP,VALUE) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
arith_or_signature(

VARIABLES1,
VARIABLES2,
SIGNATURE,
RELOP,
VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_48305,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

arith_or_signature([],[],[],_45717,_45718).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
=,
VALUE) :-

!,
VAR1#=VALUE#\/VAR2#=VALUE#<=>S,
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arith_or_signature(VAR1s,VAR2s,Ss,=,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
=\=,
VALUE) :-

!,
VAR1#\=VALUE#\/VAR2#\=VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,=\=,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
<,
VALUE) :-

!,
VAR1#<VALUE#\/VAR2#<VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,<,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
>=,
VALUE) :-

!,
VAR1#>=VALUE#\/VAR2#>=VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,>=,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
>,
VALUE) :-

!,
VAR1#>VALUE#\/VAR2#>VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,>,VALUE).

arith_or_signature(
[[var-VAR1]|VAR1s],
[[var-VAR2]|VAR2s],
[S|Ss],
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=<,
VALUE) :-

VAR1#=<VALUE#\/VAR2#=<VALUE#<=>S,
arith_or_signature(VAR1s,VAR2s,Ss,=<,VALUE).
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B.35 arith sliding

♦ META-DATA:

ctr_date(arith_sliding,[’20040814’]).

ctr_origin(
arith_sliding,
Used in the definition of some automaton,
[]).

ctr_arguments(
arith_sliding,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’VALUE’-int]).

ctr_restrictions(
arith_sliding,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
arith_sliding,
arith_sliding(

[[var-0],
[var-0],
[var-1],
[var-2],
[var-0],
[var-0],
[var- -3]],
<,
4)).

ctr_typical(
arith_sliding,
[size(’VARIABLES’)>1,in_list(’RELOP’,[<,>=,>,=<])]).

ctr_graph(
arith_sliding,
[’VARIABLES’],

*,
[’PATH_1’>>collection],
[arith(collection,’RELOP’,’VALUE’)],
[’NARC’=size(’VARIABLES’)],
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[]).

ctr_eval(
arith_sliding,
[reformulation(arith_sliding_r),
automaton(arith_sliding_a)]).

ctr_contractible(
arith_sliding,
[in_list(’RELOP’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_contractible(arith_sliding,[],’VARIABLES’,suffix).

arith_sliding_r(VARIABLES,RELOP,VALUE) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
integer(VALUE),
get_attr1(VARIABLES,VARS),
reverse(VARS,RVARS),
arith_sliding1(RVARS,RELOP,VALUE).

arith_sliding1([],_29732,_29733).

arith_sliding1([VAR|RVARS],RELOP,VALUE) :-
arith_sliding2([VAR|RVARS],SUM),
call_term_relop_value(SUM,RELOP,VALUE),
arith_sliding1(RVARS,RELOP,VALUE).

arith_sliding2([],0).

arith_sliding2([VAR|RVARS],VAR+R) :-
arith_sliding2(RVARS,R).

arith_sliding_a(FLAG,VARIABLES,=,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
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SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),
arc(t,0,t,(C#=VALUE->[T,C+VAR])),
arc(t,0,t,(C#\=VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#=VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,=\=,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),
arc(t,0,t,(C#\=VALUE->[T,C+VAR])),
arc(t,0,t,(C#=VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#\=VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,<,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),
arc(t,0,t,(C#<VALUE->[T,C+VAR])),
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arc(t,0,t,(C#>=VALUE->[0,C+VAR]))],
[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#<VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,>=,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),
arc(t,0,t,(C#>=VALUE->[T,C+VAR])),
arc(t,0,t,(C#<VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#>=VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,>,VALUE) :-
!,
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),
arc(t,0,t,(C#>VALUE->[T,C+VAR])),
arc(t,0,t,(C#=<VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),
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T1#=1#/\C1#>VALUE#<=>FLAG.

arith_sliding_a(FLAG,VARIABLES,=<,VALUE) :-
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,N),
length(SIGNATURE,N),
domain(SIGNATURE,0,0),
arith_sliding_signature(VARIABLES,VARS,SIGNATURE),
automaton(

VARS,
VAR,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t,[T,C+VAR]),
arc(t,0,t,(C#=<VALUE->[T,C+VAR])),
arc(t,0,t,(C#>VALUE->[0,C+VAR]))],

[T,C],
[1,0],
[T1,C1]),

T1#=1#/\C1#=<VALUE#<=>FLAG.

arith_sliding_signature([],[],[]).

arith_sliding_signature([[var-V]|VARs],[V|Vs],[0|Ss]) :-
arith_sliding_signature(VARs,Vs,Ss).
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B.36 assign and counts

♦ META-DATA:

ctr_date(assign_and_counts,[’20000128’,’20030820’,’20060804’]).

ctr_origin(assign_and_counts,’N.˜Beldiceanu’,[]).

ctr_arguments(
assign_and_counts,
[’COLOURS’-collection(val-int),
’ITEMS’-collection(bin-dvar,colour-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_counts,
[required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’ITEMS’,[bin,colour]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
assign_and_counts,
assign_and_counts(

[[val-4]],
[[bin-1,colour-4],
[bin-3,colour-4],
[bin-1,colour-4],
[bin-1,colour-5]],

=<,
2)).

ctr_typical(
assign_and_counts,
[size(’COLOURS’)>0,
size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
in_list(’RELOP’,[<,=<]),
’LIMIT’>0,
’LIMIT’<size(’ITEMS’)]).

ctr_exchangeable(
assign_and_counts,
[items(’COLOURS’,all),
items(’ITEMS’,all),
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vals([’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_derived_collections(
assign_and_counts,
[col(’VALUES’-collection(val-int),

[item(val-’COLOURS’ˆval)])]).

ctr_graph(
assign_and_counts,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆcolour)])]],
[counts(’VALUES’,variables,’RELOP’,’LIMIT’)]).

ctr_eval(
assign_and_counts,
[reformulation(assign_and_counts_r)]).

ctr_contractible(
assign_and_counts,
[in_list(’RELOP’,[<,=<])],
ITEMS,
any).

ctr_extensible(
assign_and_counts,
[in_list(’RELOP’,[>=,>])],
ITEMS,
any).

ctr_application(assign_and_counts,[2]).

assign_and_counts_r(COLOURS,ITEMS,RELOP,LIMIT) :-
collection(COLOURS,[int]),
collection(ITEMS,[dvar,dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(COLOURS,COLS),
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all_different(COLS),
get_attr1(ITEMS,BINS),
get_attr2(ITEMS,ITEMSCOLOURS),
get_minimum(BINS,MINBINS),
get_maximum(BINS,MAXBINS),
gen_matrix_bool(MINBINS,MAXBINS,BINS,BMATRIX),
assign_and_counts1(ITEMSCOLOURS,COLS,CLINE),
assign_and_counts2(BMATRIX,CLINE,RELOP,LIMIT).

assign_and_counts1([],_49718,[]).

assign_and_counts1([ITEMCOLOUR|RITEMCOLOURS],COLS,[B|R]) :-
build_or_var_in_values(COLS,ITEMCOLOUR,OR),
call(OR#<=>B),
assign_and_counts1(RITEMCOLOURS,COLS,R).

assign_and_counts2([],_49718,_49719,_49720).

assign_and_counts2([BLINE|RBMATRIX],CLINE,RELOP,LIMIT) :-
assign_and_counts3(BLINE,CLINE,TERM,OR_B),
call(A#=OR_B),
call_term_relop_value(TERM,RELOP,A*LIMIT),
assign_and_counts2(RBMATRIX,CLINE,RELOP,LIMIT).

assign_and_counts3([],[],0,0).

assign_and_counts3([B|RBLINE],[C|RCLINE],B*C+R,BC#\/S) :-
BC#<=>B#/\C,
assign_and_counts3(RBLINE,RCLINE,R,S).
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B.37 assign and nvalues

♦ META-DATA:

ctr_date(
assign_and_nvalues,
[’20000128’,’20030820’,’20040530’,’20050321’,’20060804’]).

ctr_origin(
assign_and_nvalues,
Derived from %c and %c.,
[assign_and_counts,nvalues]).

ctr_arguments(
assign_and_nvalues,
[’ITEMS’-collection(bin-dvar,value-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
assign_and_nvalues,
[required(’ITEMS’,[bin,value]),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
assign_and_nvalues,
assign_and_nvalues(

[[bin-2,value-3],
[bin-1,value-5],
[bin-2,value-3],
[bin-2,value-3],
[bin-2,value-4]],

=<,
2)).

ctr_typical(
assign_and_nvalues,
[size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
range(’ITEMS’ˆvalue)>1,
in_list(’RELOP’,[<,=<]),
’LIMIT’>1,
’LIMIT’<size(’ITEMS’)]).

ctr_exchangeable(
assign_and_nvalues,
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[items(’ITEMS’,all),
vals([’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_graph(
assign_and_nvalues,
[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆvalue)])]],
[nvalues(variables,’RELOP’,’LIMIT’)]).

ctr_eval(
assign_and_nvalues,
[reformulation(assign_and_nvalues_r)]).

ctr_contractible(
assign_and_nvalues,
[in_list(’RELOP’,[<,=<])],
ITEMS,
any).

ctr_extensible(
assign_and_nvalues,
[in_list(’RELOP’,[>=,>])],
ITEMS,
any).

ctr_application(assign_and_nvalues,[1]).

assign_and_nvalues_r(ITEMS,RELOP,LIMIT) :-
collection(ITEMS,[dvar,dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(ITEMS,BINS),
get_attr2(ITEMS,VALUES),
get_minimum(BINS,MINBINS),
get_maximum(BINS,MAXBINS),
gen_matrix_bool(MINBINS,MAXBINS,BINS,BMATRIX),
get_minimum(VALUES,MINVALUES),
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JOKER is MINVALUES-1,
LIM is LIMIT+1,
assign_and_nvalues1(BMATRIX,VALUES,JOKER,RELOP,LIM).

assign_and_nvalues1([],_49683,_49684,_49685,_49686).

assign_and_nvalues1([BLINE|RBMATRIX],VALUES,JOKER,RELOP,LIM) :-
assign_and_nvalues2(BLINE,VALUES,JOKER,VALS),
length(VALS,M),
N in 0..M,
nvalue(N,VALS),
call_term_relop_value(N,RELOP,LIM),
assign_and_nvalues1(RBMATRIX,VALUES,JOKER,RELOP,LIM).

assign_and_nvalues2([],[],JOKER,[JOKER]).

assign_and_nvalues2([VAR|RVAR],[VAL|RVAL],JOKER,[V|R]) :-
fd_max(VAL,MAX),
V in JOKER..MAX,
VAR#=0#/\V#=JOKER#\/VAR#=1#/\V#=VAL,
assign_and_nvalues2(RVAR,RVAL,JOKER,R).
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B.38 atleast

♦ META-DATA:

ctr_date(atleast,[’20030820’,’20040807’,’20060804’]).

ctr_origin(atleast,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(atleast,[count]).

ctr_arguments(
atleast,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(
atleast,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
atleast,
atleast(2,[[var-4],[var-2],[var-4],[var-5]],4)).

ctr_typical(
atleast,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
atleast,
[items(’VARIABLES’,all),
vals([’N’],int(>=(0)),>,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUE’),
>=,
dontcare,
dontcare)]).

ctr_graph(
atleast,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’>=’N’],
[]).
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ctr_eval(
atleast,
[checker(atleast_c),
reformulation(atleast_r),
automaton(atleast_a)]).

ctr_extensible(atleast,[],’VARIABLES’,any).

ctr_total_relation(atleast).

atleast_c(N,VARIABLES,VALUE) :-
integer(N),
integer(VALUE),
atleast_c1(VARIABLES,N,VALUE).

atleast_c1([[var-V]|R],N,VALUE) :-
!,
integer(V),
( V=VALUE ->

N1 is N-1
; N1 is N
),
atleast_c1(R,N1,VALUE).

atleast_c1([],N,_44879) :-
N=<0.

atleast_r(N,VARIABLES,VALUE) :-
integer(N),
collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,NVARIABLES),
N>=0,
N=<NVARIABLES,
get_attr1(VARIABLES,VARS),
atleast1(VARS,VALUE,SUM_BVARS),
call(SUM_BVARS#>=N).

atleast1([],_44875,0).

atleast1([V|R],VALUE,B+S) :-
V#=VALUE#<=>B,
atleast1(R,VALUE,S).

atleast_a(FLAG,N,VARIABLES,VALUE) :-
integer(N),
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collection(VARIABLES,[dvar]),
integer(VALUE),
length(VARIABLES,M),
N>=0,
N=<M,
atleast_signature(VARIABLES,SIGNATURE,VALUE),
NVAR in N..M,
automaton(

SIGNATURE,
_46896,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

atleast_signature([],[],_44876).

atleast_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
atleast_signature(VARs,Ss,VALUE).
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B.39 atleast nvalue

♦ META-DATA:

ctr_date(atleast_nvalue,[’20050618’,’20060804’]).

ctr_origin(atleast_nvalue,’\\cite{Regin95}’,[]).

ctr_synonyms(atleast_nvalue,[k_diff]).

ctr_arguments(
atleast_nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
atleast_nvalue,
[required(’VARIABLES’,var),
’NVAL’>=0,
’NVAL’=<size(’VARIABLES’),
’NVAL’=<range(’VARIABLES’ˆvar)]).

ctr_example(
atleast_nvalue,
[atleast_nvalue(

2,
[[var-3],[var-1],[var-7],[var-1],[var-6]]),

atleast_nvalue(
4,
[[var-3],[var-1],[var-7],[var-1],[var-6]]),

atleast_nvalue(
5,
[[var-3],[var-1],[var-7],[var-0],[var-6]])]).

ctr_typical(
atleast_nvalue,
[’NVAL’>0,
’NVAL’<size(’VARIABLES’),
’NVAL’<range(’VARIABLES’ˆvar),
size(’VARIABLES’)>1]).

ctr_typical_model(atleast_nvalue,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
atleast_nvalue,
[vals([’NVAL’],int(>=(0)),>,dontcare,dontcare),
items(’VARIABLES’,all),
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vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
atleast_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>=’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(
atleast_nvalue,
[checker(atleast_nvalue_c),
reformulation(atleast_nvalue_r)]).

ctr_extensible(atleast_nvalue,[],’VARIABLES’,any).

ctr_total_relation(atleast_nvalue).

ctr_sol(atleast_nvalue,2,0,2,24,[0-9,1-9,2-6]).

ctr_sol(atleast_nvalue,3,0,3,212,[0-64,1-64,2-60,3-24]).

ctr_sol(
atleast_nvalue,
4,
0,
4,
2470,
[0-625,1-625,2-620,3-480,4-120]).

ctr_sol(
atleast_nvalue,
5,
0,
5,
35682,
[0-7776,1-7776,2-7770,3-7320,4-4320,5-720]).

ctr_sol(
atleast_nvalue,
6,
0,
6,
614600,
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[0-117649,
1-117649,
2-117642,
3-116340,
4-97440,
5-42840,
6-5040]).

ctr_sol(
atleast_nvalue,
7,
0,
7,
12286024,
[0-2097152,
1-2097152,
2-2097144,
3-2093616,
4-1992480,
5-1404480,
6-463680,
7-40320]).

ctr_sol(
atleast_nvalue,
8,
0,
8,
279472266,
[0-43046721,
1-43046721,
2-43046712,
3-43037568,
4-42550704,
5-37406880,
6-21530880,
7-5443200,
8-362880]).

atleast_nvalue_r(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=0,
NVAL#=<N,
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list_dvar_range(VARS,R),
NVAL#=<R,
V in 0..N,
V#>=NVAL,
nvalue(V,VARS).

atleast_nvalue_c(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
( integer(NVAL) ->

NVAL>=0,
NVAL=<N,
sort(VARS,SVARS),
length(SVARS,M),
M>=NVAL

; NVAL#>=0,
NVAL#=<N,
sort(VARS,SVARS),
length(SVARS,M),
M#>=NVAL

).
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B.40 atleast nvector

♦ META-DATA:

ctr_date(atleast_nvector,[’20081226’]).

ctr_origin(atleast_nvector,’Derived from %c’,[nvector]).

ctr_types(atleast_nvector,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
atleast_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
atleast_nvector,
[size(’VECTOR’)>=1,
’NVEC’>=0,
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
atleast_nvector,
atleast_nvector(

2,
[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-4]]]])).

ctr_typical(
atleast_nvector,
[size(’VECTOR’)>1,
’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
atleast_nvector,
[vals([’NVEC’],int(>=(0)),>,dontcare,dontcare),
items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).
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ctr_graph(
atleast_nvector,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’NSCC’>=’NVEC’],
[’EQUIVALENCE’]).

ctr_eval(atleast_nvector,[reformulation(atleast_nvector_r)]).

ctr_extensible(atleast_nvector,[],’VECTORS’,any).

atleast_nvector_r(NVEC,[]) :-
!,
check_type(dvar,NVEC),
NVEC#=0.

atleast_nvector_r(NVEC,VECTORS) :-
check_type(dvar,NVEC),
length(VECTORS,N),
NVEC#>=0,
NVEC#=<N,
NV in 0..N,
nvector_common(NV,VECTORS),
NV#>=NVEC.
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B.41 atmost

♦ META-DATA:

ctr_date(atmost,[’20030820’,’20040807’,’20060804’]).

ctr_origin(atmost,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(atmost,[count]).

ctr_arguments(
atmost,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(atmost,[’N’>=0,required(’VARIABLES’,var)]).

ctr_example(
atmost,
atmost(1,[[var-4],[var-2],[var-4],[var-5]],2)).

ctr_typical(
atmost,
[’N’>0,
’N’<size(’VARIABLES’),
size(’VARIABLES’)>1,
atleast(1,’VARIABLES’,’VALUE’)]).

ctr_exchangeable(
atmost,
[items(’VARIABLES’,all),
vals([’N’],int,<,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUE’),
=<,
dontcare,
dontcare)]).

ctr_graph(
atmost,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=<’N’],
[]).
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ctr_eval(
atmost,
[checker(atmost_c),
reformulation(atmost_r),
automaton(atmost_a)]).

ctr_contractible(atmost,[],’VARIABLES’,any).

ctr_total_relation(atmost).

atmost_c(N,VARIABLES,VALUE) :-
integer(N),
integer(VALUE),
N>=0,
atmost_c1(VARIABLES,N,VALUE).

atmost_c1([[var-V]|R],N,VALUE) :-
!,
integer(V),
( V=VALUE ->

N1 is N-1,
N1>=0

; N1 is N
),
atmost_c1(R,N1,VALUE).

atmost_c1([],_42304,_42305).

atmost_r(N,VARIABLES,VALUE) :-
integer(N),
collection(VARIABLES,[dvar]),
integer(VALUE),
N>=0,
get_attr1(VARIABLES,VARS),
atmost1_(VARS,VALUE,SUM_BVARS),
call(SUM_BVARS#=<N).

atmost1_([],_42304,0).

atmost1_([V|R],VALUE,B+S) :-
V#=VALUE#<=>B,
atmost1_(R,VALUE,S).

atmost_a(FLAG,N,VARIABLES,VALUE) :-
integer(N),
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collection(VARIABLES,[dvar]),
integer(VALUE),
N>=0,
atmost_signature(VARIABLES,SIGNATURE,VALUE),
length(VARIABLES,M),
MN is min(M,N),
NVAR in 0..MN,
automaton(

SIGNATURE,
_44337,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NVAR#<=>FLAG.

atmost_signature([],[],_42305).

atmost_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
atmost_signature(VARs,Ss,VALUE).
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B.42 atmost1
♦ META-DATA:

ctr_predefined(atmost1).

ctr_date(atmost1,[’20061003’]).

ctr_origin(atmost1,’\\cite{SadlerGervet01}’,[]).

ctr_synonyms(atmost1,[pair_atmost1]).

ctr_arguments(atmost1,[’SETS’-collection(s-svar,c-int)]).

ctr_restrictions(atmost1,[required(’SETS’,[s,c]),’SETS’ˆc>=1]).

ctr_example(
atmost1,
atmost1(

[[s-{5,8},c-2],
[s-{5},c-1],
[s-{5,6,7},c-3],
[s-{1,4},c-2]])).

ctr_typical(atmost1,[size(’SETS’)>1]).

ctr_exchangeable(
atmost1,
[items(’SETS’,all),vals([’SETS’ˆs],int,=\=,all,dontcare)]).

ctr_contractible(atmost1,[],’SETS’,any).
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B.43 atmost nvalue

♦ META-DATA:

ctr_date(atmost_nvalue,[’20050618’,’20060804’,’20090926’]).

ctr_origin(
atmost_nvalue,
\cite{BessiereHebrardHnichKiziltanWalsh05},
[]).

ctr_synonyms(
atmost_nvalue,
[soft_alldiff_max_var,
soft_alldifferent_max_var,
soft_alldistinct_max_var]).

ctr_arguments(
atmost_nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
atmost_nvalue,
[’NVAL’>=min(1,size(’VARIABLES’)),
required(’VARIABLES’,var)]).

ctr_example(
atmost_nvalue,
[atmost_nvalue(

4,
[[var-3],[var-1],[var-3],[var-1],[var-6]]),

atmost_nvalue(
3,
[[var-3],[var-1],[var-3],[var-1],[var-6]]),

atmost_nvalue(
1,
[[var-3],[var-3],[var-3],[var-3],[var-3]])]).

ctr_typical(
atmost_nvalue,
[’NVAL’>1,’NVAL’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
atmost_nvalue,
[vals([’NVAL’],int,<,dontcare,dontcare),
items(’VARIABLES’,all),
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vals([’VARIABLES’ˆvar],int,=\=,all,dontcare),
vals([’VARIABLES’ˆvar],int,=\=,dontcare,in)]).

ctr_graph(
atmost_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=<’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(
atmost_nvalue,
[reformulation(atmost_nvalue_r),checker(atmost_nvalue_c)]).

ctr_contractible(atmost_nvalue,[],’VARIABLES’,any).

ctr_total_relation(atmost_nvalue).

ctr_sol(atmost_nvalue,2,0,2,12,[1-3,2-9]).

ctr_sol(atmost_nvalue,3,0,3,108,[1-4,2-40,3-64]).

ctr_sol(atmost_nvalue,4,0,4,1280,[1-5,2-145,3-505,4-625]).

ctr_sol(
atmost_nvalue,
5,
0,
5,
18750,
[1-6,2-456,3-3456,4-7056,5-7776]).

ctr_sol(
atmost_nvalue,
6,
0,
6,
326592,
[1-7,2-1309,3-20209,4-74809,5-112609,6-117649]).

ctr_sol(
atmost_nvalue,
7,
0,
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7,
6588344,
[1-8,
2-3536,
3-104672,
4-692672,
5-1633472,
6-2056832,
7-2097152]).

ctr_sol(
atmost_nvalue,
8,
0,
8,
150994944,
[1-9,
2-9153,
3-496017,
4-5639841,
5-21515841,
6-37603521,
7-42683841,
8-43046721]).

atmost_nvalue_r(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#=<N,
V in 0..N,
V#=<NVAL,
nvalue(V,VARS).

atmost_nvalue_c(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
( integer(NVAL) ->

MIN is min(1,N),
NVAL>=MIN,
sort(VARS,SVARS),
length(SVARS,M),
M=<NVAL
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; NVAL#>=min(1,N),
sort(VARS,SVARS),
length(SVARS,M),
M#=<NVAL

).
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B.44 atmost nvector

♦ META-DATA:

ctr_date(atmost_nvector,[’20081226’]).

ctr_origin(atmost_nvector,’Derived from %c’,[nvector]).

ctr_types(atmost_nvector,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
atmost_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
atmost_nvector,
[size(’VECTOR’)>=1,
’NVEC’>=min(1,size(’VECTORS’)),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
atmost_nvector,
atmost_nvector(

3,
[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
atmost_nvector,
[size(’VECTOR’)>1,
’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
atmost_nvector,
[vals([’NVEC’],int,<,dontcare,dontcare),
items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
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atmost_nvector,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’NSCC’=<’NVEC’],
[’EQUIVALENCE’]).

ctr_eval(atmost_nvector,[reformulation(atmost_nvector_r)]).

ctr_contractible(atmost_nvector,[],’VECTORS’,any).

atmost_nvector_r(NVEC,[]) :-
!,
check_type(dvar,NVEC),
0#=<NVEC.

atmost_nvector_r(NVEC,VECTORS) :-
check_type(dvar,NVEC),
length(VECTORS,N),
NV in 0..N,
nvector_common(NV,VECTORS),
NV#=<NVEC.
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B.45 balance

♦ META-DATA:

ctr_date(balance,[’20000128’,’20030820’,’20060804’,’20110713’]).

ctr_origin(balance,’N.˜Beldiceanu’,[]).

ctr_arguments(
balance,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
balance,
[’BALANCE’>=0,
’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var)]).

ctr_example(
balance,
[balance(2,[[var-3],[var-1],[var-7],[var-1],[var-1]]),
balance(

0,
[[var-3],[var-3],[var-1],[var-1],[var-1],[var-3]]),

balance(
4,
[[var-3],[var-1],[var-1],[var-1],[var-1],[var-1]])]).

ctr_typical(
balance,
[’BALANCE’=<2+size(’VARIABLES’)/10,size(’VARIABLES’)>2]).

ctr_typical_model(balance,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
balance,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
balance,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RANGE_NSCC’=’BALANCE’],
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[’EQUIVALENCE’]).

ctr_eval(balance,[checker(balance_c),reformulation(balance_r)]).

ctr_pure_functional_dependency(balance,[]).

ctr_functional_dependency(balance,1,[2]).

ctr_sol(balance,2,0,2,9,[0-9]).

ctr_sol(balance,3,0,3,64,[0-28,1-36]).

ctr_sol(balance,4,0,4,625,[0-185,1-360,2-80]).

ctr_sol(balance,5,0,5,7776,[0-726,1-5700,2-1200,3-150]).

ctr_sol(
balance,
6,
0,
6,
117649,
[0-8617,1-75600,2-30030,3-3150,4-252]).

ctr_sol(
balance,
7,
0,
7,
2097152,
[0-40328,1-1342600,2-611520,3-95256,4-7056,5-392]).

ctr_sol(
balance,
8,
0,
8,
43046721,
[0-682929,
1-24272640,
2-15350832,
3-2469600,
4-256032,
5-14112,
6-576]).
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balance_c(0,[]) :-
!.

balance_c(BALANCE,VARIABLES) :-
check_type(dvar,BALANCE),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
N2 is max(N-2,0),
BALANCE#>=0,
BALANCE#=<N2,
samsort(VARS,SVARS),
SVARS=[V|R],
min_max_seq_size(R,1,V,N,1,MIN,MAX),
BALANCE#=MAX-MIN.

min_max_seq_size([],C,_70287,BestMin,BestMax,ResMin,ResMax) :-
!,
ResMin is min(C,BestMin),
ResMax is max(C,BestMax).

min_max_seq_size([V|R],C,V,BestMin,BestMax,ResMin,ResMax) :-
!,
C1 is C+1,
min_max_seq_size(R,C1,V,BestMin,BestMax,ResMin,ResMax).

min_max_seq_size([V|R],C,Prev,BestMin,BestMax,ResMin,ResMax) :-
C>0,
V=\=Prev,
NewBestMin is min(C,BestMin),
NewBestMax is max(C,BestMax),
min_max_seq_size(

R,
1,
V,
NewBestMin,
NewBestMax,
ResMin,
ResMax).

balance_r(0,[]) :-
!.

balance_r(BALANCE,VARIABLES) :-
check_type(dvar,BALANCE),
collection(VARIABLES,[dvar]),
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get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
N2 is max(N-2,0),
BALANCE#>=0,
BALANCE#=<N2,
union_dom_list_int(VARS,UnionDomainsVARS),
NSquare is N*N,
length(UnionDomainsVARS,SizeUnion),
( SizeUnion=<NSquare ->

balance1(UnionDomainsVARS,N,VALS,OCCS,OCCS1),
eval(global_cardinality(VARIABLES,VALS))

; balance2(VARS,N,VARS,OCCS),
OCCS1=OCCS

),
MIN in 1..N,
MAX in 1..N,
eval(minimum(MIN,OCCS1)),
eval(maximum(MAX,OCCS)),
BALANCE+MIN#=MAX.
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B.46 balance cycle

♦ META-DATA:

ctr_date(balance_cycle,[’20111218’]).

ctr_origin(
balance_cycle,
derived from %c and %c,
[balance,cycle]).

ctr_arguments(
balance_cycle,
[’BALANCE’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
balance_cycle,
[’BALANCE’>=0,
’BALANCE’=<max(0,size(’NODES’)-2),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
balance_cycle,
[balance_cycle(

1,
[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]]),

balance_cycle(
0,
[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-1],
[index-4,succ-5],
[index-5,succ-6],
[index-6,succ-4]]),

balance_cycle(
4,
[[index-1,succ-2],
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[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-5],
[index-5,succ-1],
[index-6,succ-6]])]).

ctr_typical(balance_cycle,[size(’NODES’)>2]).

ctr_exchangeable(balance_cycle,[items(’NODES’,all)]).

ctr_graph(
balance_cycle,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’RANGE_NCC’=’BALANCE’],
[’ONE_SUCC’]).

ctr_eval(balance_cycle,[checker(balance_cycle_c)]).

ctr_functional_dependency(balance_cycle,1,[2]).

ctr_cond_imply(
balance_cycle,
all_differ_from_at_least_k_pos,
[’BALANCE’>0,’BALANCE’=<2],
[],
[same(’BALANCE’),same(’NODES’)]).

ctr_cond_imply(
balance_cycle,
permutation,
[],
[],
[index_to_col(’NODES’)]).

ctr_application(balance_cycle,[2]).

ctr_sol(balance_cycle,2,0,2,2,[0-2]).

ctr_sol(balance_cycle,3,0,3,6,[0-3,1-3]).

ctr_sol(balance_cycle,4,0,4,24,[0-10,1-6,2-8]).

ctr_sol(balance_cycle,5,0,5,120,[0-25,1-45,2-20,3-30]).
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ctr_sol(balance_cycle,6,0,6,720,[0-176,1-60,2-250,3-90,4-144]).

ctr_sol(
balance_cycle,
7,
0,
7,
5040,
[0-721,1-861,2-770,3-1344,4-504,5-840]).

ctr_sol(
balance_cycle,
8,
0,
8,
40320,
[0-6406,1-1778,2-7980,3-6300,4-8736,5-3360,6-5760]).

ctr_sol(
balance_cycle,
9,
0,
9,
362880,
[0-42561,
1-23283,
2-38808,
3-75348,
4-45360,
5-66240,
6-25920,
7-45360]).

ctr_sol(
balance_cycle,
10,
0,
10,
3628800,
[0-436402,
1-84150,
2-363680,
3-456120,
4-708048,
5-378000,
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6-572400,
7-226800,
8-403200]).

balance_cycle_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
sort(INDEXES,Js),
sort(SUCCS,Js),
length(Js,N),
(for(J,1,N),
foreach(X,SUCCS),
foreach(Free,Term),
foreach(Free-1,KeyTerm),foreach(J,Js),param(Term,N)do
nth1(X,Term,Free)),

keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_72583-Ones,KeyClumped),
foreach(Count,Counts)do
length(Ones,Count)),

min_member(Min,Counts),
max_member(Max,Counts),
BALANCE is Max-Min.
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B.47 balance interval

♦ META-DATA:

ctr_date(balance_interval,[’20030820’,’20060804’]).

ctr_origin(balance_interval,’Derived from %c.’,[balance]).

ctr_arguments(
balance_interval,
[’BALANCE’-dvar,
’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
balance_interval,
[’BALANCE’>=0,
’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
balance_interval,
balance_interval(

3,
[[var-6],[var-4],[var-3],[var-3],[var-4]],
3)).

ctr_typical(
balance_interval,
[size(’VARIABLES’)>2,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES’ˆvar)]).

ctr_exchangeable(
balance_interval,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
balance_interval,
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[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_pure_functional_dependency(balance_interval,[]).

ctr_functional_dependency(balance_interval,1,[2,3]).
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B.48 balance modulo

♦ META-DATA:

ctr_date(balance_modulo,[’20030820’,’20060804’]).

ctr_origin(balance_modulo,’Derived from %c.’,[balance]).

ctr_arguments(
balance_modulo,
[’BALANCE’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
balance_modulo,
[’BALANCE’>=0,
’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var),
’M’>0]).

ctr_example(
balance_modulo,
balance_modulo(

2,
[[var-6],[var-1],[var-7],[var-1],[var-5]],
3)).

ctr_typical(
balance_modulo,
[size(’VARIABLES’)>2,’M’>1,’M’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
balance_modulo,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
balance_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_pure_functional_dependency(balance_modulo,[]).
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ctr_functional_dependency(balance_modulo,1,[2,3]).
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B.49 balance partition

♦ META-DATA:

ctr_date(balance_partition,[’20030820’,’20060804’]).

ctr_origin(balance_partition,’Derived from %c.’,[balance]).

ctr_types(balance_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
balance_partition,
[’BALANCE’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
balance_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
’BALANCE’>=0,
’BALANCE’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
balance_partition,
balance_partition(

1,
[[var-6],[var-2],[var-6],[var-4],[var-4]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
balance_partition,
[size(’VARIABLES’)>2,size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
balance_partition,
[items(’VARIABLES’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(
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[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
balance_partition,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’RANGE_NSCC’=’BALANCE’],
[’EQUIVALENCE’]).

ctr_pure_functional_dependency(balance_partition,[]).

ctr_functional_dependency(balance_partition,1,[2,3]).
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B.50 balance path

♦ META-DATA:

ctr_date(balance_path,[’20111226’]).

ctr_origin(
balance_path,
derived from %c and %c,
[balance,path]).

ctr_arguments(
balance_path,
[’BALANCE’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
balance_path,
[’BALANCE’>=0,
’BALANCE’=<max(0,size(’NODES’)-2),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
balance_path,
[balance_path(

3,
[[index-1,succ-1],
[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-4],
[index-5,succ-1],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-6]]),

balance_path(
0,
[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-4],
[index-5,succ-6],
[index-6,succ-7],
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[index-7,succ-8],
[index-8,succ-8]]),

balance_path(
6,
[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-5],
[index-5,succ-6],
[index-6,succ-7],
[index-7,succ-7],
[index-8,succ-8]])]).

ctr_typical(balance_path,[size(’NODES’)>2]).

ctr_exchangeable(balance_path,[items(’NODES’,all)]).

ctr_graph(
balance_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’MAX_ID’=<1,’RANGE_NCC’=’BALANCE’],
[’ONE_SUCC’]).

ctr_eval(balance_path,[checker(balance_path_c)]).

ctr_functional_dependency(balance_path,1,[2]).

ctr_application(balance_path,[2]).

ctr_sol(balance_path,2,0,2,3,[0-3]).

ctr_sol(balance_path,3,0,3,13,[0-7,1-6]).

ctr_sol(balance_path,4,0,4,73,[0-37,1-12,2-24]).

ctr_sol(balance_path,5,0,5,501,[0-121,1-200,2-60,3-120]).

ctr_sol(
balance_path,
6,
0,
6,
4051,
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[0-1201,1-210,2-1560,3-360,4-720]).

ctr_sol(
balance_path,
7,
0,
7,
37633,
[0-5041,1-8862,2-5250,3-10920,4-2520,5-5040]).

ctr_sol(
balance_path,
8,
0,
8,
394353,
[0-62161,1-24416,2-97776,3-62160,4-87360,5-20160,6-40320]).

balance_path_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
sort(INDEXES,SIND),
length(SIND,N),
length(RANKS,N),
domain(RANKS,1,N),
balance_path1(INDEXES,SUCCS,RANKS,SUCC_WITHOUT_LOOPS),
sort(SUCC_WITHOUT_LOOPS,SSUCC_WITHOUT_LOOPS),
length(SUCC_WITHOUT_LOOPS,NSL),
length(SSUCC_WITHOUT_LOOPS,NSL),
(foreach(X,SUCCS),
foreach(Free,Term),
foreach(Free-1,KeyTerm),param(Term,N)do
nth1(X,Term,Free)),
keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_72191-Ones,KeyClumped),
foreach(Count,Counts)do
length(Ones,Count)),
min_member(Min,Counts),
max_member(Max,Counts),
BALANCE is Max-Min.
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balance_path1([],[],_71992,[]) :-
!.

balance_path1([I|RI],[I|RS],RANKS,SUCC) :-
!,
balance_path1(RI,RS,RANKS,SUCC).

balance_path1([I|RI],[S|RS],RANKS,[S|SUCC]) :-
nth1(I,RANKS,Ri),
nth1(S,RANKS,Rs),
Ri#<Rs,
balance_path1(RI,RS,RANKS,SUCC).
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B.51 balance tree

♦ META-DATA:

ctr_date(balance_tree,[’20111226’]).

ctr_origin(
balance_tree,
derived from %c and %c,
[balance,tree]).

ctr_arguments(
balance_tree,
[’BALANCE’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
balance_tree,
[’BALANCE’>=0,
’BALANCE’=<max(0,size(’NODES’)-2),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
balance_tree,
[balance_tree(

4,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]]),

balance_tree(
2,
[[index-1,succ-1],
[index-2,succ-1],
[index-3,succ-1],
[index-4,succ-2],
[index-5,succ-6],
[index-6,succ-6]])]).
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ctr_typical(balance_tree,[size(’NODES’)>2]).

ctr_exchangeable(balance_tree,[items(’NODES’,all)]).

ctr_graph(
balance_tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’RANGE_NCC’=’BALANCE’],
[]).

ctr_eval(balance_tree,[checker(balance_tree_c)]).

ctr_functional_dependency(balance_tree,1,[2]).

ctr_cond_imply(
balance_tree,
ordered_atleast_nvector,
[’BALANCE’>0,’BALANCE’=<size(’NODES’)],
[],
[same(’BALANCE’),same(’NODES’)]).

ctr_application(balance_tree,[2]).

ctr_sol(balance_tree,2,0,2,3,[0-3]).

ctr_sol(balance_tree,3,0,3,16,[0-10,1-6]).

ctr_sol(balance_tree,4,0,4,125,[0-77,1-12,2-36]).

ctr_sol(balance_tree,5,0,5,1296,[0-626,1-260,2-90,3-320]).

ctr_sol(
balance_tree,
6,
0,
6,
16807,
[0-8707,1-210,2-3180,3-960,4-3750]).

ctr_sol(
balance_tree,
7,
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0,
7,
262144,
[0-117650,1-25242,2-9765,3-41930,4-13125,5-54432]).

ctr_sol(
balance_tree,
8,
0,
8,
4782969,
[0-2242193,
1-49616,
2-432264,
3-219520,
4-680456,
5-217728,
6-941192]).

balance_tree_c(BALANCE,NODES) :-
length(NODES,N),
N2 is max(N-2,0),
check_type(dvar(0,N2),BALANCE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
sort(INDEXES,SIND),
length(SIND,N),
length(RANKS,N),
domain(RANKS,1,N),
balance_tree1(INDEXES,SUCCS,RANKS),
(foreach(X,SUCCS),
foreach(Free,Term),
foreach(Free-1,KeyTerm),param(Term,N)do
nth1(X,Term,Free)),
keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_70436-Ones,KeyClumped),
foreach(Count,Counts)do
length(Ones,Count)),
min_member(Min,Counts),
max_member(Max,Counts),
BALANCE is Max-Min.

balance_tree1([],[],_70262) :-
!.
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balance_tree1([I|RI],[I|RS],RANKS) :-
!,
balance_tree1(RI,RS,RANKS).

balance_tree1([I|RI],[S|RS],RANKS) :-
nth1(I,RANKS,Ri),
nth1(S,RANKS,Rs),
Ri#<Rs,
balance_tree1(RI,RS,RANKS).
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B.52 between min max

♦ META-DATA:

ctr_date(between_min_max,[’20050824’,’20060804’]).

ctr_origin(
between_min_max,
Used for defining %c.,
[cumulative_convex]).

ctr_arguments(
between_min_max,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
between_min_max,
[required(’VARIABLES’,var),size(’VARIABLES’)>0]).

ctr_example(
between_min_max,
[between_min_max(3,[[var-1],[var-1],[var-4],[var-8]]),
between_min_max(1,[[var-1],[var-1],[var-4],[var-8]]),
between_min_max(8,[[var-1],[var-1],[var-4],[var-8]])]).

ctr_typical(
between_min_max,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
between_min_max,
[items(’VARIABLES’,all),
vals(

[’VAR’],
int([’VAR’,’VARIABLES’ˆvar]),
=\=,
all,
dontcare)]).

ctr_derived_collections(
between_min_max,
[col(’ITEM’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
between_min_max,
[’ITEM’,’VARIABLES’],
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2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar>=variablesˆvar],
[’NARC’>=1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_graph(
between_min_max,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar=<variablesˆvar],
[’NARC’>=1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
between_min_max,
[checker(between_min_max_c),
reformulation(between_min_max_r),
automaton(between_min_max_a)]).

ctr_extensible(between_min_max,[],’VARIABLES’,any).

ctr_sol(between_min_max,2,0,2,17,[0-5,1-7,2-5]).

ctr_sol(between_min_max,3,0,3,184,[0-37,1-55,2-55,3-37]).

ctr_sol(
between_min_max,
4,
0,
4,
2417,
[0-369,1-543,2-593,3-543,4-369]).

ctr_sol(
between_min_max,
5,
0,
5,
37806,
[0-4651,1-6751,2-7501,3-7501,4-6751,5-4651]).

ctr_sol(
between_min_max,
6,
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0,
6,
689201,
[0-70993,
1-102023,
2-113489,
3-116191,
4-113489,
5-102023,
6-70993]).

ctr_sol(
between_min_max,
7,
0,
7,
14376608,
[0-1273609,
1-1817215,
2-2018899,
3-2078581,
4-2078581,
5-2018899,
6-1817215,
7-1273609]).

ctr_sol(
between_min_max,
8,
0,
8,
338051265,
[0-26269505,
1-37281919,
2-41366849,
3-42649535,
4-42915649,
5-42649535,
6-41366849,
7-37281919,
8-26269505]).

between_min_max_c(VAR,VARIABLES) :-
integer(VAR),
between_min_max_c(VARIABLES,VAR,0,0).
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between_min_max_c([],_64292,1,1) :-
!.

between_min_max_c([[var-V]|R],VAR,Min,Max) :-
integer(V),
( VAR=V ->

between_min_max_c(R,VAR,1,1)
; VAR>V ->

between_min_max_c(R,VAR,1,Max)
; between_min_max_c(R,VAR,Min,1)
).

between_min_max_r(VAR,VARIABLES) :-
check_type(dvar,VAR),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINIMUM),
get_maximum(VARS,MAXIMUM),
MIN in MINIMUM..MAXIMUM,
MAX in MINIMUM..MAXIMUM,
minimum(MIN,VARS),
maximum(MAX,VARS),
VAR#>=MIN,
VAR#=<MAX.

between_min_max_a(FLAG,VAR,VARIABLES) :-
check_type(dvar,VAR),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
between_min_max_signature(VARIABLES,VAR,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_66242,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,i),
arc(s,1,t),
arc(s,2,j),
arc(i,0,i),
arc(i,1,t),
arc(i,2,t),
arc(j,0,t),
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arc(j,1,t),
arc(j,2,j),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

between_min_max_signature([],_64289,[]).

between_min_max_signature([[var-VARi]|VARs],VAR,[S|Ss]) :-
S in 0..2,
VAR#<VARi#<=>S#=0,
VAR#=VARi#<=>S#=1,
VAR#>VARi#<=>S#=2,
between_min_max_signature(VARs,VAR,Ss).
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B.53 big peak

♦ META-DATA:

ctr_date(big_peak,[’20130125’]).

ctr_origin(big_peak,’Derived from %c.’,[peak]).

ctr_arguments(
big_peak,
[’N’-dvar,
’VARIABLES’-collection(var-dvar),
’TOLERANCE’-int]).

ctr_restrictions(
big_peak,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var),
’TOLERANCE’>=0]).

ctr_example(
big_peak,
[big_peak(

7,
[[var-4],
[var-2],
[var-2],
[var-4],
[var-3],
[var-8],
[var-6],
[var-7],
[var-7],
[var-9],
[var-5],
[var-6],
[var-3],
[var-12],
[var-12],
[var-6],
[var-6],
[var-8],
[var-4],
[var-5],
[var-1]],
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0),
big_peak(

4,
[[var-4],
[var-2],
[var-2],
[var-4],
[var-3],
[var-8],
[var-6],
[var-7],
[var-7],
[var-9],
[var-5],
[var-6],
[var-3],
[var-12],
[var-12],
[var-6],
[var-6],
[var-8],
[var-4],
[var-5],
[var-1]],

1)]).

ctr_typical(
big_peak,
[’N’>=1,
size(’VARIABLES’)>6,
range(’VARIABLES’ˆvar)>1,
’TOLERANCE’>1]).

ctr_typical_model(
big_peak,
[nval(’VARIABLES’ˆvar)>2,range(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
big_peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
big_peak,
[checker(big_peak_c),
automaton(big_peak_a),
automaton_with_signature(big_peak_a_s)]).
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ctr_pure_functional_dependency(big_peak,[]).

ctr_functional_dependency(big_peak,1,[2,3]).

ctr_contractible(
big_peak,
[’N’=0,’TOLERANCE’=0],
VARIABLES,
any).

big_peak_c(N,VARIABLES,TOLERANCE) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[int]),
length(VARIABLES,L),
MAX is max(L-1,0),
2*N#=<MAX,
integer(TOLERANCE),
TOLERANCE>=0,
( L<3 ->

N=0
; get_attr1(VARIABLES,VARS),

last(VARS,Last),
big_peak_c(s,VARS,0,0,-2000000,TOLERANCE,Last,N)

).

big_peak_c(s,[V1,V2|R],C,S,P,T,L,N) :-
V1>=V2,
!,
big_peak_c(s,[V2|R],C,S,P,T,L,N).

big_peak_c(s,[V1,V2|R],C,_28327,P,T,L,N) :-
!,
big_peak_c(u,[V2|R],C,V1,P,T,L,N).

big_peak_c(u,[V1,V2|R],C,S,P,T,L,N) :-
V1=<V2,
!,
big_peak_c(u,[V2|R],C,S,P,T,L,N).

big_peak_c(u,[V1,V2|R],C,S,P,T,L,N) :-
D is V1-S,
D=<T,
!,
big_peak_c(u,[V2|R],C,S,P,T,L,N).
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big_peak_c(u,[V1,V2|R],C,S,_28328,T,L,N) :-
!,
big_peak_c(v,[V2|R],C,S,V1,T,L,N).

big_peak_c(v,[V1,V2|R],C,S,P,T,L,N) :-
V1>=V2,
!,
big_peak_c(v,[V2|R],C,S,P,T,L,N).

big_peak_c(v,[V1,V2|R],C,_28327,P,T,L,N) :-
P= -2000000,
!,
big_peak_c(w,[V2|R],C,V1,P,T,L,N).

big_peak_c(v,[V1,V2|R],C,S,P,T,L,N) :-
P> -2000000,
D is P-V1,
D=<T,
!,
big_peak_c(w,[V2|R],C,S,P,T,L,N).

big_peak_c(v,[V1,V2|R],C,_28327,_28328,T,L,N) :-
!,
C1 is C+1,
big_peak_c(w,[V2|R],C1,V1,-2000000,T,L,N).

big_peak_c(w,[V1,V2|R],C,S,P,T,L,N) :-
V1=<V2,
!,
big_peak_c(w,[V2|R],C,S,P,T,L,N).

big_peak_c(w,[V1,V2|R],C,S,P,T,L,N) :-
D is V1-S,
D=<T,
!,
big_peak_c(v,[V2|R],C,S,P,T,L,N).

big_peak_c(w,[V1,V2|R],C,S,P,T,L,N) :-
!,
PP is max(P,V1),
big_peak_c(v,[V2|R],C,S,PP,T,L,N).

big_peak_c(_28324,[_28332],C,_28327,P,T,L,N) :-
!,
D is P-L,
( D>T ->
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C1 is C+1,
N=C1

; N=C
).

big_peak_c(_28321,[],_28323,_28324,_28325,_28326,_28327,0).

ctr_automaton_signature(
big_peak,
big_peak_a,
pair_signature(2,signature)).

big_peak_a(FLAG,N,VARIABLES,TOLERANCE) :-
length(VARIABLES,L),
( L<3 ->

true
; pair_signature(VARIABLES,SIGNATURE)
),
big_peak_a_s(FLAG,N,VARIABLES,TOLERANCE,SIGNATURE).

big_peak_a_s(FLAG,N,VARIABLES,TOLERANCE,SIGNATURE) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(L-1,0),
2*N#=<MAX,
integer(TOLERANCE),
TOLERANCE>=0,
( L<3 ->

N#=0#<=>FLAG
; pair_first_last_signature(VARIABLES,VARS,Last),

automaton(
VARS,
VARi,
SIGNATURE,
[source(s),sink(s),sink(u),sink(v),sink(w)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,u,[C,VARi,P]),
arc(u,2,u,(VARi-S#=<TOLERANCE->[C,S,P])),
arc(u,2,v,(VARi-S#>TOLERANCE->[C,S,VARi])),
arc(u,1,u),
arc(u,0,u),
arc(v,2,v),
arc(v,1,v),
arc(v,0,w,(P#= -2000000->[C,VARi,P])),
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arc(v,
0,
w,
(P#> -2000000#/\P-VARi#=<TOLERANCE->
[C,S,P])),

arc(v,
0,
w,
(P-VARi#>TOLERANCE->
[C+1,VARi,-2000000])),

arc(w,2,v,(VARi-S#=<TOLERANCE->[C,S,P])),
arc(w,

2,
v,
(VARi-S#>TOLERANCE->[C,S,max(P,VARi)])),

arc(w,1,w),
arc(w,0,w)],
[C,S,P],
[0,0,-2000000],
[CC,_28703,PP]),

Inc in 0..1,
PP#>Last+TOLERANCE#<=>Inc,
CC+Inc#=N#<=>FLAG

).
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B.54 big valley

♦ META-DATA:

ctr_date(big_valley,[’20130127’]).

ctr_origin(big_valley,’Derived from %c.’,[valley]).

ctr_arguments(
big_valley,
[’N’-dvar,
’VARIABLES’-collection(var-dvar),
’TOLERANCE’-int]).

ctr_restrictions(
big_valley,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var),
’TOLERANCE’>=0]).

ctr_example(
big_valley,
[big_valley(

7,
[[var-9],
[var-11],
[var-11],
[var-9],
[var-10],
[var-5],
[var-7],
[var-6],
[var-6],
[var-4],
[var-8],
[var-7],
[var-10],
[var-1],
[var-1],
[var-7],
[var-7],
[var-5],
[var-9],
[var-8],
[var-12]],
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0),
big_valley(

4,
[[var-9],
[var-11],
[var-11],
[var-9],
[var-10],
[var-5],
[var-7],
[var-6],
[var-6],
[var-4],
[var-8],
[var-7],
[var-10],
[var-1],
[var-1],
[var-7],
[var-7],
[var-5],
[var-9],
[var-8],
[var-12]],

1)]).

ctr_typical(
big_valley,
[’N’>=1,
size(’VARIABLES’)>6,
range(’VARIABLES’ˆvar)>1,
’TOLERANCE’>1]).

ctr_typical_model(
big_valley,
[nval(’VARIABLES’ˆvar)>2,range(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
big_valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
big_valley,
[checker(big_valley_c),
automaton(big_valley_a),
automaton_with_signature(big_valley_a_s)]).
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ctr_pure_functional_dependency(big_valley,[]).

ctr_functional_dependency(big_valley,1,[2,3]).

ctr_contractible(
big_valley,
[’N’=0,’TOLERANCE’=0],
VARIABLES,
any).

big_valley_c(N,VARIABLES,TOLERANCE) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[int]),
length(VARIABLES,L),
MAX is max(L-1,0),
2*N#=<MAX,
integer(TOLERANCE),
TOLERANCE>=0,
( L<3 ->

N=0
; get_attr1(VARIABLES,VARS),

last(VARS,Last),
big_valley_c(s,VARS,0,0,2000000,TOLERANCE,Last,N)

).

big_valley_c(s,[V1,V2|R],C,S,V,T,L,N) :-
V1=<V2,
!,
big_valley_c(s,[V2|R],C,S,V,T,L,N).

big_valley_c(s,[V1,V2|R],C,_28347,V,T,L,N) :-
!,
big_valley_c(u,[V2|R],C,V1,V,T,L,N).

big_valley_c(u,[V1,V2|R],C,S,V,T,L,N) :-
V1>=V2,
!,
big_valley_c(u,[V2|R],C,S,V,T,L,N).

big_valley_c(u,[V1,V2|R],C,S,V,T,L,N) :-
D is S-V1,
D=<T,
!,
big_valley_c(u,[V2|R],C,S,V,T,L,N).
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big_valley_c(u,[V1,V2|R],C,S,_28348,T,L,N) :-
!,
big_valley_c(v,[V2|R],C,S,V1,T,L,N).

big_valley_c(v,[V1,V2|R],C,S,V,T,L,N) :-
V1=<V2,
!,
big_valley_c(v,[V2|R],C,S,V,T,L,N).

big_valley_c(v,[V1,V2|R],C,_28347,V,T,L,N) :-
V=2000000,
!,
big_valley_c(w,[V2|R],C,V1,V,T,L,N).

big_valley_c(v,[V1,V2|R],C,S,V,T,L,N) :-
V<2000000,
D is V1-V,
D=<T,
!,
big_valley_c(w,[V2|R],C,S,V,T,L,N).

big_valley_c(v,[V1,V2|R],C,_28347,_28348,T,L,N) :-
!,
C1 is C+1,
big_valley_c(w,[V2|R],C1,V1,2000000,T,L,N).

big_valley_c(w,[V1,V2|R],C,S,V,T,L,N) :-
V1>=V2,
!,
big_valley_c(w,[V2|R],C,S,V,T,L,N).

big_valley_c(w,[V1,V2|R],C,S,V,T,L,N) :-
D is S-V1,
D=<T,
!,
big_valley_c(v,[V2|R],C,S,V,T,L,N).

big_valley_c(w,[V1,V2|R],C,S,V,T,L,N) :-
!,
VV is min(V,V1),
big_valley_c(v,[V2|R],C,S,VV,T,L,N).

big_valley_c(_28344,[_28352],C,_28347,V,T,L,N) :-
!,
D is L-V,
( D>T ->
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C1 is C+1,
N=C1

; N=C
).

big_valley_c(_28341,[],_28343,_28344,_28345,_28346,_28347,0).

ctr_automaton_signature(
big_valley,
big_valley_a,
pair_signature(2,signature)).

big_valley_a(FLAG,N,VARIABLES,TOLERANCE) :-
length(VARIABLES,L),
( L<3 ->

true
; pair_signature(VARIABLES,SIGNATURE)
),
big_valley_a_s(FLAG,N,VARIABLES,TOLERANCE,SIGNATURE).

big_valley_a_s(FLAG,N,VARIABLES,TOLERANCE,SIGNATURE) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(L-1,0),
2*N#=<MAX,
integer(TOLERANCE),
TOLERANCE>=0,
( L<3 ->

N#=0#<=>FLAG
; pair_first_last_signature(VARIABLES,VARS,Last),

automaton(
VARS,
VARi,
SIGNATURE,
[source(s),sink(s),sink(u),sink(v),sink(w)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u,[C,VARi,V]),
arc(u,0,u,(S-VARi#=<TOLERANCE->[C,S,V])),
arc(u,0,v,(S-VARi#>TOLERANCE->[C,S,VARi])),
arc(u,1,u),
arc(u,2,u),
arc(v,0,v),
arc(v,1,v),
arc(v,2,w,(V#=2000000->[C,VARi,V])),
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arc(v,
2,
w,
(V#<2000000#/\VARi-V#=<TOLERANCE->
[C,S,V])),

arc(v,
2,
w,
(VARi-V#>TOLERANCE->[C+1,VARi,2000000])),

arc(w,0,v,(S-VARi#=<TOLERANCE->[C,S,V])),
arc(w,

0,
v,
(S-VARi#>TOLERANCE->[C,S,min(V,VARi)])),

arc(w,1,w),
arc(w,2,w)],
[C,S,V],
[0,0,2000000],
[CC,_28723,VV]),

Inc in 0..1,
Last#>VV+TOLERANCE#<=>Inc,
CC+Inc#=N#<=>FLAG

).

big_valley_signature([[var-Last]],[],[],Last) :-
!.

big_valley_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[VAR1|Rs],
Last) :-

S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
big_valley_signature([[var-VAR2]|VARs],Ss,Rs,Last).
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B.55 bin packing

♦ META-DATA:

ctr_date(
bin_packing,
[’20000128’,’20030820’,’20040530’,’20060804’]).

ctr_origin(bin_packing,’Derived from %c.’,[cumulative]).

ctr_arguments(
bin_packing,
[’CAPACITY’-int,’ITEMS’-collection(bin-dvar,weight-int)]).

ctr_restrictions(
bin_packing,
[’CAPACITY’>=0,
required(’ITEMS’,[bin,weight]),
’ITEMS’ˆweight>=0,
’ITEMS’ˆweight=<’CAPACITY’]).

ctr_example(
bin_packing,
bin_packing(

5,
[[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).

ctr_typical(
bin_packing,
[’CAPACITY’>maxval(’ITEMS’ˆweight),
’CAPACITY’=<sum(’ITEMS’ˆweight),
size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
range(’ITEMS’ˆweight)>1,
’ITEMS’ˆbin>=0,
’ITEMS’ˆweight>0]).

ctr_exchangeable(
bin_packing,
[vals([’CAPACITY’],int,<,dontcare,dontcare),
items(’ITEMS’,all),
vals([’ITEMS’ˆweight],int(>=(0)),>,dontcare,dontcare),
vals([’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_graph(
bin_packing,
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[’ITEMS’,’ITEMS’],
2,
[’PRODUCT’>>collection(items1,items2)],
[items1ˆbin=items2ˆbin],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆweight)])]],
[sum_ctr(variables,=<,’CAPACITY’)]).

ctr_eval(bin_packing,[reformulation(bin_packing_r)]).

ctr_contractible(bin_packing,[],’ITEMS’,any).

ctr_cond_imply(
bin_packing,
atmost_nvector,
[’CAPACITY’>=size(’ITEMS’)],
[],
[same(’CAPACITY’),same(’ITEMS’)]).

ctr_application(bin_packing,[2]).

bin_packing_r(CAPACITY,ITEMS) :-
integer(CAPACITY),
CAPACITY>=0,
collection(ITEMS,[dvar,int(0,CAPACITY)]),
bin_packing1(ITEMS,1,TASKS),
cumulative(TASKS,[limit(CAPACITY)]).
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B.56 bin packing capa

♦ META-DATA:

ctr_predefined(bin_packing_capa).

ctr_date(bin_packing_capa,[’20091404’]).

ctr_origin(bin_packing_capa,’Derived from %c.’,[bin_packing]).

ctr_arguments(
bin_packing_capa,
[’BINS’-collection(id-int,capa-int),
’ITEMS’-collection(bin-dvar,weight-int)]).

ctr_restrictions(
bin_packing_capa,
[size(’BINS’)>0,
required(’BINS’,[id,capa]),
distinct(’BINS’,id),
’BINS’ˆid>=1,
’BINS’ˆid=<size(’BINS’),
’BINS’ˆcapa>=0,
required(’ITEMS’,[bin,weight]),
in_attr(’ITEMS’,bin,’BINS’,id),
’ITEMS’ˆweight>=0]).

ctr_example(
bin_packing_capa,
bin_packing_capa(

[[id-1,capa-4],
[id-2,capa-3],
[id-3,capa-5],
[id-4,capa-3],
[id-5,capa-3]],

[[bin-3,weight-4],[bin-1,weight-3],[bin-3,weight-1]])).

ctr_typical(
bin_packing_capa,
[size(’BINS’)>1,
range(’BINS’ˆcapa)>1,
’BINS’ˆcapa>maxval(’ITEMS’ˆweight),
’BINS’ˆcapa=<sum(’ITEMS’ˆweight),
size(’ITEMS’)>1,
range(’ITEMS’ˆbin)>1,
range(’ITEMS’ˆweight)>1,
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’ITEMS’ˆweight>0]).

ctr_exchangeable(
bin_packing_capa,
[items(’BINS’,all),
items(’ITEMS’,all),
vals([’BINS’ˆcapa],int,<,dontcare,dontcare),
vals([’ITEMS’ˆweight],int(>=(0)),>,dontcare,dontcare),
vals([’BINS’ˆid,’ITEMS’ˆbin],int,=\=,all,dontcare)]).

ctr_eval(bin_packing_capa,[reformulation(bin_packing_capa_r)]).

ctr_contractible(bin_packing_capa,[],’ITEMS’,any).

ctr_application(bin_packing_capa,[2]).

bin_packing_capa_r(BINS,ITEMS) :-
length(BINS,N),
collection(BINS,[int(1,N),int_gteq(0)]),
collection(ITEMS,[dvar,int_gteq(0)]),
get_attr1(BINS,IDS),
get_attr2(BINS,CAPAS),
get_maximum(CAPAS,MAX),
MAX1 is MAX+1,
all_different(IDS),
bin_packing1(ITEMS,1,TASKS),
length(ITEMS,M),
M1 is M+1,
bin_packing_capa1(BINS,M1,MAX,COMPLEMENTS),
append(COMPLEMENTS,TASKS,COMPLEMENTS_TASKS),
cumulative(COMPLEMENTS_TASKS,[limit(MAX1)]).

bin_packing_capa1([],_30259,_30260,[]).

bin_packing_capa1(
[[_30270-I,_30277-W]|R],
ID,
MAX,
[task(I,1,I1,H,ID)|S]) :-

I1 is I+1,
H is MAX-W+1,
bin_packing_capa1(R,ID,MAX,S).
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B.57 binary tree

♦ META-DATA:

ctr_date(binary_tree,[’20000128’,’20030820’,’20060804’]).

ctr_origin(binary_tree,’Derived from %c.’,[tree]).

ctr_arguments(
binary_tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
binary_tree,
[’NTREES’>=0,
’NTREES’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
binary_tree,
[binary_tree(

2,
[[index-1,succ-1],
[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]]),

binary_tree(
8,
[[index-1,succ-1],
[index-2,succ-2],
[index-3,succ-3],
[index-4,succ-4],
[index-5,succ-5],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-8]]),

binary_tree(
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7,
[[index-1,succ-8],
[index-2,succ-2],
[index-3,succ-3],
[index-4,succ-4],
[index-5,succ-5],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-8]])]).

ctr_typical(
binary_tree,
[’NTREES’>0,’NTREES’<size(’NODES’),size(’NODES’)>2]).

ctr_exchangeable(binary_tree,[items(’NODES’,all)]).

ctr_graph(
binary_tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’MAX_ID’=<2],
[’ONE_SUCC’]).

ctr_eval(binary_tree,[reformulation(binary_tree_r)]).

ctr_functional_dependency(binary_tree,1,[2]).

ctr_application(binary_tree,[2]).

ctr_sol(binary_tree,2,0,2,3,[1-2,2-1]).

ctr_sol(binary_tree,3,0,3,16,[1-9,2-6,3-1]).

ctr_sol(binary_tree,4,0,4,121,[1-60,2-48,3-12,4-1]).

ctr_sol(binary_tree,5,0,5,1191,[1-540,2-480,3-150,4-20,5-1]).

ctr_sol(
binary_tree,
6,
0,
6,
14461,
[1-6120,2-5850,3-2100,4-360,5-30,6-1]).
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ctr_sol(
binary_tree,
7,
0,
7,
209098,
[1-83790,2-84420,3-33390,4-6720,5-735,6-42,7-1]).

ctr_sol(
binary_tree,
8,
0,
8,
3510921,
[1-1345680,
2-1411200,
3-599760,
4-135240,
5-17640,
6-1344,
7-56,
8-1]).

binary_tree_r(NTREES,NODES) :-
eval(tree(NTREES,NODES)),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
k_ary_tree(INDEXES,INDEXES,SUCCS,2).
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B.58 bipartite
♦ META-DATA:

ctr_date(bipartite,[’20061001’]).

ctr_origin(bipartite,’\\cite{Dooms06}’,[]).

ctr_arguments(
bipartite,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
bipartite,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
bipartite,
bipartite(

[[index-1,succ-{2,3}],
[index-2,succ-{1,4}],
[index-3,succ-{1,4,5}],
[index-4,succ-{2,3,6}],
[index-5,succ-{3,6}],
[index-6,succ-{4,5}]])).

ctr_typical(bipartite,[size(’NODES’)>2]).

ctr_exchangeable(bipartite,[items(’NODES’,all)]).

ctr_graph(
bipartite,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[],
[’SYMMETRIC’,’BIPARTITE’]).

ctr_application(bipartite,[1]).



2714 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.59 calendar

♦ META-DATA:

ctr_predefined(calendar).

ctr_date(calendar,[’20061014’]).

ctr_origin(calendar,’\\cite{BeldiceanuR00}’,[]).

ctr_types(
calendar,
[’UNAVAILABILITIES’-collection(low-int,up-int)]).

ctr_arguments(
calendar,
[INSTANTS-
collection(

machine-dvar,
virtual-dvar,
ireal-dvar,
flagend-int),

’MACHINES’-collection(id-int,cal-’UNAVAILABILITIES’)]).

ctr_restrictions(
calendar,
[required(’UNAVAILABILITIES’,[low,up]),
’UNAVAILABILITIES’ˆlow=<’UNAVAILABILITIES’ˆup,
required(’INSTANTS’,[machine,virtual,ireal,flagend]),
in_attr(’INSTANTS’,machine,’MACHINES’,id),
’INSTANTS’ˆflagend>=0,
’INSTANTS’ˆflagend=<1,
size(’MACHINES’)>0,
required(’MACHINES’,[id,cal]),
distinct(’MACHINES’,id)]).

ctr_example(
calendar,
calendar(

[[machine-1,virtual-2,ireal-3,flagend-0],
[machine-1,virtual-5,ireal-6,flagend-1],
[machine-2,virtual-4,ireal-5,flagend-0],
[machine-2,virtual-6,ireal-9,flagend-1],
[machine-3,virtual-2,ireal-2,flagend-0],
[machine-3,virtual-5,ireal-5,flagend-1],
[machine-4,virtual-2,ireal-2,flagend-0],
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[machine-4,virtual-7,ireal-9,flagend-1]],
[[id-1,cal-[[low-2,up-2],[low-6,up-7]]],
[id-2,cal-[[low-2,up-2],[low-6,up-7]]],
[id-3,cal-[]],
[id-4,cal-[[low-3,up-4]]]])).

ctr_typical(calendar,[size(’INSTANTS’)>1,size(’MACHINES’)>1]).

ctr_exchangeable(
calendar,
[items(’INSTANTS’,all),items(’MACHINES’,all)]).

ctr_eval(calendar,[reformulation(calendar_r)]).

ctr_contractible(calendar,[],’INSTANTS’,any).

ctr_application(calendar,[1]).

calendar_r(INSTANTS,MACHINES) :-
collection(INSTANTS,[dvar,dvar,dvar,int(0,1)]),
collection(MACHINES,[int,col([int,int])]),
length(MACHINES,M),
M>0,
get_attr1(MACHINES,IDS),
all_different(IDS),
calendar_low_up(MACHINES),
( INSTANTS=[] ->

true
; calendar_in_attr(INSTANTS,IDS),

calendar_normalize(MACHINES,MACHINESN),
calendar_gen(INSTANTS,MACHINESN)

).

calendar_in_attr([],_33114).

calendar_in_attr([[_33123-M|_33121]|R],IDS) :-
build_or_var_in_values(IDS,M,TERM),
call(TERM),
calendar_in_attr(R,IDS).

calendar_low_up([]).

calendar_low_up([[_33119,_33124-CAL]|R]) :-
calendar_low_up1(CAL),
calendar_low_up(R).
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calendar_low_up1([]).

calendar_low_up1([[_33122-L,_33129-U]|R]) :-
L=<U,
calendar_low_up1(R).

calendar_normalize([],[]).

calendar_normalize(
[[id-ID,cal-CAL]|R],
[[id-ID,cal-MERGED_CAL]|S]) :-

calendar_merge_intervals(CAL,MERGED_CAL),
calendar_normalize(R,S).

calendar_merge_intervals(List,NewList) :-
(foreach([low-L,up-U],List),fromto([],S1,S3,Set)do
fdset_interval(S2,L,U),fdset_union(S1,S2,S3)),

(foreach([A|B],Set),foreach([low-A,up-B],NewList)do
true).

calendar_gen([],_33114).

calendar_gen(
[[machine-M,virtual-V,ireal-R,flagend-F]|T],
CALENDARS) :-

calendar_gen(CALENDARS,M,V,R,F),
calendar_gen(T,CALENDARS).

calendar_gen([],_33114,_33115,_33116,_33117).

calendar_gen([[id-I,cal-C]|S],M,V,R,F) :-
calendar_gen(C,1,0,I,M,V,R,F),
calendar_gen(S,M,V,R,F).

calendar_gen([],1,0,I,M,V,R,_F) :-
M#=I#<=>M#=I#/\R#=V.

calendar_gen([[low-L,up-U]|S],1,0,I,M,V,R,F) :-
LF is L+F,
M#=I#/\R#<LF#<=>M#=I#/\R#=V,
calendar_gen([[low-L,up-U]|S],0,0,I,M,V,R,F).

calendar_gen([[low-K,up-U],[low-L,up-W]|S],0,Sum,I,M,V,R,F) :-
NSum is Sum+U-K+1,
KF is K+F,
UF is U+F,
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LF is L+F,
R in KF..UF#=>M#\=I,
M#=I#/\R#>UF#/\R#<LF#<=>M#=I#/\R#=V+NSum,
calendar_gen([[low-L,up-W]|S],0,NSum,I,M,V,R,F).

calendar_gen([[low-L,up-U]],0,Sum,I,M,V,R,F) :-
NSum is Sum+U-L+1,
LF is L+F,
UF is U+F,
R in LF..UF#=>M#\=I,
M#=I#/\R#>UF#<=>M#=I#/\R#=V+NSum.
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B.60 cardinality atleast

♦ META-DATA:

ctr_date(
cardinality_atleast,
[’20030820’,’20040530’,’20060805’]).

ctr_origin(
cardinality_atleast,
Derived from %c.,
[global_cardinality]).

ctr_arguments(
cardinality_atleast,
[’ATLEAST’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atleast,
[’ATLEAST’>=0,
’ATLEAST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
cardinality_atleast,
cardinality_atleast(

1,
[[var-3],[var-3],[var-8]],
[[val-3],[val-8]])).

ctr_typical(
cardinality_atleast,
[’ATLEAST’>0,
’ATLEAST’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
cardinality_atleast,
[items(’VARIABLES’,all),
items(’VALUES’,all),
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vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
cardinality_atleast,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=valuesˆval],
[’MAX_ID’=size(’VARIABLES’)-’ATLEAST’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cardinality_atleast,
[reformulation(cardinality_atleast_r)]).

ctr_pure_functional_dependency(cardinality_atleast,[]).

ctr_functional_dependency(cardinality_atleast,1,[2,3]).

cardinality_atleast_r(ATLEAST,VARIABLES,VALUES) :-
check_type(dvar,ATLEAST),
ATLEAST#>=0,
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
ATLEAST#=<N,
( VALUES=[] ->

true
; collection(VALUES,[int]),

length(VALUES,M),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
all_different(VALS),
length(NOCCS,M),
fd_min(ATLEAST,MIN_ATLEAST),
domain(NOCCS,MIN_ATLEAST,N),
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get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card(MIN,MAX,N,VALS,NOCCS,VN),
global_cardinality(VARS,VN)

).
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B.61 cardinality atmost

♦ META-DATA:

ctr_date(cardinality_atmost,[’20030820’,’20040530’,’20060805’]).

ctr_origin(
cardinality_atmost,
Derived from %c.,
[global_cardinality]).

ctr_arguments(
cardinality_atmost,
[’ATMOST’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
cardinality_atmost,
[’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
cardinality_atmost,
cardinality_atmost(

2,
[[var-2],[var-1],[var-7],[var-1],[var-2]],
[[val-5],[val-7],[val-2],[val-9]])).

ctr_typical(
cardinality_atmost,
[’ATMOST’>0,
’ATMOST’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
cardinality_atmost,
[items(’VARIABLES’,all),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
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all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
cardinality_atmost,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’MAX_ID’=’ATMOST’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cardinality_atmost,
[reformulation(cardinality_atmost_r)]).

ctr_pure_functional_dependency(cardinality_atmost,[]).

ctr_functional_dependency(cardinality_atmost,1,[2,3]).

cardinality_atmost_r(ATMOST,VARIABLES,VALUES) :-
check_type(dvar,ATMOST),
ATMOST#>=0,
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
ATMOST#=<N,
( VALUES=[] ->

true
; collection(VALUES,[int]),

length(VALUES,M),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
all_different(VALS),
length(NOCCS,M),
fd_max(ATMOST,MAX_ATMOST),
domain(NOCCS,0,MAX_ATMOST),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
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get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card(MIN,MAX,N,VALS,NOCCS,VN),
global_cardinality(VARS,VN)

).
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B.62 cardinality atmost partition

♦ META-DATA:

ctr_date(cardinality_atmost_partition,[’20030820’,’20060805’]).

ctr_origin(
cardinality_atmost_partition,
Derived from %c.,
[global_cardinality]).

ctr_types(
cardinality_atmost_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
cardinality_atmost_partition,
[’ATMOST’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
cardinality_atmost_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
cardinality_atmost_partition,
cardinality_atmost_partition(

2,
[[var-2],[var-3],[var-7],[var-1],[var-6],[var-0]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
cardinality_atmost_partition,
[’ATMOST’>0,
’ATMOST’<size(’VARIABLES’),
size(’VARIABLES’)>1,
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size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
cardinality_atmost_partition,
[items(’VARIABLES’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all)]).

ctr_graph(
cardinality_atmost_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[variablesˆvar in partitionsˆp],
[’MAX_ID’=’ATMOST’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cardinality_atmost_partition,
[reformulation(cardinality_atmost_partition_r)]).

ctr_pure_functional_dependency(cardinality_atmost_partition,[]).

ctr_functional_dependency(cardinality_atmost_partition,1,[2,3]).

cardinality_atmost_partition_r(ATMOST,VARIABLES,PARTITIONS) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),ATMOST),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(VARIABLES,VARS),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS,PVALS,PVARS,LPVALS1,0),
complete_card_consec(1,LPVALS1,ATMOST,N,VALUES),
global_cardinality(PVARS,VALUES).
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B.63 change

♦ META-DATA:

ctr_date(change,[’20000128’,’20030820’,’20040530’,’20060805’]).

ctr_origin(change,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(change,[nbchanges,similarity]).

ctr_arguments(
change,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
change,
[change(3,[[var-4],[var-4],[var-3],[var-4],[var-1]],=\=),
change(1,[[var-1],[var-2],[var-4],[var-3],[var-7]],>)]).

ctr_typical(
change,
[’NCHANGE’>0,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(change,[translate([’VARIABLES’ˆvar])]).

ctr_graph(
change,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).
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ctr_eval(change,[checker(change_c),automaton(change_a)]).

ctr_pure_functional_dependency(change,[]).

ctr_functional_dependency(change,1,[2,3]).

ctr_contractible(
change,
[in_list(’CTR’,[=\=,<,>=,>,=<]),’NCHANGE’=0],
VARIABLES,
any).

ctr_contractible(
change,
[in_list(’CTR’,[=,<,>=,>,=<]),
’NCHANGE’=size(’VARIABLES’)-1],
VARIABLES,
any).

change_c(NCHANGE,VARIABLES,=) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
( N=<1 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

change_eq_c(VARS,0,NCHANGE)
).

change_c(NCHANGE,VARIABLES,=\=) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
( N=<1 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

change_neq_c(VARS,0,NCHANGE)
).

change_c(NCHANGE,VARIABLES,<) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
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( N=<1 ->
NCHANGE#=0

; get_attr1(VARIABLES,VARS),
change_lt_c(VARS,0,NCHANGE)

).

change_c(NCHANGE,VARIABLES,>=) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
( N=<1 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

change_geq_c(VARS,0,NCHANGE)
).

change_c(NCHANGE,VARIABLES,>) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
( N=<1 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

change_gt_c(VARS,0,NCHANGE)
).

change_c(NCHANGE,VARIABLES,=<) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
( N=<1 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

change_leq_c(VARS,0,NCHANGE)
).

change_neq_counters_check([V,V|R],C,[C|S]) :-
!,
change_neq_counters_check([V|R],C,S).

change_neq_counters_check([_50925,V|R],C,[C1|S]) :-
!,
C1 is C+1,
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change_neq_counters_check([V|R],C1,S).

change_neq_counters_check(_50919,_50920,[0]).

change_a(FLAG,NCHANGE,VARIABLES,CTR) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
fd_min(NCHANGE,MIN_NCHANGE),
fd_max(NCHANGE,MAX_NCHANGE),
( FLAG=1,

MIN_NCHANGE=0,
MAX_NCHANGE=0,
memberchk(CTR,[=\=]) ->
eval(all_equal(VARIABLES))

; change_signature(VARIABLES,SIGNATURE,CTR),
automaton(

SIGNATURE,
_53865,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

NCHANGE#=COUNT#<=>FLAG
).

change_signature([],[],_50921).

change_signature([_50925],[],_50924) :-
!.

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=) :-
!,
VAR1#=VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,=).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=\=) :-
!,
VAR1#\=VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,=\=).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],<) :-
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!,
VAR1#<VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,<).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],>=) :-
!,
VAR1#>=VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,>=).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],>) :-
!,
VAR1#>VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,>).

change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=<) :-
!,
VAR1#=<VAR2#<=>S,
change_signature([[var-VAR2]|VARs],Ss,=<).
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B.64 change continuity

♦ META-DATA:

ctr_date(
change_continuity,
[’20000128’,’20030820’,’20040530’,’20060805’]).

ctr_origin(change_continuity,’N.˜Beldiceanu’,[]).

ctr_arguments(
change_continuity,
[’NB_PERIOD_CHANGE’-dvar,
’NB_PERIOD_CONTINUITY’-dvar,
’MIN_SIZE_CHANGE’-dvar,
’MAX_SIZE_CHANGE’-dvar,
’MIN_SIZE_CONTINUITY’-dvar,
’MAX_SIZE_CONTINUITY’-dvar,
’NB_CHANGE’-dvar,
’NB_CONTINUITY’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
change_continuity,
[’NB_PERIOD_CHANGE’>=0,
’NB_PERIOD_CONTINUITY’>=0,
’MIN_SIZE_CHANGE’>=0,
’MAX_SIZE_CHANGE’>=’MIN_SIZE_CHANGE’,
’MIN_SIZE_CONTINUITY’>=0,
’MAX_SIZE_CONTINUITY’>=’MIN_SIZE_CONTINUITY’,
’NB_CHANGE’>=0,
’NB_CONTINUITY’>=0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
change_continuity,
change_continuity(

3,
2,
2,
4,
2,
4,
6,
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4,
[[var-1],
[var-3],
[var-1],
[var-8],
[var-8],
[var-4],
[var-7],
[var-7],
[var-7],
[var-7],
[var-2]],

=\=)).

ctr_typical(
change_continuity,
[’NB_PERIOD_CHANGE’>0,
’NB_PERIOD_CONTINUITY’>0,
’MIN_SIZE_CHANGE’>0,
’MIN_SIZE_CONTINUITY’>0,
’NB_CHANGE’>0,
’NB_CONTINUITY’>0,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(
change_continuity,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
change_continuity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CHANGE’,
’MIN_NCC’=’MIN_SIZE_CHANGE’,
’MAX_NCC’=’MAX_SIZE_CHANGE’,
’NARC’=’NB_CHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_graph(
change_continuity,
[’VARIABLES’],
2,
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[’PATH’>>collection(variables1,variables2)],
[#\’CTR’(variables1ˆvar,variables2ˆvar)],
[’NCC’=’NB_PERIOD_CONTINUITY’,
’MIN_NCC’=’MIN_SIZE_CONTINUITY’,
’MAX_NCC’=’MAX_SIZE_CONTINUITY’,
’NARC’=’NB_CONTINUITY’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
change_continuity,
[checker(change_continuity_c),
automata(change_continuity_a)]).

ctr_functional_dependency(change_continuity,1,[9,10]).

ctr_functional_dependency(change_continuity,2,[9,10]).

ctr_functional_dependency(change_continuity,3,[9,10]).

ctr_functional_dependency(change_continuity,4,[9,10]).

ctr_functional_dependency(change_continuity,5,[9,10]).

ctr_functional_dependency(change_continuity,6,[9,10]).

ctr_functional_dependency(change_continuity,7,[9,10]).

ctr_functional_dependency(change_continuity,8,[9,10]).

change_continuity_a(
NB_PERIOD_CHANGE,
NB_PERIOD_CONTINUITY,
MIN_SIZE_CHANGE,
MAX_SIZE_CHANGE,
MIN_SIZE_CONTINUITY,
MAX_SIZE_CONTINUITY,
NB_CHANGE,
NB_CONTINUITY,
VARIABLES,
CTR) :-

check_type(dvar,NB_PERIOD_CHANGE),
check_type(dvar,NB_PERIOD_CONTINUITY),
check_type(dvar,MIN_SIZE_CHANGE),
check_type(dvar,MAX_SIZE_CHANGE),
check_type(dvar,MIN_SIZE_CONTINUITY),
check_type(dvar,MAX_SIZE_CONTINUITY),
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check_type(dvar,NB_CHANGE),
check_type(dvar,NB_CONTINUITY),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
( N=0 ->

NB_PERIOD_CHANGE#=0,
NB_PERIOD_CONTINUITY#=0,
MIN_SIZE_CHANGE#=0,
MAX_SIZE_CHANGE#=0,
MIN_SIZE_CONTINUITY#=0,
MAX_SIZE_CONTINUITY#=0,
NB_CHANGE#=0,
NB_CONTINUITY#=0

; collection(VARIABLES,[dvar]),
NB_PERIOD_CHANGE#>=0,
NB_PERIOD_CONTINUITY#>=0,
MIN_SIZE_CHANGE#>=0,
MAX_SIZE_CHANGE#>=MIN_SIZE_CHANGE,
MIN_SIZE_CONTINUITY#>=0,
MAX_SIZE_CONTINUITY#>=MIN_SIZE_CONTINUITY,
NB_CHANGE#>=0,
NB_CONTINUITY#>=0,
change_continuity_signature(

VARIABLES,
SIGNATURE_CTR,
1,
CTR),

change_continuity_signature(
VARIABLES,
SIGNATURE_NOT_CTR,
0,
CTR),

change_continuity_nb_period(
NB_PERIOD_CHANGE,
SIGNATURE_CTR),

change_continuity_nb_period(
NB_PERIOD_CONTINUITY,
SIGNATURE_NOT_CTR),

change_continuity_min_size(
MIN_SIZE_CHANGE,
SIGNATURE_CTR),

change_continuity_min_size(
MIN_SIZE_CONTINUITY,
SIGNATURE_NOT_CTR),

change_continuity_max_size(
MAX_SIZE_CHANGE,
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SIGNATURE_CTR),
change_continuity_max_size(

MAX_SIZE_CONTINUITY,
SIGNATURE_NOT_CTR),

change_continuity_nb(NB_CHANGE,SIGNATURE_CTR),
change_continuity_nb(

NB_CONTINUITY,
SIGNATURE_NOT_CTR)

).

change_continuity_nb_period(NB_PERIOD,SIGNATURE) :-
automaton(

SIGNATURE,
_59551,
SIGNATURE,
[source(s),sink(s),sink(i)],
[arc(s,0,s),
arc(s,1,i,[C+1]),
arc(i,1,i),
arc(i,0,s)],

[C],
[0],
[NB_PERIOD]).

change_continuity_min_size(MIN_SIZE,SIGNATURE) :-
MIN_SIZE#=min(C1,D1),
length(SIGNATURE,N),
N1 is N+1,
automaton(

SIGNATURE,
_60200,
SIGNATURE,
[source(s),sink(s),sink(i)],
[arc(s,0,s),
arc(s,1,i,[C,2]),
arc(i,0,s,[min(C,D),D]),
arc(i,1,i,[C,D+1])],

[C,D],
[N1,0],
[C1,D1]).

change_continuity_max_size(MAX_SIZE,SIGNATURE) :-
MAX_SIZE#=max(C1,D1),
automaton(

SIGNATURE,
_59833,
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SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s,[C,D]),
arc(s,1,i,[C,2]),
arc(i,0,i,[max(C,D),1]),
arc(i,1,i,[C,D+1])],

[C,D],
[0,0],
[C1,D1]).

change_continuity_nb(NB,SIGNATURE) :-
automaton(

SIGNATURE,
_59509,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NB]).

change_continuity_signature([],[],_58906,_58907).

change_continuity_signature([_58911],[],_58909,_58910) :-
!.

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
=) :-

!,
VAR1#=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1,=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
=\=) :-

!,
VAR1#\=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1,=\=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
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[S|Ss],
1,
<) :-

!,
VAR1#<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1,<).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
>=) :-

!,
VAR1#>=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1,>=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
>) :-

!,
VAR1#>VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1,>).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
1,
=<) :-

!,
VAR1#=<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,1,=<).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
=) :-

!,
VAR1#\=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0,=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
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0,
=\=) :-

!,
VAR1#=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0,=\=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
<) :-

!,
VAR1#>=VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0,<).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
>=) :-

!,
VAR1#<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0,>=).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
>) :-

!,
VAR1#=<VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0,>).

change_continuity_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
0,
=<) :-

!,
VAR1#>VAR2#<=>S,
change_continuity_signature([[var-VAR2]|VARs],Ss,0,=<).

change_continuity_c(
NB_PERIOD_CHANGE,
NB_PERIOD_CONTINUITY,
MIN_SIZE_CHANGE,
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MAX_SIZE_CHANGE,
MIN_SIZE_CONTINUITY,
MAX_SIZE_CONTINUITY,
NB_CHANGE,
NB_CONTINUITY,
VARIABLES,
CTR) :-

check_type(dvar,NB_PERIOD_CHANGE),
check_type(dvar,NB_PERIOD_CONTINUITY),
check_type(dvar,MIN_SIZE_CHANGE),
check_type(dvar,MAX_SIZE_CHANGE),
check_type(dvar,MIN_SIZE_CONTINUITY),
check_type(dvar,MAX_SIZE_CONTINUITY),
check_type(dvar,NB_CHANGE),
check_type(dvar,NB_CONTINUITY),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
( N=0 ->

NB_PERIOD_CHANGE#=0,
NB_PERIOD_CONTINUITY#=0,
MIN_SIZE_CHANGE#=0,
MAX_SIZE_CHANGE#=0,
MIN_SIZE_CONTINUITY#=0,
MAX_SIZE_CONTINUITY#=0,
NB_CHANGE#=0,
NB_CONTINUITY#=0

; collection(VARIABLES,[int]),
NB_PERIOD_CHANGE#>=0,
NB_PERIOD_CONTINUITY#>=0,
MIN_SIZE_CHANGE#>=0,
MAX_SIZE_CHANGE#>=MIN_SIZE_CHANGE,
MIN_SIZE_CONTINUITY#>=0,
MAX_SIZE_CONTINUITY#>=MIN_SIZE_CONTINUITY,
NB_CHANGE#>=0,
NB_CONTINUITY#>=0,
change_continuity_signature_c(

CTR,
VARIABLES,
SIGNATURE_CTR,
SIGNATURE_NOT_CTR),

( SIGNATURE_CTR=[] ->
NB_PERIOD_CONTINUITY is 0,
NB_PERIOD_CHANGE is 0

; change_continuity_nb_period_c(
s,
SIGNATURE_CTR,
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0,
NB_PERIOD_CHANGE),

SIGNATURE_CTR=[First|_59169],
last(SIGNATURE_CTR,Last),
( First=0,

Last=0 ->
NB_PERIOD_CONTINUITY is NB_PERIOD_CHANGE+1

; First=1,
Last=1 ->
NB_PERIOD_CONTINUITY is NB_PERIOD_CHANGE-1

; NB_PERIOD_CONTINUITY is NB_PERIOD_CHANGE
)

),
change_continuity_min_size_c(

s,
SIGNATURE_CTR,
N,
0,
MIN_SIZE_CHANGE),

change_continuity_min_size_c(
s,
SIGNATURE_NOT_CTR,
N,
0,
MIN_SIZE_CONTINUITY),

change_continuity_max_size_c(
s,
SIGNATURE_CTR,
0,
0,
MAX_SIZE_CHANGE),

change_continuity_max_size_c(
s,
SIGNATURE_NOT_CTR,
0,
0,
MAX_SIZE_CONTINUITY),

change_continuity_nb_c(SIGNATURE_CTR,0,NB_CHANGE),
NB_CONTINUITY is N-NB_CHANGE-1

).

change_continuity_nb_period_c(s,[0|R],C,NB_PERIOD_CHANGE) :-
!,
change_continuity_nb_period_c(s,R,C,NB_PERIOD_CHANGE).

change_continuity_nb_period_c(s,[1|R],C,NB_PERIOD_CHANGE) :-
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!,
C1 is C+1,
change_continuity_nb_period_c(i,R,C1,NB_PERIOD_CHANGE).

change_continuity_nb_period_c(i,[1|R],C,NB_PERIOD_CHANGE) :-
!,
change_continuity_nb_period_c(i,R,C,NB_PERIOD_CHANGE).

change_continuity_nb_period_c(i,[0|R],C,NB_PERIOD_CHANGE) :-
!,
change_continuity_nb_period_c(s,R,C,NB_PERIOD_CHANGE).

change_continuity_nb_period_c(_58904,[],C,C).

change_continuity_min_size_c(s,[0|R],C,D,MIN_SIZE_CHANGE) :-
!,
change_continuity_min_size_c(s,R,C,D,MIN_SIZE_CHANGE).

change_continuity_min_size_c(s,[1|R],C,_58910,MIN_SIZE_CHANGE) :-
!,
change_continuity_min_size_c(i,R,C,2,MIN_SIZE_CHANGE).

change_continuity_min_size_c(i,[0|R],C,D,MIN_SIZE_CHANGE) :-
!,
C1 is min(C,D),
( C1>1 ->

change_continuity_min_size_c(
s,
R,
C1,
D,
MIN_SIZE_CHANGE)

; MIN_SIZE_CHANGE#=C1
).

change_continuity_min_size_c(i,[1|R],C,D,MIN_SIZE_CHANGE) :-
!,
D1 is D+1,
change_continuity_min_size_c(i,R,C,D1,MIN_SIZE_CHANGE).

change_continuity_min_size_c(_58907,[],C,D,MIN_SIZE_CHANGE) :-
MIN is min(C,D),
MIN_SIZE_CHANGE#=MIN.

change_continuity_max_size_c(s,[0|R],C,D,MAX_SIZE_CHANGE) :-
!,
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change_continuity_max_size_c(s,R,C,D,MAX_SIZE_CHANGE).

change_continuity_max_size_c(s,[1|R],C,_D,MAX_SIZE_CHANGE) :-
!,
D1 is 2,
change_continuity_max_size_c(i,R,C,D1,MAX_SIZE_CHANGE).

change_continuity_max_size_c(i,[0|R],C,D,MAX_SIZE_CHANGE) :-
!,
C1 is max(C,D),
change_continuity_max_size_c(i,R,C1,1,MAX_SIZE_CHANGE).

change_continuity_max_size_c(i,[1|R],C,D,MAX_SIZE_CHANGE) :-
!,
D1 is D+1,
change_continuity_max_size_c(i,R,C,D1,MAX_SIZE_CHANGE).

change_continuity_max_size_c(_58907,[],C,D,MAX_SIZE_CHANGE) :-
MAX is max(C,D),
MAX_SIZE_CHANGE#=MAX.

change_continuity_nb_c([B|R],C,NB_CHANGE) :-
!,
C1 is C+B,
change_continuity_nb_c(R,C1,NB_CHANGE).

change_continuity_nb_c([],C,C).

change_continuity_signature_c(
=,
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[R|Rs]) :-

!,
( VAR1=VAR2 ->

S=1,
R=0

; S=0,
R=1

),
change_continuity_signature_c(

=,
[[var-VAR2]|VARs],
Ss,
Rs).
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change_continuity_signature_c(
=\=,
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[R|Rs]) :-

!,
( VAR1=\=VAR2 ->

S=1,
R=0

; S=0,
R=1

),
change_continuity_signature_c(

=\=,
[[var-VAR2]|VARs],
Ss,
Rs).

change_continuity_signature_c(
<,
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[R|Rs]) :-

!,
( VAR1<VAR2 ->

S=1,
R=0

; S=0,
R=1

),
change_continuity_signature_c(

<,
[[var-VAR2]|VARs],
Ss,
Rs).

change_continuity_signature_c(
>=,
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[R|Rs]) :-

!,
( VAR1>=VAR2 ->

S=1,
R=0

; S=0,
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R=1
),
change_continuity_signature_c(

>=,
[[var-VAR2]|VARs],
Ss,
Rs).

change_continuity_signature_c(
>,
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[R|Rs]) :-

!,
( VAR1>VAR2 ->

S=1,
R=0

; S=0,
R=1

),
change_continuity_signature_c(

>,
[[var-VAR2]|VARs],
Ss,
Rs).

change_continuity_signature_c(
=<,
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
[R|Rs]) :-

!,
( VAR1=<VAR2 ->

S=1,
R=0

; S=0,
R=1

),
change_continuity_signature_c(

=<,
[[var-VAR2]|VARs],
Ss,
Rs).

change_continuity_signature_c(_58907,[_58911],[],[]) :-
!.
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change_continuity_signature_c(_58904,[],[],[]).
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B.65 change pair

♦ META-DATA:

ctr_date(change_pair,[’20030820’,’20040530’,’20060805’]).

ctr_origin(change_pair,’Derived from %c.’,[change]).

ctr_arguments(
change_pair,
[’NCHANGE’-dvar,
’PAIRS’-collection(x-dvar,y-dvar),
’CTRX’-atom,
’CTRY’-atom]).

ctr_restrictions(
change_pair,
[’NCHANGE’>=0,
’NCHANGE’<size(’PAIRS’),
required(’PAIRS’,[x,y]),
in_list(’CTRX’,[=,=\=,<,>=,>,=<]),
in_list(’CTRY’,[=,=\=,<,>=,>,=<])]).

ctr_example(
change_pair,
change_pair(

3,
[[x-3,y-5],
[x-3,y-7],
[x-3,y-7],
[x-3,y-8],
[x-3,y-4],
[x-3,y-7],
[x-1,y-3],
[x-1,y-6],
[x-1,y-6],
[x-3,y-7]],

=\=,
>)).

ctr_typical(
change_pair,
[’NCHANGE’>0,
size(’PAIRS’)>1,
range(’PAIRS’ˆx)>1,
range(’PAIRS’ˆy)>1]).
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ctr_exchangeable(
change_pair,
[translate([’PAIRS’ˆx]),translate([’PAIRS’ˆy])]).

ctr_graph(
change_pair,
[’PAIRS’],
2,
[’PATH’>>collection(pairs1,pairs2)],
[’CTRX’(pairs1ˆx,pairs2ˆx)#\/’CTRY’(pairs1ˆy,pairs2ˆy)],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(change_pair,[automaton(change_pair_a)]).

ctr_pure_functional_dependency(change_pair,[]).

ctr_functional_dependency(change_pair,1,[2,3,4]).

ctr_application(change_pair,[2]).

change_pair_a(FLAG,NCHANGE,PAIRS,CTRX,CTRY) :-
collection(PAIRS,[dvar,dvar]),
length(PAIRS,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTRX,[=,=\=,<,>=,>,=<]),
memberchk(CTRY,[=,=\=,<,>=,>,=<]),
change_pair_signature(PAIRS,SIGNATURE,CTRX,CTRY),
automaton(

SIGNATURE,
_47739,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

change_pair_signature([],[],_45846,_45847).

change_pair_signature([_45851],[],_45849,_45850) :-
!.
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change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
=) :-

!,
X1#=X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
=\=) :-

!,
X1#=X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
<) :-

!,
X1#=X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
>=) :-

!,
X1#=X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
>) :-

!,
X1#=X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,>).

change_pair_signature(
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[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=,
=<) :-

!,
X1#=X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
=) :-

!,
X1#\=X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
=\=) :-

!,
X1#\=X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
<) :-

!,
X1#\=X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
>=) :-

!,
X1#\=X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
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[S|Ss],
=\=,
>) :-

!,
X1#\=X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=\=,
=<) :-

!,
X1#\=X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=\=,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
=) :-

!,
X1#<X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
=\=) :-

!,
X1#<X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
<) :-

!,
X1#<X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
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<,
>=) :-

!,
X1#<X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
>) :-

!,
X1#<X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
<,
=<) :-

!,
X1#<X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,<,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
=) :-

!,
X1#>=X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
=\=) :-

!,
X1#>=X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
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<) :-
!,
X1#>=X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
>=) :-

!,
X1#>=X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
>) :-

!,
X1#>=X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>=,
=<) :-

!,
X1#>=X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>=,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
=) :-

!,
X1#>X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
=\=) :-
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!,
X1#>X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
<) :-

!,
X1#>X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
>=) :-

!,
X1#>X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
>) :-

!,
X1#>X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
>,
=<) :-

!,
X1#>X2#\/Y1#=<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,>,=<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
=) :-

!,
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X1#=<X2#\/Y1#=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
=\=) :-

!,
X1#=<X2#\/Y1#\=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,=\=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
<) :-

!,
X1#=<X2#\/Y1#<Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,<).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
>=) :-

!,
X1#=<X2#\/Y1#>=Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,>=).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
>) :-

!,
X1#=<X2#\/Y1#>Y2#<=>S,
change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,>).

change_pair_signature(
[[x-X1,y-Y1],[x-X2,y-Y2]|PAIRs],
[S|Ss],
=<,
=<) :-

!,
X1#=<X2#\/Y1#=<Y2#<=>S,
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change_pair_signature([[x-X2,y-Y2]|PAIRs],Ss,=<,=<).
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B.66 change partition

♦ META-DATA:

ctr_date(
change_partition,
[’20000128’,’20030820’,’20040530’,’20060805’]).

ctr_origin(change_partition,’Derived from %c.’,[change]).

ctr_types(change_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
change_partition,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
change_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
change_partition,
change_partition(

2,
[[var-6],
[var-6],
[var-2],
[var-1],
[var-3],
[var-3],
[var-1],
[var-6],
[var-2],
[var-2],
[var-2]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
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[p-[[val-2],[val-6]]]])).

ctr_typical(
change_partition,
[’NCHANGE’>0,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
change_partition,
[items(’VARIABLES’,reverse),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
change_partition,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_pure_functional_dependency(change_partition,[]).

ctr_functional_dependency(change_partition,1,[2,3]).
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B.67 change vectors

♦ META-DATA:

ctr_date(change_vectors,[’20110616’]).

ctr_origin(change_vectors,’Derived from %c’,[change]).

ctr_types(
change_vectors,
[’VECTOR’-collection(var-dvar),’CTR’-atom]).

ctr_arguments(
change_vectors,
[’NCHANGE’-dvar,
’VECTORS’-collection(vec-’VECTOR’),
’CTRS’-collection(ctr-’CTR’)]).

ctr_restrictions(
change_vectors,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<]),
’NCHANGE’>=0,
’NCHANGE’<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
required(’CTRS’,ctr),
size(’CTRS’)=size(’VECTOR’)]).

ctr_example(
change_vectors,
change_vectors(

3,
[[vec-[[var-4],[var-0]]],
[vec-[[var-4],[var-0]]],
[vec-[[var-4],[var-5]]],
[vec-[[var-3],[var-4]]],
[vec-[[var-3],[var-4]]],
[vec-[[var-3],[var-4]]],
[vec-[[var-4],[var-0]]]],

[[ctr- =\=],[ctr- =\=]])).

ctr_typical(
change_vectors,
[in_list(’CTR’,[=\=]),
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size(’VECTOR’)>1,
’NCHANGE’>0,
size(’VECTORS’)>1]).

ctr_eval(change_vectors,[automaton(change_vectors_a)]).

ctr_pure_functional_dependency(change_vectors,[]).

ctr_functional_dependency(change_vectors,1,[2,3]).

change_vectors_a(FLAG,NCHANGE,VECTORS,CTRS) :-
collection(VECTORS,[col([dvar])]),
length(VECTORS,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
collection(CTRS,[atom([=,=\=,<,>=,>,=<])]),
same_size(VECTORS),
length(CTRS,M),
VECTORS=[[_27261-VECTOR1]|_27257],
length(VECTOR1,M),
M>=1,
get_attr11(VECTORS,VECTS),
get_attr1(CTRS,LCTRS),
change_vectors_signature(VECTS,SIGNATURE,LCTRS),
AUTOMATON=
automaton(

SIGNATURE,
_30416,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NCHANGE]),

automaton_bool(FLAG,[0,1],AUTOMATON).

change_vectors_signature([],[],_27165) :-
!.

change_vectors_signature([_27166],[],_27165) :-
!.

change_vectors_signature([VEC1,VEC2|VECs],[S|Ss],CTRS) :-
!,
build_vectors_compare_change(VEC1,VEC2,CTRS,Term),
call(Term#<=>S),
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change_vectors_signature([VEC2|VECs],Ss,CTRS).
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B.68 circuit

♦ META-DATA:

ctr_date(circuit,[’20030820’,’20040530’,’20060805’]).

ctr_origin(circuit,’\\cite{Lauriere78}’,[]).

ctr_synonyms(circuit,[atour,cycle]).

ctr_arguments(
circuit,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
circuit,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
circuit,
circuit(

[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-4],
[index-4,succ-1]])).

ctr_typical(circuit,[size(’NODES’)>2]).

ctr_exchangeable(circuit,[items(’NODES’,all)]).

ctr_graph(
circuit,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MIN_NSCC’=size(’NODES’),’MAX_ID’=<1],
[’ONE_SUCC’]).

ctr_eval(circuit,[builtin(circuit_b)]).
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ctr_cond_imply(circuit,cycle,[],[’NCYCLE’=1],[none,’NODES’]).

ctr_cond_imply(circuit,derangement,[size(’NODES’)>1],[],id).

ctr_cond_imply(
circuit,
k_alldifferent,
[size(’NODES’)>1],
[],
same).

ctr_cond_imply(circuit,permutation,[],[],index_to_col).

ctr_application(circuit,[1]).

ctr_sol(circuit,2,0,2,1,-).

ctr_sol(circuit,3,0,3,2,-).

ctr_sol(circuit,4,0,4,6,-).

ctr_sol(circuit,5,0,5,24,-).

ctr_sol(circuit,6,0,6,120,-).

ctr_sol(circuit,7,0,7,720,-).

ctr_sol(circuit,8,0,8,5040,-).

ctr_sol(circuit,9,0,9,40320,-).

ctr_sol(circuit,10,0,10,362880,-).

circuit_b(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEX),
all_different(INDEX),
sort_collection(NODES,index,SORTED_NODES),
get_attr2(SORTED_NODES,SUCC),
circuit(SUCC).
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B.69 circuit cluster

♦ META-DATA:

ctr_date(circuit_cluster,[’20000128’,’20030820’,’20060805’]).

ctr_origin(
circuit_cluster,
Inspired by \cite{LaporteAsefVaziriSriskandarajah96}.,
[]).

ctr_arguments(
circuit_cluster,
[’NCIRCUIT’-dvar,
’NODES’-collection(index-int,cluster-int,succ-dvar)]).

ctr_restrictions(
circuit_cluster,
[’NCIRCUIT’>=1,
’NCIRCUIT’=<size(’NODES’),
required(’NODES’,[index,cluster,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
circuit_cluster,
[circuit_cluster(

1,
[[index-1,cluster-1,succ-1],
[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
[index-4,cluster-2,succ-5],
[index-5,cluster-3,succ-8],
[index-6,cluster-3,succ-6],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-2],
[index-9,cluster-4,succ-9]]),

circuit_cluster(
2,
[[index-1,cluster-1,succ-1],
[index-2,cluster-1,succ-4],
[index-3,cluster-2,succ-3],
[index-4,cluster-2,succ-2],
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[index-5,cluster-3,succ-5],
[index-6,cluster-3,succ-9],
[index-7,cluster-3,succ-7],
[index-8,cluster-4,succ-8],
[index-9,cluster-4,succ-6]])]).

ctr_typical(
circuit_cluster,
[’NCIRCUIT’<size(’NODES’),
size(’NODES’)>2,
range(’NODES’ˆcluster)>1]).

ctr_exchangeable(circuit_cluster,[items(’NODES’,all)]).

ctr_graph(
circuit_cluster,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=\=nodes1ˆindex,nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NSCC’=’NCIRCUIT’],
[’ONE_SUCC’],
[ALL_VERTICES>>
[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcluster)])]],
[alldifferent(variables),
nvalues(variables,=,size(’NODES’,cluster))]).

ctr_application(circuit_cluster,[2]).
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B.70 circular change

♦ META-DATA:

ctr_date(circular_change,[’20030820’,’20040530’,’20060805’]).

ctr_origin(circular_change,’Derived from %c.’,[change]).

ctr_arguments(
circular_change,
[’NCHANGE’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
circular_change,
[’NCHANGE’>=0,
’NCHANGE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
circular_change,
circular_change(

4,
[[var-4],[var-4],[var-3],[var-4],[var-1]],
=\=)).

ctr_typical(
circular_change,
[’NCHANGE’>0,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(
circular_change,
[items(’VARIABLES’,shift),translate([’VARIABLES’ˆvar])]).

ctr_graph(
circular_change,
[’VARIABLES’],
2,
[’CIRCUIT’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’NARC’=’NCHANGE’],
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[]).

ctr_eval(
circular_change,
[checker(circular_change_c),automaton(circular_change_a)]).

ctr_pure_functional_dependency(circular_change,[]).

ctr_functional_dependency(circular_change,1,[2,3]).

circular_change_c(NCHANGE,VARIABLES,=) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
( N=0 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

VARS=[V|_39503],
append(VARS,[V],NEWVARS),
change_eq_c(NEWVARS,0,NCHANGE)

).

circular_change_c(NCHANGE,VARIABLES,=\=) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
( N=0 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

VARS=[V|_39503],
append(VARS,[V],NEWVARS),
change_neq_c(NEWVARS,0,NCHANGE)

).

circular_change_c(NCHANGE,VARIABLES,<) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
( N=0 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

VARS=[V|_39503],
append(VARS,[V],NEWVARS),
change_lt_c(NEWVARS,0,NCHANGE)

).
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circular_change_c(NCHANGE,VARIABLES,>=) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
( N=0 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

VARS=[V|_39503],
append(VARS,[V],NEWVARS),
change_geq_c(NEWVARS,0,NCHANGE)

).

circular_change_c(NCHANGE,VARIABLES,>) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
( N=0 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

VARS=[V|_39503],
append(VARS,[V],NEWVARS),
change_gt_c(NEWVARS,0,NCHANGE)

).

circular_change_c(NCHANGE,VARIABLES,=<) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
( N=0 ->

NCHANGE#=0
; get_attr1(VARIABLES,VARS),

VARS=[V|_39503],
append(VARS,[V],NEWVARS),
change_leq_c(NEWVARS,0,NCHANGE)

).

circular_change_a(FLAG,NCHANGE,VARIABLES,CTR) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
VARIABLES=[V1|_39506],
append(VARIABLES,[V1],CVARIABLES),
circular_change_signature(CVARIABLES,SIGNATURE,CTR),
automaton(

SIGNATURE,
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_41291,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

circular_change_signature([],[],_39443).

circular_change_signature([_39447],[],_39446) :-
!.

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=) :-

!,
VAR1#=VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,=).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=\=) :-

!,
VAR1#\=VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,=\=).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
<) :-

!,
VAR1#<VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,<).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
>=) :-

!,
VAR1#>=VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,>=).
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circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
>) :-

!,
VAR1#>VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,>).

circular_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=<) :-

!,
VAR1#=<VAR2#<=>S,
circular_change_signature([[var-VAR2]|VARs],Ss,=<).
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B.71 clause and

♦ META-DATA:

ctr_date(clause_and,[’20090416’]).

ctr_origin(clause_and,’Logic’,[]).

ctr_synonyms(clause_and,[clause]).

ctr_arguments(
clause_and,
[’POSVARS’-collection(var-dvar),
’NEGVARS’-collection(var-dvar),
’VAR’-dvar]).

ctr_restrictions(
clause_and,
[size(’POSVARS’)+size(’NEGVARS’)>0,
required(’POSVARS’,var),
’POSVARS’ˆvar>=0,
’POSVARS’ˆvar=<1,
required(’NEGVARS’,var),
’NEGVARS’ˆvar>=0,
’NEGVARS’ˆvar=<1,
’VAR’>=0,
’VAR’=<1]).

ctr_example(
clause_and,
clause_and([[var-1],[var-0]],[[var-0]],0)).

ctr_typical(clause_and,[size(’POSVARS’)+size(’NEGVARS’)>1]).

ctr_exchangeable(
clause_and,
[items(’POSVARS’,all),items(’NEGVARS’,all)]).

ctr_eval(clause_and,[automaton(clause_and_a)]).

ctr_extensible(clause_and,[’VAR’=0],’POSVARS’,any).

ctr_extensible(clause_and,[’VAR’=0],’NEGVARS’,any).

clause_and_a(FLAG,POSVARS,NEGVARS,VAR) :-
collection(POSVARS,[dvar(0,1)]),
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collection(NEGVARS,[dvar(0,1)]),
check_type(dvar(0,1),VAR),
length(POSVARS,LP),
length(NEGVARS,LN),
L is LP+LN,
L>0,
get_attr1(POSVARS,LISTP),
get_attr1(NEGVARS,LISTN),
clause_and_negate(LISTN,LISTNN),
append([VAR],LISTP,LIST),
append(LIST,LISTNN,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_32124,
LIST_VARIABLES,
[source(s),sink(k),sink(j)],
[arc(s,0,i),
arc(s,1,j),
arc(i,0,k),
arc(i,1,i),
arc(k,0,k),
arc(k,1,k),
arc(j,1,j)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

clause_and_negate([],[]).

clause_and_negate([V|R],[U|S]) :-
V#<=> #\U,
clause_and_negate(R,S).
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B.72 clause or

♦ META-DATA:

ctr_date(clause_or,[’20090415’]).

ctr_origin(clause_or,’Logic’,[]).

ctr_synonyms(clause_or,[clause]).

ctr_arguments(
clause_or,
[’POSVARS’-collection(var-dvar),
’NEGVARS’-collection(var-dvar),
’VAR’-dvar]).

ctr_restrictions(
clause_or,
[size(’POSVARS’)+size(’NEGVARS’)>0,
required(’POSVARS’,var),
’POSVARS’ˆvar>=0,
’POSVARS’ˆvar=<1,
required(’NEGVARS’,var),
’NEGVARS’ˆvar>=0,
’NEGVARS’ˆvar=<1,
’VAR’>=0,
’VAR’=<1]).

ctr_example(clause_or,clause_or([[var-0],[var-0]],[[var-0]],1)).

ctr_typical(clause_or,[size(’POSVARS’)+size(’NEGVARS’)>1]).

ctr_exchangeable(
clause_or,
[items(’POSVARS’,all),items(’NEGVARS’,all)]).

ctr_eval(clause_or,[automaton(clause_or_a)]).

ctr_extensible(clause_or,[’VAR’=1],’POSVARS’,any).

ctr_extensible(clause_or,[’VAR’=1],’NEGVARS’,any).

clause_or_a(FLAG,POSVARS,NEGVARS,VAR) :-
collection(POSVARS,[dvar(0,1)]),
collection(NEGVARS,[dvar(0,1)]),
check_type(dvar(0,1),VAR),
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length(POSVARS,LP),
length(NEGVARS,LN),
L is LP+LN,
L>0,
get_attr1(POSVARS,LISTP),
get_attr1(NEGVARS,LISTN),
clause_or_negate(LISTN,LISTNN),
append([VAR],LISTP,LIST),
append(LIST,LISTNN,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_32610,
LIST_VARIABLES,
[source(s),sink(i),sink(k)],
[arc(s,0,i),
arc(s,1,j),
arc(i,0,i),
arc(j,0,j),
arc(j,1,k),
arc(k,0,k),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

clause_or_negate([],[]).

clause_or_negate([V|R],[U|S]) :-
V#<=> #\U,
clause_or_negate(R,S).
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B.73 clique

♦ META-DATA:

ctr_date(clique,[’20030820’,’20040530’,’20060805’]).

ctr_origin(clique,’\\cite{Fahle02}’,[]).

ctr_arguments(
clique,
[’SIZE_CLIQUE’-dvar,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
clique,
[’SIZE_CLIQUE’>=0,
’SIZE_CLIQUE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
clique,
clique(

3,
[[index-1,succ-{}],
[index-2,succ-{3,5}],
[index-3,succ-{2,5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).

ctr_typical(
clique,
[’SIZE_CLIQUE’>=2,
’SIZE_CLIQUE’<size(’NODES’),
size(’NODES’)>2]).

ctr_exchangeable(clique,[items(’NODES’,all)]).

ctr_graph(
clique,
[’NODES’],
2,
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[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’NARC’=’SIZE_CLIQUE’*’SIZE_CLIQUE’-’SIZE_CLIQUE’,
’NVERTEX’=’SIZE_CLIQUE’],
[’SYMMETRIC’]).

ctr_functional_dependency(clique,1,[2]).

ctr_application(clique,[2]).
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B.74 colored matrix

♦ META-DATA:

ctr_predefined(colored_matrix).

ctr_date(colored_matrix,[’20031017’,’20040530’]).

ctr_origin(colored_matrix,’KOALOG’,[]).

ctr_synonyms(
colored_matrix,
[coloured_matrix,cardinality_matrix,card_matrix]).

ctr_arguments(
colored_matrix,
[’C’-int,
’L’-int,
’K’-int,
’MATRIX’-collection(column-int,line-int,var-dvar),
’CPROJ’-collection(column-int,val-int,nocc-dvar),
’LPROJ’-collection(line-int,val-int,nocc-dvar)]).

ctr_restrictions(
colored_matrix,
[’C’>=0,
’L’>=0,
’K’>=0,
required(’MATRIX’,[column,line,var]),
increasing_seq(’MATRIX’,[column,line]),
size(’MATRIX’)=’C’*’L’+’C’+’L’+1,
’MATRIX’ˆcolumn>=0,
’MATRIX’ˆcolumn=<’C’,
’MATRIX’ˆline>=0,
’MATRIX’ˆline=<’L’,
’MATRIX’ˆvar>=0,
’MATRIX’ˆvar=<’K’,
required(’CPROJ’,[column,val,nocc]),
increasing_seq(’CPROJ’,[column,val]),
size(’CPROJ’)=’C’*’K’+’C’+’K’+1,
’CPROJ’ˆcolumn>=0,
’CPROJ’ˆcolumn=<’C’,
’CPROJ’ˆval>=0,
’CPROJ’ˆval=<’K’,
required(’LPROJ’,[line,val,nocc]),
increasing_seq(’LPROJ’,[line,val]),
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size(’LPROJ’)=’L’*’K’+’L’+’K’+1,
’LPROJ’ˆline>=0,
’LPROJ’ˆline=<’L’,
’LPROJ’ˆval>=0,
’LPROJ’ˆval=<’K’]).

ctr_example(
colored_matrix,
colored_matrix(

1,
2,
4,
[[column-0,line-0,var-3],
[column-0,line-1,var-1],
[column-0,line-2,var-3],
[column-1,line-0,var-4],
[column-1,line-1,var-4],
[column-1,line-2,var-3]],
[[column-0,val-0,nocc-0],
[column-0,val-1,nocc-1],
[column-0,val-2,nocc-0],
[column-0,val-3,nocc-2],
[column-0,val-4,nocc-0],
[column-1,val-0,nocc-0],
[column-1,val-1,nocc-0],
[column-1,val-2,nocc-0],
[column-1,val-3,nocc-1],
[column-1,val-4,nocc-2]],
[[line-0,val-0,nocc-0],
[line-0,val-1,nocc-0],
[line-0,val-2,nocc-0],
[line-0,val-3,nocc-1],
[line-0,val-4,nocc-1],
[line-1,val-0,nocc-0],
[line-1,val-1,nocc-1],
[line-1,val-2,nocc-0],
[line-1,val-3,nocc-0],
[line-1,val-4,nocc-1],
[line-2,val-0,nocc-0],
[line-2,val-1,nocc-0],
[line-2,val-2,nocc-0],
[line-2,val-3,nocc-2],
[line-2,val-4,nocc-0]])).

ctr_typical(
colored_matrix,
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[’C’>=1,’L’>=1,’K’>=1,range(’MATRIX’ˆvar)>1]).

ctr_pure_functional_dependency(colored_matrix,[]).

ctr_functional_dependency(colored_matrix,5-3,[1,2,3]).

ctr_functional_dependency(colored_matrix,6-3,[1,2,3]).
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B.75 coloured cumulative

♦ META-DATA:

ctr_date(
coloured_cumulative,
[’20000128’,’20030820’,’20060805’]).

ctr_origin(
coloured_cumulative,
Derived from %c and %c.,
[cumulative,nvalues]).

ctr_synonyms(coloured_cumulative,[colored_cumulative]).

ctr_arguments(
coloured_cumulative,
[TASKS-
collection(

origin-dvar,
duration-dvar,
end-dvar,
colour-dvar),

’LIMIT’-int]).

ctr_restrictions(
coloured_cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,colour),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’LIMIT’>=0]).

ctr_example(
coloured_cumulative,
coloured_cumulative(

[[origin-1,duration-2,end-3,colour-1],
[origin-2,duration-9,end-11,colour-2],
[origin-3,duration-10,end-13,colour-3],
[origin-6,duration-6,end-12,colour-2],
[origin-7,duration-2,end-9,colour-3]],
2)).

ctr_typical(
coloured_cumulative,
[size(’TASKS’)>1,
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range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆcolour)>1,
’LIMIT’<nval(’TASKS’ˆcolour)]).

ctr_exchangeable(
coloured_cumulative,
[items(’TASKS’,all),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’TASKS’ˆcolour],int,=\=,all,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
coloured_cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
coloured_cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆcolour)])]],
[nvalues(variables,=<,’LIMIT’)]).

ctr_eval(
coloured_cumulative,
[reformulation(coloured_cumulative_r)]).

ctr_contractible(coloured_cumulative,[],’TASKS’,any).

ctr_application(coloured_cumulative,[1]).
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coloured_cumulative_r(TASKS,LIMIT) :-
collection(TASKS,[dvar,dvar_gteq(0),dvar,dvar]),
integer(LIMIT),
LIMIT>=0,
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
get_attr3(TASKS,ENDS),
get_attr4(TASKS,COLOURS),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
coloured_cumulative1(

ORIGINS,
ENDS,
COLOURS,
1,
ORIGINS,
ENDS,
COLOURS,
LIMIT).

coloured_cumulative1(
[],
[],
[],
_58463,
_58510,
_58557,
_58604,
_58651).

coloured_cumulative1(
[Oi|RO],
[Ei|RE],
[Ci|RC],
I,
ORIGINS,
ENDS,
COLOURS,
LIMIT) :-

coloured_cumulative2(
ORIGINS,
ENDS,
COLOURS,
1,
I,
Oi,
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Ei,
Ci,
COLi),

Ni in 1..LIMIT,
nvalue(Ni,COLi),
I1 is I+1,
coloured_cumulative1(

RO,
RE,
RC,
I1,
ORIGINS,
ENDS,
COLOURS,
LIMIT).

coloured_cumulative2(
[],
[],
[],
_58466,
_58513,
_58560,
_58607,
_58654,
[]).

coloured_cumulative2(
[_58096|RO],
[_58100|RE],
[_58104|RC],
J,
I,
Oi,
Ei,
Ci,
[Ci|R]) :-

I=J,
!,
J1 is J+1,
coloured_cumulative2(RO,RE,RC,J1,I,Oi,Ei,Ci,R).

coloured_cumulative2(
[Oj|RO],
[Ej|RE],
[Cj|RC],
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J,
I,
Oi,
Ei,
Ci,
[Cij|R]) :-

I=\=J,
K in 1..2,
fd_min(Ci,Ci_min),
fd_max(Ci,Ci_max),
fd_min(Cj,Cj_min),
fd_max(Cj,Cj_max),
Min is min(Ci_min,Cj_min),
Max is max(Ci_max,Cj_max),
Cij in Min..Max,
element(K,[Ci,Cj],Cij),
Oj#=<Oi#/\Ej#>Oi#/\Cij#=Cj#\/
(Oj#>Oi#\/Ej#=<Oi)#/\Cij#=Ci,
J1 is J+1,
coloured_cumulative2(RO,RE,RC,J1,I,Oi,Ei,Ci,R).
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B.76 coloured cumulatives

♦ META-DATA:

ctr_date(
coloured_cumulatives,
[’20000128’,’20030820’,’20060805’]).

ctr_origin(
coloured_cumulatives,
Derived from %c and %c.,
[cumulatives,nvalues]).

ctr_synonyms(coloured_cumulatives,[colored_cumulatives]).

ctr_arguments(
coloured_cumulatives,
[TASKS-
collection(

machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
colour-dvar),

’MACHINES’-collection(id-int,capacity-int)]).

ctr_restrictions(
coloured_cumulatives,
[required(’TASKS’,[machine,colour]),
require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
’MACHINES’ˆcapacity>=0]).

ctr_example(
coloured_cumulatives,
coloured_cumulatives(

[[machine-1,origin-6,duration-6,end-12,colour-2],
[machine-1,origin-2,duration-9,end-11,colour-3],
[machine-2,origin-7,duration-3,end-10,colour-3],
[machine-1,origin-1,duration-2,end-3,colour-1],
[machine-2,origin-4,duration-5,end-9,colour-3],
[machine-1,origin-3,duration-10,end-13,colour-2]],

[[id-1,capacity-2],[id-2,capacity-1]])).



2785

ctr_typical(
coloured_cumulatives,
[size(’TASKS’)>1,
range(’TASKS’ˆmachine)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆcolour)>1,
’TASKS’ˆduration>0,
size(’MACHINES’)>1,
’MACHINES’ˆcapacity>0,
’MACHINES’ˆcapacity<nval(’TASKS’ˆcolour),
size(’TASKS’)>size(’MACHINES’)]).

ctr_exchangeable(
coloured_cumulatives,
[items(’TASKS’,all),
items(’MACHINES’,all),
vals([’MACHINES’ˆcapacity],int,<,dontcare,dontcare),
vals(

[’TASKS’ˆmachine,’MACHINES’ˆid],
int,
=\=,
all,
dontcare)]).

ctr_graph(
coloured_cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
coloured_cumulatives,
[’TASKS’,’TASKS’],
2,
foreach(’MACHINES’,[’PRODUCT’>>collection(tasks1,tasks2)]),
[tasks1ˆmachine=’MACHINES’ˆid,
tasks1ˆmachine=tasks2ˆmachine,
tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],
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[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆcolour)])]],
[nvalues(variables,=<,’MACHINES’ˆcapacity)]).

ctr_eval(
coloured_cumulatives,
[reformulation(coloured_cumulatives_r)]).

ctr_contractible(coloured_cumulatives,[],’TASKS’,any).

ctr_application(coloured_cumulatives,[1]).

coloured_cumulatives_r(TASKS,MACHINES) :-
collection(TASKS,[dvar,dvar,dvar_gteq(0),dvar,dvar]),
get_attr1(TASKS,VMACHINES),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,DURATIONS),
get_attr4(TASKS,ENDS),
get_attr5(TASKS,COLOURS),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
collection(MACHINES,[int,int_gteq(0)]),
get_attr1(MACHINES,IDS),
get_attr2(MACHINES,CAPACITIES),
all_different(IDS),
get_maximum(CAPACITIES,CAPA_MAX),
coloured_cumulatives1(

VMACHINES,
ORIGINS,
ENDS,
COLOURS,
1,
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
IDS,
CAPACITIES,
CAPA_MAX).

coloured_cumulatives1(
[],
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[],
[],
[],
_65672,
_65719,
_65766,
_65813,
_65860,
_65907,
_65954,
_66001).

coloured_cumulatives1(
[Mi|RM],
[Oi|RO],
[Ei|RE],
[Ci|RC],
I,
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
IDS,
CAPACITIES,
CAPA_MAX) :-

coloured_cumulatives2(
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
1,
I,
Mi,
Oi,
Ei,
Ci,
COLi),

LIMIT in 0..CAPA_MAX,
link_index_to_attribute(IDS,CAPACITIES,Mi,LIMIT),
Ni in 0..CAPA_MAX,
Ni#=<LIMIT,
nvalue(Ni,COLi),
I1 is I+1,
coloured_cumulatives1(

RM,
RO,
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RE,
RC,
I1,
VMACHINES,
ORIGINS,
ENDS,
COLOURS,
IDS,
CAPACITIES,
CAPA_MAX).

coloured_cumulatives2(
[],
[],
[],
[],
_65669,
_65716,
_65763,
_65810,
_65857,
_65904,
[]).

coloured_cumulatives2(
[_65250|RM],
[_65254|RO],
[_65258|RE],
[_65262|RC],
J,
I,
Mi,
Oi,
Ei,
Ci,
[Ci|R]) :-

I=J,
!,
J1 is J+1,
coloured_cumulatives2(RM,RO,RE,RC,J1,I,Mi,Oi,Ei,Ci,R).

coloured_cumulatives2(
[Mj|RM],
[Oj|RO],
[Ej|RE],
[Cj|RC],
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J,
I,
Mi,
Oi,
Ei,
Ci,
[Cij|R]) :-

I=\=J,
K in 1..2,
fd_min(Ci,Ci_min),
fd_max(Ci,Ci_max),
fd_min(Cj,Cj_min),
fd_max(Cj,Cj_max),
Min is min(Ci_min,Cj_min),
Max is max(Ci_max,Cj_max),
Cij in Min..Max,
element(K,[Ci,Cj],Cij),
Mj#=Mi#/\Oj#=<Oi#/\Ej#>Oi#/\Cij#=Cj#\/
(Mj#\=Mi#\/Oj#>Oi#\/Ej#=<Oi)#/\Cij#=Ci,
J1 is J+1,
coloured_cumulatives2(RM,RO,RE,RC,J1,I,Mi,Oi,Ei,Ci,R).
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B.77 common

♦ META-DATA:

ctr_date(common,[’20000128’,’20030820’,’20060805’]).

ctr_origin(common,’N.˜Beldiceanu’,[]).

ctr_arguments(
common,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
common,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
common,
common(

3,
4,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).

ctr_typical(
common,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
common,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
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vals(
[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
common,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common,[reformulation(common_r)]).

ctr_pure_functional_dependency(common,[]).

ctr_functional_dependency(common,1,[3,4]).

ctr_functional_dependency(common,2,[3,4]).

common_r(NCOMMON1,NCOMMON2,VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
common1(VARS1,VARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(VARS2,VARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).
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B.78 common interval

♦ META-DATA:

ctr_date(common_interval,[’20030820’,’20060805’]).

ctr_origin(common_interval,’Derived from %c.’,[common]).

ctr_arguments(
common_interval,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
common_interval,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
common_interval,
common_interval(

3,
2,
[[var-8],[var-6],[var-6],[var-0]],
[[var-7],[var-3],[var-3],[var-3],[var-3],[var-7]],
3)).

ctr_typical(
common_interval,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
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common_interval,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’],
[’SIZE_INTERVAL’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
common_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common_interval,[reformulation(common_interval_r)]).

ctr_pure_functional_dependency(common_interval,[]).

ctr_functional_dependency(common_interval,1,[3,4,5]).

ctr_functional_dependency(common_interval,2,[3,4,5]).

common_interval_r(
NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
SIZE_INTERVAL) :-

collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
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length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
common1(QUOTVARS1,QUOTVARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(QUOTVARS2,QUOTVARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).
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B.79 common modulo

♦ META-DATA:

ctr_date(common_modulo,[’20030820’,’20060806’]).

ctr_origin(common_modulo,’Derived from %c.’,[common]).

ctr_arguments(
common_modulo,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
common_modulo,
[’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
common_modulo,
common_modulo(

3,
4,
[[var-0],[var-4],[var-0],[var-8]],
[[var-7],[var-5],[var-4],[var-9],[var-2],[var-4]],
5)).

ctr_typical(
common_modulo,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
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common_modulo,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’],
[’M’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcare),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
common_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common_modulo,[reformulation(common_modulo_r)]).

ctr_pure_functional_dependency(common_modulo,[]).

ctr_functional_dependency(common_modulo,1,[3,4,5]).

ctr_functional_dependency(common_modulo,2,[3,4,5]).

common_modulo_r(NCOMMON1,NCOMMON2,VARIABLES1,VARIABLES2,M) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
common1(REMVARS1,REMVARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(REMVARS2,REMVARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).
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B.80 common partition

♦ META-DATA:

ctr_date(common_partition,[’20030820’,’20060806’]).

ctr_origin(common_partition,’Derived from %c.’,[common]).

ctr_types(common_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
common_partition,
[’NCOMMON1’-dvar,
’NCOMMON2’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
common_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
’NCOMMON1’>=0,
’NCOMMON1’=<size(’VARIABLES1’),
’NCOMMON2’>=0,
’NCOMMON2’=<size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
common_partition,
common_partition(

3,
4,
[[var-2],[var-3],[var-6],[var-0]],
[[var-0],[var-6],[var-3],[var-3],[var-7],[var-1]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
common_partition,
[size(’VARIABLES1’)>1,
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range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
common_partition,
[args(

[[’NCOMMON1’,’NCOMMON2’],
[’VARIABLES1’,’VARIABLES2’],
[’PARTITIONS’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
common_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSOURCE’=’NCOMMON1’,’NSINK’=’NCOMMON2’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(common_partition,[reformulation(common_partition_r)]).

ctr_pure_functional_dependency(common_partition,[]).

ctr_functional_dependency(common_partition,1,[3,4,5]).
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ctr_functional_dependency(common_partition,2,[3,4,5]).

common_partition_r(
NCOMMON1,
NCOMMON2,
VARIABLES1,
VARIABLES2,
PARTITIONS) :-

collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
check_type(dvar(0,N1),NCOMMON1),
check_type(dvar(0,N2),NCOMMON2),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS1,PVALS,PVARS1,LPVALS1,0),
LPVALS2 is LPVALS1+1,
get_partition_var(VARS2,PVALS,PVARS2,LPVALS2,LPVALS1),
common1(PVARS1,PVARS2,_MAT12,SUM1),
call(NCOMMON1#=SUM1),
common1(PVARS2,PVARS1,_MAT21,SUM2),
call(NCOMMON2#=SUM2).
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B.81 compare and count

♦ META-DATA:

ctr_predefined(compare_and_count).

ctr_date(compare_and_count,[’20110628’]).

ctr_origin(compare_and_count,’Generalise %c’,[discrepancy]).

ctr_arguments(
compare_and_count,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’COMPARE’-atom,
’COUNT’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
compare_and_count,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
in_list(’COMPARE’,[=,=\=,<,>=,>,=<]),
in_list(’COUNT’,[=,=\=,<,>=,>,=<]),
’LIMIT’>=0]).

ctr_example(
compare_and_count,
compare_and_count(

[[var-4],[var-5],[var-5],[var-4],[var-5]],
[[var-4],[var-2],[var-5],[var-1],[var-5]],
=,
=<,
3)).

ctr_typical(
compare_and_count,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
in_list(’COMPARE’,[=]),
in_list(’COUNT’,[=,<,>=,>,=<]),
’LIMIT’>0,
’LIMIT’<size(’VARIABLES1’)]).
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ctr_eval(
compare_and_count,
[reformulation(compare_and_count_r)]).

ctr_pure_functional_dependency(
compare_and_count,
[in_list(’COUNT’,[=])]).

ctr_contractible(
compare_and_count,
[in_list(’COUNT’,[<,=<])],
[’VARIABLES1’,’VARIABLES2’],
any).

ctr_extensible(
compare_and_count,
[in_list(’COUNT’,[>=,>])],
[’VARIABLES1’,’VARIABLES2’],
any).

compare_and_count_r(VARIABLES1,VARIABLES2,COMPARE,COUNT,LIMIT) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
memberchk(COMPARE,[=,=\=,<,>=,>,=<]),
memberchk(COUNT,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
LIMIT#>=0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
compare_and_count_r1(VARS1,VARS2,COMPARE,TERM),
compare_and_count_r2(COUNT,TERM,LIMIT).

compare_and_count_r1([],[],_23730,0).

compare_and_count_r1([V1|R1],[V2|R2],=,B+T) :-
V1#=V2#<=>B,
compare_and_count_r1(R1,R2,=,T).

compare_and_count_r1([V1|R1],[V2|R2],=\=,B+T) :-
V1#\=V2#<=>B,
compare_and_count_r1(R1,R2,=\=,T).

compare_and_count_r1([V1|R1],[V2|R2],<,B+T) :-
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V1#<V2#<=>B,
compare_and_count_r1(R1,R2,<,T).

compare_and_count_r1([V1|R1],[V2|R2],>=,B+T) :-
V1#>=V2#<=>B,
compare_and_count_r1(R1,R2,>=,T).

compare_and_count_r1([V1|R1],[V2|R2],>,B+T) :-
V1#>V2#<=>B,
compare_and_count_r1(R1,R2,>,T).

compare_and_count_r1([V1|R1],[V2|R2],=<,B+T) :-
V1#=<V2#<=>B,
compare_and_count_r1(R1,R2,=<,T).

compare_and_count_r2(=,TERM,LIMIT) :-
call(TERM#=LIMIT).

compare_and_count_r2(=\=,TERM,LIMIT) :-
call(TERM#\=LIMIT).

compare_and_count_r2(<,TERM,LIMIT) :-
call(TERM#<LIMIT).

compare_and_count_r2(>=,TERM,LIMIT) :-
call(TERM#>=LIMIT).

compare_and_count_r2(>,TERM,LIMIT) :-
call(TERM#>LIMIT).

compare_and_count_r2(=<,TERM,LIMIT) :-
call(TERM#=<LIMIT).
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B.82 cond lex cost

♦ META-DATA:

ctr_date(cond_lex_cost,[’20060416’]).

ctr_origin(
cond_lex_cost,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(cond_lex_cost,[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_cost,
[’VECTOR’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’),
’COST’-dvar]).

ctr_restrictions(
cond_lex_cost,
[size(’TUPLE_OF_VALS’)>=1,
required(’TUPLE_OF_VALS’,val),
required(’VECTOR’,var),
size(’VECTOR’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR’,’PREFERENCE_TABLE’),
’COST’>=1,
’COST’=<size(’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_cost,
cond_lex_cost(

[[var-0],[var-1]],
[[tuple-[[val-1],[val-0]]],
[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]],

2)).

ctr_typical(
cond_lex_cost,
[size(’TUPLE_OF_VALS’)>1,
size(’VECTOR’)>1,
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size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_cost,
[items_sync(’VECTOR’,’PREFERENCE_TABLE’ˆtuple,all),
vals(

[’VECTOR’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_cost,[automata(cond_lex_cost_a)]).

cond_lex_cost_a(VECTOR,PREFERENCE_TABLE,COST) :-
collection(VECTOR,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
check_type(dvar,COST),
length(PREFERENCE_TABLE,LP),
COST#>=1,
COST#=<LP,
PREFERENCE_TABLE=[[_31682-L]|_31678],
length(VECTOR,LV),
length(L,N),
N>=1,
LV=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR,PREFERENCE_TABLE)),
cond_lex(VECTOR,PREFERENCE_TABLE,COST).
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B.83 cond lex greater

♦ META-DATA:

ctr_date(cond_lex_greater,[’20060430’]).

ctr_origin(
cond_lex_greater,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(
cond_lex_greater,
[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_greater,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_greater,
[size(’TUPLE_OF_VALS’)>=1,
required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_greater,
cond_lex_greater(

[[var-0],[var-0]],
[[var-1],[var-0]],
[[tuple-[[val-1],[val-0]]],
[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(
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cond_lex_greater,
[size(’TUPLE_OF_VALS’)>1,
size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_greater,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_greater,[automata(cond_lex_greater_a)]).

cond_lex_greater_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_31187-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#>J.
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B.84 cond lex greatereq

♦ META-DATA:

ctr_date(cond_lex_greatereq,[’20060416’]).

ctr_origin(
cond_lex_greatereq,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(
cond_lex_greatereq,
[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_greatereq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_greatereq,
[size(’TUPLE_OF_VALS’)>=1,
required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_greatereq,
cond_lex_greatereq(

[[var-0],[var-0]],
[[var-1],[var-0]],
[[tuple-[[val-1],[val-0]]],
[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(
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cond_lex_greatereq,
[size(’TUPLE_OF_VALS’)>1,
size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_greatereq,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_greatereq,[automata(cond_lex_greatereq_a)]).

cond_lex_greatereq_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_31199-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#>=J.
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B.85 cond lex less

♦ META-DATA:

ctr_date(cond_lex_less,[’20060430’]).

ctr_origin(
cond_lex_less,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(cond_lex_less,[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_less,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_less,
[size(’TUPLE_OF_VALS’)>=1,
required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_less,
cond_lex_less(

[[var-1],[var-0]],
[[var-0],[var-0]],
[[tuple-[[val-1],[val-0]]],
[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(
cond_lex_less,
[size(’TUPLE_OF_VALS’)>1,
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size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_less,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_less,[automata(cond_lex_less_a)]).

cond_lex_less_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_31183-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#<J.
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B.86 cond lex lesseq

♦ META-DATA:

ctr_date(cond_lex_lesseq,[’20060416’]).

ctr_origin(
cond_lex_lesseq,
Inspired by \cite{WallaceWilson06}.,
[]).

ctr_types(
cond_lex_lesseq,
[’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
cond_lex_lesseq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar),
’PREFERENCE_TABLE’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
cond_lex_lesseq,
[size(’TUPLE_OF_VALS’)>=1,
required(’TUPLE_OF_VALS’,val),
required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’),
size(’VECTOR1’)=size(’TUPLE_OF_VALS’),
required(’PREFERENCE_TABLE’,tuple),
same_size(’PREFERENCE_TABLE’,tuple),
distinct(’PREFERENCE_TABLE’,[]),
in_relation(’VECTOR1’,’PREFERENCE_TABLE’),
in_relation(’VECTOR2’,’PREFERENCE_TABLE’)]).

ctr_example(
cond_lex_lesseq,
cond_lex_lesseq(

[[var-1],[var-0]],
[[var-0],[var-0]],
[[tuple-[[val-1],[val-0]]],
[tuple-[[val-0],[val-1]]],
[tuple-[[val-0],[val-0]]],
[tuple-[[val-1],[val-1]]]])).

ctr_typical(
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cond_lex_lesseq,
[size(’TUPLE_OF_VALS’)>1,
size(’VECTOR1’)>1,
size(’VECTOR2’)>1,
size(’PREFERENCE_TABLE’)>1]).

ctr_exchangeable(
cond_lex_lesseq,
[items_sync(

VECTOR1,
VECTOR2,
’PREFERENCE_TABLE’ˆtuple,
all),

vals(
[’VECTOR1’,’VECTOR2’,’PREFERENCE_TABLE’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_eval(cond_lex_lesseq,[automata(cond_lex_lesseq_a)]).

cond_lex_lesseq_a(VECTOR1,VECTOR2,PREFERENCE_TABLE) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
collection(PREFERENCE_TABLE,[col([dvar])]),
same_size(PREFERENCE_TABLE),
PREFERENCE_TABLE=[[_31195-L]|_R],
length(VECTOR1,LV1),
length(VECTOR2,LV2),
length(L,N),
N>=1,
LV1=LV2,
LV1=N,
create_collection(PREFERENCE_TABLE,vec,var,PREF),
eval(lex_alldifferent(PREF)),
eval(in_relation(VECTOR1,PREFERENCE_TABLE)),
eval(in_relation(VECTOR2,PREFERENCE_TABLE)),
cond_lex(VECTOR1,VECTOR2,PREFERENCE_TABLE,I,J),
I#=<J.
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B.87 connect points

♦ META-DATA:

ctr_date(
connect_points,
[’20000128’,’20030820’,’20040530’,’20060806’]).

ctr_origin(connect_points,’N.˜Beldiceanu’,[]).

ctr_arguments(
connect_points,
[’SIZE1’-int,
’SIZE2’-int,
’SIZE3’-int,
’NGROUP’-dvar,
’POINTS’-collection(p-dvar)]).

ctr_restrictions(
connect_points,
[’SIZE1’>0,
’SIZE2’>0,
’SIZE3’>0,
’NGROUP’>=0,
’NGROUP’=<size(’POINTS’),
’SIZE1’*’SIZE2’*’SIZE3’=size(’POINTS’),
required(’POINTS’,p)]).

ctr_example(
connect_points,
connect_points(

8,
4,
2,
2,
[[p-0],
[p-0],
[p-1],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
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[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-1],
[p-1],
[p-1],
[p-1],
[p-1],
[p-0],
[p-2],
[p-0],
[p-1],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-2],
[p-2],
[p-2],
[p-2],
[p-0],
[p-0],
[p-0],
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[p-2],
[p-0],
[p-0],
[p-0],
[p-2],
[p-0],
[p-0]])).

ctr_typical(
connect_points,
[’SIZE1’>1,
’SIZE2’>1,
’NGROUP’>0,
’NGROUP’<size(’POINTS’),
size(’POINTS’)>3]).

ctr_exchangeable(
connect_points,
[vals([’POINTS’ˆp],int(=\=(0)),=\=,all,dontcare)]).

ctr_graph(
connect_points,
[’POINTS’],
2,
[’GRID’([’SIZE1’,’SIZE2’,’SIZE3’])>>
collection(points1,points2)],
[points1ˆp=\=0,points1ˆp=points2ˆp],
[’NSCC’=’NGROUP’],
[’SYMMETRIC’]).

ctr_functional_dependency(connect_points,4,[1,2,3,5]).
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B.88 connected
♦ META-DATA:

ctr_date(connected,[’20061001’]).

ctr_origin(connected,’\\cite{Dooms06}’,[]).

ctr_arguments(
connected,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
connected,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
connected,
connected(

[[index-1,succ-{1,2,3}],
[index-2,succ-{1,3}],
[index-3,succ-{1,2,4}],
[index-4,succ-{3,5,6}],
[index-5,succ-{4}],
[index-6,succ-{4}]])).

ctr_typical(connected,[size(’NODES’)>1]).

ctr_exchangeable(connected,[items(’NODES’,all)]).

ctr_graph(
connected,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’NCC’=1],
[’SYMMETRIC’]).

ctr_application(connected,[1]).
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B.89 consecutive groups of ones

♦ META-DATA:

ctr_date(consecutive_groups_of_ones,[’20091227’]).

ctr_origin(
consecutive_groups_of_ones,
Derived from %c,
[group]).

ctr_arguments(
consecutive_groups_of_ones,
[’GROUP_SIZES’-collection(nb-int),
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
consecutive_groups_of_ones,
[required(’GROUP_SIZES’,nb),
size(’GROUP_SIZES’)>=1,
’GROUP_SIZES’ˆnb>=1,
’GROUP_SIZES’ˆnb=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VARIABLES’)>=2*size(’GROUP_SIZES’)-1,
size(’VARIABLES’)>=
sum(’GROUP_SIZES’ˆnb)+size(’GROUP_SIZES’)-1,
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
consecutive_groups_of_ones,
consecutive_groups_of_ones(

[[nb-2],[nb-1]],
[[var-1],
[var-1],
[var-0],
[var-0],
[var-0],
[var-1],
[var-0]])).

ctr_typical(
consecutive_groups_of_ones,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(
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consecutive_groups_of_ones,
[sum(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
consecutive_groups_of_ones,
[items_sync(’GROUP_SIZES’,’VARIABLES’,reverse)]).

ctr_eval(
consecutive_groups_of_ones,
[automaton(consecutive_groups_of_ones_a)]).

consecutive_groups_of_ones_a(FLAG,GROUP_SIZES,VARIABLES) :-
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,N),
collection(GROUP_SIZES,[int(1,N)]),
length(GROUP_SIZES,M),
M>=1,
N>=M,
N>=2*M-1,
get_attr1(GROUP_SIZES,SIZES),
get_attr1(VARIABLES,VARS),
get_sum(SIZES,S),
N>=S+M-1,
consecutive_groups_of_ones_transitions(

SIZES,
-1,
TRANSITIONS,
LAST),

AUTOMATON=
automaton(

VARS,
_30480,
VARS,
[source(0),sink(LAST)],
TRANSITIONS,
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

consecutive_groups_of_ones_transitions([],P,[arc(P,0,P)],P).

consecutive_groups_of_ones_transitions([N|R],P,L,Last) :-
P1 is P+1,
PN is N+P1,
( P>=0 ->
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L1=[arc(P,0,P1),arc(P1,0,P1)]
; L1=[arc(P1,0,P1)]
),
consecutive_groups_of_ones_trans(N,P1,L2),
consecutive_groups_of_ones_transitions(R,PN,L3,Last),
append(L1,L2,L12),
append(L12,L3,L).

consecutive_groups_of_ones_trans(0,_27153,[]) :-
!.

consecutive_groups_of_ones_trans(I,P,[arc(P,1,P1)|R]) :-
I>0,
P1 is P+1,
I1 is I-1,
consecutive_groups_of_ones_trans(I1,P1,R).
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B.90 consecutive values

♦ META-DATA:

ctr_predefined(consecutive_values).

ctr_date(consecutive_values,[’20100106’]).

ctr_origin(
consecutive_values,
Derived from %c.,
[alldifferent_consecutive_values]).

ctr_arguments(
consecutive_values,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
consecutive_values,
[required(’VARIABLES’,var)]).

ctr_example(
consecutive_values,
consecutive_values([[var-5],[var-4],[var-3],[var-5]])).

ctr_typical(
consecutive_values,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(consecutive_values,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
consecutive_values,
[items(’VARIABLES’,all),translate([’VARIABLES’ˆvar])]).

ctr_eval(
consecutive_values,
[checker(consecutive_values_c),
reformulation(consecutive_values_r)]).

ctr_cond_imply(
consecutive_values,
some_equal,
[size(’VARIABLES’)>range(’VARIABLES’ˆvar)],
[],
id).



2821

ctr_sol(consecutive_values,2,0,2,7,-).

ctr_sol(consecutive_values,3,0,3,34,-).

ctr_sol(consecutive_values,4,0,4,217,-).

ctr_sol(consecutive_values,5,0,5,1716,-).

ctr_sol(consecutive_values,6,0,6,16159,-).

ctr_sol(consecutive_values,7,0,7,176366,-).

ctr_sol(consecutive_values,8,0,8,2187637,-).

consecutive_values_c([]) :-
!.

consecutive_values_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
min_member(MIN,VARS),
max_member(MAX,VARS),
RANGE is MAX-MIN+1,
length(VARS,N),
N>=RANGE,
sort(VARS,S),
length(S,RANGE).

consecutive_values_r([]) :-
!.

consecutive_values_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
minimum(MIN,VARS),
maximum(MAX,VARS),
length(VARIABLES,N),
NVAL in 1..N,
nvalue(NVAL,VARS),
NVAL#=MAX-MIN+1.
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B.91 contains sboxes

♦ META-DATA:

ctr_date(contains_sboxes,[’20070622’,’20090725’]).

ctr_origin(
contains_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(contains_sboxes,[contains]).

ctr_types(
contains_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
contains_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
contains_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
contains_sboxes,
contains_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],
[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-3,x-[[v-3],[v-3]]]],
[[sid-1,t-[[v-0],[v-0]],l-[[v-5],[v-5]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(contains_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
contains_sboxes,
[items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]).

ctr_eval(contains_sboxes,[logic(contains_sboxes_g)]).

ctr_logic(
contains_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(contains_sboxes(Dims,O1,S1,O2,S2)--->
forall(

D,
Dims,
origin(O1,S1,D)#<origin(O2,S2,D)#/\
end(O2,S2,D)#<end(O1,S1,D))),

(contains_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
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contains_sboxes(Dims,O1,S1,O2,S2)))),
(all_contains(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
contains_objects(Dims,O1,O2)))),

all_contains(DIMENSIONS,OIDS)]).

ctr_contractible(contains_sboxes,[],’OBJECTS’,suffix).

ctr_application(contains_sboxes,[3]).

contains_sboxes_g(K,_38219,[],_38221) :-
!,
check_type(int_gteq(1),K).

contains_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(contains_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.92 correspondence

♦ META-DATA:

ctr_date(correspondence,[’20030820’,’20060806’]).

ctr_origin(
correspondence,
Derived from %c by removing the sorting condition.,
[sort_permutation]).

ctr_arguments(
correspondence,
[’FROM’-collection(from-dvar),
’PERMUTATION’-collection(var-dvar),
’TO’-collection(tvar-dvar)]).

ctr_restrictions(
correspondence,
[size(’PERMUTATION’)=size(’FROM’),
size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,from),
required(’PERMUTATION’,var),
required(’TO’,tvar)]).

ctr_example(
correspondence,
correspondence(

[[from-1],
[from-9],
[from-1],
[from-5],
[from-2],
[from-1]],
[[var-6],[var-1],[var-3],[var-5],[var-4],[var-2]],
[[tvar-9],
[tvar-1],
[tvar-1],
[tvar-2],
[tvar-5],
[tvar-1]])).

ctr_typical(
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correspondence,
[size(’FROM’)>1,range(’FROM’ˆfrom)>1]).

ctr_exchangeable(
correspondence,
[vals([’FROM’ˆfrom,’TO’ˆtvar],int,=\=,all,dontcare)]).

ctr_derived_collections(
correspondence,
[col(’FROM_PERMUTATION’-collection(from-dvar,var-dvar),

[item(from-’FROM’ˆfrom,var-’PERMUTATION’ˆvar)])]).

ctr_graph(
correspondence,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆfrom=toˆtvar,
from_permutationˆvar=toˆkey],
[’NARC’=size(’PERMUTATION’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(correspondence,[reformulation(correspondence_r)]).

correspondence_r(FROM,PERMUTATION,TO) :-
collection(FROM,[dvar]),
length(FROM,NFROM),
collection(PERMUTATION,[dvar(1,NFROM)]),
length(PERMUTATION,NPERMUTATION),
collection(TO,[dvar]),
length(TO,NTO),
NPERMUTATION=NFROM,
NPERMUTATION=NTO,
get_attr1(FROM,FROMS),
get_attr1(PERMUTATION,PERMS),
get_attr1(TO,TOS),
all_different(PERMS),
correspondence1(PERMS,FROMS,TOS).

correspondence1([],[],_51997).

correspondence1([Pi|R],[Fi|S],TOS) :-
element(Pi,TOS,Fi),
correspondence1(R,S,TOS).
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B.93 count

♦ META-DATA:

ctr_date(
count,
[’20000128’,’20030820’,’20040530’,’20060806’,’20100204’]).

ctr_origin(count,’\\cite{Sicstus95}’,[]).

ctr_synonyms(count,[occurencemax,occurencemin,occurrence]).

ctr_arguments(
count,
[’VALUE’-int,
’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
count,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
count,
count(5,[[var-4],[var-5],[var-5],[var-4],[var-5]],>=,2)).

ctr_typical(
count,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’RELOP’,[=,<,>=,>,=<]),
’LIMIT’>0,
’LIMIT’<size(’VARIABLES’)]).

ctr_exchangeable(
count,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
int(=\=(’VALUE’)),
=\=,
dontcare,
dontcare)]).
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ctr_graph(
count,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’RELOP’(’NARC’,’LIMIT’)],
[]).

ctr_eval(count,[reformulation(count_r),automaton(count_a)]).

ctr_pure_functional_dependency(count,[in_list(’RELOP’,[=])]).

ctr_contractible(
count,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_extensible(count,[in_list(’RELOP’,[>=,>])],’VARIABLES’,any).

ctr_aggregate(
count,
[in_list(’RELOP’,[<,=<,>=,>])],
[id,union,id,+]).

count_r(VALUE,VARIABLES,RELOP,LIMIT) :-
check_type(int,VALUE),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VARIABLES,NVARIABLES),
N in 0..NVARIABLES,
eval(among(N,VARIABLES,[[val-VALUE]])),
call_term_relop_value(N,RELOP,LIMIT).

count_a(FLAG,VALUE,VARIABLES,RELOP,LIMIT) :-
check_type(int,VALUE),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
count_signature(VARIABLES,SIGNATURE,VALUE),
automaton(

SIGNATURE,
_54125,
SIGNATURE,
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[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NIN]),

count_relop(RELOP,NIN,LIMIT,FLAG).

count_signature([],[],_52651).

count_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
count_signature(VARs,Ss,VALUE).
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B.94 counts

♦ META-DATA:

ctr_date(counts,[’20030820’,’20040530’,’20060806’]).

ctr_origin(counts,’Derived from %c.’,[count]).

ctr_arguments(
counts,
[’VALUES’-collection(val-int),
’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
counts,
[required(’VALUES’,val),
distinct(’VALUES’,val),
required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
counts,
counts(

[[val-1],[val-3],[val-4],[val-9]],
[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

ctr_typical(
counts,
[size(’VALUES’)>1,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)>size(’VALUES’),
in_list(’RELOP’,[=,<,>=,>,=<]),
’LIMIT’>0,
’LIMIT’<size(’VARIABLES’)]).

ctr_exchangeable(
counts,
[items(’VALUES’,all),
items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
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comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
counts,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’RELOP’(’NARC’,’LIMIT’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(counts,[reformulation(counts_r),automaton(counts_a)]).

ctr_pure_functional_dependency(counts,[in_list(’RELOP’,[=])]).

ctr_contractible(
counts,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
counts,
[in_list(’RELOP’,[>=,>])],
VARIABLES,
any).

ctr_aggregate(
counts,
[in_list(’RELOP’,[<,=<,>=,>])],
[sunion,union,id,+]).

counts_r(VALUES,VARIABLES,RELOP,LIMIT) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(VALUES,VALS),
all_different(VALS),
length(VARIABLES,NVARIABLES),
N in 0..NVARIABLES,
eval(among(N,VARIABLES,VALUES)),
call_term_relop_value(N,RELOP,LIMIT).
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counts_a(FLAG,VALUES,VARIABLES,RELOP,LIMIT) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
get_attr1(VALUES,LIST_VALUES),
all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
counts_signature(VARIABLES,SIGNATURE,SET_OF_VALUES),
automaton(

SIGNATURE,
_51562,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NIN]),

count_relop(RELOP,NIN,LIMIT,FLAG).

counts_signature([],[],_49596).

counts_signature([[var-VAR]|VARs],[S|Ss],SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
counts_signature(VARs,Ss,SET_OF_VALUES).
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B.95 coveredby sboxes

♦ META-DATA:

ctr_date(coveredby_sboxes,[’20070622’,’20090725’]).

ctr_origin(
coveredby_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(coveredby_sboxes,[coveredby]).

ctr_types(
coveredby_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
coveredby_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
coveredby_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
required(’SBOXES’,[sid,t,l]),
size(’SBOXES’)>=1,
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
coveredby_sboxes,
coveredby_sboxes(

2,
{0,1},
[[oid-1,sid-4,x-[[v-2],[v-3]]],
[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-1,x-[[v-1],[v-1]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-1,t-[[v-3],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-2],[v-0]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(coveredby_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
coveredby_sboxes,
[items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]).

ctr_eval(coveredby_sboxes,[logic(coveredby_sboxes_g)]).

ctr_logic(
coveredby_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(coveredby_sboxes(Dims,O1,S1,O2,S2)--->
forall(

D,
Dims,
origin(O2,S2,D)#=<origin(O1,S1,D)#/\
end(O1,S1,D)#=<end(O2,S2,D))#/\

exists(
D,
Dims,
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origin(O2,S2,D)#=origin(O1,S1,D)#\/
end(O1,S1,D)#=end(O2,S2,D))),

(coveredby_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
coveredby_sboxes(Dims,O1,S1,O2,S2)))),

(all_coveredby(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
coveredby_objects(Dims,O1,O2)))),

all_coveredby(DIMENSIONS,OIDS)]).

ctr_application(coveredby_sboxes,[3]).

coveredby_sboxes_g(K,_40040,[],_40042) :-
!,
check_type(int_gteq(1),K).

coveredby_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
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geost_dims(1,K,DIMENSIONS),
ctr_logic(coveredby_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.96 covers sboxes

♦ META-DATA:

ctr_date(covers_sboxes,[’20070622’,’20090725’]).

ctr_origin(
covers_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(covers_sboxes,[covers]).

ctr_types(
covers_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
covers_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
covers_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
covers_sboxes,
covers_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],
[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-4,x-[[v-2],[v-3]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-1,t-[[v-3],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-2,t-[[v-2],[v-0]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-2]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(covers_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
covers_sboxes,
[items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]).

ctr_eval(covers_sboxes,[logic(covers_sboxes_g)]).

ctr_logic(
covers_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(covers_sboxes(Dims,O1,S1,O2,S2)--->
forall(

D,
Dims,
origin(O1,S1,D)#=<origin(O2,S2,D)#/\
end(O2,S2,D)#=<end(O1,S1,D))#/\

exists(
D,
Dims,
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origin(O1,S1,D)#=origin(O2,S2,D)#\/
end(O1,S1,D)#=end(O2,S2,D))),

(covers_objects(Dims,O1,O2)--->
forall(

S2,
sboxes([O2ˆsid]),
exists(

S1,
sboxes([O1ˆsid]),
covers_sboxes(Dims,O1,S1,O2,S2)))),

(all_covers(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>covers_objects(Dims,O1,O2)))),

all_covers(DIMENSIONS,OIDS)]).

ctr_contractible(covers_sboxes,[],’OBJECTS’,suffix).

ctr_application(covers_sboxes,[3]).

covers_sboxes_g(K,_40345,[],_40347) :-
!,
check_type(int_gteq(1),K).

covers_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
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geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(covers_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.97 crossing

♦ META-DATA:

ctr_date(crossing,[’20000128’,’20030820’,’20060806’]).

ctr_origin(
crossing,
Inspired by \cite{CormenLeisersonRivest90}.,
[]).

ctr_arguments(
crossing,
[’NCROSS’-dvar,
’SEGMENTS’-collection(ox-dvar,oy-dvar,ex-dvar,ey-dvar)]).

ctr_restrictions(
crossing,
[’NCROSS’>=0,
NCROSS=<
(size(’SEGMENTS’)*size(’SEGMENTS’)-size(’SEGMENTS’))/2,
required(’SEGMENTS’,[ox,oy,ex,ey])]).

ctr_example(
crossing,
crossing(

3,
[[ox-1,oy-4,ex-9,ey-2],
[ox-1,oy-1,ex-3,ey-5],
[ox-3,oy-2,ex-7,ey-4],
[ox-9,oy-1,ex-9,ey-4]])).

ctr_typical(crossing,[size(’SEGMENTS’)>1]).

ctr_exchangeable(
crossing,
[items(’SEGMENTS’,all),
attrs_sync(’SEGMENTS’,[[ox,oy],[ex,ey]]),
translate([’SEGMENTS’ˆox,’SEGMENTS’ˆex]),
translate([’SEGMENTS’ˆoy,’SEGMENTS’ˆey])]).

ctr_graph(
crossing,
[’SEGMENTS’],
2,
[’CLIQUE’(<)>>collection(s1,s2)],
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[max(s1ˆox,s1ˆex)>=min(s2ˆox,s2ˆex),
max(s2ˆox,s2ˆex)>=min(s1ˆox,s1ˆex),
max(s1ˆoy,s1ˆey)>=min(s2ˆoy,s2ˆey),
max(s2ˆoy,s2ˆey)>=min(s1ˆoy,s1ˆey),
(s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy)-
(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey)=
0#\/
(s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy)-
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey)=
0#\/
sign(

(s2ˆox-s1ˆex)*(s1ˆey-s1ˆoy)-
(s1ˆex-s1ˆox)*(s2ˆoy-s1ˆey))=\=

sign(
(s2ˆex-s1ˆex)*(s2ˆoy-s1ˆoy)-
(s2ˆox-s1ˆox)*(s2ˆey-s1ˆey))],

[’NARC’=’NCROSS’],
[’ACYCLIC’,’NO_LOOP’]).

ctr_pure_functional_dependency(crossing,[]).

ctr_functional_dependency(crossing,1,[2]).

ctr_application(crossing,[2]).
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B.98 cumulative

♦ META-DATA:

ctr_date(
cumulative,
[’20000128’,’20030820’,’20040530’,’20060806’,’20090923’]).

ctr_origin(cumulative,’\\cite{AggounBeldiceanu93}’,[]).

ctr_synonyms(cumulative,[cumulative_max]).

ctr_arguments(
cumulative,
[TASKS-
collection(

origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
cumulative,
cumulative(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],
8)).

ctr_typical(
cumulative,
[size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
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range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight>0,
’LIMIT’<sum(’TASKS’ˆheight)]).

ctr_exchangeable(
cumulative,
[items(’TASKS’,all),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare),
vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
cumulative,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_eval(cumulative,[builtin(cumulative_b)]).

ctr_contractible(cumulative,[],’TASKS’,any).

ctr_cond_imply(
cumulative,
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coloured_cumulative,
[’TASKS’ˆheight>0],
[],
[same(’TASKS’),same(’LIMIT’)]).

ctr_application(cumulative,[1]).

cumulative_b(TASKS,LIMIT) :-
collection(TASKS,[dvar,dvar_gteq(0),dvar,dvar_gteq(0)]),
integer(LIMIT),
LIMIT>=0,
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
get_attr3(TASKS,ENDS),
get_attr4(TASKS,HEIGHTS),
gen_cum_tasks(ORIGINS,DURATIONS,ENDS,HEIGHTS,1,Tasks),
cumulative(Tasks,[limit(LIMIT)]).
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B.99 cumulative convex

♦ META-DATA:

ctr_date(cumulative_convex,[’20050817’,’20060807’]).

ctr_origin(cumulative_convex,’Derived from %c’,[cumulative]).

ctr_types(cumulative_convex,[’POINTS’-collection(var-dvar)]).

ctr_arguments(
cumulative_convex,
[’TASKS’-collection(points-’POINTS’,height-dvar),
’LIMIT’-int]).

ctr_restrictions(
cumulative_convex,
[required(’POINTS’,var),
size(’POINTS’)>0,
required(’TASKS’,[points,height]),
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
cumulative_convex,
cumulative_convex(

[[points-[[var-2],[var-1],[var-5]],height-1],
[points-[[var-4],[var-5],[var-7]],height-2],
[points-
[[var-14],[var-13],[var-9],[var-11],[var-10]],
height-2]],

3)).

ctr_typical(
cumulative_convex,
[size(’TASKS’)>1,
’TASKS’ˆheight>0,
’LIMIT’<sum(’TASKS’ˆheight)]).

ctr_exchangeable(
cumulative_convex,
[items(’TASKS’,all),
items(’TASKS’ˆpoints,all),
vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare)]).
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ctr_derived_collections(
cumulative_convex,
[col(’INSTANTS’-collection(instant-dvar),

[item(instant-’TASKS’ˆpointsˆvar)])]).

ctr_graph(
cumulative_convex,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[alldifferent(tasksˆpoints)],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative_convex,
[’INSTANTS’,’TASKS’],
2,
[’PRODUCT’>>collection(instants,tasks)],
[between_min_max(instantsˆinstant,tasksˆpoints)],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_contractible(cumulative_convex,[],’TASKS’,any).

ctr_application(cumulative_convex,[1]).
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B.100 cumulative product

♦ META-DATA:

ctr_date(cumulative_product,[’20030820’,’20060807’,’20081227’]).

ctr_origin(cumulative_product,’Derived from %c.’,[cumulative]).

ctr_arguments(
cumulative_product,
[TASKS-
collection(

origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative_product,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=1,
’LIMIT’>=0]).

ctr_example(
cumulative_product,
cumulative_product(

[[origin-1,duration-3,end-4,height-1],
[origin-2,duration-9,end-11,height-2],
[origin-3,duration-10,end-13,height-1],
[origin-6,duration-6,end-12,height-1],
[origin-7,duration-2,end-9,height-3]],

6)).

ctr_typical(
cumulative_product,
[size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’LIMIT’<prod(’TASKS’ˆheight)]).
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ctr_exchangeable(
cumulative_product,
[items(’TASKS’,all),
vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
cumulative_product,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative_product,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆorigin=<tasks1ˆorigin,
tasks1ˆorigin<tasks2ˆend],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆheight)])]],
[product_ctr(variables,=<,’LIMIT’)]).

ctr_eval(
cumulative_product,
[reformulation(cumulative_product_r)]).

ctr_contractible(cumulative_product,[],’TASKS’,any).

ctr_application(cumulative_product,[1]).

cumulative_product_r(TASKS,LIMIT) :-
integer(LIMIT),
LIMIT>=1,
collection(



2850 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

TASKS,
[dvar,dvar_gteq(0),dvar,dvar(1,LIMIT)]),

get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
get_attr3(TASKS,ENDS),
get_attr4(TASKS,HEIGHTS),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
cumulative_product1(

ORIGINS,
ENDS,
HEIGHTS,
1,
ORIGINS,
ENDS,
HEIGHTS,
LIMIT).

cumulative_product1(
[],
[],
[],
_55154,
_55201,
_55248,
_55295,
_55342).

cumulative_product1(
[Oi|RO],
[Ei|RE],
[Hi|RH],
I,
ORIGINS,
ENDS,
HEIGHTS,
LIMIT) :-

cumulative_product2(
ORIGINS,
ENDS,
HEIGHTS,
1,
I,
Oi,
Ei,
Hi,
PRODi),
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call(PRODi#=<LIMIT),
I1 is I+1,
cumulative_product1(

RO,
RE,
RH,
I1,
ORIGINS,
ENDS,
HEIGHTS,
LIMIT).

cumulative_product2(
[],
[],
[],
_55157,
_55204,
_55251,
_55298,
_55345,
1).

cumulative_product2(
[_54787|RO],
[_54791|RE],
[_54795|RH],
J,
I,
Oi,
Ei,
Hi,
Hi*R) :-

I=J,
!,
J1 is J+1,
cumulative_product2(RO,RE,RH,J1,I,Oi,Ei,Hi,R).

cumulative_product2([Oj|RO],[Ej|RE],[Hj|RH],J,I,Oi,Ei,Hi,Hij*R) :-
I=\=J,
Hij in 1..Hj,
Oj#=<Oi#/\Ej#>Oi#/\Hij#=Hj#\/
(Oj#>Oi#\/Ej#=<Oi)#/\Hij#=1,
J1 is J+1,
cumulative_product2(RO,RE,RH,J1,I,Oi,Ei,Hi,R).
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B.101 cumulative two d

♦ META-DATA:

ctr_predefined(cumulative_two_d).

ctr_date(cumulative_two_d,[’20000128’,’20030820’,’20060807’]).

ctr_origin(
cumulative_two_d,
Inspired by %c and %c.,
[cumulative,diffn]).

ctr_arguments(
cumulative_two_d,
[RECTANGLES-
collection(

start1-dvar,
size1-dvar,
last1-dvar,
start2-dvar,
size2-dvar,
last2-dvar,
height-dvar),

’LIMIT’-int]).

ctr_restrictions(
cumulative_two_d,
[require_at_least(2,’RECTANGLES’,[start1,size1,last1]),
require_at_least(2,’RECTANGLES’,[start2,size2,last2]),
required(’RECTANGLES’,height),
’RECTANGLES’ˆsize1>=0,
’RECTANGLES’ˆsize2>=0,
’RECTANGLES’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
cumulative_two_d,
cumulative_two_d(

[[start1-1,
size1-4,
last1-4,
start2-3,
size2-3,
last2-5,
height-4],
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[start1-3,
size1-2,
last1-4,
start2-1,
size2-2,
last2-2,
height-2],

[start1-1,
size1-2,
last1-2,
start2-1,
size2-2,
last2-2,
height-3],

[start1-4,
size1-1,
last1-4,
start2-1,
size2-1,
last2-1,
height-1]],

4)).

ctr_typical(
cumulative_two_d,
[size(’RECTANGLES’)>1,
’RECTANGLES’ˆsize1>0,
’RECTANGLES’ˆsize2>0,
’RECTANGLES’ˆheight>0,
’LIMIT’<sum(’RECTANGLES’ˆheight)]).

ctr_exchangeable(
cumulative_two_d,
[items(’RECTANGLES’,all),
attrs_sync(

RECTANGLES,
[[start1,start2],
[size1,size2],
[last1,last2],
[height]]),

vals(
[’RECTANGLES’ˆheight],
int(>=(0)),
>,
dontcare,
dontcare),
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translate([’RECTANGLES’ˆstart1,’RECTANGLES’ˆlast1]),
translate([’RECTANGLES’ˆstart2,’RECTANGLES’ˆlast2]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_contractible(cumulative_two_d,[],’RECTANGLES’,any).

ctr_application(cumulative_two_d,[1]).
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B.102 cumulative with level of priority

♦ META-DATA:

ctr_date(
cumulative_with_level_of_priority,
[’20040530’,’20060807’]).

ctr_origin(cumulative_with_level_of_priority,’H.˜Simonis’,[]).

ctr_arguments(
cumulative_with_level_of_priority,
[TASKS-
collection(

priority-int,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’PRIORITIES’-collection(id-int,capacity-int)]).

ctr_restrictions(
cumulative_with_level_of_priority,
[required(’TASKS’,[priority,height]),
require_at_least(2,’TASKS’,[origin,duration,end]),
’TASKS’ˆpriority>=1,
’TASKS’ˆpriority=<size(’PRIORITIES’),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=0,
required(’PRIORITIES’,[id,capacity]),
’PRIORITIES’ˆid>=1,
’PRIORITIES’ˆid=<size(’PRIORITIES’),
increasing_seq(’PRIORITIES’,id),
increasing_seq(’PRIORITIES’,capacity)]).

ctr_example(
cumulative_with_level_of_priority,
cumulative_with_level_of_priority(

[[priority-1,origin-1,duration-2,end-3,height-1],
[priority-1,origin-2,duration-3,end-5,height-1],
[priority-1,origin-5,duration-2,end-7,height-2],
[priority-2,origin-3,duration-2,end-5,height-2],
[priority-2,origin-6,duration-3,end-9,height-1]],
[[id-1,capacity-2],[id-2,capacity-3]])).
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ctr_typical(
cumulative_with_level_of_priority,
[size(’TASKS’)>1,
range(’TASKS’ˆpriority)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight>0,
size(’PRIORITIES’)>1,
’PRIORITIES’ˆcapacity>0,
’PRIORITIES’ˆcapacity<sum(’TASKS’ˆheight),
size(’TASKS’)>size(’PRIORITIES’)]).

ctr_exchangeable(
cumulative_with_level_of_priority,
[items(’TASKS’,all),
vals(

[’TASKS’ˆpriority],
int(=<(size(’PRIORITIES’))),
<,
dontcare,
dontcare),

vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’PRIORITIES’ˆcapacity],int,<,dontcare,dontcare)]).

ctr_derived_collections(
cumulative_with_level_of_priority,
[col(TIME_POINTS-

collection(idp-int,duration-dvar,point-dvar),
[item(

idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idp-’TASKS’ˆpriority,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulative_with_level_of_priority,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
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[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
cumulative_with_level_of_priority,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

PRIORITIES,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidp=’PRIORITIES’ˆid,
time_pointsˆidp>=tasksˆpriority,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’PRIORITIES’ˆcapacity)]).

ctr_contractible(
cumulative_with_level_of_priority,
[],
TASKS,
any).

ctr_application(cumulative_with_level_of_priority,[1]).
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B.103 cumulatives

♦ META-DATA:

ctr_date(
cumulatives,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(cumulatives,’\\cite{BeldiceanuCarlsson02a}’,[]).

ctr_arguments(
cumulatives,
[TASKS-
collection(

machine-dvar,
origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’MACHINES’-collection(id-int,capacity-int),
’CTR’-atom]).

ctr_restrictions(
cumulatives,
[required(’TASKS’,[machine,height]),
require_at_least(2,’TASKS’,[origin,duration,end]),
in_attr(’TASKS’,machine,’MACHINES’,id),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
size(’MACHINES’)>0,
required(’MACHINES’,[id,capacity]),
distinct(’MACHINES’,id),
in_list(’CTR’,[=<,>=])]).

ctr_example(
cumulatives,
cumulatives(

[[machine-1,origin-2,duration-2,end-4,height- -2],
[machine-1,origin-1,duration-4,end-5,height-1],
[machine-1,origin-4,duration-2,end-6,height- -1],
[machine-1,origin-2,duration-3,end-5,height-2],
[machine-1,origin-5,duration-2,end-7,height-2],
[machine-2,origin-3,duration-2,end-5,height- -1],
[machine-2,origin-1,duration-4,end-5,height-1]],

[[id-1,capacity-0],[id-2,capacity-0]],
>=)).
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ctr_typical(
cumulatives,
[size(’TASKS’)>1,
range(’TASKS’ˆmachine)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight=\=0,
size(’MACHINES’)>1,
’MACHINES’ˆcapacity<sum(’TASKS’ˆheight),
size(’TASKS’)>size(’MACHINES’)]).

ctr_exchangeable(
cumulatives,
[items(’TASKS’,all),
items(’MACHINES’,all),
vals(

[’TASKS’ˆmachine,’MACHINES’ˆid],
int,
=\=,
all,
dontcare)]).

ctr_derived_collections(
cumulatives,
[col(TIME_POINTS-

collection(idm-int,duration-dvar,point-dvar),
[item(

idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆorigin),

item(
idm-’TASKS’ˆmachine,
duration-’TASKS’ˆduration,
point-’TASKS’ˆend)])]).

ctr_graph(
cumulatives,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin+tasksˆduration=tasksˆend],
[’NARC’=size(’TASKS’)],
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[]).

ctr_graph(
cumulatives,
[’TIME_POINTS’,’TASKS’],
2,
foreach(

MACHINES,
[’PRODUCT’>>collection(time_points,tasks)]),

[time_pointsˆidm=’MACHINES’ˆid,
time_pointsˆidm=tasksˆmachine,
time_pointsˆduration>0,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],
[],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,’CTR’,’MACHINES’ˆcapacity)]).

ctr_eval(cumulatives,[builtin(cumulatives_b)]).

ctr_contractible(
cumulatives,
[in_list(’RELOP’,[=<]),minval(’TASKS’ˆheight)>=0],
TASKS,
any).

ctr_application(cumulatives,[1]).

cumulatives_b(TASKS,MACHINES,=<) :-
!,
collection(TASKS,[dvar,dvar,dvar_gteq(0),dvar,dvar]),
get_attr1(TASKS,VMACHINES),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,DURATIONS),
get_attr4(TASKS,ENDS),
get_attr5(TASKS,HEIGHTS),
collection(MACHINES,[int,int]),
get_attr1(MACHINES,IDS),
get_attr2(MACHINES,CAPACITIES),
all_different(IDS),
cumulatives1(
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VMACHINES,
ORIGINS,
DURATIONS,
ENDS,
HEIGHTS,
Tasks),

cumulatives2(IDS,CAPACITIES,Machines),
cumulatives(Tasks,Machines,[bound(upper)]).

cumulatives_b(TASKS,MACHINES,>=) :-
collection(TASKS,[dvar,dvar,dvar_gteq(0),dvar,dvar]),
get_attr1(TASKS,VMACHINES),
get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,DURATIONS),
get_attr4(TASKS,ENDS),
get_attr5(TASKS,HEIGHTS),
collection(MACHINES,[int,int]),
get_attr1(MACHINES,IDS),
get_attr2(MACHINES,CAPACITIES),
all_different(IDS),
cumulatives1(

VMACHINES,
ORIGINS,
DURATIONS,
ENDS,
HEIGHTS,
Tasks),

cumulatives2(IDS,CAPACITIES,Machines),
cumulatives(Tasks,Machines,[bound(lower)]).

cumulatives1([],[],[],[],[],[]).

cumulatives1(
[M|RM],
[O|RO],
[D|RD],
[E|RE],
[H|RH],
[task(O,D,E,H,M)|R]) :-

cumulatives1(RM,RO,RD,RE,RH,R).

cumulatives2([],[],[]).

cumulatives2([I|RI],[C|RC],[machine(I,C)|R]) :-
cumulatives2(RI,RC,R).
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B.104 cutset

♦ META-DATA:

ctr_date(cutset,[’20030820’,’20040530’,’20060807’]).

ctr_origin(cutset,’\\cite{FagesLal03}’,[]).

ctr_arguments(
cutset,
[’SIZE_CUTSET’-dvar,
’NODES’-collection(index-int,succ-sint,bool-dvar)]).

ctr_restrictions(
cutset,
[’SIZE_CUTSET’>=0,
’SIZE_CUTSET’=<size(’NODES’),
required(’NODES’,[index,succ,bool]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆbool>=0,
’NODES’ˆbool=<1]).

ctr_example(
cutset,
cutset(

1,
[[index-1,succ-{2,3,4},bool-1],
[index-2,succ-{3},bool-1],
[index-3,succ-{4},bool-1],
[index-4,succ-{1},bool-0]])).

ctr_typical(
cutset,
[’SIZE_CUTSET’>0,
’SIZE_CUTSET’=<size(’NODES’),
size(’NODES’)>1]).

ctr_exchangeable(cutset,[items(’NODES’,all)]).

ctr_graph(
cutset,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
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[nodes2ˆindex in_set nodes1ˆsucc,
nodes1ˆbool=1,
nodes2ˆbool=1],
[’MAX_NSCC’=<1,’NVERTEX’=size(’NODES’)-’SIZE_CUTSET’],
[’ACYCLIC’,’NO_LOOP’]).
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B.105 cycle

♦ META-DATA:

ctr_date(cycle,[’20000128’,’20030820’,’20060807’,’20111223’]).

ctr_origin(cycle,’\\cite{BeldiceanuContejean94}’,[]).

ctr_arguments(
cycle,
[’NCYCLE’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
cycle,
[’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
cycle,
[cycle(

2,
[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]]),

cycle(
1,
[[index-1,succ-2],
[index-2,succ-5],
[index-3,succ-1],
[index-4,succ-3],
[index-5,succ-4]]),

cycle(
5,
[[index-1,succ-1],
[index-2,succ-2],
[index-3,succ-3],
[index-4,succ-4],
[index-5,succ-5]])]).
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ctr_typical(cycle,[’NCYCLE’<size(’NODES’),size(’NODES’)>2]).

ctr_exchangeable(
cycle,
[items(’NODES’,all),attrs_sync(’NODES’,[[index,succ]])]).

ctr_graph(
cycle,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[’ONE_SUCC’]).

ctr_eval(cycle,[checker(cycle_c),reformulation(cycle_r)]).

ctr_functional_dependency(cycle,1,[2]).

ctr_cond_imply(
cycle,
balance_cycle,
[’NCYCLE’=1],
[’BALANCE’=0],
[none,’NODES’]).

ctr_cond_imply(cycle,permutation,[],[],[index_to_col(’NODES’)]).

ctr_application(cycle,[2]).

ctr_sol(cycle,2,0,2,2,[1-1,2-1]).

ctr_sol(cycle,3,0,3,6,[1-2,2-3,3-1]).

ctr_sol(cycle,4,0,4,24,[1-6,2-11,3-6,4-1]).

ctr_sol(cycle,5,0,5,120,[1-24,2-50,3-35,4-10,5-1]).

ctr_sol(cycle,6,0,6,720,[1-120,2-274,3-225,4-85,5-15,6-1]).

ctr_sol(
cycle,
7,
0,
7,
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5040,
[1-720,2-1764,3-1624,4-735,5-175,6-21,7-1]).

ctr_sol(
cycle,
8,
0,
8,
40320,
[1-5040,2-13068,3-13132,4-6769,5-1960,6-322,7-28,8-1]).

ctr_sol(
cycle,
9,
0,
9,
362880,
[1-40320,
2-109584,
3-118124,
4-67284,
5-22449,
6-4536,
7-546,
8-36,
9-1]).

ctr_sol(
cycle,
10,
0,
10,
3628800,
[1-362880,
2-1026576,
3-1172700,
4-723680,
5-269325,
6-63273,
7-9450,
8-870,
9-45,
10-1]).

cycle_c(NCYCLE,NODES) :-
length(NODES,N),
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check_type(dvar(1,N),NCYCLE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,IND),
sort(IND,Js),
length(Js,N),
get_attr12(NODES,IND_SUCC),
keysort(IND_SUCC,SIND_SUCC),
remove_key_from_collection(SIND_SUCC,SUCCS),
length(Term,N),
list_to_tree(Term,Tree),
(for(J,1,N),
foreach(X,SUCCS),
foreach(Free,Term),foreach(J,Js),param(Tree)do
get_label(X,Tree,Free)),
sort(SUCCS,Js),
sort(Term,Cs),
length(Cs,NCYCLE).

cycle_r(NCYCLE,NODES) :-
length(NODES,N),
check_type(dvar(1,N),NCYCLE),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,IND),
sort(IND,SIND),
length(SIND,N),
get_attr12(NODES,IND_SUCC),
keysort(IND_SUCC,SIND_SUCC),
remove_key_from_collection(SIND_SUCC,Succ),
all_distinct(Succ),
(for(I,1,N),foreach(Min,Mins),param(Succ,N)do
length([I|Ss],N),
minimum(Min,[I|Ss]),
(foreach(S2,Ss),fromto(I,S1,S2,_88223),param(Succ)do
element(S1,Succ,S2))),

nvalue(NCYCLE,Mins).
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B.106 cycle card on path

♦ META-DATA:

ctr_date(
cycle_card_on_path,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(cycle_card_on_path,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_arguments(
cycle_card_on_path,
[’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,colour-dvar),
’ATLEAST’-int,
’ATMOST’-int,
’PATH_LEN’-int,
’VALUES’-collection(val-int)]).

ctr_restrictions(
cycle_card_on_path,
[’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,colour]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’ATLEAST’>=0,
’ATLEAST’=<’PATH_LEN’,
’ATMOST’>=’ATLEAST’,
’PATH_LEN’>=0,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
cycle_card_on_path,
cycle_card_on_path(

2,
[[index-1,succ-7,colour-2],
[index-2,succ-4,colour-3],
[index-3,succ-8,colour-2],
[index-4,succ-9,colour-1],
[index-5,succ-1,colour-2],
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[index-6,succ-2,colour-1],
[index-7,succ-5,colour-1],
[index-8,succ-6,colour-1],
[index-9,succ-3,colour-1]],
1,
2,
3,
[[val-1]])).

ctr_typical(
cycle_card_on_path,
[size(’NODES’)>2,
’NCYCLE’<size(’NODES’),
’ATLEAST’<’PATH_LEN’,
’ATMOST’>0,
’PATH_LEN’>1,
size(’NODES’)>size(’VALUES’),
’ATLEAST’>0#\/’ATMOST’<’PATH_LEN’]).

ctr_exchangeable(
cycle_card_on_path,
[items(’NODES’,all),
vals(

[’NODES’ˆcolour],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare),

vals([’ATLEAST’],int(>=(0)),>,dontcare,dontcare),
vals([’ATMOST’],int,<,dontcare,dontcare),
items(’VALUES’,all)]).

ctr_graph(
cycle_card_on_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[’ONE_SUCC’],
[’PATH_LENGTH’(’PATH_LEN’)>>
[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆcolour)])]],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).
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ctr_application(cycle_card_on_path,[2]).
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B.107 cycle or accessibility

♦ META-DATA:

ctr_date(
cycle_or_accessibility,
[’20000128’,’20030820’,’20060807’]).

ctr_origin(
cycle_or_accessibility,
Inspired by \cite{LabbeLaporteRodriguezMartin98}.,
[]).

ctr_arguments(
cycle_or_accessibility,
[’MAXDIST’-int,
’NCYCLE’-dvar,
’NODES’-collection(index-int,succ-dvar,x-int,y-int)]).

ctr_restrictions(
cycle_or_accessibility,
[’MAXDIST’>=0,
’NCYCLE’>=1,
’NCYCLE’=<size(’NODES’),
required(’NODES’,[index,succ,x,y]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=0,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆx>=0,
’NODES’ˆy>=0]).

ctr_example(
cycle_or_accessibility,
cycle_or_accessibility(

3,
2,
[[index-1,succ-6,x-4,y-5],
[index-2,succ-0,x-9,y-1],
[index-3,succ-0,x-2,y-4],
[index-4,succ-1,x-2,y-6],
[index-5,succ-5,x-7,y-2],
[index-6,succ-4,x-4,y-7],
[index-7,succ-0,x-6,y-4]])).
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ctr_typical(
cycle_or_accessibility,
[’MAXDIST’>0,’NCYCLE’<size(’NODES’),size(’NODES’)>2]).

ctr_exchangeable(
cycle_or_accessibility,
[items(’NODES’,all),
attrs_sync(’NODES’,[[index],[succ],[x,y]]),
translate([’NODES’ˆx]),
translate([’NODES’ˆy])]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NTREE’=0,’NCC’=’NCYCLE’],
[]).

ctr_graph(
cycle_or_accessibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex#\/
nodes1ˆsucc=0#/\nodes2ˆsucc=\=0#/\
abs(nodes1ˆx-nodes2ˆx)+abs(nodes1ˆy-nodes2ˆy)=<’MAXDIST’],
[’NVERTEX’=size(’NODES’)],
[],
[PRED>>
[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’NODES’ˆsucc)]),
destination]],

[nvalues_except_0(variables,=,1)]).

ctr_functional_dependency(cycle_or_accessibility,2,[3]).

ctr_application(cycle_or_accessibility,[3]).
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B.108 cycle resource

♦ META-DATA:

ctr_date(cycle_resource,[’20030820’,’20040530’,’20060807’]).

ctr_origin(cycle_resource,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_arguments(
cycle_resource,
[RESOURCE-
collection(id-int,first_task-dvar,nb_task-dvar),
’TASK’-collection(id-int,next_task-dvar,resource-dvar)]).

ctr_restrictions(
cycle_resource,
[required(’RESOURCE’,[id,first_task,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆfirst_task>=1,
’RESOURCE’ˆfirst_task=<size(’RESOURCE’)+size(’TASK’),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,next_task,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆnext_task>=1,
’TASK’ˆnext_task=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_example(
cycle_resource,
cycle_resource(

[[id-1,first_task-5,nb_task-3],
[id-2,first_task-2,nb_task-0],
[id-3,first_task-8,nb_task-2]],

[[id-4,next_task-7,resource-1],
[id-5,next_task-4,resource-1],
[id-6,next_task-3,resource-3],
[id-7,next_task-1,resource-1],
[id-8,next_task-6,resource-3]])).

ctr_typical(
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cycle_resource,
[size(’RESOURCE’)>1,
size(’TASK’)>1,
size(’TASK’)>size(’RESOURCE’)]).

ctr_exchangeable(
cycle_resource,
[items(’RESOURCE’,all),
items(’TASK’,all),
vals([’RESOURCE’ˆid,’TASK’ˆresource],int,=\=,all,in)]).

ctr_derived_collections(
cycle_resource,
[col(RESOURCE_TASK-

collection(index-int,succ-dvar,name-dvar),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆfirst_task,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆnext_task,
name-’TASK’ˆresource)])]).

ctr_graph(
cycle_resource,
[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname],
[’NTREE’=0,
’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)],
[’ONE_SUCC’]).

ctr_graph(
cycle_resource,
[’RESOURCE_TASK’],
2,
foreach(

RESOURCE,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],
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[’NVERTEX’=’RESOURCE’ˆnb_task+1],
[]).

ctr_application(cycle_resource,[2]).
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B.109 cyclic change

♦ META-DATA:

ctr_date(
cyclic_change,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(cyclic_change,’Derived from %c.’,[change]).

ctr_arguments(
cyclic_change,
[’NCHANGE’-dvar,
’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’CYCLE_LENGTH’>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar<’CYCLE_LENGTH’,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
cyclic_change,
cyclic_change(

2,
4,
[[var-3],[var-0],[var-2],[var-3],[var-1]],
=\=)).

ctr_typical(
cyclic_change,
[’NCHANGE’>0,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(cyclic_change,[items(’VARIABLES’,shift)]).

ctr_graph(
cyclic_change,
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[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’((variables1ˆvar+1)mod ’CYCLE_LENGTH’,

variables2ˆvar)],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(cyclic_change,[automaton(cyclic_change_a)]).

ctr_pure_functional_dependency(cyclic_change,[]).

ctr_functional_dependency(cyclic_change,1,[2,3,4]).

cyclic_change_a(FLAG,NCHANGE,CYCLE_LENGTH,VARIABLES,CTR) :-
integer(CYCLE_LENGTH),
CYCLE_LENGTH>0,
CYCLE_LENGTH_1 is CYCLE_LENGTH-1,
collection(VARIABLES,[dvar(0,CYCLE_LENGTH_1)]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
cyclic_change_signature(

VARIABLES,
SIGNATURE,
CYCLE_LENGTH,
CTR),

automaton(
SIGNATURE,
_44114,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

cyclic_change_signature([],[],_41520,_41521).

cyclic_change_signature([_41525],[],_41523,_41524) :-
!.

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
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[S|Ss],
CYCLE_LENGTH,
=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=\=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#\=VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=\=).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#<VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
<).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>=VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
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Ss,
CYCLE_LENGTH,
>=).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
>).

cyclic_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=<VAR2#<=>S,
cyclic_change_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=<).



2880 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.110 cyclic change joker

♦ META-DATA:

ctr_date(
cyclic_change_joker,
[’20000128’,’20030820’,’20040530’,’20060807’]).

ctr_origin(
cyclic_change_joker,
Derived from %c.,
[cyclic_change]).

ctr_arguments(
cyclic_change_joker,
[’NCHANGE’-dvar,
’CYCLE_LENGTH’-int,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
cyclic_change_joker,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’CYCLE_LENGTH’>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
cyclic_change_joker,
cyclic_change_joker(

2,
4,
[[var-3],
[var-0],
[var-2],
[var-4],
[var-4],
[var-4],
[var-3],
[var-1],
[var-4]],

=\=)).

ctr_typical(
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cyclic_change_joker,
[’NCHANGE’>0,
’CYCLE_LENGTH’>1,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
maxval(’VARIABLES’ˆvar)>=’CYCLE_LENGTH’,
in_list(’CTR’,[=\=])]).

ctr_typical_model(
cyclic_change_joker,
[atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
cyclic_change_joker,
[items(’VARIABLES’,shift)]).

ctr_graph(
cyclic_change_joker,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’((variables1ˆvar+1)mod ’CYCLE_LENGTH’,

variables2ˆvar),
variables1ˆvar<’CYCLE_LENGTH’,
variables2ˆvar<’CYCLE_LENGTH’],
[’NARC’=’NCHANGE’],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
cyclic_change_joker,
[automaton(cyclic_change_joker_a)]).

ctr_pure_functional_dependency(cyclic_change_joker,[]).

ctr_functional_dependency(cyclic_change_joker,1,[2,3,4]).

cyclic_change_joker_a(FLAG,NCHANGE,CYCLE_LENGTH,VARIABLES,CTR) :-
integer(CYCLE_LENGTH),
CYCLE_LENGTH>0,
collection(VARIABLES,[dvar_gteq(0)]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
cyclic_change_joker_signature(

VARIABLES,
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SIGNATURE,
CYCLE_LENGTH,
CTR),

automaton(
SIGNATURE,
_47157,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

cyclic_change_joker_signature([],[],_44780,_44781).

cyclic_change_joker_signature([_44785],[],_44783,_44784) :-
!.

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=\=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#\=VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(
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[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=\=).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#<VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
<).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>=) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>=VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
>=).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
>) :-

!,
(VAR1+1)mod CYCLE_LENGTH#>VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
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S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
>).

cyclic_change_joker_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
CYCLE_LENGTH,
=<) :-

!,
(VAR1+1)mod CYCLE_LENGTH#=<VAR2#/\
VAR1#<CYCLE_LENGTH#/\
VAR2#<CYCLE_LENGTH#<=>
S,
cyclic_change_joker_signature(

[[var-VAR2]|VARs],
Ss,
CYCLE_LENGTH,
=<).
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B.111 dag

♦ META-DATA:

ctr_date(dag,[’20061001’]).

ctr_origin(dag,’\\cite{Dooms06}’,[]).

ctr_arguments(dag,[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
dag,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
dag,
dag([[index-1,succ-{2,4}],

[index-2,succ-{3,4}],
[index-3,succ-{}],
[index-4,succ-{}],
[index-5,succ-{6}],
[index-6,succ-{}]])).

ctr_typical(dag,[size(’NODES’)>2]).

ctr_exchangeable(dag,[items(’NODES’,all)]).

ctr_graph(
dag,
[’NODES’],
1,
[’SELF’>>collection(nodes)],
[nodesˆkey in_set nodesˆsucc],
[’NARC’=0],
[]).

ctr_graph(
dag,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
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[nodes2ˆindex in_set nodes1ˆsucc],
[’MAX_NSCC’=<1],
[]).

ctr_application(dag,[1]).
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B.112 decreasing

♦ META-DATA:

ctr_date(decreasing,[’20040814’,’20060808’]).

ctr_origin(decreasing,’Inspired by %c.’,[increasing]).

ctr_arguments(decreasing,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(decreasing,[required(’VARIABLES’,var)]).

ctr_example(
decreasing,
decreasing([[var-8],[var-4],[var-1],[var-1]])).

ctr_typical(
decreasing,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(decreasing,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(decreasing,[translate([’VARIABLES’ˆvar])]).

ctr_graph(
decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>=variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
decreasing,
[checker(decreasing_c),automaton(decreasing_a)]).

ctr_contractible(decreasing,[],’VARIABLES’,any).

ctr_sol(decreasing,2,0,2,6,-).

ctr_sol(decreasing,3,0,3,20,-).

ctr_sol(decreasing,4,0,4,70,-).

ctr_sol(decreasing,5,0,5,252,-).



2888 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_sol(decreasing,6,0,6,924,-).

ctr_sol(decreasing,7,0,7,3432,-).

ctr_sol(decreasing,8,0,8,12870,-).

decreasing_c([[var-X],[var-Y]|_47816]) :-
X<Y,
!,
fail.

decreasing_c([]) :-
!.

decreasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
decreasing_c1(VARS).

decreasing_c1([X,Y|R]) :-
!,
X>=Y,
decreasing_c1([Y|R]).

decreasing_c1([_47806]) :-
!.

decreasing_c1([]).

decreasing_a(1,[]) :-
!.

decreasing_a(0,[]) :-
!,
fail.

decreasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
decreasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_48949,
SIGNATURE,
[source(s),sink(s)],
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[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

decreasing_signature([_47807],[]) :-
!.

decreasing_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..1,
VAR1#>=VAR2#<=>S,
decreasing_signature([[var-VAR2]|VARs],Ss).
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B.113 decreasing peak

♦ META-DATA:

ctr_date(decreasing_peak,[’20130209’]).

ctr_origin(
decreasing_peak,
Derived from %c and %c.,
[peak,decreasing]).

ctr_arguments(
decreasing_peak,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
decreasing_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
decreasing_peak,
decreasing_peak(

[[var-1],
[var-7],
[var-7],
[var-4],
[var-3],
[var-7],
[var-2],
[var-2],
[var-5],
[var-4]])).

ctr_typical(
decreasing_peak,
[size(’VARIABLES’)>=7,
range(’VARIABLES’ˆvar)>1,
peak(’VARIABLES’ˆvar)>=3]).

ctr_typical_model(decreasing_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
decreasing_peak,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
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decreasing_peak,
[checker(decreasing_peak_c),
automaton(decreasing_peak_a),
automaton_with_signature(decreasing_peak_a_s)]).

ctr_contractible(decreasing_peak,[],’VARIABLES’,prefix).

ctr_contractible(decreasing_peak,[],’VARIABLES’,suffix).

ctr_cond_imply(
decreasing_peak,
not_all_equal,
[peak(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(decreasing_peak,2,0,2,9,-).

ctr_sol(decreasing_peak,3,0,3,64,-).

ctr_sol(decreasing_peak,4,0,4,625,-).

ctr_sol(decreasing_peak,5,0,5,7553,-).

ctr_sol(decreasing_peak,6,0,6,105798,-).

ctr_sol(decreasing_peak,7,0,7,1666878,-).

ctr_sol(decreasing_peak,8,0,8,29090469,-).

decreasing_peak_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
L>0,
get_attr1(VARIABLES,VARS),
decreasing_peak_c(VARS,s,0).

decreasing_peak_c([V1,V2|R],s,A) :-
V1>=V2,
!,
decreasing_peak_c([V2|R],s,A).

decreasing_peak_c([_32156,V2|R],s,A) :-
!,
decreasing_peak_c([V2|R],u,A).



2892 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

decreasing_peak_c([V1,V2|R],u,A) :-
V1=<V2,
!,
decreasing_peak_c([V2|R],u,A).

decreasing_peak_c([V1,V2|R],u,_32155) :-
!,
decreasing_peak_c([V2|R],v,V1).

decreasing_peak_c([V1,V2|R],v,A) :-
V1>=V2,
!,
decreasing_peak_c([V2|R],v,A).

decreasing_peak_c([_32156,V2|R],v,A) :-
!,
decreasing_peak_c([V2|R],w,A).

decreasing_peak_c([V1,V2|R],w,A) :-
V1=<V2,
!,
decreasing_peak_c([V2|R],w,A).

decreasing_peak_c([V1,V2|R],w,A) :-
!,
A>=V1,
decreasing_peak_c([V2|R],v,V1).

decreasing_peak_c([_32156],_32154,_32155) :-
!.

decreasing_peak_c([],_32151,_32152).

ctr_automaton_signature(
decreasing_peak,
decreasing_peak_a,
pair_signature(1,signature)).

decreasing_peak_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
decreasing_peak_a_s(FLAG,VARIABLES,SIGNATURE).

decreasing_peak_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
L>=0,
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pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
Vi,
SIGNATURE,
[source(s),sink(s),sink(u),sink(v),sink(w)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,u),
arc(u,2,v,[Vi,F]),
arc(u,1,u),
arc(u,0,u),
arc(v,2,v),
arc(v,1,v),
arc(v,0,w),
arc(w,2,v,(A#>=Vi->[Vi,F])),
arc(w,2,v,(A#<Vi->[A,0])),
arc(w,1,w),
arc(w,0,w)],

[A,F],
[0,1],
[_A,FLAG]).
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B.114 decreasing valley

♦ META-DATA:

ctr_date(decreasing_valley,[’20130210’]).

ctr_origin(
decreasing_valley,
Derived from %c and %c.,
[valley,decreasing]).

ctr_arguments(
decreasing_valley,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
decreasing_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
decreasing_valley,
decreasing_valley(

[[var-1],
[var-7],
[var-6],
[var-8],
[var-3],
[var-7],
[var-3],
[var-3],
[var-5],
[var-4]])).

ctr_typical(
decreasing_valley,
[size(’VARIABLES’)>=7,
range(’VARIABLES’ˆvar)>1,
valley(’VARIABLES’ˆvar)>=3]).

ctr_typical_model(decreasing_valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
decreasing_valley,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
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decreasing_valley,
[checker(decreasing_valley_c),
automaton(decreasing_valley_a),
automaton_with_signature(decreasing_valley_a_s)]).

ctr_contractible(decreasing_valley,[],’VARIABLES’,prefix).

ctr_contractible(decreasing_valley,[],’VARIABLES’,suffix).

ctr_cond_imply(
decreasing_valley,
not_all_equal,
[valley(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(decreasing_valley,2,0,2,9,-).

ctr_sol(decreasing_valley,3,0,3,64,-).

ctr_sol(decreasing_valley,4,0,4,625,-).

ctr_sol(decreasing_valley,5,0,5,7553,-).

ctr_sol(decreasing_valley,6,0,6,105798,-).

ctr_sol(decreasing_valley,7,0,7,1666878,-).

ctr_sol(decreasing_valley,8,0,8,29090469,-).

decreasing_valley_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
L>0,
get_attr1(VARIABLES,VARS),
decreasing_valley_c(VARS,s,0).

decreasing_valley_c([V1,V2|R],s,A) :-
V1=<V2,
!,
decreasing_valley_c([V2|R],s,A).

decreasing_valley_c([_32192,V2|R],s,A) :-
!,
decreasing_valley_c([V2|R],u,A).
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decreasing_valley_c([V1,V2|R],u,A) :-
V1>=V2,
!,
decreasing_valley_c([V2|R],u,A).

decreasing_valley_c([V1,V2|R],u,_32191) :-
!,
decreasing_valley_c([V2|R],v,V1).

decreasing_valley_c([V1,V2|R],v,A) :-
V1=<V2,
!,
decreasing_valley_c([V2|R],v,A).

decreasing_valley_c([_32192,V2|R],v,A) :-
!,
decreasing_valley_c([V2|R],w,A).

decreasing_valley_c([V1,V2|R],w,A) :-
V1>=V2,
!,
decreasing_valley_c([V2|R],w,A).

decreasing_valley_c([V1,V2|R],w,A) :-
!,
A>=V1,
decreasing_valley_c([V2|R],v,V1).

decreasing_valley_c([_32192],_32190,_32191) :-
!.

decreasing_valley_c([],_32187,_32188).

ctr_automaton_signature(
decreasing_valley,
decreasing_valley_a,
pair_signature(1,signature)).

decreasing_valley_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
decreasing_valley_a_s(FLAG,VARIABLES,SIGNATURE).

decreasing_valley_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
L>=0,
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pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
Vi,
SIGNATURE,
[source(s),sink(s),sink(u),sink(v),sink(w)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(u,0,v,[Vi,F]),
arc(u,1,u),
arc(u,2,u),
arc(v,0,v),
arc(v,1,v),
arc(v,2,w),
arc(w,0,v,(A#>=Vi->[Vi,F])),
arc(w,0,v,(A#<Vi->[A,0])),
arc(w,1,w),
arc(w,2,w)],

[A,F],
[0,1],
[_A,FLAG]).
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B.115 deepest valley

♦ META-DATA:

ctr_date(deepest_valley,[’20040530’]).

ctr_origin(deepest_valley,’Derived from %c.’,[valley]).

ctr_arguments(
deepest_valley,
[’DEPTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(deepest_valley,[required(’VARIABLES’,var)]).

ctr_example(
deepest_valley,
[deepest_valley(

2,
[[var-5],
[var-3],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]]),

deepest_valley(
7,
[[var-1],
[var-3],
[var-4],
[var-8],
[var-8],
[var-8],
[var-7],
[var-8]])]).

ctr_typical(
deepest_valley,
[size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>2,
valley(’VARIABLES’ˆvar)>0]).

ctr_typical_model(deepest_valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(deepest_valley,[items(’VARIABLES’,reverse)]).
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ctr_eval(
deepest_valley,
[checker(deepest_valley_c),
automaton(deepest_valley_a),
automaton_with_signature(deepest_valley_a_s)]).

ctr_pure_functional_dependency(deepest_valley,[]).

ctr_functional_dependency(deepest_valley,1,[2]).

ctr_sol(deepest_valley,2,0,2,9,[1000000-9]).

ctr_sol(deepest_valley,3,0,3,64,[0-9,1-4,2-1,1000000-50]).

ctr_sol(
deepest_valley,
4,
0,
4,
625,
[0-176,1-99,2-44,3-11,1000000-295]).

ctr_sol(
deepest_valley,
5,
0,
5,
7776,
[0-2900,1-1712,2-900,3-380,4-92,1000000-1792]).

ctr_sol(
deepest_valley,
6,
0,
6,
117649,
[0-50472,
1-29125,
2-15680,
3-7587,
4-3000,
5-697,
1000000-11088]).

ctr_sol(
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deepest_valley,
7,
0,
7,
2097152,
[0-976227,
1-540576,
2-283250,
3-138544,
4-61389,
5-22632,
6-5036,
1000000-69498]).

ctr_sol(
deepest_valley,
8,
0,
8,
43046721,
[0-21133632,
1-11233250,
2-5665896,
3-2693425,
4-1195056,
5-484020,
6-166208,
7-35443,
1000000-439791]).

deepest_valley_c(DEPTH,VARIABLES) :-
check_type(dvar,DEPTH),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
MAXINT=1000000,
deepest_valley_c(VARS,s,MAXINT,DEPTH).

deepest_valley_c([V1,V2|R],s,C,DEPTH) :-
V1=<V2,
!,
deepest_valley_c([V2|R],s,C,DEPTH).

deepest_valley_c([_V1,V2|R],s,C,DEPTH) :-
!,
deepest_valley_c([V2|R],u,C,DEPTH).
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deepest_valley_c([V1,V2|R],u,C,DEPTH) :-
V1>=V2,
!,
deepest_valley_c([V2|R],u,C,DEPTH).

deepest_valley_c([V1,V2|R],u,C,DEPTH) :-
!,
C1 is min(C,V1),
deepest_valley_c([V2|R],s,C1,DEPTH).

deepest_valley_c([_48254],_48251,DEPTH,DEPTH) :-
!.

deepest_valley_c([],_48248,DEPTH,DEPTH).

deepest_valley_counters_check([V1,V2|R],s,C,[C|S]) :-
V1=<V2,
!,
deepest_valley_counters_check([V2|R],s,C,S).

deepest_valley_counters_check([_V1,V2|R],s,C,[C|S]) :-
!,
deepest_valley_counters_check([V2|R],u,C,S).

deepest_valley_counters_check([V1,V2|R],u,C,[C|S]) :-
V1>=V2,
!,
deepest_valley_counters_check([V2|R],u,C,S).

deepest_valley_counters_check([V1,V2|R],u,C,[C1|S]) :-
!,
C1 is min(C,V1),
deepest_valley_counters_check([V2|R],s,C1,S).

deepest_valley_counters_check([V|R],init,C,[C|S]) :-
!,
deepest_valley_counters_check([V|R],s,C,S).

deepest_valley_counters_check([_48251],_48248,_48249,[]).

ctr_automaton_signature(
deepest_valley,
deepest_valley_a,
pair_signature(2,signature)).

deepest_valley_a(FLAG,DEPTH,VARIABLES) :-
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pair_signature(VARIABLES,SIGNATURE),
deepest_valley_a_s(FLAG,DEPTH,VARIABLES,SIGNATURE).

deepest_valley_a_s(FLAG,DEPTH,VARIABLES,SIGNATURE) :-
check_type(dvar,DEPTH),
collection(VARIABLES,[dvar]),
MAXINT=1000000,
pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
VAR1,
SIGNATURE,
[source(s),sink(s),sink(u)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(u,0,s,[min(C,VAR1)]),
arc(u,1,u),
arc(u,2,u)],

[C],
[MAXINT],
[COUNT]),

COUNT#=DEPTH#<=>FLAG.
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B.116 derangement

♦ META-DATA:

ctr_date(
derangement,
[’20000128’,’20030820’,’20040530’,’20060808’]).

ctr_origin(derangement,’Derived from %c.’,[cycle]).

ctr_arguments(
derangement,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
derangement,
[size(’NODES’)>1,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
derangement,
derangement(

[[index-1,succ-2],
[index-2,succ-1],
[index-3,succ-5],
[index-4,succ-3],
[index-5,succ-4]])).

ctr_typical(derangement,[size(’NODES’)>2]).

ctr_exchangeable(
derangement,
[items(’NODES’,all),attrs_sync(’NODES’,[[index,succ]])]).

ctr_graph(
derangement,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes1ˆsucc=\=nodes1ˆindex],
[’NTREE’=0],
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[’ONE_SUCC’]).

ctr_eval(
derangement,
[checker(derangement_c),reformulation(derangement_r)]).

ctr_cond_imply(derangement,permutation,[],[],index_to_col).

ctr_sol(derangement,2,0,2,1,-).

ctr_sol(derangement,3,0,3,2,-).

ctr_sol(derangement,4,0,4,9,-).

ctr_sol(derangement,5,0,5,44,-).

ctr_sol(derangement,6,0,6,265,-).

ctr_sol(derangement,7,0,7,1854,-).

ctr_sol(derangement,8,0,8,14833,-).

ctr_sol(derangement,9,0,9,133496,-).

ctr_sol(derangement,10,0,10,1334961,-).

derangement_r(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
all_different(INDEXES),
derangement1(SUCCS,INDEXES),
all_different(SUCCS).

derangement_c([[_50427,succ-V],[_50438,succ-V]|_50437]) :-
!,
fail.

derangement_c(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),int(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
derangement1_fix(SUCCS,INDEXES),
sort(SUCCS,SSUCCS),
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length(SSUCCS,N),
sort(INDEXES,SINDEXES),
length(SINDEXES,N).
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B.117 differ from at least k pos

♦ META-DATA:

ctr_date(
differ_from_at_least_k_pos,
[’20030820’,’20040530’,’20060808’]).

ctr_origin(
differ_from_at_least_k_pos,
Inspired by \cite{Frutos97}.,
[]).

ctr_types(
differ_from_at_least_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
differ_from_at_least_k_pos,
[’K’-int,’VECTOR1’-’VECTOR’,’VECTOR2’-’VECTOR’]).

ctr_restrictions(
differ_from_at_least_k_pos,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
’K’>=0,
’K’=<size(’VECTOR1’),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
differ_from_at_least_k_pos,
differ_from_at_least_k_pos(

2,
[[var-2],[var-5],[var-2],[var-0]],
[[var-3],[var-6],[var-2],[var-1]])).

ctr_typical(
differ_from_at_least_k_pos,
[’K’>0,’K’<size(’VECTOR1’),size(’VECTOR1’)>1]).

ctr_exchangeable(
differ_from_at_least_k_pos,
[args([[’K’],[’VECTOR1’,’VECTOR2’]]),
vals([’K’],int(>=(0)),>,dontcare,dontcare),
items_sync(’VECTOR1’,’VECTOR2’,all)]).
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ctr_graph(
differ_from_at_least_k_pos,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=’K’],
[]).

ctr_eval(
differ_from_at_least_k_pos,
[reformulation(differ_from_at_least_k_pos_r),
automaton(differ_from_at_least_k_pos_a),
checker(differ_from_at_least_k_pos_c)]).

ctr_extensible(
differ_from_at_least_k_pos,
[],
[’VARIABLES1’,’VARIABLES2’],
any).

differ_from_at_least_k_pos_r(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,N1),
length(VECTOR2,N2),
K>=0,
K=<N1,
N1=N2,
N1>=1,
differ_from_k_pos(VECTOR1,VECTOR2,SumBool),
call(K#=<SumBool).

differ_from_at_least_k_pos_a(FLAG,K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,N1),
length(VECTOR2,N2),
K>=0,
K=<N1,
N1=N2,
N1>=1,
differ_from_at_least_k_pos_signature(

VECTOR1,
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VECTOR2,
SIGNATURE),

automaton(
SIGNATURE,
_45093,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s,[C+1]),arc(s,1,s)],
[C],
[0],
[COUNT]),

COUNT#>=K#<=>FLAG.

differ_from_at_least_k_pos_signature([],[],[]).

differ_from_at_least_k_pos_signature(
[[var-VAR1]|VARS1],
[[var-VAR2]|VARS2],
[S|Ss]) :-

VAR1#=VAR2#<=>S,
differ_from_at_least_k_pos_signature(VARS1,VARS2,Ss).

differ_from_at_least_k_pos_c(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,N),
length(VECTOR2,N),
N>=1,
K>=0,
( K=0 ->

true
; K=<N,

differ_from_at_least_k_pos_check(
VECTOR1,
VECTOR2,
N,
K)

).

differ_from_at_least_k_pos_check([],[],_42497,0) :-
!.

differ_from_at_least_k_pos_check(
[[_42504-U]|R],
[[_42515-V]|S],
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N,
K) :-

( U=V ->
NewK is K

; NewK is K-1
),
( NewK=<0 ->

true
; NewN is N-1,

NewK=<NewN,
differ_from_at_least_k_pos_check(R,S,NewN,NewK)

).
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B.118 differ from at most k pos

♦ META-DATA:

ctr_date(differ_from_at_most_k_pos,[’20120227’]).

ctr_origin(
differ_from_at_most_k_pos,
Inspired by %c.,
[differ_from_at_least_k_pos]).

ctr_types(
differ_from_at_most_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
differ_from_at_most_k_pos,
[’K’-int,’VECTOR1’-’VECTOR’,’VECTOR2’-’VECTOR’]).

ctr_restrictions(
differ_from_at_most_k_pos,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
’K’>=0,
’K’=<size(’VECTOR1’),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
differ_from_at_most_k_pos,
differ_from_at_most_k_pos(

3,
[[var-2],[var-5],[var-2],[var-0]],
[[var-3],[var-6],[var-2],[var-0]])).

ctr_typical(
differ_from_at_most_k_pos,
[’K’>0,’K’<size(’VECTOR1’),size(’VECTOR1’)>1]).

ctr_exchangeable(
differ_from_at_most_k_pos,
[args([[’K’],[’VECTOR1’,’VECTOR2’]]),
vals([’K’],int(=<(size(’VECTOR1’))),<,dontcare,dontcare),
items_sync(’VECTOR1’,’VECTOR2’,all)]).

ctr_graph(
differ_from_at_most_k_pos,
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[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’=<’K’],
[]).

ctr_eval(
differ_from_at_most_k_pos,
[reformulation(differ_from_at_most_k_pos_r),
checker(differ_from_at_most_k_pos_c)]).

ctr_contractible(
differ_from_at_most_k_pos,
[],
[’VARIABLES1’,’VARIABLES2’],
any).

differ_from_at_most_k_pos_r(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,N1),
length(VECTOR2,N2),
K>=0,
K=<N1,
N1=N2,
N1>=1,
differ_from_k_pos(VECTOR1,VECTOR2,SumBool),
call(K#>=SumBool).

differ_from_at_most_k_pos_c(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,N),
length(VECTOR2,N),
N>=1,
K>=0,
K=<N,
( N=<K ->

true
; differ_from_at_most_k_pos_check(

VECTOR1,
VECTOR2,
N,
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K)
).

differ_from_at_most_k_pos_check([],[],_38043,0) :-
!.

differ_from_at_most_k_pos_check(
[[_38050-U]|R],
[[_38061-V]|S],
N,
K) :-

( U=V ->
NewK is K

; NewK is K-1,
NewK>=0

),
NewN is N-1,
( NewN=<NewK ->

true
; differ_from_at_most_k_pos_check(R,S,NewN,NewK)
).
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B.119 differ from exactly k pos

♦ META-DATA:

ctr_date(differ_from_exactly_k_pos,[’20120227’]).

ctr_origin(
differ_from_exactly_k_pos,
Inspired by %c.,
[differ_from_at_least_k_pos]).

ctr_types(
differ_from_exactly_k_pos,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
differ_from_exactly_k_pos,
[’K’-int,’VECTOR1’-’VECTOR’,’VECTOR2’-’VECTOR’]).

ctr_restrictions(
differ_from_exactly_k_pos,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
’K’>=0,
’K’=<size(’VECTOR1’),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
differ_from_exactly_k_pos,
differ_from_exactly_k_pos(

2,
[[var-3],[var-0],[var-2],[var-0]],
[[var-3],[var-6],[var-2],[var-1]])).

ctr_typical(
differ_from_exactly_k_pos,
[’K’>0,’K’=<size(’VECTOR1’),size(’VECTOR1’)>1]).

ctr_exchangeable(
differ_from_exactly_k_pos,
[args([[’K’],[’VECTOR1’,’VECTOR2’]]),
items_sync(’VECTOR1’,’VECTOR2’,all)]).

ctr_graph(
differ_from_exactly_k_pos,
[’VECTOR1’,’VECTOR2’],
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2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’=’K’],
[]).

ctr_eval(
differ_from_exactly_k_pos,
[reformulation(differ_from_exactly_k_pos_r),
checker(differ_from_exactly_k_pos_c)]).

ctr_pure_functional_dependency(differ_from_exactly_k_pos,[]).

ctr_functional_dependency(differ_from_exactly_k_pos,1,[2]).

differ_from_exactly_k_pos_r(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,N1),
length(VECTOR2,N2),
K>=0,
K=<N1,
N1=N2,
N1>=1,
differ_from_k_pos(VECTOR1,VECTOR2,SumBool),
call(K#=SumBool).

differ_from_exactly_k_pos_c(K,VECTOR1,VECTOR2) :-
integer(K),
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,N),
length(VECTOR2,N),
N>=1,
K>=0,
K=<N,
differ_from_exactly_k_pos_check(VECTOR1,VECTOR2,N,K).

differ_from_exactly_k_pos_check([],[],_39223,0) :-
!.

differ_from_exactly_k_pos_check(
[[_39230-U]|R],
[[_39241-V]|S],
N,
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K) :-
( U=V ->

NewK is K
; NewK is K-1,

NewK>=0
),
NewN is N-1,
NewK=<NewN,
differ_from_exactly_k_pos_check(R,S,NewN,NewK).
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B.120 diffn

♦ META-DATA:

ctr_date(
diffn,
[’20000128’,’20030820’,’20040530’,’20051001’,’20060808’]).

ctr_origin(diffn,’\\cite{BeldiceanuContejean94}’,[]).

ctr_synonyms(diffn,[disjoint,disjoint1,disjoint2,diff2]).

ctr_types(
diffn,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
diffn,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_example(
diffn,
diffn(

[[orth-[[ori-2,siz-2,end-4],[ori-1,siz-2,end-3]]],
[orth-[[ori-4,siz-4,end-8],[ori-2,siz-2,end-4]]],
[orth-[[ori-6,siz-5,end-11],[ori-5,siz-2,end-7]]]])).

ctr_typical(
diffn,
[size(’ORTHOTOPE’)>1,
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
diffn,
[items(’ORTHOTOPES’,all),
items_sync(’ORTHOTOPES’ˆorth,all),
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vals(
[’ORTHOTOPES’ˆorthˆsiz],
int(>=(0)),
>,
dontcare,
dontcare),

translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆend])]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)],
[]).

ctr_graph(
diffn,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_do_not_overlap(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[NARC=
size(’ORTHOTOPES’)*size(’ORTHOTOPES’)-size(’ORTHOTOPES’)],
[]).

ctr_eval(diffn,[reformulation(diffn_r),density(diffn_d)]).

ctr_contractible(diffn,[],’ORTHOTOPES’,any).

ctr_application(diffn,[1]).

diffn_r([]) :-
!.

diffn_r(ORTHOTOPES) :-
ORTHOTOPES=[[_77236-ORTH1]|_77232],
length(ORTH1,K),
collection(

ORTHOTOPES,
[col(K,[dvar,dvar_gteq(0),dvar])]),

get_col_attr1(ORTHOTOPES,1,ORIS),
get_col_attr1(ORTHOTOPES,2,SIZS),
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get_col_attr1(ORTHOTOPES,3,ENDS),
( K=2 ->

diffn0(ORIS,SIZS,ENDS,RECTS),
disjoint2(RECTS)

; diffn_fixed_size(SIZS) ->
length(Zeros,K),
domain(Zeros,0,0),
diffn5(ORIS,SIZS,ENDS,1,Zeros,OBJS,SHAPES),
geost(OBJS,SHAPES)

; diffn1(ORIS,SIZS,ENDS)
).

diffn_fixed_size([]).

diffn_fixed_size([L|R]) :-
diffn_fixed_size1(L),
diffn_fixed_size(R).

diffn_fixed_size1([]).

diffn_fixed_size1([S|R]) :-
integer(S),
S\=0,
diffn_fixed_size1(R).

diffn0([],[],[],[]).

diffn0([[X,Y]|ORIS],[[L,H]|SIZS],[END|ENDS],[t(X,L,Y,H)|R]) :-
diffn2([X,Y],[L,H],END),
diffn0(ORIS,SIZS,ENDS,R).

diffn1([ORI1],[SIZ1],[END1]) :-
!,
diffn2(ORI1,SIZ1,END1).

diffn1([ORI1,ORI2|ORIS],[SIZ1,SIZ2|SIZS],[END1,END2|ENDS]) :-
diffn2(ORI1,SIZ1,END1),
diffn3([ORI2|ORIS],[END2|ENDS],ORI1,END1),
diffn1([ORI2|ORIS],[SIZ2|SIZS],[END2|ENDS]).

diffn2([],[],[]).

diffn2([O|RO],[S|RS],[E|RE]) :-
E#=O+S,
diffn2(RO,RS,RE).
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diffn3([],[],_77221,_77222).

diffn3([ORI2|ORIS],[END2|ENDS],ORI1,END1) :-
diffn4(ORI1,END1,ORI2,END2,Disjunction),
call(Disjunction),
diffn3(ORIS,ENDS,ORI1,END1).

diffn4([],[],[],[],0).

diffn4([O1|R],[E1|S],[O2|T],[E2|U],E1#=<O2#\/E2#=<O1#\/V) :-
diffn4(R,S,T,U,V).

diffn5([],[],[],_77222,_77223,[],[]).

diffn5(
[ORI|ORIS],
[SIZ|SIZS],
[END|ENDS],
I,
Zeros,
[object(I,I,ORI)|OBJS],
[sbox(I,Zeros,SIZ)|SHAPES]) :-

diffn2(ORI,SIZ,END),
I1 is I+1,
diffn5(ORIS,SIZS,ENDS,I1,Zeros,OBJS,SHAPES).

diffn_d(0,[]) :-
!.

diffn_d(Density,[O|R]) :-
O=[orth-L],
length(L,N),
length(LMin,N),
length(LMax,N),
diffn_minmax([O|R],LMin,LMax,Min,Max),
diffn_availabel(Min,Max,1,Available),
diffn_needed([O|R],0,Needed),
Density is Needed/Available.

diffn_minmax([],Min,Max,Min,Max) :-
!.

diffn_minmax([[orth-O]|R],LMin,LMax,Min,Max) :-
diffn_minmax1(O,LMin,LMax,LMin1,LMax1),
diffn_minmax(R,LMin1,LMax1,Min,Max).
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diffn_minmax1([],[],[],[],[]) :-
!.

diffn_minmax1(
[[_77232-O,_77236,_77241-E]|R],
[MinCur|S],
[MaxCur|T],
[MinNew|U],
[MaxNew|V]) :-

( var(MinCur) ->
MinNew=O

; MinNew is min(O,MinCur)
),
( var(MaxCur) ->

MaxNew=E
; MaxNew is max(E,MaxCur)
),
diffn_minmax1(R,S,T,U,V).

diffn_availabel([],[],A,A) :-
!.

diffn_availabel([Min|R],[Max|S],Cur,Res) :-
NewCur is Cur*(Max-Min),
diffn_availabel(R,S,NewCur,Res).

diffn_needed([],N,N) :-
!.

diffn_needed([[orth-O]|R],Cur,Res) :-
diffn_vol(O,1,Vol),
NewCur is Cur+Vol,
diffn_needed(R,NewCur,Res).

diffn_vol([],V,V) :-
!.

diffn_vol([[_77227,_77232-S,_77236]|R],Cur,Res) :-
NewCur is Cur*S,
diffn_vol(R,NewCur,Res).
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B.121 diffn column

♦ META-DATA:

ctr_date(diffn_column,[’20030820’]).

ctr_origin(
diffn_column,
\index{CHIP|indexuse}CHIP: option guillotine cut (column) of %c.,
[diffn]).

ctr_types(
diffn_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_column,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’DIM’-int]).

ctr_restrictions(
diffn_column,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_example(
diffn_column,
diffn_column(

[[orth-[[ori-1,siz-3,end-4],[ori-3,siz-2,end-5]]],
[orth-[[ori-9,siz-1,end-10],[ori-4,siz-3,end-7]]],
[orth-[[ori-4,siz-2,end-6],[ori-3,siz-4,end-7]]],
[orth-[[ori-1,siz-3,end-4],[ori-6,siz-1,end-7]]],
[orth-[[ori-6,siz-2,end-8],[ori-1,siz-4,end-5]]],
[orth-[[ori-10,siz-1,end-11],[ori-1,siz-1,end-2]]],
[orth-[[ori-9,siz-1,end-10],[ori-1,siz-1,end-2]]],
[orth-[[ori-6,siz-2,end-8],[ori-6,siz-1,end-7]]]],

1)).

ctr_typical(
diffn_column,
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[size(’ORTHOTOPE’)>1,
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
diffn_column,
[items(’ORTHOTOPES’,all),
translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆend])]).

ctr_graph(
diffn_column,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_column(orthotopes1ˆorth,orthotopes2ˆorth,’DIM’)],
[’NARC’=size(’ORTHOTOPES’)*(size(’ORTHOTOPES’)-1)/2],
[]).

ctr_eval(diffn_column,[reformulation(diffn_column_r)]).

ctr_contractible(diffn_column,[],’ORTHOTOPES’,any).

ctr_application(diffn_column,[1]).

diffn_column_r([],DIM) :-
integer(DIM),
DIM>0.

diffn_column_r(ORTHOTOPES,DIM) :-
ORTHOTOPES=[[_41235-ORTH1]|_41231],
length(ORTH1,K),
collection(

ORTHOTOPES,
[col(K,[dvar,dvar_gteq(0),dvar])]),

check_type(int(1,K),DIM),
eval(diffn(ORTHOTOPES)),
get_attr1(ORTHOTOPES,ORTHOTOPES1),
diffn_column1(ORTHOTOPES1,DIM).

diffn_column1([],_41216).

diffn_column1([_41220],_41219) :-
!.

diffn_column1([O1,O2|R],DIM) :-
eval(two_orth_column(O1,O2,DIM)),
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diffn_column1([O2|R],DIM).
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B.122 diffn include

♦ META-DATA:

ctr_date(diffn_include,[’20030820’,’20090523’]).

ctr_origin(
diffn_include,
\index{CHIP|indexuse}CHIP: option guillotine cut (include) of %c.,
[diffn]).

ctr_types(
diffn_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
diffn_include,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),’DIM’-int]).

ctr_restrictions(
diffn_include,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE’),
diffn(’ORTHOTOPES’)]).

ctr_example(
diffn_include,
diffn_include(

[[orth-[[ori-8,siz-1,end-9],[ori-4,siz-1,end-5]]],
[orth-[[ori-9,siz-1,end-10],[ori-4,siz-3,end-7]]],
[orth-[[ori-6,siz-3,end-9],[ori-5,siz-2,end-7]]],
[orth-[[ori-1,siz-3,end-4],[ori-6,siz-1,end-7]]],
[orth-[[ori-4,siz-2,end-6],[ori-3,siz-4,end-7]]],
[orth-[[ori-6,siz-4,end-10],[ori-1,siz-1,end-2]]],
[orth-[[ori-10,siz-1,end-11],[ori-1,siz-1,end-2]]],
[orth-[[ori-6,siz-5,end-11],[ori-2,siz-2,end-4]]],
[orth-[[ori-6,siz-2,end-8],[ori-4,siz-1,end-5]]],
[orth-[[ori-1,siz-5,end-6],[ori-1,siz-2,end-3]]],
[orth-[[ori-1,siz-3,end-4],[ori-3,siz-2,end-5]]],
[orth-[[ori-1,siz-2,end-3],[ori-5,siz-1,end-6]]]],
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1)).

ctr_typical(
diffn_include,
[size(’ORTHOTOPE’)>1,
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
diffn_include,
[items(’ORTHOTOPES’,all),
translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆend])]).

ctr_graph(
diffn_include,
[’ORTHOTOPES’],
2,
[’CLIQUE’(<)>>collection(orthotopes1,orthotopes2)],
[two_orth_include(

orthotopes1ˆorth,
orthotopes2ˆorth,
DIM)],

[’NARC’=size(’ORTHOTOPES’)*(size(’ORTHOTOPES’)-1)/2],
[]).

ctr_eval(diffn_include,[reformulation(diffn_include_r)]).

ctr_contractible(diffn_include,[],’ORTHOTOPES’,any).

ctr_application(diffn_include,[1]).

diffn_include_r([],DIM) :-
integer(DIM),
DIM>0.

diffn_include_r(ORTHOTOPES,DIM) :-
ORTHOTOPES=[[_42725-ORTH1]|_42721],
length(ORTH1,K),
collection(

ORTHOTOPES,
[col(K,[dvar,dvar_gteq(0),dvar])]),

check_type(int(1,K),DIM),
eval(diffn(ORTHOTOPES)),
get_attr1(ORTHOTOPES,ORTHOTOPES1),
diffn_include1(ORTHOTOPES1,DIM).



2926 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

diffn_include1([],_42706).

diffn_include1([_42710],_42709) :-
!.

diffn_include1([O1,O2|R],DIM) :-
eval(two_orth_include(O1,O2,DIM)),
diffn_include1([O2|R],DIM).
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B.123 discrepancy

♦ META-DATA:

ctr_date(discrepancy,[’20050506’,’20060808’]).

ctr_origin(
discrepancy,
\cite{Focacci01} and \cite{vanHoeve05},
[]).

ctr_arguments(
discrepancy,
[’VARIABLES’-collection(var-dvar,bad-sint),’K’-int]).

ctr_restrictions(
discrepancy,
[required(’VARIABLES’,var),
required(’VARIABLES’,bad),
’K’>=0,
’K’=<size(’VARIABLES’)]).

ctr_example(
discrepancy,
discrepancy(

[[var-4,bad-{1,4,6}],
[var-5,bad-{0,1}],
[var-5,bad-{1,6,9}],
[var-4,bad-{1,4}],
[var-1,bad-{}]],
2)).

ctr_typical(
discrepancy,
[size(’VARIABLES’)>1,’K’<size(’VARIABLES’)]).

ctr_exchangeable(
discrepancy,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar,’VARIABLES’ˆbad],
int,
=\=,
all,
dontcare)]).
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ctr_graph(
discrepancy,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar in_set variablesˆbad],
[’NARC’=’K’],
[]).

ctr_pure_functional_dependency(discrepancy,[]).

ctr_functional_dependency(discrepancy,2,[1]).

ctr_aggregate(discrepancy,[],[union,+]).
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B.124 disj

♦ META-DATA:

ctr_date(disj,[’20070527’]).

ctr_origin(disj,’\\cite{MonetteDevilleDupont07}’,[]).

ctr_arguments(
disj,
[TASKS-
collection(

start-dvar,
duration-dvar,
before-svar,
position-dvar)]).

ctr_restrictions(
disj,
[required(’TASKS’,[start,duration,before,position]),
’TASKS’ˆduration>=1,
’TASKS’ˆposition>=0,
’TASKS’ˆposition<size(’TASKS’)]).

ctr_example(
disj,
disj(

[[start-1,duration-3,before-{},position-0],
[start-9,duration-1,before-{1,3,4},position-3],
[start-7,duration-2,before-{1,4},position-2],
[start-4,duration-1,before-{1},position-1]])).

ctr_typical(disj,[size(’TASKS’)>1]).

ctr_exchangeable(
disj,
[translate([’TASKS’ˆstart]),
vals([’TASKS’ˆduration],int(>=(1)),>,dontcare,dontcare)]).

ctr_graph(
disj,
[’TASKS’],
2,
[’CLIQUE’(=\=)>>collection(tasks1,tasks2)],
[tasks1ˆstart+tasks1ˆduration=<tasks2ˆstart#\/
tasks2ˆstart+tasks2ˆduration=<tasks1ˆstart,
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tasks1ˆstart+tasks1ˆduration=<tasks2ˆstart#<=>
tasks1ˆkey in_set tasks2ˆbefore,
tasks1ˆstart+tasks1ˆduration=<tasks2ˆstart#<=>
tasks1ˆposition<tasks2ˆposition],
[’NARC’=size(’TASKS’)*size(’TASKS’)-size(’TASKS’)],
[]).

ctr_application(disj,[1]).
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B.125 disjoint

♦ META-DATA:

ctr_date(
disjoint,
[’20000315’,’20031017’,’20040530’,’20060808’]).

ctr_origin(disjoint,’Derived from %c.’,[alldifferent]).

ctr_arguments(
disjoint,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
disjoint,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_example(
disjoint,
disjoint(

[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-7],[var-7],[var-0],[var-6],[var-8]])).

ctr_typical(
disjoint,
[size(’VARIABLES1’)>1,size(’VARIABLES2’)>1]).

ctr_exchangeable(
disjoint,
[args([[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],int,=\=,dontcare,in),
vals([’VARIABLES2’ˆvar],int,=\=,dontcare,in),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
disjoint,
[’VARIABLES1’,’VARIABLES2’],
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2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=0],
[]).

ctr_eval(disjoint,[reformulation(disjoint_r)]).

ctr_contractible(disjoint,[],’VARIABLES1’,any).

ctr_contractible(disjoint,[],’VARIABLES2’,any).

disjoint_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
disjoint1_(VARS1,VARS2).

disjoint1_([],_45459).

disjoint1_([V|R],VARS2) :-
disjoint2_(VARS2,V),
disjoint1_(R,VARS2).

disjoint2_([],_45459).

disjoint2_([U|R],V) :-
U#\=V,
disjoint2_(R,V).
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B.126 disjoint sboxes

♦ META-DATA:

ctr_date(disjoint_sboxes,[’20070622’,’20090725’]).

ctr_origin(
disjoint_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(disjoint_sboxes,[disjoint]).

ctr_types(
disjoint_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
disjoint_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
disjoint_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
disjoint_sboxes,
disjoint_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],
[oid-2,sid-2,x-[[v-4],[v-1]]],
[oid-3,sid-4,x-[[v-2],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-3,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(disjoint_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
disjoint_sboxes,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare)]).

ctr_eval(disjoint_sboxes,[logic(disjoint_sboxes_g)]).

ctr_logic(
disjoint_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(disjoint_sboxes(Dims,O1,S1,O2,S2)--->
exists(

D,
Dims,
origin(O1,S1,D)#>end(O2,S2,D)#\/
origin(O2,S2,D)#>end(O1,S1,D))),

(disjoint_objects(Dims,O1,O2)--->
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forall(
S1,
sboxes([O1ˆsid]),
forall(

S2,
sboxes([O2ˆsid]),
disjoint_sboxes(Dims,O1,S1,O2,S2)))),

(all_disjoint(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
disjoint_objects(Dims,O1,O2)))),

all_disjoint(DIMENSIONS,OIDS)]).

ctr_contractible(disjoint_sboxes,[],’OBJECTS’,suffix).

ctr_application(disjoint_sboxes,[3]).

disjoint_sboxes_g(K,_40171,[],_40173) :-
!,
check_type(int_gteq(1),K).

disjoint_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
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ctr_logic(disjoint_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.127 disjoint tasks

♦ META-DATA:

ctr_date(disjoint_tasks,[’20030820’,’20060808’]).

ctr_origin(disjoint_tasks,’Derived from %c.’,[disjoint]).

ctr_arguments(
disjoint_tasks,
[’TASKS1’-collection(origin-dvar,duration-dvar,end-dvar),
’TASKS2’-collection(origin-dvar,duration-dvar,end-dvar)]).

ctr_restrictions(
disjoint_tasks,
[require_at_least(2,’TASKS1’,[origin,duration,end]),
’TASKS1’ˆduration>=0,
’TASKS1’ˆorigin=<’TASKS1’ˆend,
require_at_least(2,’TASKS2’,[origin,duration,end]),
’TASKS2’ˆduration>=0,
’TASKS2’ˆorigin=<’TASKS2’ˆend]).

ctr_example(
disjoint_tasks,
disjoint_tasks(

[[origin-6,duration-5,end-11],
[origin-8,duration-2,end-10]],

[[origin-2,duration-2,end-4],
[origin-3,duration-3,end-6],
[origin-12,duration-1,end-13]])).

ctr_typical(
disjoint_tasks,
[size(’TASKS1’)>1,
’TASKS1’ˆduration>0,
size(’TASKS2’)>1,
’TASKS2’ˆduration>0]).

ctr_exchangeable(
disjoint_tasks,
[args([[’TASKS1’,’TASKS2’]]),
items(’TASKS1’,all),
items(’TASKS2’,all),
translate(

[’TASKS1’ˆorigin,
’TASKS1’ˆend,
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’TASKS2’ˆorigin,
’TASKS2’ˆend])]).

ctr_graph(
disjoint_tasks,
[’TASKS1’],
1,
[’SELF’>>collection(tasks1)],
[tasks1ˆorigin+tasks1ˆduration=tasks1ˆend],
[’NARC’=size(’TASKS1’)],
[]).

ctr_graph(
disjoint_tasks,
[’TASKS2’],
1,
[’SELF’>>collection(tasks2)],
[tasks2ˆorigin+tasks2ˆduration=tasks2ˆend],
[’NARC’=size(’TASKS2’)],
[]).

ctr_graph(
disjoint_tasks,
[’TASKS1’,’TASKS2’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆduration>0,
tasks2ˆduration>0,
tasks1ˆorigin<tasks2ˆend,
tasks2ˆorigin<tasks1ˆend],
[’NARC’=0],
[]).

ctr_eval(disjoint_tasks,[reformulation(disjoint_tasks_r)]).

ctr_contractible(disjoint_tasks,[],’TASKS1’,any).

ctr_contractible(disjoint_tasks,[],’TASKS2’,any).

ctr_application(disjoint_tasks,[1,2]).

disjoint_tasks_r(TASKS1,TASKS2) :-
collection(TASKS1,[dvar,dvar_gteq(0),dvar]),
collection(TASKS2,[dvar,dvar_gteq(0),dvar]),
get_attr1(TASKS1,ORIGINS1),
get_attr2(TASKS1,DURATIONS1),
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get_attr3(TASKS1,ENDS1),
ori_dur_end(ORIGINS1,DURATIONS1,ENDS1),
get_attr1(TASKS2,ORIGINS2),
get_attr2(TASKS2,DURATIONS2),
get_attr3(TASKS2,ENDS2),
ori_dur_end(ORIGINS2,DURATIONS2,ENDS2),
disjoint_tasks1(ORIGINS1,ENDS1,ORIGINS2,ENDS2).

disjoint_tasks1([],[],_44161,_44162).

disjoint_tasks1([O|R],[E|S],ORIGINS2,ENDS2) :-
disjoint_tasks2(ORIGINS2,ENDS2,O,E),
disjoint_tasks1(R,S,ORIGINS2,ENDS2).

disjoint_tasks2([],[],_44161,_44162).

disjoint_tasks2([Oj|R],[Ej|S],Oi,Ei) :-
Ei#=<Oj#\/Ej#=<Oi,
disjoint_tasks2(R,S,Oi,Ei).
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B.128 disjunctive

♦ META-DATA:

ctr_date(disjunctive,[’20050506’,’20060808’]).

ctr_origin(disjunctive,’\\cite{Carlier82}’,[]).

ctr_synonyms(disjunctive,[one_machine]).

ctr_arguments(
disjunctive,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive,
[required(’TASKS’,[origin,duration]),’TASKS’ˆduration>=0]).

ctr_example(
disjunctive,
disjunctive(

[[origin-1,duration-3],
[origin-2,duration-0],
[origin-7,duration-2],
[origin-4,duration-1]])).

ctr_typical(disjunctive,[size(’TASKS’)>2,’TASKS’ˆduration>=1]).

ctr_exchangeable(
disjunctive,
[items(’TASKS’,all),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin])]).

ctr_graph(
disjunctive,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[tasks1ˆduration=0#\/tasks2ˆduration=0#\/
tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin#\/
tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin],
[’NARC’=size(’TASKS’)*(size(’TASKS’)-1)/2],
[]).

ctr_eval(
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disjunctive,
[checker(disjunctive_c),builtin(disjunctive_b)]).

ctr_contractible(disjunctive,[],’TASKS’,any).

ctr_cond_imply(
disjunctive,
alldifferent,
[minval(’TASKS’ˆduration)>0],
[],
[’TASKS’ˆorigin]).

ctr_cond_imply(
disjunctive,
alldifferent_cst,
[minval(’TASKS’ˆduration)>0],
[],
same).

ctr_application(disjunctive,[1]).

disjunctive_b([]) :-
!.

disjunctive_b(TASKS) :-
collection(TASKS,[dvar,dvar_gteq(0)]),
length(TASKS,N),
( N=1 ->

true
; get_attr1(TASKS,ORIGINS),

get_attr2(TASKS,DURATIONS),
length(ENDS,N),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
length(HEIGHTS,N),
domain(HEIGHTS,1,1),
gen_cum_tasks(

ORIGINS,
DURATIONS,
ENDS,
HEIGHTS,
1,
Tasks),

cumulative(Tasks,[limit(1)])
).

disjunctive_c([]) :-
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!.

disjunctive_c(TASKS) :-
collection(TASKS,[int,int_gteq(0)]),
( TASKS=[_52660] ->

true
; get_attr12_diff20(TASKS,ORIS_DURS),

keysort(ORIS_DURS,SORTED_NON_ZERO_TASKS),
disjunctive_check_prec(SORTED_NON_ZERO_TASKS)

).

disjunctive_check_prec([]) :-
!.

disjunctive_check_prec([_52637]) :-
!.

disjunctive_check_prec([O1-D1,O2-D2|R]) :-
E1 is O1+D1,
E1=<O2,
disjunctive_check_prec([O2-D2|R]).
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B.129 disjunctive or same end

♦ META-DATA:

ctr_date(disjunctive_or_same_end,[’20120205’]).

ctr_origin(disjunctive_or_same_end,’Scheduling.’,[]).

ctr_synonyms(
disjunctive_or_same_end,
[same_end_or_disjunctive,
non_overlap_or_same_end,
same_end_or_non_overlap]).

ctr_arguments(
disjunctive_or_same_end,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive_or_same_end,
[required(’TASKS’,[origin,duration]),’TASKS’ˆduration>=0]).

ctr_example(
disjunctive_or_same_end,
disjunctive_or_same_end(

[[origin-4,duration-3],
[origin-7,duration-2],
[origin-5,duration-2]])).

ctr_typical(
disjunctive_or_same_end,
[size(’TASKS’)>2,’TASKS’ˆduration>=1]).

ctr_exchangeable(
disjunctive_or_same_end,
[items(’TASKS’,all),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin])]).

ctr_graph(
disjunctive_or_same_end,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[tasks1ˆduration=0#\/tasks2ˆduration=0#\/
tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin#\/
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tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin#\/
tasks1ˆorigin+tasks1ˆduration=
tasks2ˆorigin+tasks2ˆduration],
[’NARC’=size(’TASKS’)*(size(’TASKS’)-1)/2],
[]).

ctr_eval(
disjunctive_or_same_end,
[checker(disjunctive_or_same_end_c),
reformulation(disjunctive_or_same_end_r)]).

ctr_contractible(disjunctive_or_same_end,[],’TASKS’,any).

ctr_application(disjunctive_or_same_end,[1]).

disjunctive_or_same_end_r([]) :-
!.

disjunctive_or_same_end_r(TASKS) :-
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
disjunctive_or_same_end1(ORIGINS,DURATIONS).

disjunctive_or_same_end1([],[]).

disjunctive_or_same_end1([ORI|RO],[DUR|RD]) :-
disjunctive_or_same_end2(RO,RD,ORI,DUR),
disjunctive_or_same_end1(RO,RD).

disjunctive_or_same_end2([],[],_38596,_38597).

disjunctive_or_same_end2([O2|RO],[D2|RD],O1,D1) :-
D1#=0#\/D2#=0#\/O1+D1#=<O2#\/O2+D2#=<O1#\/O1+D1#=O2+D2,
disjunctive_or_same_end2(RO,RD,O1,D1).

disjunctive_or_same_end_c([]) :-
!.

disjunctive_or_same_end_c(TASKS) :-
collection(TASKS,[int,int_gteq(0)]),
( TASKS=[_38621] ->

true
; get_attr12_diff20_end(TASKS,ENDS_NEGDURS),

sort(ENDS_NEGDURS,SORTED_NON_ZERO_TASKS),
reverse(
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SORTED_NON_ZERO_TASKS,
RSORTED_NON_ZERO_TASKS),

disjunctive_or_same_end_check_prec(
RSORTED_NON_ZERO_TASKS)

).

disjunctive_or_same_end_check_prec([]) :-
!.

disjunctive_or_same_end_check_prec([_38598]) :-
!.

disjunctive_or_same_end_check_prec([E-_D1,E-D2|R]) :-
!,
disjunctive_or_same_end_check_prec([E-D2|R]).

disjunctive_or_same_end_check_prec([E1-D1,E2-D2|R]) :-
!,
O1 is E1+D1,
O1>=E2,
disjunctive_or_same_end_check_prec([E2-D2|R]).
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B.130 disjunctive or same start

♦ META-DATA:

ctr_date(disjunctive_or_same_start,[’20120205’]).

ctr_origin(disjunctive_or_same_start,’Scheduling.’,[]).

ctr_synonyms(
disjunctive_or_same_start,
[same_start_or_disjunctive,
non_overlap_or_same_start,
same_start_or_non_overlap]).

ctr_arguments(
disjunctive_or_same_start,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
disjunctive_or_same_start,
[required(’TASKS’,[origin,duration]),’TASKS’ˆduration>=0]).

ctr_example(
disjunctive_or_same_start,
disjunctive_or_same_start(

[[origin-4,duration-3],
[origin-7,duration-2],
[origin-4,duration-1]])).

ctr_typical(
disjunctive_or_same_start,
[size(’TASKS’)>2,’TASKS’ˆduration>=1]).

ctr_exchangeable(
disjunctive_or_same_start,
[items(’TASKS’,all),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin])]).

ctr_graph(
disjunctive_or_same_start,
[’TASKS’],
2,
[’CLIQUE’(<)>>collection(tasks1,tasks2)],
[tasks1ˆduration=0#\/tasks2ˆduration=0#\/
tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin#\/
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tasks2ˆorigin+tasks2ˆduration=<tasks1ˆorigin#\/
tasks1ˆorigin=tasks2ˆorigin],
[’NARC’=size(’TASKS’)*(size(’TASKS’)-1)/2],
[]).

ctr_eval(
disjunctive_or_same_start,
[checker(disjunctive_or_same_start_c),
reformulation(disjunctive_or_same_start_r)]).

ctr_contractible(disjunctive_or_same_start,[],’TASKS’,any).

ctr_application(disjunctive_or_same_start,[1]).

disjunctive_or_same_start_r([]) :-
!.

disjunctive_or_same_start_r(TASKS) :-
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
disjunctive_or_same_start1(ORIGINS,DURATIONS).

disjunctive_or_same_start1([],[]).

disjunctive_or_same_start1([ORI|RO],[DUR|RD]) :-
disjunctive_or_same_start2(RO,RD,ORI,DUR),
disjunctive_or_same_start1(RO,RD).

disjunctive_or_same_start2([],[],_38512,_38513).

disjunctive_or_same_start2([O2|RO],[D2|RD],O1,D1) :-
D1#=0#\/D2#=0#\/O1+D1#=<O2#\/O2+D2#=<O1#\/O1#=O2,
disjunctive_or_same_start2(RO,RD,O1,D1).

disjunctive_or_same_start_c([]) :-
!.

disjunctive_or_same_start_c(TASKS) :-
collection(TASKS,[int,int_gteq(0)]),
( TASKS=[_38537] ->

true
; get_attr12_diff20(TASKS,ORIS_DURS),

sort(ORIS_DURS,SORTED_NON_ZERO_TASKS),
disjunctive_or_same_start_check_prec(

SORTED_NON_ZERO_TASKS)
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).

disjunctive_or_same_start_check_prec([]) :-
!.

disjunctive_or_same_start_check_prec([_38514]) :-
!.

disjunctive_or_same_start_check_prec([O-_D1,O-D2|R]) :-
!,
disjunctive_or_same_start_check_prec([O-D2|R]).

disjunctive_or_same_start_check_prec([O1-D1,O2-D2|R]) :-
!,
E1 is O1+D1,
E1=<O2,
disjunctive_or_same_start_check_prec([O2-D2|R]).
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B.131 distance
♦ META-DATA:

ctr_predefined(distance).

ctr_date(distance,[’20090416’]).

ctr_origin(distance,’Arithmetic constraint.’,[]).

ctr_arguments(distance,[’X’-dvar,’Y’-dvar,’Z’-dvar]).

ctr_restrictions(distance,[’Z’>=0]).

ctr_example(distance,distance(5,7,2)).

ctr_typical(distance,[’Z’>0]).

ctr_exchangeable(distance,[args([[’X’,’Y’],[’Z’]])]).

ctr_eval(distance,[checker(distance_c),builtin(distance_b)]).

ctr_pure_functional_dependency(distance,[]).

ctr_functional_dependency(distance,3,[1,2]).

distance_c(X,Y,Z) :-
check_type(int,X),
check_type(int,Y),
check_type(dvar_gteq(0),Z),
Z#=abs(X-Y).

distance_b(X,Y,Z) :-
check_type(dvar,X),
check_type(dvar,Y),
check_type(dvar_gteq(0),Z),
Z#=abs(X-Y).
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B.132 distance between

♦ META-DATA:

ctr_date(
distance_between,
[’20000128’,’20030820’,’20060808’,’20090428’]).

ctr_origin(distance_between,’N.˜Beldiceanu’,[]).

ctr_synonyms(distance_between,[distance]).

ctr_arguments(
distance_between,
[’DIST’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_between,
[’DIST’>=0,
DIST=<
size(’VARIABLES1’)*size(’VARIABLES2’)-size(’VARIABLES1’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
distance_between,
distance_between(

2,
[[var-3],[var-4],[var-6],[var-2],[var-4]],
[[var-2],[var-6],[var-9],[var-3],[var-6]],
<)).

ctr_typical(
distance_between,
[’DIST’>0,
DIST<
size(’VARIABLES1’)*size(’VARIABLES2’)-size(’VARIABLES1’),
size(’VARIABLES1’)>1,
in_list(’CTR’,[=,=\=])]).

ctr_exchangeable(
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distance_between,
[args([[’DIST’],[’VARIABLES1’,’VARIABLES2’],[’CTR’]]),
items_sync(’VARIABLES1’,’VARIABLES2’,all),
translate([’VARIABLES1’ˆvar]),
translate([’VARIABLES2’ˆvar])]).

ctr_graph(
distance_between,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’CLIQUE’(=\=)>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’],
[]).

ctr_eval(distance_between,[reformulation(distance_between_r)]).

ctr_pure_functional_dependency(distance_between,[]).

ctr_functional_dependency(distance_between,1,[2,3,4]).

distance_between_r(DIST,VARIABLES1,VARIABLES2,CTR) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
L12 is L1*L2-L1,
check_type(dvar(0,L12),DIST),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
distance_between1(VARS1,VARS2,1,VARS1,VARS2,CTR,TERM),
call(DIST#=TERM).

distance_between1([],[],_38533,_38534,_38535,_38536,0).

distance_between1(
[VAR1|RVARS1],
[VAR2|RVARS2],
IVAR,
VARS1,
VARS2,
CTR,
TERM+R) :-

distance_between2(
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VARS1,
VARS2,
VAR1,
VAR2,
IVAR,
1,
CTR,
TERM),

IVAR1 is IVAR+1,
distance_between1(

RVARS1,
RVARS2,
IVAR1,
VARS1,
VARS2,
CTR,
R).

distance_between2([],[],_38533,_38534,_38535,_38536,_38537,0).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
=,
B12+S) :-

!,
( IVAR=\=IUAR ->

B12#<=>
VAR1#=UAR1#/\VAR2#\=UAR2#\/VAR1#\=UAR1#/\VAR2#=UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
=,
S).
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distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
=\=,
B12+S) :-

!,
( IVAR=\=IUAR ->

B12#<=>
VAR1#\=UAR1#/\VAR2#=UAR2#\/VAR1#=UAR1#/\VAR2#\=UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
=\=,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
<,
B12+S) :-

!,
( IVAR=\=IUAR ->

B12#<=>
VAR1#<UAR1#/\VAR2#>=UAR2#\/VAR1#>=UAR1#/\VAR2#<UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
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VAR2,
IVAR,
IUAR1,
<,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
>=,
B12+S) :-

!,
( IVAR=\=IUAR ->

B12#<=>
VAR1#>=UAR1#/\VAR2#<UAR2#\/VAR1#<UAR1#/\VAR2#>=UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
>=,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
>,
B12+S) :-

!,
( IVAR=\=IUAR ->

B12#<=>
VAR1#>UAR1#/\VAR2#=<UAR2#\/VAR1#=<UAR1#/\VAR2#>UAR2

; B12=0
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),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
>,
S).

distance_between2(
[UAR1|RUARS1],
[UAR2|RUARS2],
VAR1,
VAR2,
IVAR,
IUAR,
=<,
B12+S) :-

( IVAR=\=IUAR ->
B12#<=>
VAR1#=<UAR1#/\VAR2#>UAR2#\/VAR1#>UAR1#/\VAR2#=<UAR2

; B12=0
),
IUAR1 is IUAR+1,
distance_between2(

RUARS1,
RUARS2,
VAR1,
VAR2,
IVAR,
IUAR1,
=<,
S).
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B.133 distance change

♦ META-DATA:

ctr_date(
distance_change,
[’20000128’,’20030820’,’20040530’,’20060808’]).

ctr_origin(distance_change,’Derived from %c.’,[change]).

ctr_synonyms(distance_change,[distance]).

ctr_arguments(
distance_change,
[’DIST’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
distance_change,
[’DIST’>=0,
’DIST’<size(’VARIABLES1’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
size(’VARIABLES1’)=size(’VARIABLES2’),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
distance_change,
distance_change(

1,
[[var-3],[var-3],[var-1],[var-2],[var-2]],
[[var-4],[var-4],[var-3],[var-3],[var-3]],
=\=)).

ctr_typical(
distance_change,
[’DIST’>0,size(’VARIABLES1’)>1,in_list(’CTR’,[=,=\=])]).

ctr_exchangeable(
distance_change,
[args([[’DIST’],[’VARIABLES1’,’VARIABLES2’],[’CTR’]]),
translate([’VARIABLES1’ˆvar]),
translate([’VARIABLES2’ˆvar])]).
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ctr_graph(
distance_change,
[[’VARIABLES1’],[’VARIABLES2’]],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’DISTANCE’=’DIST’],
[]).

ctr_eval(
distance_change,
[reformulation(distance_change_r),
automaton(distance_change_a)]).

ctr_pure_functional_dependency(distance_change,[]).

ctr_functional_dependency(distance_change,1,[2,3,4]).

distance_change_r(DIST,VARIABLES1,VARIABLES2,CTR) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
L is L1-1,
check_type(dvar(0,L),DIST),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
distance_change1(VARS1,VARS2,CTR,TERM),
call(DIST#=TERM).

distance_change1([],[],_38625,0).

distance_change1([_38630],[_38632],_38628,0) :-
!.

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],=,B12+T) :-
!,
B12#<=>
UAR1#=UAR2#/\VAR1#\=VAR2#\/UAR1#\=UAR2#/\VAR1#=VAR2,
distance_change1([UAR2|R],[VAR2|S],=,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],=\=,B12+T) :-
!,
B12#<=>
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UAR1#\=UAR2#/\VAR1#=VAR2#\/UAR1#=UAR2#/\VAR1#\=VAR2,
distance_change1([UAR2|R],[VAR2|S],=\=,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],<,B12+T) :-
!,
B12#<=>
UAR1#<UAR2#/\VAR1#>=VAR2#\/UAR1#>=UAR2#/\VAR1#<VAR2,
distance_change1([UAR2|R],[VAR2|S],<,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],>=,B12+T) :-
!,
B12#<=>
UAR1#>=UAR2#/\VAR1#<VAR2#\/UAR1#<UAR2#/\VAR1#>=VAR2,
distance_change1([UAR2|R],[VAR2|S],>=,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],>,B12+T) :-
!,
B12#<=>
UAR1#>UAR2#/\VAR1#=<VAR2#\/UAR1#=<UAR2#/\VAR1#>VAR2,
distance_change1([UAR2|R],[VAR2|S],>,T).

distance_change1([UAR1,UAR2|R],[VAR1,VAR2|S],=<,B12+T) :-
B12#<=>
UAR1#=<UAR2#/\VAR1#>VAR2#\/UAR1#>UAR2#/\VAR1#=<VAR2,
distance_change1([UAR2|R],[VAR2|S],=<,T).

distance_change_a(FLAG,DIST,VARIABLES1,VARIABLES2,CTR) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
L is L1-1,
check_type(dvar(0,L),DIST),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
distance_change_signature(

VARIABLES1,
VARIABLES2,
SIGNATURE,
CTR),

automaton(
SIGNATURE,
_41171,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
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[C],
[0],
[COUNT]),

COUNT#=DIST#<=>FLAG.

distance_change_signature([],[],[],_38626).

distance_change_signature([_38630],[_38632],[],_38629) :-
!.

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
=) :-

!,
VAR1i#=VAR1j#/\VAR2i#\=VAR2j#\/
VAR1i#\=VAR1j#/\VAR2i#=VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
=).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
=\=) :-

!,
VAR1i#\=VAR1j#/\VAR2i#=VAR2j#\/
VAR1i#=VAR1j#/\VAR2i#\=VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
=\=).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
<) :-

!,
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VAR1i#<VAR1j#/\VAR2i#>=VAR2j#\/
VAR1i#>=VAR1j#/\VAR2i#<VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
<).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
>=) :-

!,
VAR1i#>=VAR1j#/\VAR2i#<VAR2j#\/
VAR1i#<VAR1j#/\VAR2i#>=VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
>=).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
>) :-

!,
VAR1i#>VAR1j#/\VAR2i#=<VAR2j#\/
VAR1i#=<VAR1j#/\VAR2i#>VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
>).

distance_change_signature(
[[var-VAR1i],[var-VAR1j]|VAR1s],
[[var-VAR2i],[var-VAR2j]|VAR2s],
[S|Ss],
=<) :-

!,
VAR1i#=<VAR1j#/\VAR2i#>VAR2j#\/
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VAR1i#>VAR1j#/\VAR2i#=<VAR2j#<=>
S,
distance_change_signature(

[[var-VAR1j]|VAR1s],
[[var-VAR2j]|VAR2s],
Ss,
=<).
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B.134 divisible
♦ META-DATA:

ctr_predefined(divisible).

ctr_date(divisible,[’20110612’]).

ctr_origin(divisible,’Arithmetic.’,[]).

ctr_synonyms(divisible,[div]).

ctr_arguments(divisible,[’Q’-dvar,’D’-dvar]).

ctr_restrictions(divisible,[’Q’>=0,’D’>0]).

ctr_example(divisible,divisible(12,4)).

ctr_typical(divisible,[’Q’>1,’D’<’Q’]).

ctr_eval(divisible,[builtin(divisible_b)]).

divisible_b(Q,D) :-
check_type(dvar,Q),
check_type(dvar,D),
Q#>=0,
D#>0,
Q mod D#=0.
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B.135 divisible or
♦ META-DATA:

ctr_predefined(divisible_or).

ctr_date(divisible_or,[’20120212’]).

ctr_origin(divisible_or,’Arithmetic.’,[]).

ctr_synonyms(divisible_or,[div_or]).

ctr_arguments(divisible_or,[’C’-dvar,’D’-dvar]).

ctr_restrictions(divisible_or,[’C’>0,’D’>0]).

ctr_example(divisible_or,divisible_or(4,12)).

ctr_eval(divisible_or,[builtin(divisible_or_b)]).

divisible_or_b(C,D) :-
check_type(dvar,C),
check_type(dvar,D),
C#>0,
D#>0,
C mod D#=0#\/D mod C#=0.
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B.136 dom reachability

♦ META-DATA:

ctr_predefined(dom_reachability).

ctr_date(dom_reachability,[’20061011’]).

ctr_origin(
dom_reachability,
\cite{QuesadaVanRoyDevilleCollet06},
[]).

ctr_arguments(
dom_reachability,
[’SOURCE’-int,
’FLOW_GRAPH’-collection(index-int,succ-svar),
’DOMINATOR_GRAPH’-collection(index-int,succ-sint),
TRANSITIVE_CLOSURE_GRAPH-
collection(index-int,succ-svar)]).

ctr_restrictions(
dom_reachability,
[’SOURCE’>=1,
’SOURCE’=<size(’FLOW_GRAPH’),
required(’FLOW_GRAPH’,[index,succ]),
’FLOW_GRAPH’ˆindex>=1,
’FLOW_GRAPH’ˆindex=<size(’FLOW_GRAPH’),
’FLOW_GRAPH’ˆsucc>=1,
’FLOW_GRAPH’ˆsucc=<size(’FLOW_GRAPH’),
distinct(’FLOW_GRAPH’,index),
required(’DOMINATOR_GRAPH’,[index,succ]),
size(’DOMINATOR_GRAPH’)=size(’FLOW_GRAPH’),
’DOMINATOR_GRAPH’ˆindex>=1,
’DOMINATOR_GRAPH’ˆindex=<size(’DOMINATOR_GRAPH’),
’DOMINATOR_GRAPH’ˆsucc>=1,
’DOMINATOR_GRAPH’ˆsucc=<size(’DOMINATOR_GRAPH’),
distinct(’DOMINATOR_GRAPH’,index),
required(’TRANSITIVE_CLOSURE_GRAPH’,[index,succ]),
size(’TRANSITIVE_CLOSURE_GRAPH’)=size(’FLOW_GRAPH’),
’TRANSITIVE_CLOSURE_GRAPH’ˆindex>=1,
’TRANSITIVE_CLOSURE_GRAPH’ˆindex=<
size(’TRANSITIVE_CLOSURE_GRAPH’),
’TRANSITIVE_CLOSURE_GRAPH’ˆsucc>=1,
’TRANSITIVE_CLOSURE_GRAPH’ˆsucc=<
size(’TRANSITIVE_CLOSURE_GRAPH’),
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distinct(’TRANSITIVE_CLOSURE_GRAPH’,index)]).

ctr_example(
dom_reachability,
dom_reachability(

1,
[[index-1,succ-{2}],
[index-2,succ-{3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],
[[index-1,succ-{2,3,4}],
[index-2,succ-{3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],
[[index-1,succ-{1,2,3,4}],
[index-2,succ-{2,3,4}],
[index-3,succ-{3}],
[index-4,succ-{4}]])).

ctr_typical(dom_reachability,[size(’FLOW_GRAPH’)>2]).

ctr_exchangeable(
dom_reachability,
[items(’FLOW_GRAPH’,all),
items(’DOMINATOR_GRAPH’,all),
items(’TRANSITIVE_CLOSURE_GRAPH’,all)]).
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B.137 domain

♦ META-DATA:

ctr_predefined(domain).

ctr_date(domain,[’20070821’]).

ctr_origin(domain,’Domain definition.’,[]).

ctr_synonyms(domain,[dom]).

ctr_arguments(
domain,
[’VARIABLES’-collection(var-dvar),’LOW’-int,’UP’-int]).

ctr_restrictions(
domain,
[required(’VARIABLES’,var),’LOW’=<’UP’]).

ctr_example(domain,domain([[var-2],[var-8],[var-2]],1,9)).

ctr_typical(domain,[size(’VARIABLES’)>1,’LOW’<’UP’]).

ctr_exchangeable(
domain,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
int(’LOW’ in ’UP’),
=\=,
dontcare,
dontcare),

vals([’LOW’],int,>,dontcare,dontcare),
vals([’UP’],int,<,dontcare,dontcare),
translate([’VARIABLES’ˆvar,’LOW’,’UP’])]).

ctr_eval(domain,[builtin(domain_b)]).

ctr_contractible(domain,[],’VARIABLES’,any).

domain_b(VARIABLES,LOW,UP) :-
check_type(int,LOW),
check_type(int,UP),
LOW=<UP,
collection(VARIABLES,[fdvar(LOW,UP)]),
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get_attr1(VARIABLES,VARS),
domain(VARS,LOW,UP).
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B.138 domain constraint

♦ META-DATA:

ctr_date(domain_constraint,[’20030820’,’20040530’,’20060808’]).

ctr_origin(domain_constraint,’\\cite{Refalo00}’,[]).

ctr_synonyms(domain_constraint,[domain]).

ctr_arguments(
domain_constraint,
[’VAR’-dvar,’VALUES’-collection(var01-dvar,value-int)]).

ctr_restrictions(
domain_constraint,
[required(’VALUES’,[var01,value]),
’VALUES’ˆvar01>=0,
’VALUES’ˆvar01=<1,
distinct(’VALUES’,value)]).

ctr_example(
domain_constraint,
domain_constraint(

5,
[[var01-0,value-9],
[var01-1,value-5],
[var01-0,value-2],
[var01-0,value-7]])).

ctr_typical(domain_constraint,[size(’VALUES’)>1]).

ctr_exchangeable(domain_constraint,[items(’VALUES’,all)]).

ctr_derived_collections(
domain_constraint,
[col(’VALUE’-collection(var01-int,value-dvar),

[item(var01-1,value-’VAR’)])]).

ctr_graph(
domain_constraint,
[’VALUE’,’VALUES’],
2,
[’PRODUCT’>>collection(value,values)],
[valueˆvalue=valuesˆvalue#<=>valuesˆvar01=1],
[’NARC’=size(’VALUES’)],
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[]).

ctr_eval(
domain_constraint,
[reformulation(domain_constraint_r),
automaton(domain_constraint_a)]).

domain_constraint_r(VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[dvar(0,1),int]),
get_attr1(VALUES,VARS01),
get_attr2(VALUES,VALS),
all_different(VALS),
domain_constraint1(VARS01,VALS,VAR,Term),
call(Term).

domain_constraint1([],[],_46518,0).

domain_constraint1(
[VAR01|R],
[VAL|S],
VAR,
VAR#=VAL#/\VAR01#=1#\/T) :-

domain_constraint1(R,S,VAR,T).

domain_constraint_a(FLAG,VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[dvar(0,1),int]),
get_attr2(VALUES,VALS),
all_different(VALS),
domain_constraint_signature(VALUES,SIGNATURE,VAR),
AUTOMATON=
automaton(

SIGNATURE,
_48175,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

domain_constraint_signature([],[],_46518).

domain_constraint_signature(
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[[var01-VAR01,value-VALUE]|VALUES],
[S|Ss],
VAR) :-

VAR#=VALUE#<=>VAR01#<=>S,
domain_constraint_signature(VALUES,Ss,VAR).
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B.139 elem

♦ META-DATA:

ctr_date(elem,[’20030820’,’20040530’,’20060808’]).

ctr_origin(elem,’Derived from %c.’,[element]).

ctr_usual_name(elem,element).

ctr_synonyms(elem,[nth,array]).

ctr_arguments(
elem,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elem,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
elem,
elem(

[[index-3,value-2]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(elem,[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elem,
[items(’TABLE’,all),
vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).

ctr_graph(
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elem,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(elem,[builtin(elem_b),automaton(elem_a)]).

ctr_pure_functional_dependency(elem,[]).

ctr_functional_dependency(elem,1-2,[1-1,2]).

ctr_cond_imply(
elem,
bin_packing_capa,
[’TABLE’ˆvalue>=0],
[],
[’TABLE’,’ITEM’]).

elem_b(ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
sort_collection(TABLE,index,SORTED_TABLE),
get_attr1(SORTED_TABLE,INDEXES),
increasing_values(INDEXES),
get_attr2(SORTED_TABLE,VALUES),
get_attr1(ITEM,[INDEX]),
get_attr2(ITEM,[VALUE]),
element(INDEX,VALUES,VALUE).

elem_a(FLAG,ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
elem_signature(TABLE,SIGNATURE,ITEM_INDEX,ITEM_VALUE),
AUTOMATON=
automaton(

SIGNATURE,
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_55949,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

elem_signature([],[],_53605,_53606).

elem_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#=TABLE_VALUE#<=>S,
elem_signature(TABLEs,Ss,ITEM_INDEX,ITEM_VALUE).
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B.140 elem from to

♦ META-DATA:

ctr_date(elem_from_to,[’20091115’]).

ctr_origin(elem_from_to,’Derived from %c.’,[elem]).

ctr_synonyms(elem_from_to,[element_from_to]).

ctr_arguments(
elem_from_to,
[ITEM-
collection(

from-dvar,
cst_from-int,
to-dvar,
cst_to-int,
value-dvar),

’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elem_from_to,
[required(’ITEM’,[from,cst_from,to,cst_to,value]),
’ITEM’ˆfrom>=1,
’ITEM’ˆfrom=<size(’TABLE’),
’ITEM’ˆto>=1,
’ITEM’ˆto=<size(’TABLE’),
’ITEM’ˆfrom=<’ITEM’ˆto,
size(’ITEM’)=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
increasing_seq(’TABLE’,[index])]).

ctr_example(
elem_from_to,
elem_from_to(

[[from-1,cst_from-1,to-4,cst_to- -1,value-2]],
[[index-1,value-6],
[index-2,value-2],
[index-3,value-2],
[index-4,value-9],
[index-5,value-9]])).

ctr_typical(
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elem_from_to,
[’ITEM’ˆcst_from>=0,
’ITEM’ˆcst_from=<1,
’ITEM’ˆcst_to>= -1,
’ITEM’ˆcst_to=<1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elem_from_to,
[vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).

ctr_eval(elem_from_to,[automaton(elem_from_to_a)]).

elem_from_to_a(FLAG,ITEM,TABLE) :-
length(TABLE,N),
collection(ITEM,[dvar(1,N),int,dvar(1,N),int,dvar]),
collection(TABLE,[int(1,N),dvar]),
collection_increasing_seq(TABLE,[1]),
ITEM=
[[from-FROM,

cst_from-CST_FROM,
to-TO,
cst_to-CST_TO,
value-VALUE]],

FROM#=<TO,
F#=max(1,FROM+CST_FROM),
T#=min(N,TO+CST_TO),
elem_from_to_signature(

TABLE,
SIGNATURE,
N,
FROM,
TO,
F,
T,
VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_34879,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s),arc(s,2,s),arc(s,3,s)],
[],
[],
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[]),
automaton_bool(FLAG,[0,1,2,3,4],AUTOMATON).

elem_from_to_signature(
[],
[],
_30376,
_30423,
_30470,
_30517,
_30564,
_30611).

elem_from_to_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
N,
FROM,
TO,
F,
T,
VALUE) :-

S in 0..4,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#>T#<=>S#=0,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
F#>TABLE_INDEX#<=>
S#=1,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
T#<TABLE_INDEX#<=>
S#=2,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
F#=<TABLE_INDEX#/\
TABLE_INDEX#=<T#/\
VALUE#=TABLE_VALUE#<=>
S#=3,
1#=<FROM#/\FROM#=<TO#/\TO#=<N#/\F#=<T#/\
F#=<TABLE_INDEX#/\
TABLE_INDEX#=<T#/\
VALUE#\=TABLE_VALUE#<=>
S#=4,
elem_from_to_signature(TABLEs,Ss,N,FROM,TO,F,T,VALUE).
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B.141 element

♦ META-DATA:

ctr_date(
element,
[’20000128’,’20030820’,’20040530’,’20060808’,’20090923’]).

ctr_origin(element,’\\cite{VanHentenryckCarillon88}’,[]).

ctr_synonyms(element,[nth,element_var,array]).

ctr_arguments(
element,
[’INDEX’-dvar,’TABLE’-collection(value-dvar),’VALUE’-dvar]).

ctr_restrictions(
element,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’),
size(’TABLE’)>0,
required(’TABLE’,value)]).

ctr_example(
element,
element(3,[[value-6],[value-9],[value-2],[value-9]],2)).

ctr_typical(element,[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element,
[vals([’TABLE’ˆvalue,’VALUE’],int,=\=,all,dontcare)]).

ctr_derived_collections(
element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’INDEX’,value-’VALUE’)])]).

ctr_graph(
element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆkey,itemˆvalue=tableˆvalue],
[’NARC’=1],
[]).
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ctr_eval(element,[builtin(element_b),automaton(element_a)]).

ctr_pure_functional_dependency(element,[]).

ctr_functional_dependency(element,3,[1,2]).

ctr_extensible(element,[],’TABLE’,suffix).

element_b(INDEX,TABLE,VALUE) :-
check_type(dvar,INDEX),
collection(TABLE,[dvar]),
check_type(dvar,VALUE),
length(TABLE,N),
N>0,
INDEX#>=1,
INDEX#=<N,
get_attr1(TABLE,VALUES),
element(INDEX,VALUES,VALUE).

element_a(FLAG,INDEX,TABLE,VALUE) :-
check_type(dvar,INDEX),
collection(TABLE,[dvar]),
check_type(dvar,VALUE),
length(TABLE,N),
N>0,
INDEX#>=1,
INDEX#=<N,
element_signature(TABLE,INDEX,VALUE,1,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_60301,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_signature([],_58021,_58022,_58023,[]).

element_signature(
[[value-TABLE_VALUE]|Ts],
INDEX,
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VALUE,
TABLE_KEY,
[B|Bs]) :-

INDEX#=TABLE_KEY#/\VALUE#=TABLE_VALUE#<=>B,
TABLE_KEY1 is TABLE_KEY+1,
element_signature(Ts,INDEX,VALUE,TABLE_KEY1,Bs).
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B.142 element greatereq

♦ META-DATA:

ctr_date(element_greatereq,[’20030820’,’20040530’,’20060808’]).

ctr_origin(
element_greatereq,
\cite{OttossonThorsteinssonHooker99},
[]).

ctr_arguments(
element_greatereq,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_greatereq,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
element_greatereq,
element_greatereq(

[[index-1,value-8]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
element_greatereq,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element_greatereq,
[items(’TABLE’,all),
vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).
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ctr_graph(
element_greatereq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue>=tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(
element_greatereq,
[reformulation(element_greatereq_r),
automaton(element_greatereq_a)]).

element_greatereq_r(ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
sort_collection(TABLE,index,SORTED_TABLE),
get_attr1(SORTED_TABLE,INDEXES),
increasing_values(INDEXES),
get_attr2(SORTED_TABLE,VALUES),
get_attr1(ITEM,[INDEX]),
get_attr2(ITEM,[VALUE]),
element(INDEX,VALUES,VAL),
VALUE#>=VAL.

element_greatereq_a(FLAG,ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
element_greatereq_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,
ITEM_VALUE),

AUTOMATON=
automaton(

SIGNATURE,
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_46485,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_greatereq_signature([],[],_43640,_43641).

element_greatereq_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#>=TABLE_VALUE#<=>S,
element_greatereq_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE).
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B.143 element lesseq

♦ META-DATA:

ctr_date(element_lesseq,[’20030820’,’20040530’,’20060808’]).

ctr_origin(
element_lesseq,
\cite{OttossonThorsteinssonHooker99},
[]).

ctr_arguments(
element_lesseq,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int)]).

ctr_restrictions(
element_lesseq,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
’ITEM’ˆindex=<size(’TABLE’),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
element_lesseq,
element_lesseq(

[[index-3,value-1]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
element_lesseq,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element_lesseq,
[items(’TABLE’,all),
vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).
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ctr_graph(
element_lesseq,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex=tableˆindex,itemˆvalue=<tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(
element_lesseq,
[reformulation(element_lesseq_r),
automaton(element_lesseq_a)]).

ctr_cond_imply(
element_lesseq,
bin_packing_capa,
[minval(’ITEM’ˆvalue)>0,’TABLE’ˆvalue>0],
[],
[same(’TABLE’),same(’ITEM’)]).

element_lesseq_r(ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
sort_collection(TABLE,index,SORTED_TABLE),
get_attr1(SORTED_TABLE,INDEXES),
increasing_values(INDEXES),
get_attr2(SORTED_TABLE,VALUES),
get_attr1(ITEM,[INDEX]),
get_attr2(ITEM,[VALUE]),
element(INDEX,VALUES,VAL),
VALUE#=<VAL.

element_lesseq_a(FLAG,ITEM,TABLE) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
element_lesseq_signature(
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TABLE,
SIGNATURE,
ITEM_INDEX,
ITEM_VALUE),

AUTOMATON=
automaton(

SIGNATURE,
_47472,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_lesseq_signature([],[],_44627,_44628).

element_lesseq_signature(
[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#=<TABLE_VALUE#<=>S,
element_lesseq_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE).
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B.144 element matrix

♦ META-DATA:

ctr_date(element_matrix,[’20031101’,’20060808’]).

ctr_origin(element_matrix,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(element_matrix,[elem_matrix,matrix]).

ctr_arguments(
element_matrix,
[’MAX_I’-int,
’MAX_J’-int,
’INDEX_I’-dvar,
’INDEX_J’-dvar,
’MATRIX’-collection(i-int,j-int,v-int),
’VALUE’-dvar]).

ctr_restrictions(
element_matrix,
[’MAX_I’>=1,
’MAX_J’>=1,
’INDEX_I’>=1,
’INDEX_I’=<’MAX_I’,
’INDEX_J’>=1,
’INDEX_J’=<’MAX_J’,
required(’MATRIX’,[i,j,v]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<’MAX_I’,
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<’MAX_J’,
size(’MATRIX’)=’MAX_I’*’MAX_J’]).

ctr_example(
element_matrix,
element_matrix(

4,
3,
1,
3,
[[i-1,j-1,v-4],
[i-1,j-2,v-1],
[i-1,j-3,v-7],
[i-2,j-1,v-1],
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[i-2,j-2,v-0],
[i-2,j-3,v-8],
[i-3,j-1,v-3],
[i-3,j-2,v-2],
[i-3,j-3,v-1],
[i-4,j-1,v-0],
[i-4,j-2,v-0],
[i-4,j-3,v-6]],
7)).

ctr_typical(
element_matrix,
[’MAX_I’>1,
’MAX_J’>1,
size(’MATRIX’)>3,
maxval(’MATRIX’ˆi)>1,
maxval(’MATRIX’ˆj)>1,
range(’MATRIX’ˆv)>1]).

ctr_exchangeable(
element_matrix,
[vals([’MATRIX’ˆv,’VALUE’],int,=\=,all,dontcare)]).

ctr_derived_collections(
element_matrix,
[col(ITEM-

collection(index_i-dvar,index_j-dvar,value-dvar),
[item(

index_i-’INDEX_I’,
index_j-’INDEX_J’,
value-’VALUE’)])]).

ctr_graph(
element_matrix,
[’ITEM’,’MATRIX’],
2,
[’PRODUCT’>>collection(item,matrix)],
[itemˆindex_i=matrixˆi,
itemˆindex_j=matrixˆj,
itemˆvalue=matrixˆv],
[’NARC’=1],
[]).

ctr_eval(
element_matrix,
[reformulation(element_matrix_r),
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automaton(element_matrix_a)]).

element_matrix_r(MAX_I,MAX_J,INDEX_I,INDEX_J,MATRIX,VALUE) :-
check_type(int,MAX_I),
MAX_I>=1,
check_type(int,MAX_J),
MAX_J>=1,
check_type(dvar,INDEX_I),
INDEX_I#>=1,
INDEX_I#=<MAX_I,
check_type(dvar,INDEX_J),
INDEX_J#>=1,
INDEX_J#=<MAX_J,
collection(MATRIX,[int(1,MAX_I),int(1,MAX_J),int]),
length(MATRIX,N),
N is MAX_I*MAX_J,
collection_increasing_seq(MATRIX,[1,2]),
check_type(dvar,VALUE),
get_attr3(MATRIX,VALUES),
element_matrix1(MAX_I,MAX_J,INDEX_J,VALUES,TABLE_VARS),
element(INDEX_I,TABLE_VARS,VALUE).

element_matrix1(0,_50891,_50892,_50893,[]) :-
!.

element_matrix1(I,MAX_J,INDEX_J,VALUES,[V_J|R]) :-
I>0,
element_matrix2(MAX_J,VALUES,TABLE_VALS,REST_VALUES),
element(INDEX_J,TABLE_VALS,V_J),
I1 is I-1,
element_matrix1(I1,MAX_J,INDEX_J,REST_VALUES,R).

element_matrix2(0,VALUES,[],VALUES) :-
!.

element_matrix2(J,[V|R],[V|S],REST_VALUES) :-
J>0,
J1 is J-1,
element_matrix2(J1,R,S,REST_VALUES).

element_matrix_a(FLAG,MAX_I,MAX_J,INDEX_I,INDEX_J,MATRIX,VALUE) :-
check_type(int,MAX_I),
MAX_I>=1,
check_type(int,MAX_J),
MAX_J>=1,
check_type(dvar,INDEX_I),
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INDEX_I#>=1,
INDEX_I#=<MAX_I,
check_type(dvar,INDEX_J),
INDEX_J#>=1,
INDEX_J#=<MAX_J,
collection(MATRIX,[int(1,MAX_I),int(1,MAX_J),int]),
length(MATRIX,N),
N is MAX_I*MAX_J,
collection_increasing_seq(MATRIX,[1,2]),
check_type(dvar,VALUE),
element_matrix_signature(

MATRIX,
INDEX_I,
INDEX_J,
VALUE,
SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_55011,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

element_matrix_signature([],_50888,_50889,_50890,[]).

element_matrix_signature(
[[i-I,j-J,v-V]|Ms],
INDEX_I,
INDEX_J,
VALUE,
[S|Ss]) :-

INDEX_I#=I#/\INDEX_J#=J#/\VALUE#=V#<=>S,
element_matrix_signature(Ms,INDEX_I,INDEX_J,VALUE,Ss).
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B.145 element product

♦ META-DATA:

ctr_date(element_product,[’20051229’,’20060808’]).

ctr_origin(
element_product,
\cite{OttossonThorsteinsson00},
[]).

ctr_synonyms(element_product,[element]).

ctr_arguments(
element_product,
[’Y’-dvar,’TABLE’-collection(value-int),’X’-dvar,’Z’-dvar]).

ctr_restrictions(
element_product,
[’Y’>=1,
’Y’=<size(’TABLE’),
’X’>=0,
’Z’>=0,
required(’TABLE’,value),
’TABLE’ˆvalue>=0]).

ctr_example(
element_product,
element_product(

3,
[[value-6],[value-9],[value-2],[value-9]],
5,
10)).

ctr_typical(
element_product,
[’X’>0,
’Z’>0,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1,
’TABLE’ˆvalue>0]).

ctr_derived_collections(
element_product,
[col(’ITEM’-collection(y-dvar,x-dvar,z-dvar),

[item(y-’Y’,x-’X’,z-’Z’)])]).
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ctr_graph(
element_product,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆy=tableˆkey,itemˆz=itemˆx*tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(element_product,[reformulation(element_product_r)]).

ctr_pure_functional_dependency(element_product,[]).

ctr_functional_dependency(element_product,4,[1,2,3]).

ctr_extensible(element_product,[],’TABLE’,suffix).

element_product_r(Y,TABLE,X,Z) :-
check_type(dvar,Y),
collection(TABLE,[int_gteq(0)]),
check_type(dvar,X),
check_type(dvar,Z),
length(TABLE,N),
Y#>=1,
Y#=<N,
X#>=0,
Z#>=0,
get_attr1(TABLE,VALUES),
element(Y,VALUES,VAL),
Z#=VAL*X.
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B.146 element sparse

♦ META-DATA:

ctr_date(element_sparse,[’20030820’,’20040530’,’20060808’]).

ctr_origin(element_sparse,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_usual_name(element_sparse,element).

ctr_arguments(
element_sparse,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
element_sparse,
[required(’ITEM’,[index,value]),
’ITEM’ˆindex>=1,
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_example(
element_sparse,
element_sparse(

[[index-2,value-5]],
[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],
[index-8,value-9]],

5)).

ctr_typical(
element_sparse,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
element_sparse,
[items(’TABLE’,all),
vals(

[’ITEM’ˆvalue,’TABLE’ˆvalue,’DEFAULT’],
int,



2993

=\=,
all,
dontcare)]).

ctr_derived_collections(
element_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆvalue),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
element_sparse,
[’ITEM’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(item,table_def)],
[itemˆvalue=table_defˆvalue,
itemˆindex=table_defˆindex#\/table_defˆindex=0],
[’NARC’>=1],
[]).

ctr_eval(
element_sparse,
[reformulation(element_sparse_r),
automaton(element_sparse_a)]).

element_sparse_r(ITEM,TABLE,DEFAULT) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar_gteq(1),dvar]),
collection(TABLE,[int_gteq(1),dvar]),
check_type(int,DEFAULT),
get_attr1(ITEM,[I]),
get_attr2(ITEM,[V]),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
element_sparse1(INDEXES,VALUES,I,V,DEFAULT,Term1,Term2),
call(Term1#\/Term2).

element_sparse1([],[],_47118,V,DEFAULT,0,V#=DEFAULT).

element_sparse1(
[IND|R],
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[VAL|S],
I,
V,
DEFAULT,
I#=IND#/\V#=VAL#\/T,
I#\=IND#/\U) :-

element_sparse1(R,S,I,V,DEFAULT,T,U).

element_sparse_a(FLAG,ITEM,TABLE,DEFAULT) :-
length(ITEM,1),
length(TABLE,N),
N>0,
collection(ITEM,[dvar_gteq(1),dvar]),
collection(TABLE,[int_gteq(1),dvar]),
check_type(int,DEFAULT),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
element_sparse_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,
ITEM_VALUE,
DEFAULT),

AUTOMATON=
automaton(

SIGNATURE,
_50308,
SIGNATURE,
[source(s),sink(d),sink(t)],
[arc(s,0,s),
arc(s,1,t),
arc(s,2,d),
arc(d,1,t),
arc(d,2,d),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

element_sparse_signature([],[],_47118,_47119,_47120).

element_sparse_signature(
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[[index-TABLE_INDEX,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE,
DEFAULT) :-

S in 0..2,
ITEM_INDEX#\=TABLE_INDEX#/\ITEM_VALUE#\=DEFAULT#<=>S#=0,
ITEM_INDEX#=TABLE_INDEX#/\ITEM_VALUE#=TABLE_VALUE#<=>
S#=1,
ITEM_INDEX#\=TABLE_INDEX#/\ITEM_VALUE#=DEFAULT#<=>S#=2,
element_sparse_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE,
DEFAULT).
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B.147 elementn

♦ META-DATA:

ctr_date(elementn,[’20061004’]).

ctr_origin(elementn,’P. Flener’,[]).

ctr_arguments(
elementn,
[’INDEX’-dvar,
’TABLE’-collection(value-int),
’ENTRIES’-collection(entry-dvar)]).

ctr_restrictions(
elementn,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’)-size(’ENTRIES’)+1,
size(’TABLE’)>0,
size(’ENTRIES’)>0,
size(’TABLE’)>=size(’ENTRIES’),
required(’TABLE’,value),
required(’ENTRIES’,entry)]).

ctr_example(
elementn,
elementn(

3,
[[value-6],[value-9],[value-2],[value-9]],
[[entry-2],[entry-9]])).

ctr_typical(
elementn,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1,size(’ENTRIES’)>1]).

ctr_exchangeable(
elementn,
[vals(

[’TABLE’ˆvalue,’ENTRIES’ˆentry],
int,
=\=,
all,
dontcare)]).

ctr_eval(
elementn,
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[reformulation(elementn_r),automaton(elementn_a)]).

ctr_extensible(elementn,[],’TABLE’,suffix).

elementn_r(INDEX,TABLE,ENTRIES) :-
length(TABLE,N),
length(ENTRIES,M),
N>0,
M>0,
N>=M,
NM is N-M+1,
check_type(dvar(1,NM),INDEX),
collection(TABLE,[int]),
collection(ENTRIES,[dvar]),
get_attr1(TABLE,TAB),
get_attr1(ENTRIES,VALS),
elementn1(VALS,0,INDEX,TAB).

elementn1([],_28400,_28401,_28402).

elementn1([V|R],K,INDEX,TAB) :-
IND#=INDEX+K,
element(IND,TAB,V),
K1 is K+1,
elementn1(R,K1,INDEX,TAB).

elementn_a(FLAG,INDEX,TABLE,ENTRIES) :-
length(TABLE,T),
length(ENTRIES,E),
T>0,
E>0,
T>=E,
TE is T-E+1,
check_type(dvar(1,TE),INDEX),
collection(TABLE,[int]),
collection(ENTRIES,[dvar]),
elementn_get_para(TABLE,Table),
elementn_get_para(ENTRIES,Entries),
elementn_gen_val(1,TE,LV),
elementn_gen_arc(1,TE,E,LV,Table,Arcs),
append([INDEX],Entries,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_31696,
SIGNATURE,
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[source(s),sink(t)],
Arcs,
[],
[],
[]),

union_dom_list_int(SIGNATURE,ALPHABET),
automaton_bool(FLAG,ALPHABET,AUTOMATON).

elementn_get_para([],[]).

elementn_get_para([[_28409-P]|R],[P|S]) :-
elementn_get_para(R,S).

elementn_gen_val(I,I,[I]) :-
!.

elementn_gen_val(I,J,[I|R]) :-
I<J,
I1 is I+1,
elementn_gen_val(I1,J,R).

elementn_gen_arc(I,J,_28404,_28405,_28406,[]) :-
I>J,
!.

elementn_gen_arc(I,J,E,[I|S],[F|T],Arcs) :-
I=<J,
K is 1+E*(I-1),
A0=[arc(s,I,K)],
elementn_gen_arc1(1,E,K,[F|T],A1),
I1 is I+1,
elementn_gen_arc(I1,J,E,S,T,A),
append(A0,A1,A2),
append(A2,A,Arcs).

elementn_gen_arc1(J,E,K,[F|T],[arc(K,F,K1)|R]) :-
J<E,
!,
K1 is K+1,
J1 is J+1,
elementn_gen_arc1(J1,E,K1,T,R).

elementn_gen_arc1(E,E,K,[F|_28409],[arc(K,F,t)]).
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B.148 elements

♦ META-DATA:

ctr_date(elements,[’20030820’,’20060808’]).

ctr_origin(elements,’Derived from %c.’,[element]).

ctr_arguments(
elements,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
elements,
elements(

[[index-4,value-9],[index-1,value-6]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
elements,
[size(’ITEMS’)>1,
range(’ITEMS’ˆindex)>1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elements,
[items(’ITEMS’,all),
items(’TABLE’,all),
vals([’ITEMS’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).

ctr_graph(
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elements,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NARC’=size(’ITEMS’)],
[]).

ctr_eval(elements,[reformulation(elements_r)]).

ctr_pure_functional_dependency(elements,[]).

ctr_functional_dependency(elements,1-2,[1-1,2]).

ctr_cond_imply(
elements,
bin_packing_capa,
[distinct(’ITEMS’,index),’TABLE’ˆvalue>=0],
[],
[’TABLE’,’ITEMS’]).

elements_r(ITEMS,TABLE) :-
length(TABLE,N),
collection(ITEMS,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
sort_collection(TABLE,index,SORTED_TABLE),
get_attr1(SORTED_TABLE,INDEXES),
increasing_values(INDEXES),
get_attr2(SORTED_TABLE,VALUES),
get_attr1(ITEMS,INDS),
get_attr2(ITEMS,VALS),
elements1(INDS,VALS,VALUES).

elements1([],[],_43167).

elements1([IND|R],[VAL|S],VALUES) :-
element(IND,VALUES,VAL),
elements1(R,S,VALUES).
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B.149 elements alldifferent

♦ META-DATA:

ctr_date(elements_alldifferent,[’20030820’,’20060809’]).

ctr_origin(
elements_alldifferent,
Derived from %c and %c.,
[elements,alldifferent]).

ctr_synonyms(
elements_alldifferent,
[elements_alldiff,elements_alldistinct,permutation]).

ctr_arguments(
elements_alldifferent,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-dvar)]).

ctr_restrictions(
elements_alldifferent,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
size(’ITEMS’)=size(’TABLE’),
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
elements_alldifferent,
elements_alldifferent(

[[index-2,value-9],
[index-1,value-6],
[index-4,value-9],
[index-3,value-2]],
[[index-1,value-6],
[index-2,value-9],
[index-3,value-2],
[index-4,value-9]])).

ctr_typical(
elements_alldifferent,
[size(’ITEMS’)>1,
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range(’ITEMS’ˆvalue)>1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elements_alldifferent,
[args([[’ITEMS’,’TABLE’]]),
items(’ITEMS’,all),
items(’TABLE’,all),
vals([’ITEMS’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).

ctr_graph(
elements_alldifferent,
[’ITEMS’,’TABLE’],
2,
[’PRODUCT’>>collection(items,table)],
[itemsˆindex=tableˆindex,itemsˆvalue=tableˆvalue],
[’NVERTEX’=size(’ITEMS’)+size(’TABLE’)],
[]).

ctr_eval(
elements_alldifferent,
[reformulation(elements_alldifferent_r)]).

ctr_functional_dependency(elements_alldifferent,1-2,[1-1,2]).

ctr_cond_imply(
elements_alldifferent,
bin_packing_capa,
[’TABLE’ˆvalue>=0],
[],
[’TABLE’,’ITEMS’]).

elements_alldifferent_r(ITEMS,TABLE) :-
length(TABLE,N),
collection(ITEMS,[dvar(1,N),dvar]),
collection(TABLE,[int(1,N),dvar]),
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
sort(TABLE,STAB),
get_attr2(STAB,VALUES),
get_attr1(ITEMS,INDS),
get_attr2(ITEMS,VALS),
all_different(INDS),
elements_alldifferent1(INDS,VALS,VALUES).
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elements_alldifferent1([],[],_48954).

elements_alldifferent1([IND|R],[VAL|S],VALUES) :-
element(IND,VALUES,VAL),
elements_alldifferent1(R,S,VALUES).
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B.150 elements sparse

♦ META-DATA:

ctr_date(elements_sparse,[’20030820’,’20060809’]).

ctr_origin(elements_sparse,’Derived from %c.’,[element_sparse]).

ctr_arguments(
elements_sparse,
[’ITEMS’-collection(index-dvar,value-dvar),
’TABLE’-collection(index-int,value-int),
’DEFAULT’-int]).

ctr_restrictions(
elements_sparse,
[required(’ITEMS’,[index,value]),
’ITEMS’ˆindex>=1,
required(’TABLE’,[index,value]),
’TABLE’ˆindex>=1,
distinct(’TABLE’,index)]).

ctr_example(
elements_sparse,
elements_sparse(

[[index-8,value-9],
[index-3,value-5],
[index-2,value-5]],

[[index-1,value-6],
[index-2,value-5],
[index-4,value-2],
[index-8,value-9]],

5)).

ctr_typical(
elements_sparse,
[size(’ITEMS’)>1,
range(’ITEMS’ˆvalue)>1,
size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1]).

ctr_exchangeable(
elements_sparse,
[items(’ITEMS’,all),
items(’TABLE’,all),
vals(
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[’ITEMS’ˆvalue,’TABLE’ˆvalue,’DEFAULT’],
int,
=\=,
all,
dontcare)]).

ctr_derived_collections(
elements_sparse,
[col(’DEF’-collection(index-int,value-int),

[item(index-0,value-’DEFAULT’)]),
col(’TABLE_DEF’-collection(index-dvar,value-dvar),

[item(index-’TABLE’ˆindex,value-’TABLE’ˆindex),
item(index-’DEF’ˆindex,value-’DEF’ˆvalue)])]).

ctr_graph(
elements_sparse,
[’ITEMS’,’TABLE_DEF’],
2,
[’PRODUCT’>>collection(items,table_def)],
[itemsˆvalue=table_defˆvalue,
itemsˆindex=table_defˆindex#\/table_defˆindex=0],
[’NSOURCE’=size(’ITEMS’)],
[]).

ctr_eval(elements_sparse,[reformulation(elements_sparse_r)]).

elements_sparse_r(ITEMS,TABLE,DEFAULT) :-
collection(ITEMS,[dvar_gteq(1),dvar]),
collection(TABLE,[int_gteq(1),dvar]),
check_type(int,DEFAULT),
get_attr1(ITEMS,IS),
get_attr2(ITEMS,VS),
get_attr1(TABLE,INDEXES),
get_attr2(TABLE,VALUES),
all_different(INDEXES),
elements_sparse1(IS,VS,INDEXES,VALUES,DEFAULT).

elements_sparse1([],[],_47321,_47322,_47323).

elements_sparse1([I|R],[V|S],INDEXES,VALUES,DEFAULT) :-
elements_sparse2(

INDEXES,
VALUES,
I,
V,
DEFAULT,
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Term1,
Term2),

call(Term1#\/Term2),
elements_sparse1(R,S,INDEXES,VALUES,DEFAULT).

elements_sparse2([],[],_47321,V,DEFAULT,0,V#=DEFAULT).

elements_sparse2(
[IND|R],
[VAL|S],
I,
V,
DEFAULT,
I#=IND#/\V#=VAL#\/T,
I#\=IND#/\U) :-

elements_sparse2(R,S,I,V,DEFAULT,T,U).
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B.151 eq
♦ META-DATA:

ctr_predefined(eq).

ctr_date(eq,[’20070821’]).

ctr_origin(eq,’Arithmetic.’,[]).

ctr_synonyms(eq,[xeqy]).

ctr_arguments(eq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_restrictions(eq,[]).

ctr_example(eq,eq(8,8)).

ctr_exchangeable(
eq,
[args([[’VAR1’,’VAR2’]]),
vals([’VAR1’,’VAR2’],int,=\=,all,dontcare)]).

ctr_eval(eq,[checker(eq_c),builtin(eq_b)]).

ctr_pure_functional_dependency(eq,[]).

ctr_functional_dependency(eq,2,[1]).

ctr_functional_dependency(eq,1,[2]).

eq_c(VAR1,VAR2) :-
check_type(int,VAR1),
check_type(int,VAR2),
VAR1=VAR2.

eq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#=VAR2.
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B.152 eq cst
♦ META-DATA:

ctr_predefined(eq_cst).

ctr_date(eq_cst,[’20090923’]).

ctr_origin(eq_cst,’Arithmetic.’,[]).

ctr_arguments(eq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST2’-int]).

ctr_example(eq_cst,eq_cst(8,2,6)).

ctr_typical(eq_cst,[’CST2’=\=0]).

ctr_exchangeable(
eq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),
translate([’VAR1’,’VAR2’]),
translate([’VAR1’,’CST2’])]).

ctr_eval(eq_cst,[checker(eq_cst_c),builtin(eq_cst_b)]).

ctr_pure_functional_dependency(eq_cst,[]).

ctr_functional_dependency(eq_cst,1,[2,3]).

ctr_functional_dependency(eq_cst,2,[1,3]).

ctr_functional_dependency(eq_cst,3,[1,2]).

eq_cst_c(VAR1,VAR2,CST2) :-
check_type(int,VAR1),
check_type(int,VAR2),
check_type(dvar,CST2),
CST2 is VAR1-VAR2.

eq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#=VAR2+CST2.
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B.153 eq set
♦ META-DATA:

ctr_predefined(eq_set).

ctr_date(eq_set,[’20030820’]).

ctr_origin(
eq_set,
Used for defining %c.,
[alldifferent_between_sets]).

ctr_arguments(eq_set,[’SET1’-svar,’SET2’-svar]).

ctr_example(eq_set,eq_set({3,5},{3,5})).

ctr_exchangeable(
eq_set,
[args([[’SET1’,’SET2’]]),
vals([’SET1’,’SET2’],int,=\=,all,dontcare)]).
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B.154 equal sboxes

♦ META-DATA:

ctr_date(equal_sboxes,[’20070622’,’20090725’]).

ctr_origin(
equal_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(equal_sboxes,[equal]).

ctr_types(
equal_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
equal_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
equal_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
equal_sboxes,
equal_sboxes(

2,
{0,1},
[[oid-1,sid-2,x-[[v-4],[v-1]]],
[oid-2,sid-2,x-[[v-4],[v-1]]],
[oid-3,sid-2,x-[[v-4],[v-1]]]],
[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-3,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(equal_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
equal_sboxes,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]).

ctr_eval(equal_sboxes,[logic(equal_sboxes_g)]).

ctr_logic(
equal_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(equal_sboxes(Dims,O1,S1,O2,S2)--->
forall(

D,
Dims,
origin(O1,S1,D)#=origin(O2,S2,D)#/\
end(O1,S1,D)#=end(O2,S2,D))),

(equal_objects(Dims,O1,O2)--->
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forall(
S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
equal_sboxes(Dims,O1,S1,O2,S2)))),

(all_equal(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#=O2ˆoid-1#=>equal_objects(Dims,O1,O2)))),

all_equal(DIMENSIONS,OIDS)]).

ctr_contractible(equal_sboxes,[],’OBJECTS’,suffix).

ctr_application(equal_sboxes,[3]).

equal_sboxes_g(K,_40037,[],_40039) :-
!,
check_type(int_gteq(1),K).

equal_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(equal_sboxes,[DIMENSIONS,OIDS],Rules),
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geost(Objects,Sboxes,[overlap(true)],Rules).
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B.155 equilibrium

♦ META-DATA:

ctr_predefined(equilibrium).

ctr_date(equilibrium,[’20130714’]).

ctr_origin(
equilibrium,
Inspired by the Irish Collegiate Programming Competition 2012 (equilibrium index),
[]).

ctr_synonyms(equilibrium,[balanced]).

ctr_arguments(
equilibrium,
[’VARIABLES’-collection(var-dvar),
’INDEX1’-dvar,
’INDEX2’-dvar,
’EPSILON’-int,
’COEF1’-int,
’COEF2’-int,
’TOLERANCE’-int,
’CTR’-atom]).

ctr_restrictions(
equilibrium,
[size(’VARIABLES’)>=1,
’INDEX1’>=1,
’INDEX1’=<size(’VARIABLES’),
’INDEX2’>=1,
’INDEX2’=<size(’VARIABLES’),
’INDEX1’=<’INDEX2’,
’EPSILON’>=0,
’EPSILON’=<2,
’EPSILON’=’INDEX2’-’INDEX1’,
’COEF1’=\=0,
’COEF2’=\=0,
’TOLERANCE’>=0,
in_list(

CTR,
[among_diff_0,
and,
change,
deepest_valley,
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highest_peak,
increasing_nvalue,
inflexion,
longest_change,
longest_decreasing_sequence,
longest_increasing_sequence,
max_decreasing_slope,
max_increasing_slope,
min_decreasing_slope,
min_increasing_slope,
min_width_peak,
min_width_valley,
peak,
sum_ctr,
valley])]).

ctr_example(
equilibrium,
[equilibrium(

[[var-4],[var-4],[var-3],[var-6],[var-2]],
2,
4,
2,
1,
1,
0,
sum_ctr),

equilibrium(
[[var- -2],
[var-5],
[var- -2],
[var-6],
[var- -1],
[var-0],
[var- -3],
[var-5],
[var- -7],
[var-6],
[var- -1],
[var-7],
[var-0]],

5,
5,
0,
1,
1,
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0,
sum_ctr),

equilibrium(
[[var- -2],
[var-5],
[var- -2],
[var-6],
[var- -1],
[var-0],
[var- -3],
[var-5],
[var- -7],
[var-6],
[var- -1],
[var-7],
[var-0]],
11,
11,
0,
1,
1,
0,
sum_ctr),

equilibrium(
[[var-0],
[var-3],
[var-2],
[var-6],
[var-2],
[var-2],
[var-5],
[var-8],
[var-7],
[var-6],
[var-7],
[var-3]],
5,
7,
2,
1,
1,
0,
peak),

equilibrium(
[[var-0],
[var-5],
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[var-3],
[var-8],
[var-2],
[var-2],
[var-5],
[var-5],
[var-8],
[var-7],
[var-2],
[var-7],
[var-3]],

7,
7,
0,
1,
1,
0,
change)]).

ctr_typical(
equilibrium,
[size(’VARIABLES’)>2,
’INDEX1’>1,
’INDEX1’<size(’VARIABLES’),
’INDEX2’>1,
’INDEX2’<size(’VARIABLES’),
’COEF1’=1,
’COEF2’=1,
’EPSILON’=1,
’TOLERANCE’=0]).

ctr_eval(
equilibrium,
[checker(equilibrium_c),
reformulation(equilibrium_r),
ground_typical(equilibrium_t)]).

equilibrium_t(
VARIABLES,
_30267,
_30314,
_30361,
_30408,
_30455,
_30502,
CTR) :-



3018 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

( CTR=among_diff_0 ->
among_diff_0(C,VARIABLES),
C#>0

; CTR=change ->
change(C,VARIABLES,=\=),
C#>0

; CTR=increasing_nvalue ->
increasing_nvalue(C,VARIABLES),
C#>0

; CTR=inflexion ->
inflexion(C,VARIABLES),
C#>0

; CTR=longest_change ->
longest_change(C,VARIABLES,=\=),
C#>0

; CTR=longest_decreasing_sequence ->
longest_decreasing_sequence(C,VARIABLES),
C#>1

; CTR=longest_increasing_sequence ->
longest_increasing_sequence(C,VARIABLES),
C#>1

; CTR=max_decreasing_slope ->
max_decreasing_slope(C,VARIABLES),
C#>1

; CTR=max_increasing_slope ->
max_increasing_slope(C,VARIABLES),
C#>1

; CTR=min_decreasing_slope ->
min_decreasing_slope(C,VARIABLES),
C#>1

; CTR=min_increasing_slope ->
min_increasing_slope(C,VARIABLES),
C#>1

; CTR=min_width_peak ->
min_width_peak(C,VARIABLES),
C#>0

; CTR=min_width_valley ->
min_width_valley(C,VARIABLES),
C#>0

; CTR=peak ->
peak(C,VARIABLES),
C#>0

; CTR=sum_ctr ->
sum_ctr(C,VARIABLES),
C#>0

; CTR=valley ->
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valley(C,VARIABLES),
C#>0

; true
).

equilibrium_c(
VARIABLES,
INDEX1,
INDEX2,
EPSILON,
COEF1,
COEF2,
TOLERANCE,
CTR) :-

integer(INDEX1),
integer(INDEX2),
!,
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>=1,
INDEX1>=1,
INDEX1=<N,
INDEX2>=1,
INDEX2=<N,
INDEX1=<INDEX2,
EPSILON>=0,
EPSILON=<2,
EPSILON is INDEX2-INDEX1,
TOLERANCE>=0,
memberchk(

CTR,
[among_diff_0,
and,
change,
deepest_valley,
highest_peak,
increasing_nvalue,
inflexion,
longest_change,
longest_decreasing_sequence,
longest_increasing_sequence,
max_decreasing_slope,
max_increasing_slope,
min_decreasing_slope,
min_increasing_slope,
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min_width_peak,
min_width_valley,
peak,
sum_ctr,
valley]),

( CTR=among_diff_0 ->
prefix_length(VARS,PVARS,INDEX1),
among_diff_0_c(PVARS,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
among_diff_0_c(SVARS,0,C2)

; CTR=and ->
prefix_length(VARIABLES,PVARS,INDEX1),
C1 in 0..1,
and_c(C1,PVARS),
PREF is INDEX2-1,
append_length(SVARS,VARIABLES,PREF),
C2 in 0..1,
and_c(C2,SVARS)

; CTR=change ->
prefix_length(VARS,PVARS,INDEX1),
change_neq_c(PVARS,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
change_neq_c(SVARS,0,C2)

; CTR=deepest_valley ->
MAXINT=1000000,
prefix_length(VARS,PVARS,INDEX1),
deepest_valley_c(PVARS,s,MAXINT,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
deepest_valley_c(SVARS,s,MAXINT,C2)

; CTR=highest_peak ->
MININT= -1000000,
prefix_length(VARS,PVARS,INDEX1),
highest_peak_c(PVARS,s,MININT,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
highest_peak_c(SVARS,s,MININT,C2)

; CTR=increasing_nvalue ->
prefix_length(VARS,PVARS,INDEX1),
PVARS=[PVAR|RPVARS],
increasing_nvalue_c(RPVARS,PVAR,1,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
SVARS=[SVAR|RSVARS],
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increasing_nvalue_c(RSVARS,SVAR,1,C2)
; CTR=inflexion ->

prefix_length(VARS,PVARS,INDEX1),
inflexion_c(PVARS,s,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
inflexion_c(SVARS,s,0,C2)

; CTR=longest_change ->
prefix_length(VARS,PVARS,INDEX1),
longest_change_neq_c(PVARS,0,1,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
longest_change_neq_c(SVARS,0,1,C2)

; CTR=longest_decreasing_sequence ->
prefix_length(VARS,PVARS,INDEX1),
longest_decreasing_sequence_c(PVARS,s,0,0,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
longest_decreasing_sequence_c(SVARS,s,0,0,0,C2)

; CTR=longest_increasing_sequence ->
prefix_length(VARS,PVARS,INDEX1),
longest_increasing_sequence_c(PVARS,s,0,0,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
longest_increasing_sequence_c(SVARS,s,0,0,0,C2)

; CTR=max_decreasing_slope ->
prefix_length(VARS,PVARS,INDEX1),
max_decreasing_slope_c1(PVARS,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
max_decreasing_slope_c1(SVARS,0,C2)

; CTR=max_increasing_slope ->
prefix_length(VARS,PVARS,INDEX1),
max_increasing_slope_c1(PVARS,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
max_increasing_slope_c1(SVARS,0,C2)

; CTR=min_decreasing_slope ->
prefix_length(VARS,PVARS,INDEX1),
min_decreasing_slope_c1(PVARS,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
min_decreasing_slope_c1(SVARS,0,C2)

; CTR=min_increasing_slope ->
prefix_length(VARS,PVARS,INDEX1),
min_increasing_slope_c1(PVARS,0,C1),



3022 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
min_increasing_slope_c1(SVARS,0,C2)

; CTR=min_width_peak ->
prefix_length(VARS,PVARS,INDEX1),
min_width_peak_c(PVARS,s,1,0,0,0,INDEX1,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
LEN2 is N-INDEX1+1,
min_width_peak_c(SVARS,s,1,0,0,0,LEN2,C2)

; CTR=min_width_valley ->
prefix_length(VARS,PVARS,INDEX1),
min_width_valley_c(PVARS,s,1,0,0,0,INDEX1,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
LEN2 is N-INDEX1+1,
min_width_valley_c(SVARS,s,1,0,0,0,LEN2,C2)

; CTR=peak ->
prefix_length(VARS,PVARS,INDEX1),
peak_c(PVARS,s,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
peak_c(SVARS,s,0,C2)

; CTR=sum_ctr ->
sum_c(INDEX1,0,VARS,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
get_sum(SVARS,C2)

; CTR=valley ->
prefix_length(VARS,PVARS,INDEX1),
valley_c(PVARS,s,0,C1),
PREF is INDEX2-1,
append_length(SVARS,VARS,PREF),
valley_c(SVARS,s,0,C2)

),
CC1 is COEF1*C1,
CC2 is COEF2*C2,
DIF is abs(CC1-CC2),
DIF=<TOLERANCE.

equilibrium_c(
VARIABLES,
INDEX1,
INDEX2,
EPSILON,
COEF1,
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COEF2,
TOLERANCE,
CTR) :-

collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>=1,
EPSILON>=0,
EPSILON=<2,
TOLERANCE>=0,
check_type(dvar(1,N),INDEX1),
check_type(dvar(1,N),INDEX2),
memberchk(

CTR,
[among_diff_0,
and,
change,
deepest_valley,
highest_peak,
increasing_nvalue,
inflexion,
longest_change,
longest_decreasing_sequence,
longest_increasing_sequence,
max_decreasing_slope,
max_increasing_slope,
min_decreasing_slope,
min_increasing_slope,
min_width_peak,
min_width_valley,
peak,
sum_ctr,
valley]),

( CTR=among_diff_0 ->
equilibrium_among_diff_0(VARS,PREFIX,SUFFIX)

; CTR=and ->
equilibrium_and(VARS,PREFIX,SUFFIX)

; CTR=change ->
equilibrium_change(VARS,PREFIX,SUFFIX)

; CTR=deepest_valley ->
equilibrium_deepest_valley(VARS,PREFIX,SUFFIX)

; CTR=highest_peak ->
equilibrium_highest_peak(VARS,PREFIX,SUFFIX)

; CTR=increasing_nvalue ->
equilibrium_increasing_nvalue(VARS,PREFIX,SUFFIX)

; CTR=inflexion ->
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equilibrium_inflexion(VARS,PREFIX,SUFFIX)
; CTR=longest_change ->

equilibrium_longest_change(VARS,PREFIX,SUFFIX)
; CTR=longest_decreasing_sequence ->

equilibrium_longest_decreasing_sequence(
VARS,
PREFIX,
SUFFIX)

; CTR=longest_increasing_sequence ->
equilibrium_longest_increasing_sequence(

VARS,
PREFIX,
SUFFIX)

; CTR=max_decreasing_slope ->
equilibrium_max_decreasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=max_increasing_slope ->
equilibrium_max_increasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=min_decreasing_slope ->
equilibrium_min_decreasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=min_increasing_slope ->
equilibrium_min_increasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=min_width_peak ->
equilibrium_min_width_peak(VARS,N,PREFIX,SUFFIX)

; CTR=min_width_valley ->
equilibrium_min_width_valley(VARS,N,PREFIX,SUFFIX)

; CTR=peak ->
equilibrium_peak(VARS,PREFIX,SUFFIX)

; CTR=sum_ctr ->
equilibrium_sum_ctr(VARS,1,PREFIX,SUFFIX)

; CTR=valley ->
equilibrium_valley(VARS,PREFIX,SUFFIX)

),
write(prefix(PREFIX)),
nl,
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write(suffix(SUFFIX)),
nl,
append_length(SUFFIX_INDEX2,SUFFIX,EPSILON),
L2 is 1+EPSILON,
equilibrium_search_sols(

1,
L2,
PREFIX,
SUFFIX_INDEX2,
COEF1,
COEF2,
TOLERANCE,
LIM1,
LIM2),

( LIM1=[_30128|_30129] ->
list_to_fdset(LIM1,SET1),
Lim1 in_set SET1,
Lim1=INDEX1,
list_to_fdset(LIM2,SET2),
Lim2 in_set SET2,
Lim2=INDEX2,
EPSILON#=INDEX2-INDEX1

; fail
).

equilibrium_among_diff_0(VARS,PREFIX,SUFFIX) :-
among_diff_0_counters_check(VARS,0,PREFIX),
reverse(VARS,RVARS),
among_diff_0_counters_check(RVARS,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_and(VARS,PREFIX,SUFFIX) :-
and_counters_check(VARS,init,PREFIX),
reverse(VARS,RVARS),
and_counters_check(RVARS,init,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_change(VARS,PREFIX,SUFFIX) :-
change_neq_counters_check(VARS,0,PREFIX),
reverse(VARS,RVARS),
change_neq_counters_check(RVARS,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_deepest_valley(VARS,PREFIX,SUFFIX) :-
MAXINT=1000000,
deepest_valley_counters_check(VARS,init,MAXINT,PREFIX),
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reverse(VARS,RVARS),
deepest_valley_counters_check(RVARS,init,MAXINT,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_highest_peak(VARS,PREFIX,SUFFIX) :-
MININT= -1000000,
highest_peak_counters_check(VARS,init,MININT,PREFIX),
reverse(VARS,RVARS),
highest_peak_counters_check(RVARS,init,MININT,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_increasing_nvalue(VARS,PREFIX,SUFFIX) :-
VARS=[V|R],
increasing_nvalue_counters_check(R,V,1,RPREFIX),
PREFIX=[1|RPREFIX],
reverse(VARS,RVARS),
RVARS=[U|S],
decreasing_nvalue_counters_check(S,U,1,COUNTS),
reverse([1|COUNTS],SUFFIX).

equilibrium_inflexion(VARS,PREFIX,SUFFIX) :-
inflexion_counters_check(init,VARS,0,PREFIX),
reverse(VARS,RVARS),
inflexion_counters_check(init,RVARS,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_longest_change(VARS,PREFIX,SUFFIX) :-
longest_change_neq_counters_check(VARS,0,1,PREFIX),
reverse(VARS,RVARS),
longest_change_neq_counters_check(RVARS,0,1,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_longest_decreasing_sequence(VARS,PREFIX,SUFFIX) :-
longest_decreasing_sequence_counters_check(

VARS,
s,
0,
0,
0,
PREFIX),

reverse(VARS,RVARS),
longest_increasing_sequence_counters_check(

RVARS,
s,
0,
0,
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0,
COUNTS),

reverse(COUNTS,SUFFIX).

equilibrium_longest_increasing_sequence(VARS,PREFIX,SUFFIX) :-
longest_increasing_sequence_counters_check(

VARS,
s,
0,
0,
0,
PREFIX),

reverse(VARS,RVARS),
longest_decreasing_sequence_counters_check(

RVARS,
s,
0,
0,
0,
COUNTS),

reverse(COUNTS,SUFFIX).

equilibrium_max_decreasing_slope(VARS,PREFIX,SUFFIX) :-
max_decreasing_slope_counters_check(VARS,PREFIX),
reverse(VARS,RVARS),
max_increasing_slope_counters_check(RVARS,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_max_increasing_slope(VARS,PREFIX,SUFFIX) :-
max_increasing_slope_counters_check(VARS,PREFIX),
reverse(VARS,RVARS),
max_decreasing_slope_counters_check(RVARS,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_min_decreasing_slope(VARS,PREFIX,SUFFIX) :-
min_decreasing_slope_counters_check(VARS,PREFIX),
reverse(VARS,RVARS),
min_increasing_slope_counters_check(RVARS,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_min_increasing_slope(VARS,PREFIX,SUFFIX) :-
min_increasing_slope_counters_check(VARS,PREFIX),
reverse(VARS,RVARS),
min_decreasing_slope_counters_check(RVARS,COUNTS),
reverse(COUNTS,SUFFIX).
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equilibrium_min_width_peak(VARS,N,PREFIX,SUFFIX) :-
min_width_peak_counters_check(VARS,N,PREFIX),
reverse(VARS,RVARS),
min_width_peak_counters_check(RVARS,N,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_min_width_valley(VARS,N,PREFIX,SUFFIX) :-
min_width_valley_counters_check(VARS,N,PREFIX),
reverse(VARS,RVARS),
min_width_valley_counters_check(RVARS,N,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_peak(VARS,PREFIX,SUFFIX) :-
peak_counters_check(VARS,init,0,PREFIX),
reverse(VARS,RVARS),
peak_counters_check(RVARS,init,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_sum_ctr(VARS,1,PREFIX,SUFFIX) :-
sum_counters_check(VARS,0,PREFIX),
reverse(VARS,RVARS),
sum_counters_check(RVARS,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_sum_ctr(VARS,0,PREFIX,SUFFIX) :-
sum_counters_ref(VARS,0,PREFIX),
reverse(VARS,RVARS),
sum_counters_ref(RVARS,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_valley(VARS,PREFIX,SUFFIX) :-
valley_counters_check(VARS,init,0,PREFIX),
reverse(VARS,RVARS),
valley_counters_check(RVARS,init,0,COUNTS),
reverse(COUNTS,SUFFIX).

equilibrium_search_sols(
_29921,
_29968,
_30015,
[],
_30107,
_30154,
_30201,
[],
[]) :-
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!.

equilibrium_search_sols(
INDEX1,
INDEX2,
[C1|RC1],
[C2|RC2],
COEF1,
COEF2,
TOLERANCE,
[INDEX1|RL1],
[INDEX2|RL2]) :-

integer(C1),
integer(C2),
CC1 is COEF1*C1,
CC2 is COEF2*C2,
DIF is abs(CC1-CC2),
DIF=<TOLERANCE,
!,
NEXT_INDEX1 is INDEX1+1,
NEXT_INDEX2 is INDEX2+1,
equilibrium_search_sols(

NEXT_INDEX1,
NEXT_INDEX2,
RC1,
RC2,
COEF1,
COEF2,
TOLERANCE,
RL1,
RL2).

equilibrium_search_sols(
INDEX1,
INDEX2,
[_29687|RC1],
[_29691|RC2],
COEF1,
COEF2,
TOLERANCE,
RL1,
RL2) :-

NEXT_INDEX1 is INDEX1+1,
NEXT_INDEX2 is INDEX2+1,
equilibrium_search_sols(

NEXT_INDEX1,
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NEXT_INDEX2,
RC1,
RC2,
COEF1,
COEF2,
TOLERANCE,
RL1,
RL2).

equilibrium_expose_prefix_suffix_counters(
VARIABLES,
EPSILON,
CTR,
PREFIX,
SUFFIX_INDEX2) :-

collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>=1,
EPSILON>=0,
EPSILON=<2,
memberchk(

CTR,
[among_diff_0,
and,
change,
deepest_valley,
highest_peak,
increasing_nvalue,
inflexion,
longest_change,
longest_decreasing_sequence,
longest_increasing_sequence,
max_decreasing_slope,
max_increasing_slope,
min_decreasing_slope,
min_increasing_slope,
min_width_peak,
min_width_valley,
peak,
sum_ctr,
valley]),

( CTR=among_diff_0 ->
equilibrium_among_diff_0(VARS,PREFIX,SUFFIX)

; CTR=and ->
equilibrium_and(VARS,PREFIX,SUFFIX)
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; CTR=change ->
equilibrium_change(VARS,PREFIX,SUFFIX)

; CTR=deepest_valley ->
equilibrium_deepest_valley(VARS,PREFIX,SUFFIX)

; CTR=highest_peak ->
equilibrium_highest_peak(VARS,PREFIX,SUFFIX)

; CTR=increasing_nvalue ->
equilibrium_increasing_nvalue(VARS,PREFIX,SUFFIX)

; CTR=inflexion ->
equilibrium_inflexion(VARS,PREFIX,SUFFIX)

; CTR=longest_change ->
equilibrium_longest_change(VARS,PREFIX,SUFFIX)

; CTR=longest_decreasing_sequence ->
equilibrium_longest_decreasing_sequence(

VARS,
PREFIX,
SUFFIX)

; CTR=longest_increasing_sequence ->
equilibrium_longest_increasing_sequence(

VARS,
PREFIX,
SUFFIX)

; CTR=max_decreasing_slope ->
equilibrium_max_decreasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=max_increasing_slope ->
equilibrium_max_increasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=min_decreasing_slope ->
equilibrium_min_decreasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=min_increasing_slope ->
equilibrium_min_increasing_slope(

VARS,
PREFIX,
SUFFIX)

; CTR=min_width_peak ->
equilibrium_min_width_peak(VARS,N,PREFIX,SUFFIX)

; CTR=min_width_valley ->
equilibrium_min_width_valley(VARS,N,PREFIX,SUFFIX)
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; CTR=peak ->
equilibrium_peak(VARS,PREFIX,SUFFIX)

; CTR=sum_ctr ->
equilibrium_sum_ctr(VARS,1,PREFIX,SUFFIX)

; CTR=valley ->
equilibrium_valley(VARS,PREFIX,SUFFIX)

),
append_length(SUFFIX_INDEX2,SUFFIX,EPSILON).

equilibrium_r(
VARIABLES,
INDEX1,
INDEX2,
EPSILON,
COEF1,
COEF2,
TOLERANCE,
CTR) :-

collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>=1,
check_type(dvar(1,N),INDEX1),
check_type(dvar(1,N),INDEX2),
EPSILON>=0,
EPSILON=<2,
TOLERANCE>=0,
INDEX1#=<INDEX2,
EPSILON#=INDEX2-INDEX1,
memberchk(

CTR,
[among_diff_0,
and,
change,
deepest_valley,
highest_peak,
increasing_nvalue,
inflexion,
longest_change,
longest_decreasing_sequence,
longest_increasing_sequence,
max_decreasing_slope,
max_increasing_slope,
min_decreasing_slope,
min_increasing_slope,
min_width_peak,
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min_width_valley,
peak,
sum_ctr,
valley]),

( CTR=among_diff_0 ->
true

; CTR=and ->
true

; CTR=change ->
true

; CTR=deepest_valley ->
true

; CTR=highest_peak ->
true

; CTR=increasing_nvalue ->
true

; CTR=inflexion ->
true

; CTR=longest_change ->
true

; CTR=longest_decreasing_sequence ->
true

; CTR=longest_increasing_sequence ->
true

; CTR=max_decreasing_slope ->
true

; CTR=max_increasing_slope ->
true

; CTR=min_decreasing_slope ->
true

; CTR=min_increasing_slope ->
true

; CTR=min_width_peak ->
true

; CTR=min_width_valley ->
true

; CTR=peak ->
true

; CTR=sum_ctr ->
equilibrium_sum_ctr(VARS,0,SUM_PREFIX,SUM_SUFFIX),
append_length(SUM_SUFFIX_INDEX2,SUM_SUFFIX,EPSILON),
equilibrium_sum_ctr1(

1,
INDEX1,
SUM_PREFIX,
SUM_SUFFIX_INDEX2,
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COEF1,
COEF2,
TOLERANCE)

; CTR=valley ->
true

).

equilibrium_sum_ctr1(
_29915,
_29962,
_30009,
[],
_30101,
_30148,
_30195) :-

!.

equilibrium_sum_ctr1(
I,
INDEX1,
[C1|RC1],
[C2|RC2],
COEF1,
COEF2,
TOLERANCE) :-

INDEX1#=I#=>abs(COEF1*C1-COEF2*C2)#=<TOLERANCE,
I1 is I+1,
equilibrium_sum_ctr1(

I1,
INDEX1,
RC1,
RC2,
COEF1,
COEF2,
TOLERANCE).

sum_c(0,C,_29676,C) :-
!.

sum_c(INDEX,C,[VAR|R],RES) :-
INDEX>0,
NextC is C+VAR,
NextINDEX is INDEX-1,
sum_c(NextINDEX,NextC,R,RES).

sum_counters_check([],_29672,[]).
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sum_counters_check([VAR|R],SUM_CUR,[SUM_NEXT|S]) :-
SUM_NEXT is SUM_CUR+VAR,
sum_counters_check(R,SUM_NEXT,S).

sum_counters_ref([],_29672,[]).

sum_counters_ref([VAR|R],SUM_CUR,[SUM_NEXT|S]) :-
SUM_NEXT#=SUM_CUR+VAR,
sum_counters_ref(R,SUM_NEXT,S).
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B.156 equivalent

♦ META-DATA:

ctr_date(equivalent,[’20051226’]).

ctr_origin(equivalent,’Logic’,[]).

ctr_synonyms(equivalent,[eq]).

ctr_arguments(
equivalent,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
equivalent,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
equivalent,
[equivalent(1,[[var-0],[var-0]]),
equivalent(0,[[var-0],[var-1]]),
equivalent(0,[[var-1],[var-0]]),
equivalent(1,[[var-1],[var-1]])]).

ctr_exchangeable(
equivalent,
[items(’VARIABLES’,all),
vals([’VAR’,’VARIABLES’ˆvar],int(0 in 1),<,all,dontcare)]).

ctr_eval(
equivalent,
[reformulation(equivalent_r),automaton(equivalent_a)]).

ctr_pure_functional_dependency(equivalent,[]).

ctr_functional_dependency(equivalent,1,[2]).

ctr_sol(equivalent,2,0,2,4,[0-2,1-2]).

ctr_sol(equivalent,3,0,3,0,[]).
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ctr_sol(equivalent,4,0,4,0,[]).

ctr_sol(equivalent,5,0,5,0,[]).

ctr_sol(equivalent,6,0,6,0,[]).

ctr_sol(equivalent,7,0,7,0,[]).

ctr_sol(equivalent,8,0,8,0,[]).

equivalent_r(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,[VAR1,VAR2]),
VAR#<=>(VAR1#<=>VAR2).

equivalent_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_41473,
LIST_VARIABLES,
[source(s),sink(t)],
[arc(s,0,i),
arc(s,1,j),
arc(i,0,l),
arc(i,1,k),
arc(j,0,k),
arc(j,1,l),
arc(k,0,t),
arc(l,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.157 exactly

♦ META-DATA:

ctr_date(exactly,[’20040807’,’20060809’]).

ctr_origin(exactly,’Derived from %c and %c.’,[atleast,atmost]).

ctr_synonyms(exactly,[count]).

ctr_arguments(
exactly,
[’N’-int,’VARIABLES’-collection(var-dvar),’VALUE’-int]).

ctr_restrictions(
exactly,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
exactly,
exactly(2,[[var-4],[var-2],[var-4],[var-5]],4)).

ctr_typical(
exactly,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
exactly,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
int(=\=(’VALUE’)),
=\=,
dontcare,
dontcare)]).

ctr_graph(
exactly,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’],
[’NARC’=’N’],
[]).

ctr_eval(
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exactly,
[reformulation(exactly_r),automaton(exactly_a)]).

ctr_pure_functional_dependency(exactly,[]).

ctr_functional_dependency(exactly,1,[2,3]).

ctr_aggregate(exactly,[],[+,union,id]).

exactly_r(N,VARIABLES,VALUE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,NVAR),
check_type(int(0,NVAR),N),
integer(VALUE),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
MIN is min(MINVARS,VALUE),
MAX is max(MAXVARS,VALUE),
complete_card(MIN,MAX,NVAR,[VALUE],[N],VN),
global_cardinality(VARS,VN).

exactly_a(FLAG,N,VARIABLES,VALUE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,NVAR),
check_type(int(0,NVAR),N),
integer(VALUE),
exactly_signature(VARIABLES,SIGNATURE,VALUE),
automaton(

SIGNATURE,
_45137,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.

exactly_signature([],[],_43672).

exactly_signature([[var-VAR]|VARs],[S|Ss],VALUE) :-
VAR#=VALUE#<=>S,
exactly_signature(VARs,Ss,VALUE).
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B.158 first value diff 0

♦ META-DATA:

ctr_date(first_value_diff_0,[’20120418’]).

ctr_origin(first_value_diff_0,’Paparazzi puzzle’,[]).

ctr_synonyms(
first_value_diff_0,
[first_value_diff_from_0,first_value_different_from_0]).

ctr_arguments(
first_value_diff_0,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
first_value_diff_0,
[’VAR’=\=0,size(’VARIABLES’)>=1,required(’VARIABLES’,var)]).

ctr_example(
first_value_diff_0,
[first_value_diff_0(

8,
[[var-0],[var-0],[var-8],[var-0],[var-5]]),

first_value_diff_0(
4,
[[var-4],[var-0],[var-8],[var-0],[var-5]])]).

ctr_typical(
first_value_diff_0,
[size(’VARIABLES’)>1,
minval(’VARIABLES’ˆvar)<0#\/maxval(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)-among_diff_0(’VARIABLES’ˆvar)>=1,
size(’VARIABLES’)=<4#\/
size(’VARIABLES’)-among_diff_0(’VARIABLES’ˆvar)>1]).

ctr_typical_model(
first_value_diff_0,
[nval(’VARIABLES’ˆvar)>2,atleast(2,’VARIABLES’,0)]).

ctr_eval(
first_value_diff_0,
[checker(first_value_diff_0_c),
automaton(first_value_diff_0_a)]).
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ctr_functional_dependency(first_value_diff_0,1,[2]).

ctr_sol(first_value_diff_0,2,0,2,8,[1-4,2-4]).

ctr_sol(first_value_diff_0,3,0,3,63,[1-21,2-21,3-21]).

ctr_sol(first_value_diff_0,4,0,4,624,[1-156,2-156,3-156,4-156]).

ctr_sol(
first_value_diff_0,
5,
0,
5,
7775,
[1-1555,2-1555,3-1555,4-1555,5-1555]).

ctr_sol(
first_value_diff_0,
6,
0,
6,
117648,
[1-19608,2-19608,3-19608,4-19608,5-19608,6-19608]).

ctr_sol(
first_value_diff_0,
7,
0,
7,
2097151,
[1-299593,
2-299593,
3-299593,
4-299593,
5-299593,
6-299593,
7-299593]).

ctr_sol(
first_value_diff_0,
8,
0,
8,
43046720,
[1-5380840,
2-5380840,
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3-5380840,
4-5380840,
5-5380840,
6-5380840,
7-5380840,
8-5380840]).

first_value_diff_0_c(VAR,VARIABLES) :-
check_type(dvar,VAR),
VAR#\=0,
collection(VARIABLES,[int]),
first_value_diff_0_c1(VARIABLES,VAR).

first_value_diff_0_c1([[var-0]|R],VAR) :-
!,
first_value_diff_0_c1(R,VAR).

first_value_diff_0_c1([[var-VAR]|_45613],VAR).

first_value_diff_0_a(FLAG,VAR,VARIABLES) :-
check_type(dvar,VAR),
VAR#\=0,
collection(VARIABLES,[dvar]),
VARIABLES=[_45648|_45649],
first_value_diff_0_signature(VARIABLES,SIGNATURE,VARS),
automaton(

VARS,
VARi,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),
arc(s,1,t,[VARi]),
arc(t,0,t),
arc(t,1,t)],

[_C],
[0],
[COUNT]),

COUNT#=VAR#<=>FLAG.

first_value_diff_0_signature([],[],[]).

first_value_diff_0_signature([[var-VAR]|VARs],[S|Ss],[VAR|Ts]) :-
VAR#\=0#<=>S,
first_value_diff_0_signature(VARs,Ss,Ts).

first_value_diff_0_d(Density,_VAR,VARIABLES) :-
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get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(VARS,N),
length(SVARS,S),
Density is S/N.



3044 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.159 full group

♦ META-DATA:

ctr_date(full_group,[’20121025’]).

ctr_origin(full_group,’Inspired by %c’,[group]).

ctr_synonyms(full_group,[group_without_border]).

ctr_arguments(
full_group,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’MIN_DIST’-dvar,
’MAX_DIST’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
full_group,
[’NGROUP’>=0,
’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’MIN_DIST’>=0,
’MAX_DIST’>=’MIN_DIST’,
’MAX_DIST’=<size(’VARIABLES’)-2,
’NVAL’>=’MAX_SIZE’,
’NVAL’>=’NGROUP’,
’NVAL’=<size(’VARIABLES’)-2,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
full_group,
full_group(

2,
2,
3,
1,
1,
5,
[[var-0],



3045

[var-1],
[var-2],
[var-6],
[var-2],
[var-7],
[var-4],
[var-8],
[var-9]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
full_group,
[’NGROUP’>0,
’MIN_SIZE’>0,
’MAX_SIZE’>’MIN_SIZE’,
’MIN_DIST’>0,
’MAX_DIST’>’MIN_DIST’,
’MAX_DIST’<size(’VARIABLES’),
’NVAL’>’MAX_SIZE’,
’NVAL’>’NGROUP’,
’NVAL’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
full_group,
[items(’VARIABLES’,reverse),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_eval(
full_group,
[checker(full_group_c),automata(full_group_a)]).

ctr_pure_functional_dependency(full_group,[]).

ctr_functional_dependency(full_group,1,[7,8]).

ctr_functional_dependency(full_group,2,[7,8]).
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ctr_functional_dependency(full_group,3,[7,8]).

ctr_functional_dependency(full_group,4,[7,8]).

ctr_functional_dependency(full_group,5,[7,8]).

ctr_functional_dependency(full_group,6,[7,8]).

full_group_a(
NGROUP,
MIN_SIZE,
MAX_SIZE,
MIN_DIST,
MAX_DIST,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,MIN_DIST),
check_type(dvar,MAX_DIST),
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
length(VARIABLES,N),
get_attr1(VALUES,VALS),
NGROUP#>=0,
MIN_SIZE#>=0,
MAX_SIZE#>=MIN_SIZE,
MIN_DIST#>=0,
MAX_DIST#>=MIN_DIST,
MAX_DIST#=<N-2,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N-2,
all_different(VALS),
full_group_ngroup(NGROUP,VARIABLES,VALUES),
full_group_min_size(MIN_SIZE,VARIABLES,VALUES),
full_group_max_size(MAX_SIZE,VARIABLES,VALUES),
full_group_min_dist(MIN_DIST,VARIABLES,VALUES),
full_group_max_dist(MAX_DIST,VARIABLES,VALUES),
full_group_nval(NVAL,VARIABLES,VALUES).

full_group_ngroup(NGROUP,VARIABLES,VALUES) :-
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get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
full_group_signature_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_34506,
SIGNATURE,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,1,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,j),
arc(j,1,j),
arc(j,0,i,[C+1])],

[C],
[0],
[NGROUP]).

full_group_min_size(MIN_SIZE,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
full_group_signature_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_34784,
SIGNATURE,
[source(s),
sink(i),
sink(j),
sink(k),
sink(l),
sink(s)],

[arc(s,1,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,j,[C,D+1]),
arc(j,1,j,[C,D+1]),
arc(j,0,k,[D,0]),
arc(k,0,k),
arc(k,1,l,[C,D+1]),
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arc(l,1,l,[C,D+1]),
arc(l,0,k,[min(C,D),0])],

[C,D],
[0,0],
[MIN_SIZE,_33229]).

full_group_max_size(MAX_SIZE,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
full_group_signature_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_34784,
SIGNATURE,
[source(s),
sink(i),
sink(j),
sink(k),
sink(l),
sink(s)],

[arc(s,1,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,j,[C,D+1]),
arc(j,1,j,[C,D+1]),
arc(j,0,k,[D,0]),
arc(k,0,k),
arc(k,1,l,[C,D+1]),
arc(l,1,l,[C,D+1]),
arc(l,0,k,[max(C,D),0])],

[C,D],
[0,0],
[MAX_SIZE,_33229]).

full_group_min_dist(MIN_DIST,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
full_group_signature_not_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
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_34784,
SIGNATURE,
[source(s),
sink(i),
sink(j),
sink(k),
sink(l),
sink(s)],

[arc(s,1,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,j,[C,D+1]),
arc(j,1,j,[C,D+1]),
arc(j,0,k,[D,0]),
arc(k,0,k),
arc(k,1,l,[C,D+1]),
arc(l,1,l,[C,D+1]),
arc(l,0,k,[min(C,D),0])],

[C,D],
[0,0],
[MIN_DIST,_33229]).

full_group_max_dist(MAX_DIST,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
full_group_signature_not_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_34784,
SIGNATURE,
[source(s),
sink(i),
sink(j),
sink(k),
sink(l),
sink(s)],

[arc(s,1,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,j,[C,D+1]),
arc(j,1,j,[C,D+1]),
arc(j,0,k,[D,0]),
arc(k,0,k),
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arc(k,1,l,[C,D+1]),
arc(l,1,l,[C,D+1]),
arc(l,0,k,[max(C,D),0])],

[C,D],
[0,0],
[MAX_DIST,_33229]).

full_group_nval(NVAL,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
full_group_signature_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_34616,
SIGNATURE,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,1,s),
arc(s,0,i),
arc(i,0,i),
arc(i,1,j,[C,D+1]),
arc(j,1,j,[C,D+1]),
arc(j,0,i,[C+D,0])],

[C,D],
[0,0],
[NVAL,_33176]).

full_group_signature_in([],[],_33042).

full_group_signature_in([[var-VAR]|VARs],[S|Ss],SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
full_group_signature_in(VARs,Ss,SET_OF_VALUES).

full_group_signature_not_in([],[],_33042).

full_group_signature_not_in(
[[var-VAR]|VARs],
[S|Ss],
SET_OF_VALUES) :-

VAR in_set SET_OF_VALUES#<=> #\S,
full_group_signature_not_in(VARs,Ss,SET_OF_VALUES).

full_group_c(
NGROUP,
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MIN_SIZE,
MAX_SIZE,
MIN_DIST,
MAX_DIST,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,MIN_DIST),
check_type(dvar,MAX_DIST),
check_type(dvar,NVAL),
collection(VARIABLES,[int]),
collection(VALUES,[int]),
length(VARIABLES,N),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
NGROUP#>=0,
MIN_SIZE#>=0,
MAX_SIZE#>=MIN_SIZE,
MIN_DIST#>=0,
MAX_DIST#>=MIN_DIST,
MAX_DIST#=<N-2,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N-2,
sort(VALS,SVALS),
length(VALS,M),
length(SVALS,M),
group_convert(VARS,BOOLS,NBOOLS,VALS),
full_group_ngroup_c(BOOLS,s,0,NGROUP),
full_group_min_size_c(BOOLS,s,0,0,MIN_SIZE),
full_group_max_size_c(BOOLS,s,0,0,MAX_SIZE),
full_group_min_size_c(NBOOLS,s,0,0,MIN_DIST),
full_group_max_size_c(NBOOLS,s,0,0,MAX_DIST),
full_group_nval_c(BOOLS,s,0,0,NVAL).

full_group_ngroup_c([1|R],s,C,NGROUP) :-
!,
full_group_ngroup_c(R,s,C,NGROUP).

full_group_ngroup_c([0|R],s,C,NGROUP) :-
!,
full_group_ngroup_c(R,i,C,NGROUP).
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full_group_ngroup_c([0|R],i,C,NGROUP) :-
!,
full_group_ngroup_c(R,i,C,NGROUP).

full_group_ngroup_c([1|R],i,C,NGROUP) :-
!,
full_group_ngroup_c(R,j,C,NGROUP).

full_group_ngroup_c([1|R],j,C,NGROUP) :-
!,
full_group_ngroup_c(R,j,C,NGROUP).

full_group_ngroup_c([0|R],j,C,NGROUP) :-
!,
C1 is C+1,
full_group_ngroup_c(R,i,C1,NGROUP).

full_group_ngroup_c([],_33041,C,C).

full_group_min_size_c([1|R],s,C,D,MIN_SIZE) :-
!,
full_group_min_size_c(R,s,C,D,MIN_SIZE).

full_group_min_size_c([0|R],s,C,D,MIN_SIZE) :-
!,
full_group_min_size_c(R,i,C,D,MIN_SIZE).

full_group_min_size_c([0|R],i,C,D,MIN_SIZE) :-
!,
full_group_min_size_c(R,i,C,D,MIN_SIZE).

full_group_min_size_c([1|R],i,C,D,MIN_SIZE) :-
!,
D1 is D+1,
full_group_min_size_c(R,j,C,D1,MIN_SIZE).

full_group_min_size_c([1|R],j,C,D,MIN_SIZE) :-
!,
D1 is D+1,
full_group_min_size_c(R,j,C,D1,MIN_SIZE).

full_group_min_size_c([0|R],j,_C,D,MIN_SIZE) :-
!,
full_group_min_size_c(R,k,D,0,MIN_SIZE).

full_group_min_size_c([0|R],k,C,D,MIN_SIZE) :-
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!,
full_group_min_size_c(R,k,C,D,MIN_SIZE).

full_group_min_size_c([1|R],k,C,D,MIN_SIZE) :-
!,
D1 is D+1,
full_group_min_size_c(R,l,C,D1,MIN_SIZE).

full_group_min_size_c([1|R],l,C,D,MIN_SIZE) :-
!,
D1 is D+1,
full_group_min_size_c(R,l,C,D1,MIN_SIZE).

full_group_min_size_c([0|R],l,C,D,MIN_SIZE) :-
!,
C1 is min(C,D),
full_group_min_size_c(R,k,C1,0,MIN_SIZE).

full_group_min_size_c([],_33041,C,_33043,C).

full_group_max_size_c([1|R],s,C,D,MAX_SIZE) :-
!,
full_group_max_size_c(R,s,C,D,MAX_SIZE).

full_group_max_size_c([0|R],s,C,D,MAX_SIZE) :-
!,
full_group_max_size_c(R,i,C,D,MAX_SIZE).

full_group_max_size_c([0|R],i,C,D,MAX_SIZE) :-
!,
full_group_max_size_c(R,i,C,D,MAX_SIZE).

full_group_max_size_c([1|R],i,C,D,MAX_SIZE) :-
!,
D1 is D+1,
full_group_max_size_c(R,j,C,D1,MAX_SIZE).

full_group_max_size_c([1|R],j,C,D,MAX_SIZE) :-
!,
D1 is D+1,
full_group_max_size_c(R,j,C,D1,MAX_SIZE).

full_group_max_size_c([0|R],j,_C,D,MAX_SIZE) :-
!,
full_group_max_size_c(R,k,D,0,MAX_SIZE).
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full_group_max_size_c([0|R],k,C,D,MAX_SIZE) :-
!,
full_group_max_size_c(R,k,C,D,MAX_SIZE).

full_group_max_size_c([1|R],k,C,D,MAX_SIZE) :-
!,
D1 is D+1,
full_group_max_size_c(R,l,C,D1,MAX_SIZE).

full_group_max_size_c([1|R],l,C,D,MAX_SIZE) :-
!,
D1 is D+1,
full_group_max_size_c(R,l,C,D1,MAX_SIZE).

full_group_max_size_c([0|R],l,C,D,MAX_SIZE) :-
!,
C1 is max(C,D),
full_group_max_size_c(R,k,C1,0,MAX_SIZE).

full_group_max_size_c([],_33041,C,_33043,C).

full_group_nval_c([1|R],s,C,D,NVAL) :-
!,
full_group_nval_c(R,s,C,D,NVAL).

full_group_nval_c([0|R],s,C,D,NVAL) :-
!,
full_group_nval_c(R,i,C,D,NVAL).

full_group_nval_c([0|R],i,C,D,NVAL) :-
!,
full_group_nval_c(R,i,C,D,NVAL).

full_group_nval_c([1|R],i,C,D,NVAL) :-
!,
D1 is D+1,
full_group_nval_c(R,j,C,D1,NVAL).

full_group_nval_c([1|R],j,C,D,NVAL) :-
!,
D1 is D+1,
full_group_nval_c(R,j,C,D1,NVAL).

full_group_nval_c([0|R],j,C,D,NVAL) :-
!,
C1 is C+D,
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full_group_nval_c(R,i,C1,0,NVAL).

full_group_nval_c([],_33041,C,_33043,C).
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B.160 gcd
♦ META-DATA:

ctr_predefined(gcd).

ctr_date(gcd,[’20070930’]).

ctr_origin(gcd,’\\cite{DenmatGotliebDucasse07}’,[]).

ctr_arguments(gcd,[’X’-dvar,’Y’-dvar,’Z’-dvar]).

ctr_restrictions(gcd,[’X’>0,’Y’>0,’Z’>0]).

ctr_example(gcd,gcd(24,60,12)).

ctr_typical(gcd,[’X’>1,’Y’>1]).

ctr_exchangeable(gcd,[args([[’X’,’Y’],[’Z’]])]).

ctr_eval(gcd,[checker(gcd_c)]).

ctr_pure_functional_dependency(gcd,[]).

ctr_functional_dependency(gcd,1,[2,3]).

gcd_c(X,Y,Z) :-
check_type(int_gteq(1),X),
check_type(int_gteq(1),Y),
check_type(dvar_gteq(1),Z),
GCD is gcd(X,Y),
Z#=GCD.
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B.161 geost

♦ META-DATA:

ctr_predefined(geost).

ctr_date(geost,[’20060919’,’20080609’,’20090116’,’20090725’]).

ctr_origin(geost,’Generalisation of %c.’,[diffn]).

ctr_types(
geost,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
geost,
[’K’-int,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
geost,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
required(’OBJECTS’,[oid,sid,x]),
distinct(’OBJECTS’,oid),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).
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ctr_example(
geost,
geost(

2,
[[oid-1,sid-1,x-[[v-1],[v-2]]],
[oid-2,sid-5,x-[[v-2],[v-1]]],
[oid-3,sid-8,x-[[v-4],[v-1]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-1,t-[[v-0],[v-1]],l-[[v-1],[v-2]]],
[sid-1,t-[[v-1],[v-2]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-1]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-3,t-[[v-1],[v-1]],l-[[v-1],[v-2]]],
[sid-3,t-[[v- -2],[v-2]],l-[[v-3],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-4,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-2],[v-1]],l-[[v-1],[v-3]]],
[sid-5,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-5,t-[[v-1],[v-1]],l-[[v-1],[v-1]]],
[sid-5,t-[[v-0],[v-2]],l-[[v-2],[v-1]]],
[sid-6,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-6,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-6,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-7,t-[[v-0],[v-0]],l-[[v-3],[v-2]]],
[sid-8,t-[[v-0],[v-0]],l-[[v-2],[v-3]]]])).

ctr_typical(geost,[size(’OBJECTS’)>1]).

ctr_exchangeable(
geost,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare)]).

ctr_eval(geost,[builtin(geost_b)]).

ctr_application(geost,[2]).

geost_b(K,[],_53718) :-
!,
check_type(int_gteq(1),K).
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geost_b(K,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
catch(geost(Objects,Sboxes),_Flag,fail).
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B.162 geost time

♦ META-DATA:

ctr_predefined(geost_time).

ctr_date(geost_time,[’20060919’]).

ctr_origin(geost_time,’Generalisation of %c.’,[diffn]).

ctr_types(
geost_time,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
geost_time,
[’K’-int,
’DIMS’-sint,
OBJECTS-
collection(

oid-int,
sid-dvar,
x-’VARIABLES’,
start-dvar,
duration-dvar,
end-dvar),

’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
geost_time,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>=0,
’DIMS’>=0,
’DIMS’<’K’,
distinct(’OBJECTS’,oid),
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required(’OBJECTS’,[oid,sid,x]),
require_at_least(2,’OBJECTS’,[start,duration,end]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
’OBJECTS’ˆsid=<size(’SBOXES’),
’OBJECTS’ˆduration>=0,
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
geost_time,
geost_time(

2,
{0,1},
[[oid-1,

sid-1,
x-[[v-1],[v-2]],
start-0,
duration-1,
end-1],

[oid-2,
sid-5,
x-[[v-2],[v-1]],
start-0,
duration-1,
end-1],

[oid-3,
sid-8,
x-[[v-4],[v-1]],
start-0,
duration-1,
end-1]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-1,t-[[v-0],[v-1]],l-[[v-1],[v-2]]],
[sid-1,t-[[v-1],[v-2]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-1]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-3,t-[[v-1],[v-1]],l-[[v-1],[v-2]]],
[sid-3,t-[[v- -2],[v-2]],l-[[v-3],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
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[sid-4,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-2],[v-1]],l-[[v-1],[v-3]]],
[sid-5,t-[[v-0],[v-0]],l-[[v-2],[v-1]]],
[sid-5,t-[[v-1],[v-1]],l-[[v-1],[v-1]]],
[sid-5,t-[[v-0],[v-2]],l-[[v-2],[v-1]]],
[sid-6,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-6,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-6,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-7,t-[[v-0],[v-0]],l-[[v-3],[v-2]]],
[sid-8,t-[[v-0],[v-0]],l-[[v-2],[v-3]]]])).

ctr_typical(geost_time,[size(’OBJECTS’)>1]).

ctr_exchangeable(
geost_time,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare),
translate([’OBJECTS’ˆstart,’OBJECTS’ˆend])]).

ctr_application(geost_time,[3]).
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B.163 geq
♦ META-DATA:

ctr_predefined(geq).

ctr_date(geq,[’20070821’]).

ctr_origin(geq,’Arithmetic.’,[]).

ctr_synonyms(geq,[rel,xgteqy]).

ctr_arguments(geq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(geq,geq(8,1)).

ctr_exchangeable(
geq,
[vals([’VAR1’],int(>=(’VAR2’)),=\=,all,dontcare),
vals([’VAR2’],int(=<(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(geq,[builtin(geq_b)]).

geq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>=VAR2.
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B.164 geq cst
♦ META-DATA:

ctr_predefined(geq_cst).

ctr_date(geq_cst,[’20090912’]).

ctr_origin(geq_cst,’Arithmetic.’,[]).

ctr_arguments(geq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST2’-int]).

ctr_example(geq_cst,geq_cst(8,1,7)).

ctr_typical(geq_cst,[’CST2’=\=0,’VAR1’>’VAR2’+’CST2’]).

ctr_exchangeable(
geq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),
vals([’VAR1’],int(>=(’VAR2’+’CST2’)),=\=,all,dontcare),
vals([’VAR2’],int(=<(’VAR1’-’CST2’)),=\=,all,dontcare),
vals([’CST2’],int(=<(’VAR1’-’VAR2’)),=\=,all,dontcare)]).

ctr_eval(geq_cst,[builtin(geq_cst_b)]).

geq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#>=VAR2+CST2.
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B.165 global cardinality

♦ META-DATA:

ctr_date(
global_cardinality,
[’20030820’,’20040530’,’20060809’,’20091218’]).

ctr_origin(
global_cardinality,
\index{CHARME|indexuse}CHARME \cite{OplobeduMarcovitchTourbier89},
[]).

ctr_synonyms(
global_cardinality,
[count,
distribute,
distribution,
gcc,
card_var_gcc,
egcc,
extended_global_cardinality]).

ctr_arguments(
global_cardinality,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
global_cardinality,
[required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_example(
global_cardinality,
global_cardinality(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,noccurrence-2],
[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

ctr_typical(
global_cardinality,
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[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>=size(’VALUES’),
minval(’VARIABLES’ˆvar)=0#\/
in_attr(’VARIABLES’,var,’VALUES’,val)]).

ctr_exchangeable(
global_cardinality,
[items(’VARIABLES’,all),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_eval(
global_cardinality,
[builtin(global_cardinality_b),
checker(global_cardinality_c)]).

ctr_pure_functional_dependency(global_cardinality,[]).

ctr_functional_dependency(global_cardinality,2-2,[1,2-1]).

ctr_contractible(global_cardinality,[],’VALUES’,any).

ctr_cond_imply(
global_cardinality,
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and,
[minval(’VARIABLES’ˆvar)=0],
[’VAR’=0],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
or,
[maxval(’VARIABLES’ˆvar)=1],
[’VAR’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
min_size_full_zero_stretch,
[minval(’VARIABLES’ˆvar)>0],
[’MINSIZE’=size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
min_size_full_zero_stretch,
[maxval(’VARIABLES’ˆvar)<0],
[’MINSIZE’=size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
among_diff_0,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
atmost_nvalue,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
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balance,
[range(’VALUES’ˆnoccurrence)=1,
range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)=maxval(’VARIABLES’ˆvar)],
[’BALANCE’=0],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
max_n,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[none,none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
max_nvalue,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
min_n,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[none,none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
min_nvalue,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[none,’VARIABLES’]).

ctr_cond_imply(
global_cardinality,
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range_ctr,
[range(’VALUES’ˆval)=nval(’VALUES’ˆval),
minval(’VALUES’ˆval)=<minval(’VARIABLES’ˆvar),
maxval(’VALUES’ˆval)>=maxval(’VARIABLES’ˆvar)],
[],
[’VARIABLES’,none,none]).

global_cardinality_b(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,dvar(0,N)]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,NOCCS),
all_different(VALS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card(MIN,MAX,N,VALS,NOCCS,VN),
global_cardinality(VARS,VN).

global_cardinality_c(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[int]),
collection(VALUES,[int,int(0,N)]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
sort(VALS,SVALS),
length(VALS,M),
length(SVALS,M),
create_pairs(VARS,PVARS),
keysort(PVARS,SVARS),
get_attr12(VALUES,VALOCCS),
keysort(VALOCCS,SVALOCCS),
global_cardinality_c1(SVARS,SVALOCCS).

global_cardinality_c1(_83208,[]) :-
!.

global_cardinality_c1([],[_83213-0|R]) :-
!,
global_cardinality_c1([],R).
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global_cardinality_c1([U-U|R],[V-O|S]) :-
U<V,
!,
global_cardinality_c1(R,[V-O|S]).

global_cardinality_c1([U-U|R],[V-0|S]) :-
U>V,
!,
global_cardinality_c1([U-U|R],S).

global_cardinality_c1([U-U|R],[U-1|S]) :-
!,
global_cardinality_c1(R,S).

global_cardinality_c1([U-U|R],[U-O|S]) :-
O1 is O-1,
global_cardinality_c1(R,[U-O1|S]).
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B.166 global cardinality low up

♦ META-DATA:

ctr_date(
global_cardinality_low_up,
[’20031008’,’20040530’,’20060809’,’20090521’]).

ctr_origin(
global_cardinality_low_up,
Used for defining %c.,
[sliding_distribution]).

ctr_synonyms(global_cardinality_low_up,[gcc_low_up,gcc]).

ctr_arguments(
global_cardinality_low_up,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
global_cardinality_low_up,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
global_cardinality_low_up,
global_cardinality_low_up(

[[var-3],[var-3],[var-8],[var-6]],
[[val-3,omin-2,omax-3],
[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

ctr_typical(
global_cardinality_low_up,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax<size(’VARIABLES’),
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size(’VARIABLES’)>size(’VALUES’),
in_attr(’VARIABLES’,var,’VALUES’,val)]).

ctr_exchangeable(
global_cardinality_low_up,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals(

[’VALUES’ˆomax],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
global_cardinality_low_up,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax],
[]).

ctr_eval(
global_cardinality_low_up,
[reformulation(global_cardinality_low_up_r)]).

ctr_contractible(global_cardinality_low_up,[],’VALUES’,any).

ctr_cond_imply(
global_cardinality_low_up,
increasing_global_cardinality,
[increasing(’VARIABLES’)],
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[],
id).

global_cardinality_low_up_r(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N),int(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,OMINS),
get_attr3(VALUES,OMAXS),
all_different(VALS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
complete_card_low_up(MIN,MAX,N,VALS,OMINS,OMAXS,VN),
global_cardinality(VARS,VN).
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B.167 global cardinality low up no loop

♦ META-DATA:

ctr_date(
global_cardinality_low_up_no_loop,
[’20051218’,’20060809’]).

ctr_origin(
global_cardinality_low_up_no_loop,
Derived from %c and %c.,
[global_cardinality_low_up,tree]).

ctr_synonyms(
global_cardinality_low_up_no_loop,
[gcc_low_up_no_loop]).

ctr_arguments(
global_cardinality_low_up_no_loop,
[’MINLOOP’-int,
’MAXLOOP’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
global_cardinality_low_up_no_loop,
[’MINLOOP’>=0,
’MINLOOP’=<’MAXLOOP’,
’MAXLOOP’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
global_cardinality_low_up_no_loop,
global_cardinality_low_up_no_loop(

1,
1,
[[var-1],[var-1],[var-8],[var-6]],
[[val-1,omin-1,omax-1],
[val-5,omin-0,omax-0],
[val-6,omin-1,omax-2]])).
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ctr_typical(
global_cardinality_low_up_no_loop,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax<size(’VARIABLES’),
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
global_cardinality_low_up_no_loop,
[items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals(

[’VALUES’ˆomax],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare)]).

ctr_graph(
global_cardinality_low_up_no_loop,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey=\=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax],
[]).

ctr_graph(
global_cardinality_low_up_no_loop,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=variablesˆkey],
[’NARC’>=’MINLOOP’,’NARC’=<’MAXLOOP’],
[]).

ctr_eval(
global_cardinality_low_up_no_loop,
[reformulation(global_cardinality_low_up_no_loop_r)]).

global_cardinality_low_up_no_loop_r(
MINLOOP,
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MAXLOOP,
VARIABLES,
VALUES) :-

check_type(int_gteq(0),MINLOOP),
check_type(int_gteq(MINLOOP),MAXLOOP),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
collection(VALUES,[int,int(0,N),int(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,OMINS),
get_attr3(VALUES,OMAXS),
all_different(VALS),
gcc_no_loop1(VARS,1,SUMLOOP),
call(SUMLOOP#>=MINLOOP),
call(SUMLOOP#=<MAXLOOP),
global_cardinality_low_up_no_loop1(

1,
M,
N,
VALS,
OMINS,
OMAXS,
VARS).

global_cardinality_low_up_no_loop1(I,M,_46173,[],[],[],_46177) :-
I>M,
!.

global_cardinality_low_up_no_loop1(
I,
M,
N,
[VAL|RVAL],
[OMIN|ROMIN],
[OMAX|ROMAX],
VARS) :-

I=<M,
gcc_no_loop2(1,N,I,VARS,VAL,SUMI),
call(SUMI#>=OMIN),
call(SUMI#=<OMAX),
I1 is I+1,
global_cardinality_low_up_no_loop1(

I1,
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M,
N,
RVAL,
ROMIN,
ROMAX,
VARS).
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B.168 global cardinality no loop

♦ META-DATA:

ctr_date(global_cardinality_no_loop,[’20051104’,’20060809’]).

ctr_origin(
global_cardinality_no_loop,
Derived from %c and %c.,
[global_cardinality,tree]).

ctr_synonyms(global_cardinality_no_loop,[gcc_no_loop]).

ctr_arguments(
global_cardinality_no_loop,
[’NLOOP’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
global_cardinality_no_loop,
[’NLOOP’>=0,
’NLOOP’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_example(
global_cardinality_no_loop,
global_cardinality_no_loop(

1,
[[var-1],[var-1],[var-8],[var-6]],
[[val-1,noccurrence-1],
[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

ctr_typical(
global_cardinality_no_loop,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).



3079

ctr_exchangeable(
global_cardinality_no_loop,
[items(’VALUES’,all)]).

ctr_graph(
global_cardinality_no_loop,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey=\=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_graph(
global_cardinality_no_loop,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=variablesˆkey],
[’NARC’=’NLOOP’],
[]).

ctr_eval(
global_cardinality_no_loop,
[reformulation(global_cardinality_no_loop_r)]).

ctr_pure_functional_dependency(global_cardinality_no_loop,[]).

ctr_functional_dependency(global_cardinality_no_loop,1,[2]).

ctr_functional_dependency(
global_cardinality_no_loop,
3-2,
[2,3-1]).

global_cardinality_no_loop_r(NLOOP,VARIABLES,VALUES) :-
check_type(dvar_gteq(0),NLOOP),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
NLOOP#=<N,
collection(VALUES,[int,dvar(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,NOCCURRENCES),
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all_different(VALS),
gcc_no_loop1(VARS,1,SUMLOOP),
call(SUMLOOP#=NLOOP),
global_cardinality_no_loop1(

1,
M,
N,
VALS,
NOCCURRENCES,
VARS).

global_cardinality_no_loop1(I,M,_45802,[],[],_45805) :-
I>M,
!.

global_cardinality_no_loop1(
I,
M,
N,
[VAL|RVAL],
[NOCCURRENCE|RNOCCURRENCE],
VARS) :-

I=<M,
gcc_no_loop2(1,N,I,VARS,VAL,SUMI),
call(SUMI#=NOCCURRENCE),
I1 is I+1,
global_cardinality_no_loop1(

I1,
M,
N,
RVAL,
RNOCCURRENCE,
VARS).
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B.169 global cardinality with costs

♦ META-DATA:

ctr_date(
global_cardinality_with_costs,
[’20030820’,’20040530’,’20060809’,’20090425’]).

ctr_origin(global_cardinality_with_costs,’\\cite{Regin99a}’,[]).

ctr_synonyms(global_cardinality_with_costs,[gccc,cost_gcc]).

ctr_arguments(
global_cardinality_with_costs,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
global_cardinality_with_costs,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VALUES’),
size(’MATRIX’)=size(’VARIABLES’)*size(’VALUES’)]).

ctr_example(
global_cardinality_with_costs,
global_cardinality_with_costs(

[[var-3],[var-3],[var-3],[var-6]],
[[val-3,noccurrence-3],
[val-5,noccurrence-0],
[val-6,noccurrence-1]],
[[i-1,j-1,c-4],
[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-2,j-1,c-1],
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[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6]],

14)).

ctr_typical(
global_cardinality_with_costs,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆnoccurrence)>1,
range(’MATRIX’ˆc)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_graph(
global_cardinality_with_costs,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’SUM_WEIGHT_ARC’(

MATRIX@
((variablesˆkey-1)*size(’VALUES’)+valuesˆkey)ˆ
c)=

COST],
[]).

ctr_eval(
global_cardinality_with_costs,
[reformulation(global_cardinality_with_costs_r)]).

ctr_pure_functional_dependency(
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global_cardinality_with_costs,
[]).

ctr_functional_dependency(
global_cardinality_with_costs,
2-2,
[1]).

ctr_functional_dependency(
global_cardinality_with_costs,
4,
[1,2,3]).

global_cardinality_with_costs_r(VARIABLES,VALUES,MATRIX,COST) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
collection(VALUES,[int,dvar(0,N)]),
length(VALUES,M),
M>0,
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
all_different(VALS),
collection(MATRIX,[int(1,N),int(1,M),int]),
collection_increasing_seq(MATRIX,[1,2]),
eval(global_cardinality(VARIABLES,VALUES)),
get_attr3(MATRIX,CS),
global_cardinality_with_costs1(VARS,VALS,M,CS,TERM),
call(TERM#=COST).

global_cardinality_with_costs1([],_57475,_57476,_57477,0).

global_cardinality_with_costs1([VAR|R],VALS,M,CMAT,C+S) :-
global_cardinality_with_costs2(

M,
CMAT,
ELEMTABLE,
RESTCMAT),

element(IVAL,VALS,VAR),
element(IVAL,ELEMTABLE,C),
global_cardinality_with_costs1(R,VALS,M,RESTCMAT,S).

global_cardinality_with_costs2(0,CMAT,[],CMAT) :-
!.

global_cardinality_with_costs2(I,[C|R],[C|S],T) :-
I>0,
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I1 is I-1,
global_cardinality_with_costs2(I1,R,S,T).
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B.170 global contiguity

♦ META-DATA:

ctr_date(global_contiguity,[’20030820’,’20040530’,’20060809’]).

ctr_origin(global_contiguity,’\\cite{Maher02}’,[]).

ctr_synonyms(global_contiguity,[contiguity]).

ctr_arguments(
global_contiguity,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
global_contiguity,
[required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
global_contiguity,
global_contiguity([[var-0],[var-1],[var-1],[var-0]])).

ctr_typical(global_contiguity,[size(’VARIABLES’)>2]).

ctr_typical_model(
global_contiguity,
[range(’VARIABLES’ˆvar)>1,atleast(2,’VARIABLES’,1)]).

ctr_exchangeable(
global_contiguity,
[items(’VARIABLES’,reverse)]).

ctr_graph(
global_contiguity,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar,variables1ˆvar=1],
[’NCC’=<1],
[]).

ctr_eval(
global_contiguity,
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[checker(global_contiguity_c),
automaton(global_contiguity_a)]).

ctr_contractible(global_contiguity,[],’VARIABLES’,any).

ctr_cond_imply(
global_contiguity,
some_equal,
[size(’VARIABLES’)>2],
[],
id).

ctr_sol(global_contiguity,2,0,1,4,-).

ctr_sol(global_contiguity,3,0,1,7,-).

ctr_sol(global_contiguity,4,0,1,11,-).

ctr_sol(global_contiguity,5,0,1,16,-).

ctr_sol(global_contiguity,6,0,1,22,-).

ctr_sol(global_contiguity,7,0,1,29,-).

ctr_sol(global_contiguity,8,0,1,37,-).

ctr_sol(global_contiguity,9,0,1,46,-).

ctr_sol(global_contiguity,10,0,1,56,-).

ctr_sol(global_contiguity,11,0,1,67,-).

ctr_sol(global_contiguity,12,0,1,79,-).

ctr_sol(global_contiguity,13,0,1,92,-).

ctr_sol(global_contiguity,14,0,1,106,-).

ctr_sol(global_contiguity,15,0,1,121,-).

ctr_sol(global_contiguity,16,0,1,137,-).

ctr_sol(global_contiguity,17,0,1,154,-).

ctr_sol(global_contiguity,18,0,1,172,-).
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ctr_sol(global_contiguity,19,0,1,191,-).

ctr_sol(global_contiguity,20,0,1,211,-).

ctr_sol(global_contiguity,21,0,1,232,-).

ctr_sol(global_contiguity,22,0,1,254,-).

ctr_sol(global_contiguity,23,0,1,277,-).

ctr_sol(global_contiguity,24,0,1,301,-).

global_contiguity_c([]) :-
!.

global_contiguity_c(VARIABLES) :-
collection(VARIABLES,[int(0,1)]),
get_attr1(VARIABLES,VARS),
global_contiguity_c1(VARS).

global_contiguity_c1([]) :-
!.

global_contiguity_c1([0|R]) :-
!,
global_contiguity_c1(R).

global_contiguity_c1([1|R]) :-
global_contiguity_c2(R).

global_contiguity_c2([]) :-
!.

global_contiguity_c2([1|R]) :-
!,
global_contiguity_c2(R).

global_contiguity_c2([0|R]) :-
global_contiguity_c3(R).

global_contiguity_c3([]) :-
!.

global_contiguity_c3([0|R]) :-
global_contiguity_c3(R).
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global_contiguity_a(1,[]) :-
!.

global_contiguity_a(0,[]) :-
!,
fail.

global_contiguity_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar(0,1)]),
get_attr1(VARIABLES,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_54592,
LIST_VARIABLES,
[source(s),sink(m),sink(z),sink(s)],
[arc(s,0,s),
arc(s,1,m),
arc(m,0,z),
arc(m,1,m),
arc(z,0,z)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.171 golomb

♦ META-DATA:

ctr_date(golomb,[’20000128’,’20030820’,’20040530’,’20060809’]).

ctr_origin(golomb,’Inspired by \\cite{Golomb72}.’,[]).

ctr_arguments(golomb,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
golomb,
[required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
strictly_increasing(’VARIABLES’)]).

ctr_example(golomb,golomb([[var-0],[var-1],[var-4],[var-6]])).

ctr_typical(golomb,[size(’VARIABLES’)>2]).

ctr_exchangeable(golomb,[translate([’VARIABLES’ˆvar])]).

ctr_derived_collections(
golomb,
[col(’PAIRS’-collection(x-dvar,y-dvar),

[> -item(x-’VARIABLES’ˆvar,y-’VARIABLES’ˆvar)])]).

ctr_graph(
golomb,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆy-pairs1ˆx=pairs2ˆy-pairs2ˆx],
[’MAX_NSCC’=<1],
[]).

ctr_eval(golomb,[checker(golomb_c),reformulation(golomb_r)]).

ctr_contractible(golomb,[],’VARIABLES’,any).

ctr_cond_imply(
golomb,
increasing_nvalue,
[],
[’NVAL’=nval(’VARIABLES’ˆvar)],
[none,’VARIABLES’]).
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ctr_cond_imply(
golomb,
soft_alldifferent_ctr,
[],
[],
[none,’VARIABLES’]).

ctr_sol(golomb,2,0,2,3,-).

ctr_sol(golomb,3,0,3,2,-).

ctr_sol(golomb,4,0,6,2,-).

ctr_sol(golomb,5,0,11,4,-).

ctr_sol(golomb,6,0,17,8,-).

ctr_sol(golomb,7,0,25,10,-).

ctr_sol(golomb,8,0,34,2,-).

ctr_sol(golomb,9,0,44,2,-).

ctr_sol(golomb,10,0,55,2,-).

ctr_sol(golomb,11,0,72,4,-).

golomb_c([]) :-
!.

golomb_c(VARIABLES) :-
collection(VARIABLES,[int_gteq(0)]),
golomb_increasing(VARIABLES),
get_attr1(VARIABLES,VARS),
golomb3(VARS,D),
sort(D,SD),
length(D,N),
length(SD,N).

golomb_increasing([]) :-
!.

golomb_increasing([_51817]) :-
!.
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golomb_increasing([[var-X],[var-Y]|R]) :-
X<Y,
golomb_increasing([[var-Y]|R]).

golomb_r([]) :-
!.

golomb_r(VARIABLES) :-
collection(VARIABLES,[dvar_gteq(0)]),
collection_increasing_seq(VARIABLES,[1]),
get_attr1(VARIABLES,VARS),
golomb1(VARS,D),
all_different(D).

golomb1([_51818],[]) :-
!.

golomb1([U,V|R],Diffs) :-
golomb2([V|R],U,D),
golomb1([V|R],Diff),
append(D,Diff,Diffs).

golomb2([],_51814,[]).

golomb2([Vi|R],Vj,[D|S]) :-
D#=Vi-Vj,
golomb2(R,Vj,S).

golomb3([_51818],[]) :-
!.

golomb3([U,V|R],Diffs) :-
golomb4([V|R],U,D),
sort(D,SD),
length(D,N),
length(SD,N),
golomb3([V|R],Diff),
append(SD,Diff,Diffs).

golomb4([],_51814,[]).

golomb4([Vi|R],Vj,[D|S]) :-
D is Vi-Vj,
golomb4(R,Vj,S).
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B.172 graph crossing

♦ META-DATA:

ctr_date(
graph_crossing,
[’20000128’,’20030820’,’20040530’,’20060809’]).

ctr_origin(graph_crossing,’N.˜Beldiceanu’,[]).

ctr_synonyms(graph_crossing,[crossing,ncross]).

ctr_arguments(
graph_crossing,
[’NCROSS’-dvar,’NODES’-collection(succ-dvar,x-int,y-int)]).

ctr_restrictions(
graph_crossing,
[’NCROSS’>=0,
required(’NODES’,[succ,x,y]),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
graph_crossing,
graph_crossing(

2,
[[succ-1,x-4,y-7],
[succ-1,x-2,y-5],
[succ-1,x-7,y-6],
[succ-2,x-1,y-2],
[succ-3,x-2,y-2],
[succ-2,x-5,y-3],
[succ-3,x-8,y-2],
[succ-9,x-6,y-2],
[succ-10,x-10,y-6],
[succ-8,x-10,y-1]])).

ctr_typical(
graph_crossing,
[size(’NODES’)>1,
range(’NODES’ˆsucc)>1,
range(’NODES’ˆx)>1,
range(’NODES’ˆy)>1]).

ctr_exchangeable(
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graph_crossing,
[attrs_sync(’NODES’,[[succ],[x,y]]),
translate([’NODES’ˆx]),
translate([’NODES’ˆy])]).

ctr_graph(
graph_crossing,
[’NODES’],
2,
[’CLIQUE’(<)>>collection(n1,n2)],
[max(n1ˆx,’NODES’@(n1ˆsucc)ˆx)>=
min(n2ˆx,’NODES’@(n2ˆsucc)ˆx),
max(n2ˆx,’NODES’@(n2ˆsucc)ˆx)>=
min(n1ˆx,’NODES’@(n1ˆsucc)ˆx),
max(n1ˆy,’NODES’@(n1ˆsucc)ˆy)>=
min(n2ˆy,’NODES’@(n2ˆsucc)ˆy),
max(n2ˆy,’NODES’@(n2ˆsucc)ˆy)>=
min(n1ˆy,’NODES’@(n1ˆsucc)ˆy),
(n2ˆx-’NODES’@(n1ˆsucc)ˆx)*
(’NODES’@(n1ˆsucc)ˆy-n1ˆy)-
(’NODES’@(n1ˆsucc)ˆx-n1ˆx)*(n2ˆy-’NODES’@(n1ˆsucc)ˆy)=\=
0,
(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx)*
(n2ˆy-n1ˆy)-
(n2ˆx-n1ˆx)*(’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy)=\=
0,
sign(

(n2ˆx-’NODES’@(n1ˆsucc)ˆx)*
(’NODES’@(n1ˆsucc)ˆy-n1ˆy)-
(’NODES’@(n1ˆsucc)ˆx-n1ˆx)*
(n2ˆy-’NODES’@(n1ˆsucc)ˆy))=\=

sign(
(’NODES’@(n2ˆsucc)ˆx-’NODES’@(n1ˆsucc)ˆx)*
(n2ˆy-n1ˆy)-
(n2ˆx-n1ˆx)*
(’NODES’@(n2ˆsucc)ˆy-’NODES’@(n1ˆsucc)ˆy))],

[’NARC’=’NCROSS’],
[]).

ctr_pure_functional_dependency(graph_crossing,[]).

ctr_functional_dependency(graph_crossing,1,[2]).

ctr_application(graph_crossing,[2]).



3094 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.173 graph isomorphism

♦ META-DATA:

ctr_predefined(graph_isomorphism).

ctr_date(graph_isomorphism,[’20090822’]).

ctr_origin(graph_isomorphism,’\\cite{Gregor79}’,[]).

ctr_arguments(
graph_isomorphism,
[’NODES_PATTERN’-collection(index-int,succ-sint),
’NODES_TARGET’-collection(index-int,succ-sint),
’FUNCTION’-collection(image-dvar)]).

ctr_restrictions(
graph_isomorphism,
[required(’NODES_PATTERN’,[index,succ]),
’NODES_PATTERN’ˆindex>=1,
’NODES_PATTERN’ˆindex=<size(’NODES_PATTERN’),
distinct(’NODES_PATTERN’,index),
’NODES_PATTERN’ˆsucc>=1,
’NODES_PATTERN’ˆsucc=<size(’NODES_PATTERN’),
required(’NODES_TARGET’,[index,succ]),
’NODES_TARGET’ˆindex>=1,
’NODES_TARGET’ˆindex=<size(’NODES_TARGET’),
distinct(’NODES_TARGET’,index),
’NODES_TARGET’ˆsucc>=1,
’NODES_TARGET’ˆsucc=<size(’NODES_TARGET’),
size(’NODES_TARGET’)=size(’NODES_PATTERN’),
required(’FUNCTION’,[image]),
’FUNCTION’ˆimage>=1,
’FUNCTION’ˆimage=<size(’NODES_TARGET’),
distinct(’FUNCTION’,image),
size(’FUNCTION’)=size(’NODES_PATTERN’)]).

ctr_example(
graph_isomorphism,
graph_isomorphism(

[[index-1,succ-{2,4}],
[index-2,succ-{1,3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],

[[index-1,succ-{}],
[index-2,succ-{1,3,4}],
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[index-3,succ-{}],
[index-4,succ-{1,2}]],
[[image-4],[image-2],[image-3],[image-1]])).

ctr_typical(graph_isomorphism,[size(’NODES_PATTERN’)>1]).

ctr_exchangeable(
graph_isomorphism,
[items(’NODES_PATTERN’,all),items(’NODES_TARGET’,all)]).
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B.174 group

♦ META-DATA:

ctr_date(group,[’20000128’,’20030820’,’20040530’,’20060809’]).

ctr_origin(group,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_arguments(
group,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’MIN_DIST’-dvar,
’MAX_DIST’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group,
[’NGROUP’>=0,
’MIN_SIZE’>=0,
’MAX_SIZE’>=’MIN_SIZE’,
’MIN_DIST’>=0,
’MAX_DIST’>=’MIN_DIST’,
’MAX_DIST’=<size(’VARIABLES’),
’NVAL’>=’MAX_SIZE’,
’NVAL’>=’NGROUP’,
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
group,
group(

2,
1,
2,
2,
4,
3,
[[var-2],
[var-8],
[var-1],
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[var-7],
[var-4],
[var-5],
[var-1],
[var-1],
[var-1]],
[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
group,
[’NGROUP’>0,
’MIN_SIZE’>0,
’MAX_SIZE’>’MIN_SIZE’,
’MIN_DIST’>0,
’MAX_DIST’>’MIN_DIST’,
’MAX_DIST’<size(’VARIABLES’),
’NVAL’>’MAX_SIZE’,
’NVAL’>’NGROUP’,
’NVAL’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
group,
[items(’VARIABLES’,reverse),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
group,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],
[variables1ˆvar in ’VALUES’,variables2ˆvar in ’VALUES’],
[’NCC’=’NGROUP’,
’MIN_NCC’=’MIN_SIZE’,
’MAX_NCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’],
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[]).

ctr_graph(
group,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],
[not_in(variables1ˆvar,’VALUES’),
not_in(variables2ˆvar,’VALUES’)],
[’MIN_NCC’=’MIN_DIST’,’MAX_NCC’=’MAX_DIST’],
[]).

ctr_eval(group,[checker(group_c),automata(group_a)]).

ctr_pure_functional_dependency(group,[]).

ctr_functional_dependency(group,1,[7,8]).

ctr_functional_dependency(group,2,[7,8]).

ctr_functional_dependency(group,3,[7,8]).

ctr_functional_dependency(group,4,[7,8]).

ctr_functional_dependency(group,5,[7,8]).

ctr_functional_dependency(group,6,[7,8]).

group_a(
NGROUP,
MIN_SIZE,
MAX_SIZE,
MIN_DIST,
MAX_DIST,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,MIN_DIST),
check_type(dvar,MAX_DIST),
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
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length(VARIABLES,N),
get_attr1(VALUES,VALS),
NGROUP#>=0,
MIN_SIZE#>=0,
MAX_SIZE#>=MIN_SIZE,
MIN_DIST#>=0,
MAX_DIST#>=MIN_DIST,
MAX_DIST#=<N,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N,
all_different(VALS),
group_ngroup(NGROUP,VARIABLES,VALUES),
group_min_size(MIN_SIZE,VARIABLES,VALUES),
group_max_size(MAX_SIZE,VARIABLES,VALUES),
group_min_dist(MIN_DIST,VARIABLES,VALUES),
group_max_dist(MAX_DIST,VARIABLES,VALUES),
group_nval(NVAL,VARIABLES,VALUES).

group_ngroup(NGROUP,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUES),
automaton(

SIGNATURE,
_62024,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s),
arc(s,1,i,[C+1]),
arc(i,1,i),
arc(i,0,s)],

[C],
[0],
[NGROUP]).

group_min_size(MIN_SIZE,VARIABLES,VALUES) :-
length(VARIABLES,NVAR),
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUES),
MIN_SIZE#=min(C1,D1),
automaton(

SIGNATURE,
_62463,
SIGNATURE,
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[source(s),sink(i),sink(s)],
[arc(s,0,s),
arc(s,1,i,[C,1]),
arc(i,1,i,[C,D+1]),
arc(i,0,s,[min(C,D),D])],

[C,D],
[NVAR,0],
[C1,D1]).

group_max_size(MAX_SIZE,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUES),
MAX_SIZE#=max(C1,D1),
automaton(

SIGNATURE,
_62234,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C,D+1]),arc(s,0,s,[max(C,D),0])],
[C,D],
[0,0],
[C1,D1]).

group_min_dist(MIN_DIST,VARIABLES,VALUES) :-
length(VARIABLES,NVAR),
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_not_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

MIN_DIST#=min(C1,D1),
automaton(

SIGNATURE,
_62726,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s),
arc(s,1,i,[C,1]),
arc(i,1,i,[C,D+1]),
arc(i,0,s,[min(C,D),D])],

[C,D],
[NVAR,0],
[C1,D1]).
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group_max_dist(MAX_DIST,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_not_in(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

MAX_DIST#=max(C1,D1),
automaton(

SIGNATURE,
_62497,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C,D+1]),arc(s,0,s,[max(C,D),0])],
[C,D],
[0,0],
[C1,D1]).

group_nval(NVAL,VARIABLES,VALUES) :-
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_signature_in(VARIABLES,SIGNATURE,SET_OF_VALUES),
automaton(

SIGNATURE,
_61982,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NVAL]).

group_signature_in([],[],_60865).

group_signature_in([[var-VAR]|VARs],[S|Ss],SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=>S,
group_signature_in(VARs,Ss,SET_OF_VALUES).

group_signature_not_in([],[],_60865).

group_signature_not_in([[var-VAR]|VARs],[S|Ss],SET_OF_VALUES) :-
VAR in_set SET_OF_VALUES#<=> #\S,
group_signature_not_in(VARs,Ss,SET_OF_VALUES).

group_c(
NGROUP,
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MIN_SIZE,
MAX_SIZE,
MIN_DIST,
MAX_DIST,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,MIN_DIST),
check_type(dvar,MAX_DIST),
check_type(dvar,NVAL),
collection(VARIABLES,[int]),
collection(VALUES,[int]),
length(VARIABLES,N),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
NGROUP#>=0,
MIN_SIZE#>=0,
MAX_SIZE#>=MIN_SIZE,
MIN_DIST#>=0,
MAX_DIST#>=MIN_DIST,
MAX_DIST#=<N,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N,
sort(VALS,SVALS),
length(VALS,M),
length(SVALS,M),
group_convert(VARS,BOOLS,NBOOLS,VALS),
group_ngroup_c(BOOLS,s,0,NGROUP),
group_min_size_c(BOOLS,s,N,0,MIN_SIZE),
group_max_size_c(BOOLS,0,0,MAX_SIZE),
group_min_size_c(NBOOLS,s,N,0,MIN_DIST),
group_max_size_c(NBOOLS,0,0,MAX_DIST),
group_nval_c(BOOLS,0,NVAL).

group_ngroup_c([0|R],s,C,NGROUP) :-
!,
group_ngroup_c(R,s,C,NGROUP).

group_ngroup_c([1|R],s,C,NGROUP) :-
!,
C1 is C+1,
group_ngroup_c(R,i,C1,NGROUP).
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group_ngroup_c([1|R],i,C,NGROUP) :-
!,
group_ngroup_c(R,i,C,NGROUP).

group_ngroup_c([0|R],i,C,NGROUP) :-
!,
group_ngroup_c(R,s,C,NGROUP).

group_ngroup_c([],_60864,C,C).

group_min_size_c([0|R],s,C,D,MIN_SIZE) :-
!,
group_min_size_c(R,s,C,D,MIN_SIZE).

group_min_size_c([1|R],s,C,_D,MIN_SIZE) :-
!,
group_min_size_c(R,i,C,1,MIN_SIZE).

group_min_size_c([1|R],i,C,D,MIN_SIZE) :-
!,
D1 is D+1,
group_min_size_c(R,i,C,D1,MIN_SIZE).

group_min_size_c([0|R],i,C,D,MIN_SIZE) :-
!,
C1 is min(C,D),
group_min_size_c(R,s,C1,D,MIN_SIZE).

group_min_size_c([],_60867,C,D,MIN_SIZE) :-
M is min(C,D),
MIN_SIZE#=M.

group_max_size_c([1|R],C,D,MAX_SIZE) :-
!,
D1 is D+1,
group_max_size_c(R,C,D1,MAX_SIZE).

group_max_size_c([0|R],C,D,MAX_SIZE) :-
!,
C1 is max(C,D),
group_max_size_c(R,C1,0,MAX_SIZE).

group_max_size_c([],C,D,MAX_SIZE) :-
M is max(C,D),
MAX_SIZE#=M.
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group_nval_c([0|R],C,NVAL) :-
!,
group_nval_c(R,C,NVAL).

group_nval_c([1|R],C,NVAL) :-
!,
C1 is C+1,
group_nval_c(R,C1,NVAL).

group_nval_c([],C,C).
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B.175 group skip isolated item

♦ META-DATA:

ctr_date(
group_skip_isolated_item,
[’20000128’,’20030820’,’20040530’,’20060809’,’20130301’]).

ctr_origin(group_skip_isolated_item,’Derived from %c.’,[group]).

ctr_arguments(
group_skip_isolated_item,
[’NGROUP’-dvar,
’MIN_SIZE’-dvar,
’MAX_SIZE’-dvar,
’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
group_skip_isolated_item,
[’NGROUP’>=0,
3*’NGROUP’=<size(’VARIABLES’)+1,
’MIN_SIZE’>=0,
’MIN_SIZE’=\=1,
’MAX_SIZE’>=’MIN_SIZE’,
’NVAL’>=’MAX_SIZE’,
’NVAL’>=’NGROUP’,
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
group_skip_isolated_item,
group_skip_isolated_item(

1,
2,
2,
3,
[[var-2],
[var-8],
[var-1],
[var-7],
[var-4],
[var-5],
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[var-1],
[var-1],
[var-1]],

[[val-0],[val-2],[val-4],[val-6],[val-8]])).

ctr_typical(
group_skip_isolated_item,
[’NGROUP’>0,
’MIN_SIZE’>0,
’NVAL’>’MAX_SIZE’,
’NVAL’>’NGROUP’,
’NVAL’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
group_skip_isolated_item,
[items(’VARIABLES’,reverse),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
group_skip_isolated_item,
[’VARIABLES’],
2,
[’CHAIN’>>collection(variables1,variables2)],
[variables1ˆvar in ’VALUES’,variables2ˆvar in ’VALUES’],
[’NSCC’=’NGROUP’,
’MIN_NSCC’=’MIN_SIZE’,
’MAX_NSCC’=’MAX_SIZE’,
’NVERTEX’=’NVAL’],
[]).

ctr_eval(
group_skip_isolated_item,
[automata(group_skip_isolated_item_a)]).

ctr_functional_dependency(group_skip_isolated_item,1,[5,6]).
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ctr_functional_dependency(group_skip_isolated_item,2,[5,6]).

ctr_functional_dependency(group_skip_isolated_item,3,[5,6]).

ctr_functional_dependency(group_skip_isolated_item,4,[5,6]).

group_skip_isolated_item_a(
NGROUP,
MIN_SIZE,
MAX_SIZE,
NVAL,
VARIABLES,
VALUES) :-

check_type(dvar,NGROUP),
check_type(dvar,MIN_SIZE),
check_type(dvar,MAX_SIZE),
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
collection(VALUES,[int]),
length(VARIABLES,N),
get_attr1(VALUES,VALS),
NGROUP#>=0,
MIN_SIZE#>=0,
MIN_SIZE#\=1,
MAX_SIZE#>=MIN_SIZE,
MAX_SIZE#\=1,
NVAL#>=MAX_SIZE,
NVAL#>=NGROUP,
NVAL#=<N,
all_different(VALS),
get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
group_skip_isolated_item_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

group_skip_isolated_item_ngroup(NGROUP,SIGNATURE),
group_skip_isolated_item_min_size(MIN_SIZE,N,SIGNATURE),
group_skip_isolated_item_max_size(MAX_SIZE,SIGNATURE),
group_skip_isolated_item_nval(NVAL,SIGNATURE).

group_skip_isolated_item_ngroup(NGROUP,SIGNATURE) :-
automaton(

SIGNATURE,
_50654,
SIGNATURE,
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[source(s),sink(i),sink(j),sink(s)],
[arc(s,0,s),
arc(s,1,i),
arc(i,0,s),
arc(i,1,j,[C+1]),
arc(j,1,j),
arc(j,0,s)],

[C],
[0],
[NGROUP]).

group_skip_isolated_item_min_size(MIN_SIZE,NVAR,SIGNATURE) :-
MIN_SIZE#=min(C1,D1),
automaton(

SIGNATURE,
_50936,
SIGNATURE,
[source(s),sink(t),sink(r),sink(s)],
[arc(s,0,s),
arc(s,1,t),
arc(t,0,s),
arc(t,1,r,[C,2]),
arc(r,0,s,[min(C,D),D]),
arc(r,1,r,[C,D+1])],

[C,D],
[NVAR,0],
[C1,D1]).

group_skip_isolated_item_max_size(MAX_SIZE,SIGNATURE) :-
MAX_SIZE#=max(C1,D1),
automaton(

SIGNATURE,
_50943,
SIGNATURE,
[source(s),sink(t),sink(r),sink(s)],
[arc(s,0,s),
arc(s,1,t),
arc(t,0,s),
arc(t,1,r,[max(C,2),2]),
arc(r,0,s),
arc(r,1,r,[max(C,D+1),D+1])],

[C,D],
[0,0],
[C1,D1]).

group_skip_isolated_item_nval(NVAL,SIGNATURE) :-
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automaton(
SIGNATURE,
_50570,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[C+1])],
[C],
[0],
[NVAL]).

group_skip_isolated_item_signature([],[],_49967).

group_skip_isolated_item_signature(
[[var-VAR]|VARs],
[S|Ss],
SET_OF_VALUES) :-

VAR in_set SET_OF_VALUES#<=>S,
group_skip_isolated_item_signature(

VARs,
Ss,
SET_OF_VALUES).
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B.176 gt
♦ META-DATA:

ctr_predefined(gt).

ctr_date(gt,[’20070821’]).

ctr_origin(gt,’Arithmetic.’,[]).

ctr_synonyms(gt,[rel,xgty]).

ctr_arguments(gt,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(gt,gt(8,1)).

ctr_exchangeable(
gt,
[vals([’VAR1’],int(>(’VAR2’)),=\=,all,dontcare),
vals([’VAR2’],int(<(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(gt,[builtin(gt_b)]).

gt_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>VAR2.
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B.177 highest peak

♦ META-DATA:

ctr_date(highest_peak,[’20040530’]).

ctr_origin(highest_peak,’Derived from %c.’,[peak]).

ctr_arguments(
highest_peak,
[’HEIGHT’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(highest_peak,[required(’VARIABLES’,var)]).

ctr_example(
highest_peak,
[highest_peak(

8,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]]),

highest_peak(
1,
[[var-0],
[var-1],
[var-1],
[var-0],
[var-0],
[var-1],
[var-0],
[var-1]])]).

ctr_typical(
highest_peak,
[size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>2,
peak(’VARIABLES’ˆvar)>0]).

ctr_typical_model(highest_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(highest_peak,[items(’VARIABLES’,reverse)]).
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ctr_eval(
highest_peak,
[checker(highest_peak_c),
automaton(highest_peak_a),
automaton_with_signature(highest_peak_a_s)]).

ctr_pure_functional_dependency(highest_peak,[]).

ctr_functional_dependency(highest_peak,1,[2]).

ctr_sol(highest_peak,2,0,2,9,[-1000000-9]).

ctr_sol(highest_peak,3,0,3,64,[-1000000-50,1-1,2-4,3-9]).

ctr_sol(
highest_peak,
4,
0,
4,
625,
[-1000000-295,1-11,2-44,3-99,4-176]).

ctr_sol(
highest_peak,
5,
0,
5,
7776,
[-1000000-1792,1-92,2-380,3-900,4-1712,5-2900]).

ctr_sol(
highest_peak,
6,
0,
6,
117649,
[-1000000-11088,
1-697,
2-3000,
3-7587,
4-15680,
5-29125,
6-50472]).

ctr_sol(
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highest_peak,
7,
0,
7,
2097152,
[-1000000-69498,
1-5036,
2-22632,
3-61389,
4-138544,
5-283250,
6-540576,
7-976227]).

ctr_sol(
highest_peak,
8,
0,
8,
43046721,
[-1000000-439791,
1-35443,
2-166208,
3-484020,
4-1195056,
5-2693425,
6-5665896,
7-11233250,
8-21133632]).

highest_peak_c(HEIGHT,VARIABLES) :-
check_type(dvar,HEIGHT),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
MININT= -1000000,
highest_peak_c(VARS,s,MININT,HEIGHT).

highest_peak_c([V1,V2|R],s,C,HEIGHT) :-
V1>=V2,
!,
highest_peak_c([V2|R],s,C,HEIGHT).

highest_peak_c([_V1,V2|R],s,C,HEIGHT) :-
!,
highest_peak_c([V2|R],u,C,HEIGHT).
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highest_peak_c([V1,V2|R],u,C,HEIGHT) :-
V1=<V2,
!,
highest_peak_c([V2|R],u,C,HEIGHT).

highest_peak_c([V1,V2|R],u,C,HEIGHT) :-
!,
C1 is max(C,V1),
highest_peak_c([V2|R],s,C1,HEIGHT).

highest_peak_c([_48268],_48265,HEIGHT,HEIGHT) :-
!.

highest_peak_c([],_48262,HEIGHT,HEIGHT).

highest_peak_counters_check([V1,V2|R],s,C,[C|S]) :-
V1>=V2,
!,
highest_peak_counters_check([V2|R],s,C,S).

highest_peak_counters_check([_V1,V2|R],s,C,[C|S]) :-
!,
highest_peak_counters_check([V2|R],u,C,S).

highest_peak_counters_check([V1,V2|R],u,C,[C|S]) :-
V1=<V2,
!,
highest_peak_counters_check([V2|R],u,C,S).

highest_peak_counters_check([V1,V2|R],u,C,[C1|S]) :-
!,
C1 is max(C,V1),
highest_peak_counters_check([V2|R],s,C1,S).

highest_peak_counters_check([V|R],init,C,[C|S]) :-
!,
highest_peak_counters_check([V|R],s,C,S).

highest_peak_counters_check([_48265],_48262,_48263,[]).

ctr_automaton_signature(
highest_peak,
highest_peak_a,
pair_signature(2,signature)).

highest_peak_a(FLAG,HEIGHT,VARIABLES) :-
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pair_signature(VARIABLES,SIGNATURE),
highest_peak_a_s(FLAG,HEIGHT,VARIABLES,SIGNATURE).

highest_peak_a_s(FLAG,HEIGHT,VARIABLES,SIGNATURE) :-
check_type(dvar,HEIGHT),
collection(VARIABLES,[dvar]),
MININT= -1000000,
pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
VAR1,
SIGNATURE,
[source(s),sink(u),sink(s)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,u),
arc(u,2,s,[max(C,VAR1)]),
arc(u,1,u),
arc(u,0,u)],

[C],
[MININT],
[COUNT]),

COUNT#=HEIGHT#<=>FLAG.
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B.178 imply

♦ META-DATA:

ctr_date(imply,[’20051226’,’20091016’]).

ctr_origin(imply,’Logic’,[]).

ctr_synonyms(imply,[rel,ifthen]).

ctr_arguments(
imply,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
imply,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
imply,
[imply(1,[[var-0],[var-0]]),
imply(1,[[var-0],[var-1]]),
imply(0,[[var-1],[var-0]]),
imply(1,[[var-1],[var-1]])]).

ctr_exchangeable(
imply,
[vals([’VAR’,’VARIABLES’ˆvar],int(0 in 1),<,all,dontcare)]).

ctr_eval(imply,[reformulation(imply_r),automaton(imply_a)]).

ctr_pure_functional_dependency(imply,[]).

ctr_functional_dependency(imply,1,[2]).

ctr_sol(imply,2,0,2,4,[0-1,1-3]).

ctr_sol(imply,3,0,3,0,[]).

ctr_sol(imply,4,0,4,0,[]).
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ctr_sol(imply,5,0,5,0,[]).

ctr_sol(imply,6,0,6,0,[]).

ctr_sol(imply,7,0,7,0,[]).

ctr_sol(imply,8,0,8,0,[]).

imply_r(VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,VARS),
VARS=[VAR1,VAR2],
VAR#<=>VAR1#=>VAR2.

imply_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_41518,
LIST_VARIABLES,
[source(s),sink(t)],
[arc(s,0,i),
arc(s,1,j),
arc(i,1,k),
arc(j,0,t),
arc(j,1,l),
arc(k,0,t),
arc(l,1,t),
arc(t,0,t),
arc(t,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.179 in

♦ META-DATA:

ctr_date(in,[’20030820’,’20040530’,’20060810’]).

ctr_origin(in,’Domain definition.’,[]).

ctr_synonyms(in,[dom,in_set,member]).

ctr_arguments(in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions(
in,
[size(’VALUES’)>0,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(in,3 in[[val-1],[val-3]]).

ctr_typical(in,[size(’VALUES’)>1]).

ctr_exchangeable(
in,
[items(’VALUES’,all),
vals([’VAR’],int([’VAR’,’VALUES’ˆval]),=\=,all,dontcare),
translate([’VAR’,’VALUES’ˆval])]).

ctr_derived_collections(
in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=1],
[]).

ctr_eval(in,[reformulation(in_r),automaton(in_a)]).

ctr_extensible(in,[],’VALUES’,any).

in_r(VAR,VALUES) :-
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check_type(dvar,VAR),
collection(VALUES,[int]),
length(VALUES,L),
L>0,
get_attr1(VALUES,VALS),
all_different(VALS),
build_or_var_in_values(VALS,VAR,TERM),
call(TERM).

in_a(FLAG,VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[int]),
length(VALUES,L),
L>0,
get_attr1(VALUES,VALS),
all_different(VALS),
in_signature(VALUES,SIGNATURE,VAR),
AUTOMATON=
automaton(

SIGNATURE,
_50267,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

in_signature([],[],_48228).

in_signature([[val-VAL]|VALs],[S|Ss],VAR) :-
VAR#=VAL#<=>S,
in_signature(VALs,Ss,VAR).
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B.180 in interval

♦ META-DATA:

ctr_date(in_interval,[’20060317’,’20060810’]).

ctr_origin(in_interval,’Domain definition.’,[]).

ctr_synonyms(in_interval,[dom,in]).

ctr_arguments(in_interval,[’VAR’-dvar,’LOW’-int,’UP’-int]).

ctr_restrictions(in_interval,[’LOW’=<’UP’]).

ctr_example(in_interval,in_interval(3,2,5)).

ctr_typical(in_interval,[’LOW’<’UP’,’VAR’>’LOW’,’VAR’<’UP’]).

ctr_exchangeable(
in_interval,
[vals([’LOW’],int,>,dontcare,dontcare),
vals([’UP’],int,<,dontcare,dontcare),
vals([’VAR’],int(’LOW’ in ’UP’),=\=,dontcare,dontcare),
translate([’VAR’,’LOW’,’UP’])]).

ctr_derived_collections(
in_interval,
[col(’VARIABLE’-collection(var-dvar),[item(var-’VAR’)]),
col(’INTERVAL’-collection(low-int,up-int),

[item(low-’LOW’,up-’UP’)])]).

ctr_graph(
in_interval,
[’VARIABLE’,’INTERVAL’],
2,
[’PRODUCT’>>collection(variable,interval)],
[variableˆvar>=intervalˆlow,variableˆvar=<intervalˆup],
[’NARC’=1],
[]).

ctr_eval(
in_interval,
[reformulation(in_interval_r),automaton(in_interval_a)]).

in_interval_r(VAR,LOW,UP) :-
check_type(fdvar,VAR),
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check_type(int,LOW),
check_type(int,UP),
LOW=<UP,
VAR#>=LOW,
VAR#=<UP.

in_interval_a(FLAG,VAR,LOW,UP) :-
check_type(fdvar,VAR),
check_type(int,LOW),
check_type(int,UP),
LOW=<UP,
VAR#>=LOW#/\VAR#=<UP#<=>S,
AUTOMATON=
automaton(

[S],
_44933,
[S],
[source(s),sink(t)],
[arc(s,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.181 in interval reified
♦ META-DATA:

ctr_predefined(in_interval_reified).

ctr_date(in_interval_reified,[’20100916’]).

ctr_origin(
in_interval_reified,
Reified version of %c.,
[in_interval]).

ctr_synonyms(in_interval_reified,[dom_reified,in_reified]).

ctr_arguments(
in_interval_reified,
[’VAR’-dvar,’LOW’-int,’UP’-int,’B’-dvar]).

ctr_restrictions(
in_interval_reified,
[’LOW’=<’UP’,’B’>=0,’B’=<1]).

ctr_example(in_interval_reified,in_interval_reified(3,2,5,1)).

ctr_typical(
in_interval_reified,
[’VAR’=\=’LOW’,’VAR’=\=’UP’,’LOW’<’UP’]).

ctr_exchangeable(
in_interval_reified,
[vals([’VAR’],comp(’LOW’ in ’UP’),=,dontcare,dontcare),
translate([’VAR’,’LOW’,’UP’])]).

ctr_eval(
in_interval_reified,
[reformulation(in_interval_reified_r)]).

in_interval_reified_r(VAR,LOW,UP,B) :-
check_type(dvar,VAR),
check_type(int,LOW),
check_type(int,UP),
check_type(dvar(0,1),B),
LOW=<UP,
VAR in LOW..UP#<=>B.
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B.182 in intervals

♦ META-DATA:

ctr_predefined(in_intervals).

ctr_date(in_intervals,[’20080610’]).

ctr_origin(in_intervals,’Domain definition.’,[]).

ctr_synonyms(in_intervals,[in]).

ctr_arguments(
in_intervals,
[’VAR’-dvar,’INTERVALS’-collection(low-int,up-int)]).

ctr_restrictions(
in_intervals,
[required(’INTERVALS’,[low,up]),
’INTERVALS’ˆlow=<’INTERVALS’ˆup,
size(’INTERVALS’)>0]).

ctr_example(
in_intervals,
in_intervals(5,[[low-1,up-1],[low-3,up-5],[low-8,up-8]])).

ctr_typical(in_intervals,[size(’INTERVALS’)>1]).

ctr_exchangeable(
in_intervals,
[items(’INTERVALS’,all),
vals([’INTERVALS’ˆlow],int,>,dontcare,dontcare),
vals([’INTERVALS’ˆup],int,<,dontcare,dontcare),
translate([’VAR’,’INTERVALS’ˆlow,’INTERVALS’ˆup])]).

ctr_eval(in_intervals,[reformulation(in_intervals_r)]).

ctr_extensible(in_intervals,[],’INTERVALS’,any).

in_intervals_r(VAR,INTERVALS) :-
check_type(dvar,VAR),
collection(INTERVALS,[int,int]),
length(INTERVALS,L),
L>0,
get_attr1(INTERVALS,LOWS),
get_attr2(INTERVALS,UPS),



3124 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

check_lesseq(LOWS,UPS),
in_intervals1(LOWS,UPS,VAR,TERM),
call(TERM).

in_intervals1([],[],_27574,0).

in_intervals1([LOW|RLOW],[UP|RUP],VAR,VAR#>=LOW#/\VAR#=<UP#\/R) :-
in_intervals1(RLOW,RUP,VAR,R).
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B.183 in relation

♦ META-DATA:

ctr_date(in_relation,[’20030820’,’20040530’,’20060810’]).

ctr_origin(
in_relation,
Constraint explicitly defined by tuples of values.,
[]).

ctr_synonyms(
in_relation,
[case,
extension,
extensional,
extensional_support,
extensional_supportva,
extensional_supportmdd,
extensional_supportstr,
feastupleac,
table]).

ctr_types(
in_relation,
[’TUPLE_OF_VARS’-collection(var-dvar),
’TUPLE_OF_VALS’-collection(val-int)]).

ctr_arguments(
in_relation,
[’VARIABLES’-’TUPLE_OF_VARS’,
’TUPLES_OF_VALS’-collection(tuple-’TUPLE_OF_VALS’)]).

ctr_restrictions(
in_relation,
[required(’TUPLE_OF_VARS’,var),
size(’TUPLE_OF_VARS’)>=1,
size(’TUPLE_OF_VALS’)>=1,
size(’TUPLE_OF_VALS’)=size(’VARIABLES’),
required(’TUPLE_OF_VALS’,val),
required(’TUPLES_OF_VALS’,tuple)]).

ctr_example(
in_relation,
in_relation(

[[var-5],[var-3],[var-3]],
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[[tuple-[[val-5],[val-2],[val-3]]],
[tuple-[[val-5],[val-2],[val-6]]],
[tuple-[[val-5],[val-3],[val-3]]]])).

ctr_typical(in_relation,[size(’TUPLE_OF_VARS’)>1]).

ctr_exchangeable(
in_relation,
[items(’TUPLES_OF_VALS’,all),
items_sync(’VARIABLES’,’TUPLES_OF_VALS’ˆtuple,all),
vals(

[’VARIABLES’,’TUPLES_OF_VALS’ˆtuple],
int,
=\=,
all,
dontcare)]).

ctr_derived_collections(
in_relation,
[col(’TUPLES_OF_VARS’-collection(vec-’TUPLE_OF_VARS’),

[item(vec-’VARIABLES’)])]).

ctr_graph(
in_relation,
[’TUPLES_OF_VARS’,’TUPLES_OF_VALS’],
2,
[’PRODUCT’>>collection(tuples_of_vars,tuples_of_vals)],
[vec_eq_tuple(tuples_of_varsˆvec,tuples_of_valsˆtuple)],
[’NARC’>=1],
[]).

ctr_eval(in_relation,[reformulation(in_relation_r)]).

ctr_extensible(in_relation,[],’TUPLES_OF_VALS’,any).

in_relation_r(VARIABLES,TUPLES_OF_VALS) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
collection(TUPLES_OF_VALS,[col(N,[int])]),
get_attr1(VARIABLES,VARS),
get_col_attr1(TUPLES_OF_VALS,1,TUPLES),
table([VARS],TUPLES).
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B.184 in same partition

♦ META-DATA:

ctr_date(in_same_partition,[’20030820’,’20040530’,’20060810’]).

ctr_origin(
in_same_partition,
Used for defining several entries of this catalog.,
[]).

ctr_types(in_same_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
in_same_partition,
[’VAR1’-dvar,
’VAR2’-dvar,
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
in_same_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
in_same_partition,
in_same_partition(

6,
2,
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(in_same_partition,[’VAR1’=\=’VAR2’]).

ctr_exchangeable(
in_same_partition,
[args([[’VAR1’,’VAR2’],[’PARTITIONS’]]),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all)]).

ctr_derived_collections(
in_same_partition,
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[col(’VARIABLES’-collection(var-dvar),
[item(var-’VAR1’),item(var-’VAR2’)])]).

ctr_graph(
in_same_partition,
[’VARIABLES’,’PARTITIONS’],
2,
[’PRODUCT’>>collection(variables,partitions)],
[variablesˆvar in partitionsˆp],
[’NSOURCE’=2,’NSINK’=1],
[]).

ctr_eval(
in_same_partition,
[reformulation(in_same_partition_r),
automaton(in_same_partition_a)]).

ctr_extensible(in_same_partition,[],’PARTITIONS’,any).

in_same_partition_r(VAR1,VAR2,PARTITIONS) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
collection_distinct(PARTITIONS,1),
get_col_attr1(PARTITIONS,1,PVALS),
in_same_partition1(PVALS,VAR1,VAR2,TERM),
call(TERM).

in_same_partition1([],_45642,_45643,0).

in_same_partition1([VALS|R],VAR1,VAR2,TERM1#/\TERM2#\/TERM) :-
build_or_var_in_values(VALS,VAR1,TERM1),
build_or_var_in_values(VALS,VAR2,TERM2),
in_same_partition1(R,VAR1,VAR2,TERM).

in_same_partition_a(FLAG,VAR1,VAR2,PARTITIONS) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
collection_distinct(PARTITIONS,1),
in_same_partition_signature(

PARTITIONS,
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SIGNATURE,
VAR1,
VAR2),

AUTOMATON=
automaton(

SIGNATURE,
_48058,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

in_same_partition_signature([],[],_45643,_45644).

in_same_partition_signature(
[[p-VALUES]|PARTITIONs],
[S|Ss],
VAR1,
VAR2) :-

get_attr1(VALUES,LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
VAR1 in_set SET_OF_VALUES#/\
VAR2 in_set SET_OF_VALUES#<=>
S,
in_same_partition_signature(PARTITIONs,Ss,VAR1,VAR2).
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B.185 in set
♦ META-DATA:

ctr_predefined(in_set).

ctr_date(in_set,[’20030820’]).

ctr_origin(
in_set,
Used for defining constraints with set variables.,
[]).

ctr_synonyms(in_set,[dom,member]).

ctr_arguments(in_set,[’VAL’-dvar,’SET’-svar]).

ctr_example(in_set,3 in_set{1,3}).
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B.186 incomparable

♦ META-DATA:

ctr_predefined(incomparable).

ctr_date(incomparable,[’20120202’]).

ctr_origin(
incomparable,
Inspired by incomparable rectangles.,
[]).

ctr_synonyms(incomparable,[incomparables]).

ctr_arguments(
incomparable,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
incomparable,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)>=1,
size(’VECTOR2’)>=1,
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
incomparable,
[incomparable([[var-16],[var-2]],[[var-4],[var-11]])]).

ctr_typical(incomparable,[size(’VECTOR1’)>1]).

ctr_exchangeable(
incomparable,
[items(’VECTOR1’,all),
items(’VECTOR2’,all),
args([[’VECTOR1’,’VECTOR2’]])]).

ctr_eval(
incomparable,
[reformulation(incomparable_r),checker(incomparable_c)]).

ctr_cond_imply(
incomparable,
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disjoint,
[size(’VECTOR1’)=2],
[],
[same(’VECTOR1’),same(’VECTOR2’)]).

ctr_cond_imply(
incomparable,
int_value_precede_chain,
[size(’VECTOR1’)=2],
[],
[same(’VECTOR1’),same(’VECTOR2’)]).

incomparable_r(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
incomparable(VECT1,VECT2).

incomparable(U,V) :-
length(U,N),
length(V,N),
N>1,
length(PU,N),
length(PV,N),
domain(PU,1,N),
domain(PV,1,N),
get_minimum(U,MinU),
get_maximum(U,MaxU),
get_minimum(V,MinV),
get_maximum(V,MaxV),
length(SU,N),
length(SV,N),
domain(SU,MinU,MaxU),
domain(SV,MinV,MaxV),
sorting(U,PU,SU),
sorting(V,PV,SV),
incomparable(SU,SV,Cond1),
incomparable(SV,SU,Cond2),
call(Cond1),
call(Cond2),
append(U,V,UV),
append(PU,PV,PUV),
when(ground(UV),once(labeling([],PUV))).
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incomparable([],[],0).

incomparable([U|R],[V|S],U#>V#\/T) :-
incomparable(R,S,T).

incomparable_c(VECTOR1,VECTOR2) :-
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
incomparablec(VECT1,VECT2).
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B.187 increasing

♦ META-DATA:

ctr_date(increasing,[’20040814’,’20060810’,’20091105’]).

ctr_origin(increasing,’KOALOG’,[]).

ctr_arguments(increasing,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(increasing,[required(’VARIABLES’,var)]).

ctr_example(
increasing,
increasing([[var-1],[var-1],[var-4],[var-8]])).

ctr_typical(
increasing,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(increasing,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(increasing,[translate([’VARIABLES’ˆvar])]).

ctr_graph(
increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
increasing,
[checker(increasing_c),
reformulation(increasing_r),
automaton(increasing_a)]).

ctr_contractible(increasing,[],’VARIABLES’,any).

ctr_sol(increasing,2,0,2,6,-).

ctr_sol(increasing,3,0,3,20,-).

ctr_sol(increasing,4,0,4,70,-).
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ctr_sol(increasing,5,0,5,252,-).

ctr_sol(increasing,6,0,6,924,-).

ctr_sol(increasing,7,0,7,3432,-).

ctr_sol(increasing,8,0,8,12870,-).

increasing_c([[var-X],[var-Y]|_49102]) :-
X>Y,
!,
fail.

increasing_c([]) :-
!.

increasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
increasing_c1(VARS).

increasing_c1([X,Y|R]) :-
!,
X=<Y,
increasing_c1([Y|R]).

increasing_c1([_49092]) :-
!.

increasing_c1([]).

increasing_r([]) :-
!.

increasing_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
increasing1(VARS).

increasing1([_49092]) :-
!.

increasing1([V1,V2|R]) :-
V1#=<V2,
increasing1([V2|R]).
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increasing_a(1,[]) :-
!.

increasing_a(0,[]) :-
!,
fail.

increasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
increasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_50235,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

increasing_signature([_49093],[]) :-
!.

increasing_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..1,
VAR1#=<VAR2#<=>S,
increasing_signature([[var-VAR2]|VARs],Ss).
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B.188 increasing global cardinality

♦ META-DATA:

ctr_date(increasing_global_cardinality,[’20091015’]).

ctr_origin(
increasing_global_cardinality,
Conjoin %c and %c.,
[global_cardinality_low_up,increasing]).

ctr_synonyms(
increasing_global_cardinality,
[increasing_global_cardinality_low_up,
increasing_gcc,
increasing_gcc_low_up]).

ctr_arguments(
increasing_global_cardinality,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
increasing_global_cardinality,
[required(’VARIABLES’,var),
increasing(’VARIABLES’),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
increasing_global_cardinality,
increasing_global_cardinality(

[[var-3],[var-3],[var-6],[var-8]],
[[val-3,omin-2,omax-3],
[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

ctr_typical(
increasing_global_cardinality,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
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’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax=<size(’VARIABLES’),
size(’VARIABLES’)>size(’VALUES’)]).

ctr_typical_model(
increasing_global_cardinality,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
increasing_global_cardinality,
[items(’VALUES’,all)]).

ctr_graph(
increasing_global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax],
[]).

ctr_eval(
increasing_global_cardinality,
[reformulation(increasing_global_cardinality_r),
automaton(increasing_global_cardinality_a)]).

ctr_functional_dependency(increasing_nvalue,1,[2]).

increasing_global_cardinality_r(VARIABLES,VALUES) :-
eval(increasing(VARIABLES)),
eval(global_cardinality_low_up(VARIABLES,VALUES)).

increasing_global_cardinality_a(FLAG,VARIABLES,VALUES) :-
increasing_global_cardinality_get_a(

VARIABLES,
VALUES,
AUTOMATON,
ALPHABET),

automaton_bool(FLAG,ALPHABET,AUTOMATON).

increasing_global_cardinality_get_a(
VARIABLES,
VALUES,
AUTOMATON,
ALPHABET) :-
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length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N),int(0,N)]),
length(VALUES,M),
M>0,
sort_collection(VALUES,val,SVALUES),
get_attr1(VARIABLES,VARS),
get_attr1(SVALUES,VALS),
get_attr2(SVALUES,OMINS),
get_attr3(SVALUES,OMAXS),
all_different(VALS),
check_lesseq(OMINS,OMAXS),
increasing_gcc_normalize(VALS,OMAXS,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
get_minimum(VALS,MINVALS),
get_maximum(VALS,MAXVALS),
MIN is min(MINVARS,MINVALS),
MAX is max(MAXVARS,MAXVALS),
get_sum(OMINS,SUM_OMINS),
REST is N-SUM_OMINS,
REST>=0,
increasing_global_cardinality_complete_values(

MIN,
MAX,
SVALUES,
REST,
CVALUES,
SUM_OMAXS),

reverse(CVALUES,RVALUES),
increasing_global_cardinality_term_states(

RVALUES,
SUM_OMAXS,
TERMINALS),

append([source(0)],TERMINALS,STATES),
increasing_global_cardinality_source_trans(

CVALUES,
1,
TRANSITIONS_FROM_SOURCE),

increasing_global_cardinality_horiz_trans(
CVALUES,
1,
TRANSITIONS_HORIZONTAL),

increasing_global_cardinality_vert_trans(
CVALUES,
1,
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TRANSITIONS_VERTICAL),
append(

TRANSITIONS_FROM_SOURCE,
TRANSITIONS_HORIZONTAL,
T1),

append(T1,TRANSITIONS_VERTICAL,ALL_TRANSITIONS),
AUTOMATON=
automaton(

VARS,
_55755,
VARS,
STATES,
ALL_TRANSITIONS,
[],
[],
[]),

append(VARS,VALS,ALL),
union_dom_list_int(ALL,ALPHABET).

increasing_gcc_normalize([],[],_47567) :-
!.

increasing_gcc_normalize([VAL|R],[OMAX|S],VARS) :-
( OMAX=0 ->

remove_value_from_vars(VARS,VAL)
; true
),
increasing_gcc_normalize(R,S,VARS).

increasing_global_cardinality_complete_values(
MIN,
MAX,
VALUES,
_REST,
VALUES,
0) :-

MIN>MAX,
( VALUES=[] ->

true
; write(problem),

nl,
abort

),
!.

increasing_global_cardinality_complete_values(
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MIN,
MAX,
[],
REST,
[[constrained-CTR,val-MIN,omin-0,omax-OOMAX]|S],
SUM) :-

MIN=<MAX,
!,
( REST>1 ->

CTR=0,
OOMAX=1

; CTR=1,
OOMAX is max(1,REST)

),
MIN1 is MIN+1,
increasing_global_cardinality_complete_values(

MIN1,
MAX,
[],
REST,
S,
TSUM),

SUM is TSUM+OOMAX.

increasing_global_cardinality_complete_values(
MIN,
MAX,
[[val-VAL,omin-OMIN,omax-OMAX]|R],
REST,
[[constrained-CTR,val-VAL,omin-OMIN,omax-OOMAX]|S],
SUM) :-

MIN=<MAX,
MIN=VAL,
!,
( OMAX>1,

OMAX>=REST+OMIN ->
CTR=0,
OOMAX is max(1,OMIN)

; CTR=1,
OOMAX is max(1,OMAX)

),
MIN1 is MIN+1,
increasing_global_cardinality_complete_values(

MIN1,
MAX,
R,
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REST,
S,
TSUM),

SUM is TSUM+OOMAX.

increasing_global_cardinality_complete_values(
MIN,
MAX,
[[val-VAL,omin-OMIN,omax-OMAX]|R],
REST,
[[constrained-CTR,val-MIN,omin-0,omax-OOMAX]|S],
SUM) :-

MIN=<MAX,
MIN<VAL,
( REST>1 ->

CTR=0,
OOMAX=1

; CTR=1,
OOMAX is max(1,REST)

),
MIN1 is MIN+1,
increasing_global_cardinality_complete_values(

MIN1,
MAX,
[[val-VAL,omin-OMIN,omax-OMAX]|R],
REST,
S,
TSUM),

SUM is TSUM+OOMAX.

increasing_global_cardinality_term_states([],_47563,[]).

increasing_global_cardinality_term_states(
[[constrained-_47574,val-_VAL,omin-OMIN,omax-OMAX]|R],
LAST_STATE_ID,
RES) :-

I is LAST_STATE_ID-OMAX+max(1,OMIN),
increasing_global_cardinality_term_states1(

I,
LAST_STATE_ID,
TERMS),

LAST_STATE_ID1 is LAST_STATE_ID-OMAX,
( OMIN=0 ->

increasing_global_cardinality_term_states(
R,
LAST_STATE_ID1,
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S),
append(S,TERMS,RES)

; RES=TERMS
).

increasing_global_cardinality_term_states1(I,MAX,[]) :-
I>MAX,
!.

increasing_global_cardinality_term_states1(I,MAX,[sink(I)|R]) :-
I=<MAX,
I1 is I+1,
increasing_global_cardinality_term_states1(I1,MAX,R).

increasing_global_cardinality_source_trans([],_47563,[]).

increasing_global_cardinality_source_trans(
[[constrained-_47574,val-VAL,omin-OMIN,omax-OMAX]|R],
CUR_ID,
[arc(0,VAL,CUR_ID)|S]) :-

CUR_ID1 is CUR_ID+OMAX,
( OMIN=0 ->

increasing_global_cardinality_source_trans(
R,
CUR_ID1,
S)

; S=[]
).

increasing_global_cardinality_horiz_trans([],_47563,[]).

increasing_global_cardinality_horiz_trans(
[[constrained-CTR,val-VAL,omin-_47588,omax-OMAX]|R],
CUR_ID,
RESULT) :-

increasing_global_cardinality_horiz_trans1(
1,
OMAX,
CTR,
VAL,
CUR_ID,
TR),

CUR_ID1 is CUR_ID+OMAX,
increasing_global_cardinality_horiz_trans(R,CUR_ID1,S),
append(TR,S,RESULT).
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increasing_global_cardinality_horiz_trans1(
I,
OMAX,
1,
_47956,
_48003,
[]) :-

I>=OMAX,
!.

increasing_global_cardinality_horiz_trans1(
I,
OMAX,
0,
VAL,
ID,
[arc(ID,VAL,ID)]) :-

I>=OMAX,
!.

increasing_global_cardinality_horiz_trans1(
I,
OMAX,
CTR,
VAL,
ID,
[arc(ID,VAL,ID1)|R]) :-

I<OMAX,
ID1 is ID+1,
I1 is I+1,
increasing_global_cardinality_horiz_trans1(

I1,
OMAX,
CTR,
VAL,
ID1,
R).

increasing_global_cardinality_vert_trans([_47568],_47566,[]) :-
!.

increasing_global_cardinality_vert_trans(
[[constrained-_47574,val-_VAL,omin-OMIN,omax-OMAX]|R],
CUR_ID,
RESULT) :-

I is CUR_ID+max(0,OMIN-1),
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CUR_ID1 is CUR_ID+OMAX,
increasing_global_cardinality_vert_trans1(

R,
CUR_ID1,
I,
CUR_ID1,
S),

increasing_global_cardinality_vert_trans(R,CUR_ID1,T),
append(S,T,RESULT).

increasing_global_cardinality_vert_trans1(
[],
_47842,
_47889,
_47936,
[]).

increasing_global_cardinality_vert_trans1(
[[constrained-_47576,val-VAL,omin-OMIN,omax-OMAX]|R],
CUR_ID,
I,
MAX,
RESULT) :-

increasing_global_cardinality_vert_trans2(
I,
MAX,
CUR_ID,
VAL,
RES1),

CUR_ID1 is CUR_ID+OMAX,
( OMIN=0 ->

increasing_global_cardinality_vert_trans1(
R,
CUR_ID1,
I,
MAX,
RES2),

append(RES1,RES2,RESULT)
; RESULT=RES1
).

increasing_global_cardinality_vert_trans2(
MAX,
MAX,
_47900,
_47947,
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[]) :-
!.

increasing_global_cardinality_vert_trans2(
I,
MAX,
CUR_ID,
VAL,
[arc(I,VAL,CUR_ID)|R]) :-

I<MAX,
I1 is I+1,
increasing_global_cardinality_vert_trans2(

I1,
MAX,
CUR_ID,
VAL,
R).
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B.189 increasing nvalue

♦ META-DATA:

ctr_date(increasing_nvalue,[’20091104’]).

ctr_origin(
increasing_nvalue,
Conjoin %c and %c.,
[nvalue,increasing]).

ctr_arguments(
increasing_nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
increasing_nvalue,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
increasing(’VARIABLES’)]).

ctr_example(
increasing_nvalue,
[increasing_nvalue(

2,
[[var-6],[var-6],[var-8],[var-8],[var-8]]),

increasing_nvalue(
1,
[[var-6],[var-6],[var-6],[var-6],[var-6]]),

increasing_nvalue(
5,
[[var-0],[var-2],[var-3],[var-6],[var-7]])]).

ctr_typical(
increasing_nvalue,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(increasing_nvalue,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
increasing_nvalue,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
increasing_nvalue,
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[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(
increasing_nvalue,
[checker(increasing_nvalue_c),
builtin(increasing_nvalue_b),
reformulation(increasing_nvalue_r),
automata(increasing_nvalue_a)]).

ctr_sol(increasing_nvalue,2,0,2,6,[1-3,2-3]).

ctr_sol(increasing_nvalue,3,0,3,20,[1-4,2-12,3-4]).

ctr_sol(increasing_nvalue,4,0,4,70,[1-5,2-30,3-30,4-5]).

ctr_sol(increasing_nvalue,5,0,5,252,[1-6,2-60,3-120,4-60,5-6]).

ctr_sol(
increasing_nvalue,
6,
0,
6,
924,
[1-7,2-105,3-350,4-350,5-105,6-7]).

ctr_sol(
increasing_nvalue,
7,
0,
7,
3432,
[1-8,2-168,3-840,4-1400,5-840,6-168,7-8]).

ctr_sol(
increasing_nvalue,
8,
0,
8,
12870,
[1-9,2-252,3-1764,4-4410,5-4410,6-1764,7-252,8-9]).



3149

increasing_nvalue_c(_71212,[[var-X],[var-Y]|_71224]) :-
X>Y,
!,
fail.

increasing_nvalue_c(0,[]) :-
!.

increasing_nvalue_c(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
( N=1 ->

NVAL=1
; VARS=[VAR|R],

increasing_nvalue_c(R,VAR,1,NVAL)
).

increasing_nvalue_c([],_71213,NVAL,NVAL) :-
!.

increasing_nvalue_c([V|R],Prev,Count,NVAL) :-
Prev=<V,
( V=Prev ->

Count1=Count
; Count1 is Count+1
),
increasing_nvalue_c(R,V,Count1,NVAL).

increasing_nvalue_counters_check([],_71213,_71214,[]) :-
!.

increasing_nvalue_counters_check([V|R],Prev,Count,[Count1|S]) :-
integer(Prev),
Prev=<V,
!,
( V=Prev ->

Count1=Count
; Count1 is Count+1
),
increasing_nvalue_counters_check(R,V,Count1,S).

increasing_nvalue_counters_check(
[_71216|R],
_71611,
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_71658,
[-|S]) :-

increasing_nvalue_counters_check(R,-,_71227,S).

decreasing_nvalue_counters_check([],_71213,_71214,[]) :-
!.

decreasing_nvalue_counters_check([V|R],Prev,Count,[Count1|S]) :-
integer(Prev),
Prev>=V,
!,
( V=Prev ->

Count1=Count
; Count1 is Count+1
),
decreasing_nvalue_counters_check(R,V,Count1,S).

decreasing_nvalue_counters_check(
[_71216|R],
_71611,
_71658,
[-|S]) :-

decreasing_nvalue_counters_check(R,-,_71227,S).

increasing_nvalue_b(0,[]) :-
!.

increasing_nvalue_b(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=min(1,N),
NVAL#=<N,
increasing_nvalue_b1(VARS,S),
call(NVAL#=S).

increasing_nvalue_b1([_71214],1) :-
!.

increasing_nvalue_b1([V1,V2|R],B+S) :-
V1#=<V2,
B#<=>V1#<V2,
increasing_nvalue_b1([V2|R],S).

increasing_nvalue_r(0,[]) :-
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!.

increasing_nvalue_r(NVAL,VARIABLES) :-
eval(increasing(VARIABLES)),
eval(nvalue(NVAL,VARIABLES)).

increasing_nvalue_a(0,[]) :-
!.

increasing_nvalue_a(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=min(1,N),
NVAL#=<N,
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
SIZE is MAXVARS-MINVARS+1,
fd_min(NVAL,MINNVAL),
fd_max(NVAL,MAXNVAL),
D is min(N,min(SIZE,MAXNVAL)),
fd_set(NVAL,SVAL),
fdset_to_list(SVAL,VALUES),
increasing_nvalue_states(VALUES,SIZE,MINNVAL,STATES),
gen_automaton_state(s,0,0,S_00),
increasing_nvalue_class1(

1,
SIZE,
MINNVAL,
MINVARS,
S_00,
TRANS1),

increasing_nvalue_class2(
1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS2),

increasing_nvalue_class3(
1,
D,
SIZE,
MINNVAL,
MINVARS,
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TRANS3),
append(TRANS1,TRANS2,TRANS12),
append(TRANS12,TRANS3,ALL_TRANSITIONS),
automaton(

VARS,
_76799,
VARS,
STATES,
ALL_TRANSITIONS,
[],
[],
[]),

eval(nvalue(NVAL,VARIABLES)).

increasing_nvalue_states([],_71213,_71214,[source(S_00)]) :-
gen_automaton_state(s,0,0,S_00).

increasing_nvalue_states([V|R],SIZE,MINNVAL,STATES) :-
increasing_nvalue_states1(V,SIZE,V,MINNVAL,STATES1),
increasing_nvalue_states(R,SIZE,MINNVAL,STATES2),
append(STATES1,STATES2,STATES).

increasing_nvalue_states1(J,SIZE,_71214,_71215,[]) :-
J>SIZE,
!.

increasing_nvalue_states1(J,SIZE,I,MINNVAL,[sink(S_IJ)|STATES]) :-
J=<SIZE,
I_SIZE_J is I+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,I,J,S_IJ),
J1 is J+1,
increasing_nvalue_states1(J1,SIZE,I,MINNVAL,STATES).

increasing_nvalue_states1(J,SIZE,I,MINNVAL,STATES) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_states1(J1,SIZE,I,MINNVAL,STATES).

increasing_nvalue_class1(J,SIZE,_71214,_71215,_71216,[]) :-
J>SIZE,
!.

increasing_nvalue_class1(
J,
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SIZE,
MINNVAL,
MINVARS,
S_00,
[arc(S_00,LABEL,S_1J)|TRANS]) :-

J=<SIZE,
I_SIZE_J is 1+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,1,J,S_1J),
LABEL is MINVARS+J-1,
J1 is J+1,
increasing_nvalue_class1(

J1,
SIZE,
MINNVAL,
MINVARS,
S_00,
TRANS).

increasing_nvalue_class1(J,SIZE,MINNVAL,MINVARS,S_00,TRANS) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_class1(

J1,
SIZE,
MINNVAL,
MINVARS,
S_00,
TRANS).

increasing_nvalue_class2(I,D,_SIZE,_MINNVAL,_MINVARS,[]) :-
I>D,
!.

increasing_nvalue_class2(I,D,SIZE,MINNVAL,MINVARS,TRANS) :-
I=<D,
increasing_nvalue_class21(

I,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS1),

I1 is I+1,
increasing_nvalue_class2(
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I1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS2),

append(TRANS1,TRANS2,TRANS).

increasing_nvalue_class21(J,SIZE,_I,_MINNVAL,_MINVARS,[]) :-
J>SIZE,
!.

increasing_nvalue_class21(
J,
SIZE,
I,
MINNVAL,
MINVARS,
[arc(S_IJ,LABEL,S_IJ)|TRANS]) :-

J=<SIZE,
I_SIZE_J is I+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,I,J,S_IJ),
LABEL is MINVARS+J-1,
J1 is J+1,
increasing_nvalue_class21(

J1,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class21(J,SIZE,I,MINNVAL,MINVARS,TRANS) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_class21(

J1,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class3(I,D,_71214,_71215,_71216,[]) :-
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I>=D,
!.

increasing_nvalue_class3(I,D,SIZE,MINNVAL,MINVARS,TRANS) :-
I<D,
increasing_nvalue_class31(

I,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS1),

I1 is I+1,
increasing_nvalue_class3(

I1,
D,
SIZE,
MINNVAL,
MINVARS,
TRANS2),

append(TRANS1,TRANS2,TRANS).

increasing_nvalue_class31(J,SIZE,_71214,_71215,_71216,[]) :-
J>SIZE,
!.

increasing_nvalue_class31(J,SIZE,I,MINNVAL,MINVARS,TRANS) :-
J=<SIZE,
I_SIZE_J is I+SIZE-J,
I_SIZE_J>=MINNVAL,
!,
gen_automaton_state(s,I,J,S_IJ),
J1 is J+1,
increasing_nvalue_class32(

J1,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS1),

increasing_nvalue_class31(
J1,
SIZE,
I,
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MINNVAL,
MINVARS,
TRANS2),

append(TRANS1,TRANS2,TRANS).

increasing_nvalue_class31(J,SIZE,I,MINNVAL,MINVARS,TRANS) :-
J=<SIZE,
J1 is J+1,
increasing_nvalue_class31(

J1,
SIZE,
I,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class32(
K,
SIZE,
_71564,
_71611,
_71658,
_71705,
_71752,
[]) :-

K>SIZE,
!.

increasing_nvalue_class32(
K,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
[arc(S_IJ,LABEL,S_I1K)|TRANS]) :-

K=<SIZE,
I1 is I+1,
I1_SIZE_K is I1+SIZE-K,
I1_SIZE_K>=MINNVAL,
!,
gen_automaton_state(s,I1,K,S_I1K),
LABEL is MINVARS+K-1,
K1 is K+1,
increasing_nvalue_class32(
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K1,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS).

increasing_nvalue_class32(
K,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS) :-

K=<SIZE,
K1 is K+1,
increasing_nvalue_class32(

K1,
SIZE,
I,
J,
S_IJ,
MINNVAL,
MINVARS,
TRANS).
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B.190 increasing nvalue chain

♦ META-DATA:

ctr_date(increasing_nvalue_chain,[’20091118’]).

ctr_origin(
increasing_nvalue_chain,
Derived from %c.,
[increasing_nvalue]).

ctr_arguments(
increasing_nvalue_chain,
[’NVAL’-dvar,’VARIABLES’-collection(b-dvar,var-dvar)]).

ctr_restrictions(
increasing_nvalue_chain,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,[b,var]),
’VARIABLES’ˆb>=0,
’VARIABLES’ˆb=<1]).

ctr_example(
increasing_nvalue_chain,
increasing_nvalue_chain(

6,
[[b-0,var-2],
[b-1,var-4],
[b-1,var-4],
[b-1,var-4],
[b-0,var-4],
[b-1,var-8],
[b-0,var-1],
[b-0,var-7],
[b-1,var-7]])).

ctr_typical(
increasing_nvalue_chain,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆb)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_graph(
increasing_nvalue_chain,
[’VARIABLES’],
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2,
[’PATH’>>collection(variables1,variables2)],
[variables2ˆb=0#\/variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_graph(
increasing_nvalue_chain,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables2ˆb=0#\/variables1ˆvar<variables2ˆvar],
[’NARC’=’NVAL’-1],
[]).

ctr_eval(
increasing_nvalue_chain,
[reformulation(increasing_nvalue_chain_r)]).

increasing_nvalue_chain_r(_42781,_42782).
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B.191 increasing peak

♦ META-DATA:

ctr_date(increasing_peak,[’20130209’]).

ctr_origin(
increasing_peak,
Derived from %c and %c.,
[peak,increasing]).

ctr_arguments(
increasing_peak,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
increasing_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
increasing_peak,
increasing_peak(

[[var-1],
[var-5],
[var-5],
[var-3],
[var-5],
[var-2],
[var-2],
[var-7],
[var-4]])).

ctr_typical(
increasing_peak,
[size(’VARIABLES’)>=7,
range(’VARIABLES’ˆvar)>1,
peak(’VARIABLES’ˆvar)>=3]).

ctr_typical_model(increasing_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
increasing_peak,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
increasing_peak,
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[checker(increasing_peak_c),
automaton(increasing_peak_a),
automaton_with_signature(increasing_peak_a_s)]).

ctr_contractible(increasing_peak,[],’VARIABLES’,prefix).

ctr_contractible(increasing_peak,[],’VARIABLES’,suffix).

ctr_cond_imply(
increasing_peak,
not_all_equal,
[peak(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(increasing_peak,2,0,2,9,-).

ctr_sol(increasing_peak,3,0,3,64,-).

ctr_sol(increasing_peak,4,0,4,625,-).

ctr_sol(increasing_peak,5,0,5,7553,-).

ctr_sol(increasing_peak,6,0,6,105798,-).

ctr_sol(increasing_peak,7,0,7,1666878,-).

ctr_sol(increasing_peak,8,0,8,29090469,-).

increasing_peak_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
L>0,
get_attr1(VARIABLES,VARS),
increasing_peak_c(VARS,s,0).

increasing_peak_c([V1,V2|R],s,A) :-
V1>=V2,
!,
increasing_peak_c([V2|R],s,A).

increasing_peak_c([_32458,V2|R],s,A) :-
!,
increasing_peak_c([V2|R],u,A).

increasing_peak_c([V1,V2|R],u,A) :-



3162 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

V1=<V2,
!,
increasing_peak_c([V2|R],u,A).

increasing_peak_c([V1,V2|R],u,_32457) :-
!,
increasing_peak_c([V2|R],v,V1).

increasing_peak_c([V1,V2|R],v,A) :-
V1>=V2,
!,
increasing_peak_c([V2|R],v,A).

increasing_peak_c([_32458,V2|R],v,A) :-
!,
increasing_peak_c([V2|R],w,A).

increasing_peak_c([V1,V2|R],w,A) :-
V1=<V2,
!,
increasing_peak_c([V2|R],w,A).

increasing_peak_c([V1,V2|R],w,A) :-
!,
A=<V1,
increasing_peak_c([V2|R],v,V1).

increasing_peak_c([_32458],_32456,_32457) :-
!.

increasing_peak_c([],_32453,_32454).

ctr_automaton_signature(
increasing_peak,
increasing_peak_a,
pair_signature(1,signature)).

increasing_peak_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
increasing_peak_a_s(FLAG,VARIABLES,SIGNATURE).

increasing_peak_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
L>=0,
pair_first_signature(VARIABLES,VARS),



3163

automaton(
VARS,
Vi,
SIGNATURE,
[source(s),sink(s),sink(u),sink(v),sink(w)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,u),
arc(u,2,v,[Vi,F]),
arc(u,1,u),
arc(u,0,u),
arc(v,2,v),
arc(v,1,v),
arc(v,0,w),
arc(w,2,v,(A#=<Vi->[Vi,F])),
arc(w,2,v,(A#>Vi->[A,0])),
arc(w,1,w),
arc(w,0,w)],

[A,F],
[0,1],
[_A,FLAG]).
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B.192 increasing sum

♦ META-DATA:

ctr_predefined(increasing_sum).

ctr_date(increasing_sum,[’20110617’]).

ctr_origin(
increasing_sum,
Conjoin %c and %c.,
[increasing,sum_ctr]).

ctr_synonyms(
increasing_sum,
[increasing_sum_ctr,increasing_sum_eq]).

ctr_arguments(
increasing_sum,
[’VARIABLES’-collection(var-dvar),’S’-dvar]).

ctr_restrictions(
increasing_sum,
[required(’VARIABLES’,var),increasing(’VARIABLES’)]).

ctr_example(
increasing_sum,
increasing_sum([[var-3],[var-3],[var-6],[var-8]],20)).

ctr_typical(
increasing_sum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(increasing_sum,[nval(’VARIABLES’ˆvar)>2]).

ctr_eval(increasing_sum,[reformulation(increasing_sum_r)]).

ctr_functional_dependency(increasing_sum,2,[1]).

ctr_cond_imply(
increasing_sum,
atmost_nvalue,
[minval(’VARIABLES’ˆvar)>0],
[],
[’S’,’VARIABLES’]).
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ctr_cond_imply(
increasing_sum,
sum_of_increments,
[minval(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(increasing_sum,2,0,2,6,[0-1,1-1,2-2,3-1,4-1]).

ctr_sol(
increasing_sum,
3,
0,
3,
20,
[0-1,1-1,2-2,3-3,4-3,5-3,6-3,7-2,8-1,9-1]).

ctr_sol(
increasing_sum,
4,
0,
4,
70,
[0-1,
1-1,
2-2,
3-3,
4-5,
5-5,
6-7,
7-7,
8-8,
9-7,
10-7,
11-5,
12-5,
13-3,
14-2,
15-1,
16-1]).

ctr_sol(
increasing_sum,
5,
0,
5,
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252,
[0-1,
1-1,
2-2,
3-3,
4-5,
5-7,
6-9,
7-11,
8-14,
9-16,
10-18,
11-19,
12-20,
13-20,
14-19,
15-18,
16-16,
17-14,
18-11,
19-9,
20-7,
21-5,
22-3,
23-2,
24-1,
25-1]).

ctr_sol(
increasing_sum,
6,
0,
6,
924,
[0-1,
1-1,
2-2,
3-3,
4-5,
5-7,
6-11,
7-13,
8-18,
9-22,
10-28,
11-32,
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12-39,
13-42,
14-48,
15-51,
16-55,
17-55,
18-58,
19-55,
20-55,
21-51,
22-48,
23-42,
24-39,
25-32,
26-28,
27-22,
28-18,
29-13,
30-11,
31-7,
32-5,
33-3,
34-2,
35-1,
36-1]).

ctr_sol(
increasing_sum,
7,
0,
7,
3432,
[0-1,
1-1,
2-2,
3-3,
4-5,
5-7,
6-11,
7-15,
8-20,
9-26,
10-34,
11-42,
12-53,
13-63,
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14-75,
15-87,
16-100,
17-112,
18-125,
19-136,
20-146,
21-155,
22-162,
23-166,
24-169,
25-169,
26-166,
27-162,
28-155,
29-146,
30-136,
31-125,
32-112,
33-100,
34-87,
35-75,
36-63,
37-53,
38-42,
39-34,
40-26,
41-20,
42-15,
43-11,
44-7,
45-5,
46-3,
47-2,
48-1,
49-1]).

ctr_sol(
increasing_sum,
8,
0,
8,
12870,
[0-1,
1-1,
2-2,
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3-3,
4-5,
5-7,
6-11,
7-15,
8-22,
9-28,
10-38,
11-48,
12-63,
13-77,
14-97,
15-116,
16-141,
17-164,
18-194,
19-221,
20-255,
21-284,
22-319,
23-348,
24-383,
25-409,
26-440,
27-461,
28-486,
29-499,
30-515,
31-519,
32-526,
33-519,
34-515,
35-499,
36-486,
37-461,
38-440,
39-409,
40-383,
41-348,
42-319,
43-284,
44-255,
45-221,
46-194,
47-164,
48-141,
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49-116,
50-97,
51-77,
52-63,
53-48,
54-38,
55-28,
56-22,
57-15,
58-11,
59-7,
60-5,
61-3,
62-2,
63-1,
64-1]).

increasing_sum_r(VARIABLES,S) :-
eval(increasing(VARIABLES)),
eval(sum_ctr(VARIABLES,=,S)).
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B.193 increasing valley

♦ META-DATA:

ctr_date(increasing_valley,[’20130210’]).

ctr_origin(
increasing_valley,
Derived from %c and %c.,
[valley,increasing]).

ctr_arguments(
increasing_valley,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
increasing_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
increasing_valley,
increasing_valley(

[[var-3],
[var-5],
[var-1],
[var-4],
[var-3],
[var-5],
[var-3],
[var-3],
[var-7],
[var-2]])).

ctr_typical(
increasing_valley,
[size(’VARIABLES’)>=7,
range(’VARIABLES’ˆvar)>1,
valley(’VARIABLES’ˆvar)>=3]).

ctr_typical_model(increasing_valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
increasing_valley,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
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increasing_valley,
[checker(increasing_valley_c),
automaton(increasing_valley_a),
automaton_with_signature(increasing_valley_a_s)]).

ctr_contractible(increasing_valley,[],’VARIABLES’,prefix).

ctr_contractible(increasing_valley,[],’VARIABLES’,suffix).

ctr_cond_imply(
increasing_valley,
not_all_equal,
[valley(’VARIABLES’ˆvar)>0],
[],
id).

ctr_sol(increasing_valley,2,0,2,9,-).

ctr_sol(increasing_valley,3,0,3,64,-).

ctr_sol(increasing_valley,4,0,4,625,-).

ctr_sol(increasing_valley,5,0,5,7553,-).

ctr_sol(increasing_valley,6,0,6,105798,-).

ctr_sol(increasing_valley,7,0,7,1666878,-).

ctr_sol(increasing_valley,8,0,8,29090469,-).

increasing_valley_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
L>0,
get_attr1(VARIABLES,VARS),
increasing_valley_c(VARS,s,0).

increasing_valley_c([V1,V2|R],s,A) :-
V1=<V2,
!,
increasing_valley_c([V2|R],s,A).

increasing_valley_c([_32528,V2|R],s,A) :-
!,
increasing_valley_c([V2|R],u,A).
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increasing_valley_c([V1,V2|R],u,A) :-
V1>=V2,
!,
increasing_valley_c([V2|R],u,A).

increasing_valley_c([V1,V2|R],u,_32527) :-
!,
increasing_valley_c([V2|R],v,V1).

increasing_valley_c([V1,V2|R],v,A) :-
V1=<V2,
!,
increasing_valley_c([V2|R],v,A).

increasing_valley_c([_32528,V2|R],v,A) :-
!,
increasing_valley_c([V2|R],w,A).

increasing_valley_c([V1,V2|R],w,A) :-
V1>=V2,
!,
increasing_valley_c([V2|R],w,A).

increasing_valley_c([V1,V2|R],w,A) :-
!,
A=<V1,
increasing_valley_c([V2|R],v,V1).

increasing_valley_c([_32528],_32526,_32527) :-
!.

increasing_valley_c([],_32523,_32524).

ctr_automaton_signature(
increasing_valley,
increasing_valley_a,
pair_signature(1,signature)).

increasing_valley_a(FLAG,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
increasing_valley_a_s(FLAG,VARIABLES,SIGNATURE).

increasing_valley_a_s(FLAG,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
L>=0,
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pair_first_signature(VARIABLES,VARS),
automaton(

VARS,
Vi,
SIGNATURE,
[source(s),sink(s),sink(u),sink(v),sink(w)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(u,0,v,[Vi,F]),
arc(u,1,u),
arc(u,2,u),
arc(v,0,v),
arc(v,1,v),
arc(v,2,w),
arc(w,0,v,(A#=<Vi->[Vi,F])),
arc(w,0,v,(A#>Vi->[A,0])),
arc(w,1,w),
arc(w,2,w)],

[A,F],
[0,1],
[_A,FLAG]).
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B.194 indexed sum

♦ META-DATA:

ctr_date(indexed_sum,[’20040814’,’20060810’,’20090422’]).

ctr_origin(indexed_sum,’N.˜Beldiceanu’,[]).

ctr_arguments(
indexed_sum,
[’ITEMS’-collection(index-dvar,weight-dvar),
’TABLE’-collection(index-int,summation-dvar)]).

ctr_restrictions(
indexed_sum,
[size(’ITEMS’)>0,
size(’TABLE’)>0,
required(’ITEMS’,[index,weight]),
’ITEMS’ˆindex>=1,
’ITEMS’ˆindex=<size(’TABLE’),
required(’TABLE’,[index,summation]),
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
increasing_seq(’TABLE’,index)]).

ctr_example(
indexed_sum,
indexed_sum(

[[index-3,weight- -4],
[index-1,weight-6],
[index-3,weight-1]],
[[index-1,summation-6],
[index-2,summation-0],
[index-3,summation- -3]])).

ctr_typical(
indexed_sum,
[size(’ITEMS’)>1,
range(’ITEMS’ˆindex)>1,
size(’TABLE’)>1,
range(’TABLE’ˆsummation)>1]).

ctr_exchangeable(
indexed_sum,
[items(’ITEMS’,all),items(’TABLE’,all)]).
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ctr_graph(
indexed_sum,
[’ITEMS’,’TABLE’],
2,
foreach(’TABLE’,[’PRODUCT’>>collection(items,table)]),
[itemsˆindex=tableˆindex],
[],
[],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’ITEMS’ˆweight)])]],
[sum_ctr(variables,=,’TABLE’ˆsummation)]).

ctr_eval(indexed_sum,[reformulation(indexed_sum_r)]).

indexed_sum_r(ITEMS,TABLE) :-
length(ITEMS,I),
length(TABLE,T),
I>0,
T>0,
collection(ITEMS,[dvar(1,T),dvar]),
collection(TABLE,[int(1,T),dvar]),
collection_increasing_seq(TABLE,[1]),
get_attr1(ITEMS,ITEMS_INDEXES),
get_attr2(ITEMS,ITEMS_WEIGHTS),
get_attr2(TABLE,TABLE_TSUMS),
indexed_sum1(

1,
T,
TABLE_TSUMS,
ITEMS_INDEXES,
ITEMS_WEIGHTS).

indexed_sum1(I,T,[],_43186,_43187) :-
I>T,
!.

indexed_sum1(I,T,[SUM|R],ITEMS_INDEXES,ITEMS_WEIGHTS) :-
indexed_sum2(ITEMS_INDEXES,ITEMS_WEIGHTS,I,TERM),
call(SUM#=TERM),
I1 is I+1,
indexed_sum1(I1,T,R,ITEMS_INDEXES,ITEMS_WEIGHTS).

indexed_sum2([],[],_43182,0).



3177

indexed_sum2([J|R],[W|S],I,W*B+T) :-
B#<=>J#=I,
indexed_sum2(R,S,I,T).
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B.195 inflexion

♦ META-DATA:

ctr_date(inflexion,[’20000128’,’20030820’,’20040530’]).

ctr_origin(inflexion,’N.˜Beldiceanu’,[]).

ctr_arguments(
inflexion,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
inflexion,
[’N’>=0,
’N’=<max(0,size(’VARIABLES’)-2),
required(’VARIABLES’,var)]).

ctr_example(
inflexion,
[inflexion(

3,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]]),

inflexion(
0,
[[var-1],
[var-1],
[var-4],
[var-4],
[var-6],
[var-6],
[var-7],
[var-9]]),

inflexion(
7,
[[var-1],
[var-0],
[var-2],
[var-0],
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[var-7],
[var-2],
[var-7],
[var-1],
[var-2]])]).

ctr_typical(
inflexion,
[’N’>0,size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(inflexion,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
inflexion,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
inflexion,
[checker(inflexion_c),
automaton(inflexion_a),
automaton_with_signature(inflexion_a_s)]).

ctr_pure_functional_dependency(inflexion,[]).

ctr_functional_dependency(inflexion,1,[2]).

ctr_cond_imply(
inflexion,
atleast_nvalue,
[’N’>0],
[’NVAL’=2],
[none,’VARIABLES’]).

ctr_cond_imply(
inflexion,
peak,
[valley(’VARIABLES’ˆvar)=0],
[],
id).

ctr_cond_imply(
inflexion,
valley,
[peak(’VARIABLES’ˆvar)=0],
[],
id).
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ctr_sol(inflexion,2,0,2,9,[0-9]).

ctr_sol(inflexion,3,0,3,64,[0-36,1-28]).

ctr_sol(inflexion,4,0,4,625,[0-135,1-320,2-170]).

ctr_sol(inflexion,5,0,5,7776,[0-498,1-2588,2-3348,3-1342]).

ctr_sol(
inflexion,
6,
0,
6,
117649,
[0-1841,1-18494,2-44058,3-40446,4-12810]).

ctr_sol(
inflexion,
7,
0,
7,
2097152,
[0-6856,1-125284,2-492320,3-778936,4-549152,5-144604]).

ctr_sol(
inflexion,
8,
0,
8,
43046721,
[0-25731,
1-828120,
2-5069970,
3-12341184,
4-14547186,
5-8354520,
6-1880010]).

inflexion_c(N,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
MAX is max(0,L-2),
check_type(dvar(0,MAX),N),
get_attr1(VARIABLES,VARS),
inflexion_c(s,VARS,0,N).
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inflexion_c(s,[V,V|R],C,N) :-
!,
inflexion_c(s,[V|R],C,N).

inflexion_c(s,[V1,V2|R],C,N) :-
V1<V2,
!,
inflexion_c(i,[V2|R],C,N).

inflexion_c(s,[_51811,V2|R],C,N) :-
!,
inflexion_c(j,[V2|R],C,N).

inflexion_c(i,[V1,V2|R],C,N) :-
V1=<V2,
!,
inflexion_c(i,[V2|R],C,N).

inflexion_c(i,[_51811,V2|R],C,N) :-
!,
C1 is C+1,
inflexion_c(j,[V2|R],C1,N).

inflexion_c(j,[V1,V2|R],C,N) :-
V1>=V2,
!,
inflexion_c(j,[V2|R],C,N).

inflexion_c(j,[_51811,V2|R],C,N) :-
!,
C1 is C+1,
inflexion_c(i,[V2|R],C1,N).

inflexion_c(_51807,[_51811],N,N) :-
!.

inflexion_c(_51804,[],N,N).

inflexion_counters_check(s,[V,V|R],C,[C|S]) :-
!,
inflexion_counters_check(s,[V|R],C,S).

inflexion_counters_check(s,[V1,V2|R],C,[C|S]) :-
V1<V2,
!,
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inflexion_counters_check(i,[V2|R],C,S).

inflexion_counters_check(s,[_51811,V2|R],C,[C|S]) :-
!,
inflexion_counters_check(j,[V2|R],C,S).

inflexion_counters_check(i,[V1,V2|R],C,[C|S]) :-
V1=<V2,
!,
inflexion_counters_check(i,[V2|R],C,S).

inflexion_counters_check(i,[_51811,V2|R],C,[C1|S]) :-
!,
C1 is C+1,
inflexion_counters_check(j,[V2|R],C1,S).

inflexion_counters_check(j,[V1,V2|R],C,[C|S]) :-
V1>=V2,
!,
inflexion_counters_check(j,[V2|R],C,S).

inflexion_counters_check(j,[_51811,V2|R],C,[C1|S]) :-
!,
C1 is C+1,
inflexion_counters_check(i,[V2|R],C1,S).

inflexion_counters_check(init,[V|R],C,[0|S]) :-
!,
inflexion_counters_check(s,[V|R],C,S).

inflexion_counters_check(_51804,[_51808],_51806,[]).

ctr_automaton_signature(
inflexion,
inflexion_a,
pair_signature(2,signature)).

inflexion_a(FLAG,N,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
inflexion_a_s(FLAG,N,VARIABLES,SIGNATURE).

inflexion_a_s(FLAG,N,VARIABLES,SIGNATURE) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(0,L-2),
check_type(dvar(0,MAX),N),
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automaton(
SIGNATURE,
_53330,
SIGNATURE,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,1,s),
arc(s,0,i),
arc(s,2,j),
arc(i,1,i),
arc(i,0,i),
arc(i,2,j,[C+1]),
arc(j,1,j),
arc(j,2,j),
arc(j,0,i,[C+1])],

[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.
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B.196 inside sboxes

♦ META-DATA:

ctr_date(inside_sboxes,[’20070622’,’20090725’]).

ctr_origin(
inside_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(inside_sboxes,[inside]).

ctr_types(
inside_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
inside_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
inside_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
inside_sboxes,
inside_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-3],[v-3]]],
[oid-2,sid-2,x-[[v-2],[v-2]]],
[oid-3,sid-3,x-[[v-1],[v-1]]]],
[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-5],[v-5]]]])).

ctr_typical(inside_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
inside_sboxes,
[items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]).

ctr_eval(inside_sboxes,[logic(inside_sboxes_g)]).

ctr_logic(
inside_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(inside_sboxes(Dims,O1,S1,O2,S2)--->
forall(

D,
Dims,
origin(O2,S2,D)#<origin(O1,S1,D)#/\
end(O1,S1,D)#<end(O2,S2,D))),

(inside_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
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inside_sboxes(Dims,O1,S1,O2,S2)))),
(all_inside(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>inside_objects(Dims,O1,O2)))),

all_inside(DIMENSIONS,OIDS)]).

ctr_contractible(inside_sboxes,[],’OBJECTS’,suffix).

ctr_application(inside_sboxes,[3]).

inside_sboxes_g(K,_38639,[],_38641) :-
!,
check_type(int_gteq(1),K).

inside_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(inside_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.197 int value precede

♦ META-DATA:

ctr_date(int_value_precede,[’20041003’]).

ctr_origin(int_value_precede,’\\cite{YatChiuLawJimmyLee04}’,[]).

ctr_synonyms(
int_value_precede,
[precede,precedence,value_precede]).

ctr_arguments(
int_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
int_value_precede,
int_value_precede(

0,
1,
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

ctr_typical(
int_value_precede,
[’S’<’T’,
size(’VARIABLES’)>1,
atleast(1,’VARIABLES’,’S’),
atleast(1,’VARIABLES’,’T’)]).

ctr_exchangeable(
int_value_precede,
[vals(

[’VARIABLES’ˆvar],
int(notin([’S’,’T’])),
=\=,
dontcare,
dontcare),

vals(
[’S’,’T’,’VARIABLES’ˆvar],
int([’S’,’T’]),
=\=,
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all,
in)]).

ctr_eval(int_value_precede,[automaton(int_value_precede_a)]).

ctr_contractible(int_value_precede,[],’VARIABLES’,suffix).

ctr_aggregate(int_value_precede,[],[id,id,union]).

int_value_precede_a(1,S,T,[]) :-
!,
check_type(int,S),
check_type(int,T),
S=\=T.

int_value_precede_a(0,_S,_T,[]) :-
!,
fail.

int_value_precede_a(FLAG,S,T,VARIABLES) :-
check_type(int,S),
check_type(int,T),
S=\=T,
collection(VARIABLES,[dvar]),
int_value_precede_signature(VARIABLES,SIGNATURE,S,T),
AUTOMATON=
automaton(

SIGNATURE,
_34091,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,3,s),
arc(s,1,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],
[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

int_value_precede_signature([],[],_32291,_32292).

int_value_precede_signature([[var-VAR]|VARs],[SI|SIs],S,T) :-
SI in 1..3,
VAR#=S#<=>SI#=1,
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VAR#=T#<=>SI#=2,
VAR#\=S#/\VAR#\=T#<=>SI#=3,
int_value_precede_signature(VARs,SIs,S,T).
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B.198 int value precede chain

♦ META-DATA:

ctr_date(
int_value_precede_chain,
[’20041003’,’20090728’,’20090822’]).

ctr_origin(
int_value_precede_chain,
\cite{YatChiuLawJimmyLee04},
[]).

ctr_synonyms(
int_value_precede_chain,
[precede,precedence,value_precede_chain]).

ctr_arguments(
int_value_precede_chain,
[’VALUES’-collection(var-int),
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
int_value_precede_chain,
[required(’VALUES’,var),
distinct(’VALUES’,var),
required(’VARIABLES’,var)]).

ctr_example(
int_value_precede_chain,
int_value_precede_chain(

[[var-4],[var-0],[var-1]],
[[var-4],[var-0],[var-6],[var-1],[var-0]])).

ctr_typical(
int_value_precede_chain,
[size(’VALUES’)>1,
strictly_increasing(’VALUES’),
size(’VARIABLES’)>size(’VALUES’),
range(’VARIABLES’ˆvar)>1,
used_by(’VARIABLES’,’VALUES’)]).

ctr_exchangeable(
int_value_precede_chain,
[vals(

[’VARIABLES’ˆvar],
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int(notin(’VALUES’ˆvar)),
=\=,
dontcare,
dontcare)]).

ctr_eval(
int_value_precede_chain,
[automaton(int_value_precede_chain_a)]).

ctr_contractible(int_value_precede_chain,[],’VALUES’,any).

ctr_contractible(int_value_precede_chain,[],’VARIABLES’,suffix).

ctr_aggregate(int_value_precede_chain,[],[id,union]).

int_value_precede_chain_a(FLAG,[],VARIABLES) :-
!,
collection(VARIABLES,[dvar]),
( FLAG=1 ->

true
; fail
).

int_value_precede_chain_a(FLAG,VALUES,[]) :-
!,
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
all_different(VALS),
( FLAG=1 ->

true
; fail
).

int_value_precede_chain_a(FLAG,VALUES,VARIABLES) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
length(VALUES,1),
!,
( FLAG=1 ->

true
; fail
).

int_value_precede_chain_a(FLAG,VALUES,VARIABLES) :-
collection(VALUES,[int]),
collection(VARIABLES,[dvar]),
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get_attr1(VALUES,VALS),
all_different(VALS),
length(VALS,N),
get_attr1(VARIABLES,VARS),
int_value_precede_chain_gen_complement(

VARS,
VALS,
COMPLEMENT),

int_value_precede_chain_gen_states1(0,N,STATES),
int_value_precede_chain_gen_transitions(

N,
VALS,
COMPLEMENT,
STATES,
TRANSITIONS),

nth0(0,STATES,S0),
int_value_precede_chain_gen_states2(

STATES,
S0,
AUTOMATON_STATES),

AUTOMATON=
automaton(

VARS,
_37646,
VARS,
AUTOMATON_STATES,
TRANSITIONS,
[],
[],
[]),

append(VALS,COMPLEMENT,ALPHABET),
automaton_bool(FLAG,ALPHABET,AUTOMATON).

int_value_precede_chain_gen_states2([],S0,[source(S0)]) :-
!.

int_value_precede_chain_gen_states2([S|R],S0,[sink(S)|T]) :-
int_value_precede_chain_gen_states2(R,S0,T).

int_value_precede_chain_gen_complement(VARS,VALS,COMPLEMENT) :-
union_dom_set(VARS,UNION),
list_to_fdset(VALS,VALUES),
fdset_subtract(UNION,VALUES,DIFFERENCE),
fdset_to_list(DIFFERENCE,COMPLEMENT).

int_value_precede_chain_gen_states1(I,N,[]) :-
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I>N,
!.

int_value_precede_chain_gen_states1(I,N,[INAME|R]) :-
I=<N,
number_codes(I,ICODE),
atom_codes(IATOM,ICODE),
atom_concat(s,IATOM,INAME),
I1 is I+1,
int_value_precede_chain_gen_states1(I1,N,R).

int_value_precede_chain_gen_transitions(
N,
VALS,
COMPLEMENT,
STATES,
TRANSITIONS) :-

N1 is N-1,
int_value_precede_chain_gen_transitions1(

0,
N1,
VALS,
STATES,
TR1),

int_value_precede_chain_gen_transitions2(
1,
N,
VALS,
STATES,
TR2),

int_value_precede_chain_gen_transitions3(
0,
N,
VALS,
STATES,
COMPLEMENT,
TR3),

append(TR1,TR2,TR12),
append(TR12,TR3,TRANSITIONS).

int_value_precede_chain_gen_transitions1(I,N1,_34098,_34099,[]) :-
I>N1,
!.

int_value_precede_chain_gen_transitions1(
I,
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N1,
VALS,
STATES,
[arc(Si,Vii,Sii)|R]) :-

I=<N1,
I1 is I+1,
nth0(I,STATES,Si),
nth1(I1,VALS,Vii),
nth0(I1,STATES,Sii),
int_value_precede_chain_gen_transitions1(

I1,
N1,
VALS,
STATES,
R).

int_value_precede_chain_gen_transitions2(I,N1,_34098,_34099,[]) :-
I>N1,
!.

int_value_precede_chain_gen_transitions2(
I,
N1,
VALS,
STATES,
TRANSITIONS) :-

I=<N1,
int_value_precede_chain_gen_transitions21(

1,
I,
VALS,
STATES,
TR),

I1 is I+1,
int_value_precede_chain_gen_transitions2(

I1,
N1,
VALS,
STATES,
R),

append(TR,R,TRANSITIONS).

int_value_precede_chain_gen_transitions21(J,I,_34098,_34099,[]) :-
J>I,
!.
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int_value_precede_chain_gen_transitions21(
J,
I,
VALS,
STATES,
[arc(Si,Vj,Si)|R]) :-

J=<I,
nth0(I,STATES,Si),
nth1(J,VALS,Vj),
J1 is J+1,
int_value_precede_chain_gen_transitions21(

J1,
I,
VALS,
STATES,
R).

int_value_precede_chain_gen_transitions3(
_34334,
_34381,
_34428,
_34475,
[],
[]) :-

!.

int_value_precede_chain_gen_transitions3(
I,
N1,
_34442,
_34489,
_34536,
[]) :-

I>N1,
!.

int_value_precede_chain_gen_transitions3(
I,
N1,
VALS,
STATES,
[C|CC],
TRANSITIONS) :-

I=<N1,
length([C|CC],LC),
int_value_precede_chain_gen_transitions31(
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1,
LC,
I,
[C|CC],
STATES,
TR),

I1 is I+1,
int_value_precede_chain_gen_transitions3(

I1,
N1,
VALS,
STATES,
[C|CC],
R),

append(TR,R,TRANSITIONS).

int_value_precede_chain_gen_transitions31(
J,
LC,
_34442,
_34489,
_34536,
[]) :-

J>LC,
!.

int_value_precede_chain_gen_transitions31(
J,
LC,
I,
C,
STATES,
[arc(Si,Cj,Si)|R]) :-

J=<LC,
nth0(I,STATES,Si),
nth1(J,C,Cj),
J1 is J+1,
int_value_precede_chain_gen_transitions31(

J1,
LC,
I,
C,
STATES,
R).
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B.199 interval and count

♦ META-DATA:

ctr_date(
interval_and_count,
[’20000128’,’20030820’,’20040530’,’20060810’]).

ctr_origin(interval_and_count,’\\cite{Cousin93}’,[]).

ctr_arguments(
interval_and_count,
[’ATMOST’-int,
’COLOURS’-collection(val-int),
’TASKS’-collection(origin-dvar,colour-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
interval_and_count,
[’ATMOST’>=0,
required(’COLOURS’,val),
distinct(’COLOURS’,val),
required(’TASKS’,[origin,colour]),
’TASKS’ˆorigin>=0,
’SIZE_INTERVAL’>0]).

ctr_example(
interval_and_count,
interval_and_count(

2,
[[val-4]],
[[origin-1,colour-4],
[origin-0,colour-9],
[origin-10,colour-4],
[origin-4,colour-4]],

5)).

ctr_typical(
interval_and_count,
[’ATMOST’>0,
’ATMOST’<size(’TASKS’),
size(’COLOURS’)>0,
size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆcolour)>1,
’SIZE_INTERVAL’>1]).
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ctr_exchangeable(
interval_and_count,
[vals([’ATMOST’],int,<,dontcare,dontcare),
items(’COLOURS’,all),
items(’TASKS’,all),
translate([’TASKS’ˆorigin]),
vals(

[’TASKS’ˆorigin],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’TASKS’ˆcolour],
comp(’COLOURS’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
interval_and_count,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆorigin/’SIZE_INTERVAL’=
tasks2ˆorigin/’SIZE_INTERVAL’],
[],
[],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆcolour)])]],
[among_low_up(0,’ATMOST’,variables,’COLOURS’)]).

ctr_eval(
interval_and_count,
[reformulation(interval_and_count_r)]).

ctr_contractible(interval_and_count,[],’COLOURS’,any).

ctr_contractible(interval_and_count,[],’TASKS’,any).

ctr_application(interval_and_count,[3]).
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interval_and_count_r(ATMOST,COLOURS,TASKS,SIZE_INTERVAL) :-
check_type(int_gteq(0),ATMOST),
collection(COLOURS,[int]),
get_attr1(COLOURS,COLS),
all_different(COLS),
collection(TASKS,[dvar_gteq(0),dvar]),
check_type(int_gteq(1),SIZE_INTERVAL),
( COLOURS=[] ->

true
; TASKS=[] ->

true
; get_attr1(TASKS,TORIS),

get_attr2(TASKS,TCOLS),
interval_and_count1(TCOLS,COLS,LB),
get_maximum(TORIS,MAX),
MAXK is(MAX+SIZE_INTERVAL-1)//SIZE_INTERVAL,
interval_and_count2(

0,
MAXK,
SIZE_INTERVAL,
ATMOST,
LB,
TORIS)

).

interval_and_count1([],_51307,[]).

interval_and_count1([TC|R],COLS,[B|S]) :-
build_or_var_in_values(COLS,TC,TERM),
call(B#<=>TERM),
interval_and_count1(R,COLS,S).

interval_and_count2(K,MAXK,_51311,_51312,_51313,_51314) :-
K>MAXK,
!.

interval_and_count2(K,MAXK,SIZE_INTERVAL,ATMOST,LB,TORIS) :-
K=<MAXK,
interval_and_count3(LB,TORIS,K,SIZE_INTERVAL,SUMB),
call(SUMB#=<ATMOST),
K1 is K+1,
interval_and_count2(

K1,
MAXK,
SIZE_INTERVAL,
ATMOST,
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LB,
TORIS).

interval_and_count3([],[],_51308,_51309,0).

interval_and_count3([B|R],[O|S],K,SIZE_INTERVAL,BK+T) :-
SK is K*SIZE_INTERVAL,
TK is SK+SIZE_INTERVAL-1,
BK#<=>B#/\O#>=SK#/\O#=<TK,
interval_and_count3(R,S,K,SIZE_INTERVAL,T).
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B.200 interval and sum

♦ META-DATA:

ctr_date(interval_and_sum,[’20000128’,’20030820’,’20060810’]).

ctr_origin(interval_and_sum,’Derived from %c.’,[cumulative]).

ctr_arguments(
interval_and_sum,
[’SIZE_INTERVAL’-int,
’TASKS’-collection(origin-dvar,height-dvar),
’LIMIT’-int]).

ctr_restrictions(
interval_and_sum,
[’SIZE_INTERVAL’>0,
required(’TASKS’,[origin,height]),
’TASKS’ˆorigin>=0,
’TASKS’ˆheight>=0,
’LIMIT’>=0]).

ctr_example(
interval_and_sum,
interval_and_sum(

5,
[[origin-1,height-2],
[origin-10,height-2],
[origin-10,height-3],
[origin-4,height-1]],

5)).

ctr_typical(
interval_and_sum,
[’SIZE_INTERVAL’>1,
size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆheight)>1,
’LIMIT’<sum(’TASKS’ˆheight)]).

ctr_exchangeable(
interval_and_sum,
[items(’TASKS’,all),
translate([’TASKS’ˆorigin]),
vals(

[’TASKS’ˆorigin],
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intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals([’TASKS’ˆheight],int(>=(0)),>,dontcare,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_graph(
interval_and_sum,
[’TASKS’,’TASKS’],
2,
[’PRODUCT’>>collection(tasks1,tasks2)],
[tasks1ˆorigin/’SIZE_INTERVAL’=
tasks2ˆorigin/’SIZE_INTERVAL’],
[],
[],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆheight)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_eval(interval_and_sum,[reformulation(interval_and_sum_r)]).

ctr_contractible(interval_and_sum,[],’TASKS’,any).

ctr_application(interval_and_sum,[2]).

interval_and_sum_r(SIZE_INTERVAL,TASKS,LIMIT) :-
check_type(int_gteq(1),SIZE_INTERVAL),
collection(TASKS,[dvar_gteq(0),dvar_gteq(0)]),
check_type(int_gteq(0),LIMIT),
( TASKS=[] ->

true
; get_attr1(TASKS,ORIS),

get_attr2(TASKS,HEIGHTS),
get_maximum(ORIS,MAX),
MAXK is(MAX+SIZE_INTERVAL-1)//SIZE_INTERVAL,
interval_and_sum1(

0,
MAXK,
SIZE_INTERVAL,
LIMIT,
ORIS,
HEIGHTS)
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).

interval_and_sum1(K,MAXK,_48750,_48751,_48752,_48753) :-
K>MAXK,
!.

interval_and_sum1(K,MAXK,SIZE_INTERVAL,LIMIT,ORIS,HEIGHTS) :-
K=<MAXK,
interval_and_sum2(ORIS,HEIGHTS,K,SIZE_INTERVAL,SUM),
call(SUM#=<LIMIT),
K1 is K+1,
interval_and_sum1(

K1,
MAXK,
SIZE_INTERVAL,
LIMIT,
ORIS,
HEIGHTS).

interval_and_sum2([],[],_48747,_48748,0).

interval_and_sum2([O|R],[H|S],K,SIZE_INTERVAL,H*B+T) :-
SK is K*SIZE_INTERVAL,
TK is SK+SIZE_INTERVAL-1,
B#<=>O#>=SK#/\O#=<TK,
interval_and_sum2(R,S,K,SIZE_INTERVAL,T).
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B.201 inverse

♦ META-DATA:

ctr_date(inverse,[’20000128’,’20030820’,’20040530’,’20060810’]).

ctr_origin(inverse,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(inverse,[assignment,channel,inverse_channeling]).

ctr_arguments(
inverse,
[’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
inverse,
[required(’NODES’,[index,succ,pred]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆpred>=1,
’NODES’ˆpred=<size(’NODES’)]).

ctr_example(
inverse,
inverse(

[[index-1,succ-2,pred-2],
[index-2,succ-1,pred-1],
[index-3,succ-5,pred-4],
[index-4,succ-3,pred-5],
[index-5,succ-4,pred-3]])).

ctr_typical(inverse,[size(’NODES’)>1]).

ctr_exchangeable(
inverse,
[items(’NODES’,all),
attrs_sync(’NODES’,[[index],[succ,pred]])]).

ctr_graph(
inverse,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
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[nodes1ˆsucc=nodes2ˆindex,nodes2ˆpred=nodes1ˆindex],
[’NARC’=size(’NODES’)],
[]).

ctr_eval(inverse,[reformulation(inverse_r)]).

ctr_pure_functional_dependency(inverse,[]).

ctr_functional_dependency(inverse,1-2,[1-1,1-3]).

ctr_functional_dependency(inverse,1-3,[1-1,1-2]).

inverse_r([]) :-
!.

inverse_r(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
get_attr3(NODES,PREDS),
all_different(INDEXES),
all_different(SUCCS),
all_different(PREDS),
inverse1(SUCCS,INDEXES,PREDS,INDEXES).

inverse1([],[],_56704,_56705).

inverse1([S_I|R],[I|S],PREDS,INDEXES) :-
inverse2(PREDS,INDEXES,S_I,I),
inverse1(R,S,PREDS,INDEXES).

inverse2([],[],_56704,_56705).

inverse2([P_J|R],[J|S],S_I,I) :-
S_I#=J#<=>P_J#=I,
inverse2(R,S,S_I,I).



3206 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.202 inverse except loop

♦ META-DATA:

ctr_predefined(inverse_except_loop).

ctr_date(inverse_except_loop,[’20141028’]).

ctr_origin(inverse_except_loop,’Derived from %c’,[inverse]).

ctr_arguments(
inverse_except_loop,
[’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
inverse_except_loop,
[required(’NODES’,[index,succ,pred]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆpred>=1,
’NODES’ˆpred=<size(’NODES’)]).

ctr_example(
inverse_except_loop,
inverse_except_loop(

[[index-1,succ-3,pred-1],
[index-2,succ-4,pred-2],
[index-3,succ-3,pred-1],
[index-4,succ-5,pred-2],
[index-5,succ-5,pred-4]])).

ctr_typical(inverse_except_loop,[size(’NODES’)>1]).

ctr_eval(
inverse_except_loop,
[reformulation(inverse_except_loop_r)]).

ctr_pure_functional_dependency(inverse_except_loop,[]).

ctr_functional_dependency(inverse_except_loop,1-2,[1-1,1-3]).

ctr_functional_dependency(inverse_except_loop,1-3,[1-1,1-2]).

inverse_except_loop_r([]) :-
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!.

inverse_except_loop_r(NODES) :-
length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
get_attr3(NODES,PREDS),
all_different(INDEXES),
create_collection(SUCCS,var,VARS),
create_collection(PREDS,var,VARP),
inverse_except_loop0(1,N,OCCS),
inverse_except_loop0(1,N,OCCP),
eval(global_cardinality(VARS,OCCS)),
eval(global_cardinality(VARP,OCCP)),
inverse_except_loop1(SUCCS,INDEXES,PREDS,INDEXES),
inverse_except_loop3(SUCCS,OCCP),
inverse_except_loop3(PREDS,OCCS).

inverse_except_loop0(I,N,[]) :-
I>N,
!.

inverse_except_loop0(I,N,[[val-I,occ-O]|R]) :-
I=<N,
O in 0..N,
I1 is I+1,
inverse_except_loop0(I1,N,R).

inverse_except_loop1([],[],_25694,_25695) :-
!.

inverse_except_loop1([S_I|R],[I|S],PREDS,INDEXES) :-
inverse_except_loop2(PREDS,INDEXES,S_I,I),
inverse_except_loop1(R,S,PREDS,INDEXES).

inverse_except_loop2([],[],_25694,_25695) :-
!.

inverse_except_loop2([P_J|R],[J|S],S_I,I) :-
S_I#=J#/\I#\=J#<=>P_J#=I#/\J#\=I,
inverse_except_loop2(R,S,S_I,I).

inverse_except_loop3([],[]) :-
!.
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inverse_except_loop3([SP|R],[[val-I,occ-O]|T]) :-
SP#=I#<=>O#=0,
inverse_except_loop3(R,T).
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B.203 inverse offset

♦ META-DATA:

ctr_date(inverse_offset,[’20091404’]).

ctr_origin(inverse_offset,’\\index{Gecode|indexuse}Gecode’,[]).

ctr_synonyms(inverse_offset,[channel]).

ctr_arguments(
inverse_offset,
[’SOFFSET’-int,
’POFFSET’-int,
’NODES’-collection(index-int,succ-dvar,pred-dvar)]).

ctr_restrictions(
inverse_offset,
[required(’NODES’,[index,succ,pred]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1+’SOFFSET’,
’NODES’ˆsucc=<size(’NODES’)+’SOFFSET’,
’NODES’ˆpred>=1+’POFFSET’,
’NODES’ˆpred=<size(’NODES’)+’POFFSET’]).

ctr_example(
inverse_offset,
inverse_offset(

-1,
0,
[[index-1,succ-4,pred-3],
[index-2,succ-2,pred-5],
[index-3,succ-0,pred-2],
[index-4,succ-6,pred-8],
[index-5,succ-1,pred-1],
[index-6,succ-7,pred-7],
[index-7,succ-5,pred-4],
[index-8,succ-3,pred-6]])).

ctr_typical(
inverse_offset,
[’SOFFSET’>= -1,
’SOFFSET’=<1,
’POFFSET’>= -1,
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’POFFSET’=<1,
size(’NODES’)>1]).

ctr_exchangeable(inverse_offset,[items(’NODES’,all)]).

ctr_graph(
inverse_offset,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc-’SOFFSET’=nodes2ˆindex,
nodes2ˆpred-’POFFSET’=nodes1ˆindex],
[’NARC’=size(’NODES’)],
[]).

ctr_pure_functional_dependency(inverse_offset,[]).

ctr_functional_dependency(inverse_offset,3-2,[1,2,3-1,3-3]).

ctr_functional_dependency(inverse_offset,3-3,[1,2,3-1,3-2]).
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B.204 inverse set

♦ META-DATA:

ctr_date(inverse_set,[’20041211’,’20060810’]).

ctr_origin(inverse_set,’Derived from %c.’,[inverse]).

ctr_arguments(
inverse_set,
[’X’-collection(index-int,set-svar),
’Y’-collection(index-int,set-svar)]).

ctr_restrictions(
inverse_set,
[required(’X’,[index,set]),
required(’Y’,[index,set]),
increasing_seq(’X’,index),
increasing_seq(’Y’,index),
’X’ˆindex>=1,
’X’ˆindex=<size(’X’),
’Y’ˆindex>=1,
’Y’ˆindex=<size(’Y’),
’X’ˆset>=1,
’X’ˆset=<size(’Y’),
’Y’ˆset>=1,
’Y’ˆset=<size(’X’)]).

ctr_example(
inverse_set,
inverse_set(

[[index-1,set-{2,4}],
[index-2,set-{4}],
[index-3,set-{1}],
[index-4,set-{4}]],
[[index-1,set-{3}],
[index-2,set-{1}],
[index-3,set-{}],
[index-4,set-{1,2,4}],
[index-5,set-{}]])).

ctr_typical(inverse_set,[size(’X’)>1,size(’Y’)>1]).

ctr_exchangeable(
inverse_set,
[args([[’X’,’Y’]]),items(’X’,all),items(’Y’,all)]).
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ctr_graph(
inverse_set,
[’X’,’Y’],
2,
[’PRODUCT’>>collection(x,y)],
[yˆindex in_set xˆset#<=>xˆindex in_set yˆset],
[’NARC’=size(’X’)*size(’Y’)],
[]).
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B.205 inverse within range
♦ META-DATA:

ctr_date(inverse_within_range,[’20060517’,’20060810’]).

ctr_origin(inverse_within_range,’Derived from %c.’,[inverse]).

ctr_synonyms(
inverse_within_range,
[inverse_in_range,inverse_range]).

ctr_arguments(
inverse_within_range,
[’X’-collection(var-dvar),’Y’-collection(var-dvar)]).

ctr_restrictions(
inverse_within_range,
[required(’X’,var),required(’Y’,var)]).

ctr_example(
inverse_within_range,
inverse_within_range(

[[var-9],[var-4],[var-2]],
[[var-9],[var-3],[var-9],[var-2]])).

ctr_typical(
inverse_within_range,
[size(’X’)>1,
range(’X’ˆvar)>1,
size(’Y’)>1,
range(’Y’ˆvar)>1]).

ctr_exchangeable(inverse_within_range,[args([[’X’,’Y’]])]).

ctr_graph(
inverse_within_range,
[’X’,’Y’],
2,
[’SYMMETRIC_PRODUCT’>>collection(s1,s2)],
[s1ˆvar=s2ˆkey],
[],
[’BIPARTITE’,’NO_LOOP’,’SYMMETRIC’]).
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B.206 ith pos different from 0

♦ META-DATA:

ctr_date(ith_pos_different_from_0,[’20040811’]).

ctr_origin(ith_pos_different_from_0,’N.˜Beldiceanu’,[]).

ctr_arguments(
ith_pos_different_from_0,
[’ITH’-int,’POS’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
ith_pos_different_from_0,
[’ITH’>=1,
’ITH’=<size(’VARIABLES’),
’POS’>=’ITH’,
’POS’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
ith_pos_different_from_0,
ith_pos_different_from_0(

2,
4,
[[var-3],[var-0],[var-0],[var-8],[var-6]])).

ctr_typical(
ith_pos_different_from_0,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
atleast(1,’VARIABLES’,0)]).

ctr_typical_model(
ith_pos_different_from_0,
[atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
ith_pos_different_from_0,
[vals(

[’VARIABLES’ˆvar],
int(=\=(0)),
=\=,
dontcare,
dontcare)]).
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ctr_eval(
ith_pos_different_from_0,
[automaton(ith_pos_different_from_0_a)]).

ctr_extensible(ith_pos_different_from_0,[],’VARIABLES’,suffix).

ith_pos_different_from_0_a(FLAG,ITH,POS,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
integer(ITH),
ITH>=1,
ITH=<N,
check_type(dvar(ITH,N),POS),
ith_pos_different_from_0_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_28275,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s,(C#<ITH->[C+1,D+1];C#>=ITH->[C,D])),
arc(s,1,s,(C#<ITH->[C,D+1];C#>=ITH->[C,D]))],

[C,D],
[0,0],
[C1,D1]),

C1#=ITH#/\D1#=POS#<=>FLAG.

ith_pos_different_from_0_signature([],[]).

ith_pos_different_from_0_signature([[var-V]|VARs],[S|Ss]) :-
V#=0#<=>S,
ith_pos_different_from_0_signature(VARs,Ss).
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B.207 k alldifferent

♦ META-DATA:

ctr_date(k_alldifferent,[’20050618’,’20060811’]).

ctr_origin(
k_alldifferent,
\cite{ElbassioniKatrielKutzMahajan05},
[]).

ctr_synonyms(
k_alldifferent,
[k_alldiff,k_alldistinct,some_different]).

ctr_types(k_alldifferent,[’X’-collection(x-dvar)]).

ctr_arguments(k_alldifferent,[’VARS’-collection(vars-’X’)]).

ctr_restrictions(
k_alldifferent,
[size(’X’)>=1,
required(’X’,x),
required(’VARS’,vars),
size(’VARS’)>=1]).

ctr_example(
k_alldifferent,
k_alldifferent(

[[vars-[[x-5],[x-6],[x-0],[x-9],[x-3]]],
[vars-[[x-5],[x-6],[x-1],[x-2]]]])).

ctr_typical(k_alldifferent,[size(’X’)>1,size(’VARS’)>1]).

ctr_exchangeable(
k_alldifferent,
[items(’VARS’,all),
items(’VARS’ˆvars,all),
vals([’VARS’ˆvarsˆx],int,=\=,all,dontcare)]).

ctr_graph(
k_alldifferent,
[’VARS’ˆvars],
2,
foreach(’VARS’,[’CLIQUE’>>collection(x1,x2)]),
[x1ˆx=x2ˆx],
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[’MAX_NSCC’=<1],
[]).

ctr_eval(
k_alldifferent,
[checker(k_alldifferent_c),
reformulation(k_alldifferent_r)]).

ctr_contractible(k_alldifferent,[],’VARS’,any).

k_alldifferent_c(VARS) :-
length(VARS,N),
N>0,
collection(VARS,[non_empty_col([int])]),
get_col_attr1(VARS,1,VS),
k_alldifferent0(VS).

k_alldifferent0([]).

k_alldifferent0([V|R]) :-
sort(V,S),
length(V,N),
length(S,N),
k_alldifferent0(R).

k_alldifferent_r(VARS) :-
length(VARS,N),
N>0,
collection(VARS,[non_empty_col([dvar])]),
get_col_attr1(VARS,1,VS),
k_alldifferent1(VS).

k_alldifferent1([]).

k_alldifferent1([V|R]) :-
all_different(V),
k_alldifferent1(R).
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B.208 k cut

♦ META-DATA:

ctr_date(k_cut,[’20030820’,’20041230’,’20060811’]).

ctr_origin(k_cut,’E.˜Althaus’,[]).

ctr_arguments(
k_cut,
[’K’-int,’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
k_cut,
[’K’>=1,
’K’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
k_cut,
k_cut(

3,
[[index-1,succ-{}],
[index-2,succ-{3,5}],
[index-3,succ-{5}],
[index-4,succ-{}],
[index-5,succ-{2,3}]])).

ctr_typical(k_cut,[size(’NODES’)>1]).

ctr_exchangeable(
k_cut,
[vals([’K’],int(>=(1)),>,dontcare,dontcare),
items(’NODES’,all)]).

ctr_graph(
k_cut,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆindex=nodes2ˆindex#\/
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nodes2ˆindex in_set nodes1ˆsucc],
[’NCC’>=’K’],
[]).
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B.209 k disjoint

♦ META-DATA:

ctr_date(k_disjoint,[’20050816’,’20060811’]).

ctr_origin(k_disjoint,’Derived from %c’,[disjoint]).

ctr_types(k_disjoint,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(k_disjoint,[’SETS’-collection(set-’VARIABLES’)]).

ctr_restrictions(
k_disjoint,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1]).

ctr_example(
k_disjoint,
k_disjoint(

[[set-[[var-1],[var-9],[var-1],[var-5]]],
[set-
[[var-2],[var-7],[var-7],[var-0],[var-6],[var-8]]],
[set-[[var-4],[var-4],[var-3]]]])).

ctr_typical(k_disjoint,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_disjoint,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals([’VARIABLES’ˆvar],int,=\=,dontcare,in),
vals([’SETS’ˆsetˆvar],int,=\=,all,dontcare)]).

ctr_graph(
k_disjoint,
[’SETS’],
2,
[’CLIQUE’(<)>>collection(set1,set2)],
[disjoint(set1ˆset,set2ˆset)],
[’NARC’=size(’SETS’)*(size(’SETS’)-1)/2],
[]).

ctr_eval(k_disjoint,[reformulation(k_disjoint_r)]).
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ctr_contractible(k_disjoint,[],’SETS’,any).

k_disjoint_r(SETS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
get_attr1(SETS,VARS),
k_disjoint1(VARS).

k_disjoint1([_36141]) :-
!.

k_disjoint1([V1,V2|R]) :-
k_disjoint2([V2|R],V1),
k_disjoint1([V2|R]).

k_disjoint2([],_36138).

k_disjoint2([U|R],V) :-
eval(disjoint(V,U)),
k_disjoint2(R,V).
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B.210 k same

♦ META-DATA:

ctr_date(k_same,[’20050808’,’20060811’]).

ctr_origin(k_same,’\\cite{ElbassioniKatrielKutzMahajan05}’,[]).

ctr_types(k_same,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(k_same,[’SETS’-collection(set-’VARIABLES’)]).

ctr_restrictions(
k_same,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set)]).

ctr_example(
k_same,
k_same(

[[set-
[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]]],
[set-
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]]],
[set-
[[var-5],[var-2],[var-1],[var-1],[var-9],[var-1]]]])).

ctr_typical(k_same,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_same,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],int,=\=,all,dontcare)]).

ctr_graph(
k_same,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same(set1ˆset,set2ˆset)],
[’NARC’=size(’SETS’)-1],
[]).
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ctr_eval(k_same,[reformulation(k_same_r)]).

ctr_contractible(k_same,[],’SETS’,any).

k_same_r(SETS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
get_attr1(SETS,VARS),
k_same1(VARS).

k_same1([_39647]) :-
!.

k_same1([V1,V2|R]) :-
eval(same(V1,V2)),
k_same1([V2|R]).
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B.211 k same interval

♦ META-DATA:

ctr_date(k_same_interval,[’20050810’,’20060811’]).

ctr_origin(
k_same_interval,
Derived from %c and from %c.,
[same_interval,k_same]).

ctr_types(k_same_interval,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(
k_same_interval,
[’SETS’-collection(set-’VARIABLES’),’SIZE_INTERVAL’-int]).

ctr_restrictions(
k_same_interval,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set),
’SIZE_INTERVAL’>0]).

ctr_example(
k_same_interval,
k_same_interval(

[[set-
[[var-1],[var-1],[var-6],[var-0],[var-1],[var-7]]],
[set-
[[var-8],[var-8],[var-0],[var-0],[var-1],[var-2]]],
[set-
[[var-2],[var-1],[var-1],[var-2],[var-6],[var-6]]]],

3)).

ctr_typical(
k_same_interval,
[size(’VARIABLES’)>1,’SIZE_INTERVAL’>1]).

ctr_exchangeable(
k_same_interval,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals(
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[’SETS’ˆsetˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_same_interval,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same_interval(set1ˆset,set2ˆset,’SIZE_INTERVAL’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_same_interval,[reformulation(k_same_interval_r)]).

ctr_contractible(k_same_interval,[],’SETS’,any).

k_same_interval_r(SETS,SIZE_INTERVAL) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(SETS,VARS),
k_same_interval1(VARS,SIZE_INTERVAL).

k_same_interval1([_37967],_37966) :-
!.

k_same_interval1([V1,V2|R],SIZE_INTERVAL) :-
eval(same_interval(V1,V2,SIZE_INTERVAL)),
k_same_interval1([V2|R],SIZE_INTERVAL).
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B.212 k same modulo

♦ META-DATA:

ctr_date(k_same_modulo,[’20050810’,’20060811’]).

ctr_origin(
k_same_modulo,
Derived from %c and from %c.,
[same_modulo,k_same]).

ctr_types(k_same_modulo,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(
k_same_modulo,
[’SETS’-collection(set-’VARIABLES’),’M’-int]).

ctr_restrictions(
k_same_modulo,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set),
’M’>0]).

ctr_example(
k_same_modulo,
k_same_modulo(

[[set-
[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]]],
[set-
[[var-6],[var-4],[var-1],[var-1],[var-5],[var-5]]],
[set-
[[var-1],[var-3],[var-4],[var-2],[var-8],[var-7]]]],

3)).

ctr_typical(k_same_modulo,[size(’VARIABLES’)>1,’M’>1]).

ctr_exchangeable(
k_same_modulo,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
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k_same_modulo,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same_modulo(set1ˆset,set2ˆset,’M’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_same_modulo,[reformulation(k_same_modulo_r)]).

ctr_contractible(k_same_modulo,[],’SETS’,any).

k_same_modulo_r(SETS,M) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(M),
M=\=0,
get_attr1(SETS,VARS),
k_same_modulo1(VARS,M).

k_same_modulo1([_37607],_37606) :-
!.

k_same_modulo1([V1,V2|R],M) :-
eval(same_modulo(V1,V2,M)),
k_same_modulo1([V2|R],M).
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B.213 k same partition

♦ META-DATA:

ctr_date(k_same_partition,[’20050810’,’20060811’]).

ctr_origin(
k_same_partition,
Derived from %c and from %c.,
[same_partition,k_same]).

ctr_types(
k_same_partition,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_arguments(
k_same_partition,
[’SETS’-collection(set-’VARIABLES’),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
k_same_partition,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
required(’SETS’,set),
size(’SETS’)>1,
same_size(’SETS’,set),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
k_same_partition,
k_same_partition(

[[set-
[[var-1],[var-2],[var-6],[var-3],[var-1],[var-2]]],
[set-
[[var-6],[var-6],[var-2],[var-3],[var-1],[var-3]]],
[set-
[[var-2],[var-2],[var-2],[var-1],[var-1],[var-1]]]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).
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ctr_typical(k_same_partition,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_same_partition,
[items(’SETS’,all),
items(’SETS’ˆset,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’SETS’ˆsetˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_same_partition,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[same_partition(set1ˆset,set2ˆset,’PARTITIONS’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_same_partition,[reformulation(k_same_partition_r)]).

ctr_contractible(k_same_partition,[],’SETS’,any).

k_same_partition_r(SETS,PARTITIONS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(SETS,VARS),
k_same_partition1(VARS,PARTITIONS).

k_same_partition1([_38961],_38960) :-
!.

k_same_partition1([V1,V2|R],PARTITIONS) :-
eval(same_partition(V1,V2,PARTITIONS)),
k_same_partition1([V2|R],PARTITIONS).
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B.214 k used by

♦ META-DATA:

ctr_date(k_used_by,[’20050814’,’20060811’]).

ctr_origin(k_used_by,’Derived from %c’,[used_by]).

ctr_types(k_used_by,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(k_used_by,[’SETS’-collection(set-’VARIABLES’)]).

ctr_restrictions(
k_used_by,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set)]).

ctr_example(
k_used_by,
k_used_by(

[[set-
[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]]],
[set-
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]]],
[set-[[var-1],[var-1],[var-2],[var-5]]]])).

ctr_typical(k_used_by,[size(’VARIABLES’)>1]).

ctr_exchangeable(
k_used_by,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],int,=\=,all,dontcare)]).

ctr_graph(
k_used_by,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[used_by(set1ˆset,set2ˆset)],
[’NARC’=size(’SETS’)-1],
[]).
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ctr_eval(k_used_by,[reformulation(k_used_by_r)]).

ctr_contractible(k_used_by,[],’SETS’,any).

k_used_by_r(SETS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
get_attr1(SETS,VARS),
k_used_by1(VARS).

k_used_by1([_39054]) :-
!.

k_used_by1([V1,V2|R]) :-
eval(used_by(V1,V2)),
k_used_by1([V2|R]).
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B.215 k used by interval

♦ META-DATA:

ctr_date(k_used_by_interval,[’20050814’,’20060811’]).

ctr_origin(
k_used_by_interval,
Derived from %c and from %c.,
[used_by_interval,k_used_by]).

ctr_types(
k_used_by_interval,
[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(
k_used_by_interval,
[’SETS’-collection(set-’VARIABLES’),’SIZE_INTERVAL’-int]).

ctr_restrictions(
k_used_by_interval,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set),
’SIZE_INTERVAL’>0]).

ctr_example(
k_used_by_interval,
k_used_by_interval(

[[set-
[[var-1],[var-1],[var-1],[var-8],[var-6],[var-2]]],
[set-[[var-1],[var-0],[var-7],[var-7]]],
[set-[[var-1],[var-2]]]],

3)).

ctr_typical(
k_used_by_interval,
[size(’VARIABLES’)>1,’SIZE_INTERVAL’>0]).

ctr_exchangeable(
k_used_by_interval,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals(
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[’SETS’ˆsetˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_used_by_interval,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[used_by_interval(set1ˆset,set2ˆset,’SIZE_INTERVAL’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(
k_used_by_interval,
[reformulation(k_used_by_interval_r)]).

ctr_contractible(k_used_by_interval,[],’SETS’,any).

k_used_by_interval_r(SETS,SIZE_INTERVAL) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(SETS,VARS),
k_used_by_interval1(VARS,SIZE_INTERVAL).

k_used_by_interval1([_37435],_37434) :-
!.

k_used_by_interval1([V1,V2|R],SIZE_INTERVAL) :-
eval(used_by_interval(V1,V2,SIZE_INTERVAL)),
k_used_by_interval1([V2|R],SIZE_INTERVAL).
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B.216 k used by modulo

♦ META-DATA:

ctr_date(k_used_by_modulo,[’20050814’,’20060811’]).

ctr_origin(
k_used_by_modulo,
Derived from %c and from %c.,
[used_by_modulo,k_used_by]).

ctr_types(k_used_by_modulo,[’VARIABLES’-collection(var-dvar)]).

ctr_arguments(
k_used_by_modulo,
[’SETS’-collection(set-’VARIABLES’),’M’-int]).

ctr_restrictions(
k_used_by_modulo,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set),
’M’>0]).

ctr_example(
k_used_by_modulo,
k_used_by_modulo(

[[set-
[[var-1],[var-9],[var-4],[var-5],[var-2],[var-1]]],
[set-[[var-7],[var-1],[var-2],[var-5]]],
[set-[[var-1],[var-1]]]],

3)).

ctr_typical(k_used_by_modulo,[size(’VARIABLES’)>1,’M’>1]).

ctr_exchangeable(
k_used_by_modulo,
[items(’SETS’,all),
items(’SETS’ˆset,all),
vals([’SETS’ˆsetˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
k_used_by_modulo,
[’SETS’],
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2,
[’PATH’>>collection(set1,set2)],
[used_by_modulo(set1ˆset,set2ˆset,’M’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(k_used_by_modulo,[reformulation(k_used_by_modulo_r)]).

ctr_contractible(k_used_by_modulo,[],’SETS’,any).

k_used_by_modulo_r(SETS,M) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
integer(M),
M=\=0,
get_attr1(SETS,VARS),
k_used_by_modulo1(VARS,M).

k_used_by_modulo1([_37354],_37353) :-
!.

k_used_by_modulo1([V1,V2|R],M) :-
eval(used_by_modulo(V1,V2,M)),
k_used_by_modulo1([V2|R],M).
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B.217 k used by partition

♦ META-DATA:

ctr_date(k_used_by_partition,[’20050814’,’20060811’]).

ctr_origin(
k_used_by_partition,
Derived from %c and from %c.,
[used_by_partition,k_used_by]).

ctr_types(
k_used_by_partition,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_arguments(
k_used_by_partition,
[’SETS’-collection(set-’VARIABLES’),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
k_used_by_partition,
[required(’VARIABLES’,var),
size(’VARIABLES’)>=1,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
required(’SETS’,set),
size(’SETS’)>1,
non_increasing_size(’SETS’,set),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
k_used_by_partition,
k_used_by_partition(

[[set-
[[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]]],
[set-[[var-1],[var-3],[var-6],[var-6]]],
[set-[[var-2],[var-2]]]],

[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(k_used_by_partition,[size(’VARIABLES’)>1]).
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ctr_exchangeable(
k_used_by_partition,
[items(’SETS’,all),
items(’SETS’ˆset,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’SETS’ˆsetˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
k_used_by_partition,
[’SETS’],
2,
[’PATH’>>collection(set1,set2)],
[used_by_partition(set1ˆset,set2ˆset,’PARTITIONS’)],
[’NARC’=size(’SETS’)-1],
[]).

ctr_eval(
k_used_by_partition,
[reformulation(k_used_by_partition_r)]).

ctr_contractible(k_used_by_partition,[],’SETS’,any).

k_used_by_partition_r(SETS,PARTITIONS) :-
length(SETS,N),
N>1,
collection(SETS,[non_empty_col([dvar])]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(PARTITIONS,P),
P>1,
get_attr1(SETS,VARS),
k_used_by_partition1(VARS,PARTITIONS).

k_used_by_partition1([_38220],_38219) :-
!.

k_used_by_partition1([V1,V2|R],PARTITIONS) :-
eval(used_by_partition(V1,V2,PARTITIONS)),
k_used_by_partition1([V2|R],PARTITIONS).



3238 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.218 length first sequence

♦ META-DATA:

ctr_date(length_first_sequence,[’20081123’]).

ctr_origin(
length_first_sequence,
Inspired by %c,
[stretch_path]).

ctr_synonyms(length_first_sequence,[length_first_stretch]).

ctr_arguments(
length_first_sequence,
[’LEN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
length_first_sequence,
[’LEN’>=0,
’LEN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
length_first_sequence,
[length_first_sequence(

3,
[[var-4],[var-4],[var-4],[var-5],[var-5],[var-4]]),

length_first_sequence(
6,
[[var-4],[var-4],[var-4],[var-4],[var-4],[var-4]]),

length_first_sequence(
5,
[[var-4],[var-4],[var-4],[var-4],[var-4],[var-1]])]).

ctr_typical(
length_first_sequence,
[’LEN’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_typical_model(
length_first_sequence,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
length_first_sequence,
[vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).
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ctr_eval(
length_first_sequence,
[checker(length_first_sequence_c),
reformulation(length_first_sequence_r),
automaton(length_first_sequence_a)]).

ctr_pure_functional_dependency(length_first_sequence,[]).

ctr_functional_dependency(length_first_sequence,1,[2]).

ctr_sol(length_first_sequence,2,0,2,9,[1-6,2-3]).

ctr_sol(length_first_sequence,3,0,3,64,[1-48,2-12,3-4]).

ctr_sol(length_first_sequence,4,0,4,625,[1-500,2-100,3-20,4-5]).

ctr_sol(
length_first_sequence,
5,
0,
5,
7776,
[1-6480,2-1080,3-180,4-30,5-6]).

ctr_sol(
length_first_sequence,
6,
0,
6,
117649,
[1-100842,2-14406,3-2058,4-294,5-42,6-7]).

ctr_sol(
length_first_sequence,
7,
0,
7,
2097152,
[1-1835008,2-229376,3-28672,4-3584,5-448,6-56,7-8]).

ctr_sol(
length_first_sequence,
8,
0,
8,
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43046721,
[1-38263752,
2-4251528,
3-472392,
4-52488,
5-5832,
6-648,
7-72,
8-9]).

length_first_sequence_c(LEN,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
get_attr1(VARIABLES,VARS),
length_first_sequence_c(N,LEN,VARS).

length_first_sequence_c(0,0,_49510) :-
!.

length_first_sequence_c(1,1,_49510) :-
!.

length_first_sequence_c(_49508,LEN,VARS) :-
length_first_eq_sequence(VARS,1,LEN).

length_first_sequence_r(LEN,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
get_attr1(VARIABLES,VARS),
( N=0 ->

LEN#=0
; N=1 ->

LEN#=1
; reverse(VARS,RVARS),

length_first_sequence1(RVARS,_49584,TERM),
call(LEN#=TERM)

).

length_first_sequence1([_49511],1,1) :-
!.

length_first_sequence1([VAR1,VAR2|R],AND1,AND1+S) :-
length_first_sequence1([VAR2|R],AND2,S),
B12#<=>VAR1#=VAR2,
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AND1#<=>AND2#/\B12.

length_first_sequence_a(1,0,[]) :-
!.

length_first_sequence_a(0,0,[]) :-
!,
fail.

length_first_sequence_a(1,1,[_49511]) :-
!.

length_first_sequence_a(0,1,[_49511]) :-
!,
fail.

length_first_sequence_a(FLAG,LEN,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
length_first_sequence_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_50841,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,t),
arc(s,1,s,[C+1]),
arc(t,0,t),
arc(t,1,t)],

[C],
[1],
[COUNT]),

COUNT#=LEN#<=>FLAG.

length_first_sequence_signature([],[]).

length_first_sequence_signature([_49510],[]) :-
!.

length_first_sequence_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#=VAR2#<=>S,
length_first_sequence_signature([[var-VAR2]|VARs],Ss).
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B.219 length last sequence

♦ META-DATA:

ctr_date(length_last_sequence,[’20081123’]).

ctr_origin(
length_last_sequence,
Inspired by %c,
[stretch_path]).

ctr_synonyms(length_last_sequence,[length_last_stretch]).

ctr_arguments(
length_last_sequence,
[’LEN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
length_last_sequence,
[’LEN’>=0,
’LEN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
length_last_sequence,
[length_last_sequence(

1,
[[var-4],[var-4],[var-4],[var-5],[var-5],[var-4]]),

length_last_sequence(
6,
[[var-4],[var-4],[var-4],[var-4],[var-4],[var-4]]),

length_last_sequence(
5,
[[var-2],[var-4],[var-4],[var-4],[var-4],[var-4]])]).

ctr_typical(
length_last_sequence,
[’LEN’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_typical_model(
length_last_sequence,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
length_last_sequence,
[vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).



3244 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_eval(
length_last_sequence,
[checker(length_last_sequence_c),
reformulation(length_last_sequence_r),
automaton(length_last_sequence_a)]).

ctr_pure_functional_dependency(length_last_sequence,[]).

ctr_functional_dependency(length_last_sequence,1,[2]).

ctr_sol(length_last_sequence,2,0,2,9,[1-6,2-3]).

ctr_sol(length_last_sequence,3,0,3,64,[1-48,2-12,3-4]).

ctr_sol(length_last_sequence,4,0,4,625,[1-500,2-100,3-20,4-5]).

ctr_sol(
length_last_sequence,
5,
0,
5,
7776,
[1-6480,2-1080,3-180,4-30,5-6]).

ctr_sol(
length_last_sequence,
6,
0,
6,
117649,
[1-100842,2-14406,3-2058,4-294,5-42,6-7]).

ctr_sol(
length_last_sequence,
7,
0,
7,
2097152,
[1-1835008,2-229376,3-28672,4-3584,5-448,6-56,7-8]).

ctr_sol(
length_last_sequence,
8,
0,
8,



3245

43046721,
[1-38263752,
2-4251528,
3-472392,
4-52488,
5-5832,
6-648,
7-72,
8-9]).

length_last_sequence_c(LEN,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
get_attr1(VARIABLES,VARS),
length_last_sequence_c(N,LEN,VARS).

length_last_sequence_c(0,0,_49510) :-
!.

length_last_sequence_c(1,1,_49510) :-
!.

length_last_sequence_c(_49508,LEN,VARS) :-
reverse(VARS,RVARS),
length_first_eq_sequence(RVARS,1,LEN).

length_last_sequence_r(LEN,VARIABLES) :-
check_type(dvar,LEN),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
( N=0 ->

LEN#=0
; N=1 ->

LEN#=1
; length_last_sequence1(VARS,_49573,TERM),

call(LEN#=TERM)
).

length_last_sequence1([_49511],1,1) :-
!.

length_last_sequence1([VAR1,VAR2|R],AND1,AND1+S) :-
length_last_sequence1([VAR2|R],AND2,S),
B12#<=>VAR1#=VAR2,
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AND1#<=>AND2#/\B12.

length_last_sequence_a(1,0,[]) :-
!.

length_last_sequence_a(0,0,[]) :-
!,
fail.

length_last_sequence_a(1,1,[_49511]) :-
!.

length_last_sequence_a(0,1,[_49511]) :-
!,
fail.

length_last_sequence_a(FLAG,LEN,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),LEN),
length_last_sequence_signature(VARIABLES,SIGNATURE),
automaton(

SIGNATURE,
_50805,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s,[1]),arc(s,1,s,[C+1])],
[C],
[1],
[COUNT]),

COUNT#=LEN#<=>FLAG.

length_last_sequence_signature([],[]).

length_last_sequence_signature([_49510],[]) :-
!.

length_last_sequence_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#=VAR2#<=>S,
length_last_sequence_signature([[var-VAR2]|VARs],Ss).



3247

B.220 leq
♦ META-DATA:

ctr_predefined(leq).

ctr_date(leq,[’20070821’]).

ctr_origin(leq,’Arithmetic.’,[]).

ctr_synonyms(leq,[rel,xlteqy]).

ctr_arguments(leq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(leq,leq(1,8)).

ctr_exchangeable(
leq,
[vals([’VAR1’],int(=<(’VAR2’)),=\=,all,dontcare),
vals([’VAR2’],int(>=(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(leq,[builtin(leq_b)]).

leq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#=<VAR2.



3248 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.221 leq cst
♦ META-DATA:

ctr_predefined(leq_cst).

ctr_date(leq_cst,[’20090912’]).

ctr_origin(leq_cst,’Arithmetic.’,[]).

ctr_arguments(leq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST2’-int]).

ctr_example(leq_cst,leq_cst(5,2,4)).

ctr_typical(leq_cst,[’CST2’=\=0,’VAR1’<’VAR2’+’CST2’]).

ctr_exchangeable(
leq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),
vals([’VAR1’],int(=<(’VAR2’+’CST2’)),=\=,all,dontcare),
vals([’VAR2’],int(>=(’VAR1’-’CST2’)),=\=,all,dontcare),
vals([’CST2’],int(>=(’VAR1’-’VAR2’)),=\=,all,dontcare)]).

ctr_eval(leq_cst,[builtin(leq_cst_b)]).

leq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#=<VAR2+CST2.
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B.222 lex2

♦ META-DATA:

ctr_predefined(lex2).

ctr_date(lex2,[’20031008’,’20040530’,’20060811’]).

ctr_origin(
lex2,
\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02},
[]).

ctr_synonyms(lex2,[double_lex,row_and_column_lex]).

ctr_types(lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(lex2,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex2,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
lex2,
lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).

ctr_typical(lex2,[size(’VECTOR’)>1,size(’MATRIX’)>1]).

ctr_exchangeable(lex2,[translate([’MATRIX’ˆvecˆvar])]).

ctr_eval(lex2,[checker(lex2_c),reformulation(lex2_r)]).

lex2_c(MATRIX) :-
collection(MATRIX,[col([int])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
lex_chain_lesseq_c1(MAT),
transpose(MAT,TMAT),
lex_chain_lesseq_c1(TMAT).
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lex2_r(MATRIX) :-
collection(MATRIX,[col([dvar])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
lex_chain(MAT,[op(#=<)]),
transpose(MAT,TMAT),
lex_chain(TMAT,[op(#=<)]).
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B.223 lex alldifferent

♦ META-DATA:

ctr_date(
lex_alldifferent,
[’20030820’,’20040530’,’20051008’,’20060811’,’20111102’]).

ctr_origin(lex_alldifferent,’J.˜Pearson’,[]).

ctr_synonyms(
lex_alldifferent,
[lex_alldiff,
lex_alldistinct,
alldiff_on_tuples,
alldifferent_on_tuples,
alldistinct_on_tuples]).

ctr_types(lex_alldifferent,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_alldifferent,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_alldifferent,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_alldifferent,
lex_alldifferent(

[[vec-[[var-5],[var-2],[var-3]]],
[vec-[[var-5],[var-2],[var-6]]],
[vec-[[var-5],[var-3],[var-3]]]])).

ctr_typical(
lex_alldifferent,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_exchangeable(
lex_alldifferent,
[items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
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vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
lex_alldifferent,
[’VECTORS’],
2,
[’CLIQUE’(<)>>collection(vectors1,vectors2)],
[lex_different(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)*(size(’VECTORS’)-1)/2],
[]).

ctr_eval(
lex_alldifferent,
[checker(lex_alldifferent_c),
reformulation(lex_alldifferent_r),
density(lex_alldifferent_d)]).

ctr_contractible(lex_alldifferent,[],’VECTORS’,any).

ctr_extensible(lex_alldifferent,[],’VECTORS’ˆvec,any).

lex_alldifferent_c([]) :-
!.

lex_alldifferent_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
length(VECTORS,L),
sort(VECTORS,SVECTORS),
length(SVECTORS,L).

lex_alldifferent_r([]) :-
!.

lex_alldifferent_r(VECTORS) :-
collection(VECTORS,[col([dvar])]),
lex_alldifferent1(VECTORS).

lex_alldifferent1([]).

lex_alldifferent1([[_46050-VECTOR]|R]) :-
lex_alldifferent2(R,VECTOR),
lex_alldifferent1(R).

lex_alldifferent2([],_46042).
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lex_alldifferent2([[_46051-VECTORi]|R],VECTOR) :-
eval(lex_different(VECTOR,VECTORi)),
lex_alldifferent2(R,VECTOR).

lex_alldifferent_d(Density,VECTORS) :-
lex_alldifferent_density(Density,VECTORS).
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B.224 lex alldifferent except 0

♦ META-DATA:

ctr_predefined(lex_alldifferent_except_0).

ctr_date(lex_alldifferent_except_0,[’20120515’]).

ctr_origin(lex_alldifferent_except_0,’H.˜Simonis’,[]).

ctr_synonyms(
lex_alldifferent_except_0,
[lex_alldiff_except_0,
lex_alldistinct_except_0,
alldiff_on_tuples_except_0,
alldifferent_on_tuples_except_0,
alldistinct_on_tuples_except_0]).

ctr_types(
lex_alldifferent_except_0,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_alldifferent_except_0,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_alldifferent_except_0,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_alldifferent_except_0,
lex_alldifferent_except_0(

[[vec-[[var-0],[var-0],[var-0]]],
[vec-[[var-5],[var-2],[var-0]]],
[vec-[[var-5],[var-8],[var-0]]],
[vec-[[var-0],[var-0],[var-0]]]])).

ctr_typical(
lex_alldifferent_except_0,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_eval(
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lex_alldifferent_except_0,
[reformulation(lex_alldifferent_except_0_r),
checker(lex_alldifferent_except_0_c),
density(lex_alldifferent_except_0_d)]).

ctr_contractible(lex_alldifferent_except_0,[],’VECTORS’,any).

lex_alldifferent_except_0_c([]) :-
!.

lex_alldifferent_except_0_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
length(VECTORS,L),
count_zero_vectors(VECTORS,0,Z),
sort(VECTORS,SVECTORS),
length(SVECTORS,S),
( Z=0 ->

S1=S
; S1 is S-1
),
L=:=S1+Z.

lex_alldifferent_except_0_d(Density,VECTORS) :-
remove_zeros(VECTORS,VECTORS1),
count_zero_vectors(VECTORS1,0,Z),
length(VECTORS1,L),
VECTORS1=[[vec-V]|_26782],
length(V,M),
Density1 is Z/(L*M),
lex_alldifferent_density(Density2,VECTORS1),
Density is min(Density1,Density2).

count_zero_vectors([],Z,Z) :-
!.

count_zero_vectors([[vec-V]|R],Cur,Z) :-
V=[[var-_26774]|_26769],
( zero_vector(V) ->

Next is Cur+1
; Next is Cur
),
count_zero_vectors(R,Next,Z).

remove_zeros([],[]) :-
!.
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remove_zeros([[vec-V]|R],S) :-
zero_vector(V),
!,
remove_zeros(R,S).

remove_zeros([VEC|R],[VEC|S]) :-
remove_zeros(R,S).

lex_alldifferent_except_0_r([]) :-
!.

lex_alldifferent_except_0_r(VECTORS) :-
collection(VECTORS,[col([dvar])]),
lex_alldifferent_except_01(VECTORS).

lex_alldifferent_except_01([]) :-
!.

lex_alldifferent_except_01([[_26750-VECTOR]|R]) :-
VECTOR=[[var-_26768]|_26763],
lex_different_except_zero(VECTOR,ZERO),
lex_alldifferent_except_02(R,VECTOR,ZERO),
lex_alldifferent_except_01(R).

lex_alldifferent_except_02([],_26745,_26746) :-
!.

lex_alldifferent_except_02([[_26752-VECTORi]|R],VECTOR,ZERO) :-
lex_different_except_03(VECTOR,VECTORi,DIFF),
call(ZERO#\/DIFF),
lex_alldifferent_except_02(R,VECTOR,ZERO).

lex_different_except_03([],[],0) :-
!.

lex_different_except_03([[var-U]|R],[[var-V]|S],U#\=V#\/T) :-
lex_different_except_03(R,S,T).

lex_different_except_zero([],1) :-
!.

lex_different_except_zero([[var-V]|R],V#=0#/\S) :-
lex_different_except_zero(R,S).
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B.225 lex between

♦ META-DATA:

ctr_date(lex_between,[’20030820’,’20040530’,’20060811’]).

ctr_origin(lex_between,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_synonyms(lex_between,[between]).

ctr_arguments(
lex_between,
[’LOWER_BOUND’-collection(var-int),
’VECTOR’-collection(var-dvar),
’UPPER_BOUND’-collection(var-int)]).

ctr_restrictions(
lex_between,
[required(’LOWER_BOUND’,var),
required(’VECTOR’,var),
required(’UPPER_BOUND’,var),
size(’LOWER_BOUND’)=size(’VECTOR’),
size(’UPPER_BOUND’)=size(’VECTOR’),
lex_lesseq(’LOWER_BOUND’,’VECTOR’),
lex_lesseq(’VECTOR’,’UPPER_BOUND’)]).

ctr_example(
lex_between,
lex_between(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]],
[[var-5],[var-2],[var-6],[var-3]])).

ctr_typical(
lex_between,
[size(’LOWER_BOUND’)>1,
lex_lesseq(’LOWER_BOUND’,’UPPER_BOUND’)]).

ctr_exchangeable(
lex_between,
[vals([’LOWER_BOUND’ˆvar],int,>,dontcare,dontcare),
vals([’UPPER_BOUND’ˆvar],int,<,dontcare,dontcare)]).

ctr_eval(
lex_between,
[reformulation(lex_between_r),automaton(lex_between_a)]).
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ctr_contractible(
lex_between,
[],
[’LOWER_BOUND’,’VECTOR’,’UPPER_BOUND’],
suffix).

lex_between_r(LOWER_BOUND,VECTOR,UPPER_BOUND) :-
collection(LOWER_BOUND,[int]),
collection(VECTOR,[dvar]),
collection(UPPER_BOUND,[int]),
length(LOWER_BOUND,LB),
length(VECTOR,LV),
length(UPPER_BOUND,LU),
LB=LV,
LU=LV,
eval(lex_lesseq(LOWER_BOUND,VECTOR)),
eval(lex_lesseq(VECTOR,UPPER_BOUND)).

lex_between_a(FLAG,LOWER_BOUND,VECTOR,UPPER_BOUND) :-
collection(LOWER_BOUND,[int]),
collection(VECTOR,[dvar]),
collection(UPPER_BOUND,[int]),
length(LOWER_BOUND,LB),
length(VECTOR,LV),
length(UPPER_BOUND,LU),
LB=LV,
LU=LV,
lex_between_signature(

LOWER_BOUND,
VECTOR,
UPPER_BOUND,
SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_38035,
SIGNATURE,
[source(s),sink(a),sink(b),sink(s),sink(t)],
[arc(s,4,s),
arc(s,0,t),
arc(s,3,a),
arc(s,1,b),
arc(a,3,a),
arc(a,4,a),
arc(a,5,a),
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arc(a,0,t),
arc(a,1,t),
arc(a,2,t),
arc(b,1,b),
arc(b,4,b),
arc(b,7,b),
arc(b,0,t),
arc(b,3,t),
arc(b,6,t),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t),
arc(t,6,t),
arc(t,7,t),
arc(t,8,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5,6,7,8],AUTOMATON).

lex_between_signature([],[],[],[]).

lex_between_signature(
[[var-A1]|As],
[[var-X1]|Xs],
[[var-B1]|Bs],
[L1|Ls]) :-

Adown is A1-1,
Aup is A1+1,
Bdown is B1-1,
Bup is B1+1,
( A1+1<B1 ->

case(
X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Adown)-6,
(A1..A1)-3,
(Aup..Bdown)-0,
(B1..B1)-1,
(Bup..sup)-2]),
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node(0,L,[0..0]),
node(1,L,[1..1]),
node(2,L,[2..2]),
node(3,L,[3..3]),
node(6,L,[6..6])])

; A1<B1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Adown)-6,
(A1..A1)-3,
(B1..B1)-1,
(Bup..sup)-2]),

node(1,L,[1..1]),
node(2,L,[2..2]),
node(3,L,[3..3]),
node(6,L,[6..6])])

; A1=:=B1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Adown)-6,
(A1..A1)-4,
(Aup..sup)-2]),

node(2,L,[2..2]),
node(4,L,[4..4]),
node(6,L,[6..6])])

; A1=:=B1+1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Bdown)-6,
(B1..B1)-7,
(A1..A1)-5,
(Aup..sup)-2]),

node(2,L,[2..2]),
node(5,L,[5..5]),
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node(6,L,[6..6]),
node(7,L,[7..7])])

; A1>B1 ->
case(

X-L,
[X1-L1],
[node(

-1,
X,
[(inf..Bdown)-6,
(B1..B1)-7,
(Bup..Adown)-8,
(A1..A1)-5,
(Aup..sup)-2]),

node(2,L,[2..2]),
node(5,L,[5..5]),
node(6,L,[6..6]),
node(7,L,[7..7]),
node(8,L,[8..8])])

),
lex_between_signature(As,Xs,Bs,Ls).
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B.226 lex chain greater

♦ META-DATA:

ctr_date(lex_chain_greater,[’20130730’]).

ctr_origin(
lex_chain_greater,
Derived from %c,
[lex_chain_less]).

ctr_usual_name(lex_chain_greater,lex_chain).

ctr_types(lex_chain_greater,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_greater,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_greater,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_chain_greater,
lex_chain_greater(

[[vec-[[var-5],[var-2],[var-6],[var-3]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-3],[var-9]]]])).

ctr_typical(
lex_chain_greater,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_graph(
lex_chain_greater,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_greater(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).
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ctr_eval(
lex_chain_greater,
[checker(lex_chain_greater_c),
builtin(lex_chain_greater_b)]).

ctr_contractible(lex_chain_greater,[],’VECTORS’,any).

ctr_extensible(lex_chain_greater,[],’VECTORS’ˆvec,suffix).

lex_chain_greater_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
reverse(VECTS,RVECTS),
lex_chain_less_c1(RVECTS).

lex_chain_greater_b(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
reverse(VECTS,RVECTS),
lex_chain(RVECTS,[op(#<)]).
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B.227 lex chain greatereq

♦ META-DATA:

ctr_date(lex_chain_greatereq,[’20130730’]).

ctr_origin(
lex_chain_greatereq,
Derived from %c,
[lex_chain_lesseq]).

ctr_usual_name(lex_chain_greatereq,lex_chain).

ctr_types(lex_chain_greatereq,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_greatereq,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_greatereq,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_chain_greatereq,
lex_chain_greatereq(

[[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-3],[var-9]]]])).

ctr_typical(
lex_chain_greatereq,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_graph(
lex_chain_greatereq,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).
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ctr_eval(
lex_chain_greatereq,
[checker(lex_chain_greatereq_c),
builtin(lex_chain_greatereq_b)]).

ctr_contractible(lex_chain_greatereq,[],’VECTORS’,any).

ctr_contractible(lex_chain_greatereq,[],’VECTORS’ˆvec,suffix).

lex_chain_greatereq_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
reverse(VECTS,RVECTS),
lex_chain_lesseq_c1(RVECTS).

lex_chain_greatereq_b(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
reverse(VECTS,RVECTS),
lex_chain(RVECTS,[op(#=<)]).
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B.228 lex chain less

♦ META-DATA:

ctr_date(
lex_chain_less,
[’20030820’,’20040530’,’20060811’,’20090116’]).

ctr_origin(lex_chain_less,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_usual_name(lex_chain_less,lex_chain).

ctr_types(lex_chain_less,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_less,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_less,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_chain_less,
lex_chain_less(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-3]]]])).

ctr_typical(
lex_chain_less,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_graph(
lex_chain_less,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_eval(
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lex_chain_less,
[checker(lex_chain_less_c),builtin(lex_chain_less_b)]).

ctr_contractible(lex_chain_less,[],’VECTORS’,any).

ctr_extensible(lex_chain_less,[],’VECTORS’ˆvec,suffix).

lex_chain_less_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
lex_chain_less_c1(VECTS).

lex_chain_less_b(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
lex_chain(VECTS,[op(#<)]).
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B.229 lex chain lesseq

♦ META-DATA:

ctr_date(
lex_chain_lesseq,
[’20030820’,’20040530’,’20060811’,’20090116’]).

ctr_origin(lex_chain_lesseq,’\\cite{BeldiceanuCarlsson02c}’,[]).

ctr_usual_name(lex_chain_lesseq,lex_chain).

ctr_types(lex_chain_lesseq,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
lex_chain_lesseq,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
lex_chain_lesseq,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
lex_chain_lesseq,
lex_chain_lesseq(

[[vec-[[var-5],[var-2],[var-3],[var-9]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]],
[vec-[[var-5],[var-2],[var-6],[var-2]]]])).

ctr_typical(
lex_chain_lesseq,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_graph(
lex_chain_lesseq,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_eval(
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lex_chain_lesseq,
[checker(lex_chain_lesseq_c),builtin(lex_chain_lesseq_b)]).

ctr_contractible(lex_chain_lesseq,[],’VECTORS’,any).

ctr_contractible(lex_chain_lesseq,[],’VECTORS’ˆvec,suffix).

lex_chain_lesseq_c(VECTORS) :-
collection(VECTORS,[col([int])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
lex_chain_lesseq_c1(VECTS).

lex_chain_lesseq_b(VECTORS) :-
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
get_attr11(VECTORS,VECTS),
lex_chain(VECTS,[op(#=<)]).
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B.230 lex different

♦ META-DATA:

ctr_date(lex_different,[’20030820’,’20040530’]).

ctr_origin(
lex_different,
Used for defining %c.,
[lex_alldifferent]).

ctr_synonyms(lex_different,[different,diff]).

ctr_arguments(
lex_different,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_different,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)>0,
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_different,
lex_different(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-3],[var-7],[var-1]])).

ctr_typical(
lex_different,
[size(’VECTOR1’)>1,
range(’VECTOR1’ˆvar)>1,
range(’VECTOR2’ˆvar)>1]).

ctr_exchangeable(
lex_different,
[args([[’VECTOR1’,’VECTOR2’]]),
items_sync(’VECTOR1’,’VECTOR2’,all)]).

ctr_graph(
lex_different,
[’VECTOR1’,’VECTOR2’],
2,
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[’PRODUCT’(=)>>collection(vector1,vector2)],
[vector1ˆvar=\=vector2ˆvar],
[’NARC’>=1],
[]).

ctr_eval(
lex_different,
[reformulation(lex_different_r),
automaton(lex_different_a)]).

ctr_extensible(lex_different,[],[’VECTOR1’,’VECTOR2’],any).

lex_different_r(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
L1>0,
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_different1(VECT1,VECT2,Term),
call(Term).

lex_different1([],[],0).

lex_different1([V1|R1],[V2|R2],V1#\=V2#\/T) :-
lex_different1(R1,R2,T).

lex_different_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
L1>0,
length(VECTOR2,L2),
L1=L2,
lex_different_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_45691,
SIGNATURE,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t),arc(t,0,t),arc(t,1,t)],
[],
[],
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[]),
automaton_bool(FLAG,[0,1],AUTOMATON).

lex_different_signature([],[],[]).

lex_different_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
VAR1#=VAR2#<=>S,
lex_different_signature(Xs,Ys,Ss).
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B.231 lex equal

♦ META-DATA:

ctr_date(lex_equal,[’20081220’]).

ctr_origin(
lex_equal,
Initially introduced for defining %c,
[nvector]).

ctr_synonyms(lex_equal,[equal,eq]).

ctr_arguments(
lex_equal,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_equal,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_equal,
lex_equal(

[[var-1],[var-9],[var-1],[var-5]],
[[var-1],[var-9],[var-1],[var-5]])).

ctr_typical(
lex_equal,
[size(’VECTOR1’)>1,
range(’VECTOR1’ˆvar)>1,
range(’VECTOR2’ˆvar)>1]).

ctr_exchangeable(
lex_equal,
[args([[’VECTOR1’,’VECTOR2’]]),
items_sync(’VECTOR1’,’VECTOR2’,all)]).

ctr_graph(
lex_equal,
[’VECTOR1’,’VECTOR2’],
2,
[’PRODUCT’(=)>>collection(vector1,vector2)],
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[vector1ˆvar=vector2ˆvar],
[’NARC’=size(’VECTOR1’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
lex_equal,
[reformulation(lex_equal_r),automaton(lex_equal_a)]).

ctr_contractible(lex_equal,[],[’VECTOR1’,’VECTOR2’],any).

lex_equal_r(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_equal1(VECT1,VECT2).

lex_equal1([],[]).

lex_equal1([V1|R1],[V2|R2]) :-
V1#=V2,
lex_equal1(R1,R2).

lex_equal_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L1),
length(VECTOR2,L2),
L1=L2,
lex_equal_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_50141,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

lex_equal_signature([],[],[]).
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lex_equal_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
S in 0..1,
VAR1#=VAR2#<=>S,
lex_equal_signature(Xs,Ys,Ss).
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B.232 lex greater

♦ META-DATA:

ctr_date(lex_greater,[’20030820’,’20040530’,’20060811’]).

ctr_origin(lex_greater,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(lex_greater,[lex,lex_chain,rel,greater,gt]).

ctr_arguments(
lex_greater,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greater,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_greater,
lex_greater(

[[var-5],[var-2],[var-7],[var-1]],
[[var-5],[var-2],[var-6],[var-2]])).

ctr_typical(
lex_greater,
[size(’VECTOR1’)>1,
size(’VECTOR1’)<5#\/
nval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])<2*size(’VECTOR1’),
maxval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])=<1#\/
2*size(’VECTOR1’)-
max_nvalue([’VECTOR1’ˆvar,’VECTOR2’ˆvar])>
2]).

ctr_exchangeable(
lex_greater,
[vals([’VECTOR1’ˆvar],int,<,dontcare,dontcare),
vals([’VECTOR2’ˆvar],int,>,dontcare,dontcare)]).

ctr_derived_collections(
lex_greater,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
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col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),
[item(

index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greater,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/
item2ˆindex=0#/\item1ˆx>item1ˆy],
[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_greater,
[checker(lex_greater_c),
builtin(lex_greater_b),
automaton(lex_greater_a)]).

ctr_extensible(lex_greater,[],[’VECTOR1’,’VECTOR2’],suffix).

lex_greater_c(VECTOR1,VECTOR2) :-
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_greater_c1(VECT1,VECT2).

lex_greater_c1([V|R],[V|S]) :-
!,
lex_greater_c1(R,S).

lex_greater_c1([V1|_59724],[V2|_59728]) :-
V1>V2.

lex_greater_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
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get_attr1(VECTOR2,VECT2),
lex_chain([VECT2,VECT1],[op(#<)]).

lex_greater_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
lex_greater_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_61480,
SIGNATURE,
[source(s),sink(t)],
[arc(s,2,s),
arc(s,3,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_greater_signature([],[],[]).

lex_greater_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_greater_signature(Xs,Ys,Ss).
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B.233 lex greatereq

♦ META-DATA:

ctr_date(lex_greatereq,[’20030820’,’20040530’,’20060811’]).

ctr_origin(lex_greatereq,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(
lex_greatereq,
[lexeq,lex_chain,rel,greatereq,geq,lex_geq]).

ctr_arguments(
lex_greatereq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_greatereq,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_greatereq,
[lex_greatereq(

[[var-5],[var-2],[var-8],[var-9]],
[[var-5],[var-2],[var-6],[var-2]]),

lex_greatereq(
[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

ctr_typical(
lex_greatereq,
[size(’VECTOR1’)>1,
size(’VECTOR1’)<5#\/
nval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])<2*size(’VECTOR1’),
maxval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])=<1#\/
2*size(’VECTOR1’)-
max_nvalue([’VECTOR1’ˆvar,’VECTOR2’ˆvar])>
2]).

ctr_exchangeable(
lex_greatereq,
[vals([’VECTOR1’ˆvar],int,<,dontcare,dontcare),
vals([’VECTOR2’ˆvar],int,>,dontcare,dontcare)]).
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ctr_derived_collections(
lex_greatereq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_greatereq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/
item1ˆindex<size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx>item1ˆy#\/
item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx>=item1ˆy],
[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_greatereq,
[checker(lex_greatereq_c),
builtin(lex_greatereq_b),
automaton(lex_greatereq_a)]).

ctr_contractible(lex_greatereq,[],[’VECTOR1’,’VECTOR2’],suffix).

lex_greatereq_c(VECTOR1,VECTOR2) :-
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_greatereq_c1(VECT1,VECT2).

lex_greatereq_c1([],[]) :-
!.

lex_greatereq_c1([V|R],[V|S]) :-
!,



3281

lex_greatereq_c1(R,S).

lex_greatereq_c1([V1|_62328],[V2|_62332]) :-
V1>V2.

lex_greatereq_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT2,VECT1],[op(#=<)]).

lex_greatereq_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
lex_greatereq_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_64100,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,2,s),
arc(s,3,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_greatereq_signature([],[],[]).

lex_greatereq_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_greatereq_signature(Xs,Ys,Ss).
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B.234 lex less

♦ META-DATA:

ctr_date(lex_less,[’20030820’,’20040530’,’20060811’]).

ctr_origin(lex_less,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(lex_less,[lex,lex_chain,rel,less]).

ctr_arguments(
lex_less,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_less,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_less,
lex_less(

[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-6],[var-2]])).

ctr_typical(
lex_less,
[size(’VECTOR1’)>1,
size(’VECTOR1’)<5#\/
nval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])<2*size(’VECTOR1’),
maxval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])=<1#\/
2*size(’VECTOR1’)-
max_nvalue([’VECTOR1’ˆvar,’VECTOR2’ˆvar])>
2]).

ctr_exchangeable(
lex_less,
[vals([’VECTOR1’ˆvar],int,>,dontcare,dontcare),
vals([’VECTOR2’ˆvar],int,<,dontcare,dontcare)]).

ctr_derived_collections(
lex_less,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
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col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),
[item(

index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_less,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/
item2ˆindex=0#/\item1ˆx<item1ˆy],
[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_less,
[checker(lex_less_c),
builtin(lex_less_b),
automaton(lex_less_a)]).

ctr_extensible(lex_less,[],[’VECTOR1’,’VECTOR2’],suffix).

lex_less_c(VECTOR1,VECTOR2) :-
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_less_c1(VECT1,VECT2).

lex_less_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT1,VECT2],[op(#<)]).

lex_less_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
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length(VECTOR2,L),
lex_less_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_61873,
SIGNATURE,
[source(s),sink(t)],
[arc(s,2,s),
arc(s,1,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_less_signature([],[],[]).

lex_less_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_less_signature(Xs,Ys,Ss).



3285

B.235 lex lesseq

♦ META-DATA:

ctr_date(lex_lesseq,[’20030820’,’20040530’,’20060811’]).

ctr_origin(lex_lesseq,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(
lex_lesseq,
[lexeq,lex_chain,rel,lesseq,leq,lex_leq]).

ctr_arguments(
lex_lesseq,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_lesseq,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_lesseq,
[lex_lesseq(

[[var-5],[var-2],[var-3],[var-1]],
[[var-5],[var-2],[var-6],[var-2]]),

lex_lesseq(
[[var-5],[var-2],[var-3],[var-9]],
[[var-5],[var-2],[var-3],[var-9]])]).

ctr_typical(
lex_lesseq,
[size(’VECTOR1’)>1,
size(’VECTOR1’)<5#\/
nval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])<2*size(’VECTOR1’),
maxval([’VECTOR1’ˆvar,’VECTOR2’ˆvar])=<1#\/
2*size(’VECTOR1’)-
max_nvalue([’VECTOR1’ˆvar,’VECTOR2’ˆvar])>
2]).

ctr_exchangeable(
lex_lesseq,
[vals([’VECTOR1’ˆvar],int,>,dontcare,dontcare),
vals([’VECTOR2’ˆvar],int,<,dontcare,dontcare)]).



3286 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

ctr_derived_collections(
lex_lesseq,
[col(’DESTINATION’-collection(index-int,x-int,y-int),

[item(index-0,x-0,y-0)]),
col(’COMPONENTS’-collection(index-int,x-dvar,y-dvar),

[item(
index-’VECTOR1’ˆkey,
x-’VECTOR1’ˆvar,
y-’VECTOR2’ˆvar)])]).

ctr_graph(
lex_lesseq,
[’COMPONENTS’,’DESTINATION’],
2,
[’PRODUCT’(’PATH’,’VOID’)>>collection(item1,item2)],
[item2ˆindex>0#/\item1ˆx=item1ˆy#\/
item1ˆindex<size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx<item1ˆy#\/
item1ˆindex=size(’VECTOR1’)#/\item2ˆindex=0#/\
item1ˆx=<item1ˆy],
[’PATH_FROM_TO’(index,1,0)=1],
[]).

ctr_eval(
lex_lesseq,
[checker(lex_lesseq_c),
builtin(lex_lesseq_b),
automaton(lex_lesseq_a)]).

ctr_contractible(lex_lesseq,[],[’VECTOR1’,’VECTOR2’],suffix).

lex_lesseq_c(VECTOR1,VECTOR2) :-
collection(VECTOR1,[int]),
collection(VECTOR2,[int]),
length(VECTOR1,L),
length(VECTOR2,L),
get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_lesseq_c1(VECT1,VECT2).

lex_lesseq_b(VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
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get_attr1(VECTOR1,VECT1),
get_attr1(VECTOR2,VECT2),
lex_chain([VECT1,VECT2],[op(#=<)]).

lex_lesseq_a(FLAG,VECTOR1,VECTOR2) :-
collection(VECTOR1,[dvar]),
collection(VECTOR2,[dvar]),
length(VECTOR1,L),
length(VECTOR2,L),
lex_lesseq_signature(VECTOR1,VECTOR2,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_66771,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,2,s),
arc(s,1,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t)],

[],
[],
[]),

automaton_bool(FLAG,[1,2,3],AUTOMATON).

lex_lesseq_signature([],[],[]).

lex_lesseq_signature([[var-VAR1]|Xs],[[var-VAR2]|Ys],[S|Ss]) :-
S in 1..3,
VAR1#<VAR2#<=>S#=1,
VAR1#=VAR2#<=>S#=2,
VAR1#>VAR2#<=>S#=3,
lex_lesseq_signature(Xs,Ys,Ss).
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B.236 lex lesseq allperm
♦ META-DATA:

ctr_predefined(lex_lesseq_allperm).

ctr_date(lex_lesseq_allperm,[’20070916’]).

ctr_origin(
lex_lesseq_allperm,
Inspired by \cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02},
[]).

ctr_synonyms(lex_lesseq_allperm,[leximin]).

ctr_arguments(
lex_lesseq_allperm,
[’VECTOR1’-collection(var-dvar),
’VECTOR2’-collection(var-dvar)]).

ctr_restrictions(
lex_lesseq_allperm,
[required(’VECTOR1’,var),
required(’VECTOR2’,var),
size(’VECTOR1’)=size(’VECTOR2’)]).

ctr_example(
lex_lesseq_allperm,
lex_lesseq_allperm(

[[var-1],[var-2],[var-3]],
[[var-3],[var-1],[var-2]])).

ctr_typical(lex_lesseq_allperm,[size(’VECTOR1’)>1]).

ctr_exchangeable(
lex_lesseq_allperm,
[vals([’VECTOR1’ˆvar,’VECTOR2’ˆvar],int,=\=,all,dontcare)]).

ctr_contractible(
lex_lesseq_allperm,
[],
[’VECTOR1’,’VECTOR2’],
suffix).
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B.237 link set to booleans

♦ META-DATA:

ctr_date(link_set_to_booleans,[’20030820’,’20060811’]).

ctr_origin(
link_set_to_booleans,
Inspired by %c.,
[domain_constraint]).

ctr_arguments(
link_set_to_booleans,
[’SVAR’-svar,’BOOLEANS’-collection(bool-dvar,val-int)]).

ctr_restrictions(
link_set_to_booleans,
[required(’BOOLEANS’,[bool,val]),
’BOOLEANS’ˆbool>=0,
’BOOLEANS’ˆbool=<1,
distinct(’BOOLEANS’,val)]).

ctr_example(
link_set_to_booleans,
link_set_to_booleans(

{1,3,4},
[[bool-0,val-0],
[bool-1,val-1],
[bool-0,val-2],
[bool-1,val-3],
[bool-1,val-4],
[bool-0,val-5]])).

ctr_typical(
link_set_to_booleans,
[size(’BOOLEANS’)>1,range(’BOOLEANS’ˆbool)>1]).

ctr_exchangeable(link_set_to_booleans,[items(’BOOLEANS’,all)]).

ctr_derived_collections(
link_set_to_booleans,
[col(’SET’-collection(one-int,setvar-svar),

[item(one-1,setvar-’SVAR’)])]).

ctr_graph(
link_set_to_booleans,
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[’SET’,’BOOLEANS’],
2,
[’PRODUCT’>>collection(set,booleans)],
[booleansˆbool=setˆone#<=>booleansˆval in_set setˆsetvar],
[’NARC’=size(’BOOLEANS’)],
[]).
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B.238 longest change

♦ META-DATA:

ctr_date(
longest_change,
[’20000128’,’20030820’,’20040530’,’20060811’]).

ctr_origin(longest_change,’Derived from %c.’,[change]).

ctr_arguments(
longest_change,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar),’CTR’-atom]).

ctr_restrictions(
longest_change,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
longest_change,
longest_change(

4,
[[var-8],
[var-8],
[var-3],
[var-4],
[var-1],
[var-1],
[var-5],
[var-5],
[var-2]],

=\=)).

ctr_typical(
longest_change,
[size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=\=])]).

ctr_exchangeable(longest_change,[translate([’VARIABLES’ˆvar])]).

ctr_graph(
longest_change,
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[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[’CTR’(variables1ˆvar,variables2ˆvar)],
[’MAX_NCC’=’SIZE’],
[]).

ctr_eval(
longest_change,
[checker(longest_change_c),automaton(longest_change_a)]).

ctr_pure_functional_dependency(longest_change,[]).

ctr_functional_dependency(longest_change,1,[2,3]).

longest_change_c(SIZE,VARIABLES,=) :-
!,
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
get_attr1(VARIABLES,VARS),
longest_change_eq_c(VARS,0,0,SIZE).

longest_change_c(SIZE,VARIABLES,=\=) :-
!,
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
get_attr1(VARIABLES,VARS),
longest_change_neq_c(VARS,0,0,SIZE).

longest_change_c(SIZE,VARIABLES,<) :-
!,
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
get_attr1(VARIABLES,VARS),
longest_change_lt_c(VARS,0,0,SIZE).

longest_change_c(SIZE,VARIABLES,>=) :-
!,
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
get_attr1(VARIABLES,VARS),
longest_change_geq_c(VARS,0,0,SIZE).
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longest_change_c(SIZE,VARIABLES,>) :-
!,
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
get_attr1(VARIABLES,VARS),
longest_change_gt_c(VARS,0,0,SIZE).

longest_change_c(SIZE,VARIABLES,=<) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
get_attr1(VARIABLES,VARS),
longest_change_leq_c(VARS,0,0,SIZE).

longest_change_eq_c([V,V|R],C,_D,SIZE) :-
!,
longest_change_eq_c1([V|R],C,2,SIZE).

longest_change_eq_c([_42112,V|R],C,D,SIZE) :-
!,
longest_change_eq_c([V|R],C,D,SIZE).

longest_change_eq_c(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_eq_c1([V,V|R],C,D,SIZE) :-
!,
D1 is D+1,
longest_change_eq_c1([V|R],C,D1,SIZE).

longest_change_eq_c1([_42112,V|R],C,D,SIZE) :-
!,
C1 is max(C,D),
longest_change_eq_c1([V|R],C1,1,SIZE).

longest_change_eq_c1(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_neq_c([V,V|R],C,D,SIZE) :-
!,
longest_change_neq_c([V|R],C,D,SIZE).
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longest_change_neq_c([_42112,V|R],C,_D,SIZE) :-
!,
longest_change_neq_c1([V|R],C,2,SIZE).

longest_change_neq_c(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_neq_c1([V,V|R],C,D,SIZE) :-
!,
C1 is max(C,D),
longest_change_neq_c1([V|R],C1,1,SIZE).

longest_change_neq_c1([_42112,V|R],C,D,SIZE) :-
!,
D1 is D+1,
longest_change_neq_c1([V|R],C,D1,SIZE).

longest_change_neq_c1(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_lt_c([V1,V2|R],C,_D,SIZE) :-
V1<V2,
!,
longest_change_lt_c1([V2|R],C,2,SIZE).

longest_change_lt_c([_42112,V|R],C,D,SIZE) :-
!,
longest_change_lt_c([V|R],C,D,SIZE).

longest_change_lt_c(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_lt_c1([V1,V2|R],C,D,SIZE) :-
V1<V2,
!,
D1 is D+1,
longest_change_lt_c1([V2|R],C,D1,SIZE).

longest_change_lt_c1([_42112,V|R],C,D,SIZE) :-
!,
C1 is max(C,D),
longest_change_lt_c1([V|R],C1,1,SIZE).
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longest_change_lt_c1(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_geq_c([V1,V2|R],C,_D,SIZE) :-
V1>=V2,
!,
longest_change_geq_c1([V2|R],C,2,SIZE).

longest_change_geq_c([_42112,V|R],C,D,SIZE) :-
!,
longest_change_geq_c([V|R],C,D,SIZE).

longest_change_geq_c(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_geq_c1([V1,V2|R],C,D,SIZE) :-
V1>=V2,
!,
D1 is D+1,
longest_change_geq_c1([V2|R],C,D1,SIZE).

longest_change_geq_c1([_42112,V|R],C,D,SIZE) :-
!,
C1 is max(C,D),
longest_change_geq_c1([V|R],C1,1,SIZE).

longest_change_geq_c1(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_gt_c([V1,V2|R],C,_D,SIZE) :-
V1>V2,
!,
longest_change_gt_c1([V2|R],C,2,SIZE).

longest_change_gt_c([_42112,V|R],C,D,SIZE) :-
!,
longest_change_gt_c([V|R],C,D,SIZE).

longest_change_gt_c(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_gt_c1([V1,V2|R],C,D,SIZE) :-
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V1>V2,
!,
D1 is D+1,
longest_change_gt_c1([V2|R],C,D1,SIZE).

longest_change_gt_c1([_42112,V|R],C,D,SIZE) :-
!,
C1 is max(C,D),
longest_change_gt_c1([V|R],C1,1,SIZE).

longest_change_gt_c1(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_leq_c([V1,V2|R],C,_D,SIZE) :-
V1=<V2,
!,
longest_change_leq_c1([V2|R],C,2,SIZE).

longest_change_leq_c([_42112,V|R],C,D,SIZE) :-
!,
longest_change_leq_c([V|R],C,D,SIZE).

longest_change_leq_c(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_leq_c1([V1,V2|R],C,D,SIZE) :-
V1=<V2,
!,
D1 is D+1,
longest_change_leq_c1([V2|R],C,D1,SIZE).

longest_change_leq_c1([_42112,V|R],C,D,SIZE) :-
!,
C1 is max(C,D),
longest_change_leq_c1([V|R],C1,1,SIZE).

longest_change_leq_c1(_42108,C,D,SIZE) :-
M is max(C,D),
SIZE#=M.

longest_change_neq_counters_check([V,V|R],C,D,[C1|S]) :-
!,
C1 is max(C,D),
longest_change_neq_counters_check([V|R],C,D,S).
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longest_change_neq_counters_check([_42112,V|R],C,D,[C1|S]) :-
!,
C1 is max(C,D),
longest_change_neq_counters_check1([V|R],C,2,S).

longest_change_neq_counters_check(_42105,_42106,_42107,[0]).

longest_change_neq_counters_check1([V,V|R],C,D,[C1|S]) :-
!,
C1 is max(C,D),
longest_change_neq_counters_check1([V|R],C1,1,S).

longest_change_neq_counters_check1([_42112,V|R],C,D,[C1|S]) :-
!,
C1 is max(C,D),
D1 is D+1,
longest_change_neq_counters_check1([V|R],C,D1,S).

longest_change_neq_counters_check1(_42105,_42106,_42107,[0]).

longest_change_a(FLAG,SIZE,VARIABLES,CTR) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
longest_change_signature(VARIABLES,SIGNATURE,CTR),
automaton(

SIGNATURE,
_43706,
SIGNATURE,
[source(s),sink(i),sink(s)],
[arc(s,0,s),
arc(s,1,i,[C,2]),
arc(i,1,i,[C,D+1]),
arc(i,0,i,[max(C,D),1])],

[C,D],
[0,0],
[C1,D1]),

SIZE#=max(C1,D1)#<=>FLAG.

longest_change_signature([],[],_42107).

longest_change_signature([_42111],[],_42110) :-
!.
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longest_change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],=) :-
!,
VAR1#=VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,=).

longest_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=\=) :-

!,
VAR1#\=VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,=\=).

longest_change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],<) :-
!,
VAR1#<VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,<).

longest_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
>=) :-

!,
VAR1#>=VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,>=).

longest_change_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],>) :-
!,
VAR1#>VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,>).

longest_change_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss],
=<) :-

!,
VAR1#=<VAR2#<=>S,
longest_change_signature([[var-VAR2]|VARs],Ss,=<).
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B.239 longest decreasing sequence

♦ META-DATA:

ctr_date(longest_decreasing_sequence,[’20121124’]).

ctr_origin(
longest_decreasing_sequence,
constraint on sequences,
[]).

ctr_synonyms(
longest_decreasing_sequence,
[size_longest_decreasing_sequence]).

ctr_arguments(
longest_decreasing_sequence,
[’L’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
longest_decreasing_sequence,
[’L’>=0,
’L’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var)]).

ctr_example(
longest_decreasing_sequence,
[longest_decreasing_sequence(

0,
[[var-0],[var-1],[var-2],[var-5]]),

longest_decreasing_sequence(0,[[var-8],[var-8]]),
longest_decreasing_sequence(

6,
[[var-10],
[var-8],
[var-8],
[var-6],
[var-4],
[var-9],
[var-10],
[var-8]])]).

ctr_typical(
longest_decreasing_sequence,
[’L’>0,size(’VARIABLES’)>1,nval(’VARIABLES’ˆvar)>2]).
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ctr_typical_model(
longest_decreasing_sequence,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
longest_decreasing_sequence,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
longest_decreasing_sequence,
[checker(longest_decreasing_sequence_c),
automaton(longest_decreasing_sequence_a)]).

ctr_pure_functional_dependency(longest_decreasing_sequence,[]).

ctr_functional_dependency(longest_decreasing_sequence,1,[2]).

ctr_sol(longest_decreasing_sequence,2,0,2,9,[0-6,1-2,2-1]).

ctr_sol(
longest_decreasing_sequence,
3,
0,
3,
64,
[0-20,1-18,2-16,3-10]).

ctr_sol(
longest_decreasing_sequence,
4,
0,
4,
625,
[0-70,1-122,2-161,3-162,4-110]).

ctr_sol(
longest_decreasing_sequence,
5,
0,
5,
7776,
[0-252,1-750,2-1398,3-1942,4-2024,5-1410]).

ctr_sol(
longest_decreasing_sequence,
6,
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0,
6,
117649,
[0-924,1-4412,2-11361,3-20816,4-28930,5-30134,6-21072]).

ctr_sol(
longest_decreasing_sequence,
7,
0,
7,
2097152,
[0-3432,
1-25382,
2-89132,
3-211106,
4-375084,
5-506766,
6-522648,
7-363602]).

ctr_sol(
longest_decreasing_sequence,
8,
0,
8,
43046721,
[0-12870,
1-144314,
2-685090,
3-2074365,
4-4603682,
5-7792840,
6-10197174,
7-10379696,
8-7156690]).

longest_decreasing_sequence_c(0,[]) :-
!.

longest_decreasing_sequence_c(L,VARIABLES) :-
check_type(dvar,L),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
longest_decreasing_sequence_c(VARS,s,0,0,0,L).

longest_decreasing_sequence_c([V|R],s,_48682,_48683,Max,L) :-
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!,
longest_decreasing_sequence_c(R,t,V,V,Max,L).

longest_decreasing_sequence_c([V|R],t,_48682,Last,Max,L) :-
Last<V,
!,
longest_decreasing_sequence_c(R,t,V,V,Max,L).

longest_decreasing_sequence_c([V|R],t,First,_48683,Max,L) :-
!,
Max1 is max(Max,First-V),
longest_decreasing_sequence_c(R,t,First,V,Max1,L).

longest_decreasing_sequence_c([],_48678,_48679,_48680,L,L).

longest_decreasing_sequence_counters_check(
[V|R],
s,
_49155,
_49202,
Max,
[Max|S]) :-

!,
longest_decreasing_sequence_counters_check(

R,
t,
V,
V,
Max,
S).

longest_decreasing_sequence_counters_check(
[V|R],
t,
_49167,
Last,
Max,
[Max|S]) :-

Last<V,
!,
longest_decreasing_sequence_counters_check(

R,
t,
V,
V,
Max,
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S).

longest_decreasing_sequence_counters_check(
[V|R],
t,
First,
_49220,
Max,
[Max1|S]) :-

!,
Max1 is max(Max,First-V),
longest_decreasing_sequence_counters_check(

R,
t,
First,
V,
Max1,
S).

longest_decreasing_sequence_counters_check(
[],
_48960,
_49007,
_49054,
_49101,
[]).

longest_decreasing_sequence_a(FLAG,L,VARIABLES) :-
check_type(dvar,L),
length(VARIABLES,N),
( N=0 ->

Max=0
; collection(VARIABLES,[dvar]),

longest_decreasing_sequence_signature(
VARIABLES,
SIGNATURE,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,t,[max(M,Di),Di]),
arc(t,0,s),
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arc(t,1,t),
arc(t,2,t,[max(M,C+Di),C+Di])],
[M,C],
[0,0],
[Max,_48834])

),
Max#=L#<=>FLAG.

longest_decreasing_sequence_signature([_48683],[],[]) :-
!.

longest_decreasing_sequence_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|RS],
[DIFFERENCE|RD]) :-

VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
VAR1#=DIFFERENCE+VAR2,
longest_decreasing_sequence_signature(

[[var-VAR2]|VARs],
RS,
RD).
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B.240 longest increasing sequence

♦ META-DATA:

ctr_date(longest_increasing_sequence,[’20121124’]).

ctr_origin(
longest_increasing_sequence,
constraint on sequences,
[]).

ctr_synonyms(
longest_increasing_sequence,
[size_longest_increasing_sequence]).

ctr_arguments(
longest_increasing_sequence,
[’L’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
longest_increasing_sequence,
[’L’>=0,
’L’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var)]).

ctr_example(
longest_increasing_sequence,
[longest_increasing_sequence(

7,
[[var-10],
[var-8],
[var-8],
[var-6],
[var-4],
[var-9],
[var-11],
[var-8]]),

longest_increasing_sequence(
0,
[[var-10],
[var-8],
[var-7],
[var-5],
[var-4],
[var-3],
[var-1],
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[var-0]])]).

ctr_typical(
longest_increasing_sequence,
[’L’>0,size(’VARIABLES’)>1,nval(’VARIABLES’ˆvar)>2]).

ctr_typical_model(
longest_increasing_sequence,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
longest_increasing_sequence,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
longest_increasing_sequence,
[checker(longest_increasing_sequence_c),
automaton(longest_increasing_sequence_a)]).

ctr_pure_functional_dependency(longest_increasing_sequence,[]).

ctr_functional_dependency(longest_increasing_sequence,1,[2]).

ctr_sol(longest_increasing_sequence,2,0,2,9,[0-6,1-2,2-1]).

ctr_sol(
longest_increasing_sequence,
3,
0,
3,
64,
[0-20,1-18,2-16,3-10]).

ctr_sol(
longest_increasing_sequence,
4,
0,
4,
625,
[0-70,1-122,2-161,3-162,4-110]).

ctr_sol(
longest_increasing_sequence,
5,
0,
5,
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7776,
[0-252,1-750,2-1398,3-1942,4-2024,5-1410]).

ctr_sol(
longest_increasing_sequence,
6,
0,
6,
117649,
[0-924,1-4412,2-11361,3-20816,4-28930,5-30134,6-21072]).

ctr_sol(
longest_increasing_sequence,
7,
0,
7,
2097152,
[0-3432,
1-25382,
2-89132,
3-211106,
4-375084,
5-506766,
6-522648,
7-363602]).

ctr_sol(
longest_increasing_sequence,
8,
0,
8,
43046721,
[0-12870,
1-144314,
2-685090,
3-2074365,
4-4603682,
5-7792840,
6-10197174,
7-10379696,
8-7156690]).

longest_increasing_sequence_c(0,[]) :-
!.

longest_increasing_sequence_c(L,VARIABLES) :-
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check_type(dvar,L),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
longest_increasing_sequence_c(VARS,s,0,0,0,L).

longest_increasing_sequence_c([V|R],s,_48663,_48664,Max,L) :-
!,
longest_increasing_sequence_c(R,t,V,V,Max,L).

longest_increasing_sequence_c([V|R],t,_48663,Last,Max,L) :-
Last>V,
!,
longest_increasing_sequence_c(R,t,V,V,Max,L).

longest_increasing_sequence_c([V|R],t,First,_48664,Max,L) :-
!,
Max1 is max(Max,V-First),
longest_increasing_sequence_c(R,t,First,V,Max1,L).

longest_increasing_sequence_c([],_48659,_48660,_48661,L,L).

longest_increasing_sequence_counters_check(
[V|R],
s,
_49136,
_49183,
Max,
[Max|S]) :-

!,
longest_increasing_sequence_counters_check(

R,
t,
V,
V,
Max,
S).

longest_increasing_sequence_counters_check(
[V|R],
t,
_49148,
Last,
Max,
[Max|S]) :-

Last>V,
!,
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longest_increasing_sequence_counters_check(
R,
t,
V,
V,
Max,
S).

longest_increasing_sequence_counters_check(
[V|R],
t,
First,
_49201,
Max,
[Max1|S]) :-

!,
Max1 is max(Max,V-First),
longest_increasing_sequence_counters_check(

R,
t,
First,
V,
Max1,
S).

longest_increasing_sequence_counters_check(
[],
_48941,
_48988,
_49035,
_49082,
[]).

longest_increasing_sequence_a(FLAG,L,VARIABLES) :-
check_type(dvar,L),
length(VARIABLES,N),
( N=0 ->

Max=0
; collection(VARIABLES,[dvar]),

longest_increasing_sequence_signature(
VARIABLES,
SIGNATURE,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
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SIGNATURE,
[source(s),sink(s),sink(t)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,t,[max(M,Di),Di]),
arc(t,2,s),
arc(t,1,t),
arc(t,0,t,[max(M,C+Di),C+Di])],
[M,C],
[0,0],
[Max,_48815])

),
Max#=L#<=>FLAG.

longest_increasing_sequence_signature([_48664],[],[]) :-
!.

longest_increasing_sequence_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|RS],
[DIFFERENCE|RD]) :-

VAR1#>VAR2#<=>S#=2,
VAR1#=VAR2#<=>S#=1,
VAR1#<VAR2#<=>S#=0,
VAR2#=DIFFERENCE+VAR1,
longest_increasing_sequence_signature(

[[var-VAR2]|VARs],
RS,
RD).
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B.241 lt
♦ META-DATA:

ctr_predefined(lt).

ctr_date(lt,[’20070821’]).

ctr_origin(lt,’Arithmetic.’,[]).

ctr_synonyms(lt,[rel,xlty]).

ctr_arguments(lt,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(lt,lt(1,8)).

ctr_exchangeable(
lt,
[vals([’VAR1’],int(<(’VAR2’)),=\=,all,dontcare),
vals([’VAR2’],int(>(’VAR1’)),=\=,all,dontcare)]).

ctr_eval(lt,[builtin(lt_b)]).

lt_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#<VAR2.
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B.242 map

♦ META-DATA:

ctr_date(map,[’20000128’,’20030820’,’20060811’]).

ctr_origin(map,’Inspired by \\cite{SedgewickFlajolet96}’,[]).

ctr_arguments(
map,
[’NBCYCLE’-dvar,
’NBTREE’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
map,
[’NBCYCLE’>=0,
’NBTREE’>=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
map,
map(2,

3,
[[index-1,succ-5],
[index-2,succ-9],
[index-3,succ-8],
[index-4,succ-2],
[index-5,succ-9],
[index-6,succ-2],
[index-7,succ-9],
[index-8,succ-8],
[index-9,succ-1]])).

ctr_typical(
map,
[’NBCYCLE’>0,
’NBTREE’>0,
’NBCYCLE’<size(’NODES’),
’NBCYCLE’<’NBTREE’,
size(’NODES’)>2]).
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ctr_exchangeable(map,[items(’NODES’,all)]).

ctr_graph(
map,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’NCC’=’NBCYCLE’,’NTREE’=’NBTREE’],
[]).

ctr_pure_functional_dependency(map,[]).

ctr_functional_dependency(map,1,[3]).

ctr_functional_dependency(map,2,[3]).

ctr_application(map,[3]).
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B.243 max decreasing slope

♦ META-DATA:

ctr_date(max_decreasing_slope,[’20130317’]).

ctr_origin(max_decreasing_slope,’Motivated by time series.’,[]).

ctr_arguments(
max_decreasing_slope,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_decreasing_slope,
[’MAX’>=0,
’MAX’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var),
size(’VARIABLES’)>0]).

ctr_example(
max_decreasing_slope,
[max_decreasing_slope(

4,
[[var-1],
[var-1],
[var-5],
[var-8],
[var-6],
[var-2],
[var-4],
[var-1],
[var-2]]),

max_decreasing_slope(
0,
[[var-1],[var-3],[var-5],[var-8]]),

max_decreasing_slope(
8,
[[var-3],[var-1],[var-9],[var-1]])]).

ctr_typical(
max_decreasing_slope,
[’MAX’>0,
’MAX’<range(’VARIABLES’ˆvar)-1,
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>2]).
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ctr_typical_model(
max_decreasing_slope,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
max_decreasing_slope,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
max_decreasing_slope,
[checker(max_decreasing_slope_c),
automaton(max_decreasing_slope_a),
automaton_with_signature(max_decreasing_slope_a_s)]).

ctr_pure_functional_dependency(max_decreasing_slope,[]).

ctr_functional_dependency(max_decreasing_slope,1,[2]).

ctr_cond_imply(
max_decreasing_slope,
longest_decreasing_sequence,
[range(’VARIABLES’ˆvar)=’MAX’+1],
[range(’VARIABLES’ˆvar)=’L’+1],
[none,’VARIABLES’]).

ctr_cond_imply(
max_decreasing_slope,
min_decreasing_slope,
[’MAX’=1],
[’MIN’=1],
id).

ctr_sol(max_decreasing_slope,2,0,2,9,[0-6,1-2,2-1]).

ctr_sol(max_decreasing_slope,3,0,3,64,[0-20,1-20,2-16,3-8]).

ctr_sol(
max_decreasing_slope,
4,
0,
4,
625,
[0-70,1-151,2-188,3-142,4-74]).

ctr_sol(
max_decreasing_slope,
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5,
0,
5,
7776,
[0-252,1-1036,2-1952,3-2106,4-1584,5-846]).

ctr_sol(
max_decreasing_slope,
6,
0,
6,
117649,
[0-924,1-6828,2-19200,3-29035,4-28266,5-21684,6-11712]).

ctr_sol(
max_decreasing_slope,
7,
0,
7,
2097152,
[0-3432,
1-44220,
2-183304,
3-380116,
4-483840,
5-457632,
6-353088,
7-191520]).

ctr_sol(
max_decreasing_slope,
8,
0,
8,
43046721,
[0-12870,
1-284405,
2-1721425,
3-4847301,
4-8021350,
5-9208124,
6-8654931,
7-6673834,
8-3622481]).

max_decreasing_slope_c(MAX,VARIABLES) :-
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check_type(dvar_gteq(0),MAX),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>0,
max_decreasing_slope_c1(VARS,0,MAX).

max_decreasing_slope_c1([_49388],MAX,MAX) :-
!.

max_decreasing_slope_c1([V1,V2|R],M,MAX) :-
V1=<V2,
!,
max_decreasing_slope_c1([V2|R],M,MAX).

max_decreasing_slope_c1([V1,V2|R],M,MAX) :-
N is max(M,V1-V2),
max_decreasing_slope_c1([V2|R],N,MAX).

max_decreasing_slope_counters_check(L,[0|S]) :-
max_decreasing_slope_counters_check(L,0,S).

max_decreasing_slope_counters_check([V1,V2|R],M,[M|S]) :-
V1=<V2,
!,
max_decreasing_slope_counters_check([V2|R],M,S).

max_decreasing_slope_counters_check([V1,V2|R],M,[N|S]) :-
N is max(M,V1-V2),
max_decreasing_slope_counters_check([V2|R],N,S).

max_decreasing_slope_counters_check([_49388],_49386,[]) :-
!.

ctr_automaton_signature(
max_decreasing_slope,
max_decreasing_slope_a,
pair_signature(2,signature)).

max_decreasing_slope_a(FLAG,MAX,VARIABLES) :-
check_type(dvar_gteq(0),MAX),
collection(VARIABLES,[dvar]),
max_decreasing_slope_signature(

VARIABLES,
SIGNATURE,
DIFFERENCES),
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automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[max(M,Di)])],
[M],
[0],
[MAXIMUM]),

MAXIMUM#=MAX#<=>FLAG.

max_decreasing_slope_signature([_49388],[],[]) :-
!.

max_decreasing_slope_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|RS],
[DIFFERENCE|RD]) :-

VAR1#=<VAR2#<=>S#=0,
VAR1#>VAR2#<=>S#=1,
VAR1#=DIFFERENCE+VAR2,
max_decreasing_slope_signature([[var-VAR2]|VARs],RS,RD).

max_decreasing_slope_a_s(FLAG,MAX,VARIABLES,SIGNATURE) :-
check_type(dvar_gteq(0),MAX),
collection(VARIABLES,[dvar]),
difference_decreasing_slope_signature(

VARIABLES,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s),arc(s,2,s,[max(M,Di)])],
[M],
[0],
[MAXIMUM]),

MAXIMUM#=MAX#<=>FLAG.
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B.244 max increasing slope

♦ META-DATA:

ctr_date(max_increasing_slope,[’20130317’]).

ctr_origin(max_increasing_slope,’Motivated by time series.’,[]).

ctr_arguments(
max_increasing_slope,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_increasing_slope,
[’MAX’>=0,
’MAX’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var),
size(’VARIABLES’)>0]).

ctr_example(
max_increasing_slope,
[max_increasing_slope(

4,
[[var-1],
[var-1],
[var-5],
[var-8],
[var-6],
[var-2],
[var-2],
[var-1],
[var-2]]),

max_increasing_slope(
0,
[[var-9],[var-8],[var-6],[var-4],[var-1],[var-0]]),

max_increasing_slope(
8,
[[var-9],[var-6],[var-6],[var-4],[var-1],[var-9]])]).

ctr_typical(
max_increasing_slope,
[’MAX’>0,
’MAX’<range(’VARIABLES’ˆvar)-1,
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>2]).
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ctr_typical_model(
max_increasing_slope,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
max_increasing_slope,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
max_increasing_slope,
[checker(max_increasing_slope_c),
automaton(max_increasing_slope_a),
automaton_with_signature(max_increasing_slope_a_s)]).

ctr_pure_functional_dependency(max_increasing_slope,[]).

ctr_functional_dependency(max_increasing_slope,1,[2]).

ctr_cond_imply(
max_increasing_slope,
longest_increasing_sequence,
[range(’VARIABLES’ˆvar)=’MAX’+1],
[range(’VARIABLES’ˆvar)=’L’+1],
[none,’VARIABLES’]).

ctr_cond_imply(
max_increasing_slope,
min_increasing_slope,
[’MAX’=1],
[’MIN’=1],
id).

ctr_sol(max_increasing_slope,2,0,2,9,[0-6,1-2,2-1]).

ctr_sol(max_increasing_slope,3,0,3,64,[0-20,1-20,2-16,3-8]).

ctr_sol(
max_increasing_slope,
4,
0,
4,
625,
[0-70,1-151,2-188,3-142,4-74]).

ctr_sol(
max_increasing_slope,
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5,
0,
5,
7776,
[0-252,1-1036,2-1952,3-2106,4-1584,5-846]).

ctr_sol(
max_increasing_slope,
6,
0,
6,
117649,
[0-924,1-6828,2-19200,3-29035,4-28266,5-21684,6-11712]).

ctr_sol(
max_increasing_slope,
7,
0,
7,
2097152,
[0-3432,
1-44220,
2-183304,
3-380116,
4-483840,
5-457632,
6-353088,
7-191520]).

ctr_sol(
max_increasing_slope,
8,
0,
8,
43046721,
[0-12870,
1-284405,
2-1721425,
3-4847301,
4-8021350,
5-9208124,
6-8654931,
7-6673834,
8-3622481]).

max_increasing_slope_c(MAX,VARIABLES) :-
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check_type(dvar_gteq(0),MAX),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>0,
max_increasing_slope_c1(VARS,0,MAX).

max_increasing_slope_c1([_49512],MAX,MAX) :-
!.

max_increasing_slope_c1([V1,V2|R],M,MAX) :-
V1>=V2,
!,
max_increasing_slope_c1([V2|R],M,MAX).

max_increasing_slope_c1([V1,V2|R],M,MAX) :-
N is max(M,V2-V1),
max_increasing_slope_c1([V2|R],N,MAX).

max_increasing_slope_counters_check(L,[0|S]) :-
max_increasing_slope_counters_check(L,0,S).

max_increasing_slope_counters_check([V1,V2|R],M,[M|S]) :-
V1>=V2,
!,
max_increasing_slope_counters_check([V2|R],M,S).

max_increasing_slope_counters_check([V1,V2|R],M,[N|S]) :-
N is max(M,V2-V1),
max_increasing_slope_counters_check([V2|R],N,S).

max_increasing_slope_counters_check([_49512],_49510,[]) :-
!.

ctr_automaton_signature(
max_increasing_slope,
max_increasing_slope_a,
pair_signature(2,signature)).

max_increasing_slope_a(FLAG,MAX,VARIABLES) :-
check_type(dvar_gteq(0),MAX),
collection(VARIABLES,[dvar]),
max_increasing_slope_signature(

VARIABLES,
SIGNATURE,
DIFFERENCES),



3323

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s,[max(M,Di)])],
[M],
[0],
[MAXIMUM]),

MAXIMUM#=MAX#<=>FLAG.

max_increasing_slope_signature([_49512],[],[]) :-
!.

max_increasing_slope_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|RS],
[DIFFERENCE|RD]) :-

VAR1#>=VAR2#<=>S#=0,
VAR1#<VAR2#<=>S#=1,
VAR2#=DIFFERENCE+VAR1,
max_increasing_slope_signature([[var-VAR2]|VARs],RS,RD).

max_increasing_slope_a_s(FLAG,MAX,VARIABLES,SIGNATURE) :-
check_type(dvar_gteq(0),MAX),
collection(VARIABLES,[dvar]),
difference_increasing_slope_signature(

VARIABLES,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s),arc(s,2,s),arc(s,0,s,[max(M,Di)])],
[M],
[0],
[MAXIMUM]),

MAXIMUM#=MAX#<=>FLAG.
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B.245 max index

♦ META-DATA:

ctr_date(
max_index,
[’20030820’,’20040530’,’20041230’,’20060811’]).

ctr_origin(max_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_index,
[’MAX_INDEX’-dvar,
’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
max_index,
[size(’VARIABLES’)>0,
’MAX_INDEX’>=0,
’MAX_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_example(
max_index,
max_index(

3,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-7]])).

ctr_typical(
max_index,
[size(’VARIABLES’)>0,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
max_index,
[items(’VARIABLES’,all),translate([’VARIABLES’ˆvar])]).

ctr_graph(
max_index,
[’VARIABLES’],
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2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar>variables2ˆvar],
[’ORDER’(0,0,index)=’MAX_INDEX’],
[]).
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B.246 max n

♦ META-DATA:

ctr_date(max_n,[’20000128’,’20030820’,’20041230’,’20060811’]).

ctr_origin(max_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
max_n,
[’MAX’-dvar,’RANK’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_n,
[’RANK’>=0,
’RANK’<size(’VARIABLES’),
size(’VARIABLES’)>0,
required(’VARIABLES’,var)]).

ctr_example(
max_n,
max_n(6,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

ctr_typical(
max_n,
[’RANK’>0,
’RANK’<3,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(max_n,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
max_n,
[items(’VARIABLES’,all),
translate([’MAX’,’VARIABLES’ˆvar])]).

ctr_graph(
max_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar>variables2ˆvar],
[’ORDER’(’RANK’,’MININT’,var)=’MAX’],
[]).
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ctr_eval(max_n,[checker(max_n_c),reformulation(max_n_r)]).

ctr_pure_functional_dependency(max_n,[]).

ctr_functional_dependency(max_n,1,[2,3]).

max_n_c(MAX,RANK,VARIABLES) :-
length(VARIABLES,N),
N>0,
N1 is N-1,
check_type(dvar,MAX),
check_type(int(0,N1),RANK),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(SVARS,NN),
Pos is NN-RANK,
nth1(Pos,SVARS,MAX).

max_n_r(MAX,RANK,VARIABLES) :-
length(VARIABLES,N),
N>0,
N1 is N-1,
check_type(dvar,MAX),
check_type(int(0,N1),RANK),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
create_collection([MAX],var,VMAX),
create_collection(VARS,val,VALUES),
eval(among_var(1,VMAX,VALUES)),
NVAL in 0..N,
eval(nvalue(NVAL,VARIABLES)),
length(RANKS,N),
domain(RANKS,0,N1),
max_n1(VARS,RANKS,MAX,RANK,NVAL).

max_n1([],[],_43026,_43027,_43028).

max_n1([V|RV],[R|RR],MAX,RANK,NVAL) :-
R#<NVAL,
R#=RANK#<=>V#=MAX,
max_n2(RV,RR,V,R),
max_n1(RV,RR,MAX,RANK,NVAL).

max_n2([],[],_43026,_43027).



3328 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

max_n2([Vj|RV],[Rj|RR],Vi,Ri) :-
Vi#>Vj#<=>Ri#<Rj,
Vi#=Vj#<=>Ri#=Rj,
Vi#<Vj#<=>Ri#>Rj,
max_n2(RV,RR,Vi,Ri).
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B.247 max nvalue

♦ META-DATA:

ctr_date(max_nvalue,[’20000128’,’20030820’,’20060811’]).

ctr_origin(max_nvalue,’Derived from %c.’,[nvalue]).

ctr_arguments(
max_nvalue,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_nvalue,
[’MAX’>=1,
’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
max_nvalue,
[max_nvalue(

3,
[[var-9],
[var-1],
[var-7],
[var-1],
[var-1],
[var-6],
[var-7],
[var-7],
[var-4],
[var-9]]),

max_nvalue(
1,
[[var-9],[var-1],[var-7],[var-3],[var-2],[var-6]]),

max_nvalue(
6,
[[var-5],[var-5],[var-5],[var-5],[var-5],[var-5]])]).

ctr_typical(
max_nvalue,
[’MAX’>1,
’MAX’<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).
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ctr_exchangeable(
max_nvalue,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
max_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=’MAX’],
[]).

ctr_eval(
max_nvalue,
[checker(max_nvalue_c),reformulation(max_nvalue_r)]).

ctr_pure_functional_dependency(max_nvalue,[]).

ctr_functional_dependency(max_nvalue,1,[2]).

ctr_sol(max_nvalue,2,0,2,9,[1-6,2-3]).

ctr_sol(max_nvalue,3,0,3,64,[1-24,2-36,3-4]).

ctr_sol(max_nvalue,4,0,4,625,[1-120,2-420,3-80,4-5]).

ctr_sol(max_nvalue,5,0,5,7776,[1-720,2-5400,3-1500,4-150,5-6]).

ctr_sol(
max_nvalue,
6,
0,
6,
117649,
[1-5040,2-78750,3-29820,4-3780,5-252,6-7]).

ctr_sol(
max_nvalue,
7,
0,
7,
2097152,
[1-40320,2-1305360,3-646800,4-96040,5-8232,6-392,7-8]).
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ctr_sol(
max_nvalue,
8,
0,
8,
43046721,
[1-362880,
2-24449040,
3-15382080,
4-2577960,
5-258048,
6-16128,
7-576,
8-9]).

max_nvalue_c(0,[]) :-
!.

max_nvalue_c(MAX,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MAX),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
samsort(VARS,SVARS),
SVARS=[V|R],
max_nvalue_seq_size(R,1,V,1,M),
MAX#=M.

max_nvalue_r(0,[]) :-
!.

max_nvalue_r(MAX,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MAX),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
union_dom_list_int(VARS,UnionDomainsVARS),
NSquare is N*N,
length(UnionDomainsVARS,SizeUnion),
( SizeUnion=<NSquare ->

balance1(UnionDomainsVARS,N,VALS,OCCS,_OCCS1),
eval(global_cardinality(VARIABLES,VALS))

; balance2(VARS,N,VARS,OCCS)
),
eval(maximum(MAX,OCCS)).
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B.248 max occ of consecutive tuples of values

♦ META-DATA:

ctr_predefined(max_occ_of_consecutive_tuples_of_values).

ctr_date(max_occ_of_consecutive_tuples_of_values,[’20120319’]).

ctr_origin(
max_occ_of_consecutive_tuples_of_values,
Design.,
[]).

ctr_types(
max_occ_of_consecutive_tuples_of_values,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
max_occ_of_consecutive_tuples_of_values,
[’MAX’-int,’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
max_occ_of_consecutive_tuples_of_values,
[required(’VECTOR’,var),
size(’VECTOR’)>=2,
alldifferent(’VECTOR’),
’MAX’>=1,
’K’>=2,
’K’<size(’VECTOR’),
required(’VECTORS’,vec),
size(’VECTORS’)>=1,
same_size(’VECTORS’,vec)]).

ctr_example(
max_occ_of_consecutive_tuples_of_values,
max_occ_of_consecutive_tuples_of_values(

1,
2,
[[vec-[[var-4],[var-1],[var-3]]],
[vec-[[var-2],[var-7],[var-6]]],
[vec-[[var-5],[var-9],[var-8]]]])).

ctr_typical(
max_occ_of_consecutive_tuples_of_values,
[’MAX’=1,’K’=2,size(’VECTORS’)>2]).
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ctr_eval(
max_occ_of_consecutive_tuples_of_values,
[reformulation(max_occ_of_consecutive_tuples_of_values_r),
checker(max_occ_of_consecutive_tuples_of_values_c),
density(max_occ_of_consecutive_tuples_of_values_d)]).

ctr_functional_dependency(
max_occ_of_consecutive_tuples_of_values,
1,
[2,3]).

ctr_contractible(
max_occ_of_consecutive_tuples_of_values,
[’MAX’=1],
VECTORS,
any).

max_occ_of_consecutive_tuples_of_values_r(MAX,K,VECTORS) :-
check_type(dvar_gteq(1),MAX),
integer(K),
K>=2,
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
VECTORS=[[vec-VECTOR]|_26561],
length(VECTOR,N),
N>=2,
K<N,
get_attr11(VECTORS,VECTS),
gen_alldifferents(VECTS,1),
generate_consec_subtuples(VECTORS,K,SUBTUPLES),
length(MIN0,K),
length(MAX0,K),
get_min_max_vectors(SUBTUPLES,0,K,MIN0,MAX0,MINS,MAXS),
get_max_val_vec_vars(MINS,MAXS,1,MAX_VAL),
MAX_VAL1 is MAX_VAL-1,
create_vectors_vars(SUBTUPLES,MINS,MAXS,MAX_VAL1,VARS),
length(SUBTUPLES,LEN_SUBTUPLES),
MAX#=<LEN_SUBTUPLES,
fd_max(MAX,MAX_MAX),
create_occ_vars(0,MAX_VAL1,MAX_MAX,VALS_OCCS,OCCS),
global_cardinality(VARS,VALS_OCCS),
maximum(MAX,OCCS).

max_occ_of_consecutive_tuples_of_values_c(MAX,K,VECTORS) :-
( integer(MAX) ->

MAX>=1
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; true
),
integer(K),
K>=2,
collection(VECTORS,[col([int])]),
same_size(VECTORS),
VECTORS=[[vec-VECTOR]|_26567],
length(VECTOR,N),
N>=2,
K<N,
get_attr11(VECTORS,VECTS),
gen_alldifferents(VECTS,0),
generate_consec_subtuples(VECTORS,K,SUBTUPLES),
create_pairs(SUBTUPLES,PSUBTUPLES),
keysort(PSUBTUPLES,SORTED),
( integer(MAX) ->

Limit is MAX
; length(SORTED,Limit)
),
get_max_occ_tuples_of_values(SORTED,Limit,0,M),
MAX=M,
MAX>=1.

generate_consec_subtuples([],_26510,[]) :-
!.

generate_consec_subtuples([[_26517-Tuple]|R],K,Result) :-
remove_key_from_col(Tuple,Vars),
length(Vars,N),
gen_consec_sub_tuples(Vars,N,K,SubTuples1),
generate_consec_subtuples(R,K,SubTuples2),
append(SubTuples1,SubTuples2,Result).

gen_consec_sub_tuples(_26509,Len,K,[]) :-
Len<K,
!.

gen_consec_sub_tuples(Vars,Len,K,[Vars,RVars]) :-
Len=K,
!,
reverse(Vars,RVars).

gen_consec_sub_tuples(Vars,Len,K,[Prefix,RPrefix|S]) :-
Len>K,
get_prefix_of_given_length(K,Vars,Prefix),
reverse(Prefix,RPrefix),
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Len1 is Len-1,
Vars=[_26565|RVars],
gen_consec_sub_tuples(RVars,Len1,K,S).

get_prefix_of_given_length(0,_26510,[]) :-
!.

get_prefix_of_given_length(N,[V|R],[V|S]) :-
N>0,
N1 is N-1,
get_prefix_of_given_length(N1,R,S).

max_occ_of_consecutive_tuples_of_values_d(0,_26510,_26511,[]) :-
!.

max_occ_of_consecutive_tuples_of_values_d(
Density,
MAX,
K,
VECTORS) :-

VECTORS=[[vec-VECTOR]|_26528],
length(VECTORS,N),
length(VECTOR,D),
Needed is 2*(D-K+1)*N,
get_min_vectors(VECTORS,_26577,MINI),
get_max_vectors(VECTORS,_26586,MAXI),
RANGE is MAXI-MINI+1,
Available is RANGE*RANGE*MAX,
Density is Needed/Available.

get_min_vectors([],Min,Min) :-
!.

get_min_vectors([[_26517-V]|R],Cur,Res) :-
get_min_vector(V,Cur,New),
get_min_vectors(R,New,Res).

get_min_vector([],Min,Min) :-
!.

get_min_vector([[_26517-V]|R],Cur,Res) :-
( var(Cur) ->

New is V
; New is min(Cur,V)
),
get_min_vector(R,New,Res).
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get_max_vectors([],Max,Max) :-
!.

get_max_vectors([[_26517-V]|R],Cur,Res) :-
get_max_vector(V,Cur,New),
get_max_vectors(R,New,Res).

get_max_vector([],Max,Max) :-
!.

get_max_vector([[_26517-V]|R],Cur,Res) :-
( var(Cur) ->

New is V
; New is max(Cur,V)
),
get_max_vector(R,New,Res).

gen_alldifferents([],_26510) :-
!.

gen_alldifferents([VARS|R],FLAG) :-
( FLAG=1 ->

all_different(VARS)
; sort(VARS,SVARS),

length(VARS,N),
length(SVARS,N)

),
gen_alldifferents(R,FLAG).
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B.249 max occ of sorted tuples of values

♦ META-DATA:

ctr_predefined(max_occ_of_sorted_tuples_of_values).

ctr_date(max_occ_of_sorted_tuples_of_values,[’20120327’]).

ctr_origin(max_occ_of_sorted_tuples_of_values,’Design.’,[]).

ctr_types(
max_occ_of_sorted_tuples_of_values,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
max_occ_of_sorted_tuples_of_values,
[’MAX’-int,’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
max_occ_of_sorted_tuples_of_values,
[required(’VECTOR’,var),
size(’VECTOR’)>=2,
alldifferent(’VECTOR’),
’MAX’>=1,
’K’>=2,
’K’<size(’VECTOR’),
required(’VECTORS’,vec),
size(’VECTORS’)>=1,
same_size(’VECTORS’,vec)]).

ctr_example(
max_occ_of_sorted_tuples_of_values,
max_occ_of_sorted_tuples_of_values(

1,
2,
[[vec-[[var-4],[var-2],[var-1]]],
[vec-[[var-2],[var-3],[var-5]]],
[vec-[[var-3],[var-6],[var-4]]],
[vec-[[var-5],[var-4],[var-7]]],
[vec-[[var-6],[var-5],[var-1]]],
[vec-[[var-7],[var-6],[var-2]]],
[vec-[[var-3],[var-1],[var-7]]]])).

ctr_typical(
max_occ_of_sorted_tuples_of_values,
[’MAX’=1,’K’+1=size(’VECTOR’),size(’VECTORS’)>2]).
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ctr_eval(
max_occ_of_sorted_tuples_of_values,
[checker(max_occ_of_sorted_tuples_of_values_c)]).

ctr_functional_dependency(
max_occ_of_sorted_tuples_of_values,
1,
[2,3]).

ctr_contractible(
max_occ_of_sorted_tuples_of_values,
[’MAX’=1],
VECTORS,
any).

max_occ_of_sorted_tuples_of_values_c(MAX,K,VECTORS) :-
( integer(MAX) ->

MAX>=1
; true
),
integer(K),
K>=2,
collection(VECTORS,[col([int])]),
same_size(VECTORS),
VECTORS=[[vec-VECTOR]|_27468],
length(VECTOR,N),
N>=2,
K<N,
generate_subtuples(VECTORS,K,1,SUBTUPLES),
create_pairs(SUBTUPLES,PSUBTUPLES),
keysort(PSUBTUPLES,SORTED),
( integer(MAX) ->

Limit is MAX
; length(SORTED,Limit)
),
get_max_occ_tuples_of_values(SORTED,Limit,0,M),
MAX=M,
MAX>=1.
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B.250 max occ of tuples of values

♦ META-DATA:

ctr_predefined(max_occ_of_tuples_of_values).

ctr_date(max_occ_of_tuples_of_values,[’20120228’]).

ctr_origin(max_occ_of_tuples_of_values,’Design.’,[]).

ctr_types(
max_occ_of_tuples_of_values,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
max_occ_of_tuples_of_values,
[’MAX’-int,’K’-int,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
max_occ_of_tuples_of_values,
[required(’VECTOR’,var),
size(’VECTOR’)>=2,
strictly_increasing(’VECTOR’),
’MAX’>=1,
’K’>=2,
’K’<size(’VECTOR’),
required(’VECTORS’,vec),
size(’VECTORS’)>=1,
same_size(’VECTORS’,vec)]).

ctr_example(
max_occ_of_tuples_of_values,
max_occ_of_tuples_of_values(

1,
2,
[[vec-[[var-1],[var-2],[var-4]]],
[vec-[[var-2],[var-3],[var-5]]],
[vec-[[var-3],[var-4],[var-6]]],
[vec-[[var-4],[var-5],[var-7]]],
[vec-[[var-1],[var-5],[var-6]]],
[vec-[[var-2],[var-6],[var-7]]],
[vec-[[var-1],[var-3],[var-7]]]])).

ctr_typical(
max_occ_of_tuples_of_values,
[’MAX’=<2,
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size(’VECTOR’)<’K’+5,
’K’=2#\/’K’+1=size(’VECTOR’),
size(’VECTORS’)>2]).

ctr_eval(
max_occ_of_tuples_of_values,
[reformulation(max_occ_of_tuples_of_values_r),
checker(max_occ_of_tuples_of_values_c)]).

ctr_functional_dependency(max_occ_of_tuples_of_values,1,[2,3]).

ctr_contractible(
max_occ_of_tuples_of_values,
[’MAX’=1],
VECTORS,
any).

max_occ_of_tuples_of_values_r(MAX,K,VECTORS) :-
check_type(dvar_gteq(1),MAX),
integer(K),
K>=2,
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
VECTORS=[[vec-VECTOR]|_27962],
length(VECTOR,N),
N>=2,
K<N,
max_occ_of_tuples_of_values_strictly_increasing_vectors(

VECTORS,
1),

generate_subtuples(VECTORS,K,0,SUBTUPLES),
length(MIN0,K),
length(MAX0,K),
get_min_max_vectors(SUBTUPLES,0,K,MIN0,MAX0,MINS,MAXS),
get_max_val_vec_vars(MINS,MAXS,1,MAX_VAL),
MAX_VAL1 is MAX_VAL-1,
create_vectors_vars(SUBTUPLES,MINS,MAXS,MAX_VAL1,VARS),
length(SUBTUPLES,LEN_SUBTUPLES),
MAX#=<LEN_SUBTUPLES,
fd_max(MAX,MAX_MAX),
create_occ_vars(0,MAX_VAL1,MAX_MAX,VALS_OCCS,OCCS),
global_cardinality(VARS,VALS_OCCS),
maximum(MAX,OCCS).

max_occ_of_tuples_of_values_c(MAX,K,VECTORS) :-
( integer(MAX) ->
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MAX>=1
; true
),
integer(K),
K>=2,
collection(VECTORS,[col([int])]),
same_size(VECTORS),
VECTORS=[[vec-VECTOR]|_27968],
length(VECTOR,N),
N>=2,
K<N,
max_occ_of_tuples_of_values_strictly_increasing_vectors(

VECTORS,
0),

generate_subtuples(VECTORS,K,0,SUBTUPLES),
create_pairs(SUBTUPLES,PSUBTUPLES),
keysort(PSUBTUPLES,SORTED),
( integer(MAX) ->

Limit is MAX
; length(SORTED,Limit)
),
get_max_occ_tuples_of_values(SORTED,Limit,0,M),
MAX=M,
MAX>=1.

max_occ_of_tuples_of_values_strictly_increasing_vectors(
[],
_28181) :-

!.

max_occ_of_tuples_of_values_strictly_increasing_vectors(
[[vec-VECTOR]|R],
FLAG) :-

max_occ_of_tuples_of_values_strictly_increasing_vector(
VECTOR,
FLAG),

max_occ_of_tuples_of_values_strictly_increasing_vectors(
R,
FLAG).

max_occ_of_tuples_of_values_strictly_increasing_vector(
[],
_28181) :-

!.

max_occ_of_tuples_of_values_strictly_increasing_vector(
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[_27912],
_28276) :-

!.

max_occ_of_tuples_of_values_strictly_increasing_vector(
[[var-V1],[var-V2]|R],
FLAG) :-

( FLAG=1 ->
V1#<V2

; V1<V2
),
max_occ_of_tuples_of_values_strictly_increasing_vector(

[[var-V2]|R],
FLAG).
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B.251 max size set of consecutive var

♦ META-DATA:

ctr_date(
max_size_set_of_consecutive_var,
[’20030820’,’20040530’,’20060811’]).

ctr_origin(max_size_set_of_consecutive_var,’N.˜Beldiceanu’,[]).

ctr_arguments(
max_size_set_of_consecutive_var,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
max_size_set_of_consecutive_var,
[’MAX’>=1,
’MAX’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
max_size_set_of_consecutive_var,
[max_size_set_of_consecutive_var(

6,
[[var-3],
[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]]),

max_size_set_of_consecutive_var(
2,
[[var-2],[var-6],[var-7],[var-3],[var-0],[var-9]])]).

ctr_typical(
max_size_set_of_consecutive_var,
[’MAX’<size(’VARIABLES’),
size(’VARIABLES’)>0,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
max_size_set_of_consecutive_var,
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[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
max_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MAX_NSCC’=’MAX’],
[]).

ctr_eval(
max_size_set_of_consecutive_var,
[checker(max_size_set_of_consecutive_var_c)]).

ctr_pure_functional_dependency(
max_size_set_of_consecutive_var,
[]).

ctr_functional_dependency(
max_size_set_of_consecutive_var,
1,
[2]).

ctr_sol(max_size_set_of_consecutive_var,2,0,2,9,[1-2,2-7]).

ctr_sol(max_size_set_of_consecutive_var,3,0,3,64,[2-30,3-34]).

ctr_sol(
max_size_set_of_consecutive_var,
4,
0,
4,
625,
[2-168,3-240,4-217]).

ctr_sol(
max_size_set_of_consecutive_var,
5,
0,
5,
7776,
[2-720,3-3080,4-2260,5-1716]).
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ctr_sol(
max_size_set_of_consecutive_var,
6,
0,
6,
117649,
[2-5220,3-35580,4-36030,5-24660,6-16159]).

ctr_sol(
max_size_set_of_consecutive_var,
7,
0,
7,
2097152,
[2-27720,3-426720,4-683550,5-477162,6-305634,7-176366]).

ctr_sol(
max_size_set_of_consecutive_var,
8,
0,
8,
43046721,
[2-249480,
3-6059760,
4-12672940,
5-10592848,
6-7044632,
7-4239424,
8-2187637]).

max_size_set_of_consecutive_var_c(MAX,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MAX),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
samsort(VARS,SVARS),
SVARS=[V|R],
max_size_set_of_consecutive_var_c(R,V,1,0,M),
MAX#=M.

max_size_set_of_consecutive_var_c([V|R],Prev,Occ,MaxOcc,Res) :-
Diff is V-Prev,
Diff=<1,
!,
Occ1 is Occ+1,
max_size_set_of_consecutive_var_c(R,V,Occ1,MaxOcc,Res).
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max_size_set_of_consecutive_var_c([V|R],_76005,Occ,MaxOcc,Res) :-
!,
Max is max(Occ,MaxOcc),
max_size_set_of_consecutive_var_c(R,V,1,Max,Res).

max_size_set_of_consecutive_var_c([],_76005,Occ,MaxOcc,Res) :-
Res is max(Occ,MaxOcc).
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B.252 maximum

♦ META-DATA:

ctr_date(
maximum,
[20000128,
20030820,
20040530,
20041230,
20060811,
20090416]).

ctr_origin(maximum,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(maximum,[max]).

ctr_arguments(
maximum,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
maximum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
maximum,
[maximum(7,[[var-3],[var-2],[var-7],[var-2],[var-6]]),
maximum(1,[[var-0],[var-0],[var-1],[var-0],[var-1]])]).

ctr_typical(
maximum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(maximum,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
maximum,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’MAX’,’VARIABLES’ˆvar])]).

ctr_graph(
maximum,
[’VARIABLES’],
2,
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[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar>variables2ˆvar],
[’ORDER’(0,’MININT’,var)=’MAX’],
[]).

ctr_eval(
maximum,
[builtin(maximum_b),
automaton(maximum_a),
automaton(maximum_ca)]).

ctr_pure_functional_dependency(maximum,[]).

ctr_functional_dependency(maximum,1,[2]).

ctr_aggregate(maximum,[],[max,union]).

ctr_cond_imply(
maximum,
highest_peak,
[first(’VARIABLES’ˆvar)<’MAX’,last(’VARIABLES’ˆvar)<’MAX’],
[],
id).

ctr_sol(maximum,2,0,2,9,[0-1,1-3,2-5]).

ctr_sol(maximum,3,0,3,64,[0-1,1-7,2-19,3-37]).

ctr_sol(maximum,4,0,4,625,[0-1,1-15,2-65,3-175,4-369]).

ctr_sol(
maximum,
5,
0,
5,
7776,
[0-1,1-31,2-211,3-781,4-2101,5-4651]).

ctr_sol(
maximum,
6,
0,
6,
117649,
[0-1,1-63,2-665,3-3367,4-11529,5-31031,6-70993]).
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ctr_sol(
maximum,
7,
0,
7,
2097152,
[0-1,
1-127,
2-2059,
3-14197,
4-61741,
5-201811,
6-543607,
7-1273609]).

ctr_sol(
maximum,
8,
0,
8,
43046721,
[0-1,
1-255,
2-6305,
3-58975,
4-325089,
5-1288991,
6-4085185,
7-11012415,
8-26269505]).

maximum_b(MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar]),
VARIABLES=[_74914|_74915],
get_attr1(VARIABLES,VARS),
maximum(MAX,VARS).

maximum_a(FLAG,MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar]),
VARIABLES=[_74917|_74918],
maximum_signature(VARIABLES,SIGNATURE,MAX),
AUTOMATON=
automaton(
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SIGNATURE,
_76468,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

maximum_signature([],[],_74887).

maximum_signature([[var-VAR]|VARs],[S|Ss],MAX) :-
S in 0..2,
MAX#>VAR#<=>S#=0,
MAX#=VAR#<=>S#=1,
MAX#<VAR#<=>S#=2,
maximum_signature(VARs,Ss,MAX).

maximum_ca(FLAG,MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar]),
maximum_signature1(VARIABLES,VARS,Zeros),
VARS=[VAR1|_74929],
automaton(

VARS,
VARi,
Zeros,
[source(s),sink(s)],
[arc(s,0,s,[max(C,VARi)])],
[C],
[VAR1],
[CC]),

CC#=MAX#<=>FLAG.

maximum_signature1([],[],[]).

maximum_signature1([[var-VAR]|VARs],[VAR|R],[0|S]) :-
maximum_signature1(VARs,R,S).
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B.253 maximum modulo

♦ META-DATA:

ctr_date(
maximum_modulo,
[’20000128’,’20030820’,’20041230’,’20060811’]).

ctr_origin(maximum_modulo,’Derived from %c.’,[maximum]).

ctr_arguments(
maximum_modulo,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
maximum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_example(
maximum_modulo,
maximum_modulo(

5,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)).

ctr_typical(
maximum_modulo,
[’M’>1,
’M’<maxval(’VARIABLES’ˆvar),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(maximum_modulo,[items(’VARIABLES’,all)]).

ctr_graph(
maximum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar mod ’M’>variables2ˆvar mod ’M’],
[’ORDER’(0,’MININT’,var)=’MAX’],
[]).

ctr_pure_functional_dependency(maximum_modulo,[]).
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ctr_functional_dependency(maximum_modulo,1,[2,3]).
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B.254 meet sboxes

♦ META-DATA:

ctr_date(meet_sboxes,[’20070622’,’20090725’]).

ctr_origin(
meet_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(meet_sboxes,[meet]).

ctr_types(
meet_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
meet_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
meet_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
meet_sboxes,
meet_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-3],[v-2]]],
[oid-2,sid-2,x-[[v-4],[v-1]]],
[oid-3,sid-4,x-[[v-3],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-2,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-3,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(meet_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
meet_sboxes,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all)]).

ctr_eval(meet_sboxes,[logic(meet_sboxes_g)]).

ctr_logic(
meet_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(non_overlap_sboxes(Dims,O1,S1,O2,S2)--->
exists(

D,
Dims,
end(O1,S1,D)#=<origin(O2,S2,D)#\/
end(O2,S2,D)#=<origin(O1,S1,D))),

(meet_sboxes(Dims,O1,S1,O2,S2)--->
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exists(
D,
Dims,
end(O1,S1,D)#=origin(O2,S2,D)#\/
end(O2,S2,D)#=origin(O1,S1,D))),

(meet_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
forall(

S2,
sboxes([O2ˆsid]),
non_overlap_sboxes(Dims,O1,S1,O2,S2)))#/\

exists(
S1,
sboxes([O1ˆsid]),
exists(

S2,
sboxes([O2ˆsid]),
meet_sboxes(Dims,O1,S1,O2,S2)))),

(all_meet(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>meet_objects(Dims,O1,O2)))),

all_meet(DIMENSIONS,OIDS)]).

ctr_contractible(meet_sboxes,[],’OBJECTS’,suffix).

ctr_application(meet_sboxes,[3]).

meet_sboxes_g(K,_41795,[],_41797) :-
!,
check_type(int_gteq(1),K).

meet_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(
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SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(meet_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.255 min decreasing slope

♦ META-DATA:

ctr_date(min_decreasing_slope,[’20130317’]).

ctr_origin(min_decreasing_slope,’Motivated by time series.’,[]).

ctr_arguments(
min_decreasing_slope,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_decreasing_slope,
[’MIN’>=0,
’MIN’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var),
size(’VARIABLES’)>0]).

ctr_example(
min_decreasing_slope,
[min_decreasing_slope(

2,
[[var-1],
[var-1],
[var-5],
[var-8],
[var-6],
[var-2],
[var-4],
[var-1],
[var-5]]),

min_decreasing_slope(
0,
[[var-1],
[var-1],
[var-1],
[var-3],
[var-4],
[var-7],
[var-7],
[var-7],
[var-9]]),

min_decreasing_slope(
9,
[[var-1],
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[var-1],
[var-9],
[var-0],
[var-4],
[var-7],
[var-7],
[var-7],
[var-9]])]).

ctr_typical(
min_decreasing_slope,
[’MIN’>1,size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>2]).

ctr_typical_model(
min_decreasing_slope,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_decreasing_slope,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_decreasing_slope,
[checker(min_decreasing_slope_c),
automaton(min_decreasing_slope_a),
automaton_with_signature(min_decreasing_slope_a_s)]).

ctr_pure_functional_dependency(min_decreasing_slope,[]).

ctr_functional_dependency(min_decreasing_slope,1,[2]).

ctr_cond_imply(
min_decreasing_slope,
max_decreasing_slope,
[range(’VARIABLES’ˆvar)=’MIN’+1],
[range(’VARIABLES’ˆvar)=’MAX’+1],
[none,’VARIABLES’]).

ctr_sol(min_decreasing_slope,2,0,2,9,[0-6,1-2,2-1]).

ctr_sol(min_decreasing_slope,3,0,3,64,[0-20,1-22,2-14,3-8]).

ctr_sol(
min_decreasing_slope,
4,
0,
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4,
625,
[0-70,1-256,2-145,3-98,4-56]).

ctr_sol(
min_decreasing_slope,
5,
0,
5,
7776,
[0-252,1-3512,2-1864,3-1062,4-704,5-382]).

ctr_sol(
min_decreasing_slope,
6,
0,
6,
117649,
[0-924,1-56537,2-28728,3-14729,4-8853,5-5266,6-2612]).

ctr_sol(
min_decreasing_slope,
7,
0,
7,
2097152,
[0-3432,
1-1051936,
2-515372,
3-255076,
4-133672,
5-78198,
6-41330,
7-18136]).

ctr_sol(
min_decreasing_slope,
8,
0,
8,
43046721,
[0-12870,
1-22280084,
2-10601773,
3-5106480,
4-2475484,
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5-1369232,
6-730161,
7-341618,
8-129019]).

min_decreasing_slope_c(MIN,VARIABLES) :-
check_type(dvar_gteq(0),MIN),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>0,
min_decreasing_slope_c1(VARS,0,MIN).

min_decreasing_slope_c1([_48784],MIN,MIN) :-
!.

min_decreasing_slope_c1(_48781,1,MIN) :-
!,
MIN=1.

min_decreasing_slope_c1([V1,V2|R],M,MIN) :-
V1=<V2,
!,
min_decreasing_slope_c1([V2|R],M,MIN).

min_decreasing_slope_c1([V1,V2|R],M,MIN) :-
( M=0 ->

N is V1-V2
; N is min(M,V1-V2)
),
min_decreasing_slope_c1([V2|R],N,MIN).

min_decreasing_slope_counters_check(L,[0|S]) :-
min_decreasing_slope_counters_check(L,0,S).

min_decreasing_slope_counters_check([V1,V2|R],M,[M|S]) :-
V1=<V2,
!,
min_decreasing_slope_counters_check([V2|R],M,S).

min_decreasing_slope_counters_check([V1,V2|R],M,[N|S]) :-
!,
( M=0 ->

N is V1-V2
; N is min(M,V1-V2)
),
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min_decreasing_slope_counters_check([V2|R],N,S).

min_decreasing_slope_counters_check([_48781],_48779,[]).

ctr_automaton_signature(
min_decreasing_slope,
min_decreasing_slope_a,
pair_signature(2,signature)).

min_decreasing_slope_a(FLAG,MIN,VARIABLES) :-
check_type(dvar_gteq(0),MIN),
collection(VARIABLES,[dvar]),
min_decreasing_slope_signature(

VARIABLES,
SIGNATURE,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,0,s),
arc(s,1,t,[Di]),
arc(t,0,t),
arc(t,1,t,[min(M,Di)])],

[M],
[0],
[MINIMUM]),

MINIMUM#=MIN#<=>FLAG.

min_decreasing_slope_signature([_48784],[],[]) :-
!.

min_decreasing_slope_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|RS],
[DIFFERENCE|RD]) :-

VAR1#=<VAR2#<=>S#=0,
VAR1#>VAR2#<=>S#=1,
VAR1#=DIFFERENCE+VAR2,
min_decreasing_slope_signature([[var-VAR2]|VARs],RS,RD).

min_decreasing_slope_a_s(FLAG,MIN,VARIABLES,SIGNATURE) :-
check_type(dvar_gteq(0),MIN),
collection(VARIABLES,[dvar]),
difference_decreasing_slope_signature(
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VARIABLES,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,t,[Di]),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t,[min(M,Di)])],

[M],
[0],
[MINIMUM]),

MINIMUM#=MIN#<=>FLAG.
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B.256 min dist between inflexion

♦ META-DATA:

ctr_date(min_dist_between_inflexion,[’20121023’]).

ctr_origin(
min_dist_between_inflexion,
Derived from %c,
[inflexion]).

ctr_arguments(
min_dist_between_inflexion,
[’MINDIST’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_dist_between_inflexion,
[’MINDIST’>=0,
’MINDIST’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_dist_between_inflexion,
min_dist_between_inflexion(

2,
[[var-2],
[var-2],
[var-3],
[var-3],
[var-2],
[var-2],
[var-1],
[var-4],
[var-4],
[var-3]])).

ctr_typical(
min_dist_between_inflexion,
[’MINDIST’>1,size(’VARIABLES’)>3,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(
min_dist_between_inflexion,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_dist_between_inflexion,
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[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_dist_between_inflexion,
[checker(min_dist_between_inflexion_c),
automaton(min_dist_between_inflexion_a),
automaton_with_signature(min_dist_between_inflexion_a_s)]).

ctr_total_relation(min_dist_between_inflexion).

ctr_sol(min_dist_between_inflexion,2,0,2,9,[2-9]).

ctr_sol(min_dist_between_inflexion,3,0,3,64,[3-64]).

ctr_sol(
min_dist_between_inflexion,
4,
0,
4,
1135,
[1-170,2-170,3-170,4-625]).

ctr_sol(
min_dist_between_inflexion,
5,
0,
5,
25444,
[1-3598,2-4690,3-4690,4-4690,5-7776]).

ctr_sol(
min_dist_between_inflexion,
6,
0,
6,
574483,
[1-73794,2-91098,3-97314,4-97314,5-97314,6-117649]).

ctr_sol(
min_dist_between_inflexion,
7,
0,
7,
13287476,
[1-1543512,
2-1819764,
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3-1932012,
4-1965012,
5-1965012,
6-1965012,
7-2097152]).

ctr_sol(
min_dist_between_inflexion,
8,
0,
8,
328156407,
[1-35152278,
2-39992562,
3-41360676,
4-42025560,
5-42192870,
6-42192870,
7-42192870,
8-43046721]).

min_dist_between_inflexion_c(MINDIST,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
check_type(dvar(0,L),MINDIST),
get_attr1(VARIABLES,VARS),
min_dist_between_inflexion_c(VARS,s,L,1,MINDIST).

min_dist_between_inflexion_c([V,V|VARS],s,D,C,MINDIST) :-
!,
min_dist_between_inflexion_c([V|VARS],s,D,C,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],s,D,C,MINDIST) :-
Vi<Vj,
!,
min_dist_between_inflexion_c([Vj|VARS],i0,D,C,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],s,D,C,MINDIST) :-
Vi>Vj,
!,
min_dist_between_inflexion_c([Vj|VARS],d0,D,C,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],i0,D,C,MINDIST) :-
Vi=<Vj,
!,
min_dist_between_inflexion_c([Vj|VARS],i0,D,C,MINDIST).
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min_dist_between_inflexion_c([Vi,Vj|VARS],i0,D,C,MINDIST) :-
Vi>Vj,
!,
min_dist_between_inflexion_c([Vj|VARS],d1,D,C,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],d0,D,C,MINDIST) :-
Vi>=Vj,
!,
min_dist_between_inflexion_c([Vj|VARS],d0,D,C,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],d0,D,C,MINDIST) :-
Vi<Vj,
!,
min_dist_between_inflexion_c([Vj|VARS],i1,D,C,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],d1,D,C,MINDIST) :-
Vi>=Vj,
!,
C1 is C+1,
min_dist_between_inflexion_c([Vj|VARS],d1,D,C1,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],d1,D,C,MINDIST) :-
Vi<Vj,
!,
D1 is min(D,C),
min_dist_between_inflexion_c([Vj|VARS],i1,D1,1,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],i1,D,C,MINDIST) :-
Vi=<Vj,
!,
C1 is C+1,
min_dist_between_inflexion_c([Vj|VARS],i1,D,C1,MINDIST).

min_dist_between_inflexion_c([Vi,Vj|VARS],i1,D,C,MINDIST) :-
Vi>Vj,
!,
D1 is min(D,C),
min_dist_between_inflexion_c([Vj|VARS],d1,D1,1,MINDIST).

min_dist_between_inflexion_c(_45979,_45980,D,_45982,MINDIST) :-
( integer(MINDIST) ->

MINDIST>=D
; MINDIST#=D
).
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ctr_automaton_signature(
min_dist_between_inflexion,
min_dist_between_inflexion_a,
pair_signature(2,signature)).

min_dist_between_inflexion_a(FLAG,MINDIST,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
min_dist_between_inflexion_a_s(

FLAG,
MINDIST,
VARIABLES,
SIGNATURE).

min_dist_between_inflexion_a_s(
FLAG,
MINDIST,
VARIABLES,
SIGNATURE) :-

collection(VARIABLES,[dvar]),
length(VARIABLES,L),
check_type(dvar(0,L),MINDIST),
automaton(

SIGNATURE,
_47856,
SIGNATURE,
[source(s),
sink(s),
sink(i0),
sink(d0),
sink(i1),
sink(d1)],

[arc(s,1,s),
arc(s,0,i0),
arc(s,2,d0),
arc(i0,1,i0),
arc(i0,0,i0),
arc(i0,2,d1),
arc(d0,1,d0),
arc(d0,0,i1),
arc(d0,2,d0),
arc(i1,1,i1,[D,C+1]),
arc(i1,0,i1,[D,C+1]),
arc(i1,2,d1,[min(D,C),1]),
arc(d1,1,d1,[D,C+1]),
arc(d1,0,i1,[min(D,C),1]),
arc(d1,2,d1,[D,C+1])],
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[D,C],
[L,1],
[DIST,_46206]),

MINDIST#>=DIST#<=>FLAG,
( integer(MINDIST) ->

true
; FLAG=0 ->

true
; MINDIST#=DIST
).
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B.257 min increasing slope

♦ META-DATA:

ctr_date(min_increasing_slope,[’20130315’]).

ctr_origin(min_increasing_slope,’Motivated by time series.’,[]).

ctr_arguments(
min_increasing_slope,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_increasing_slope,
[’MIN’>=0,
’MIN’<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var),
size(’VARIABLES’)>0]).

ctr_example(
min_increasing_slope,
[min_increasing_slope(

3,
[[var-1],
[var-1],
[var-5],
[var-8],
[var-6],
[var-2],
[var-2],
[var-1],
[var-5]]),

min_increasing_slope(
0,
[[var-8],[var-8],[var-2],[var-0],[var-0]]),

min_increasing_slope(
9,
[[var-1],[var-1],[var-0],[var-9],[var-6]])]).

ctr_typical(
min_increasing_slope,
[’MIN’>1,size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>2]).

ctr_typical_model(
min_increasing_slope,
[nval(’VARIABLES’ˆvar)>2]).
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ctr_exchangeable(
min_increasing_slope,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_increasing_slope,
[checker(min_increasing_slope_c),
automaton(min_increasing_slope_a),
automaton_with_signature(min_increasing_slope_a_s)]).

ctr_pure_functional_dependency(min_increasing_slope,[]).

ctr_functional_dependency(min_increasing_slope,1,[2]).

ctr_cond_imply(
min_increasing_slope,
max_increasing_slope,
[range(’VARIABLES’ˆvar)=’MIN’+1],
[range(’VARIABLES’ˆvar)=’MAX’+1],
[none,’VARIABLES’]).

ctr_sol(min_increasing_slope,2,0,2,9,[0-6,1-2,2-1]).

ctr_sol(min_increasing_slope,3,0,3,64,[0-20,1-22,2-14,3-8]).

ctr_sol(
min_increasing_slope,
4,
0,
4,
625,
[0-70,1-256,2-145,3-98,4-56]).

ctr_sol(
min_increasing_slope,
5,
0,
5,
7776,
[0-252,1-3512,2-1864,3-1062,4-704,5-382]).

ctr_sol(
min_increasing_slope,
6,
0,
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6,
117649,
[0-924,1-56537,2-28728,3-14729,4-8853,5-5266,6-2612]).

ctr_sol(
min_increasing_slope,
7,
0,
7,
2097152,
[0-3432,
1-1051936,
2-515372,
3-255076,
4-133672,
5-78198,
6-41330,
7-18136]).

ctr_sol(
min_increasing_slope,
8,
0,
8,
43046721,
[0-12870,
1-22280084,
2-10601773,
3-5106480,
4-2475484,
5-1369232,
6-730161,
7-341618,
8-129019]).

min_increasing_slope_c(MIN,VARIABLES) :-
check_type(dvar_gteq(0),MIN),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
N>0,
min_increasing_slope_c1(VARS,0,MIN).

min_increasing_slope_c1([_48552],MIN,MIN) :-
!.
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min_increasing_slope_c1(_48549,1,MIN) :-
!,
MIN=1.

min_increasing_slope_c1([V1,V2|R],M,MIN) :-
V1>=V2,
!,
min_increasing_slope_c1([V2|R],M,MIN).

min_increasing_slope_c1([V1,V2|R],M,MIN) :-
( M=0 ->

N is V2-V1
; N is min(M,V2-V1)
),
min_increasing_slope_c1([V2|R],N,MIN).

min_increasing_slope_counters_check(L,[0|S]) :-
min_increasing_slope_counters_check(L,0,S).

min_increasing_slope_counters_check([V1,V2|R],M,[M|S]) :-
V1>=V2,
!,
min_increasing_slope_counters_check([V2|R],M,S).

min_increasing_slope_counters_check([V1,V2|R],M,[N|S]) :-
!,
( M=0 ->

N is V2-V1
; N is min(M,V2-V1)
),
min_increasing_slope_counters_check([V2|R],N,S).

min_increasing_slope_counters_check([_48549],_48547,[]).

ctr_automaton_signature(
min_increasing_slope,
min_increasing_slope_a,
pair_signature(2,signature)).

min_increasing_slope_a(FLAG,MIN,VARIABLES) :-
check_type(dvar_gteq(0),MIN),
collection(VARIABLES,[dvar]),
min_increasing_slope_signature(

VARIABLES,
SIGNATURE,
DIFFERENCES),
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automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,0,s),
arc(s,1,t,[Di]),
arc(t,0,t),
arc(t,1,t,[min(M,Di)])],

[M],
[0],
[MINIMUM]),

MINIMUM#=MIN#<=>FLAG.

min_increasing_slope_signature([_48552],[],[]) :-
!.

min_increasing_slope_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|RS],
[DIFFERENCE|RD]) :-

VAR1#>=VAR2#<=>S#=0,
VAR1#<VAR2#<=>S#=1,
VAR2#=DIFFERENCE+VAR1,
min_increasing_slope_signature([[var-VAR2]|VARs],RS,RD).

min_increasing_slope_a_s(FLAG,MIN,VARIABLES,SIGNATURE) :-
check_type(dvar_gteq(0),MIN),
collection(VARIABLES,[dvar]),
difference_increasing_slope_signature(

VARIABLES,
DIFFERENCES),

automaton(
DIFFERENCES,
Di,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,1,s),
arc(s,2,s),
arc(s,0,t,[Di]),
arc(t,1,t),
arc(t,2,t),
arc(t,0,t,[min(M,Di)])],

[M],
[0],
[MINIMUM]),
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MINIMUM#=MIN#<=>FLAG.
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B.258 min index

♦ META-DATA:

ctr_date(
min_index,
[’20030820’,’20040530’,’20041230’,’20060811’]).

ctr_origin(min_index,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_index,
[’MIN_INDEX’-dvar,
’VARIABLES’-collection(index-int,var-dvar)]).

ctr_restrictions(
min_index,
[size(’VARIABLES’)>0,
’MIN_INDEX’>=0,
’MIN_INDEX’=<size(’VARIABLES’),
required(’VARIABLES’,[index,var]),
’VARIABLES’ˆindex>=1,
’VARIABLES’ˆindex=<size(’VARIABLES’),
distinct(’VARIABLES’,index)]).

ctr_example(
min_index,
[min_index(

2,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]]),

min_index(
4,
[[index-1,var-3],
[index-2,var-2],
[index-3,var-7],
[index-4,var-2],
[index-5,var-6]])]).

ctr_typical(
min_index,
[size(’VARIABLES’)>0,range(’VARIABLES’ˆvar)>1]).
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ctr_exchangeable(
min_index,
[items(’VARIABLES’,all),translate([’VARIABLES’ˆvar])]).

ctr_graph(
min_index,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar<variables2ˆvar],
[’ORDER’(0,0,index)=’MIN_INDEX’],
[]).
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B.259 min n

♦ META-DATA:

ctr_date(
min_n,
[’20000128’,’20030820’,’20040530’,’20041230’,’20060811’]).

ctr_origin(min_n,’\\cite{Beldiceanu01}’,[]).

ctr_arguments(
min_n,
[’MIN’-dvar,’RANK’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_n,
[size(’VARIABLES’)>0,
’RANK’>=0,
’RANK’<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_n,
min_n(3,1,[[var-3],[var-1],[var-7],[var-1],[var-6]])).

ctr_typical(
min_n,
[’RANK’>0,
’RANK’<3,
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(min_n,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_n,
[items(’VARIABLES’,all),
translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_graph(
min_n,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar<variables2ˆvar],
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[’ORDER’(’RANK’,’MAXINT’,var)=’MIN’],
[]).

ctr_eval(min_n,[checker(min_n_c),reformulation(min_n_r)]).

ctr_pure_functional_dependency(min_n,[]).

ctr_functional_dependency(min_n,1,[2,3]).

ctr_cond_imply(
min_n,
atleast,
[],
[’N’=1],
[none,’VARIABLES’,’MIN’]).

ctr_cond_imply(
min_n,
minimum_greater_than,
[’RANK’=1,minval(’VARIABLES’ˆvar)=1],
[],
id).

min_n_c(MIN,RANK,VARIABLES) :-
length(VARIABLES,N),
N>0,
N1 is N-1,
check_type(dvar,MIN),
check_type(int(0,N1),RANK),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
nth0(RANK,SVARS,MIN).

min_n_r(MIN,RANK,VARIABLES) :-
length(VARIABLES,N),
N>0,
N1 is N-1,
check_type(dvar,MIN),
check_type(int(0,N1),RANK),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
create_collection([MIN],var,VMIN),
create_collection(VARS,val,VALUES),
eval(among_var(1,VMIN,VALUES)),
NVAL in 0..N,
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eval(nvalue(NVAL,VARIABLES)),
length(RANKS,N),
domain(RANKS,0,N1),
min_n1(VARS,RANKS,MIN,RANK,NVAL).

min_n1([],[],_47302,_47303,_47304).

min_n1([V|RV],[R|RR],MIN,RANK,NVAL) :-
R#<NVAL,
R#=RANK#<=>V#=MIN,
min_n2(RV,RR,V,R),
min_n1(RV,RR,MIN,RANK,NVAL).

min_n2([],[],_47302,_47303).

min_n2([Vj|RV],[Rj|RR],Vi,Ri) :-
Vi#<Vj#<=>Ri#<Rj,
Vi#=Vj#<=>Ri#=Rj,
Vi#>Vj#<=>Ri#>Rj,
min_n2(RV,RR,Vi,Ri).
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B.260 min nvalue

♦ META-DATA:

ctr_date(min_nvalue,[’20000128’,’20030820’,’20060811’]).

ctr_origin(min_nvalue,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_nvalue,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_nvalue,
[’MIN’>=1,
’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_nvalue,
[min_nvalue(

2,
[[var-9],
[var-1],
[var-7],
[var-1],
[var-1],
[var-7],
[var-7],
[var-7],
[var-7],
[var-9]]),

min_nvalue(5,[[var-8],[var-8],[var-8],[var-8],[var-8]]),
min_nvalue(2,[[var-1],[var-8],[var-1],[var-8],[var-1]])]).

ctr_typical(
min_nvalue,
[2*’MIN’=<size(’VARIABLES’),
size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
min_nvalue,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).



3381

ctr_graph(
min_nvalue,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MIN_NSCC’=’MIN’],
[]).

ctr_eval(
min_nvalue,
[checker(min_nvalue_c),reformulation(min_nvalue_r)]).

ctr_pure_functional_dependency(min_nvalue,[]).

ctr_functional_dependency(min_nvalue,1,[2]).

ctr_cond_imply(
min_nvalue,
atleast_nvalue,
[’MIN’<size(’VARIABLES’)],
[’NVAL’=2],
[none,’VARIABLES’]).

ctr_sol(min_nvalue,2,0,2,9,[1-6,2-3]).

ctr_sol(min_nvalue,3,0,3,64,[1-60,3-4]).

ctr_sol(min_nvalue,4,0,4,625,[1-560,2-60,4-5]).

ctr_sol(min_nvalue,5,0,5,7776,[1-7470,2-300,5-6]).

ctr_sol(min_nvalue,6,0,6,117649,[1-113442,2-3780,3-420,6-7]).

ctr_sol(
min_nvalue,
7,
0,
7,
2097152,
[1-2058728,2-36456,3-1960,7-8]).

ctr_sol(
min_nvalue,
8,
0,
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8,
43046721,
[1-42473664,2-566496,3-4032,4-2520,8-9]).

min_nvalue_c(0,[]) :-
!.

min_nvalue_c(MIN,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MIN),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
samsort(VARS,SVARS),
SVARS=[V|R],
min_nvalue_seq_size(R,1,V,N,M),
MIN#=M.

min_nvalue_seq_size([],C,_81666,Best,Res) :-
!,
Res is min(C,Best).

min_nvalue_seq_size([V|R],C,V,Best,Res) :-
!,
C1 is C+1,
min_nvalue_seq_size(R,C1,V,Best,Res).

min_nvalue_seq_size([V|R],C,Prev,Best,Res) :-
C>0,
V=\=Prev,
NewBest is min(C,Best),
min_nvalue_seq_size(R,1,V,NewBest,Res).

min_nvalue_r(0,[]) :-
!.

min_nvalue_r(MIN,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MIN),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
union_dom_list_int(VARS,UnionDomainsVARS),
NSquare is N*N,
length(UnionDomainsVARS,SizeUnion),
( SizeUnion=<NSquare ->

balance1(UnionDomainsVARS,N,VALS,_OCCS,OCCS1),
eval(global_cardinality(VARIABLES,VALS))
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; balance2(VARS,N,VARS,OCCS1)
),
eval(minimum(MIN,OCCS1)).
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B.261 min size full zero stretch

♦ META-DATA:

ctr_date(min_size_full_zero_stretch,[’20121023’]).

ctr_origin(
min_size_full_zero_stretch,
Derived from the unit commitment problem,
[]).

ctr_arguments(
min_size_full_zero_stretch,
[’MINSIZE’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_size_full_zero_stretch,
[’MINSIZE’>=0,
’MINSIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_size_full_zero_stretch,
min_size_full_zero_stretch(

2,
[[var-0],
[var-2],
[var-0],
[var-0],
[var-0],
[var-2],
[var-1],
[var-0],
[var-0],
[var-3]])).

ctr_typical(
min_size_full_zero_stretch,
[size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)-among_diff_0(’VARIABLES’ˆvar)>1]).

ctr_typical_model(
min_size_full_zero_stretch,
[atleast(2,’VARIABLES’,0)]).
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ctr_exchangeable(
min_size_full_zero_stretch,
[items(’VARIABLES’,reverse),
vals(

[’VARIABLES’ˆvar],
int(=\=(0)),
=\=,
dontcare,
dontcare)]).

ctr_eval(
min_size_full_zero_stretch,
[checker(min_size_full_zero_stretch_c),
automaton(min_size_full_zero_stretch_a)]).

ctr_total_relation(min_size_full_zero_stretch).

ctr_sol(min_size_full_zero_stretch,2,0,2,9,[2-9]).

ctr_sol(min_size_full_zero_stretch,3,0,3,82,[1-9,2-9,3-64]).

ctr_sol(
min_size_full_zero_stretch,
4,
0,
4,
1137,
[1-160,2-176,3-176,4-625]).

ctr_sol(
min_size_full_zero_stretch,
5,
0,
5,
19026,
[1-2575,2-2875,3-2900,4-2900,5-7776]).

ctr_sol(
min_size_full_zero_stretch,
6,
0,
6,
364033,
[1-45072,2-49932,3-50436,4-50472,5-50472,6-117649]).

ctr_sol(
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min_size_full_zero_stretch,
7,
0,
7,
7850291,
[1-882441,
2-966672,
3-975394,
4-976178,
5-976227,
6-976227,
7-2097152]).

ctr_sol(
min_size_full_zero_stretch,
8,
0,
8,
188987201,
[1-19330432,
2-20958912,
3-21117888,
4-21132416,
5-21133568,
6-21133632,
7-21133632,
8-43046721]).

min_size_full_zero_stretch_a(FLAG,MINSIZE,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
check_type(dvar(0,L),MINSIZE),
min_size_full_zero_stretch_signature(

VARIABLES,
SIGNATURE),

automaton(
SIGNATURE,
_47129,
SIGNATURE,
[source(s),sink(s),sink(i),sink(j)],
[arc(s,0,s),
arc(s,1,i),
arc(i,1,i),
arc(i,0,j,[M,C+1]),
arc(j,0,j,[M,C+1]),
arc(j,1,i,[min(M,C),0])],
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[M,C],
[L,0],
[MIN,_45578]),

MINSIZE#>=MIN#<=>FLAG,
( integer(MINSIZE) ->

true
; FLAG=0 ->

true
; MINSIZE#=MIN
).

min_size_full_zero_stretch_signature([],[]).

min_size_full_zero_stretch_signature([[var-VAR]|VARs],[S|Ss]) :-
VAR#\=0#<=>S,
min_size_full_zero_stretch_signature(VARs,Ss).

min_size_full_zero_stretch_c(MINSIZE,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
check_type(dvar(0,L),MINSIZE),
get_attr1(VARIABLES,VARS),
min_size_full_zero_stretch_c(VARS,s,L,0,MINSIZE).

min_size_full_zero_stretch_c([0|R],s,M,C,MINSIZE) :-
!,
min_size_full_zero_stretch_c(R,s,M,C,MINSIZE).

min_size_full_zero_stretch_c([_45437|R],s,M,C,MINSIZE) :-
!,
min_size_full_zero_stretch_c(R,i,M,C,MINSIZE).

min_size_full_zero_stretch_c([0|R],i,M,C,MINSIZE) :-
!,
C1 is C+1,
min_size_full_zero_stretch_c(R,j,M,C1,MINSIZE).

min_size_full_zero_stretch_c([_45437|R],i,M,C,MINSIZE) :-
!,
min_size_full_zero_stretch_c(R,i,M,C,MINSIZE).

min_size_full_zero_stretch_c([0|R],j,M,C,MINSIZE) :-
!,
C1 is C+1,
min_size_full_zero_stretch_c(R,j,M,C1,MINSIZE).
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min_size_full_zero_stretch_c([_45437|R],j,M,C,MINSIZE) :-
!,
M1 is min(M,C),
min_size_full_zero_stretch_c(R,i,M1,0,MINSIZE).

min_size_full_zero_stretch_c([],_45433,M,_45435,MINSIZE) :-
( integer(MINSIZE) ->

MINSIZE>=M
; MINSIZE#=M
).
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B.262 min size set of consecutive var

♦ META-DATA:

ctr_date(
min_size_set_of_consecutive_var,
[’20030820’,’20040530’,’20060811’]).

ctr_origin(min_size_set_of_consecutive_var,’N.˜Beldiceanu’,[]).

ctr_arguments(
min_size_set_of_consecutive_var,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_size_set_of_consecutive_var,
[’MIN’>=1,
’MIN’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
min_size_set_of_consecutive_var,
[min_size_set_of_consecutive_var(

4,
[[var-3],
[var-1],
[var-3],
[var-7],
[var-4],
[var-1],
[var-2],
[var-8],
[var-7],
[var-6]]),

min_size_set_of_consecutive_var(
4,
[[var-3],[var-1],[var-3],[var-2]])]).

ctr_typical(
min_size_set_of_consecutive_var,
[’MIN’>1,
’MIN’<size(’VARIABLES’),
size(’VARIABLES’)>0,
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
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min_size_set_of_consecutive_var,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
min_size_set_of_consecutive_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’MIN_NSCC’=’MIN’],
[]).

ctr_eval(
min_size_set_of_consecutive_var,
[checker(min_size_set_of_consecutive_var_c)]).

ctr_pure_functional_dependency(
min_size_set_of_consecutive_var,
[]).

ctr_functional_dependency(
min_size_set_of_consecutive_var,
1,
[2]).

ctr_sol(min_size_set_of_consecutive_var,2,0,2,9,[1-2,2-7]).

ctr_sol(min_size_set_of_consecutive_var,3,0,3,64,[1-30,3-34]).

ctr_sol(
min_size_set_of_consecutive_var,
4,
0,
4,
625,
[1-276,2-132,4-217]).

ctr_sol(
min_size_set_of_consecutive_var,
5,
0,
5,
7776,
[1-3580,2-2480,5-1716]).



3391

ctr_sol(
min_size_set_of_consecutive_var,
6,
0,
6,
117649,
[1-57000,2-30990,3-13500,6-16159]).

ctr_sol(
min_size_set_of_consecutive_var,
7,
0,
7,
2097152,
[1-1065834,2-522522,3-332430,7-176366]).

ctr_sol(
min_size_set_of_consecutive_var,
8,
0,
8,
43046721,
[1-22894984,2-11080412,3-4590208,4-2293480,8-2187637]).

min_size_set_of_consecutive_var_c(MIN,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(1,N),MIN),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
samsort(VARS,SVARS),
SVARS=[V|R],
min_size_set_of_consecutive_var_c(R,V,1,N,M),
MIN#=M.

min_size_set_of_consecutive_var_c([V|R],Prev,Occ,MinOcc,Res) :-
Diff is V-Prev,
Diff=<1,
!,
Occ1 is Occ+1,
min_size_set_of_consecutive_var_c(R,V,Occ1,MinOcc,Res).

min_size_set_of_consecutive_var_c([V|R],_75649,Occ,MinOcc,Res) :-
!,
Min is min(Occ,MinOcc),
min_size_set_of_consecutive_var_c(R,V,1,Min,Res).
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min_size_set_of_consecutive_var_c([],_75649,Occ,MinOcc,Res) :-
Res is min(Occ,MinOcc).
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B.263 min surf peak

♦ META-DATA:

ctr_date(min_surf_peak,[’20141110’]).

ctr_origin(min_surf_peak,’derived from %c’,[peak]).

ctr_arguments(
min_surf_peak,
[’MIN_SURF’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_surf_peak,
[’MIN_SURF’>=0,
’MIN_SURF’=<sum(’VARIABLES’ˆvar),
required(’VARIABLES’,var)]).

ctr_example(
min_surf_peak,
[min_surf_peak(

12,
[[var-4],
[var-4],
[var-2],
[var-2],
[var-3],
[var-5],
[var-5],
[var-6],
[var-3],
[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-1]]),

min_surf_peak(
35,
[[var-4],
[var-6],
[var-7],
[var-9],
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[var-8],
[var-5],
[var-4]]),

min_surf_peak(
0,
[[var-4],
[var-4],
[var-2],
[var-0],
[var-0],
[var-4],
[var-5]])]).

ctr_typical(min_surf_peak,[’MIN_SURF’>1,size(’VARIABLES’)>2]).

ctr_typical_model(min_surf_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_surf_peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_surf_peak,
[checker(min_surf_peak_c),automaton(min_surf_peak_a)]).

ctr_pure_functional_dependency(min_surf_peak,[]).

ctr_functional_dependency(min_surf_peak,1,[2]).

min_surf_peak_c(0,[]) :-
!.

min_surf_peak_c(MIN_SURF,VARIABLES) :-
check_type(dvar,MIN_SURF),
MIN_SURF#>=0,
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
get_sum(VARS,SUM),
MIN_SURF#=<SUM,
min_surf_peak_c(VARS,s,1,SUM,0,0,MIN_SURF).

min_surf_peak_c([VAR1,VAR2|R],s,I,S,C,D,MIN_SURF) :-
VAR1>=VAR2,
!,
I1 is I+1,
min_surf_peak_c([VAR2|R],s,I1,S,C,D,MIN_SURF).
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min_surf_peak_c([_VAR1,VAR2|R],s,I,S,C,_D,MIN_SURF) :-
!,
I1 is I+1,
min_surf_peak_c([VAR2|R],j,I1,S,C,VAR2,MIN_SURF).

min_surf_peak_c([VAR1,VAR2|R],j,I,S,C,D,MIN_SURF) :-
VAR1=<VAR2,
!,
I1 is I+1,
D1 is D+VAR2,
min_surf_peak_c([VAR2|R],j,I1,S,C,D1,MIN_SURF).

min_surf_peak_c([_VAR1,VAR2|R],j,I,S,_C,D,MIN_SURF) :-
!,
I1 is I+1,
min_surf_peak_c([VAR2|R],k,I1,S,D,0,MIN_SURF).

min_surf_peak_c([VAR1,VAR2|R],k,I,S,C,D,MIN_SURF) :-
VAR1=VAR2,
!,
I1 is I+1,
D1 is D+VAR1,
min_surf_peak_c([VAR2|R],k,I1,S,C,D1,MIN_SURF).

min_surf_peak_c([VAR1,VAR2|R],k,I,S,C,D,MIN_SURF) :-
VAR1>VAR2,
!,
I1 is I+1,
C1 is C+D+VAR1,
min_surf_peak_c([VAR2|R],k,I1,S,C1,0,MIN_SURF).

min_surf_peak_c([_VAR1,VAR2|R],k,I,S,C,_D,MIN_SURF) :-
!,
I1 is I+1,
S1 is min(S,C),
min_surf_peak_c([VAR2|R],j,I1,S1,C,VAR2,MIN_SURF).

min_surf_peak_c([_28137],_28131,_28132,S,C,_28135,MIN_SURF) :-
MIN_SURF#=min(S,C).

min_surf_peak_a(FLAG,MIN_SURF,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
min_surf_peak_a_s(FLAG,MIN_SURF,VARIABLES,SIGNATURE).

min_surf_peak_a_s(FLAG,MIN_SURF,VARIABLES,SIGNATURE) :-



3396 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

check_type(dvar,MIN_SURF),
length(VARIABLES,N),
( N=0 ->

Sn=0,
Cn=0

; MIN_SURF#>=0,
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
get_sum(VARS,SUM),
MIN_SURF#=<SUM,
gen_pairs(VARS,PAIRS),
automaton(

PAIRS,
VAR1-VAR2,
SIGNATURE,
[source(s),sink(s),sink(j),sink(k)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,j,[S,C,VAR2]),
arc(j,2,k,[S,D,0]),
arc(j,1,j,[S,C,D+VAR2]),
arc(j,0,j,[S,C,D+VAR2]),
arc(k,2,k,[S,C+D+VAR1,0]),
arc(k,1,k,[S,C,D+VAR1]),
arc(k,0,j,[min(S,C),C,VAR2])],
[S,C,D],
[SUM,0,0],
[Sn,Cn,_28400])

),
MIN_SURF#=min(Sn,Cn)#<=>FLAG.



3397

B.264 min width peak

♦ META-DATA:

ctr_date(min_width_peak,[’20121201’]).

ctr_origin(min_width_peak,’derived from %c’,[peak]).

ctr_synonyms(min_width_peak,[min_base_peak]).

ctr_arguments(
min_width_peak,
[’MIN_WIDTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_width_peak,
[’MIN_WIDTH’>=0,
’MIN_WIDTH’=<size(’VARIABLES’)-2,
required(’VARIABLES’,var)]).

ctr_example(
min_width_peak,
[min_width_peak(

5,
[[var-4],
[var-4],
[var-2],
[var-2],
[var-3],
[var-5],
[var-5],
[var-6],
[var-3],
[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-1]]),

min_width_peak(
5,
[[var-4],
[var-6],
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[var-7],
[var-9],
[var-8],
[var-5],
[var-4]]),

min_width_peak(
0,
[[var-4],
[var-4],
[var-2],
[var-0],
[var-0],
[var-4],
[var-5]])]).

ctr_typical(min_width_peak,[’MIN_WIDTH’>1,size(’VARIABLES’)>2]).

ctr_typical_model(min_width_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_width_peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_width_peak,
[checker(min_width_peak_c),
automaton(min_width_peak_a),
automaton_with_signature(min_width_peak_a_s)]).

ctr_pure_functional_dependency(min_width_peak,[]).

ctr_functional_dependency(min_width_peak,1,[2]).

ctr_sol(min_width_peak,2,0,2,9,[0-9]).

ctr_sol(min_width_peak,3,0,3,64,[0-50,1-14]).

ctr_sol(min_width_peak,4,0,4,625,[0-295,1-230,2-100]).

ctr_sol(min_width_peak,5,0,5,7776,[0-1792,1-3205,2-2100,3-679]).

ctr_sol(
min_width_peak,
6,
0,
6,
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117649,
[0-11088,1-56637,2-28420,3-17024,4-4480]).

ctr_sol(
min_width_peak,
7,
0,
7,
2097152,
[0-69498,1-1174398,2-424928,3-268722,4-130452,5-29154]).

ctr_sol(
min_width_peak,
8,
0,
8,
43046721,
[0-439791,
1-26327058,
2-9363060,
3-3413256,
4-2345982,
5-968946,
6-188628]).

min_width_peak_c(0,[]) :-
!.

min_width_peak_c(MIN_WIDTH,VARIABLES) :-
check_type(dvar,MIN_WIDTH),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
min_width_peak_c(VARS,s,1,0,N,0,N,MIN_WIDTH).

min_width_peak_c([VAR1,VAR2|R],s,I,C,W,F,N,MIN_WIDTH) :-
VAR1>=VAR2,
!,
I1 is I+1,
min_width_peak_c([VAR2|R],s,I1,C,W,F,N,MIN_WIDTH).

min_width_peak_c([VAR1,VAR2|R],s,I,C,W,_47615,N,MIN_WIDTH) :-
VAR1<VAR2,
!,
I1 is I+1,
min_width_peak_c([VAR2|R],j,I1,C,W,I,N,MIN_WIDTH).
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min_width_peak_c([VAR1,VAR2|R],j,I,C,W,F,N,MIN_WIDTH) :-
VAR1=<VAR2,
!,
I1 is I+1,
min_width_peak_c([VAR2|R],j,I1,C,W,F,N,MIN_WIDTH).

min_width_peak_c([VAR1,VAR2|R],j,I,_47613,W,F,N,MIN_WIDTH) :-
VAR1>VAR2,
!,
I1 is I+1,
C1 is I-F,
min_width_peak_c([VAR2|R],k,I1,C1,W,F,N,MIN_WIDTH).

min_width_peak_c([VAR1,VAR2|R],k,I,C,W,F,N,MIN_WIDTH) :-
VAR1=VAR2,
!,
I1 is I+1,
min_width_peak_c([VAR2|R],k,I1,C,W,F,N,MIN_WIDTH).

min_width_peak_c([VAR1,VAR2|R],k,I,_47613,W,F,N,MIN_WIDTH) :-
VAR1>VAR2,
!,
I1 is I+1,
C1 is I-F,
min_width_peak_c([VAR2|R],k,I1,C1,W,F,N,MIN_WIDTH).

min_width_peak_c([VAR1,VAR2|R],k,I,C,W,_47615,N,MIN_WIDTH) :-
VAR1<VAR2,
!,
I1 is I+1,
W1 is min(W,C),
min_width_peak_c([VAR2|R],j,I1,C,W1,I,N,MIN_WIDTH).

min_width_peak_c(
[_47618],
_48018,
_48065,
C,
W,
_48202,
_48249,
MIN_WIDTH) :-

MIN_WIDTH#=min(W,C).

min_width_peak_counters_check(VARS,N,[0|COUNTERS]) :-
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min_width_peak_counters_check(
VARS,
s,
1,
0,
N,
0,
N,
COUNTERS).

min_width_peak_counters_check(
[VAR1,VAR2|R],
s,
I,
C,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1>=VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_peak_counters_check(

[VAR2|R],
s,
I1,
C,
W,
F,
N,
REST).

min_width_peak_counters_check(
[VAR1,VAR2|R],
s,
I,
C,
W,
_48290,
N,
[MIN_WIDTH|REST]) :-

VAR1<VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
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min_width_peak_counters_check(
[VAR2|R],
j,
I1,
C,
W,
I,
N,
REST).

min_width_peak_counters_check(
[VAR1,VAR2|R],
j,
I,
C,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1=<VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_peak_counters_check(

[VAR2|R],
j,
I1,
C,
W,
F,
N,
REST).

min_width_peak_counters_check(
[VAR1,VAR2|R],
j,
I,
_48211,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1>VAR2,
!,
I1 is I+1,
C1 is I-F,
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MIN_WIDTH#=min(W,C1),
min_width_peak_counters_check(

[VAR2|R],
k,
I1,
C1,
W,
F,
N,
REST).

min_width_peak_counters_check(
[VAR1,VAR2|R],
k,
I,
C,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1=VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_peak_counters_check(

[VAR2|R],
k,
I1,
C,
W,
F,
N,
REST).

min_width_peak_counters_check(
[VAR1,VAR2|R],
k,
I,
_48211,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1>VAR2,
!,
I1 is I+1,
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C1 is I-F,
MIN_WIDTH#=min(W,C1),
min_width_peak_counters_check(

[VAR2|R],
k,
I1,
C1,
W,
F,
N,
REST).

min_width_peak_counters_check(
[VAR1,VAR2|R],
k,
I,
C,
W,
_48301,
N,
[MIN_WIDTH|REST]) :-

VAR1<VAR2,
!,
I1 is I+1,
W1 is min(W,C),
MIN_WIDTH#=min(W1,C),
min_width_peak_counters_check(

[VAR2|R],
j,
I1,
C,
W1,
I,
N,
REST).

min_width_peak_counters_check(
[_47615],
_47991,
_48038,
_48085,
_48132,
_48179,
_48226,
[]).
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ctr_automaton_signature(
min_width_peak,
min_width_peak_a,
pair_signature(2,signature)).

min_width_peak_a(FLAG,MIN_WIDTH,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
min_width_peak_a_s(FLAG,MIN_WIDTH,VARIABLES,SIGNATURE).

min_width_peak_a_s(FLAG,MIN_WIDTH,VARIABLES,SIGNATURE) :-
check_type(dvar,MIN_WIDTH),
length(VARIABLES,N),
( N=0 ->

Wn=0,
Cn=0

; collection(VARIABLES,[dvar]),
pair_index_signature(VARIABLES,1,INDICES),
automaton(

INDICES,
I,
SIGNATURE,
[source(s),sink(s),sink(j),sink(k)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,j,[C,W,I]),
arc(j,2,k,[I-F,W,F]),
arc(j,1,j),
arc(j,0,j),
arc(k,2,k,[I-F,W,F]),
arc(k,1,k),
arc(k,0,j,[C,min(W,C),I])],
[C,W,F],
[0,N,0],
[Cn,Wn,_47818])

),
MIN_WIDTH#=min(Wn,Cn)#<=>FLAG.
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B.265 min width plateau

♦ META-DATA:

ctr_date(min_width_plateau,[’20141108’]).

ctr_origin(min_width_plateau,’Derived from %c.’,[peak]).

ctr_arguments(
min_width_plateau,
[’MIN_WIDTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_width_plateau,
[’MIN_WIDTH’>=0,
’MIN_WIDTH’=<size(’VARIABLES’)-2,
required(’VARIABLES’,var)]).

ctr_example(
min_width_plateau,
[min_width_plateau(

3,
[[var-4],
[var-4],
[var-2],
[var-2],
[var-3],
[var-5],
[var-6],
[var-6],
[var-6],
[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-1]]),

min_width_plateau(
1,
[[var-4],
[var-6],
[var-7],
[var-9],
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[var-8],
[var-5],
[var-4]]),

min_width_plateau(
0,
[[var-4],
[var-4],
[var-2],
[var-0],
[var-0],
[var-4],
[var-5]])]).

ctr_typical(
min_width_plateau,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(min_width_plateau,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_width_plateau,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_width_plateau,
[checker(min_width_plateau_c),
automaton(min_width_plateau_a)]).

ctr_pure_functional_dependency(min_width_plateau,[]).

ctr_functional_dependency(min_width_plateau,1,[2]).

min_width_plateau_c(MIN_WIDTH,VARIABLES) :-
check_type(dvar,MIN_WIDTH),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
min_width_plateau_c(VARS,s,1,N,0,0,MIN_WIDTH).

min_width_plateau_c([VAR1,VAR2|R],s,I,C,D,P,MIN_WIDTH) :-
VAR1>=VAR2,
!,
I1 is I+1,
min_width_plateau_c([VAR2|R],s,I1,C,D,P,MIN_WIDTH).

min_width_plateau_c([_VAR1,VAR2|R],s,I,C,D,P,MIN_WIDTH) :-
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!,
I1 is I+1,
min_width_plateau_c([VAR2|R],t,I1,C,D,P,MIN_WIDTH).

min_width_plateau_c([VAR1,VAR2|R],t,I,C,D,P,MIN_WIDTH) :-
VAR1<VAR2,
!,
I1 is I+1,
min_width_plateau_c([VAR2|R],t,I1,C,D,P,MIN_WIDTH).

min_width_plateau_c([VAR1,VAR2|R],t,I,_C,_D,_P,MIN_WIDTH) :-
VAR1>VAR2,
!,
I1 is I+1,
min_width_plateau_c([VAR2|R],s,I1,1,1,1,MIN_WIDTH).

min_width_plateau_c([_VAR1,VAR2|R],t,I,C,_D,P,MIN_WIDTH) :-
!,
I1 is I+1,
min_width_plateau_c([VAR2|R],r,I1,C,2,P,MIN_WIDTH).

min_width_plateau_c([VAR1,VAR2|R],r,I,C,D,P,MIN_WIDTH) :-
VAR1=VAR2,
!,
I1 is I+1,
D1 is D+1,
min_width_plateau_c([VAR2|R],r,I1,C,D1,P,MIN_WIDTH).

min_width_plateau_c([VAR1,VAR2|R],r,I,C,_D,P,MIN_WIDTH) :-
VAR1<VAR2,
!,
I1 is I+1,
min_width_plateau_c([VAR2|R],t,I1,C,C,P,MIN_WIDTH).

min_width_plateau_c([_VAR1,VAR2|R],r,I,C,D,_P,MIN_WIDTH) :-
!,
I1 is I+1,
C1 is min(C,D),
min_width_plateau_c([VAR2|R],s,I1,C1,D,1,MIN_WIDTH).

min_width_plateau_c([_27772],_27766,_27767,C,D,P,MIN_WIDTH) :-
MIN_WIDTH#=P*min(C,D).

min_width_plateau_a(FLAG,MIN_WIDTH,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
min_width_plateau_a_s(
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FLAG,
MIN_WIDTH,
VARIABLES,
SIGNATURE).

min_width_plateau_a_s(FLAG,MIN_WIDTH,VARIABLES,SIGNATURE) :-
check_type(dvar,MIN_WIDTH),
length(VARIABLES,N),
( N=0 ->

Cn=N,
Dn=0,
Pn=0

; collection(VARIABLES,[dvar]),
pair_index_signature(VARIABLES,1,INDICES),
automaton(

INDICES,
_30112,
SIGNATURE,
[source(s),sink(s),sink(t),sink(r)],
[arc(s,0,t),
arc(s,1,s),
arc(s,2,s),
arc(t,0,t),
arc(t,1,r,[C,2,P]),
arc(t,2,s,[1,1,1]),
arc(r,0,t,[C,C,P]),
arc(r,1,r,[C,D+1,P]),
arc(r,2,s,[min(C,D),D,1])],
[C,D,P],
[N,0,0],
[Cn,Dn,Pn])

),
MIN_WIDTH#=Pn*min(Cn,Dn)#<=>FLAG.
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B.266 min width valley

♦ META-DATA:

ctr_date(min_width_valley,[’20121202’]).

ctr_origin(min_width_valley,’derived from %c’,[valley]).

ctr_synonyms(min_width_valley,[min_base_valley]).

ctr_arguments(
min_width_valley,
[’MIN_WIDTH’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
min_width_valley,
[’MIN_WIDTH’>=0,
’MIN_WIDTH’=<size(’VARIABLES’)-2,
required(’VARIABLES’,var)]).

ctr_example(
min_width_valley,
[min_width_valley(

5,
[[var-3],
[var-3],
[var-5],
[var-5],
[var-4],
[var-2],
[var-2],
[var-3],
[var-4],
[var-6],
[var-6],
[var-5],
[var-5],
[var-5],
[var-5],
[var-5],
[var-5],
[var-6]]),

min_width_valley(
0,
[[var-3],[var-8],[var-8],[var-5],[var-0],[var-0]]),

min_width_valley(
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4,
[[var-9],[var-8],[var-8],[var-0],[var-0],[var-2]])]).

ctr_typical(
min_width_valley,
[’MIN_WIDTH’>1,size(’VARIABLES’)>2]).

ctr_typical_model(min_width_valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
min_width_valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
min_width_valley,
[checker(min_width_valley_c),
automaton(min_width_valley_a),
automaton_with_signature(min_width_valley_a_s)]).

ctr_pure_functional_dependency(min_width_valley,[]).

ctr_functional_dependency(min_width_valley,1,[2]).

ctr_sol(min_width_valley,2,0,2,9,[0-9]).

ctr_sol(min_width_valley,3,0,3,64,[0-50,1-14]).

ctr_sol(min_width_valley,4,0,4,625,[0-295,1-230,2-100]).

ctr_sol(
min_width_valley,
5,
0,
5,
7776,
[0-1792,1-3205,2-2100,3-679]).

ctr_sol(
min_width_valley,
6,
0,
6,
117649,
[0-11088,1-56637,2-28420,3-17024,4-4480]).

ctr_sol(
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min_width_valley,
7,
0,
7,
2097152,
[0-69498,1-1174398,2-424928,3-268722,4-130452,5-29154]).

ctr_sol(
min_width_valley,
8,
0,
8,
43046721,
[0-439791,
1-26327058,
2-9363060,
3-3413256,
4-2345982,
5-968946,
6-188628]).

min_width_valley_c(0,[]) :-
!.

min_width_valley_c(MIN_WIDTH,VARIABLES) :-
check_type(dvar,MIN_WIDTH),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,N),
min_width_valley_c(VARS,s,1,0,N,0,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],s,I,C,W,F,N,MIN_WIDTH) :-
VAR1=<VAR2,
!,
I1 is I+1,
min_width_valley_c([VAR2|R],s,I1,C,W,F,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],s,I,C,W,_46817,N,MIN_WIDTH) :-
VAR1>VAR2,
!,
I1 is I+1,
min_width_valley_c([VAR2|R],j,I1,C,W,I,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],j,I,C,W,F,N,MIN_WIDTH) :-
VAR1>=VAR2,
!,
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I1 is I+1,
min_width_valley_c([VAR2|R],j,I1,C,W,F,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],j,I,_46815,W,F,N,MIN_WIDTH) :-
VAR1<VAR2,
!,
I1 is I+1,
C1 is I-F,
min_width_valley_c([VAR2|R],k,I1,C1,W,F,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],k,I,C,W,F,N,MIN_WIDTH) :-
VAR1=VAR2,
!,
I1 is I+1,
min_width_valley_c([VAR2|R],k,I1,C,W,F,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],k,I,_46815,W,F,N,MIN_WIDTH) :-
VAR1<VAR2,
!,
I1 is I+1,
C1 is I-F,
min_width_valley_c([VAR2|R],k,I1,C1,W,F,N,MIN_WIDTH).

min_width_valley_c([VAR1,VAR2|R],k,I,C,W,_46817,N,MIN_WIDTH) :-
VAR1>VAR2,
!,
I1 is I+1,
W1 is min(W,C),
min_width_valley_c([VAR2|R],j,I1,C,W1,I,N,MIN_WIDTH).

min_width_valley_c(
[_46820],
_47220,
_47267,
C,
W,
_47404,
_47451,
MIN_WIDTH) :-

MIN_WIDTH#=min(W,C).

min_width_valley_counters_check(VARS,N,[0|COUNTERS]) :-
min_width_valley_counters_check(

VARS,
s,
1,
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0,
N,
0,
N,
COUNTERS).

min_width_valley_counters_check(
[VAR1,VAR2|R],
s,
I,
C,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1=<VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_valley_counters_check(

[VAR2|R],
s,
I1,
C,
W,
F,
N,
REST).

min_width_valley_counters_check(
[VAR1,VAR2|R],
s,
I,
C,
W,
_47492,
N,
[MIN_WIDTH|REST]) :-

VAR1>VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_valley_counters_check(

[VAR2|R],
j,
I1,
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C,
W,
I,
N,
REST).

min_width_valley_counters_check(
[VAR1,VAR2|R],
j,
I,
C,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1>=VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_valley_counters_check(

[VAR2|R],
j,
I1,
C,
W,
F,
N,
REST).

min_width_valley_counters_check(
[VAR1,VAR2|R],
j,
I,
_47413,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1<VAR2,
!,
I1 is I+1,
C1 is I-F,
MIN_WIDTH#=min(W,C1),
min_width_valley_counters_check(

[VAR2|R],
k,
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I1,
C1,
W,
F,
N,
REST).

min_width_valley_counters_check(
[VAR1,VAR2|R],
k,
I,
C,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1=VAR2,
!,
I1 is I+1,
MIN_WIDTH#=min(W,C),
min_width_valley_counters_check(

[VAR2|R],
k,
I1,
C,
W,
F,
N,
REST).

min_width_valley_counters_check(
[VAR1,VAR2|R],
k,
I,
_47413,
W,
F,
N,
[MIN_WIDTH|REST]) :-

VAR1<VAR2,
!,
I1 is I+1,
C1 is I-F,
MIN_WIDTH#=min(W,C1),
min_width_valley_counters_check(

[VAR2|R],
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k,
I1,
C1,
W,
F,
N,
REST).

min_width_valley_counters_check(
[VAR1,VAR2|R],
k,
I,
C,
W,
_47503,
N,
[MIN_WIDTH|REST]) :-

VAR1>VAR2,
!,
I1 is I+1,
W1 is min(W,C),
MIN_WIDTH#=min(W1,C),
min_width_valley_counters_check(

[VAR2|R],
j,
I1,
C,
W1,
I,
N,
REST).

min_width_valley_counters_check(
[_46817],
_47193,
_47240,
_47287,
_47334,
_47381,
_47428,
[]).

ctr_automaton_signature(
min_width_valley,
min_width_valley_a,
pair_signature(2,signature)).
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min_width_valley_a(FLAG,MIN_WIDTH,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
min_width_valley_a_s(

FLAG,
MIN_WIDTH,
VARIABLES,
SIGNATURE).

min_width_valley_a_s(FLAG,MIN_WIDTH,VARIABLES,SIGNATURE) :-
check_type(dvar,MIN_WIDTH),
length(VARIABLES,N),
( N=0 ->

Wn=0,
Cn=0

; collection(VARIABLES,[dvar]),
pair_index_signature(VARIABLES,1,INDICES),
automaton(

INDICES,
I,
SIGNATURE,
[source(s),sink(s),sink(j),sink(k)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,j,[C,W,I]),
arc(j,0,k,[I-F,W,F]),
arc(j,1,j),
arc(j,2,j),
arc(k,0,k,[I-F,W,F]),
arc(k,1,k),
arc(k,2,j,[C,min(W,C),I])],
[C,W,F],
[0,N,0],
[Cn,Wn,_47020])

),
MIN_WIDTH#=min(Wn,Cn)#<=>FLAG.
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B.267 minimum

♦ META-DATA:

ctr_date(
minimum,
[20000128,
20030820,
20040530,
20041230,
20060811,
20090416]).

ctr_origin(minimum,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(minimum,[min]).

ctr_arguments(
minimum,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
minimum,
[minimum(2,[[var-3],[var-2],[var-7],[var-2],[var-6]]),
minimum(7,[[var-8],[var-8],[var-7],[var-8],[var-7]])]).

ctr_typical(
minimum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(minimum,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
minimum,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_graph(
minimum,
[’VARIABLES’],
2,
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[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar<variables2ˆvar],
[’ORDER’(0,’MAXINT’,var)=’MIN’],
[]).

ctr_eval(
minimum,
[builtin(minimum_b),
automaton(minimum_a),
automaton(minimum_ca)]).

ctr_pure_functional_dependency(minimum,[]).

ctr_functional_dependency(minimum,1,[2]).

ctr_aggregate(minimum,[],[min,union]).

ctr_cond_imply(
minimum,
deepest_valley,
[first(’VARIABLES’ˆvar)>’MIN’,last(’VARIABLES’ˆvar)>’MIN’],
[],
id).

ctr_sol(minimum,2,0,2,9,[0-5,1-3,2-1]).

ctr_sol(minimum,3,0,3,64,[0-37,1-19,2-7,3-1]).

ctr_sol(minimum,4,0,4,625,[0-369,1-175,2-65,3-15,4-1]).

ctr_sol(
minimum,
5,
0,
5,
7776,
[0-4651,1-2101,2-781,3-211,4-31,5-1]).

ctr_sol(
minimum,
6,
0,
6,
117649,
[0-70993,1-31031,2-11529,3-3367,4-665,5-63,6-1]).
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ctr_sol(
minimum,
7,
0,
7,
2097152,
[0-1273609,
1-543607,
2-201811,
3-61741,
4-14197,
5-2059,
6-127,
7-1]).

ctr_sol(
minimum,
8,
0,
8,
43046721,
[0-26269505,
1-11012415,
2-4085185,
3-1288991,
4-325089,
5-58975,
6-6305,
7-255,
8-1]).

minimum_b(MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar]),
VARIABLES=[_76212|_76213],
get_attr1(VARIABLES,VARS),
minimum(MIN,VARS).

minimum_a(FLAG,MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar]),
VARIABLES=[_76215|_76216],
minimum_signature(VARIABLES,SIGNATURE,MIN),
AUTOMATON=
automaton(
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SIGNATURE,
_77766,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

minimum_signature([],[],_76185).

minimum_signature([[var-VAR]|VARs],[S|Ss],MIN) :-
S in 0..2,
MIN#<VAR#<=>S#=0,
MIN#=VAR#<=>S#=1,
MIN#>VAR#<=>S#=2,
minimum_signature(VARs,Ss,MIN).

minimum_ca(FLAG,MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar]),
maximum_signature1(VARIABLES,VARS,Zeros),
VARS=[VAR1|_76227],
automaton(

VARS,
VARi,
Zeros,
[source(s),sink(s)],
[arc(s,0,s,[min(C,VARi)])],
[C],
[VAR1],
[CC]),

CC#=MIN#<=>FLAG.

minimum_signature1([],[],[]).

minimum_signature1([[var-VAR]|VARs],[VAR|R],[0|S]) :-
minimum_signature1(VARs,R,S).
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B.268 minimum except 0

♦ META-DATA:

ctr_date(
minimum_except_0,
[’20030820’,’20040530’,’20041230’,’20060812’,’20090101’]).

ctr_origin(minimum_except_0,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_except_0,
[’MIN’-dvar,
’VARIABLES’-collection(var-dvar),
’DEFAULT’-int]).

ctr_restrictions(
minimum_except_0,
[’MIN’>0,
’MIN’=<’DEFAULT’,
size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<’DEFAULT’,
’DEFAULT’>0]).

ctr_example(
minimum_except_0,
[minimum_except_0(

3,
[[var-3],[var-7],[var-6],[var-7],[var-4],[var-7]],
1000000),

minimum_except_0(
2,
[[var-3],[var-2],[var-0],[var-7],[var-2],[var-6]],
1000000),

minimum_except_0(
1000000,
[[var-0],[var-0],[var-0],[var-0],[var-0],[var-0]],
1000000)]).

ctr_typical(
minimum_except_0,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
atleast(1,’VARIABLES’,0)]).
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ctr_typical_model(
minimum_except_0,
[nval(’VARIABLES’ˆvar)>2,atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
minimum_except_0,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in)]).

ctr_graph(
minimum_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,
variables2ˆvar=\=0,
variables1ˆkey=variables2ˆkey#\/
variables1ˆvar<variables2ˆvar],
[’ORDER’(0,’DEFAULT’,var)=’MIN’],
[]).

ctr_eval(
minimum_except_0,
[checker(minimum_except_0_c),
reformulation(minimum_except_0_r),
automaton(minimum_except_0_a)]).

ctr_pure_functional_dependency(minimum_except_0,[]).

ctr_functional_dependency(minimum_except_0,1,[2,3]).

ctr_cond_imply(
minimum_except_0,
atmost,
[maxval(’VARIABLES’ˆvar)<’DEFAULT’],
[],
id).

minimum_except_0_c(MIN,VARIABLES,DEFAULT) :-
check_type(int_gteq(1),DEFAULT),
check_type(dvar(1,DEFAULT),MIN),
collection(VARIABLES,[int(0,DEFAULT)]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
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minimum_except_0_c(VARS,1,DEFAULT,DEFAULT,MIN).

minimum_except_0_c([V|R],AllZero,Min,DEFAULT,RESULT) :-
!,
V>=0,
V=<DEFAULT,
( V>0 ->

NextAllZero=0,
NextMin is min(Min,V)

; NextAllZero=AllZero,
NextMin=Min

),
minimum_except_0_c(

R,
NextAllZero,
NextMin,
DEFAULT,
RESULT).

minimum_except_0_c([],1,_49217,RESULT,RESULT) :-
!.

minimum_except_0_c([],0,RESULT,_49215,RESULT).

minimum_except_0_r(MIN,VARIABLES,DEFAULT) :-
check_type(int_gteq(1),DEFAULT),
check_type(dvar(1,DEFAULT),MIN),
collection(VARIABLES,[dvar(0,DEFAULT)]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
minimum_except_01(VARS,ALLZEROS),
call(ALLZEROS#=>MIN#=DEFAULT),
append([0],VARS,VARS0),
N1 is N+1,
length(RANKS,N1),
domain(RANKS,0,N),
min_n1(VARS0,RANKS,MIN,1).

minimum_except_01([],1).

minimum_except_01([V|R],V#=0#/\S) :-
minimum_except_01(R,S).

minimum_except_0_a(FLAG,MIN,VARIABLES,DEFAULT) :-
check_type(int_gteq(1),DEFAULT),
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check_type(dvar(1,DEFAULT),MIN),
collection(VARIABLES,[dvar(0,DEFAULT)]),
length(VARIABLES,N),
N>0,
minimum_except_0_signature(

VARIABLES,
SIGNATURE,
MIN,
DEFAULT),

AUTOMATON=
automaton(

SIGNATURE,
_51643,
SIGNATURE,
[source(s),sink(j),sink(k)],
[arc(s,0,s),
arc(s,3,s),
arc(s,2,j),
arc(s,1,k),
arc(j,0,j),
arc(j,1,j),
arc(j,2,j),
arc(j,3,j),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4],AUTOMATON).

minimum_except_0_signature([],[],_49214,_49215).

minimum_except_0_signature([[var-VAR]|VARs],[S|Ss],MIN,DEFAULT) :-
S in 0..4,
VAR#=0#/\MIN#\=DEFAULT#<=>S#=0,
VAR#=0#/\MIN#=DEFAULT#<=>S#=1,
VAR#\=0#/\MIN#=VAR#<=>S#=2,
VAR#\=0#/\MIN#<VAR#<=>S#=3,
VAR#\=0#/\MIN#>VAR#<=>S#=4,
minimum_except_0_signature(VARs,Ss,MIN,DEFAULT).
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B.269 minimum greater than

♦ META-DATA:

ctr_date(minimum_greater_than,[’20030820’,’20060812’]).

ctr_origin(minimum_greater_than,’N.˜Beldiceanu’,[]).

ctr_arguments(
minimum_greater_than,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
minimum_greater_than,
[’VAR1’>’VAR2’,
size(’VARIABLES’)>0,
required(’VARIABLES’,var)]).

ctr_example(
minimum_greater_than,
minimum_greater_than(

5,
3,
[[var-8],[var-5],[var-3],[var-8]])).

ctr_typical(
minimum_greater_than,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(
minimum_greater_than,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(minimum_greater_than,[items(’VARIABLES’,all)]).

ctr_derived_collections(
minimum_greater_than,
[col(’ITEM’-collection(var-dvar),[item(var-’VAR2’)])]).

ctr_graph(
minimum_greater_than,
[’ITEM’,’VARIABLES’],
2,
[’PRODUCT’>>collection(item,variables)],
[itemˆvar<variablesˆvar],
[’NARC’>0],
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[],
[’SUCC’>>[source,variables]],
[minimum(’VAR1’,variables)]).

ctr_eval(
minimum_greater_than,
[reformulation(minimum_greater_than_r),
automaton(minimum_greater_than_a)]).

ctr_aggregate(minimum_greater_than,[],[min,id,union]).

minimum_greater_than_r(VAR1,VAR2,VARIABLES) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
maximum(MAX,VARS),
VAR1#>VAR2,
VAR1#=<MAX,
minimum_greater_than1(VARS,VAR2,MAX,UARS),
minimum(VAR1,UARS).

minimum_greater_than1([],_42747,_42748,[]).

minimum_greater_than1([V|R],VAR2,MAX,[U|S]) :-
fd_min(V,Min),
fd_max(MAX,Max),
U in Min..Max,
V#=<VAR2#=>U#=MAX,
V#>VAR2#=>U#=V,
minimum_greater_than1(R,VAR2,MAX,S).

minimum_greater_than_a(FLAG,VAR1,VAR2,VARIABLES) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
VAR1#>VAR2,
minimum_greater_than_signature(

VARIABLES,
SIGNATURE,
VAR1,
VAR2),
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AUTOMATON=
automaton(

SIGNATURE,
_45335,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,s),
arc(s,5,s),
arc(s,4,t),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t),
arc(t,4,t),
arc(t,5,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5],AUTOMATON).

minimum_greater_than_signature([],[],_42748,_42749).

minimum_greater_than_signature(
[[var-VAR]|VARs],
[S|Ss],
VAR1,
VAR2) :-

S in 0..5,
VAR#<VAR1#/\VAR#=<VAR2#<=>S#=0,
VAR#=VAR1#/\VAR#=<VAR2#<=>S#=1,
VAR#>VAR1#/\VAR#=<VAR2#<=>S#=2,
VAR#<VAR1#/\VAR#>VAR2#<=>S#=3,
VAR#=VAR1#/\VAR#>VAR2#<=>S#=4,
VAR#>VAR1#/\VAR#>VAR2#<=>S#=5,
minimum_greater_than_signature(VARs,Ss,VAR1,VAR2).



3430 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.270 minimum modulo

♦ META-DATA:

ctr_date(
minimum_modulo,
[’20000128’,’20030820’,’20041230’,’20060812’]).

ctr_origin(minimum_modulo,’Derived from %c.’,[minimum]).

ctr_arguments(
minimum_modulo,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar),’M’-int]).

ctr_restrictions(
minimum_modulo,
[size(’VARIABLES’)>0,’M’>0,required(’VARIABLES’,var)]).

ctr_example(
minimum_modulo,
[minimum_modulo(

6,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3),

minimum_modulo(
9,
[[var-9],[var-1],[var-7],[var-6],[var-5]],
3)]).

ctr_typical(
minimum_modulo,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(minimum_modulo,[items(’VARIABLES’,all)]).

ctr_graph(
minimum_modulo,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆkey=variables2ˆkey#\/
variables1ˆvar mod ’M’<variables2ˆvar mod ’M’],
[’ORDER’(0,’MAXINT’,var)=’MIN’],
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[]).

ctr_pure_functional_dependency(minimum_modulo,[]).

ctr_functional_dependency(minimum_modulo,1,[2,3]).



3432 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.271 minimum weight alldifferent

♦ META-DATA:

ctr_date(
minimum_weight_alldifferent,
[’20030820’,’20040530’,’20060812’]).

ctr_origin(
minimum_weight_alldifferent,
\cite{FocacciLodiMilano99},
[]).

ctr_synonyms(
minimum_weight_alldifferent,
[minimum_weight_alldiff,
minimum_weight_alldistinct,
min_weight_alldiff,
min_weight_alldifferent,
min_weight_alldistinct]).

ctr_arguments(
minimum_weight_alldifferent,
[’VARIABLES’-collection(var-dvar),
’MATRIX’-collection(i-int,j-int,c-int),
’COST’-dvar]).

ctr_restrictions(
minimum_weight_alldifferent,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=1,
’VARIABLES’ˆvar=<size(’VARIABLES’),
required(’MATRIX’,[i,j,c]),
increasing_seq(’MATRIX’,[i,j]),
’MATRIX’ˆi>=1,
’MATRIX’ˆi=<size(’VARIABLES’),
’MATRIX’ˆj>=1,
’MATRIX’ˆj=<size(’VARIABLES’),
size(’MATRIX’)=size(’VARIABLES’)*size(’VARIABLES’)]).

ctr_example(
minimum_weight_alldifferent,
minimum_weight_alldifferent(

[[var-2],[var-3],[var-1],[var-4]],
[[i-1,j-1,c-4],
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[i-1,j-2,c-1],
[i-1,j-3,c-7],
[i-1,j-4,c-0],
[i-2,j-1,c-1],
[i-2,j-2,c-0],
[i-2,j-3,c-8],
[i-2,j-4,c-2],
[i-3,j-1,c-3],
[i-3,j-2,c-2],
[i-3,j-3,c-1],
[i-3,j-4,c-6],
[i-4,j-1,c-0],
[i-4,j-2,c-0],
[i-4,j-3,c-6],
[i-4,j-4,c-5]],
17)).

ctr_typical(
minimum_weight_alldifferent,
[size(’VARIABLES’)>1,range(’MATRIX’ˆc)>1,’MATRIX’ˆc>0]).

ctr_graph(
minimum_weight_alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆkey],
[’NTREE’=0,
’SUM_WEIGHT_ARC’(

MATRIX@
((variables1ˆkey-1)*size(’VARIABLES’)+
variables1ˆvar)ˆ

c)=
COST],
[]).

ctr_functional_dependency(minimum_weight_alldifferent,3,[1,2]).
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B.272 multi global contiguity

♦ META-DATA:

ctr_predefined(multi_global_contiguity).

ctr_date(multi_global_contiguity,[’20120212’]).

ctr_origin(
multi_global_contiguity,
Derived from %c.,
[global_contiguity]).

ctr_synonyms(multi_global_contiguity,[multi_contiguity]).

ctr_arguments(
multi_global_contiguity,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
multi_global_contiguity,
[required(’VARIABLES’,var),’VARIABLES’ˆvar>=0]).

ctr_example(
multi_global_contiguity,
multi_global_contiguity(

[[var-0],
[var-2],
[var-2],
[var-1],
[var-1],
[var-0],
[var-0],
[var-5]])).

ctr_typical(multi_global_contiguity,[size(’VARIABLES’)>3]).

ctr_typical_model(
multi_global_contiguity,
[nval(’VARIABLES’ˆvar)>2,atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
multi_global_contiguity,
[items(’VARIABLES’,reverse)]).

ctr_eval(
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multi_global_contiguity,
[checker(multi_global_contiguity_c)]).

ctr_contractible(multi_global_contiguity,[],’VARIABLES’,any).

ctr_sol(multi_global_contiguity,2,0,2,9,-).

ctr_sol(multi_global_contiguity,3,0,3,55,-).

ctr_sol(multi_global_contiguity,4,0,4,413,-).

ctr_sol(multi_global_contiguity,5,0,5,3656,-).

ctr_sol(multi_global_contiguity,6,0,6,37147,-).

ctr_sol(multi_global_contiguity,7,0,7,425069,-).

ctr_sol(multi_global_contiguity,8,0,8,5400481,-).

multi_global_contiguity_c([]) :-
!.

multi_global_contiguity_c(VARIABLES) :-
collection(VARIABLES,[int_gteq(0)]),
get_kattr1(VARIABLES,1,VARKEYS),
sort(VARKEYS,SVARKEYS),
multi_global_contiguity_c1(SVARKEYS).

multi_global_contiguity_c1([]) :-
!.

multi_global_contiguity_c1([_31176]) :-
!.

multi_global_contiguity_c1([0-_31180|R]) :-
!,
multi_global_contiguity_c1(R).

multi_global_contiguity_c1([I-P,I-Q|R]) :-
!,
Q is P+1,
multi_global_contiguity_c1([I-Q|R]).

multi_global_contiguity_c1([_31176,J-Q|R]) :-
multi_global_contiguity_c1([J-Q|R]).
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B.273 multi inter distance

♦ META-DATA:

ctr_predefined(multi_inter_distance).

ctr_date(multi_inter_distance,[’20110814’]).

ctr_origin(multi_inter_distance,’\\cite{OuelletQuimper11}’,[]).

ctr_synonyms(
multi_inter_distance,
[multi_all_min_distance,
multi_all_min_dist,
sliding_atmost,
atmost_sliding]).

ctr_arguments(
multi_inter_distance,
[’VARIABLES’-collection(var-dvar),’LIMIT’-int,’DIST’-int]).

ctr_restrictions(
multi_inter_distance,
[required(’VARIABLES’,var),’LIMIT’>0,’DIST’>0]).

ctr_example(
multi_inter_distance,
multi_inter_distance(

[[var-4],[var-0],[var-9],[var-4],[var-7]],
2,
3)).

ctr_typical(
multi_inter_distance,
[’LIMIT’>1,
’LIMIT’<size(’VARIABLES’),
’DIST’>1,
’DIST’<range(’VARIABLES’ˆvar)]).

ctr_exchangeable(
multi_inter_distance,
[items(’VARIABLES’,all),
translate([’VARIABLES’ˆvar]),
vals([’LIMIT’],int,<,dontcare,dontcare),
vals([’MINDIST’],int(>=(1)),>,dontcare,dontcare)]).
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ctr_eval(
multi_inter_distance,
[reformulation(multi_inter_distance_r)]).

ctr_contractible(multi_inter_distance,[],’VARIABLES’,any).

multi_inter_distance_r([],LIMIT,DIST) :-
!,
integer(LIMIT),
integer(DIST),
LIMIT>0,
DIST>0.

multi_inter_distance_r(VARIABLES,LIMIT,DIST) :-
collection(VARIABLES,[dvar]),
integer(LIMIT),
integer(DIST),
LIMIT>0,
DIST>0,
get_attr1(VARIABLES,ORIGINS),
length(VARIABLES,N),
length(DURATIONS,N),
length(ENDS,N),
length(HEIGHTS,N),
domain(DURATIONS,DIST,DIST),
domain(HEIGHTS,1,1),
ori_dur_end(ORIGINS,DURATIONS,ENDS),
gen_cum_tasks(ORIGINS,DURATIONS,ENDS,HEIGHTS,1,Tasks),
cumulative(Tasks,[limit(LIMIT)]).
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B.274 multiple
♦ META-DATA:

ctr_predefined(multiple).

ctr_date(multiple,[’20120501’]).

ctr_origin(multiple,’Arithmetic.’,[]).

ctr_arguments(multiple,[’X’-dvar,’Y’-dvar,’C’-int]).

ctr_restrictions(multiple,[’X’=\=0,’Y’=\=0,’C’>0]).

ctr_example(multiple,multiple(8,-2,4)).

ctr_typical(multiple,[’C’>1]).

ctr_eval(multiple,[checker(multiple_c),builtin(multiple_b)]).

ctr_functional_dependency(multiple,3,[1,2]).

multiple_c(X,Y,C) :-
check_type(int,X),
X=\=0,
check_type(int,Y),
Y=\=0,
check_type(dvar,C),
AX is abs(X),
AY is abs(Y),
MAX is max(AX,AY),
MIN is min(AX,AY),
DIV is MAX//MIN,
C#=DIV,
MAX=:=C*MIN.

multiple_b(X,Y,C) :-
check_type(dvar,X),
X#\=0,
check_type(dvar,Y),
Y#\=0,
check_type(int,C),
max(abs(X),abs(Y))#=C*min(abs(X),abs(Y)).
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B.275 nand

♦ META-DATA:

ctr_date(nand,[’20051226’]).

ctr_origin(nand,’Logic’,[]).

ctr_synonyms(nand,[clause]).

ctr_arguments(
nand,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nand,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
nand,
[nand(1,[[var-0],[var-0]]),
nand(1,[[var-0],[var-1]]),
nand(1,[[var-1],[var-0]]),
nand(0,[[var-1],[var-1]]),
nand(1,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(nand,[items(’VARIABLES’,all)]).

ctr_eval(nand,[automaton(nand_a)]).

ctr_pure_functional_dependency(nand,[]).

ctr_functional_dependency(nand,1,[2]).

ctr_contractible(nand,[’VAR’=0],’VARIABLES’,any).

ctr_extensible(nand,[’VAR’=1],’VARIABLES’,any).

ctr_aggregate(nand,[],[#\/,union]).

ctr_cond_imply(
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nand,
some_equal,
[size(’VARIABLES’)>2],
[],
[’VARIABLES’]).

ctr_sol(nand,2,0,2,4,[0-1,1-3]).

ctr_sol(nand,3,0,3,8,[0-1,1-7]).

ctr_sol(nand,4,0,4,16,[0-1,1-15]).

ctr_sol(nand,5,0,5,32,[0-1,1-31]).

ctr_sol(nand,6,0,6,64,[0-1,1-63]).

ctr_sol(nand,7,0,7,128,[0-1,1-127]).

ctr_sol(nand,8,0,8,256,[0-1,1-255]).

nand_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,L),
L>1,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_47385,
LIST_VARIABLES,
[source(s),sink(j),sink(k)],
[arc(s,1,i),
arc(s,0,j),
arc(i,0,k),
arc(i,1,i),
arc(k,0,k),
arc(k,1,k),
arc(j,1,j)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).



3441

B.276 nclass

♦ META-DATA:

ctr_date(nclass,[’20000128’,’20030820’,’20060812’]).

ctr_origin(nclass,’Derived from %c.’,[nvalue]).

ctr_types(nclass,[’VALUES’-collection(val-int)]).

ctr_arguments(
nclass,
[’NCLASS’-dvar,
’VARIABLES’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
nclass,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
’NCLASS’>=0,
’NCLASS’=<min(size(’VARIABLES’),size(’PARTITIONS’)),
’NCLASS’=<range(’VARIABLES’ˆvar),
required(’VARIABLES’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
nclass,
nclass(

2,
[[var-3],[var-2],[var-7],[var-2],[var-6]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
nclass,
[’NCLASS’>1,
’NCLASS’<size(’VARIABLES’),
’NCLASS’<range(’VARIABLES’ˆvar),
size(’VARIABLES’)>size(’PARTITIONS’)]).

ctr_exchangeable(
nclass,
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[items(’VARIABLES’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES’ˆvar,’PARTITIONS’ˆpˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
nclass,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSCC’=’NCLASS’],
[]).

ctr_pure_functional_dependency(nclass,[]).

ctr_functional_dependency(nclass,1,[2,3]).

ctr_extensible(
nclass,
[’NCLASS’=size(’PARTITIONS’)],
VARIABLES,
any).
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B.277 neq
♦ META-DATA:

ctr_predefined(neq).

ctr_date(neq,[’20070821’]).

ctr_origin(neq,’Arithmetic.’,[]).

ctr_synonyms(neq,[rel]).

ctr_arguments(neq,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(neq,neq(1,8)).

ctr_exchangeable(
neq,
[args([[’VAR1’,’VAR2’]]),
vals([’VAR1’,’VAR2’],int,=\=,all,dontcare)]).

ctr_eval(neq,[builtin(neq_b)]).

neq_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#\=VAR2.
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B.278 neq cst
♦ META-DATA:

ctr_predefined(neq_cst).

ctr_date(neq_cst,[’20090923’]).

ctr_origin(neq_cst,’Arithmetic.’,[]).

ctr_arguments(neq_cst,[’VAR1’-dvar,’VAR2’-dvar,’CST2’-int]).

ctr_example(neq_cst,neq_cst(8,2,7)).

ctr_typical(neq_cst,[’CST2’=\=0,’VAR1’=\=’VAR2’+’CST2’]).

ctr_exchangeable(
neq_cst,
[args([[’VAR1’],[’VAR2’,’CST2’]]),
translate([’VAR1’,’VAR2’]),
translate([’VAR1’,’CST2’])]).

ctr_eval(neq_cst,[builtin(neq_cst_b)]).

neq_cst_b(VAR1,VAR2,CST2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
check_type(int,CST2),
VAR1#\=VAR2+CST2.
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B.279 nequivalence

♦ META-DATA:

ctr_date(nequivalence,[’20000128’,’20030820’,’20060812’]).

ctr_origin(nequivalence,’Derived from %c.’,[nvalue]).

ctr_arguments(
nequivalence,
[’NEQUIV’-dvar,’M’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nequivalence,
[required(’VARIABLES’,var),
’NEQUIV’>=min(1,size(’VARIABLES’)),
’NEQUIV’=<min(’M’,size(’VARIABLES’)),
’NEQUIV’=<range(’VARIABLES’ˆvar),
’M’>0]).

ctr_example(
nequivalence,
nequivalence(

2,
3,
[[var-3],
[var-2],
[var-5],
[var-6],
[var-15],
[var-3],
[var-3]])).

ctr_typical(
nequivalence,
[’NEQUIV’>1,
’NEQUIV’<size(’VARIABLES’),
’NEQUIV’<range(’VARIABLES’ˆvar),
’M’>1,
’M’<maxval(’VARIABLES’ˆvar)]).

ctr_exchangeable(
nequivalence,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],mod(’M’),=,dontcare,dontcare)]).
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ctr_graph(
nequivalence,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSCC’=’NEQUIV’],
[]).

ctr_pure_functional_dependency(nequivalence,[]).

ctr_functional_dependency(nequivalence,1,[2,3]).

ctr_contractible(
nequivalence,
[’NEQUIV’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
nequivalence,
[’NEQUIV’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_extensible(nequivalence,[’NEQUIV’=’M’],’VARIABLES’,any).
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B.280 next element

♦ META-DATA:

ctr_date(next_element,[’20030820’,’20040530’,’20060812’]).

ctr_origin(next_element,’N.˜Beldiceanu’,[]).

ctr_arguments(
next_element,
[’THRESHOLD’-dvar,
’INDEX’-dvar,
’TABLE’-collection(index-int,value-dvar),
’VAL’-dvar]).

ctr_restrictions(
next_element,
[’INDEX’>=1,
’INDEX’=<size(’TABLE’),
’THRESHOLD’<’INDEX’,
required(’TABLE’,[index,value]),
size(’TABLE’)>0,
’TABLE’ˆindex>=1,
’TABLE’ˆindex=<size(’TABLE’),
distinct(’TABLE’,index)]).

ctr_example(
next_element,
next_element(

2,
3,
[[index-1,value-1],
[index-2,value-8],
[index-3,value-9],
[index-4,value-5],
[index-5,value-9]],
9)).

ctr_typical(
next_element,
[size(’TABLE’)>1,range(’TABLE’ˆvalue)>1]).

ctr_derived_collections(
next_element,
[col(’ITEM’-collection(index-dvar,value-dvar),

[item(index-’THRESHOLD’,value-’VAL’)])]).
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ctr_graph(
next_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex<tableˆindex,itemˆvalue=tableˆvalue],
[’NARC’>0],
[],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TABLE’ˆindex)])]],
[minimum(’INDEX’,variables)]).

ctr_eval(next_element,[automaton(next_element_a)]).

next_element_a(FLAG,THRESHOLD,INDEX,TABLE,VAL) :-
length(TABLE,N),
N>0,
check_type(dvar,THRESHOLD),
check_type(dvar(1,N),INDEX),
collection(TABLE,[int(1,N),dvar]),
check_type(dvar,VAL),
THRESHOLD#<INDEX,
get_attr1(TABLE,INDEXES),
all_different(INDEXES),
next_element_signature(

TABLE,
SIGNATURE,
THRESHOLD,
INDEX,
VAL),

AUTOMATON=
automaton(

SIGNATURE,
_46195,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,s),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),



3449

arc(s,7,s),
arc(s,9,s),
arc(s,10,s),
arc(s,11,s),
arc(s,8,t),
arc(t,0,t),
arc(t,1,t),
arc(t,2,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t),
arc(t,7,t),
arc(t,8,t),
arc(t,9,t),
arc(t,10,t),
arc(t,11,t)],

[],
[],
[]),

automaton_bool(
FLAG,
[0,1,2,3,4,5,6,7,8,9,10,11],
AUTOMATON).

next_element_signature([],[],_42693,_42694,_42695).

next_element_signature(
[[index-I,value-V]|Ts],
[S|Ss],
THRESHOLD,
INDEX,
VAL) :-

S in 0..11,
I#=<THRESHOLD#/\I#<INDEX#/\V#=VAL#<=>S#=0,
I#=<THRESHOLD#/\I#<INDEX#/\V#\=VAL#<=>S#=1,
I#=<THRESHOLD#/\I#=INDEX#/\V#=VAL#<=>S#=2,
I#=<THRESHOLD#/\I#=INDEX#/\V#\=VAL#<=>S#=3,
I#=<THRESHOLD#/\I#>INDEX#/\V#=VAL#<=>S#=4,
I#=<THRESHOLD#/\I#>INDEX#/\V#\=VAL#<=>S#=5,
I#>THRESHOLD#/\I#<INDEX#/\V#=VAL#<=>S#=6,
I#>THRESHOLD#/\I#<INDEX#/\V#\=VAL#<=>S#=7,
I#>THRESHOLD#/\I#=INDEX#/\V#=VAL#<=>S#=8,
I#>THRESHOLD#/\I#=INDEX#/\V#\=VAL#<=>S#=9,
I#>THRESHOLD#/\I#>INDEX#/\V#=VAL#<=>S#=10,
I#>THRESHOLD#/\I#>INDEX#/\V#\=VAL#<=>S#=11,
next_element_signature(Ts,Ss,THRESHOLD,INDEX,VAL).
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B.281 next greater element

♦ META-DATA:

ctr_date(
next_greater_element,
[’20030820’,’20040530’,’20060812’]).

ctr_origin(next_greater_element,’M.˜Carlsson’,[]).

ctr_arguments(
next_greater_element,
[’VAR1’-dvar,’VAR2’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
next_greater_element,
[’VAR1’<’VAR2’,
size(’VARIABLES’)>0,
required(’VARIABLES’,var)]).

ctr_example(
next_greater_element,
next_greater_element(

7,
8,
[[var-3],[var-5],[var-8],[var-9]])).

ctr_typical(
next_greater_element,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_derived_collections(
next_greater_element,
[col(’V’-collection(var-dvar),[item(var-’VAR1’)])]).

ctr_graph(
next_greater_element,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_graph(
next_greater_element,
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[’V’,’VARIABLES’],
2,
[’PRODUCT’>>collection(v,variables)],
[vˆvar<variablesˆvar],
[’NARC’>0],
[],
[’SUCC’>>[source,variables]],
[minimum(’VAR2’,variables)]).

ctr_eval(
next_greater_element,
[reformulation(next_greater_element_r)]).

next_greater_element_r(VAR1,VAR2,VARIABLES) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
maximum(MAX,VARS),
VAR2#>VAR1,
VAR2#=<MAX,
next_greater_element1(VARS,VAR1,MAX,UARS),
minimum(VAR2,UARS).

next_greater_element1([V],VAR1,MAX,[U]) :-
!,
fd_min(V,Min),
fd_max(MAX,Max),
U in Min..Max,
V#=<VAR1#=>U#=MAX,
V#>VAR1#=>U#=V.

next_greater_element1([V1,V2|R],VAR1,MAX,[U1|S]) :-
V1#<V2,
fd_min(V1,Min),
fd_max(MAX,Max),
U1 in Min..Max,
V1#=<VAR1#=>U1#=MAX,
V1#>VAR1#=>U1#=V1,
next_greater_element1([V2|R],VAR1,MAX,S).
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B.282 ninterval

♦ META-DATA:

ctr_date(ninterval,[’20030820’,’20040530’,’20060812’]).

ctr_origin(ninterval,’Derived from %c.’,[nvalue]).

ctr_arguments(
ninterval,
[’NVAL’-dvar,
’VARIABLES’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
ninterval,
[’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
required(’VARIABLES’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
ninterval,
ninterval(2,[[var-3],[var-1],[var-9],[var-1],[var-9]],4)).

ctr_typical(
ninterval,
[’NVAL’>1,
’NVAL’<size(’VARIABLES’),
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES’ˆvar),
(nval(’VARIABLES’ˆvar)+’SIZE_INTERVAL’-1)/
SIZE_INTERVAL<
NVAL]).

ctr_exchangeable(
ninterval,
[items(’VARIABLES’,all),
vals(

[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
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ninterval,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[’NSCC’=’NVAL’],
[]).

ctr_eval(ninterval,[checker(ninterval_c)]).

ctr_pure_functional_dependency(ninterval,[]).

ctr_functional_dependency(ninterval,1,[2,3]).

ctr_contractible(
ninterval,
[’NVAL’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
ninterval,
[’NVAL’=size(’VARIABLES’)],
VARIABLES,
any).

ninterval_c(NVAL,VARIABLES,SIZE_INTERVAL) :-
collection(VARIABLES,[int]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES,VARS),
length(VARS,L),
MIN_NVAL is min(1,L),
check_type(dvar(MIN_NVAL,L),NVAL),
( L=0 ->

NVAL#=0
; gen_quotient_fix(VARS,SIZE_INTERVAL,QUOTIENT),

sort(QUOTIENT,SORTED),
length(SORTED,N),
NVAL#=N

).
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B.283 no peak

♦ META-DATA:

ctr_date(no_peak,[’20031101’,’20040530’]).

ctr_origin(no_peak,’Derived from %c.’,[peak]).

ctr_arguments(no_peak,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
no_peak,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_peak,
no_peak([[var-1],[var-1],[var-4],[var-8],[var-8]])).

ctr_typical(
no_peak,
[size(’VARIABLES’)>3,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(no_peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
no_peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(no_peak,[checker(no_peak_c),automaton(no_peak_a)]).

ctr_contractible(no_peak,[],’VARIABLES’,any).

ctr_sol(no_peak,2,0,2,9,-).

ctr_sol(no_peak,3,0,3,50,-).

ctr_sol(no_peak,4,0,4,295,-).

ctr_sol(no_peak,5,0,5,1792,-).

ctr_sol(no_peak,6,0,6,11088,-).

ctr_sol(no_peak,7,0,7,69498,-).

ctr_sol(no_peak,8,0,8,439791,-).



3456 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

no_peak_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N>0,
no_peak_c(VARIABLES,0).

no_peak_c([],_33096) :-
!.

no_peak_c([_33097],_33096) :-
!.

no_peak_c([[var-X],[var-Y]|R],0) :-
X>=Y,
!,
no_peak_c([[var-Y]|R],0).

no_peak_c([_33097,[var-Y]|R],0) :-
!,
no_peak_c([[var-Y]|R],1).

no_peak_c([[var-X],[var-Y]|R],1) :-
X=<Y,
no_peak_c([[var-Y]|R],1).

no_peak_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
no_peak_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_34704,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,1,s),
arc(s,2,s),
arc(s,0,t),
arc(t,0,t),
arc(t,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).
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no_peak_signature([],[]).

no_peak_signature([_33097],[]) :-
!.

no_peak_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
no_peak_signature([[var-VAR2]|VARs],Ss).
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B.284 no valley

♦ META-DATA:

ctr_date(no_valley,[’20031101’,’20040530’]).

ctr_origin(no_valley,’Derived from %c.’,[valley]).

ctr_arguments(no_valley,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
no_valley,
[size(’VARIABLES’)>0,required(’VARIABLES’,var)]).

ctr_example(
no_valley,
no_valley(

[[var-1],[var-1],[var-4],[var-8],[var-8],[var-2]])).

ctr_typical(
no_valley,
[size(’VARIABLES’)>3,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(no_valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
no_valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
no_valley,
[checker(no_valley_c),automaton(no_valley_a)]).

ctr_contractible(no_valley,[],’VARIABLES’,any).

ctr_sol(no_valley,2,0,2,9,-).

ctr_sol(no_valley,3,0,3,50,-).

ctr_sol(no_valley,4,0,4,295,-).

ctr_sol(no_valley,5,0,5,1792,-).

ctr_sol(no_valley,6,0,6,11088,-).

ctr_sol(no_valley,7,0,7,69498,-).
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ctr_sol(no_valley,8,0,8,439791,-).

no_valley_c(VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
N>0,
no_valley_c(VARIABLES,0).

no_valley_c([],_33411) :-
!.

no_valley_c([_33412],_33411) :-
!.

no_valley_c([[var-X],[var-Y]|R],0) :-
X=<Y,
!,
no_valley_c([[var-Y]|R],0).

no_valley_c([_33412,[var-Y]|R],0) :-
!,
no_valley_c([[var-Y]|R],1).

no_valley_c([[var-X],[var-Y]|R],1) :-
X>=Y,
no_valley_c([[var-Y]|R],1).

no_valley_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>0,
no_valley_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_35019,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,t),
arc(t,1,t),
arc(t,2,t)],

[],
[],
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[]),
automaton_bool(FLAG,[0,1,2],AUTOMATON).

no_valley_signature([],[]).

no_valley_signature([_33412],[]) :-
!.

no_valley_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
S in 0..2,
VAR1#<VAR2#<=>S#=0,
VAR1#=VAR2#<=>S#=1,
VAR1#>VAR2#<=>S#=2,
no_valley_signature([[var-VAR2]|VARs],Ss).
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B.285 non overlap sboxes

♦ META-DATA:

ctr_date(non_overlap_sboxes,[’20070622’,’20090725’]).

ctr_origin(
non_overlap_sboxes,
Geometry, derived from \cite{BeldiceanuCarlssonPoderSadekTruchet07},
[]).

ctr_synonyms(non_overlap_sboxes,[non_overlap,non_overlapping]).

ctr_types(
non_overlap_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
non_overlap_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
non_overlap_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’)]).

ctr_example(
non_overlap_sboxes,
non_overlap_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-4],[v-1]]],
[oid-2,sid-3,x-[[v-2],[v-2]]],
[oid-3,sid-4,x-[[v-5],[v-4]]]],

[[sid-1,t-[[v-0],[v-0]],l-[[v-1],[v-1]]],
[sid-1,t-[[v-1],[v-0]],l-[[v-1],[v-3]]],
[sid-1,t-[[v-0],[v-2]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-1]]],
[sid-2,t-[[v-0],[v-1]],l-[[v-1],[v-1]]],
[sid-2,t-[[v-2],[v-1]],l-[[v-1],[v-1]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-1],[v-2]]],
[sid-4,t-[[v-0],[v-0]],l-[[v-1],[v-1]]]])).

ctr_typical(non_overlap_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
non_overlap_sboxes,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int(>=(1)),>,dontcare,dontcare)]).

ctr_eval(non_overlap_sboxes,[logic(non_overlap_sboxes_g)]).

ctr_logic(
non_overlap_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(non_overlap_sboxes(Dims,O1,S1,O2,S2)--->
exists(

D,
Dims,
end(O1,S1,D)#=<origin(O2,S2,D)#\/
end(O2,S2,D)#=<origin(O1,S1,D))),

(non_overlap_objects(Dims,O1,O2)--->
forall(
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S1,
sboxes([O1ˆsid]),
forall(

S2,
sboxes([O2ˆsid]),
non_overlap_sboxes(Dims,O1,S1,O2,S2)))),

(all_non_overlap(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>
non_overlap_objects(Dims,O1,O2)))),

all_non_overlap(DIMENSIONS,OIDS)]).

ctr_contractible(non_overlap_sboxes,[],’OBJECTS’,suffix).

ctr_application(non_overlap_sboxes,[3]).

non_overlap_sboxes_g(K,_42412,[],_42414) :-
!,
check_type(int_gteq(1),K).

non_overlap_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(non_overlap_sboxes,[DIMENSIONS,OIDS],Rules),
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geost(Objects,Sboxes,[overlap(true)],Rules).
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B.286 nor

♦ META-DATA:

ctr_date(nor,[’20051226’]).

ctr_origin(nor,’Logic’,[]).

ctr_synonyms(nor,[clause]).

ctr_arguments(
nor,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nor,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
nor,
[nor(1,[[var-0],[var-0]]),
nor(0,[[var-0],[var-1]]),
nor(0,[[var-1],[var-0]]),
nor(0,[[var-1],[var-1]]),
nor(0,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(nor,[items(’VARIABLES’,all)]).

ctr_eval(nor,[automaton(nor_a)]).

ctr_pure_functional_dependency(nor,[]).

ctr_functional_dependency(nor,1,[2]).

ctr_contractible(nor,[’VAR’=1],’VARIABLES’,any).

ctr_extensible(nor,[’VAR’=0],’VARIABLES’,any).

ctr_aggregate(nor,[],[#/\,union]).

ctr_cond_imply(
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nor,
some_equal,
[size(’VARIABLES’)>2],
[],
[’VARIABLES’]).

ctr_sol(nor,2,0,2,4,[0-3,1-1]).

ctr_sol(nor,3,0,3,8,[0-7,1-1]).

ctr_sol(nor,4,0,4,16,[0-15,1-1]).

ctr_sol(nor,5,0,5,32,[0-31,1-1]).

ctr_sol(nor,6,0,6,64,[0-63,1-1]).

ctr_sol(nor,7,0,7,128,[0-127,1-1]).

ctr_sol(nor,8,0,8,256,[0-255,1-1]).

nor_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,L),
L>1,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_47809,
LIST_VARIABLES,
[source(s),sink(i),sink(k)],
[arc(s,0,j),
arc(s,1,i),
arc(i,0,i),
arc(j,0,j),
arc(j,1,k),
arc(k,0,k),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.287 not all equal

♦ META-DATA:

ctr_date(
not_all_equal,
[’20030820’,’20040530’,’20040726’,’20060812’,’20100418’]).

ctr_origin(not_all_equal,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_arguments(not_all_equal,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
not_all_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>1]).

ctr_example(
not_all_equal,
not_all_equal([[var-3],[var-1],[var-3],[var-3],[var-3]])).

ctr_typical(
not_all_equal,
[size(’VARIABLES’)>2,nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
not_all_equal,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
not_all_equal,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>1],
[]).

ctr_eval(
not_all_equal,
[checker(not_all_equal_c),
reformulation(not_all_equal_r),
automaton(not_all_equal_a)]).

ctr_extensible(not_all_equal,[],’VARIABLES’,any).
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ctr_sol(not_all_equal,2,0,2,6,-).

ctr_sol(not_all_equal,3,0,3,60,-).

ctr_sol(not_all_equal,4,0,4,620,-).

ctr_sol(not_all_equal,5,0,5,7770,-).

ctr_sol(not_all_equal,6,0,6,117642,-).

ctr_sol(not_all_equal,7,0,7,2097144,-).

ctr_sol(not_all_equal,8,0,8,43046712,-).

not_all_equal_c(VARIABLES) :-
collection(VARIABLES,[int]),
not_all_equal_c1(VARIABLES).

not_all_equal_c1([V,V|R]) :-
!,
not_all_equal_c1([V|R]).

not_all_equal_c1([_52698,_52700|_52701]).

not_all_equal_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>1,
get_attr1(VARIABLES,VARS),
NVAL in 2..N,
nvalue(NVAL,VARS).

not_all_equal_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N>1,
not_all_equal_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_54265,
SIGNATURE,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t),arc(t,0,t),arc(t,1,t)],
[],
[],
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[]),
automaton_bool(FLAG,[0,1],AUTOMATON).

not_all_equal_signature([],[]).

not_all_equal_signature([_52702],[]) :-
!.

not_all_equal_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss]) :-
VAR1#=VAR2#<=>S,
not_all_equal_signature([[var-VAR2]|VARs],Ss).
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B.288 not in

♦ META-DATA:

ctr_date(not_in,[’20030820’,’20040530’,’20060812’]).

ctr_origin(not_in,’Derived from %c.’,[in]).

ctr_arguments(not_in,[’VAR’-dvar,’VALUES’-collection(val-int)]).

ctr_restrictions(
not_in,
[required(’VALUES’,val),distinct(’VALUES’,val)]).

ctr_example(not_in,not_in(2,[[val-1],[val-3]])).

ctr_typical(not_in,[size(’VALUES’)>1]).

ctr_exchangeable(
not_in,
[items(’VALUES’,all),translate([’VAR’,’VALUES’ˆval])]).

ctr_derived_collections(
not_in,
[col(’VARIABLES’-collection(var-dvar),[item(var-’VAR’)])]).

ctr_graph(
not_in,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NARC’=0],
[]).

ctr_eval(not_in,[automaton(not_in_a)]).

ctr_contractible(not_in,[],’VALUES’,any).

not_in_a(FLAG,VAR,VALUES) :-
check_type(dvar,VAR),
collection(VALUES,[int]),
get_attr1(VALUES,VALS),
all_different(VALS),
not_in_signature(VALUES,SIGNATURE,VAR),
AUTOMATON=



3471

automaton(
SIGNATURE,
_41459,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

not_in_signature([],[],_39815).

not_in_signature([[val-VAL]|VALs],[S|Ss],VAR) :-
VAR#=VAL#<=>S,
not_in_signature(VALs,Ss,VAR).
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B.289 npair

♦ META-DATA:

ctr_date(npair,[’20030820’,’20060812’]).

ctr_origin(npair,’Derived from %c.’,[nvalue]).

ctr_arguments(
npair,
[’NPAIRS’-dvar,’PAIRS’-collection(x-dvar,y-dvar)]).

ctr_restrictions(
npair,
[’NPAIRS’>=min(1,size(’PAIRS’)),
’NPAIRS’=<size(’PAIRS’),
required(’PAIRS’,[x,y])]).

ctr_example(
npair,
npair(

2,
[[x-3,y-1],[x-1,y-5],[x-3,y-1],[x-3,y-1],[x-1,y-5]])).

ctr_typical(
npair,
[’NPAIRS’>1,
’NPAIRS’<size(’PAIRS’),
size(’PAIRS’)>1,
range(’PAIRS’ˆx)>1,
range(’PAIRS’ˆy)>1]).

ctr_exchangeable(
npair,
[items(’PAIRS’,all),
attrs_sync(’PAIRS’,[[x,y]]),
vals([’NPAIRS’],int,=\=,all,dontcare)]).

ctr_graph(
npair,
[’PAIRS’],
2,
[’CLIQUE’>>collection(pairs1,pairs2)],
[pairs1ˆx=pairs2ˆx,pairs1ˆy=pairs2ˆy],
[’NSCC’=’NPAIRS’],
[]).
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ctr_pure_functional_dependency(npair,[]).

ctr_functional_dependency(npair,1,[2]).

ctr_contractible(
npair,
[’NPAIRS’=1,size(’PAIRS’)>0],
PAIRS,
any).

ctr_contractible(npair,[’NPAIRS’=size(’PAIRS’)],’PAIRS’,any).
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B.290 nset of consecutive values

♦ META-DATA:

ctr_date(
nset_of_consecutive_values,
[’20030820’,’20040530’,’20060812’]).

ctr_origin(nset_of_consecutive_values,’N.˜Beldiceanu’,[]).

ctr_arguments(
nset_of_consecutive_values,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nset_of_consecutive_values,
[’N’>=1,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
nset_of_consecutive_values,
[nset_of_consecutive_values(

2,
[[var-3],
[var-1],
[var-7],
[var-1],
[var-1],
[var-2],
[var-8]]),

nset_of_consecutive_values(
7,
[[var-3],
[var-1],
[var-5],
[var-7],
[var-9],
[var-11],
[var-13]]),

nset_of_consecutive_values(
1,
[[var-3],
[var-3],
[var-3],
[var-3],
[var-3],
[var-3],
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[var-3]])]).

ctr_typical(
nset_of_consecutive_values,
[’N’>1,size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
nset_of_consecutive_values,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
nset_of_consecutive_values,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)=<1],
[’NSCC’=’N’],
[]).

ctr_eval(
nset_of_consecutive_values,
[checker(nset_of_consecutive_values_c)]).

ctr_pure_functional_dependency(nset_of_consecutive_values,[]).

ctr_functional_dependency(nset_of_consecutive_values,1,[2]).

ctr_sol(nset_of_consecutive_values,2,0,2,9,[1-7,2-2]).

ctr_sol(nset_of_consecutive_values,3,0,3,64,[1-34,2-30]).

ctr_sol(
nset_of_consecutive_values,
4,
0,
4,
625,
[1-217,2-372,3-36]).

ctr_sol(
nset_of_consecutive_values,
5,
0,
5,
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7776,
[1-1716,2-4740,3-1320]).

ctr_sol(
nset_of_consecutive_values,
6,
0,
6,
117649,
[1-16159,2-65010,3-34920,4-1560]).

ctr_sol(
nset_of_consecutive_values,
7,
0,
7,
2097152,
[1-176366,2-969066,3-842520,4-109200]).

ctr_sol(
nset_of_consecutive_values,
8,
0,
8,
43046721,
[1-2187637,2-15695624,3-19989900,4-5047560,5-126000]).

nset_of_consecutive_values_c(N,VARIABLES) :-
length(VARIABLES,L),
check_type(dvar(1,L),N),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
samsort(VARS,SVARS),
SVARS=[V|R],
nset_of_consecutive_values_c(R,V,1,NSet),
N#=NSet.

nset_of_consecutive_values_c([V|R],Prev,NSet,Res) :-
Diff is V-Prev,
Diff=<1,
!,
nset_of_consecutive_values_c(R,V,NSet,Res).

nset_of_consecutive_values_c([V|R],_65584,NSet,Res) :-
!,
NSet1 is NSet+1,
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nset_of_consecutive_values_c(R,V,NSet1,Res).

nset_of_consecutive_values_c([],_65581,Res,Res).
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B.291 number digit

♦ META-DATA:

ctr_predefined(number_digit).

ctr_date(number_digit,[’20141011’]).

ctr_origin(number_digit,’Arithmetic.’,[]).

ctr_arguments(
number_digit,
[’N’-dvar,’VARIABLES’-collection(var-dvar),’B’-int]).

ctr_restrictions(
number_digit,
[’N’>=0,
size(’VARIABLES’)>=1,
size(’VARIABLES’)=<9,
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<’B’-1,
’B’>=2,
’B’=<10]).

ctr_example(
number_digit,
number_digit(1234,[[var-1],[var-2],[var-3],[var-4]],10)).

ctr_eval(
number_digit,
[checker(number_digit_c),reformulation(number_digit_r)]).

ctr_pure_functional_dependency(number_digit,[]).

ctr_functional_dependency(number_digit,1,[2,3]).

number_digit_c(N,VARIABLES,B) :-
check_type(int_gteq(0),N),
check_type(int(2,10),B),
B1 is B-1,
collection(VARIABLES,[int(0,B1)]),
length(VARIABLES,L),
L>=0,
L=<9,
number_digit_c(VARIABLES,B,0,N).
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number_digit_c([],_22417,N,N) :-
!.

number_digit_c([[var-V]|R],B,C,N) :-
C1 is B*C+V,
number_digit_c(R,B,C1,N).

number_digit_r(N,VARIABLES,B) :-
check_type(dvar_gteq(0),N),
check_type(int(2,10),B),
B1 is B-1,
collection(VARIABLES,[dvar(0,B1)]),
length(VARIABLES,L),
L>=0,
L=<9,
number_digit_r(VARIABLES,B,0,N).

number_digit_r([],_22417,C,N) :-
!,
C#=N.

number_digit_r([[var-V]|R],B,C,N) :-
C1#=B*C+V,
number_digit_r(R,B,C1,N).



3480 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.292 nvalue

♦ META-DATA:

ctr_date(
nvalue,
[20000128,
20030820,
20040530,
20051001,
20060812,
20091105]).

ctr_origin(nvalue,’\\cite{PachetRoy99}’,[]).

ctr_synonyms(nvalue,[cardinality_on_attributes_values,values]).

ctr_arguments(
nvalue,
[’NVAL’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvalue,
[required(’VARIABLES’,var),
’NVAL’>=min(1,size(’VARIABLES’)),
’NVAL’=<size(’VARIABLES’),
’NVAL’=<range(’VARIABLES’ˆvar)]).

ctr_example(
nvalue,
[nvalue(4,[[var-3],[var-1],[var-7],[var-1],[var-6]]),
nvalue(1,[[var-6],[var-6],[var-6],[var-6],[var-6]]),
nvalue(5,[[var-6],[var-3],[var-0],[var-2],[var-9]])]).

ctr_typical(
nvalue,
[’NVAL’>1,’NVAL’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
nvalue,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
nvalue,
[’VARIABLES’],
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2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’=’NVAL’],
[’EQUIVALENCE’]).

ctr_eval(nvalue,[checker(nvalue_c),builtin(nvalue_b)]).

ctr_pure_functional_dependency(nvalue,[]).

ctr_functional_dependency(nvalue,1,[2]).

ctr_contractible(
nvalue,
[’NVAL’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
nvalue,
[’NVAL’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_cond_imply(
nvalue,
increasing_nvalue,
[increasing(’VARIABLES’)],
[],
id).

ctr_sol(nvalue,2,0,2,9,[1-3,2-6]).

ctr_sol(nvalue,3,0,3,64,[1-4,2-36,3-24]).

ctr_sol(nvalue,4,0,4,625,[1-5,2-140,3-360,4-120]).

ctr_sol(nvalue,5,0,5,7776,[1-6,2-450,3-3000,4-3600,5-720]).

ctr_sol(
nvalue,
6,
0,
6,
117649,
[1-7,2-1302,3-18900,4-54600,5-37800,6-5040]).
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ctr_sol(
nvalue,
7,
0,
7,
2097152,
[1-8,2-3528,3-101136,4-588000,5-940800,6-423360,7-40320]).

ctr_sol(
nvalue,
8,
0,
8,
43046721,
[1-9,
2-9144,
3-486864,
4-5143824,
5-15876000,
6-16087680,
7-5080320,
8-362880]).

nvalue_b(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
NVAL#>=min(1,N),
NVAL#=<N,
list_dvar_range(VARS,R),
NVAL#=<R,
nvalue(NVAL,VARS).

nvalue_c(NVAL,VARIABLES) :-
check_type(dvar,NVAL),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARIABLES,N),
( integer(NVAL) ->

MIN is min(1,N),
NVAL>=MIN,
NVAL=<N

; NVAL#>=min(1,N),
NVAL#=<N
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),
sort(VARS,SVARS),
length(SVARS,M),
NVAL#=M.
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B.293 nvalue on intersection

♦ META-DATA:

ctr_date(nvalue_on_intersection,[’20040530’,’20060812’]).

ctr_origin(
nvalue_on_intersection,
Derived from %c and %c.,
[common,nvalue]).

ctr_arguments(
nvalue_on_intersection,
[’NVAL’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
nvalue_on_intersection,
[required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’NVAL’>=0,
’NVAL’=<size(’VARIABLES1’),
’NVAL’=<size(’VARIABLES2’),
’NVAL’=<range(’VARIABLES1’ˆvar),
’NVAL’=<range(’VARIABLES2’ˆvar)]).

ctr_example(
nvalue_on_intersection,
nvalue_on_intersection(

2,
[[var-1],[var-9],[var-1],[var-5]],
[[var-2],[var-1],[var-9],[var-9],[var-6],[var-9]])).

ctr_typical(
nvalue_on_intersection,
[’NVAL’>0,
’NVAL’<size(’VARIABLES1’),
’NVAL’<size(’VARIABLES2’),
’NVAL’<range(’VARIABLES1’ˆvar),
’NVAL’<range(’VARIABLES2’ˆvar),
size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1]).

ctr_exchangeable(
nvalue_on_intersection,
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[args([[’NVAL’],[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
nvalue_on_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NCC’=’NVAL’],
[]).

ctr_pure_functional_dependency(nvalue_on_intersection,[]).

ctr_functional_dependency(nvalue_on_intersection,1,[2,3]).

ctr_contractible(
nvalue_on_intersection,
[’NVAL’=0],
VARIABLES1,
any).

ctr_contractible(
nvalue_on_intersection,
[’NVAL’=0],
VARIABLES2,
any).
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B.294 nvalues

♦ META-DATA:

ctr_date(nvalues,[’20030820’,’20060812’]).

ctr_origin(nvalues,’Inspired by %c and %c.’,[nvalue,count]).

ctr_arguments(
nvalues,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
nvalues,
nvalues(

[[var-4],[var-5],[var-5],[var-4],[var-1],[var-5]],
=,
3)).

ctr_typical(
nvalues,
[size(’VARIABLES’)>1,
’LIMIT’>1,
’LIMIT’<size(’VARIABLES’),
in_list(’RELOP’,[=,<,>=,>,=<])]).

ctr_exchangeable(
nvalues,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
nvalues,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)],
[’EQUIVALENCE’]).
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ctr_eval(nvalues,[reformulation(nvalues_r)]).

ctr_pure_functional_dependency(nvalues,[in_list(’RELOP’,[=])]).

ctr_contractible(
nvalues,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_contractible(
nvalues,
[in_list(’RELOP’,[=]),’LIMIT’=1,size(’VARIABLES’)>0],
VARIABLES,
any).

ctr_contractible(
nvalues,
[in_list(’RELOP’,[=]),’LIMIT’=size(’VARIABLES’)],
VARIABLES,
any).

ctr_extensible(
nvalues,
[in_list(’RELOP’,[>=,>])],
VARIABLES,
any).

ctr_cond_imply(
nvalues,
nvalues_except_0,
[minval(’VARIABLES’ˆvar)>0],
[],
id).

nvalues_r(VARIABLES,RELOP,LIMIT) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VARIABLES,N),
NVAL in 0..N,
get_attr1(VARIABLES,VARS),
nvalue(NVAL,VARS),
call_term_relop_value(NVAL,RELOP,LIMIT).
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B.295 nvalues except 0

♦ META-DATA:

ctr_date(nvalues_except_0,[’20030820’,’20060812’]).

ctr_origin(nvalues_except_0,’Derived from %c.’,[nvalues]).

ctr_arguments(
nvalues_except_0,
[’VARIABLES’-collection(var-dvar),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvalues_except_0,
[required(’VARIABLES’,var),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
nvalues_except_0,
nvalues_except_0(

[[var-4],[var-5],[var-5],[var-4],[var-0],[var-1]],
=,
3)).

ctr_typical(
nvalues_except_0,
[size(’VARIABLES’)>1,
’LIMIT’>1,
’LIMIT’<size(’VARIABLES’),
atleast(1,’VARIABLES’,0),
in_list(’RELOP’,[=,<,>=,>,=<])]).

ctr_typical_model(nvalues_except_0,[atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
nvalues_except_0,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_graph(
nvalues_except_0,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
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[variables1ˆvar=\=0,variables1ˆvar=variables2ˆvar],
[’RELOP’(’NSCC’,’LIMIT’)],
[]).

ctr_eval(nvalues_except_0,[reformulation(nvalues_except_0_r)]).

ctr_contractible(
nvalues_except_0,
[in_list(’RELOP’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
nvalues_except_0,
[in_list(’RELOP’,[>=,>])],
VARIABLES,
any).

nvalues_except_0_r(VARIABLES,RELOP,LIMIT) :-
collection(VARIABLES,[dvar]),
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VARIABLES,N),
N1 is N+1,
NVAL1 in 1..N1,
get_attr1(VARIABLES,VARS),
append([0],VARS,VARS0),
nvalue(NVAL1,VARS0),
NVAL1#=NVAL+1,
call_term_relop_value(NVAL,RELOP,LIMIT).
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B.296 nvector

♦ META-DATA:

ctr_date(nvector,[’20081220’]).

ctr_origin(
nvector,
Introduced by G.˜Chabert as a generalisation of %c,
[nvalue]).

ctr_synonyms(nvector,[nvectors,npoint,npoints]).

ctr_types(nvector,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
nvector,
[size(’VECTOR’)>=1,
’NVEC’>=min(1,size(’VECTORS’)),
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
nvector,
nvector(

2,
[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
nvector,
[size(’VECTOR’)>1,
’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
nvector,
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[items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
nvector,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’NSCC’=’NVEC’],
[’EQUIVALENCE’]).

ctr_eval(nvector,[reformulation(nvector_r)]).

ctr_pure_functional_dependency(nvector,[]).

ctr_functional_dependency(nvector,1,[2]).

ctr_contractible(
nvector,
[’NVEC’=1,size(’VECTORS’)>0],
VECTORS,
any).

ctr_contractible(
nvector,
[’NVEC’=size(’VECTORS’)],
VECTORS,
any).

nvector_r(0,[]) :-
!.

nvector_r(NVEC,VECTORS) :-
check_type(dvar,NVEC),
collection(VECTORS,[col([dvar])]),
same_size(VECTORS),
length(VECTORS,N),
NVEC#>=min(1,N),
NVEC#=<N,
nvector_common(NVEC,VECTORS).
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B.297 nvectors

♦ META-DATA:

ctr_date(nvectors,[’20081226’]).

ctr_origin(nvectors,’Inspired by %c and %c.’,[nvector,count]).

ctr_synonyms(nvectors,[npoints]).

ctr_types(nvectors,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
nvectors,
[’VECTORS’-collection(vec-’VECTOR’),
’RELOP’-atom,
’LIMIT’-dvar]).

ctr_restrictions(
nvectors,
[size(’VECTOR’)>=1,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
in_list(’RELOP’,[=,=\=,<,>=,>,=<])]).

ctr_example(
nvectors,
nvectors(

[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]]],

=,
2)).

ctr_typical(
nvectors,
[size(’VECTOR’)>1,
size(’VECTORS’)>1,
in_list(’RELOP’,[=,<,>=,>,=<]),
’LIMIT’>1,
’LIMIT’<size(’VECTORS’)]).

ctr_exchangeable(
nvectors,
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[items(’VECTORS’,all),
items_sync(’VECTORS’ˆvec,all),
vals([’VECTORS’ˆvec],int,=\=,all,dontcare)]).

ctr_graph(
nvectors,
[’VECTORS’],
2,
[’CLIQUE’>>collection(vectors1,vectors2)],
[lex_equal(vectors1ˆvec,vectors2ˆvec)],
[’RELOP’(’NSCC’,’LIMIT’)],
[’EQUIVALENCE’]).

ctr_eval(nvectors,[reformulation(nvectors_r)]).

ctr_pure_functional_dependency(nvectors,[in_list(’RELOP’,[=])]).

ctr_contractible(
nvectors,
[in_list(’RELOP’,[<,=<])],
VECTORS,
any).

ctr_extensible(
nvectors,
[in_list(’RELOP’,[>=,>])],
VECTORS,
any).

nvectors_r(VECTORS,RELOP,LIMIT) :-
memberchk(RELOP,[=,=\=,<,>=,>,=<]),
check_type(dvar,LIMIT),
length(VECTORS,N),
NV in 0..N,
eval(nvector(NV,VECTORS)),
call_term_relop_value(NV,RELOP,LIMIT).
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B.298 nvisible from end

♦ META-DATA:

ctr_date(nvisible_from_end,[’20111228’]).

ctr_origin(
nvisible_from_end,
Derived from %c,
[nvisible_from_start]).

ctr_synonyms(nvisible_from_end,[nvisible,nvisible_from_right]).

ctr_arguments(
nvisible_from_end,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvisible_from_end,
[required(’VARIABLES’,var),
’N’>=min(1,size(’VARIABLES’)),
’N’=<size(’VARIABLES’)]).

ctr_example(
nvisible_from_end,
[nvisible_from_end(

2,
[[var-1],
[var-6],
[var-2],
[var-1],
[var-4],
[var-8],
[var-2]]),

nvisible_from_end(
1,
[[var-3],
[var-6],
[var-2],
[var-1],
[var-4],
[var-8],
[var-8]]),

nvisible_from_end(
7,
[[var-9],
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[var-8],
[var-7],
[var-5],
[var-4],
[var-3],
[var-2]])]).

ctr_typical(
nvisible_from_end,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>2]).

ctr_typical_model(nvisible_from_end,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
nvisible_from_end,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
nvisible_from_end,
[checker(nvisible_from_end_c),
automaton(nvisible_from_end_a)]).

ctr_pure_functional_dependency(nvisible_from_end,[]).

ctr_functional_dependency(nvisible_from_end,1,[2]).

ctr_sol(nvisible_from_end,2,0,2,9,[1-6,2-3]).

ctr_sol(nvisible_from_end,3,0,3,64,[1-30,2-30,3-4]).

ctr_sol(nvisible_from_end,4,0,4,625,[1-225,2-305,3-90,4-5]).

ctr_sol(
nvisible_from_end,
5,
0,
5,
7776,
[1-2275,2-3675,3-1610,4-210,5-6]).

ctr_sol(
nvisible_from_end,
6,
0,
6,
117649,
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[1-29008,2-52794,3-29400,4-6020,5-420,6-7]).

ctr_sol(
nvisible_from_end,
7,
0,
7,
2097152,
[1-446964,2-889056,3-583548,4-158760,5-18060,6-756,7-8]).

ctr_sol(
nvisible_from_end,
8,
0,
8,
43046721,
[1-8080425,
2-17238570,
3-12780180,
4-4238367,
5-661500,
6-46410,
7-1260,
8-9]).

nvisible_from_end_c(N,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
MIN is min(1,L),
check_type(dvar(MIN,L),N),
get_attr1(VARIABLES,VARS),
reverse(VARS,RVARS),
nvisible_from_start(s,RVARS,0,0,N).

nvisible_from_end_a(FLAG,N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MIN is min(1,L),
check_type(dvar(MIN,L),N),
get_attr1(VARIABLES,VARS),
reverse(VARS,RVARS),
(foreach(_46920,VARS),foreach(0,SIGNATURE)do true),
automaton(

RVARS,
Vi,
SIGNATURE,
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[source(s),sink(s),sink(t)],
[arc(s,0,t,[Vi,1]),
arc(t,0,t,(M#<Vi->[Vi,C+1];M#>=Vi->[M,C]))],

[M,C],
[0,0],
[_47009,COUNT]),

COUNT#=N#<=>FLAG.
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B.299 nvisible from start

♦ META-DATA:

ctr_date(nvisible_from_start,[’20111227’]).

ctr_origin(
nvisible_from_start,
Derived from a puzzle called skyscraper,
[]).

ctr_synonyms(nvisible_from_start,[nvisible,nvisible_from_left]).

ctr_arguments(
nvisible_from_start,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
nvisible_from_start,
[required(’VARIABLES’,var),
’N’>=min(1,size(’VARIABLES’)),
’N’=<size(’VARIABLES’)]).

ctr_example(
nvisible_from_start,
[nvisible_from_start(

3,
[[var-1],
[var-6],
[var-2],
[var-1],
[var-4],
[var-8],
[var-2]]),

nvisible_from_start(
1,
[[var-8],
[var-6],
[var-2],
[var-1],
[var-4],
[var-8],
[var-2]]),

nvisible_from_start(
7,
[[var-0],
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[var-2],
[var-3],
[var-5],
[var-6],
[var-7],
[var-9]])]).

ctr_typical(
nvisible_from_start,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>2]).

ctr_typical_model(
nvisible_from_start,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
nvisible_from_start,
[translate([’VARIABLES’ˆvar])]).

ctr_eval(
nvisible_from_start,
[checker(nvisible_from_start_c),
automaton(nvisible_from_start_a)]).

ctr_pure_functional_dependency(nvisible_from_start,[]).

ctr_functional_dependency(nvisible_from_start,1,[2]).

ctr_sol(nvisible_from_start,2,0,2,9,[1-6,2-3]).

ctr_sol(nvisible_from_start,3,0,3,64,[1-30,2-30,3-4]).

ctr_sol(nvisible_from_start,4,0,4,625,[1-225,2-305,3-90,4-5]).

ctr_sol(
nvisible_from_start,
5,
0,
5,
7776,
[1-2275,2-3675,3-1610,4-210,5-6]).

ctr_sol(
nvisible_from_start,
6,
0,
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6,
117649,
[1-29008,2-52794,3-29400,4-6020,5-420,6-7]).

ctr_sol(
nvisible_from_start,
7,
0,
7,
2097152,
[1-446964,2-889056,3-583548,4-158760,5-18060,6-756,7-8]).

ctr_sol(
nvisible_from_start,
8,
0,
8,
43046721,
[1-8080425,
2-17238570,
3-12780180,
4-4238367,
5-661500,
6-46410,
7-1260,
8-9]).

nvisible_from_start_c(N,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
MIN is min(1,L),
check_type(dvar(MIN,L),N),
get_attr1(VARIABLES,VARS),
nvisible_from_start(s,VARS,0,0,N).

nvisible_from_start_a(FLAG,N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MIN is min(1,L),
check_type(dvar(MIN,L),N),
get_attr1(VARIABLES,VARS),
(foreach(_47232,VARS),foreach(0,SIGNATURE)do true),
automaton(

VARS,
Vi,
SIGNATURE,
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[source(s),sink(s),sink(t)],
[arc(s,0,t,[Vi,1]),
arc(t,0,t,(M#<Vi->[Vi,C+1];M#>=Vi->[M,C]))],

[M,C],
[0,0],
[_47321,COUNT]),

COUNT#=N#<=>FLAG.
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B.300 open alldifferent
♦ META-DATA:

ctr_date(open_alldifferent,[’20060824’,’20090524’]).

ctr_origin(open_alldifferent,’\\cite{HoeveRegin06}’,[]).

ctr_synonyms(
open_alldifferent,
[open_alldiff,open_alldistinct,open_distinct]).

ctr_arguments(
open_alldifferent,
[’S’-svar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
open_alldifferent,
[’S’>=1,’S’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
open_alldifferent,
open_alldifferent(

{2,3,4},
[[var-9],[var-1],[var-9],[var-3]])).

ctr_typical(open_alldifferent,[size(’VARIABLES’)>2]).

ctr_exchangeable(
open_alldifferent,
[vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
open_alldifferent,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar,
variables1ˆkey in_set ’S’,
variables2ˆkey in_set ’S’],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_contractible(open_alldifferent,[],’VARIABLES’,suffix).
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B.301 open among

♦ META-DATA:

ctr_date(open_among,[’20060824’]).

ctr_origin(
open_among,
Derived from %c and %c.,
[among,open_global_cardinality]).

ctr_arguments(
open_among,
[’S’-svar,
’NVAR’-dvar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
open_among,
[’S’>=1,
’S’=<size(’VARIABLES’),
’NVAR’>=0,
’NVAR’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
open_among,
open_among(

{2,3,4,5},
3,
[[var-8],[var-5],[var-5],[var-4],[var-1]],
[[val-1],[val-5],[val-8]])).

ctr_typical(
open_among,
[’NVAR’>0,
’NVAR’<size(’VARIABLES’),
size(’VARIABLES’)>1,
size(’VALUES’)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
open_among,
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[items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
comp(’VALUES’ˆval),
=,
dontcare,
dontcare)]).

ctr_graph(
open_among,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar in ’VALUES’,variablesˆkey in_set ’S’],
[’NARC’=’NVAR’],
[]).

ctr_functional_dependency(open_among,2,[1,3,4]).

ctr_contractible(open_among,[’NVAR’=0],’VARIABLES’,suffix).
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B.302 open atleast

♦ META-DATA:

ctr_date(open_atleast,[’20060824’]).

ctr_origin(
open_atleast,
Derived from %c and %c.,
[atleast,open_global_cardinality]).

ctr_arguments(
open_atleast,
[’S’-svar,
’N’-int,
’VARIABLES’-collection(var-dvar),
’VALUE’-int]).

ctr_restrictions(
open_atleast,
[’S’>=1,
’S’=<size(’VARIABLES’),
’N’>=0,
’N’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
open_atleast,
open_atleast(

{2,3,4},
2,
[[var-4],[var-2],[var-4],[var-4]],
4)).

ctr_typical(
open_atleast,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
open_atleast,
[vals([’N’],int(>=(0)),>,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUE’),
>=,
dontcare,
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dontcare)]).

ctr_graph(
open_atleast,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’,variablesˆkey in_set ’S’],
[’NARC’>=’N’],
[]).

ctr_extensible(open_atleast,[],’VARIABLES’,suffix).
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B.303 open atmost

♦ META-DATA:

ctr_date(open_atmost,[’20060824’]).

ctr_origin(
open_atmost,
Derived from %c and %c.,
[atmost,open_global_cardinality]).

ctr_arguments(
open_atmost,
[’S’-svar,
’N’-int,
’VARIABLES’-collection(var-dvar),
’VALUE’-int]).

ctr_restrictions(
open_atmost,
[’S’>=1,
’S’=<size(’VARIABLES’),
’N’>=0,
required(’VARIABLES’,var)]).

ctr_example(
open_atmost,
open_atmost({2,3,4},1,[[var-2],[var-2],[var-4],[var-5]],2)).

ctr_typical(
open_atmost,
[’N’>0,’N’<size(’VARIABLES’),size(’VARIABLES’)>1]).

ctr_exchangeable(
open_atmost,
[vals([’N’],int,<,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar],
comp(’VALUE’),
=<,
dontcare,
dontcare)]).

ctr_graph(
open_atmost,
[’VARIABLES’],
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1,
[’SELF’>>collection(variables)],
[variablesˆvar=’VALUE’,variablesˆkey in_set ’S’],
[’NARC’=<’N’],
[]).

ctr_contractible(open_atmost,[],’VARIABLES’,suffix).
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B.304 open global cardinality

♦ META-DATA:

ctr_date(open_global_cardinality,[’20060824’]).

ctr_origin(open_global_cardinality,’\\cite{HoeveRegin06}’,[]).

ctr_synonyms(open_global_cardinality,[open_gcc,ogcc]).

ctr_arguments(
open_global_cardinality,
[’S’-svar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
open_global_cardinality,
[’S’>=1,
’S’=<size(’VARIABLES’),
required(’VARIABLES’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES’)]).

ctr_example(
open_global_cardinality,
open_global_cardinality(

{2,3,4},
[[var-3],[var-3],[var-8],[var-6]],
[[val-3,noccurrence-1],
[val-5,noccurrence-0],
[val-6,noccurrence-1]])).

ctr_typical(
open_global_cardinality,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆnoccurrence)>1,
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
open_global_cardinality,
[items(’VALUES’,all),
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vals(
[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare)]).

ctr_graph(
open_global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey in_set ’S’],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).
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B.305 open global cardinality low up

♦ META-DATA:

ctr_date(open_global_cardinality_low_up,[’20060824’]).

ctr_origin(
open_global_cardinality_low_up,
\cite{HoeveRegin06},
[]).

ctr_arguments(
open_global_cardinality_low_up,
[’S’-svar,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
open_global_cardinality_low_up,
[’S’>=1,
’S’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
open_global_cardinality_low_up,
open_global_cardinality_low_up(

{2,3,4},
[[var-3],[var-3],[var-8],[var-6]],
[[val-3,omin-1,omax-3],
[val-5,omin-0,omax-1],
[val-6,omin-1,omax-2]])).

ctr_typical(
open_global_cardinality_low_up,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES’),
’VALUES’ˆomax>0,
’VALUES’ˆomax=<size(’VARIABLES’),
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size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
open_global_cardinality_low_up,
[items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare)]).

ctr_graph(
open_global_cardinality_low_up,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval,variablesˆkey in_set ’S’],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax],
[]).
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B.306 open maximum

♦ META-DATA:

ctr_date(open_maximum,[’20090507’]).

ctr_origin(open_maximum,’Derived from %c’,[maximum]).

ctr_arguments(
open_maximum,
[’MAX’-dvar,’VARIABLES’-collection(var-dvar,bool-dvar)]).

ctr_restrictions(
open_maximum,
[size(’VARIABLES’)>0,
required(’VARIABLES’,[var,bool]),
’VARIABLES’ˆbool>=0,
’VARIABLES’ˆbool=<1]).

ctr_example(
open_maximum,
open_maximum(

5,
[[var-3,bool-1],
[var-1,bool-0],
[var-7,bool-0],
[var-5,bool-1],
[var-5,bool-1]])).

ctr_typical(
open_maximum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
open_maximum,
[items(’VARIABLES’,all),
translate([’MAX’,’VARIABLES’ˆvar])]).

ctr_eval(open_maximum,[automaton(open_maximum_a)]).

open_maximum_a(FLAG,MAX,VARIABLES) :-
check_type(dvar,MAX),
collection(VARIABLES,[dvar,dvar(0,1)]),
length(VARIABLES,N),
N>0,
open_maximum_signature(VARIABLES,SIGNATURE,MAX),
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AUTOMATON=
automaton(

SIGNATURE,
_29077,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),
arc(s,1,t),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),
arc(t,1,t),
arc(t,0,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5],AUTOMATON).

open_maximum_signature([],[],_27158).

open_maximum_signature([[var-VAR,bool-B]|VARs],[S|Ss],MAX) :-
S in 0..5,
B#=1#/\MAX#>VAR#<=>S#=0,
B#=1#/\MAX#=VAR#<=>S#=1,
B#=1#/\MAX#<VAR#<=>S#=2,
B#=0#/\MAX#>VAR#<=>S#=3,
B#=0#/\MAX#=VAR#<=>S#=4,
B#=0#/\MAX#<VAR#<=>S#=5,
open_maximum_signature(VARs,Ss,MAX).
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B.307 open minimum

♦ META-DATA:

ctr_date(open_minimum,[’20090506’]).

ctr_origin(open_minimum,’Derived from %c’,[minimum]).

ctr_arguments(
open_minimum,
[’MIN’-dvar,’VARIABLES’-collection(var-dvar,bool-dvar)]).

ctr_restrictions(
open_minimum,
[size(’VARIABLES’)>0,
required(’VARIABLES’,[var,bool]),
’VARIABLES’ˆbool>=0,
’VARIABLES’ˆbool=<1]).

ctr_example(
open_minimum,
open_minimum(

3,
[[var-3,bool-1],
[var-1,bool-0],
[var-7,bool-0],
[var-5,bool-1],
[var-5,bool-1]])).

ctr_typical(
open_minimum,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
open_minimum,
[items(’VARIABLES’,all),
translate([’MIN’,’VARIABLES’ˆvar])]).

ctr_eval(open_minimum,[automaton(open_minimum_a)]).

open_minimum_a(FLAG,MIN,VARIABLES) :-
check_type(dvar,MIN),
collection(VARIABLES,[dvar,dvar(0,1)]),
length(VARIABLES,N),
N>0,
open_minimum_signature(VARIABLES,SIGNATURE,MIN),
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AUTOMATON=
automaton(

SIGNATURE,
_30293,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),
arc(s,1,t),
arc(s,3,s),
arc(s,4,s),
arc(s,5,s),
arc(t,1,t),
arc(t,0,t),
arc(t,3,t),
arc(t,4,t),
arc(t,5,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1,2,3,4,5],AUTOMATON).

open_minimum_signature([],[],_28374).

open_minimum_signature([[var-VAR,bool-B]|VARs],[S|Ss],MIN) :-
S in 0..5,
B#=1#/\MIN#<VAR#<=>S#=0,
B#=1#/\MIN#=VAR#<=>S#=1,
B#=1#/\MIN#>VAR#<=>S#=2,
B#=0#/\MIN#<VAR#<=>S#=3,
B#=0#/\MIN#=VAR#<=>S#=4,
B#=0#/\MIN#>VAR#<=>S#=5,
open_minimum_signature(VARs,Ss,MIN).
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B.308 opposite sign
♦ META-DATA:

ctr_predefined(opposite_sign).

ctr_date(opposite_sign,[’20100821’]).

ctr_origin(opposite_sign,’Arithmetic.’,[]).

ctr_arguments(opposite_sign,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_restrictions(opposite_sign,[]).

ctr_example(opposite_sign,opposite_sign(6,-3)).

ctr_typical(opposite_sign,[’VAR1’=\=0]).

ctr_exchangeable(opposite_sign,[args([[’VAR1’,’VAR2’]])]).

ctr_eval(
opposite_sign,
[checker(opposite_sign_c),builtin(opposite_sign_b)]).

opposite_sign_c(VAR1,VAR2) :-
check_type(int,VAR1),
check_type(int,VAR2),
( VAR1=0 ->

true
; VAR2=0 ->

true
; VAR1>0 ->

VAR2<0
; VAR2>0
).

opposite_sign_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>=0#/\VAR2#=<0#\/VAR2#>=0#/\VAR1#=<0.
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B.309 or

♦ META-DATA:

ctr_date(or,[’20051226’]).

ctr_origin(or,’Logic’,[]).

ctr_synonyms(or,[rel]).

ctr_arguments(or,[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
or,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)>=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
or,
[or(0,[[var-0],[var-0]]),
or(1,[[var-0],[var-1]]),
or(1,[[var-1],[var-0]]),
or(1,[[var-1],[var-1]]),
or(1,[[var-1],[var-0],[var-1]])]).

ctr_exchangeable(or,[items(’VARIABLES’,all)]).

ctr_eval(or,[automaton(or_a)]).

ctr_pure_functional_dependency(or,[]).

ctr_functional_dependency(or,1,[2]).

ctr_contractible(or,[’VAR’=0],’VARIABLES’,any).

ctr_extensible(or,[’VAR’=1],’VARIABLES’,any).

ctr_aggregate(or,[],[#\/,union]).

ctr_cond_imply(
or,
some_equal,
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[size(’VARIABLES’)>2],
[],
[’VARIABLES’]).

ctr_cond_imply(or,nor,[’VAR’=0],[’VAR’=1],[none,’VARIABLES’]).

ctr_cond_imply(or,nor,[’VAR’=1],[’VAR’=0],[none,’VARIABLES’]).

ctr_sol(or,2,0,2,4,[0-1,1-3]).

ctr_sol(or,3,0,3,8,[0-1,1-7]).

ctr_sol(or,4,0,4,16,[0-1,1-15]).

ctr_sol(or,5,0,5,32,[0-1,1-31]).

ctr_sol(or,6,0,6,64,[0-1,1-63]).

ctr_sol(or,7,0,7,128,[0-1,1-127]).

ctr_sol(or,8,0,8,256,[0-1,1-255]).

or_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,L),
L>1,
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_50031,
LIST_VARIABLES,
[source(s),sink(i),sink(k)],
[arc(s,0,i),
arc(s,1,j),
arc(i,0,i),
arc(j,0,j),
arc(j,1,k),
arc(k,0,k),
arc(k,1,k)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.310 orchard

♦ META-DATA:

ctr_date(orchard,[’20000128’,’20030820’]).

ctr_origin(orchard,’\\cite{Jackson1821}’,[]).

ctr_arguments(
orchard,
[’NROW’-dvar,’TREES’-collection(index-int,x-dvar,y-dvar)]).

ctr_restrictions(
orchard,
[’NROW’>=0,
’TREES’ˆindex>=1,
’TREES’ˆindex=<size(’TREES’),
required(’TREES’,[index,x,y]),
distinct(’TREES’,index),
’TREES’ˆx>=0,
’TREES’ˆy>=0]).

ctr_example(
orchard,
orchard(

10,
[[index-1,x-0,y-0],
[index-2,x-4,y-0],
[index-3,x-8,y-0],
[index-4,x-2,y-4],
[index-5,x-4,y-4],
[index-6,x-6,y-4],
[index-7,x-0,y-8],
[index-8,x-4,y-8],
[index-9,x-8,y-8]])).

ctr_typical(orchard,[’NROW’>0,size(’TREES’)>3]).

ctr_exchangeable(
orchard,
[items(’TREES’,all),
attrs_sync(’TREES’,[[index],[x,y]]),
translate([’TREES’ˆx]),
translate([’TREES’ˆy])]).

ctr_graph(
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orchard,
[’TREES’],
3,
[’CLIQUE’(<)>>collection(trees1,trees2,trees3)],
[trees1ˆx*trees2ˆy-trees1ˆx*trees3ˆy+
trees1ˆy*trees3ˆx-trees1ˆy*trees2ˆx+
trees2ˆx*trees3ˆy-trees2ˆy*trees3ˆx=
0],
[’NARC’=’NROW’],
[]).

ctr_pure_functional_dependency(orchard,[]).

ctr_functional_dependency(orchard,1,[2]).

ctr_application(orchard,[2]).
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B.311 order

♦ META-DATA:

ctr_predefined(order).

ctr_date(order,[’20120502’]).

ctr_origin(order,’Derived from %c’,[sort_permutation]).

ctr_types(order,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
order,
[’VECTORS’-collection(vec-’VECTOR’),
’PERMUTATION’-collection(var-dvar)]).

ctr_restrictions(
order,
[size(’VECTOR’)>=1,
size(’VECTORS’)>=1,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
required(’PERMUTATION’,var),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
size(’PERMUTATION’)=size(’VECTORS’)]).

ctr_example(
order,
order(

[[vec-[[var-1],[var-1],[var-2],[var-2]]],
[vec-[[var-2],[var-1],[var-2],[var-1]]],
[vec-[[var-2],[var-1],[var-1],[var-1]]],
[vec-[[var-1],[var-1],[var-1],[var-2]]],
[vec-[[var-1],[var-2],[var-2],[var-1]]],
[vec-[[var-1],[var-1],[var-1],[var-1]]],
[vec-[[var-2],[var-2],[var-1],[var-1]]],
[vec-[[var-2],[var-1],[var-1],[var-2]]]],
[[var-3],
[var-7],
[var-5],
[var-2],
[var-4],
[var-1],
[var-8],
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[var-6]])).

ctr_typical(order,[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_eval(order,[reformulation(order_c)]).

ctr_functional_dependency(order,2,[1]).

order_c(VECTORS,PERMUTATION) :-
collection(VECTORS,[col([int])]),
VECTORS=[[vec-VECTOR]|_27219],
same_size(VECTORS),
length(VECTOR,M),
M>=1,
length(VECTORS,N),
collection(PERMUTATION,[int(1,N)]),
length(PERMUTATION,N),
get_attr1(PERMUTATION,P),
sort(P,S),
length(S,N),
order_c1(VECTORS,P,VP),
sort(VP,SVP),
order_c2(SVP,1).

order_c1([],[],[]) :-
!.

order_c1([VEC|R],[O|S],[VEC-O|T]) :-
order_c1(R,S,T).

order_c2([],_27195) :-
!.

order_c2([_VEC-O],O) :-
!.

order_c2([VEC1-O1,VEC2-O2|R],O1) :-
VEC1\==VEC2,
Next is O1+1,
order_c2([VEC2-O2|R],Next).
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B.312 ordered atleast nvector

♦ META-DATA:

ctr_date(ordered_atleast_nvector,[’20080921’]).

ctr_origin(
ordered_atleast_nvector,
Conjoin %c and %c.,
[atleast_nvector,lex_chain_lesseq]).

ctr_synonyms(
ordered_atleast_nvector,
[ordered_atleast_nvectors,
ordered_atleast_npoint,
ordered_atleast_npoints]).

ctr_types(
ordered_atleast_nvector,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
ordered_atleast_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
ordered_atleast_nvector,
[size(’VECTOR’)>=1,
’NVEC’>=0,
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
ordered_atleast_nvector,
ordered_atleast_nvector(

2,
[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-9],[var-4]]]])).

ctr_typical(
ordered_atleast_nvector,
[size(’VECTOR’)>1,
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’NVEC’>0,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
ordered_atleast_nvector,
[vals([’NVEC’],int(>=(0)),>,dontcare,dontcare)]).

ctr_graph(
ordered_atleast_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_graph(
ordered_atleast_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NCC’>=’NVEC’],
[]).

ctr_eval(
ordered_atleast_nvector,
[reformulation(ordered_atleast_nvector_r)]).

ordered_atleast_nvector_r(0,[]) :-
!.

ordered_atleast_nvector_r(NVEC,VECTORS) :-
eval(atleast_nvector(NVEC,VECTORS)),
eval(lex_chain_lesseq(VECTORS)).
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B.313 ordered atmost nvector

♦ META-DATA:

ctr_date(ordered_atmost_nvector,[’20080921’]).

ctr_origin(
ordered_atmost_nvector,
Conjoin %c and %c.,
[atmost_nvector,lex_chain_lesseq]).

ctr_synonyms(
ordered_atmost_nvector,
[ordered_atmost_nvectors,
ordered_atmost_npoint,
ordered_atmost_npoints]).

ctr_types(
ordered_atmost_nvector,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
ordered_atmost_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
ordered_atmost_nvector,
[size(’VECTOR’)>=1,
’NVEC’>=min(1,size(’VECTORS’)),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
ordered_atmost_nvector,
ordered_atmost_nvector(

3,
[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
ordered_atmost_nvector,
[size(’VECTOR’)>1,
’NVEC’>1,
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’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_exchangeable(
ordered_atmost_nvector,
[vals([’NVEC’],int,<,dontcare,dontcare)]).

ctr_graph(
ordered_atmost_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_graph(
ordered_atmost_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NCC’=<’NVEC’],
[]).

ctr_eval(
ordered_atmost_nvector,
[reformulation(ordered_atmost_nvector_r)]).

ctr_contractible(ordered_atmost_nvector,[],’VECTORS’,any).

ordered_atmost_nvector_r(0,[]) :-
!.

ordered_atmost_nvector_r(NVEC,VECTORS) :-
eval(atmost_nvector(NVEC,VECTORS)),
eval(lex_chain_lesseq(VECTORS)).
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B.314 ordered global cardinality

♦ META-DATA:

ctr_date(ordered_global_cardinality,[’20090911’]).

ctr_origin(
ordered_global_cardinality,
\cite{PetitRegin09},
[]).

ctr_usual_name(ordered_global_cardinality,ordgcc).

ctr_synonyms(ordered_global_cardinality,[ordered_gcc]).

ctr_arguments(
ordered_global_cardinality,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omax-int)]).

ctr_restrictions(
ordered_global_cardinality,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omax]),
increasing_seq(’VALUES’,[val]),
’VALUES’ˆomax>=0,
’VALUES’ˆomax=<size(’VARIABLES’)]).

ctr_example(
ordered_global_cardinality,
ordered_global_cardinality(

[[var-2],[var-0],[var-1],[var-0],[var-0]],
[[val-0,omax-5],[val-1,omax-3],[val-2,omax-1]])).

ctr_exchangeable(
ordered_global_cardinality,
[items(’VARIABLES’,all)]).

ctr_graph(
ordered_global_cardinality,
[’VARIABLES’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar>=’VALUES’ˆval],
[’NVERTEX’=<’VALUES’ˆomax],
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[]).

ctr_eval(
ordered_global_cardinality,
[reformulation(ordered_global_cardinality_r)]).

ctr_contractible(ordered_global_cardinality,[],’VALUES’,any).

ordered_global_cardinality_r(VARIABLES,VALUES) :-
length(VARIABLES,N),
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N)]),
length(VALUES,M),
M>0,
collection_increasing_seq(VALUES,[1]),
( N=0 ->

true
; get_attr1(VALUES,VALS),

get_attr2(VALUES,OMAXS),
length(OCCS,M),
domain(OCCS,0,N),
create_collection(

VALS,
OCCS,
val,
noccurrence,
VALUES_GC),

eval(global_cardinality(VARIABLES,VALUES_GC)),
reverse(OCCS,ROCCS),
build_sliding_sums(ROCCS,0,SUMS),
reverse(OMAXS,ROMAXS),
ordered_global_cardinality1(SUMS,ROMAXS)

).

ordered_global_cardinality1([],[]).

ordered_global_cardinality1([V|R],[L|S]) :-
V#=<L,
ordered_global_cardinality1(R,S).
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B.315 ordered nvector

♦ META-DATA:

ctr_date(ordered_nvector,[’20080919’]).

ctr_origin(ordered_nvector,’Derived from %c.’,[nvector]).

ctr_synonyms(
ordered_nvector,
[ordered_nvectors,ordered_npoint,ordered_npoints]).

ctr_types(ordered_nvector,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
ordered_nvector,
[’NVEC’-dvar,’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
ordered_nvector,
[size(’VECTOR’)>=1,
’NVEC’>=min(1,size(’VECTORS’)),
’NVEC’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
ordered_nvector,
ordered_nvector(

2,
[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-9],[var-3]]]])).

ctr_typical(
ordered_nvector,
[size(’VECTOR’)>1,
’NVEC’>1,
’NVEC’<size(’VECTORS’),
size(’VECTORS’)>1]).

ctr_graph(
ordered_nvector,
[’VECTORS’],
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2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_lesseq(vectors1ˆvec,vectors2ˆvec)],
[’NARC’=size(’VECTORS’)-1],
[]).

ctr_graph(
ordered_nvector,
[’VECTORS’],
2,
[’PATH’>>collection(vectors1,vectors2)],
[lex_less(vectors1ˆvec,vectors2ˆvec)],
[’NCC’=’NVEC’],
[]).

ctr_eval(ordered_nvector,[reformulation(ordered_nvector_r)]).

ctr_functional_dependency(ordered_nvector,1,[2]).

ctr_contractible(
ordered_nvector,
[’NVEC’=1,size(’VECTORS’)>0],
VECTORS,
any).

ctr_contractible(
ordered_nvector,
[’NVEC’=size(’VECTORS’)],
VECTORS,
any).

ordered_nvector_r(0,[]) :-
!.

ordered_nvector_r(NVEC,VECTORS) :-
eval(nvector(NVEC,VECTORS)),
eval(lex_chain_lesseq(VECTORS)).
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B.316 orth link ori siz end

♦ META-DATA:

ctr_date(orth_link_ori_siz_end,[’20030820’,’20060812’]).

ctr_origin(
orth_link_ori_siz_end,
Used by several constraints between orthotopes,
[]).

ctr_arguments(
orth_link_ori_siz_end,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_restrictions(
orth_link_ori_siz_end,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend]).

ctr_example(
orth_link_ori_siz_end,
orth_link_ori_siz_end(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]])).

ctr_typical(
orth_link_ori_siz_end,
[size(’ORTHOTOPE’)>1,’ORTHOTOPE’ˆsiz>0]).

ctr_exchangeable(
orth_link_ori_siz_end,
[items(’ORTHOTOPE’,all),
translate([’ORTHOTOPE’ˆori,’ORTHOTOPE’ˆend]),
translate([’ORTHOTOPE’ˆsiz,’ORTHOTOPE’ˆend])]).

ctr_graph(
orth_link_ori_siz_end,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆori+orthotopeˆsiz=orthotopeˆend],
[’NARC’=size(’ORTHOTOPE’)],
[]).
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ctr_eval(
orth_link_ori_siz_end,
[reformulation(orth_link_ori_siz_end_r)]).

ctr_pure_functional_dependency(orth_link_ori_siz_end,[]).

ctr_functional_dependency(orth_link_ori_siz_end,1-1,[1-2,1-3]).

ctr_functional_dependency(orth_link_ori_siz_end,1-2,[1-1,1-3]).

ctr_functional_dependency(orth_link_ori_siz_end,1-3,[1-1,1-2]).

ctr_contractible(orth_link_ori_siz_end,[],’ORTHOTOPE’,any).

orth_link_ori_siz_end_r(ORTHOTOPE) :-
collection(ORTHOTOPE,[dvar,dvar_gteq(0),dvar]),
length(ORTHOTOPE,N),
N>0,
get_attr1(ORTHOTOPE,ORIGINS),
get_attr2(ORTHOTOPE,SIZES),
get_attr3(ORTHOTOPE,ENDS),
gen_varcst(ORIGINS,SIZES,ENDS).
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B.317 orth on the ground
♦ META-DATA:

ctr_date(orth_on_the_ground,[’20030820’,’20040726’,’20060812’]).

ctr_origin(
orth_on_the_ground,
Used for defining %c.,
[place_in_pyramid]).

ctr_arguments(
orth_on_the_ground,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar),
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_the_ground,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE’),
orth_link_ori_siz_end(’ORTHOTOPE’)]).

ctr_example(
orth_on_the_ground,
orth_on_the_ground(

[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).

ctr_typical(
orth_on_the_ground,
[size(’ORTHOTOPE’)>1,’ORTHOTOPE’ˆsiz>0]).

ctr_graph(
orth_on_the_ground,
[’ORTHOTOPE’],
1,
[’SELF’>>collection(orthotope)],
[orthotopeˆkey=’VERTICAL_DIM’,orthotopeˆori=1],
[’NARC’=1],
[]).



3536 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.318 orth on top of orth

♦ META-DATA:

ctr_date(
orth_on_top_of_orth,
[’20030820’,’20040726’,’20060812’]).

ctr_origin(
orth_on_top_of_orth,
Used for defining %c.,
[place_in_pyramid]).

ctr_types(
orth_on_top_of_orth,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orth_on_top_of_orth,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’VERTICAL_DIM’-int]).

ctr_restrictions(
orth_on_top_of_orth,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
’VERTICAL_DIM’>=1,
’VERTICAL_DIM’=<size(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_example(
orth_on_top_of_orth,
orth_on_top_of_orth(

[[ori-5,siz-2,end-7],[ori-3,siz-3,end-6]],
[[ori-3,siz-5,end-8],[ori-1,siz-2,end-3]],
2)).

ctr_typical(
orth_on_top_of_orth,
[size(’ORTHOTOPE’)>1,’ORTHOTOPE’ˆsiz>0]).
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ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=\=’VERTICAL_DIM’,
orthotope2ˆori=<orthotope1ˆori,
orthotope1ˆend=<orthotope2ˆend],
[’NARC’=size(’ORTHOTOPE1’)-1],
[]).

ctr_graph(
orth_on_top_of_orth,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’VERTICAL_DIM’,
orthotope1ˆori=orthotope2ˆend],
[’NARC’=1],
[]).
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B.319 orths are connected

♦ META-DATA:

ctr_date(
orths_are_connected,
[’20000128’,’20030820’,’20060812’]).

ctr_origin(orths_are_connected,’N.˜Beldiceanu’,[]).

ctr_types(
orths_are_connected,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
orths_are_connected,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’)]).

ctr_restrictions(
orths_are_connected,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth)]).

ctr_example(
orths_are_connected,
orths_are_connected(

[[orth-[[ori-2,siz-4,end-6],[ori-2,siz-2,end-4]]],
[orth-[[ori-1,siz-2,end-3],[ori-4,siz-3,end-7]]],
[orth-[[ori-6,siz-3,end-9],[ori-1,siz-2,end-3]]],
[orth-[[ori-6,siz-2,end-8],[ori-3,siz-2,end-5]]]])).

ctr_typical(
orths_are_connected,
[size(’ORTHOTOPE’)>1,size(’ORTHOTOPES’)>1]).

ctr_exchangeable(
orths_are_connected,
[items(’ORTHOTOPES’,all),
items_sync(’ORTHOTOPES’ˆorth,all),
translate([’ORTHOTOPES’ˆorthˆori,’ORTHOTOPES’ˆorthˆend])]).

ctr_graph(
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orths_are_connected,
[’ORTHOTOPES’],
1,
[’SELF’>>collection(orthotopes)],
[orth_link_ori_siz_end(orthotopesˆorth)],
[’NARC’=size(’ORTHOTOPES’)],
[]).

ctr_graph(
orths_are_connected,
[’ORTHOTOPES’],
2,
[’CLIQUE’(=\=)>>collection(orthotopes1,orthotopes2)],
[two_orth_are_in_contact(

orthotopes1ˆorth,
orthotopes2ˆorth)],

[’NVERTEX’=size(’ORTHOTOPES’),’NCC’=1],
[]).

ctr_application(orths_are_connected,[1]).
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B.320 overlap sboxes

♦ META-DATA:

ctr_date(overlap_sboxes,[’20070622’,’20090725’]).

ctr_origin(
overlap_sboxes,
Geometry, derived from \cite{RandellCuiCohn92},
[]).

ctr_synonyms(overlap_sboxes,[overlap]).

ctr_types(
overlap_sboxes,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int)]).

ctr_arguments(
overlap_sboxes,
[’K’-int,
’DIMS’-sint,
’OBJECTS’-collection(oid-int,sid-dvar,x-’VARIABLES’),
’SBOXES’-collection(sid-int,t-’INTEGERS’,l-’POSITIVES’)]).

ctr_restrictions(
overlap_sboxes,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
’K’>0,
’DIMS’>=0,
’DIMS’<’K’,
increasing_seq(’OBJECTS’,[oid]),
required(’OBJECTS’,[oid,sid,x]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
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’OBJECTS’ˆsid=<size(’SBOXES’),
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
overlap_sboxes,
overlap_sboxes(

2,
{0,1},
[[oid-1,sid-1,x-[[v-1],[v-1]]],
[oid-2,sid-2,x-[[v-3],[v-2]]],
[oid-3,sid-3,x-[[v-2],[v-4]]]],
[[sid-1,t-[[v-0],[v-0]],l-[[v-4],[v-5]]],
[sid-2,t-[[v-0],[v-0]],l-[[v-3],[v-3]]],
[sid-3,t-[[v-0],[v-0]],l-[[v-2],[v-1]]]])).

ctr_typical(overlap_sboxes,[size(’OBJECTS’)>1]).

ctr_exchangeable(
overlap_sboxes,
[items(’OBJECTS’,all),
items(’SBOXES’,all),
items_sync(’OBJECTS’ˆx,’SBOXES’ˆt,’SBOXES’ˆl,all),
vals([’SBOXES’ˆlˆv],int,<,dontcare,dontcare)]).

ctr_eval(overlap_sboxes,[logic(overlap_sboxes_g)]).

ctr_logic(
overlap_sboxes,
[DIMENSIONS,OIDS],
[(origin(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)),
(end(O1,S1,D)--->O1ˆx(D)+S1ˆt(D)+S1ˆl(D)),
(overlap_sboxes(Dims,O1,S1,O2,S2)--->
forall(

D,
Dims,
end(O1,S1,D)#>origin(O2,S2,D)#/\
end(O2,S2,D)#>origin(O1,S1,D))),

(overlap_objects(Dims,O1,O2)--->
forall(

S1,
sboxes([O1ˆsid]),
exists(
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S2,
sboxes([O2ˆsid]),
overlap_sboxes(Dims,O1,S1,O2,S2)))),

(all_overlap(Dims,OIDS)--->
forall(

O1,
objects(OIDS),
forall(

O2,
objects(OIDS),
O1ˆoid#<O2ˆoid#=>overlap_objects(Dims,O1,O2)))),

all_overlap(DIMENSIONS,OIDS)]).

ctr_contractible(overlap_sboxes,[],’OBJECTS’,suffix).

ctr_application(overlap_sboxes,[3]).

overlap_sboxes_g(K,_39114,[],_39116) :-
!,
check_type(int_gteq(1),K).

overlap_sboxes_g(K,_DIMS,OBJECTS,SBOXES) :-
length(OBJECTS,O),
length(SBOXES,S),
O>0,
S>0,
check_type(int_gteq(1),K),
collection(OBJECTS,[int(1,O),dvar(1,S),col(K,[dvar])]),
collection(

SBOXES,
[int(1,S),col(K,[int]),col(K,[int_gteq(1)])]),

get_attr1(OBJECTS,OIDS),
get_attr2(OBJECTS,SIDS),
get_col_attr3(OBJECTS,1,XS),
get_attr1(SBOXES,SIDES),
get_col_attr2(SBOXES,1,TS),
get_col_attr3(SBOXES,1,TL),
collection_increasing_seq(OBJECTS,[1]),
geost1(OIDS,SIDS,XS,Objects),
geost2(SIDES,TS,TL,Sboxes),
geost_dims(1,K,DIMENSIONS),
ctr_logic(overlap_sboxes,[DIMENSIONS,OIDS],Rules),
geost(Objects,Sboxes,[overlap(true)],Rules).
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B.321 path

♦ META-DATA:

ctr_date(path,[’20090101’,’20120219’]).

ctr_origin(path,’Derived from %c.’,[binary_tree]).

ctr_arguments(
path,
[’NPATH’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
path,
[’NPATH’>=1,
’NPATH’=<size(’NODES’),
required(’NODES’,[index,succ]),
size(’NODES’)>0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
path,
[path(

3,
[[index-1,succ-1],
[index-2,succ-3],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-6]]),

path(
1,
[[index-1,succ-8],
[index-2,succ-7],
[index-3,succ-6],
[index-4,succ-5],
[index-5,succ-5],
[index-6,succ-4],
[index-7,succ-3],
[index-8,succ-2]]),
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path(
8,
[[index-1,succ-1],
[index-2,succ-2],
[index-3,succ-3],
[index-4,succ-4],
[index-5,succ-5],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-8]])]).

ctr_typical(path,[’NPATH’<size(’NODES’),size(’NODES’)>1]).

ctr_exchangeable(path,[items(’NODES’,all)]).

ctr_graph(
path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NPATH’,’MAX_ID’=<1],
[’ONE_SUCC’]).

ctr_eval(path,[reformulation(path_r),checker(path_c)]).

ctr_functional_dependency(path,1,[2]).

ctr_application(path,[2]).

ctr_sol(path,2,0,2,3,[1-2,2-1]).

ctr_sol(path,3,0,3,13,[1-6,2-6,3-1]).

ctr_sol(path,4,0,4,73,[1-24,2-36,3-12,4-1]).

ctr_sol(path,5,0,5,501,[1-120,2-240,3-120,4-20,5-1]).

ctr_sol(path,6,0,6,4051,[1-720,2-1800,3-1200,4-300,5-30,6-1]).

ctr_sol(
path,
7,
0,
7,
37633,
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[1-5040,2-15120,3-12600,4-4200,5-630,6-42,7-1]).

ctr_sol(
path,
8,
0,
8,
394353,
[1-40320,
2-141120,
3-141120,
4-58800,
5-11760,
6-1176,
7-56,
8-1]).

path_r(NPATH,NODES) :-
eval(tree(NPATH,NODES)),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
k_ary_tree(INDEXES,INDEXES,SUCCS,1).

path_c(NPATH,NODES) :-
length(NODES,N),
check_type(dvar(1,N),NPATH),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,IND),
sort(IND,SIND),
length(SIND,N),
get_attr12(NODES,IND_SUCC),
keysort(IND_SUCC,SIND_SUCC),
remove_key_from_collection(SIND_SUCC,Succ),
(foreach(S,Succ),
foreach(S-P,L1),
foreach(_79261,Sink),count(P,1,_79268)do
true),
keysort(L1,L2),
keyclumped(L2,L3),
(foreach(Su-Ps,L3),param(Sink)do
Ps=[Su]->nth1(Su,Sink,Su);
Ps=[Other]->nth1(Su,Sink,X),nth1(Other,Sink,X);
Ps=[Su,Other]->nth1(Su,Sink,Su),nth1(Other,Sink,Su);
Ps=[Other,Su]->nth1(Su,Sink,Su),nth1(Other,Sink,Su)),
ground(Sink),
sort(Sink,Sinks),
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length(Sinks,NPATH).
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B.322 path from to

♦ META-DATA:

ctr_date(path_from_to,[’20030820’,’20040530’,’20060812’]).

ctr_origin(
path_from_to,
\cite{AlthausBockmayrElfKasperJungerMehlhorn02},
[]).

ctr_usual_name(path_from_to,path).

ctr_arguments(
path_from_to,
[’FROM’-int,
’TO’-int,
’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
path_from_to,
[’FROM’>=1,
’FROM’=<size(’NODES’),
’TO’>=1,
’TO’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
path_from_to,
path_from_to(

4,
3,
[[index-1,succ-{}],
[index-2,succ-{}],
[index-3,succ-{5}],
[index-4,succ-{5}],
[index-5,succ-{2,3}]])).

ctr_typical(path_from_to,[’FROM’=\=’TO’,size(’NODES’)>2]).

ctr_exchangeable(path_from_to,[items(’NODES’,all)]).
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ctr_graph(
path_from_to,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’PATH_FROM_TO’(index,’FROM’,’TO’)=1],
[]).

ctr_application(path_from_to,[3]).
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B.323 pattern

♦ META-DATA:

ctr_date(pattern,[’20031008’,’20090717’]).

ctr_origin(pattern,’\\cite{BourdaisGalinierPesant03}’,[]).

ctr_types(pattern,[’PATTERN’-collection(var-int)]).

ctr_arguments(
pattern,
[’VARIABLES’-collection(var-dvar),
’PATTERNS’-collection(pat-’PATTERN’)]).

ctr_restrictions(
pattern,
[required(’PATTERN’,var),
’PATTERN’ˆvar>=0,
change(0,’PATTERN’,=),
size(’PATTERN’)>1,
required(’VARIABLES’,var),
required(’PATTERNS’,pat),
size(’PATTERNS’)>0,
same_size(’PATTERNS’,pat)]).

ctr_example(
pattern,
pattern(

[[var-1],
[var-1],
[var-2],
[var-2],
[var-2],
[var-1],
[var-3],
[var-3]],
[[pat-[[var-1],[var-2],[var-1]]],
[pat-[[var-1],[var-2],[var-3]]],
[pat-[[var-2],[var-1],[var-3]]]])).

ctr_typical(
pattern,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
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pattern,
[items(’PATTERNS’,all),
items_sync(’VARIABLES’,’PATTERNS’ˆpat,reverse),
vals(

[’VARIABLES’ˆvar,’PATTERNS’ˆpatˆvar],
int,
=\=,
all,
dontcare)]).

ctr_eval(pattern,[automaton(pattern_a)]).

ctr_contractible(pattern,[],’VARIABLES’,prefix).

ctr_contractible(pattern,[],’VARIABLES’,suffix).

pattern_a(FLAG,VARIABLES,PATTERNS) :-
collection(VARIABLES,[dvar]),
collection(PATTERNS,[col([int_gteq(0)])]),
same_size(PATTERNS),
length(PATTERNS,NPATTERNS),
NPATTERNS>0,
get_attr1(VARIABLES,VARS),
get_col_attr1(PATTERNS,1,PATTS),
PATTS=[PATT|_32739],
length(PATT,K),
K>1,
pattern_change(PATTERNS),
remove_duplicates(PATTS,PATTS_NO_DUPLICATES),
pattern_build_tree(

PATTS_NO_DUPLICATES,
ID_PATTS,
node(-1-0,[]),
1,
_35612,
TREE),

flattern(PATTS_NO_DUPLICATES,FLAT_PATTS),
remove_duplicates(FLAT_PATTS,VALUES),
pattern_next(

ID_PATTS,
ID_PATTS,
VALUES,
ADDITIONAL_TRANSITIONS),

pattern_gen_states(TREE,STATES,TRANSITIONS),
append(

TRANSITIONS,
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ADDITIONAL_TRANSITIONS,
ALL_TRANSITIONS),

AUTOMATON=
automaton(

VARS,
_37711,
VARS,
STATES,
ALL_TRANSITIONS,
[],
[],
[]),

automaton_bool(FLAG,VALUES,AUTOMATON).

pattern_gen_states(
node(-1-0,LIST_SUNS),
[source(NAME),sink(NAME)|R],
TRANSITIONS) :-

!,
number_codes(-1,CODE),
atom_codes(ATOM,CODE),
atom_concat(s,ATOM,NAME),
pattern_gen_states1(LIST_SUNS,-1,R,TRANSITIONS).

pattern_gen_states(
node(ID-_VAL,LIST_SUNS),
[sink(NAME)|R],
TRANSITIONS) :-

ID>=0,
number_codes(ID,IDCODE),
atom_codes(IDATOM,IDCODE),
atom_concat(s,IDATOM,NAME),
pattern_gen_states1(LIST_SUNS,ID,R,TRANSITIONS).

pattern_gen_states1([],_32663,[],[]).

pattern_gen_states1([N|R],ID1,ST,TRANSITIONS) :-
N=node(ID2-VAL2,_32689),
pattern_gen_states(N,S,TRANSITIONS1),
pattern_gen_states1(R,ID1,T,TRANSITIONS2),
append(S,T,ST),
number_codes(ID1,IDCODE1),
atom_codes(IDATOM1,IDCODE1),
atom_concat(s,IDATOM1,IDNAME1),
number_codes(ID2,IDCODE2),
atom_codes(IDATOM2,IDCODE2),
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atom_concat(s,IDATOM2,IDNAME2),
append(

[arc(IDNAME1,VAL2,IDNAME2),
arc(IDNAME2,VAL2,IDNAME2)],

TRANSITIONS1,
T1),

append(T1,TRANSITIONS2,TRANSITIONS).

pattern_change([]).

pattern_change([[_32671-P]|R]) :-
eval(change(0,P,=)),
pattern_change(R).

pattern_next([],_32663,_32664,[]).

pattern_next([PID-P|R],ID_PATTS,VALUES,TRANSITIONS) :-
P=[_32692|RP],
pattern_next1(VALUES,PID,RP,ID_PATTS,TRANSITIONS1),
pattern_next(R,ID_PATTS,VALUES,TRANSITIONS2),
append(TRANSITIONS1,TRANSITIONS2,TRANSITIONS).

pattern_next1([],_32663,_32664,_32665,[]).

pattern_next1(
[V|R],
PID,
RP,
ID_PATTS,
[arc(PIDNAME,V,NEWPIDNAME)|S]) :-

append(RP,[V],NEWP),
pattern_search(ID_PATTS,NEWP,NEWPID),
number_codes(PID,PIDCODE),
atom_codes(PIDATOM,PIDCODE),
atom_concat(s,PIDATOM,PIDNAME),
number_codes(NEWPID,NEWPIDCODE),
atom_codes(NEWPIDATOM,NEWPIDCODE),
atom_concat(s,NEWPIDATOM,NEWPIDNAME),
!,
pattern_next1(R,PID,RP,ID_PATTS,S).

pattern_next1([_32670|R],PID,RP,ID_PATTS,S) :-
pattern_next1(R,PID,RP,ID_PATTS,S).

pattern_search([ID-PAT|_32669],PAT,ID) :-
!.
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pattern_search([_32668|R],PAT,ID) :-
pattern_search(R,PAT,ID).

pattern_build_tree([],[],TREE,NODE_ID,NODE_ID,TREE).

pattern_build_tree(
[PATTERN|R],
[PATTERN_ID-PATTERN|S],
OLD_TREE,
OLD_NODE_ID,
NEW_NODE_ID,
NEW_TREE) :-

pattern_insert(
PATTERN,
OLD_TREE,
OLD_NODE_ID,
CUR_NODE_ID,
CUR_TREE,
PATTERN_ID),

pattern_build_tree(
R,
S,
CUR_TREE,
CUR_NODE_ID,
NEW_NODE_ID,
NEW_TREE).

pattern_insert([],TREE,NODE_ID,NODE_ID,TREE,_32667).

pattern_insert(
[I|R],
OLD_TREE,
OLD_NODE_ID,
NEW_NODE_ID,
node(LABEL,NEW_TREE),
PATTERN_ID) :-

OLD_TREE=node(LABEL,LIST_NODES),
pattern_occurs(I,LIST_NODES,[],BEFORE,SUBTREE,AFTER),
!,
pattern_insert(

R,
SUBTREE,
OLD_NODE_ID,
NEW_NODE_ID,
NEW_SUBTREE,
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PATTERN_ID),
append(BEFORE,[NEW_SUBTREE],TEMPO_TREE),
append(TEMPO_TREE,AFTER,NEW_TREE).

pattern_insert(
[I|R],
node(LABEL,LIST_NODES),
OLD_NODE_ID,
NEW_NODE_ID,
node(LABEL,[BRANCH|LIST_NODES]),
PATTERN_ID) :-

pattern_create_branch(
[I|R],
OLD_NODE_ID,
NEW_NODE_ID,
BRANCH,
PATTERN_ID).

pattern_create_branch(
[I],
OLD_NODE_ID,
NEW_NODE_ID,
node(OLD_NODE_ID-I,[]),
OLD_NODE_ID) :-

!,
NEW_NODE_ID is OLD_NODE_ID+1.

pattern_create_branch(
[I,J|R],
OLD_NODE_ID,
NEW_NODE_ID,
node(OLD_NODE_ID-I,[S]),
PATTERN_ID) :-

CUR_NODE_ID is OLD_NODE_ID+1,
pattern_create_branch(

[J|R],
CUR_NODE_ID,
NEW_NODE_ID,
S,
PATTERN_ID).

pattern_occurs(
I,
[node(Id-I,L)|AFTER],
BEFORE,
BEFORE,
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node(Id-I,L),
AFTER) :-

!.

pattern_occurs(
I,
[NODE|AFTER_CUR],
BEFORE_CUR,
BEFORE,
NODE_FOUND,
AFTER) :-

pattern_occurs(
I,
AFTER_CUR,
[NODE|BEFORE_CUR],
BEFORE,
NODE_FOUND,
AFTER).
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B.324 peak

♦ META-DATA:

ctr_date(peak,[’20040530’]).

ctr_origin(peak,’Derived from %c.’,[inflexion]).

ctr_arguments(peak,[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
peak,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
peak,
[peak(

2,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-6],
[var-2],
[var-7],
[var-1]]),

peak(
0,
[[var-1],
[var-1],
[var-4],
[var-4],
[var-4],
[var-6],
[var-7],
[var-7]]),

peak(
4,
[[var-1],
[var-5],
[var-4],
[var-9],
[var-4],
[var-6],
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[var-2],
[var-7],
[var-6]])]).

ctr_typical(
peak,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(peak,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
peak,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
peak,
[checker(peak_c),
automaton(peak_a),
automaton_with_signature(peak_a_s)]).

ctr_pure_functional_dependency(peak,[]).

ctr_functional_dependency(peak,1,[2]).

ctr_contractible(peak,[’N’=0],’VARIABLES’,any).

ctr_cond_imply(
peak,
atleast_nvalue,
[’N’>0],
[’NVAL’=2],
[none,’VARIABLES’]).

ctr_cond_imply(
peak,
inflexion,
[],
[’N’=peak(’VARIABLES’ˆvar)+valley(’VARIABLES’ˆvar)],
[none,’VARIABLES’]).

ctr_sol(peak,2,0,2,9,[0-9]).

ctr_sol(peak,3,0,3,64,[0-50,1-14]).

ctr_sol(peak,4,0,4,625,[0-295,1-330]).
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ctr_sol(peak,5,0,5,7776,[0-1792,1-5313,2-671]).

ctr_sol(peak,6,0,6,117649,[0-11088,1-73528,2-33033]).

ctr_sol(
peak,
7,
0,
7,
2097152,
[0-69498,1-944430,2-1010922,3-72302]).

ctr_sol(
peak,
8,
0,
8,
43046721,
[0-439791,1-11654622,2-24895038,3-6057270]).

peak_c(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
peak_c(VARS,s,0,N).

peak_c([V1,V2|R],s,C,N) :-
V1>=V2,
!,
peak_c([V2|R],s,C,N).

peak_c([_V1,V2|R],s,C,N) :-
!,
peak_c([V2|R],u,C,N).

peak_c([V1,V2|R],u,C,N) :-
V1=<V2,
!,
peak_c([V2|R],u,C,N).

peak_c([_V1,V2|R],u,C,N) :-
!,
C1 is C+1,
peak_c([V2|R],s,C1,N).

peak_c([_52973],_52970,N,N) :-
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!.

peak_c([],_52967,N,N).

peak_counters_check([V1,V2|R],s,C,[C|S]) :-
V1>=V2,
!,
peak_counters_check([V2|R],s,C,S).

peak_counters_check([_V1,V2|R],s,C,[C|S]) :-
!,
peak_counters_check([V2|R],u,C,S).

peak_counters_check([V1,V2|R],u,C,[C|S]) :-
V1=<V2,
!,
peak_counters_check([V2|R],u,C,S).

peak_counters_check([_V1,V2|R],u,C,[C1|S]) :-
!,
C1 is C+1,
peak_counters_check([V2|R],s,C1,S).

peak_counters_check([V|R],init,C,[0|S]) :-
!,
peak_counters_check([V|R],s,C,S).

peak_counters_check([_52970],_52967,_52968,[]).

ctr_automaton_signature(
peak,
peak_a,
pair_signature(2,signature)).

peak_a(FLAG,N,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
peak_a_s(FLAG,N,VARIABLES,SIGNATURE).

peak_a_s(FLAG,N,VARIABLES,SIGNATURE) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(L-1,0),
2*N#=<MAX,
automaton(

SIGNATURE,
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_54598,
SIGNATURE,
[source(s),sink(u),sink(s)],
[arc(s,2,s),
arc(s,1,s),
arc(s,0,u),
arc(u,2,s,[C+1]),
arc(u,1,u),
arc(u,0,u)],

[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.
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B.325 period

♦ META-DATA:

ctr_predefined(period).

ctr_date(period,[’20000128’,’20030820’,’20040530’,’20060812’]).

ctr_origin(period,’N.˜Beldiceanu’,[]).

ctr_arguments(
period,
[’PERIOD’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period,
[’PERIOD’>=1,
’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period,
period(

3,
[[var-1],
[var-1],
[var-4],
[var-1],
[var-1],
[var-4],
[var-1],
[var-1]],
=)).

ctr_typical(
period,
[’PERIOD’>1,
’PERIOD’<size(’VARIABLES’),
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=])]).

ctr_exchangeable(
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period,
[items(’VARIABLES’,reverse),
items(’VARIABLES’,shift),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_eval(period,[checker(period_c),reformulation(period_r)]).

ctr_pure_functional_dependency(period,[]).

ctr_functional_dependency(period,1,[2,3]).

ctr_contractible(
period,
[in_list(’CTR’,[=]),’PERIOD’=1],
VARIABLES,
any).

ctr_contractible(period,[],’VARIABLES’,prefix).

ctr_contractible(period,[],’VARIABLES’,suffix).

period_c(PERIOD,VARIABLES,CTR) :-
check_type(dvar,PERIOD),
collection(VARIABLES,[int]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
PERIOD#>=1,
PERIOD#=<N,
fd_min(PERIOD,PMin),
fd_max(PERIOD,PMax),
get_attr1(VARIABLES,VARS),
( integer(PERIOD) ->

MinPeriod is PMin
; memberchk(CTR,[=]) ->

VARS=[V|RVARS],
compute_occ_consecutive_identical_values(

RVARS,
V,
1,
OCCS),

compute_max_sliding2(OCCS,0,MinPeriod)
; MinPeriod is PMin
),
P in MinPeriod..PMax,
indomain(P),
PERIOD=P,
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( P=N ->
true

; M is min(N,P),
append_length(FIRSTS,REST,VARS,M),
period_c(REST,FIRSTS,P,CTR)

),
!.

compute_occ_consecutive_identical_values([V|R],Prev,Occ,Res) :-
V=Prev,
!,
Occ1 is Occ+1,
compute_occ_consecutive_identical_values(

R,
Prev,
Occ1,
Res).

compute_occ_consecutive_identical_values(
[V|R],
Prev,
Occ,
[Occ|S]) :-

V=\=Prev,
!,
compute_occ_consecutive_identical_values(R,V,1,S).

compute_occ_consecutive_identical_values([],_28967,Occ,[Occ]).

compute_max_sliding2([],Max,Max) :-
!.

compute_max_sliding2([_28972],Max,Max) :-
!.

compute_max_sliding2([O1,O2|R],MaxCur,Max) :-
M is O1+O2,
( M>MaxCur ->

compute_max_sliding2([O2|R],M,Max)
; compute_max_sliding2([O2|R],MaxCur,Max)
).

period_c([],_28970,_28971,_28972) :-
!.

period_c(VARS,FIRSTS,P,CTR) :-
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length(VARS,N),
M is min(N,P),
append_length(NEXTS,REST,VARS,M),
period_compare(CTR,FIRSTS,NEXTS),
period_c(REST,NEXTS,P,CTR).

period_compare(_28969,[],_28971) :-
!.

period_compare(_28969,_28970,[]) :-
!.

period_compare(=,[U|R],[V|S]) :-
!,
U=V,
period_compare(=,R,S).

period_compare(=\=,[U|R],[V|S]) :-
!,
U=\=V,
period_compare(=\=,R,S).

period_compare(<,[U|R],[V|S]) :-
!,
U<V,
period_compare(<,R,S).

period_compare(>=,[U|R],[V|S]) :-
!,
U>=V,
period_compare(>=,R,S).

period_compare(>,[U|R],[V|S]) :-
!,
U>V,
period_compare(>,R,S).

period_compare(=<,[U|R],[V|S]) :-
U=<V,
period_compare(=<,R,S).

period_r(PERIOD,VARIABLES,CTR) :-
check_type(dvar,PERIOD),
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
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PERIOD#>=1,
PERIOD#=<N,
get_attr1(VARIABLES,VARS),
period1(N,VARS,LISTS),
period4(LISTS,1,CTR,BOOLS),
reverse(BOOLS,RBOOLS),
period7(RBOOLS,1,PERIOD,1,EXPR),
call(EXPR).
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B.326 period except 0

♦ META-DATA:

ctr_predefined(period_except_0).

ctr_date(period_except_0,[’20030820’,’20040530’,’20060813’]).

ctr_origin(period_except_0,’Derived from %c.’,[period]).

ctr_arguments(
period_except_0,
[’PERIOD’-dvar,
’VARIABLES’-collection(var-dvar),
’CTR’-atom]).

ctr_restrictions(
period_except_0,
[’PERIOD’>=1,
’PERIOD’=<size(’VARIABLES’),
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
period_except_0,
period_except_0(

3,
[[var-1],
[var-1],
[var-4],
[var-1],
[var-1],
[var-0],
[var-1],
[var-1]],

=)).

ctr_typical(
period_except_0,
[’PERIOD’>1,
’PERIOD’<size(’VARIABLES’),
size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
atleast(1,’VARIABLES’,0),
in_list(’CTR’,[=])]).
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ctr_typical_model(period_except_0,[atleast(2,’VARIABLES’,0)]).

ctr_exchangeable(
period_except_0,
[items(’VARIABLES’,reverse),
items(’VARIABLES’,shift),
vals([’VARIABLES’ˆvar],int(=\=(0)),=\=,all,dontcare)]).

ctr_eval(
period_except_0,
[checker(period_except_0_c),
reformulation(period_except_0_r)]).

ctr_pure_functional_dependency(period_except_0,[]).

ctr_functional_dependency(period_except_0,1,[2,3]).

ctr_contractible(
period_except_0,
[in_list(’CTR’,[=]),’PERIOD’=1],
VARIABLES,
any).

ctr_contractible(period_except_0,[],’VARIABLES’,prefix).

ctr_contractible(period_except_0,[],’VARIABLES’,suffix).

period_except_0_c(PERIOD,VARIABLES,CTR) :-
check_type(dvar,PERIOD),
collection(VARIABLES,[int]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
PERIOD#>=1,
PERIOD#=<N,
fd_min(PERIOD,PMin),
fd_max(PERIOD,PMax),
get_attr1(VARIABLES,VARS),
P in PMin..PMax,
indomain(P),
PERIOD=P,
( P=N ->

true
; M is min(N,P),

append_length(FIRSTS,REST,VARS,M),
period_except_0_c(REST,FIRSTS,P,CTR)

),
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!.

period_except_0_c([],_29808,_29809,_29810) :-
!.

period_except_0_c(VARS,FIRSTS,P,CTR) :-
length(VARS,N),
M is min(N,P),
append_length(NEXTS,REST,VARS,M),
period_compare_except_0(CTR,FIRSTS,NEXTS),
period_except_0_c(REST,NEXTS,P,CTR).

period_compare_except_0(_29807,[],_29809) :-
!.

period_compare_except_0(_29807,_29808,[]) :-
!.

period_compare_except_0(CTR,[0|R],[_29816|S]) :-
!,
period_compare_except_0(CTR,R,S).

period_compare_except_0(CTR,[_29812|R],[0|S]) :-
!,
period_compare_except_0(CTR,R,S).

period_compare_except_0(=,[U|R],[V|S]) :-
!,
U=V,
period_compare_except_0(=,R,S).

period_compare_except_0(=\=,[U|R],[V|S]) :-
!,
U=\=V,
period_compare_except_0(=\=,R,S).

period_compare_except_0(<,[U|R],[V|S]) :-
!,
U<V,
period_compare_except_0(<,R,S).

period_compare_except_0(>=,[U|R],[V|S]) :-
!,
U>=V,
period_compare_except_0(>=,R,S).
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period_compare_except_0(>,[U|R],[V|S]) :-
!,
U>V,
period_compare_except_0(>,R,S).

period_compare_except_0(=<,[U|R],[V|S]) :-
U=<V,
period_compare_except_0(=<,R,S).

period_except_0_r(PERIOD,VARIABLES,CTR) :-
check_type(dvar,PERIOD),
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
length(VARIABLES,N),
PERIOD#>=1,
PERIOD#=<N,
get_attr1(VARIABLES,VARS),
period1(N,VARS,LISTS),
period4(LISTS,0,CTR,BOOLS),
reverse(BOOLS,RBOOLS),
period7(RBOOLS,1,PERIOD,1,EXPR),
call(EXPR).
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B.327 period vectors

♦ META-DATA:

ctr_predefined(period_vectors).

ctr_date(period_vectors,[’20110614’]).

ctr_origin(period_vectors,’Derived from %c’,[period]).

ctr_types(
period_vectors,
[’VECTOR’-collection(var-dvar),’CTR’-atom]).

ctr_arguments(
period_vectors,
[’PERIOD’-dvar,
’VECTORS’-collection(vec-’VECTOR’),
’CTRS’-collection(ctr-’CTR’)]).

ctr_restrictions(
period_vectors,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<]),
’PERIOD’>=1,
’PERIOD’=<size(’VECTORS’),
required(’VECTORS’,vec),
same_size(’VECTORS’,vec),
required(’CTRS’,ctr),
size(’CTRS’)=size(’VECTOR’)]).

ctr_example(
period_vectors,
period_vectors(

3,
[[vec-[[var-1],[var-0]]],
[vec-[[var-1],[var-5]]],
[vec-[[var-4],[var-4]]],
[vec-[[var-1],[var-0]]],
[vec-[[var-1],[var-5]]],
[vec-[[var-4],[var-4]]],
[vec-[[var-1],[var-0]]],
[vec-[[var-1],[var-5]]]],

[[ctr- =],[ctr- =]])).
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ctr_typical(
period_vectors,
[in_list(’CTR’,[=]),
size(’VECTOR’)>1,
’PERIOD’>1,
’PERIOD’<size(’VECTORS’),
size(’VECTORS’)>2]).

ctr_exchangeable(period_vectors,[items(’VECTORS’,reverse)]).

ctr_eval(period_vectors,[reformulation(period_vectors_r)]).

ctr_pure_functional_dependency(period_vectors,[]).

ctr_functional_dependency(period_vectors,1,[2,3]).

ctr_contractible(period_vectors,[],’VECTORS’,prefix).

ctr_contractible(period_vectors,[],’VECTORS’,suffix).

period_vectors_r(PERIOD,VECTORS,CTRS) :-
check_type(dvar,PERIOD),
collection(VECTORS,[col([dvar])]),
collection(CTRS,[atom([=,=\=,<,>=,>,=<])]),
length(VECTORS,N),
PERIOD#>=1,
PERIOD#=<N,
get_attr11(VECTORS,VECTS),
get_attr1(CTRS,LCTRS),
period1(N,VECTS,LISTS),
period4(LISTS,2,LCTRS,BOOLS),
reverse(BOOLS,RBOOLS),
period7(RBOOLS,1,PERIOD,1,EXPR),
call(EXPR).
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B.328 permutation

♦ META-DATA:

ctr_date(permutation,[’20111210’]).

ctr_origin(
permutation,
Derived from %c.,
[alldifferent_consecutive_values]).

ctr_arguments(permutation,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
permutation,
[required(’VARIABLES’,var),
minval(’VARIABLES’ˆvar)=1,
maxval(’VARIABLES’ˆvar)=size(’VARIABLES’)]).

ctr_example(
permutation,
permutation([[var-3],[var-2],[var-1],[var-4]])).

ctr_typical(permutation,[size(’VARIABLES’)>2]).

ctr_exchangeable(
permutation,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in)]).

ctr_graph(
permutation,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<1],
[’ONE_SUCC’]).

ctr_eval(
permutation,
[checker(permutation_c),reformulation(permutation_r)]).

ctr_cond_imply(
permutation,
balance,
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[],
[’BALANCE’=0],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
change,
[],
[’NCHANGE’=size(’VARIABLES’)-1,in_list(’CTR’,[=\=])],
[none,’VARIABLES’,none]).

ctr_cond_imply(
permutation,
circular_change,
[],
[’NCHANGE’=size(’VARIABLES’),in_list(’CTR’,[=\=])],
[none,’VARIABLES’,none]).

ctr_cond_imply(
permutation,
length_last_sequence,
[],
[’LEN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
length_first_sequence,
[],
[’LEN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
longest_change,
[],
[’SIZE’=size(’VARIABLES’),in_list(’CTR’,[=\=])],
[none,’VARIABLES’,none]).

ctr_cond_imply(
permutation,
max_n,
[],
[’MAX’=size(’VARIABLES’)-’RANK’],
[none,none,’VARIABLES’]).
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ctr_cond_imply(
permutation,
min_n,
[],
[’MIN’=’RANK’+1],
[none,none,’VARIABLES’]).

ctr_cond_imply(
permutation,
min_nvalue,
[],
[’MIN’=1],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
min_size_full_zero_stretch,
[],
[’MINSIZE’=size(’VARIABLES’)],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
ninterval,
[],
[NVAL=
(size(’VARIABLES’)+’SIZE_INTERVAL’)/’SIZE_INTERVAL’],
[none,’VARIABLES’,none]).

ctr_cond_imply(
permutation,
range_ctr,
[],
[in_list(’CTR’,[=<]),’R’=size(’VARIABLES’)],
[’VARIABLES’,none,none]).

ctr_cond_imply(
permutation,
soft_alldifferent_ctr,
[],
[],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
soft_all_equal_max_var,
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[],
[’N’=<size(’VARIABLES’)-1],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
soft_all_equal_min_var,
[],
[’N’>=size(’VARIABLES’)-1],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
sum_ctr,
[],
[in_list(’CTR’,[=]),
’VAR’=size(’VARIABLES’)*(size(’VARIABLES’)+1)/2],
[’VARIABLES’,none,none]).

ctr_cond_imply(
permutation,
deepest_valley,
[size(’VARIABLES’)>2,
first(’VARIABLES’ˆvar)>minval(’VARIABLES’ˆvar),
last(’VARIABLES’ˆvar)>minval(’VARIABLES’ˆvar)],
[’DEPTH’=minval(’VARIABLES’ˆvar)],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
deepest_valley,
[size(’VARIABLES’)>2,first(’VARIABLES’ˆvar)=1],
[’DEPTH’=2],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
deepest_valley,
[size(’VARIABLES’)>2,last(’VARIABLES’ˆvar)=1],
[’DEPTH’=2],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
highest_peak,
[size(’VARIABLES’)>2,
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first(’VARIABLES’ˆvar)<maxval(’VARIABLES’ˆvar),
last(’VARIABLES’ˆvar)<maxval(’VARIABLES’ˆvar)],
[’HEIGHT’=maxval(’VARIABLES’ˆvar)],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
highest_peak,
[size(’VARIABLES’)>2,
first(’VARIABLES’ˆvar)=size(’VARIABLES’)],
[’HEIGHT’=size(’VARIABLES’)-1],
[none,’VARIABLES’]).

ctr_cond_imply(
permutation,
highest_peak,
[size(’VARIABLES’)>2,
last(’VARIABLES’ˆvar)=size(’VARIABLES’)],
[’HEIGHT’=size(’VARIABLES’)-1],
[none,’VARIABLES’]).

ctr_sol(permutation,2,0,2,2,-).

ctr_sol(permutation,3,0,3,6,-).

ctr_sol(permutation,4,0,4,24,-).

ctr_sol(permutation,5,0,5,120,-).

ctr_sol(permutation,6,0,6,720,-).

ctr_sol(permutation,7,0,7,5040,-).

ctr_sol(permutation,8,0,8,40320,-).

ctr_sol(permutation,9,0,9,362880,-).

ctr_sol(permutation,10,0,10,3628800,-).

permutation_c([V,V|_61972]) :-
!,
fail.

permutation_c([]) :-
!.
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permutation_c(VARIABLES) :-
length(VARIABLES,N),
collection(VARIABLES,[int(1,N)]),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(SVARS,N).

permutation_r([]) :-
!.

permutation_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
all_different(VARS),
minimum(1,VARS),
length(VARIABLES,N),
maximum(N,VARS).
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B.329 place in pyramid

♦ META-DATA:

ctr_date(
place_in_pyramid,
[’20000128’,’20030820’,’20041230’,’20060813’]).

ctr_origin(place_in_pyramid,’N.˜Beldiceanu’,[]).

ctr_types(
place_in_pyramid,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
place_in_pyramid,
[’ORTHOTOPES’-collection(orth-’ORTHOTOPE’),
’VERTICAL_DIM’-int]).

ctr_restrictions(
place_in_pyramid,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
required(’ORTHOTOPES’,orth),
same_size(’ORTHOTOPES’,orth),
’VERTICAL_DIM’>=1,
diffn(’ORTHOTOPES’)]).

ctr_example(
place_in_pyramid,
place_in_pyramid(

[[orth-[[ori-1,siz-3,end-4],[ori-1,siz-2,end-3]]],
[orth-[[ori-1,siz-2,end-3],[ori-3,siz-3,end-6]]],
[orth-[[ori-5,siz-6,end-11],[ori-1,siz-2,end-3]]],
[orth-[[ori-5,siz-2,end-7],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-3,end-11],[ori-3,siz-2,end-5]]],
[orth-[[ori-8,siz-2,end-10],[ori-5,siz-2,end-7]]]],

2)).

ctr_typical(
place_in_pyramid,
[size(’ORTHOTOPE’)>1,
’ORTHOTOPE’ˆsiz>0,
size(’ORTHOTOPES’)>1]).
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ctr_exchangeable(place_in_pyramid,[items(’ORTHOTOPES’,all)]).

ctr_graph(
place_in_pyramid,
[’ORTHOTOPES’],
2,
[’CLIQUE’>>collection(orthotopes1,orthotopes2)],
[orthotopes1ˆkey=orthotopes2ˆkey#/\
orth_on_the_ground(orthotopes1ˆorth,’VERTICAL_DIM’)#\/
orthotopes1ˆkey=\=orthotopes2ˆkey#/\
orth_on_top_of_orth(

orthotopes1ˆorth,
orthotopes2ˆorth,
VERTICAL_DIM)],

[’NARC’=size(’ORTHOTOPES’)],
[]).

ctr_application(place_in_pyramid,[1]).
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B.330 polyomino

♦ META-DATA:

ctr_date(polyomino,[’20000128’,’20030820’,’20060813’]).

ctr_origin(polyomino,’Inspired by \\cite{Golomb65}.’,[]).

ctr_arguments(
polyomino,
[CELLS-
collection(

index-int,
right-dvar,
left-dvar,
up-dvar,
down-dvar)]).

ctr_restrictions(
polyomino,
[’CELLS’ˆindex>=1,
’CELLS’ˆindex=<size(’CELLS’),
size(’CELLS’)>=1,
required(’CELLS’,[index,right,left,up,down]),
distinct(’CELLS’,index),
’CELLS’ˆright>=0,
’CELLS’ˆright=<size(’CELLS’),
’CELLS’ˆleft>=0,
’CELLS’ˆleft=<size(’CELLS’),
’CELLS’ˆup>=0,
’CELLS’ˆup=<size(’CELLS’),
’CELLS’ˆdown>=0,
’CELLS’ˆdown=<size(’CELLS’)]).

ctr_example(
polyomino,
polyomino(

[[index-1,right-0,left-0,up-2,down-0],
[index-2,right-3,left-0,up-0,down-1],
[index-3,right-0,left-2,up-4,down-0],
[index-4,right-5,left-0,up-0,down-3],
[index-5,right-0,left-4,up-0,down-0]])).

ctr_exchangeable(
polyomino,
[items(’CELLS’,all),
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attrs_sync(’CELLS’,[[index],[right,left],[up],[down]]),
attrs_sync(’CELLS’,[[index],[right],[left],[up,down]]),
attrs_sync(’CELLS’,[[index],[up,left,down,right]])]).

ctr_graph(
polyomino,
[’CELLS’],
2,
[’CLIQUE’(=\=)>>collection(cells1,cells2)],
[cells1ˆright=cells2ˆindex#/\
cells2ˆleft=cells1ˆindex#\/
cells1ˆleft=cells2ˆindex#/\
cells2ˆright=cells1ˆindex#\/
cells1ˆup=cells2ˆindex#/\cells2ˆdown=cells1ˆindex#\/
cells1ˆdown=cells2ˆindex#/\cells2ˆup=cells1ˆindex],
[’NVERTEX’=size(’CELLS’),’NCC’=1],
[]).

ctr_application(polyomino,[1]).
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B.331 power

♦ META-DATA:

ctr_predefined(power).

ctr_date(power,[’20070930’]).

ctr_origin(power,’\\cite{DenmatGotliebDucasse07}’,[]).

ctr_synonyms(power,[xexpyeqz]).

ctr_arguments(power,[’X’-dvar,’N’-dvar,’Y’-dvar]).

ctr_restrictions(power,[’X’>=0,’N’>=0,’Y’>=0]).

ctr_example(power,power(2,3,8)).

ctr_typical(power,[’X’>1,’N’>1,’N’<5,’Y’>1]).

ctr_eval(power,[checker(power_c),reformulation(power_r)]).

ctr_pure_functional_dependency(power,[]).

ctr_functional_dependency(power,3,[1,2]).

power_c(X,0,Y) :-
!,
check_type(int_gteq(0),X),
Y=1.

power_c(X,N,Y) :-
check_type(int_gteq(0),X),
check_type(int_gteq(0),N),
check_type(int_gteq(0),Y),
power_c(N,X,X,Y).

power_c(1,Cur,_26427,Y) :-
!,
Cur=Y.

power_c(N,Cur,X,Y) :-
Next is Cur*X,
N1 is N-1,
power_c(N1,Next,X,Y).
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power_r(X,0,Y) :-
!,
check_type(dvar_gteq(0),X),
Y=1.

power_r(X,N,Y) :-
check_type(dvar_gteq(0),X),
check_type(dvar_gteq(0),N),
check_type(dvar_gteq(0),Y),
fd_min(N,Min),
fd_max(N,Max),
Min1 is max(1,Min),
power1(0,Min1,Max,1,X,Y,N,Disj),
call(Disj).

power1(I,_26426,Max,_26428,_26429,_26430,_26431,0) :-
I>Max,
!.

power1(I,Min,Max,P,X,Y,N,R) :-
I<Min,
!,
I1 is I+1,
power1(I1,Min,Max,P*X,X,Y,N,R).

power1(I,Min,Max,P,X,Y,N,P#=Y#/\N#=I#\/R) :-
I>=Min,
I=<Max,
I1 is I+1,
power1(I1,Min,Max,P*X,X,Y,N,R).
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B.332 precedence

♦ META-DATA:

ctr_date(precedence,[’20111015’]).

ctr_origin(precedence,’Scheduling’,[]).

ctr_arguments(
precedence,
[’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
precedence,
[required(’TASKS’,[origin,duration]),’TASKS’ˆduration>=0]).

ctr_example(
precedence,
precedence(

[[origin-1,duration-3],
[origin-4,duration-0],
[origin-5,duration-2],
[origin-8,duration-1]])).

ctr_typical(precedence,[size(’TASKS’)>2,’TASKS’ˆduration>=1]).

ctr_exchangeable(
precedence,
[vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin])]).

ctr_graph(
precedence,
[’TASKS’],
2,
[’PATH’>>collection(tasks1,tasks2)],
[tasks1ˆorigin+tasks1ˆduration=<tasks2ˆorigin],
[’NARC’=size(’TASKS’)-1],
[]).

ctr_eval(
precedence,
[checker(precedence_c),reformulation(precedence_r)]).

ctr_contractible(precedence,[],’TASKS’,any).
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ctr_application(precedence,[1]).

precedence_r(TASKS) :-
length(TASKS,N),
N>1,
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
gen_precedences(ORIGINS,DURATIONS).

gen_precedences([_35581],[_35583]) :-
!.

gen_precedences([O1,O2|R],[D1,D2|S]) :-
O1+D1#=<O2,
gen_precedences([O2|R],[D2|S]).

precedence_c(TASKS) :-
length(TASKS,N),
N>1,
collection(TASKS,[int,int_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
gen_precedences_fix(ORIGINS,DURATIONS).

gen_precedences_fix([_35581],[_35583]) :-
!.

gen_precedences_fix([O1,O2|R],[D1,D2|S]) :-
E1 is O1+D1,
E1=<O2,
gen_precedences_fix([O2|R],[D2|S]).



3586 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.333 product ctr

♦ META-DATA:

ctr_date(product_ctr,[’20030820’,’20060813’,’20070902’]).

ctr_origin(product_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
product_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
product_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
product_ctr,
product_ctr([[var-2],[var-1],[var-4]],=,8)).

ctr_typical(
product_ctr,
[size(’VARIABLES’)>1,
size(’VARIABLES’)<10,
range(’VARIABLES’ˆvar)>1,
’VARIABLES’ˆvar=\=0,
in_list(’CTR’,[=,<,>=,>,=<]),
’VAR’=\=0]).

ctr_exchangeable(product_ctr,[items(’VARIABLES’,all)]).

ctr_graph(
product_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’PROD’(’VARIABLES’,var),’VAR’)],
[]).

ctr_eval(
product_ctr,
[checker(product_ctr_c),reformulation(product_ctr_r)]).

ctr_pure_functional_dependency(
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product_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
product_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>0],
VARIABLES,
any).

ctr_aggregate(product_ctr,[in_list(’CTR’,[=])],[union,id,*]).

product_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_prod_var(VARS,PROD),
call_term_relop_value(PROD,CTR,VAR).

product_ctr_c(VARIABLES,=,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
prodlist(VARS,VAR).

product_ctr_c(VARIABLES,=\=,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
prodlist(VARS,PROD),
PROD=\=VAR.

product_ctr_c(VARIABLES,<,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
prodlist(VARS,PROD),
PROD<VAR.

product_ctr_c(VARIABLES,>=,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
prodlist(VARS,PROD),
PROD>=VAR.



3588 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

product_ctr_c(VARIABLES,>,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
prodlist(VARS,PROD),
PROD>VAR.

product_ctr_c(VARIABLES,=<,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
prodlist(VARS,PROD),
PROD=<VAR.

prodlist(Numbers,Prod) :-
(foreach(X,Numbers),fromto(1,P0,P,Prod)do P is P0*X).
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B.334 proper circuit

♦ META-DATA:

ctr_predefined(proper_circuit).

ctr_date(proper_circuit,[’20120429’]).

ctr_origin(proper_circuit,’Derived from %c’,[circuit]).

ctr_synonyms(proper_circuit,[circuit]).

ctr_arguments(
proper_circuit,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
proper_circuit,
[size(’NODES’)>1,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
proper_circuit,
proper_circuit(

[[index-1,succ-2],
[index-2,succ-3],
[index-3,succ-1],
[index-4,succ-4]])).

ctr_typical(proper_circuit,[size(’NODES’)>2]).

ctr_exchangeable(proper_circuit,[items(’NODES’,all)]).

ctr_eval(
proper_circuit,
[checker(proper_circuit_c),
reformulation(proper_circuit_r)]).

ctr_application(proper_circuit,[1]).

ctr_sol(proper_circuit,2,0,2,1,-).
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ctr_sol(proper_circuit,3,0,3,5,-).

ctr_sol(proper_circuit,4,0,4,20,-).

ctr_sol(proper_circuit,5,0,5,84,-).

ctr_sol(proper_circuit,6,0,6,409,-).

ctr_sol(proper_circuit,7,0,7,2365,-).

ctr_sol(proper_circuit,8,0,8,16064,-).

ctr_sol(proper_circuit,9,0,9,125664,-).

ctr_sol(proper_circuit,10,0,10,1112073,-).

proper_circuit_c([[_35044,succ-V],[_35055,succ-V]|_35054]) :-
!,
fail.

proper_circuit_c(NODES) :-
length(NODES,N),
N>1,
collection(NODES,[int(1,N),int(1,N)]),
sort_collection(NODES,index,SORTED_NODES),
get_attr1(SORTED_NODES,INDEXES),
get_attr2(SORTED_NODES,SUCCS),
(for(J,1,N),
foreach(X,SUCCS),
foreach(Free-1,KeyTerm),
foreach(J,Js),param(KeyTerm)do
nth1(X,KeyTerm,Free-1)),

sort(INDEXES,Js),
sort(SUCCS,Js),
keysort(KeyTerm,KeySorted),
keyclumped(KeySorted,KeyClumped),
(foreach(_35193-Ones,KeyClumped),
foreach(Count,Counts)do
length(Ones,Count)),

max_member(Max,Counts),
Max>1,
length(Counts,M),
M+Max=:=N+1.

proper_circuit_r(NODES) :-
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length(NODES,N),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,IND),
sort(IND,SIND),
length(SIND,N),
get_attr12(NODES,IND_SUCC),
keysort(IND_SUCC,SIND_SUCC),
remove_key_from_collection(SIND_SUCC,Succ),
all_distinct(Succ),
(for(I,1,N),foreach(Min,Mins),param(Succ,N)do
length([I|Ss],N),
minimum(Min,[I|Ss]),
(foreach(S2,Ss),fromto(I,S1,S2,_35183),param(Succ)do
element(S1,Succ,S2))),

(for(J,1,N),foreach(J-C,ICs),foreach(C,Cs)do true),
global_cardinality(Mins,ICs),
length(Ps,N),
length(Vs,N),
Max1 in 2..N,
Max2 in 0..1,
nth1(N,Vs,Max1),
N1 is N-1,
nth1(N1,Vs,Max2),
sorting(Cs,Ps,Vs).
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B.335 proper forest

♦ META-DATA:

ctr_date(proper_forest,[’20050604’,’20060813’]).

ctr_origin(
proper_forest,
Derived from %c, \cite{BeldiceanuKatrielLorca06}.,
[tree]).

ctr_arguments(
proper_forest,
[’NTREES’-dvar,
’NODES’-collection(index-int,neighbour-svar)]).

ctr_restrictions(
proper_forest,
[’NTREES’>=0,
required(’NODES’,[index,neighbour]),
size(’NODES’)mod 2=0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆneighbour>=1,
’NODES’ˆneighbour=<size(’NODES’),
’NODES’ˆneighbour=\=’NODES’ˆindex]).

ctr_example(
proper_forest,
proper_forest(

3,
[[index-1,neighbour-{3,6}],
[index-2,neighbour-{9}],
[index-3,neighbour-{1,5,7}],
[index-4,neighbour-{9}],
[index-5,neighbour-{3}],
[index-6,neighbour-{1}],
[index-7,neighbour-{3}],
[index-8,neighbour-{10}],
[index-9,neighbour-{2,4}],
[index-10,neighbour-{8}]])).

ctr_typical(proper_forest,[’NTREES’>0,size(’NODES’)>1]).

ctr_exchangeable(proper_forest,[items(’NODES’,all)]).
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ctr_graph(
proper_forest,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆneighbour],
[’NVERTEX’=(’NARC’+2*’NTREES’)/2,
’NCC’=’NTREES’,
’NVERTEX’=size(’NODES’)],
[’SYMMETRIC’]).

ctr_functional_dependency(proper_forest,1,[2]).

ctr_application(proper_forest,[2]).
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B.336 range ctr

♦ META-DATA:

ctr_date(range_ctr,[’20030820’,’20060813’]).

ctr_origin(range_ctr,’Arithmetic constraint.’,[]).

ctr_arguments(
range_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’R’-dvar]).

ctr_restrictions(
range_ctr,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(range_ctr,range_ctr([[var-1],[var-9],[var-4]],=,9)).

ctr_typical(
range_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(
range_ctr,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
translate([’VARIABLES’ˆvar])]).

ctr_graph(
range_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’RANGE’(’VARIABLES’,var),’R’)],
[]).

ctr_eval(range_ctr,[reformulation(range_ctr_r)]).

ctr_pure_functional_dependency(range_ctr,[in_list(’CTR’,[=])]).

ctr_contractible(
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range_ctr,
[in_list(’CTR’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
range_ctr,
[in_list(’CTR’,[>=,>])],
VARIABLES,
any).

range_ctr_r(VARIABLES,CTR,R) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,R),
length(VARIABLES,N),
N>0,
get_attr1(VARIABLES,VARS),
minimum(MIN,VARS),
maximum(MAX,VARS),
call_term_relop_value(MAX-MIN+1,CTR,R).
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B.337 relaxed sliding sum

♦ META-DATA:

ctr_date(
relaxed_sliding_sum,
[’20000128’,’20030820’,’20060813’]).

ctr_origin(relaxed_sliding_sum,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_arguments(
relaxed_sliding_sum,
[’ATLEAST’-int,
’ATMOST’-int,
’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
relaxed_sliding_sum,
[’ATLEAST’>=0,
’ATMOST’>=’ATLEAST’,
’ATMOST’=<size(’VARIABLES’)-’SEQ’+1,
’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
relaxed_sliding_sum,
relaxed_sliding_sum(

3,
4,
3,
7,
4,
[[var-2],
[var-4],
[var-2],
[var-0],
[var-0],
[var-3],
[var-4]])).

ctr_typical(
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relaxed_sliding_sum,
[’SEQ’>1,
’SEQ’<size(’VARIABLES’),
range(’VARIABLES’ˆvar)>1,
’ATLEAST’>0#\/’ATMOST’<size(’VARIABLES’)-’SEQ’+1]).

ctr_exchangeable(
relaxed_sliding_sum,
[vals([’ATLEAST’],int(>=(0)),>,dontcare,dontcare),
vals(

[’ATMOST’],
int(=<(size(’VARIABLES’)-’SEQ’+1)),
<,
dontcare,
dontcare),

items(’VARIABLES’,reverse)]).

ctr_graph(
relaxed_sliding_sum,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=<,’UP’)],
[’NARC’>=’ATLEAST’,’NARC’=<’ATMOST’],
[]).

ctr_eval(
relaxed_sliding_sum,
[reformulation(relaxed_sliding_sum_r)]).

relaxed_sliding_sum_r(ATLEAST,ATMOST,LOW,UP,SEQ,VARIABLES) :-
integer(ATLEAST),
integer(ATMOST),
integer(LOW),
integer(UP),
integer(SEQ),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
LIMIT is N-SEQ+1,
ATLEAST>=0,
ATMOST>=ATLEAST,
ATMOST=<LIMIT,
UP>=LOW,
SEQ>0,
SEQ=<N,
get_attr1(VARIABLES,VARS),
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relaxed_sliding_sum1(VARS,[],LOW,UP,SEQ,SUMB),
call(SUMB#>=ATLEAST),
call(SUMB#=<ATMOST).

relaxed_sliding_sum1([],_31129,_31130,_31131,_31132,0).

relaxed_sliding_sum1([Last|R],Seq,LOW,UP,SEQ,B+RB) :-
append(Seq,[Last],Sequence),
length(Sequence,L),
( L>SEQ ->

Sequence=[_31192|SeqCur],
build_sum_var(SeqCur,SumVar),
B in 0..1,
call(SumVar#>=LOW#/\SumVar#=<UP#<=>B),
relaxed_sliding_sum1(R,SeqCur,LOW,UP,SEQ,RB)

; L=SEQ ->
build_sum_var(Sequence,SumVar),
B in 0..1,
call(SumVar#>=LOW#/\SumVar#=<UP#<=>B),
relaxed_sliding_sum1(R,Sequence,LOW,UP,SEQ,RB)

; relaxed_sliding_sum1(R,Sequence,LOW,UP,SEQ,RB)
).
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B.338 remainder
♦ META-DATA:

ctr_predefined(remainder).

ctr_date(remainder,[’20110612’]).

ctr_origin(remainder,’Arithmetic.’,[]).

ctr_synonyms(remainder,[modulo,mod]).

ctr_arguments(remainder,[’Q’-dvar,’D’-dvar,’R’-dvar]).

ctr_restrictions(remainder,[’Q’>=0,’D’>0,’R’>=0,’R’<’D’]).

ctr_example(remainder,remainder(15,2,1)).

ctr_eval(remainder,[checker(remainder_c),builtin(remainder_b)]).

ctr_pure_functional_dependency(remainder,[]).

ctr_functional_dependency(remainder,3,[1,2]).

remainder_c(Q,D,R) :-
check_type(int,Q),
check_type(int,D),
check_type(dvar,R),
Q>=0,
D>0,
R#>=0,
R#<D,
REM is Q mod D,
R#=REM.

remainder_b(Q,D,R) :-
check_type(dvar,Q),
check_type(dvar,D),
check_type(dvar,R),
Q#>=0,
D#>0,
R#>=0,
R#<D,
Q mod D#=R.



3600 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

B.339 roots
♦ META-DATA:

ctr_date(roots,[’20070620’]).

ctr_origin(
roots,
\cite{BessiereHebrardHnichKiziltanWalsh05IJCAI},
[]).

ctr_arguments(
roots,
[’S’-svar,’T’-svar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
roots,
[’S’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
roots,
roots(

{2,4,5},
{2,3,8},
[[var-1],[var-3],[var-1],[var-2],[var-3]])).

ctr_typical(
roots,
[size(’VARIABLES’)>1,range(’VARIABLES’ˆvar)>1]).

ctr_derived_collections(
roots,
[col(’SETS’-collection(s-svar,t-svar),

[item(s-’S’,t-’T’)])]).

ctr_graph(
roots,
[’SETS’,’VARIABLES’],
2,
[’PRODUCT’>>collection(sets,variables)],
[variablesˆkey in_set setsˆs#<=>
variablesˆvar in_set setsˆt],
[’NARC’=size(’VARIABLES’)],
[]).
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B.340 same

♦ META-DATA:

ctr_date(same,[’20000128’,’20030820’,’20040530’,’20060813’]).

ctr_origin(same,’N.˜Beldiceanu’,[]).

ctr_arguments(
same,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
same,
same(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]])).

ctr_typical(
same,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
same,
[args([[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
same,
[’VARIABLES1’,’VARIABLES2’],
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2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(same,[reformulation(same_r),checker(same_c)]).

ctr_aggregate(same,[],[union,union]).

same_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
same1(VARS1,VARS2).

same1(VARS1,VARS2) :-
length(VARS1,N),
length(PERMUTATION1,N),
domain(PERMUTATION1,1,N),
length(PERMUTATION2,N),
domain(PERMUTATION2,1,N),
length(SVARS,N),
get_minimum(VARS1,MIN1),
get_maximum(VARS1,MAX1),
domain(SVARS,MIN1,MAX1),
sorting(VARS1,PERMUTATION1,SVARS),
sorting(VARS2,PERMUTATION2,SVARS),
append(VARS1,VARS2,VARS12),
append(PERMUTATION1,PERMUTATION2,PERMUTATION12),
when(ground(VARS12),once(labeling([],PERMUTATION12))).

same_c(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[int]),
collection(VARIABLES2,[int]),
length(VARIABLES1,N),
length(VARIABLES2,N),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
create_pairs(VARS1,PVARS1),
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create_pairs(VARS2,PVARS2),
keysort(PVARS1,SORTED),
keysort(PVARS2,SORTED).
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B.341 same and global cardinality

♦ META-DATA:

ctr_date(same_and_global_cardinality,[’20040530’,’20060813’]).

ctr_origin(
same_and_global_cardinality,
Conjoin %c and %c,
[same,global_cardinality]).

ctr_synonyms(
same_and_global_cardinality,
[sgcc,same_gcc,same_and_gcc,swc,same_with_cardinalities]).

ctr_arguments(
same_and_global_cardinality,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’VALUES’-collection(val-int,noccurrence-dvar)]).

ctr_restrictions(
same_and_global_cardinality,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’VALUES’,[val,noccurrence]),
distinct(’VALUES’,val),
’VALUES’ˆnoccurrence>=0,
’VALUES’ˆnoccurrence=<size(’VARIABLES1’)]).

ctr_example(
same_and_global_cardinality,
same_and_global_cardinality(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]],
[[val-1,noccurrence-3],
[val-2,noccurrence-1],
[val-5,noccurrence-1],
[val-7,noccurrence-0],
[val-9,noccurrence-1]])).

ctr_typical(
same_and_global_cardinality,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
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range(’VARIABLES2’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆnoccurrence)>1,
size(’VARIABLES1’)>size(’VALUES’)]).

ctr_exchangeable(
same_and_global_cardinality,
[args([[’VARIABLES1’,’VARIABLES2’],[’VALUES’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’VALUES’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

vals(
[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_graph(
same_and_global_cardinality,
[’VARIABLES1’],
1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’=’VALUES’ˆnoccurrence],
[]).

ctr_eval(
same_and_global_cardinality,
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[reformulation(same_and_global_cardinality_r)]).

ctr_contractible(same_and_global_cardinality,[],’VALUES’,any).

same_and_global_cardinality_r(VARIABLES1,VARIABLES2,VALUES) :-
eval(same(VARIABLES1,VARIABLES2)),
eval(global_cardinality(VARIABLES1,VALUES)).
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B.342 same and global cardinality low up

♦ META-DATA:

ctr_date(
same_and_global_cardinality_low_up,
[’20051104’,’20060813’]).

ctr_origin(
same_and_global_cardinality_low_up,
Derived from %c and %c,
[same,global_cardinality_low_up]).

ctr_arguments(
same_and_global_cardinality_low_up,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
same_and_global_cardinality_low_up,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<size(’VARIABLES1’),
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
same_and_global_cardinality_low_up,
same_and_global_cardinality_low_up(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-2],[var-5]],
[[val-1,omin-2,omax-3],
[val-2,omin-1,omax-1],
[val-5,omin-1,omax-1],
[val-7,omin-0,omax-2],
[val-9,omin-1,omax-1]])).

ctr_typical(
same_and_global_cardinality_low_up,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
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size(’VALUES’)>1,
’VALUES’ˆomin=<size(’VARIABLES1’),
’VALUES’ˆomax>0,
’VALUES’ˆomax<size(’VARIABLES1’),
size(’VARIABLES1’)>size(’VALUES’)]).

ctr_exchangeable(
same_and_global_cardinality_low_up,
[args([[’VARIABLES1’,’VARIABLES2’],[’VALUES’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals(

[’VALUES’ˆomax],
int(=<(size(’VARIABLES1’))),
<,
dontcare,
dontcare),

vals(
[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
same_and_global_cardinality_low_up,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_graph(
same_and_global_cardinality_low_up,
[’VARIABLES1’],
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1,
foreach(’VALUES’,[’SELF’>>collection(variables)]),
[variablesˆvar=’VALUES’ˆval],
[’NVERTEX’>=’VALUES’ˆomin,’NVERTEX’=<’VALUES’ˆomax],
[]).

ctr_eval(
same_and_global_cardinality_low_up,
[reformulation(same_and_global_cardinality_low_up_r)]).

ctr_contractible(
same_and_global_cardinality_low_up,
[],
VALUES,
any).

same_and_global_cardinality_low_up_r(
VARIABLES1,
VARIABLES2,
VALUES) :-

eval(same(VARIABLES1,VARIABLES2)),
eval(global_cardinality_low_up(VARIABLES1,VALUES)).
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B.343 same intersection

♦ META-DATA:

ctr_date(same_intersection,[’20040530’,’20060814’]).

ctr_origin(
same_intersection,
Derived from %c and %c.,
[same,common]).

ctr_arguments(
same_intersection,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
same_intersection,
[required(’VARIABLES1’,var),required(’VARIABLES2’,var)]).

ctr_example(
same_intersection,
same_intersection(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-9],
[var-1],
[var-1],
[var-1],
[var-3],
[var-5],
[var-8]])).

ctr_typical(
same_intersection,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
same_intersection,
[args([[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
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int,
=\=,
all,
dontcare)]).

ctr_graph(
same_intersection,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’)],
[]).

ctr_eval(
same_intersection,
[reformulation(same_intersection_r)]).

same_intersection_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
( N1=0 ->

true
; N2=0 ->

true
; get_attr1(VARIABLES1,VARS1),

get_attr1(VARIABLES2,VARS2),
get_minimum(VARS1,MINVARS1),
get_minimum(VARS2,MINVARS2),
get_maximum(VARS1,MAXVARS1),
get_maximum(VARS2,MAXVARS2),
MIN is min(MINVARS1,MINVARS2),
MAX is max(MAXVARS1,MAXVARS2),
complete_card(MIN,MAX,N1,[],[],VN1),
complete_card(MIN,MAX,N2,[],[],VN2),
global_cardinality(VARS1,VN1),
global_cardinality(VARS2,VN2),
same_intersection1(VN1,VN2)

).

same_intersection1([],[]).

same_intersection1([V-O1|R],[V-O2|S]) :-
O1#>0#/\O2#>0#=>O2#=O1,



3612 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

same_intersection1(R,S).
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B.344 same interval

♦ META-DATA:

ctr_date(same_interval,[’20030820’,’20060814’]).

ctr_origin(same_interval,’Derived from %c.’,[same]).

ctr_arguments(
same_interval,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
same_interval,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
same_interval,
same_interval(

[[var-1],[var-7],[var-6],[var-0],[var-1],[var-7]],
[[var-8],[var-8],[var-8],[var-0],[var-1],[var-2]],
3)).

ctr_typical(
same_interval,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
same_interval,
[args([[’VARIABLES1’,’VARIABLES2’],[’SIZE_INTERVAL’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
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dontcare,
dontcare)]).

ctr_graph(
same_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(same_interval,[reformulation(same_interval_r)]).

ctr_aggregate(same_interval,[],[union,union,id]).

same_interval_r(VARIABLES1,VARIABLES2,SIZE_INTERVAL) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
same1(QUOTVARS1,QUOTVARS2).
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B.345 same modulo

♦ META-DATA:

ctr_date(same_modulo,[’20030820’,’20060814’]).

ctr_origin(same_modulo,’Derived from %c.’,[same]).

ctr_arguments(
same_modulo,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
same_modulo,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
same_modulo,
same_modulo(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-6],[var-4],[var-1],[var-1],[var-5],[var-5]],
3)).

ctr_typical(
same_modulo,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
same_modulo,
[args([[’VARIABLES1’,’VARIABLES2’],[’M’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
same_modulo,
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[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(same_modulo,[reformulation(same_modulo_r)]).

ctr_aggregate(same_modulo,[],[union,union,id]).

same_modulo_r(VARIABLES1,VARIABLES2,M) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
same1(REMVARS1,REMVARS2).
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B.346 same partition

♦ META-DATA:

ctr_date(same_partition,[’20030820’,’20060814’]).

ctr_origin(same_partition,’Derived from %c.’,[same]).

ctr_types(same_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
same_partition,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
same_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
same_partition,
same_partition(

[[var-1],[var-2],[var-6],[var-3],[var-1],[var-2]],
[[var-6],[var-6],[var-2],[var-3],[var-1],[var-3]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
same_partition,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
same_partition,
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[args([[’VARIABLES1’,’VARIABLES2’],[’PARTITIONS’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
same_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(same_partition,[reformulation(same_partition_r)]).

ctr_aggregate(same_partition,[],[union,union,id]).

same_partition_r(VARIABLES1,VARIABLES2,PARTITIONS) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,P),
P>1,
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS1,PVALS,PVARS1,LPVALS1,0),
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get_partition_var(VARS2,PVALS,PVARS2,LPVALS1,0),
same1(PVARS1,PVARS2).
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B.347 same remainder

♦ META-DATA:

ctr_predefined(same_remainder).

ctr_date(same_remainder,[’20140919’]).

ctr_origin(same_remainder,learning,[]).

ctr_arguments(
same_remainder,
[’VARIABLES’-collection(var-dvar),’Q’-dvar,’R’-dvar]).

ctr_restrictions(
same_remainder,
[size(’VARIABLES’)>0,
required(’VARIABLES’,[var]),
’VARIABLES’ˆvar>=0,
’Q’>1,
’Q’=<maxval(’VARIABLES’ˆvar),
’R’>=0,
’R’<’Q’]).

ctr_example(
same_remainder,
[same_remainder([[var-4],[var-6],[var-4],[var-8]],2,0),
same_remainder([[var-4],[var-1],[var-4],[var-7]],3,1)]).

ctr_typical(same_remainder,[size(’VARIABLES’)>2,’Q’<10]).

ctr_exchangeable(same_remainder,[items(’VARIABLES’,all)]).

ctr_eval(
same_remainder,
[checker(same_remainder_c),
reformulation(same_remainder_r)]).

same_remainder_c(VARIABLES,Q,R) :-
length(VARIABLES,N),
N>0,
collection(VARIABLES,[int_gteq(0)]),
get_attr1(VARIABLES,VARS),
( integer(Q) ->

Q>=2,
same_remainder_r0(VARS,Q,R)
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; get_maximum(VARS,Maximum),
Maximum1 is Maximum-1,
Q in 2..Maximum,
R in 0..Maximum1,
same_remainder_r1(VARS,Q,R)

).

same_remainder_r(VARIABLES,Q,R) :-
length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar_gteq(0)]),
check_type(dvar_gteq(2),Q),
Q#>=2,
check_type(dvar_gteq(0),R),
R#<Q,
get_attr1(VARIABLES,VARS),
same_remainder_r1(VARS,Q,R).

same_remainder_r0([],_22310,_22311).

same_remainder_r0([V|S],Q,R) :-
R is V mod Q,
same_remainder_r0(S,Q,R).

same_remainder_r1([],_22310,_22311).

same_remainder_r1([V|S],Q,R) :-
R#=V mod Q,
same_remainder_r1(S,Q,R).
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B.348 same sign
♦ META-DATA:

ctr_predefined(same_sign).

ctr_date(same_sign,[’20100821’]).

ctr_origin(same_sign,’Arithmetic.’,[]).

ctr_arguments(same_sign,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_restrictions(same_sign,[]).

ctr_example(same_sign,same_sign(7,1)).

ctr_typical(same_sign,[’VAR1’=\=0,’VAR2’=\=0]).

ctr_exchangeable(same_sign,[args([[’VAR1’,’VAR2’]])]).

ctr_eval(same_sign,[builtin(same_sign_b)]).

same_sign_b(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#>=0#/\VAR2#>=0#\/VAR1#=<0#/\VAR2#=<0.
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B.349 scalar product

♦ META-DATA:

ctr_predefined(scalar_product).

ctr_date(scalar_product,[’20090415’]).

ctr_origin(scalar_product,’Arithmetic constraint.’,[]).

ctr_synonyms(
scalar_product,
[equation,linear,sum_weight,weightedSum]).

ctr_arguments(
scalar_product,
[’LINEARTERM’-collection(coeff-int,var-dvar),
’CTR’-atom,
’VAL’-dvar]).

ctr_restrictions(
scalar_product,
[required(’LINEARTERM’,[coeff,var]),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
scalar_product,
scalar_product(

[[coeff-1,var-1],[coeff-3,var-1],[coeff-1,var-4]],
=,
8)).

ctr_typical(
scalar_product,
[size(’LINEARTERM’)>1,
range(’LINEARTERM’ˆcoeff)>1,
range(’LINEARTERM’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(
scalar_product,
[items(’LINEARTERM’,all),
attrs(’LINEARTERM’,[[coeff,var]])]).

ctr_eval(scalar_product,[builtin(scalar_product_b)]).
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ctr_pure_functional_dependency(
scalar_product,
[in_list(’CTR’,[=])]).

ctr_contractible(
scalar_product,
[in_list(’CTR’,[<,=<]),
minval(’LINEARTERM’ˆcoeff)>=0,
minval(’LINEARTERM’ˆvar)>=0],
LINEARTERM,
any).

ctr_extensible(
scalar_product,
[in_list(’CTR’,[>=,>]),
minval(’LINEARTERM’ˆcoeff)>=0,
minval(’LINEARTERM’ˆvar)>=0],
LINEARTERM,
any).

ctr_aggregate(scalar_product,[],[union,id,+]).

scalar_product_b(LINEARTERM,=,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#=,VAR).

scalar_product_b(LINEARTERM,=\=,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#\=,VAR).

scalar_product_b(LINEARTERM,<,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#<,VAR).
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scalar_product_b(LINEARTERM,>=,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#>=,VAR).

scalar_product_b(LINEARTERM,>,VAR) :-
!,
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#>,VAR).

scalar_product_b(LINEARTERM,=<,VAR) :-
collection(LINEARTERM,[int,dvar]),
check_type(dvar,VAR),
get_attr1(LINEARTERM,COEFFS),
get_attr2(LINEARTERM,VARS),
scalar_product(COEFFS,VARS,#=<,VAR).
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B.350 sequence folding

♦ META-DATA:

ctr_date(sequence_folding,[’20030820’,’20040530’,’20060814’]).

ctr_origin(sequence_folding,’J.˜Pearson’,[]).

ctr_arguments(
sequence_folding,
[’LETTERS’-collection(index-int,next-dvar)]).

ctr_restrictions(
sequence_folding,
[size(’LETTERS’)>=1,
required(’LETTERS’,[index,next]),
’LETTERS’ˆindex>=1,
’LETTERS’ˆindex=<size(’LETTERS’),
increasing_seq(’LETTERS’,index),
’LETTERS’ˆnext>=1,
’LETTERS’ˆnext=<size(’LETTERS’)]).

ctr_example(
sequence_folding,
sequence_folding(

[[index-1,next-1],
[index-2,next-8],
[index-3,next-3],
[index-4,next-5],
[index-5,next-5],
[index-6,next-7],
[index-7,next-7],
[index-8,next-8],
[index-9,next-9]])).

ctr_typical(
sequence_folding,
[size(’LETTERS’)>2,range(’LETTERS’ˆnext)>1]).

ctr_graph(
sequence_folding,
[’LETTERS’],
1,
[’SELF’>>collection(letters)],
[lettersˆnext>=lettersˆindex],
[’NARC’=size(’LETTERS’)],
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[]).

ctr_graph(
sequence_folding,
[’LETTERS’],
2,
[’CLIQUE’(<)>>collection(letters1,letters2)],
[letters2ˆindex>=letters1ˆnext#\/
letters2ˆnext=<letters1ˆnext],
[’NARC’=size(’LETTERS’)*(size(’LETTERS’)-1)/2],
[]).

ctr_eval(sequence_folding,[automaton(sequence_folding_a)]).

ctr_application(sequence_folding,[1]).

sequence_folding_a(FLAG,LETTERS) :-
length(LETTERS,N),
N>=1,
collection(LETTERS,[int(1,N),dvar(1,N)]),
collection_increasing_seq(LETTERS,[1]),
sequence_folding_signature(LETTERS,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_58283,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s),arc(s,1,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

sequence_folding_signature([],[]).

sequence_folding_signature([_56576],[]) :-
!.

sequence_folding_signature([L1,L2|R],S) :-
sequence_folding_signature([L2|R],L1,S1),
sequence_folding_signature([L2|R],S2),
append(S1,S2,S).

sequence_folding_signature([],_56572,[]).
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sequence_folding_signature([L2|R],L1,[S|Ss]) :-
L1=[index-INDEX1,next-NEXT1],
L2=[index-INDEX2,next-NEXT2],
INDEX1#=<NEXT1#/\INDEX2#=<NEXT2#/\NEXT1#=<INDEX2#<=>
S#=0,
INDEX1#=<NEXT1#/\INDEX2#=<NEXT2#/\NEXT1#>INDEX2#/\
NEXT2#=<NEXT1#<=>
S#=1,
sequence_folding_signature(R,L1,Ss).
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B.351 set value precede
♦ META-DATA:

ctr_predefined(set_value_precede).

ctr_date(set_value_precede,[’20041003’]).

ctr_origin(set_value_precede,’\\cite{YatChiuLawJimmyLee04}’,[]).

ctr_arguments(
set_value_precede,
[’S’-int,’T’-int,’VARIABLES’-collection(var-svar)]).

ctr_restrictions(
set_value_precede,
[’S’=\=’T’,required(’VARIABLES’,var)]).

ctr_example(
set_value_precede,
[set_value_precede(

2,
1,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]),

set_value_precede(
0,
1,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]),

set_value_precede(
0,
2,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]]),

set_value_precede(
0,
4,
[[var-{0,2}],[var-{0,1}],[var-{}],[var-{1}]])]).

ctr_typical(set_value_precede,[’S’<’T’,size(’VARIABLES’)>1]).

ctr_contractible(set_value_precede,[],’VARIABLES’,suffix).
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B.352 shift

♦ META-DATA:

ctr_date(shift,[’20030820’,’20060814’,’20090531’]).

ctr_origin(shift,’N.˜Beldiceanu’,[]).

ctr_arguments(
shift,
[’MIN_BREAK’-int,
’MAX_RANGE’-int,
’TASKS’-collection(origin-dvar,end-dvar)]).

ctr_restrictions(
shift,
[’MIN_BREAK’>0,
’MAX_RANGE’>0,
required(’TASKS’,[origin,end]),
’TASKS’ˆorigin<’TASKS’ˆend]).

ctr_example(
shift,
shift(

6,
8,
[[origin-17,end-20],
[origin-7,end-10],
[origin-2,end-4],
[origin-21,end-22],
[origin-5,end-6]])).

ctr_typical(
shift,
[’MIN_BREAK’>1,
’MAX_RANGE’>1,
’MIN_BREAK’<’MAX_RANGE’,
size(’TASKS’)>2]).

ctr_exchangeable(
shift,
[items(’TASKS’,all),translate([’TASKS’ˆorigin])]).

ctr_graph(
shift,
[’TASKS’],
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1,
[’SELF’>>collection(tasks)],
[tasksˆend>=tasksˆorigin,
tasksˆend-tasksˆorigin=<’MAX_RANGE’],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
shift,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks2ˆorigin>=tasks1ˆend#/\
tasks2ˆorigin-tasks1ˆend=<’MIN_BREAK’#\/
tasks1ˆorigin>=tasks2ˆend#/\
tasks1ˆorigin-tasks2ˆend=<’MIN_BREAK’#\/
tasks2ˆorigin<tasks1ˆend#/\tasks1ˆorigin<tasks2ˆend],
[],
[],
[CC>>
[variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆorigin),item(var-’TASKS’ˆend)])]],
[range_ctr(variables,=<,’MAX_RANGE’)]).

ctr_eval(shift,[reformulation(shift_r)]).

ctr_application(shift,[3]).

shift_r(MIN_BREAK,MAX_RANGE,TASKS) :-
integer(MIN_BREAK),
MIN_BREAK>0,
integer(MAX_RANGE),
MAX_RANGE>0,
collection(TASKS,[dvar,dvar]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,ENDS),
get_minimum(ORIGINS,MINO),
get_maximum(ORIGINS,MAXO),
get_minimum(ENDS,MINE),
get_maximum(ENDS,MAXE),
shift1(

ORIGINS,
ENDS,
ORIGINS,
ENDS,
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MINO,
MAXO,
MINE,
MAXE,
MIN_BREAK,
MAX_RANGE).

shift1(
[],
[],
_48315,
_48362,
_48409,
_48456,
_48503,
_48550,
_48597,
_48644).

shift1(
[O|RO],
[E|RE],
ORIGINS,
ENDS,
MINO,
MAXO,
MINE,
MAXE,
MIN_BREAK,
MAX_RANGE) :-

shift2(
ORIGINS,
ENDS,
O,
E,
MIN_BREAK,
MAX_RANGE,
ORIBOOLS,
ENDBOOLS),

MIN in MINO..MAXO,
MAX in MINE..MAXE,
eval(open_minimum(MIN,ORIBOOLS)),
eval(open_maximum(MAX,ENDBOOLS)),
MAX-MIN#=<MAX_RANGE,
shift1(

RO,
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RE,
ORIGINS,
ENDS,
MINO,
MAXO,
MINE,
MAXE,
MIN_BREAK,
MAX_RANGE).

shift2([],[],_47977,_47978,_47979,_47980,[],[]).

shift2(
[Oj|RO],
[Ej|RE],
Oi,
Ei,
MIN_BREAK,
MAX_RANGE,
[[var-Oj,bool-Bij]|ROB],
[[var-Ej,bool-Bij]|REB]) :-

Oi#<Ei,
Bij#<=>
Oj#>=Ei#/\Oj-Ei#=<MIN_BREAK#\/
Oi#>=Ej#/\Oi-Ej#=<MIN_BREAK#\/
Oj#<Ei#/\Oi#<Ej,
shift2(RO,RE,Oi,Ei,MIN_BREAK,MAX_RANGE,ROB,REB).
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B.353 sign of
♦ META-DATA:

ctr_predefined(sign_of).

ctr_date(sign_of,[’20110612’]).

ctr_origin(sign_of,’Arithmetic.’,[]).

ctr_usual_name(sign_of,sign).

ctr_arguments(sign_of,[’S’-dvar,’X’-dvar]).

ctr_restrictions(sign_of,[’S’>= -1,’S’=<1]).

ctr_example(sign_of,[sign_of(-1,-8),sign_of(0,0),sign_of(1,8)]).

ctr_typical(sign_of,[’S’=\=0,’X’=\=0]).

ctr_eval(sign_of,[checker(sign_of_c),builtin(sign_of_b)]).

ctr_pure_functional_dependency(sign_of,[]).

ctr_functional_dependency(sign_of,1,[2]).

sign_of_c(S,X) :-
check_type(int,S),
check_type(int,X),
( S= -1 ->

X<0
; S=0 ->

X=0
; S=1 ->

X>0
).

sign_of_b(S,X) :-
check_type(dvar,S),
check_type(dvar,X),
S#>= -1,
S#=<1,
X#<0#/\S#= -1#\/X#=0#/\S#=0#\/X#>0#/\S#=1.
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B.354 size max seq alldifferent

♦ META-DATA:

ctr_date(
size_max_seq_alldifferent,
[’20030820’,’20060814’,’20121124’]).

ctr_origin(size_max_seq_alldifferent,’N.˜Beldiceanu’,[]).

ctr_synonyms(
size_max_seq_alldifferent,
[size_maximal_sequence_alldiff,
size_maximal_sequence_alldistinct,
size_maximal_sequence_alldifferent]).

ctr_arguments(
size_max_seq_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_max_seq_alldifferent,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
size_max_seq_alldifferent,
[size_max_seq_alldifferent(

4,
[[var-2],
[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]]),

size_max_seq_alldifferent(
1,
[[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2],
[var-2]]),
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size_max_seq_alldifferent(
2,
[[var-2],
[var-2],
[var-4],
[var-4],
[var-4],
[var-7],
[var-4]]),

size_max_seq_alldifferent(
7,
[[var-2],
[var-0],
[var-4],
[var-6],
[var-5],
[var-7],
[var-3]])]).

ctr_typical(
size_max_seq_alldifferent,
[’SIZE’>2,
’SIZE’<size(’VARIABLES’),
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
size_max_seq_alldifferent,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
size_max_seq_alldifferent,
[’VARIABLES’],

*,
[’PATH_N’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’],
[]).

ctr_eval(
size_max_seq_alldifferent,
[checker(size_max_seq_alldifferent_c),
reformulation(size_max_seq_alldifferent_r)]).

ctr_pure_functional_dependency(size_max_seq_alldifferent,[]).

ctr_functional_dependency(size_max_seq_alldifferent,1,[2]).
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ctr_sol(size_max_seq_alldifferent,2,0,2,9,[1-3,2-6]).

ctr_sol(size_max_seq_alldifferent,3,0,3,64,[1-4,2-36,3-24]).

ctr_sol(
size_max_seq_alldifferent,
4,
0,
4,
625,
[1-5,2-200,3-300,4-120]).

ctr_sol(
size_max_seq_alldifferent,
5,
0,
5,
7776,
[1-6,2-1050,3-3480,4-2520,5-720]).

ctr_sol(
size_max_seq_alldifferent,
6,
0,
6,
117649,
[1-7,2-5922,3-38640,4-45360,5-22680,6-5040]).

ctr_sol(
size_max_seq_alldifferent,
7,
0,
7,
2097152,
[1-8,2-34104,3-428400,4-801360,5-571200,6-221760,7-40320]).

ctr_sol(
size_max_seq_alldifferent,
8,
0,
8,
43046721,
[1-9,
2-208224,
3-4981032,
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4-14028336,
5-13728960,
6-7378560,
7-2358720,
8-362880]).

size_max_seq_alldifferent_c(SIZE,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
size_max_seq_alldifferent0(VARS,VARS,[],0,SIZE).

size_max_seq_alldifferent0([X|Tail],Head,Set0,Size0,Size) :-
fdset_add_element(Set0,X,Set),
Set0\==Set,
!,
fdset_size(Set,Size1),
Size2 is max(Size0,Size1),
size_max_seq_alldifferent0(Tail,Head,Set,Size2,Size).

size_max_seq_alldifferent0(Tail,[X|Head],Set0,Size0,Size) :-
!,
fdset_del_element(Set0,X,Set),
size_max_seq_alldifferent0(Tail,Head,Set,Size0,Size).

size_max_seq_alldifferent0(_52601,_52602,_52603,Size,Size).

size_max_seq_alldifferent_r(SIZE,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
collection(VARIABLES,[dvar]),
size_max_seq_alldifferent1(VARIABLES,N,SIZES),
eval(maximum(SIZE,SIZES)).

size_max_seq_alldifferent1([],_52602,[]).

size_max_seq_alldifferent1([AV|R],N,[[var-SIZE]|S]) :-
SIZE in 0..N,
eval(size_max_starting_seq_alldifferent(SIZE,[AV|R])),
N1 is N-1,
size_max_seq_alldifferent1(R,N1,S).
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B.355 size max starting seq alldifferent

♦ META-DATA:

ctr_date(
size_max_starting_seq_alldifferent,
[’20030820’,’20060814’,’20090524’,’20121124’]).

ctr_origin(
size_max_starting_seq_alldifferent,
Inspired by %c.,
[size_max_seq_alldifferent]).

ctr_synonyms(
size_max_starting_seq_alldifferent,
[size_maximal_starting_sequence_alldiff,
size_maximal_starting_sequence_alldistinct,
size_maximal_starting_sequence_alldifferent]).

ctr_arguments(
size_max_starting_seq_alldifferent,
[’SIZE’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
size_max_starting_seq_alldifferent,
[’SIZE’>=0,
’SIZE’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
size_max_starting_seq_alldifferent,
[size_max_starting_seq_alldifferent(

4,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-2],
[var-7],
[var-4]]),

size_max_starting_seq_alldifferent(
7,
[[var-9],
[var-2],
[var-4],
[var-5],
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[var-1],
[var-7],
[var-8]]),

size_max_starting_seq_alldifferent(
6,
[[var-9],
[var-2],
[var-4],
[var-5],
[var-1],
[var-7],
[var-9]])]).

ctr_typical(
size_max_starting_seq_alldifferent,
[’SIZE’>2,
’SIZE’<size(’VARIABLES’),
range(’VARIABLES’ˆvar)>1]).

ctr_exchangeable(
size_max_starting_seq_alldifferent,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
size_max_starting_seq_alldifferent,
[’VARIABLES’],

*,
[’PATH_1’>>collection],
[alldifferent(collection)],
[’NARC’=’SIZE’],
[]).

ctr_eval(
size_max_starting_seq_alldifferent,
[checker(size_max_starting_seq_alldifferent_c),
reformulation(size_max_starting_seq_alldifferent_r)]).

ctr_pure_functional_dependency(
size_max_starting_seq_alldifferent,
[]).

ctr_functional_dependency(
size_max_starting_seq_alldifferent,
1,
[2]).
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ctr_sol(size_max_starting_seq_alldifferent,2,0,2,9,[1-3,2-6]).

ctr_sol(
size_max_starting_seq_alldifferent,
3,
0,
3,
64,
[1-16,2-24,3-24]).

ctr_sol(
size_max_starting_seq_alldifferent,
4,
0,
4,
625,
[1-125,2-200,3-180,4-120]).

ctr_sol(
size_max_starting_seq_alldifferent,
5,
0,
5,
7776,
[1-1296,2-2160,3-2160,4-1440,5-720]).

ctr_sol(
size_max_starting_seq_alldifferent,
6,
0,
6,
117649,
[1-16807,2-28812,3-30870,4-23520,5-12600,6-5040]).

ctr_sol(
size_max_starting_seq_alldifferent,
7,
0,
7,
2097152,
[1-262144,
2-458752,
3-516096,
4-430080,
5-268800,
6-120960,
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7-40320]).

ctr_sol(
size_max_starting_seq_alldifferent,
8,
0,
8,
43046721,
[1-4782969,
2-8503056,
3-9920232,
4-8817984,
5-6123600,
6-3265920,
7-1270080,
8-362880]).

size_max_starting_seq_alldifferent_c(SIZE,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
size_max_starting_seq_alldifferent0(VARS,[],SIZE).

size_max_starting_seq_alldifferent0([X|Xs],Set0,Size) :-
fdset_add_element(Set0,X,Set),
Set0\==Set,
!,
size_max_starting_seq_alldifferent0(Xs,Set,Size).

size_max_starting_seq_alldifferent0(_53783,Set,Size) :-
fdset_size(Set,Size).

size_max_starting_seq_alldifferent_r(SIZE,VARIABLES) :-
length(VARIABLES,N),
check_type(dvar(0,N),SIZE),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
size_max_starting_seq_alldifferent1(VARS,[],1,SUMB),
call(SIZE#=SUMB).

size_max_starting_seq_alldifferent1([],_53781,_53782,0).

size_max_starting_seq_alldifferent1([VAR|RVARS],L,BPREV,B+SUM) :-
size_max_starting_seq_alldifferent2(L,VAR,BPREV,CONJ),
call(B#<=>CONJ),
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size_max_starting_seq_alldifferent1(
RVARS,
[VAR|L],
B,
SUM).

size_max_starting_seq_alldifferent2([],_53781,BPREV,BPREV).

size_max_starting_seq_alldifferent2(
[VAR2|RVARS],
VAR1,
BPREV,
VAR1#\=VAR2#/\R) :-

size_max_starting_seq_alldifferent2(RVARS,VAR1,BPREV,R).
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B.356 sliding card skip0

♦ META-DATA:

ctr_date(
sliding_card_skip0,
[’20000128’,’20030820’,’20040530’,’20060815’]).

ctr_origin(sliding_card_skip0,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_card_skip0,
[’ATLEAST’-int,
’ATMOST’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int)]).

ctr_restrictions(
sliding_card_skip0,
[’ATLEAST’>=0,
’ATLEAST’=<size(’VARIABLES’),
’ATMOST’>=0,
’ATMOST’=<size(’VARIABLES’),
’ATMOST’>=’ATLEAST’,
required(’VARIABLES’,var),
required(’VALUES’,val),
distinct(’VALUES’,val),
’VALUES’ˆval=\=0]).

ctr_example(
sliding_card_skip0,
sliding_card_skip0(

2,
3,
[[var-0],
[var-7],
[var-2],
[var-9],
[var-0],
[var-0],
[var-9],
[var-4],
[var-9]],

[[val-7],[val-9]])).

ctr_typical(
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sliding_card_skip0,
[size(’VARIABLES’)>1,
size(’VALUES’)>0,
size(’VARIABLES’)>size(’VALUES’),
atleast(1,’VARIABLES’,0),
’ATLEAST’>0#\/’ATMOST’<size(’VARIABLES’)]).

ctr_exchangeable(
sliding_card_skip0,
[vals([’ATLEAST’],int(>=(0)),>,dontcare,dontcare),
vals(

[’ATMOST’],
int(=<(size(’VARIABLES’))),
<,
dontcare,
dontcare),

items(’VARIABLES’,reverse),
vals(

[’VARIABLES’ˆvar],
comp_diff(’VALUES’ˆval,=\=(0)),
=,
dontcare,
dontcare)]).

ctr_graph(
sliding_card_skip0,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)],
[variables1ˆvar=\=0,variables2ˆvar=\=0],
[],
[],
[’CC’>>[variables]],
[among_low_up(’ATLEAST’,’ATMOST’,variables,’VALUES’)]).

ctr_eval(sliding_card_skip0,[automaton(sliding_card_skip0_a)]).

sliding_card_skip0_a(FLAG,ATLEAST,ATMOST,VARIABLES,VALUES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
check_type(int(0,N),ATLEAST),
check_type(int(0,N),ATMOST),
ATMOST>=ATLEAST,
collection(VALUES,[int_diff(0)]),
get_attr1(VALUES,LIST_VALUES),
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all_different(LIST_VALUES),
list_to_fdset(LIST_VALUES,SET_OF_VALUES),
sliding_card_skip0_signature(

VARIABLES,
SIGNATURE,
SET_OF_VALUES),

automaton(
SIGNATURE,
_50685,
SIGNATURE,
[source(s),sink(t),sink(s)],
[arc(s,0,s),
arc(s,1,t,[0,L,U]),
arc(s,2,t,[1,L,U]),
arc(t,0,s,[C,min(L,C),max(U,C)]),
arc(t,1,t),
arc(t,2,t,[C+1,L,U])],

[C,L,U],
[ATLEAST,ATLEAST,ATMOST],
[C1,L1,U1]),

min(C1,L1)#>=ATLEAST#/\max(C1,U1)#=<ATMOST#<=>FLAG.

sliding_card_skip0_signature([],[],_47845).

sliding_card_skip0_signature(
[[var-VAR]|VARs],
[S|Ss],
SET_OF_VALUES) :-

VAR#\=0#<=>NZ,
VAR in_set SET_OF_VALUES#<=>In,
S in 0..2,
S#=max(2*NZ+In-1,0),
sliding_card_skip0_signature(VARs,Ss,SET_OF_VALUES).
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B.357 sliding distribution

♦ META-DATA:

ctr_date(
sliding_distribution,
[’20031008’,’20060815’,’20090524’]).

ctr_origin(sliding_distribution,’\\cite{ReginPuget97}’,[]).

ctr_arguments(
sliding_distribution,
[’SEQ’-int,
’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,omin-int,omax-int)]).

ctr_restrictions(
sliding_distribution,
[’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,omin,omax]),
distinct(’VALUES’,val),
’VALUES’ˆomin>=0,
’VALUES’ˆomax=<’SEQ’,
’VALUES’ˆomin=<’VALUES’ˆomax]).

ctr_example(
sliding_distribution,
sliding_distribution(

4,
[[var-0],
[var-5],
[var-0],
[var-6],
[var-5],
[var-0],
[var-0]],
[[val-0,omin-1,omax-2],
[val-1,omin-0,omax-4],
[val-4,omin-0,omax-4],
[val-5,omin-1,omax-2],
[val-6,omin-0,omax-2]])).

ctr_typical(
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sliding_distribution,
[’SEQ’>1,
’SEQ’<size(’VARIABLES’),
size(’VARIABLES’)>size(’VALUES’)]).

ctr_exchangeable(
sliding_distribution,
[items(’VARIABLES’,reverse),
vals(

[’VARIABLES’ˆvar],
all(notin(’VALUES’ˆval)),
=,
dontcare,
dontcare),

items(’VALUES’,all),
vals([’VALUES’ˆomin],int(>=(0)),>,dontcare,dontcare),
vals([’VALUES’ˆomax],int(=<(’SEQ’)),<,dontcare,dontcare),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
sliding_distribution,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[global_cardinality_low_up(collection,’VALUES’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1],
[]).

ctr_eval(
sliding_distribution,
[reformulation(sliding_distribution_r)]).

ctr_contractible(
sliding_distribution,
[’SEQ’=1],
VARIABLES,
any).

ctr_contractible(sliding_distribution,[],’VARIABLES’,prefix).

ctr_contractible(sliding_distribution,[],’VARIABLES’,suffix).
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ctr_contractible(sliding_distribution,[],’VALUES’,any).

sliding_distribution_r(SEQ,VARIABLES,VALUES) :-
integer(SEQ),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
SEQ>0,
SEQ=<L,
collection(VALUES,[int,int(0,L),int(0,L)]),
length(VALUES,M),
M>0,
sliding_distribution1(VARIABLES,[],VALUES,SEQ).

sliding_distribution1([],_34003,_34004,_34005).

sliding_distribution1([Last|R],Seq,VALUES,SEQ) :-
append(Seq,[Last],Sequence),
length(Sequence,L),
( L>SEQ ->

Sequence=[_34055|SeqCur],
eval(global_cardinality_low_up(SeqCur,VALUES)),
sliding_distribution1(R,SeqCur,VALUES,SEQ)

; L=SEQ ->
eval(global_cardinality_low_up(Sequence,VALUES)),
sliding_distribution1(R,Sequence,VALUES,SEQ)

; sliding_distribution1(R,Sequence,VALUES,SEQ)
).
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B.358 sliding sum

♦ META-DATA:

ctr_date(sliding_sum,[’20000128’,’20030820’,’20060815’]).

ctr_origin(sliding_sum,’\\index{CHIP|indexuse}CHIP’,[]).

ctr_synonyms(sliding_sum,[sequence]).

ctr_arguments(
sliding_sum,
[’LOW’-int,
’UP’-int,
’SEQ’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
sliding_sum,
[’UP’>=’LOW’,
’SEQ’>0,
’SEQ’=<size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
sliding_sum,
sliding_sum(

3,
7,
4,
[[var-1],
[var-4],
[var-2],
[var-0],
[var-0],
[var-3],
[var-4]])).

ctr_typical(
sliding_sum,
[’LOW’>=0,
’UP’>0,
’SEQ’>1,
’SEQ’<size(’VARIABLES’),
’VARIABLES’ˆvar>=0,
’UP’<sum(’VARIABLES’ˆvar)]).
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ctr_exchangeable(sliding_sum,[items(’VARIABLES’,reverse)]).

ctr_graph(
sliding_sum,
[’VARIABLES’],
SEQ,
[’PATH’>>collection],
[sum_ctr(collection,>=,’LOW’),sum_ctr(collection,=<,’UP’)],
[’NARC’=size(’VARIABLES’)-’SEQ’+1],
[]).

ctr_eval(sliding_sum,[reformulation(sliding_sum_r)]).

ctr_contractible(sliding_sum,[’SEQ’=1],’VARIABLES’,any).

ctr_contractible(sliding_sum,[],’VARIABLES’,prefix).

ctr_contractible(sliding_sum,[],’VARIABLES’,suffix).

sliding_sum_r(LOW,UP,SEQ,VARIABLES) :-
integer(LOW),
integer(UP),
integer(SEQ),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
UP>=LOW,
SEQ>0,
SEQ=<L,
sliding_sum1(VARIABLES,[],LOW,UP,SEQ).

sliding_sum1([],_35770,_35771,_35772,_35773).

sliding_sum1([Last|R],Seq,LOW,UP,SEQ) :-
append(Seq,[Last],Sequence),
length(Sequence,L),
( L>SEQ ->

Sequence=[_35825|SeqCur],
eval(sum_ctr(SeqCur,>=,LOW)),
eval(sum_ctr(SeqCur,=<,UP)),
sliding_sum1(R,SeqCur,LOW,UP,SEQ)

; L=SEQ ->
eval(sum_ctr(Sequence,>=,LOW)),
eval(sum_ctr(Sequence,=<,UP)),
sliding_sum1(R,Sequence,LOW,UP,SEQ)

; sliding_sum1(R,Sequence,LOW,UP,SEQ)
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).
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B.359 sliding time window

♦ META-DATA:

ctr_date(
sliding_time_window,
[’20030820’,’20060815’,’20090530’]).

ctr_origin(sliding_time_window,’N.˜Beldiceanu’,[]).

ctr_arguments(
sliding_time_window,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(origin-dvar,duration-dvar)]).

ctr_restrictions(
sliding_time_window,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[origin,duration]),
’TASKS’ˆduration>=0]).

ctr_example(
sliding_time_window,
sliding_time_window(

9,
6,
[[origin-10,duration-3],
[origin-5,duration-1],
[origin-6,duration-2],
[origin-14,duration-2],
[origin-2,duration-2]])).

ctr_typical(
sliding_time_window,
[’WINDOW_SIZE’>1,
’LIMIT’>0,
’LIMIT’<sum(’TASKS’ˆduration),
size(’TASKS’)>1,
’TASKS’ˆduration>0]).

ctr_exchangeable(
sliding_time_window,
[vals([’WINDOW_SIZE’],int,>,dontcare,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare),
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items(’TASKS’,all),
translate([’TASKS’ˆorigin]),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare)]).

ctr_graph(
sliding_time_window,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆorigin=<tasks2ˆorigin,
tasks2ˆorigin-tasks1ˆorigin<’WINDOW_SIZE’],
[],
[],
[’SUCC’>>[source,tasks]],
[sliding_time_window_from_start(

WINDOW_SIZE,
LIMIT,
tasks,
sourceˆorigin)]).

ctr_eval(
sliding_time_window,
[reformulation(sliding_time_window_r)]).

ctr_contractible(sliding_time_window,[],’TASKS’,any).

ctr_application(sliding_time_window,[3]).

sliding_time_window_r(WINDOW_SIZE,LIMIT,TASKS) :-
integer(WINDOW_SIZE),
WINDOW_SIZE>0,
integer(LIMIT),
LIMIT>=0,
collection(TASKS,[dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
sliding_time_window1(

ORIGINS,
DURATIONS,
1,
ORIGINS,
DURATIONS,
WINDOW_SIZE,
LIMIT).
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B.360 sliding time window from start

♦ META-DATA:

ctr_date(
sliding_time_window_from_start,
[’20030820’,’20060815’,’20090530’]).

ctr_origin(
sliding_time_window_from_start,
Used for defining %c.,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_from_start,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(origin-dvar,duration-dvar),
’START’-dvar]).

ctr_restrictions(
sliding_time_window_from_start,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[origin,duration]),
’TASKS’ˆduration>=0]).

ctr_example(
sliding_time_window_from_start,
sliding_time_window_from_start(

9,
6,
[[origin-10,duration-3],
[origin-5,duration-1],
[origin-6,duration-2]],

5)).

ctr_typical(
sliding_time_window_from_start,
[’WINDOW_SIZE’>1,
’LIMIT’>0,
’LIMIT’<’WINDOW_SIZE’,
size(’TASKS’)>1,
’TASKS’ˆduration>0]).

ctr_exchangeable(
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sliding_time_window_from_start,
[vals([’WINDOW_SIZE’],int,>,dontcare,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare),
items(’TASKS’,all),
vals([’TASKS’ˆduration],int(>=(0)),>,dontcare,dontcare),
translate([’START’,’TASKS’ˆorigin])]).

ctr_derived_collections(
sliding_time_window_from_start,
[col(’S’-collection(var-dvar),[item(var-’START’)])]).

ctr_graph(
sliding_time_window_from_start,
[’S’,’TASKS’],
2,
[’PRODUCT’>>collection(s,tasks)],
[’TRUE’],
[’SUM_WEIGHT_ARC’(

max(0,
min(sˆvar+’WINDOW_SIZE’,

tasksˆorigin+tasksˆduration)-
max(sˆvar,tasksˆorigin)))=<

LIMIT],
[]).

ctr_eval(
sliding_time_window_from_start,
[reformulation(sliding_time_window_from_start_r)]).

ctr_contractible(sliding_time_window_from_start,[],’TASKS’,any).

ctr_application(sliding_time_window_from_start,[3]).

sliding_time_window_from_start_r(WINDOW_SIZE,LIMIT,TASKS,START) :-
integer(WINDOW_SIZE),
WINDOW_SIZE>0,
integer(LIMIT),
LIMIT>=0,
collection(TASKS,[dvar,dvar_gteq(0)]),
check_type(dvar,START),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,DURATIONS),
sliding_time_window1(

[START],
[WINDOW_SIZE],
0,



3657

ORIGINS,
DURATIONS,
WINDOW_SIZE,
LIMIT).
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B.361 sliding time window sum

♦ META-DATA:

ctr_date(
sliding_time_window_sum,
[’20030820’,’20060815’,’20090530’]).

ctr_origin(
sliding_time_window_sum,
Derived from %c.,
[sliding_time_window]).

ctr_arguments(
sliding_time_window_sum,
[’WINDOW_SIZE’-int,
’LIMIT’-int,
’TASKS’-collection(origin-dvar,end-dvar,npoint-dvar)]).

ctr_restrictions(
sliding_time_window_sum,
[’WINDOW_SIZE’>0,
’LIMIT’>=0,
required(’TASKS’,[origin,end,npoint]),
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆnpoint>=0]).

ctr_example(
sliding_time_window_sum,
sliding_time_window_sum(

9,
16,
[[origin-10,end-13,npoint-2],
[origin-5,end-6,npoint-3],
[origin-6,end-8,npoint-4],
[origin-14,end-16,npoint-5],
[origin-2,end-4,npoint-6]])).

ctr_typical(
sliding_time_window_sum,
[’WINDOW_SIZE’>1,
’LIMIT’>0,
’LIMIT’<sum(’TASKS’ˆnpoint),
size(’TASKS’)>1,
’TASKS’ˆorigin<’TASKS’ˆend,
’TASKS’ˆnpoint>0]).
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ctr_exchangeable(
sliding_time_window_sum,
[vals([’WINDOW_SIZE’],int,>,dontcare,dontcare),
vals([’LIMIT’],int,<,dontcare,dontcare),
items(’TASKS’,all),
vals([’TASKS’ˆnpoint],int(>=(0)),>,dontcare,dontcare),
translate([’TASKS’ˆorigin,’TASKS’ˆend])]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
sliding_time_window_sum,
[’TASKS’],
2,
[’CLIQUE’>>collection(tasks1,tasks2)],
[tasks1ˆend=<tasks2ˆend,
tasks2ˆorigin-tasks1ˆend<’WINDOW_SIZE’-1],
[],
[],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆnpoint)])]],
[sum_ctr(variables,=<,’LIMIT’)]).

ctr_eval(
sliding_time_window_sum,
[reformulation(sliding_time_window_sum_r)]).

ctr_contractible(sliding_time_window_sum,[],’TASKS’,any).

ctr_application(sliding_time_window_sum,[3]).

sliding_time_window_sum_r(WINDOW_SIZE,LIMIT,TASKS) :-
integer(WINDOW_SIZE),
WINDOW_SIZE>0,
integer(LIMIT),
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LIMIT>=0,
collection(TASKS,[dvar,dvar,dvar_gteq(0)]),
get_attr1(TASKS,ORIGINS),
get_attr2(TASKS,ENDS),
get_attr3(TASKS,NPOINTS),
sliding_time_window_sum1(

ORIGINS,
ENDS,
NPOINTS,
1,
ORIGINS,
ENDS,
NPOINTS,
WINDOW_SIZE,
LIMIT).

sliding_time_window_sum1(
[],
[],
[],
_48511,
_48558,
_48605,
_48652,
_48699,
_48746).

sliding_time_window_sum1(
[Oi|RO],
[Ei|RE],
[Pi|RP],
I,
ORIGINS,
ENDS,
NPOINTS,
WINDOW_SIZE,
LIMIT) :-

Oi#=<Ei,
sliding_time_window_sum2(

ORIGINS,
ENDS,
NPOINTS,
1,
Oi,
Ei,
Pi,
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I,
WINDOW_SIZE,
LIMIT,
SUM_NPOINTS),

call(SUM_NPOINTS#=<LIMIT),
I1 is I+1,
sliding_time_window_sum1(

RO,
RE,
RP,
I1,
ORIGINS,
ENDS,
NPOINTS,
WINDOW_SIZE,
LIMIT).

sliding_time_window_sum2(
[],
[],
[],
_48520,
_48567,
_48614,
_48661,
_48708,
_48755,
_48802,
0) :-

!.

sliding_time_window_sum2(
[_48143|RO],
[_48147|RE],
[_48151|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
Pi+SUM) :-

I=J,
!,
J1 is J+1,
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sliding_time_window_sum2(
RO,
RE,
RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

sliding_time_window_sum2(
[_48143|RO],
[Ej|RE],
[_48153|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM) :-

I=\=J,
fd_max(Ej,MaxEj),
fd_min(Oi,MinOi),
MaxEj<MinOi,
!,
J1 is J+1,
sliding_time_window_sum2(

RO,
RE,
RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

sliding_time_window_sum2(
[Oj|RO],
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[_48149|RE],
[_48153|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM) :-

I=\=J,
fd_min(Oj,MinOj),
fd_max(Oi,MaxOi),
E is MaxOi+WINDOW_SIZE-1,
MinOj>E,
!,
J1 is J+1,
sliding_time_window_sum2(

RO,
RE,
RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).

sliding_time_window_sum2(
[Oj|RO],
[Ej|RE],
[Pj|RP],
J,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
min(1,max(0,min(Oi+WINDOW_SIZE,Ej)-max(Oi,Oj)))*Pj+SUM) :-

J1 is J+1,
sliding_time_window_sum2(

RO,
RE,
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RP,
J1,
Oi,
Ei,
Pi,
I,
WINDOW_SIZE,
LIMIT,
SUM).
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B.362 smooth

♦ META-DATA:

ctr_date(smooth,[’20000128’,’20030820’,’20040530’,’20060815’]).

ctr_origin(smooth,’Derived from %c.’,[change]).

ctr_arguments(
smooth,
[’NCHANGE’-dvar,
’TOLERANCE’-int,
’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
smooth,
[’NCHANGE’>=0,
’NCHANGE’<size(’VARIABLES’),
’TOLERANCE’>=0,
required(’VARIABLES’,var)]).

ctr_example(
smooth,
smooth(1,2,[[var-1],[var-3],[var-4],[var-5],[var-2]])).

ctr_typical(
smooth,
[’TOLERANCE’>0,
size(’VARIABLES’)>3,
range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(smooth,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
smooth,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_graph(
smooth,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[abs(variables1ˆvar-variables2ˆvar)>’TOLERANCE’],
[’NARC’=’NCHANGE’],
[]).
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ctr_eval(smooth,[checker(smooth_c),automaton(smooth_a)]).

ctr_pure_functional_dependency(smooth,[]).

ctr_functional_dependency(smooth,1,[2,3]).

ctr_contractible(smooth,[’NCHANGE’=0],’VARIABLES’,prefix).

ctr_contractible(smooth,[’NCHANGE’=0],’VARIABLES’,suffix).

ctr_contractible(
smooth,
[’NCHANGE’=size(’VARIABLES’)-1],
VARIABLES,
prefix).

ctr_contractible(
smooth,
[’NCHANGE’=size(’VARIABLES’)-1],
VARIABLES,
suffix).

smooth_a(FLAG,NCHANGE,TOLERANCE,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
N_1 is N-1,
check_type(dvar(0,N_1),NCHANGE),
integer(TOLERANCE),
TOLERANCE>=0,
smooth_signature(VARIABLES,SIGNATURE,TOLERANCE),
automaton(

SIGNATURE,
_46703,
SIGNATURE,
[source(s),sink(s)],
[arc(s,1,s,[C+1]),arc(s,0,s)],
[C],
[0],
[COUNT]),

COUNT#=NCHANGE#<=>FLAG.

smooth_signature([],[],_44851).

smooth_signature([_44855],[],_44854) :-
!.
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smooth_signature([[var-VAR1],[var-VAR2]|VARs],[S|Ss],TOLERANCE) :-
abs(VAR1-VAR2)#>TOLERANCE#<=>S#=1,
smooth_signature([[var-VAR2]|VARs],Ss,TOLERANCE).

smooth_c(NCHANGE,TOLERANCE,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,N),
integer(NCHANGE),
NCHANGE>=0,
NCHANGE<N,
integer(TOLERANCE),
TOLERANCE>=0,
get_attr1(VARIABLES,VARS),
smooth_check(VARS,TOLERANCE,NCHANGE).

smooth_check([],_44853,0) :-
!.

smooth_check([_44855],_44853,0) :-
!.

smooth_check([VAR1,VAR2|R],TOLERANCE,NCHANGE) :-
D is abs(VAR1-VAR2),
( D>TOLERANCE ->

NCHANGE1 is NCHANGE-1
; NCHANGE1 is NCHANGE
),
NCHANGE1>=0,
smooth_check([VAR2|R],TOLERANCE,NCHANGE1).
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B.363 soft all equal max var

♦ META-DATA:

ctr_date(soft_all_equal_max_var,[’20090926’]).

ctr_origin(
soft_all_equal_max_var,
\cite{HebrardMarxSullivanRazgon09},
[]).

ctr_arguments(
soft_all_equal_max_var,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_all_equal_max_var,
[’N’>=0,’N’=<size(’VARIABLES’),required(’VARIABLES’,var)]).

ctr_example(
soft_all_equal_max_var,
soft_all_equal_max_var(

1,
[[var-5],[var-1],[var-5],[var-5]])).

ctr_typical(
soft_all_equal_max_var,
[’N’>0,
’N’<size(’VARIABLES’),
’N’<size(’VARIABLES’)/10+2,
size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_all_equal_max_var,
[vals([’N’],int(>=(0)),>,dontcare,dontcare),
items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_all_equal_max_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’=<size(’VARIABLES’)-’N’],
[]).
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ctr_eval(
soft_all_equal_max_var,
[checker(soft_all_equal_max_var_c),
reformulation(soft_all_equal_max_var_r)]).

ctr_total_relation(soft_all_equal_max_var).

ctr_sol(soft_all_equal_max_var,2,0,2,15,[0-9,1-6]).

ctr_sol(soft_all_equal_max_var,3,0,3,148,[0-64,1-60,2-24]).

ctr_sol(
soft_all_equal_max_var,
4,
0,
4,
1905,
[0-625,1-620,2-540,3-120]).

ctr_sol(
soft_all_equal_max_var,
5,
0,
5,
30006,
[0-7776,1-7770,2-7620,3-6120,4-720]).

ctr_sol(
soft_all_equal_max_var,
6,
0,
6,
555121,
[0-117649,1-117642,2-117390,3-113610,4-83790,5-5040]).

ctr_sol(
soft_all_equal_max_var,
7,
0,
7,
11758048,
[0-2097152,
1-2097144,
2-2096752,
3-2088520,
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4-1992480,
5-1345680,
6-40320]).

ctr_sol(
soft_all_equal_max_var,
8,
0,
8,
280310337,
[0-43046721,
1-43046712,
2-43046136,
3-43030008,
4-42771960,
5-40194000,
6-24811920,
7-362880]).

soft_all_equal_max_var_c(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARS,L),
( L=0 ->

N#=0
; samsort(VARS,SVARS),

SVARS=[V|R],
max_nvalue_seq_size(R,1,V,1,M),
MAX is L-M,
N#=<MAX

).

soft_all_equal_max_var_r(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
complete_card(MINVARS,MAXVARS,L,OCC,VAL_OCC),
global_cardinality(VARS,VAL_OCC),
MAX_OCC in 0..L,
eval(maximum(MAX_OCC,OCC)),
call(N#=<L-MAX_OCC).
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B.364 soft all equal min ctr

♦ META-DATA:

ctr_date(soft_all_equal_min_ctr,[’20081004’]).

ctr_origin(
soft_all_equal_min_ctr,
\cite{HebrardSullivanRazgon08},
[]).

ctr_synonyms(
soft_all_equal_min_ctr,
[soft_alldiff_max_ctr,
soft_alldifferent_max_ctr,
soft_alldistinct_max_ctr]).

ctr_arguments(
soft_all_equal_min_ctr,
[’N’-int,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_all_equal_min_ctr,
[’N’>=0,
N=<
size(’VARIABLES’)*size(’VARIABLES’)-size(’VARIABLES’),
required(’VARIABLES’,var)]).

ctr_example(
soft_all_equal_min_ctr,
soft_all_equal_min_ctr(

6,
[[var-5],[var-1],[var-5],[var-5]])).

ctr_typical(
soft_all_equal_min_ctr,
[’N’>0,
N<
size(’VARIABLES’)*size(’VARIABLES’)-size(’VARIABLES’),
size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_all_equal_min_ctr,
[vals([’N’],int(>=(0)),>,dontcare,dontcare),
items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).
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ctr_graph(
soft_all_equal_min_ctr,
[’VARIABLES’],
2,
[’CLIQUE’(=\=)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’>=’N’],
[]).

ctr_eval(
soft_all_equal_min_ctr,
[checker(soft_all_equal_min_ctr_c),
reformulation(soft_all_equal_min_ctr_r)]).

ctr_total_relation(soft_all_equal_min_ctr).

soft_all_equal_min_ctr_c(N,VARIABLES) :-
collection(VARIABLES,[int]),
length(VARIABLES,L),
L2 is L*L-L,
check_type(dvar(0,L2),N),
( L=0 ->

N=0
; get_attr1(VARIABLES,VARS),

samsort(VARS,SVARS),
SVARS=[V|R],
soft_all_equal_min_ctr_c(R,1,V,0,NB_EQ_CTR),
N#=<NB_EQ_CTR

).

soft_all_equal_min_ctr_c([],C,_42471,Sum,Res) :-
!,
Res is C*C-C+Sum.

soft_all_equal_min_ctr_c([V|R],C,V,Sum,Res) :-
!,
C1 is C+1,
soft_all_equal_min_ctr_c(R,C1,V,Sum,Res).

soft_all_equal_min_ctr_c([V|R],C,Prev,Sum,Res) :-
C>0,
V=\=Prev,
NewSum is C*C-C+Sum,
soft_all_equal_min_ctr_c(R,1,V,NewSum,Res).
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soft_all_equal_min_ctr_r(N,VARIABLES) :-
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
L2 is L*L-L,
check_type(dvar(0,L2),N),
get_attr1(VARIABLES,VARS),
soft_all_equal_min_ctr1(VARS,TERM),
call(N#=<TERM).

soft_all_equal_min_ctr1([],0).

soft_all_equal_min_ctr1([V|R],S+T) :-
soft_all_equal_min_ctr2(R,V,S),
soft_all_equal_min_ctr1(R,T).

soft_all_equal_min_ctr2([],_42467,0).

soft_all_equal_min_ctr2([U|R],V,2*B+T) :-
B#<=>U#=V,
soft_all_equal_min_ctr2(R,V,T).
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B.365 soft all equal min var

♦ META-DATA:

ctr_date(soft_all_equal_min_var,[’20090926’]).

ctr_origin(
soft_all_equal_min_var,
\cite{HebrardMarxSullivanRazgon09},
[]).

ctr_arguments(
soft_all_equal_min_var,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_all_equal_min_var,
[’N’>=0,required(’VARIABLES’,var)]).

ctr_example(
soft_all_equal_min_var,
soft_all_equal_min_var(

1,
[[var-5],[var-1],[var-5],[var-5]])).

ctr_typical(
soft_all_equal_min_var,
[’N’>0,
’N’<size(’VARIABLES’),
’N’<size(’VARIABLES’)/10+2,
size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_all_equal_min_var,
[vals([’N’],int,<,dontcare,dontcare),
items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_all_equal_min_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’MAX_NSCC’>=size(’VARIABLES’)-’N’],
[]).
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ctr_eval(
soft_all_equal_min_var,
[checker(soft_all_equal_min_var_c),
reformulation(soft_all_equal_min_var_r)]).

ctr_total_relation(soft_all_equal_min_var).

ctr_sol(soft_all_equal_min_var,2,0,2,21,[0-3,1-9,2-9]).

ctr_sol(soft_all_equal_min_var,3,0,3,172,[0-4,1-40,2-64,3-64]).

ctr_sol(
soft_all_equal_min_var,
4,
0,
4,
1845,
[0-5,1-85,2-505,3-625,4-625]).

ctr_sol(
soft_all_equal_min_var,
5,
0,
5,
24426,
[0-6,1-156,2-1656,3-7056,4-7776,5-7776]).

ctr_sol(
soft_all_equal_min_var,
6,
0,
6,
386071,
[0-7,1-259,2-4039,3-33859,4-112609,5-117649,6-117649]).

ctr_sol(
soft_all_equal_min_var,
7,
0,
7,
7116320,
[0-8,
1-400,
2-8632,
3-104672,
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4-751472,
5-2056832,
6-2097152,
7-2097152]).

ctr_sol(
soft_all_equal_min_var,
8,
0,
8,
150156873,
[0-9,
1-585,
2-16713,
3-274761,
4-2852721,
5-18234801,
6-42683841,
7-43046721,
8-43046721]).

soft_all_equal_min_var_c(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
length(VARS,L),
( L=0 ->

true
; samsort(VARS,SVARS),

SVARS=[V|R],
max_nvalue_seq_size(R,1,V,1,M),
MAX is L-M,
N#>=MAX

).

soft_all_equal_min_var_r(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
get_attr1(VARIABLES,VARS),
get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
complete_card(MINVARS,MAXVARS,L,OCC,VAL_OCC),
global_cardinality(VARS,VAL_OCC),
MAX_OCC in 0..L,
eval(maximum(MAX_OCC,OCC)),
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call(N#>=L-MAX_OCC).
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B.366 soft alldifferent ctr

♦ META-DATA:

ctr_date(
soft_alldifferent_ctr,
[’20030820’,’20060815’,’20090926’]).

ctr_origin(
soft_alldifferent_ctr,
\cite{PetitReginBessiere01},
[]).

ctr_synonyms(
soft_alldifferent_ctr,
[soft_alldiff_ctr,
soft_alldistinct_ctr,
soft_alldiff_min_ctr,
soft_alldifferent_min_ctr,
soft_alldistinct_min_ctr,
soft_all_equal_max_ctr]).

ctr_arguments(
soft_alldifferent_ctr,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_ctr,
[’C’>=0,required(’VARIABLES’,var)]).

ctr_example(
soft_alldifferent_ctr,
[soft_alldifferent_ctr(

4,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]]),

soft_alldifferent_ctr(
1,
[[var-5],[var-1],[var-9],[var-1],[var-2],[var-6]]),

soft_alldifferent_ctr(
0,
[[var-5],[var-1],[var-9],[var-0],[var-2],[var-6]])]).

ctr_typical(
soft_alldifferent_ctr,
[’C’>0,
’C’=<size(’VARIABLES’)*(size(’VARIABLES’)-1)/2,
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size(’VARIABLES’)>1]).

ctr_exchangeable(
soft_alldifferent_ctr,
[vals([’C’],int,<,dontcare,dontcare),
items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_alldifferent_ctr,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’=<’C’],
[]).

ctr_eval(
soft_alldifferent_ctr,
[checker(soft_alldifferent_ctr_c),
reformulation(soft_alldifferent_ctr_r)]).

ctr_contractible(soft_alldifferent_ctr,[],’VARIABLES’,any).

ctr_total_relation(soft_alldifferent_ctr).

ctr_sol(soft_alldifferent_ctr,2,0,2,15,[0-6,1-9]).

ctr_sol(soft_alldifferent_ctr,3,0,3,208,[0-24,1-60,2-60,3-64]).

ctr_sol(
soft_alldifferent_ctr,
4,
0,
4,
3625,
[0-120,1-480,2-540,3-620,4-620,5-620,6-625]).

ctr_sol(
soft_alldifferent_ctr,
5,
0,
5,
72576,
[0-720,
1-4320,
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2-6120,
3-7320,
4-7620,
5-7620,
6-7770,
7-7770,
8-7770,
9-7770,
10-7776]).

ctr_sol(
soft_alldifferent_ctr,
6,
0,
6,
1630279,
[0-5040,
1-42840,
2-80640,
3-100590,
4-113190,
5-113190,
6-116760,
7-117390,
8-117390,
9-117390,
10-117642,
11-117642,
12-117642,
13-117642,
14-117642,
15-117649]).

ctr_sol(
soft_alldifferent_ctr,
7,
0,
7,
40632320,
[0-40320,
1-463680,
2-1169280,
3-1580880,
4-1933680,
5-1968960,
6-2051280,
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7-2086560,
8-2086560,
9-2088520,
10-2095576,
11-2096752,
12-2096752,
13-2096752,
14-2096752,
15-2097144,
16-2097144,
17-2097144,
18-2097144,
19-2097144,
20-2097144,
21-2097152]).

ctr_sol(
soft_alldifferent_ctr,
8,
0,
8,
1114431777,
[0-362880,
1-5443200,
2-18144000,
3-27881280,
4-36666000,
5-39206160,
6-41111280,
7-42522480,
8-42628320,
9-42769440,
10-42938784,
11-43023456,
12-43025976,
13-43030008,
14-43030008,
15-43044120,
16-43046136,
17-43046136,
18-43046136,
19-43046136,
20-43046136,
21-43046712,
22-43046712,
23-43046712,
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24-43046712,
25-43046712,
26-43046712,
27-43046712,
28-43046721]).

soft_alldifferent_ctr_r(C,[]) :-
!,
check_type(dvar_gteq(0),C).

soft_alldifferent_ctr_r(C,VARIABLES) :-
length(VARIABLES,N),
N2 is(N*N-N)//2,
check_type(dvar(0,N2),C),
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
soft_alldifferent_ctr1(VARS,TERM),
call(C#>=TERM).

soft_alldifferent_ctr1([],0).

soft_alldifferent_ctr1([V|R],S+T) :-
soft_alldifferent_ctr2(R,V,S),
soft_alldifferent_ctr1(R,T).

soft_alldifferent_ctr2([],_83491,0).

soft_alldifferent_ctr2([U|R],V,B+T) :-
B#<=>U#=V,
soft_alldifferent_ctr2(R,V,T).

soft_alldifferent_ctr_c(C,[]) :-
!,
check_type(dvar_gteq(0),C).

soft_alldifferent_ctr_c(C,VARIABLES) :-
length(VARIABLES,N),
N2 is(N*N-N)//2,
check_type(dvar(0,N2),C),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
create_pairs(VARS,KVARS),
keysort(KVARS,SVARS),
SVARS=[VAL-_83575|REST],
soft_alldifferent_ctr3(REST,VAL,1,0,COST),
C#>=COST.
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soft_alldifferent_ctr3([],_83494,CPT,CUR,RES) :-
!,
( CPT=1 ->

RES is CUR
; RES is CUR+CPT*(CPT-1)//2
).

soft_alldifferent_ctr3([V-V|R],V,CPT,CUR,RES) :-
!,
CPT1 is CPT+1,
soft_alldifferent_ctr3(R,V,CPT1,CUR,RES).

soft_alldifferent_ctr3([V-V|R],_83494,CPT,CUR,RES) :-
( CPT=1 ->

NEXT is CUR
; NEXT is CUR+CPT*(CPT-1)//2
),
soft_alldifferent_ctr3(R,V,1,NEXT,RES).
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B.367 soft alldifferent var

♦ META-DATA:

ctr_date(
soft_alldifferent_var,
[’20030820’,’20060815’,’20090926’]).

ctr_origin(
soft_alldifferent_var,
\cite{PetitReginBessiere01},
[]).

ctr_synonyms(
soft_alldifferent_var,
[soft_alldiff_var,
soft_alldistinct_var,
soft_alldiff_min_var,
soft_alldifferent_min_var,
soft_alldistinct_min_var]).

ctr_arguments(
soft_alldifferent_var,
[’C’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
soft_alldifferent_var,
[’C’>=0,required(’VARIABLES’,var)]).

ctr_example(
soft_alldifferent_var,
[soft_alldifferent_var(

3,
[[var-5],[var-1],[var-9],[var-1],[var-5],[var-5]]),

soft_alldifferent_var(
1,
[[var-5],[var-1],[var-9],[var-6],[var-5],[var-3]]),

soft_alldifferent_var(
0,
[[var-8],[var-1],[var-9],[var-6],[var-5],[var-3]])]).

ctr_typical(
soft_alldifferent_var,
[’C’>0,
2*’C’=<size(’VARIABLES’),
size(’VARIABLES’)>1,
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some_equal(’VARIABLES’)]).

ctr_exchangeable(
soft_alldifferent_var,
[vals([’C’],int,<,dontcare,dontcare),
items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
soft_alldifferent_var,
[’VARIABLES’],
2,
[’CLIQUE’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSCC’>=size(’VARIABLES’)-’C’],
[]).

ctr_eval(
soft_alldifferent_var,
[checker(soft_alldifferent_var_c),
reformulation(soft_alldifferent_var_r)]).

ctr_contractible(soft_alldifferent_var,[],’VARIABLES’,any).

ctr_total_relation(soft_alldifferent_var).

ctr_sol(soft_alldifferent_var,2,0,2,24,[0-6,1-9,2-9]).

ctr_sol(soft_alldifferent_var,3,0,3,212,[0-24,1-60,2-64,3-64]).

ctr_sol(
soft_alldifferent_var,
4,
0,
4,
2470,
[0-120,1-480,2-620,3-625,4-625]).

ctr_sol(
soft_alldifferent_var,
5,
0,
5,
35682,
[0-720,1-4320,2-7320,3-7770,4-7776,5-7776]).
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ctr_sol(
soft_alldifferent_var,
6,
0,
6,
614600,
[0-5040,
1-42840,
2-97440,
3-116340,
4-117642,
5-117649,
6-117649]).

ctr_sol(
soft_alldifferent_var,
7,
0,
7,
12286024,
[0-40320,
1-463680,
2-1404480,
3-1992480,
4-2093616,
5-2097144,
6-2097152,
7-2097152]).

ctr_sol(
soft_alldifferent_var,
8,
0,
8,
279472266,
[0-362880,
1-5443200,
2-21530880,
3-37406880,
4-42550704,
5-43037568,
6-43046712,
7-43046721,
8-43046721]).

soft_alldifferent_var_r(C,[]) :-
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!,
check_type(dvar_gteq(0),C).

soft_alldifferent_var_r(C,VARIABLES) :-
check_type(dvar_gteq(0),C),
collection(VARIABLES,[dvar]),
length(VARIABLES,N),
eval(in_interval(M,1,N)),
eval(nvalue(M,VARIABLES)),
C#>=N-M.

soft_alldifferent_var_c(C,[]) :-
!,
check_type(dvar_gteq(0),C).

soft_alldifferent_var_c(C,VARIABLES) :-
check_type(dvar_gteq(0),C),
collection(VARIABLES,[int]),
length(VARIABLES,N),
get_attr1(VARIABLES,VARS),
sort(VARS,SVARS),
length(SVARS,M),
NM is N-M,
C#>=NM.
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B.368 soft cumulative

♦ META-DATA:

ctr_predefined(soft_cumulative).

ctr_date(soft_cumulative,[’20091121’]).

ctr_origin(soft_cumulative,’Derived from %c’,[cumulative]).

ctr_arguments(
soft_cumulative,
[TASKS-
collection(

origin-dvar,
duration-dvar,
end-dvar,
height-dvar),

’LIMIT’-int,
’INTERMEDIATE_LEVEL’-int,
’SURFACE_ON_TOP’-dvar]).

ctr_restrictions(
soft_cumulative,
[require_at_least(2,’TASKS’,[origin,duration,end]),
required(’TASKS’,height),
’TASKS’ˆduration>=0,
’TASKS’ˆorigin=<’TASKS’ˆend,
’TASKS’ˆheight>=0,
’LIMIT’>=0,
’INTERMEDIATE_LEVEL’>=0,
’INTERMEDIATE_LEVEL’=<’LIMIT’,
’SURFACE_ON_TOP’>=0]).

ctr_example(
soft_cumulative,
soft_cumulative(

[[origin-1,duration-4,end-5,height-1],
[origin-1,duration-1,end-2,height-2],
[origin-3,duration-3,end-6,height-2]],

3,
2,
3)).

ctr_typical(
soft_cumulative,
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[size(’TASKS’)>1,
range(’TASKS’ˆorigin)>1,
range(’TASKS’ˆduration)>1,
range(’TASKS’ˆend)>1,
range(’TASKS’ˆheight)>1,
’TASKS’ˆduration>0,
’TASKS’ˆheight>0,
’LIMIT’<sum(’TASKS’ˆheight),
’INTERMEDIATE_LEVEL’>0,
’INTERMEDIATE_LEVEL’<’LIMIT’,
’SURFACE_ON_TOP’>0]).

ctr_exchangeable(
soft_cumulative,
[items(’TASKS’,all),
translate([’TASKS’ˆorigin,’TASKS’ˆend]),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_application(soft_cumulative,[1]).
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B.369 soft same interval var

♦ META-DATA:

ctr_date(soft_same_interval_var,[’20050507’,’20060815’]).

ctr_origin(
soft_same_interval_var,
Derived from %c,
[same_interval]).

ctr_synonyms(soft_same_interval_var,[soft_same_interval]).

ctr_arguments(
soft_same_interval_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_same_interval_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
soft_same_interval_var,
soft_same_interval_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).

ctr_typical(
soft_same_interval_var,
[’C’>0,
size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).
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ctr_exchangeable(
soft_same_interval_var,
[args(

[[’C’],
[’VARIABLES1’,’VARIABLES2’],
[’SIZE_INTERVAL’]]),

items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_same_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(
soft_same_interval_var,
[reformulation(soft_same_interval_var_r)]).

soft_same_interval_var_r(C,VARIABLES1,VARIABLES2,SIZE_INTERVAL) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
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get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
gen_collection(QUOTVARS1,var,CVARS1),
gen_collection(QUOTVARS2,var,CVARS2),
eval(soft_same_var(C,CVARS1,CVARS2)).
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B.370 soft same modulo var

♦ META-DATA:

ctr_date(soft_same_modulo_var,[’20050507’,’20060815’]).

ctr_origin(
soft_same_modulo_var,
Derived from %c,
[same_modulo]).

ctr_synonyms(soft_same_modulo_var,[soft_same_modulo]).

ctr_arguments(
soft_same_modulo_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_same_modulo_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
soft_same_modulo_var,
soft_same_modulo_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
3)).

ctr_typical(
soft_same_modulo_var,
[’C’>0,
size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).
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ctr_exchangeable(
soft_same_modulo_var,
[args([[’C’],[’VARIABLES1’,’VARIABLES2’],[’M’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcare),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
soft_same_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(
soft_same_modulo_var,
[reformulation(soft_same_modulo_var_r)]).

soft_same_modulo_var_r(C,VARIABLES1,VARIABLES2,M) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
gen_collection(REMVARS1,var,CVARS1),
gen_collection(REMVARS2,var,CVARS2),
eval(soft_same_var(C,CVARS1,CVARS2)).
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B.371 soft same partition var

♦ META-DATA:

ctr_date(soft_same_partition_var,[’20050507’,’20060816’]).

ctr_origin(
soft_same_partition_var,
Derived from %c,
[same_partition]).

ctr_synonyms(soft_same_partition_var,[soft_same_partition]).

ctr_types(
soft_same_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_same_partition_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_same_partition_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
soft_same_partition_var,
soft_same_partition_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]],
[[p-[[val-1],[val-2]]],
[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).
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ctr_typical(
soft_same_partition_var,
[’C’>0,
size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
soft_same_partition_var,
[args([[’C’],[’VARIABLES1’,’VARIABLES2’],[’PARTITIONS’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_same_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(
soft_same_partition_var,
[reformulation(soft_same_partition_var_r)]).
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soft_same_partition_var_r(C,VARIABLES1,VARIABLES2,PARTITIONS) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,M),
M>1,
length(PVALS,LPVALS),
get_partition_var(VARS1,PVALS,PVARS1,LPVALS,0),
get_partition_var(VARS2,PVALS,PVARS2,LPVALS,0),
gen_collection(PVARS1,var,CVARS1),
gen_collection(PVARS2,var,CVARS2),
eval(soft_same_var(C,CVARS1,CVARS2)).
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B.372 soft same var

♦ META-DATA:

ctr_date(soft_same_var,[’20050507’,’20060816’,’20090522’]).

ctr_origin(soft_same_var,’\\cite{vanHoeve05}’,[]).

ctr_synonyms(soft_same_var,[soft_same]).

ctr_arguments(
soft_same_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_same_var,
[’C’>=0,
’C’=<size(’VARIABLES1’),
size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
soft_same_var,
soft_same_var(

4,
[[var-9],[var-9],[var-9],[var-9],[var-9],[var-1]],
[[var-9],[var-1],[var-1],[var-1],[var-1],[var-8]])).

ctr_typical(
soft_same_var,
[’C’>0,
size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
soft_same_var,
[args([[’C’],[’VARIABLES1’,’VARIABLES2’]]),
items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
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=\=,
all,
dontcare)]).

ctr_graph(
soft_same_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES1’)-’C’],
[]).

ctr_eval(soft_same_var,[reformulation(soft_same_var_r)]).

soft_same_var_r(C,VARIABLES1,VARIABLES2) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
check_type(dvar(0,L1),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
eval(soft_used_by_var(C,VARIABLES1,VARIABLES2)).
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B.373 soft used by interval var

♦ META-DATA:

ctr_date(soft_used_by_interval_var,[’20050507’,’20060816’]).

ctr_origin(
soft_used_by_interval_var,
Derived from %c.,
[used_by_interval]).

ctr_synonyms(soft_used_by_interval_var,[soft_used_by_interval]).

ctr_arguments(
soft_used_by_interval_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
soft_used_by_interval_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
soft_used_by_interval_var,
soft_used_by_interval_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).

ctr_typical(
soft_used_by_interval_var,
[’C’>0,
size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
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’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
soft_used_by_interval_var,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_used_by_interval_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(
soft_used_by_interval_var,
[reformulation(soft_used_by_interval_var_r)]).

soft_used_by_interval_var_r(
C,
VARIABLES1,
VARIABLES2,
SIZE_INTERVAL) :-

length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
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get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
gen_collection(QUOTVARS1,var,CVARS1),
gen_collection(QUOTVARS2,var,CVARS2),
eval(soft_used_by_var(C,CVARS1,CVARS2)).
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B.374 soft used by modulo var

♦ META-DATA:

ctr_date(soft_used_by_modulo_var,[’20050507’,’20060816’]).

ctr_origin(
soft_used_by_modulo_var,
Derived from %c,
[used_by_modulo]).

ctr_synonyms(soft_used_by_modulo_var,[soft_used_by_modulo]).

ctr_arguments(
soft_used_by_modulo_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
soft_used_by_modulo_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
soft_used_by_modulo_var,
soft_used_by_modulo_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
3)).

ctr_typical(
soft_used_by_modulo_var,
[’C’>0,
size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
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’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
soft_used_by_modulo_var,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcare),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
soft_used_by_modulo_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(
soft_used_by_modulo_var,
[reformulation(soft_used_by_modulo_var_r)]).

soft_used_by_modulo_var_r(C,VARIABLES1,VARIABLES2,M) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
gen_collection(REMVARS1,var,CVARS1),
gen_collection(REMVARS2,var,CVARS2),
eval(soft_used_by_var(C,CVARS1,CVARS2)).
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B.375 soft used by partition var

♦ META-DATA:

ctr_date(soft_used_by_partition_var,[’20050507’,’20060816’]).

ctr_origin(
soft_used_by_partition_var,
Derived from %c.,
[used_by_partition]).

ctr_synonyms(
soft_used_by_partition_var,
[soft_used_by_partition]).

ctr_types(
soft_used_by_partition_var,
[’VALUES’-collection(val-int)]).

ctr_arguments(
soft_used_by_partition_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
soft_used_by_partition_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2,
size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
soft_used_by_partition_var,
soft_used_by_partition_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]],
[[p-[[val-1],[val-2]]],



3706 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

[p-[[val-9]]],
[p-[[val-7],[val-8]]]])).

ctr_typical(
soft_used_by_partition_var,
[’C’>0,
size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
soft_used_by_partition_var,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
soft_used_by_partition_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(
soft_used_by_partition_var,
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[reformulation(soft_used_by_partition_var_r)]).

soft_used_by_partition_var_r(
C,
VARIABLES1,
VARIABLES2,
PARTITIONS) :-

length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,M),
M>1,
length(PVALS,LPVALS),
get_partition_var(VARS1,PVALS,PVARS1,LPVALS,0),
get_partition_var(VARS2,PVALS,PVARS2,LPVALS,0),
gen_collection(PVARS1,var,CVARS1),
gen_collection(PVARS2,var,CVARS2),
eval(soft_used_by_var(C,CVARS1,CVARS2)).
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B.376 soft used by var

♦ META-DATA:

ctr_date(soft_used_by_var,[’20050507’,’20060816’]).

ctr_origin(soft_used_by_var,’Derived from %c’,[used_by]).

ctr_synonyms(soft_used_by_var,[soft_used_by]).

ctr_arguments(
soft_used_by_var,
[’C’-dvar,
’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
soft_used_by_var,
[’C’>=0,
’C’=<size(’VARIABLES2’),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
soft_used_by_var,
soft_used_by_var(

2,
[[var-9],[var-1],[var-1],[var-8],[var-8]],
[[var-9],[var-9],[var-9],[var-1]])).

ctr_typical(
soft_used_by_var,
[’C’>0,
size(’VARIABLES1’)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES1’ˆvar)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
soft_used_by_var,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
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=\=,
all,
dontcare)]).

ctr_graph(
soft_used_by_var,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK_NSOURCE’=size(’VARIABLES2’)-’C’],
[]).

ctr_eval(soft_used_by_var,[reformulation(soft_used_by_var_r)]).

soft_used_by_var_r(C,VARIABLES1,VARIABLES2) :-
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1>=L2,
check_type(dvar(0,L2),C),
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
get_attr1(VARIABLES2,VARS2),
get_minimum(VARS2,MINVARS2),
get_maximum(VARS2,MAXVARS2),
soft_used_by_var1(

MINVARS2,
MAXVARS2,
L1,
OCCS1,
OCCS2,
TERM),

eval(global_cardinality(VARIABLES1,OCCS1)),
eval(global_cardinality(VARIABLES2,OCCS2)),
call(C#=TERM).

soft_used_by_var1(I,S,_44605,[],[],0) :-
I>S,
!.

soft_used_by_var1(
I,
S,
MAX,
[[val-I,noccurrence-O1]|R1],
[[val-I,noccurrence-O2]|R2],
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max(O2-O1,0)+R) :-
I=<S,
O1 in 0..MAX,
O2 in 0..MAX,
I1 is I+1,
soft_used_by_var1(I1,S,MAX,R1,R2,R).
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B.377 some equal

♦ META-DATA:

ctr_date(some_equal,[’20110604’]).

ctr_origin(some_equal,’Derived from %c’,[alldifferent]).

ctr_synonyms(
some_equal,
[some_eq,
not_alldifferent,
not_alldiff,
not_alldistinct,
not_distinct]).

ctr_arguments(some_equal,[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
some_equal,
[required(’VARIABLES’,var),size(’VARIABLES’)>1]).

ctr_example(
some_equal,
some_equal([[var-1],[var-4],[var-1],[var-6]])).

ctr_typical(
some_equal,
[size(’VARIABLES’)>2,nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
some_equal,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,dontcare)]).

ctr_graph(
some_equal,
[’VARIABLES’],
2,
[’CLIQUE’(<)>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NARC’>0],
[]).

ctr_eval(
some_equal,
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[checker(some_equal_c),reformulation(some_equal_r)]).

ctr_extensible(some_equal,[],’VARIABLES’,any).

ctr_sol(some_equal,2,0,2,3,-).

ctr_sol(some_equal,3,0,3,40,-).

ctr_sol(some_equal,4,0,4,505,-).

ctr_sol(some_equal,5,0,5,7056,-).

ctr_sol(some_equal,6,0,6,112609,-).

ctr_sol(some_equal,7,0,7,2056832,-).

ctr_sol(some_equal,8,0,8,42683841,-).

some_equal_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
sort(VARS,S),
length(VARS,M),
length(S,N),
N<M.

some_equal_r(VARIABLES) :-
collection(VARIABLES,[dvar]),
get_attr1(VARIABLES,VARS),
length(VARS,M),
M>1,
M1 is M-1,
N in 1..M1,
nvalue(N,VARS).
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B.378 sort

♦ META-DATA:

ctr_date(sort,[’20030820’,’20060816’]).

ctr_origin(sort,’\\cite{OlderSwinkelsEmden95}’,[]).

ctr_synonyms(sort,[sortedness,sorted,sorting]).

ctr_arguments(
sort,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
sort,
[size(’VARIABLES1’)=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
sort,
sort(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])).

ctr_typical(
sort,
[size(’VARIABLES1’)>1,range(’VARIABLES1’ˆvar)>1]).

ctr_exchangeable(
sort,
[items(’VARIABLES1’,all),
translate([’VARIABLES1’ˆvar,’VARIABLES2’ˆvar])]).

ctr_graph(
sort,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’=’NSINK’),
’NSOURCE’=size(’VARIABLES1’),
’NSINK’=size(’VARIABLES2’)],
[]).
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ctr_graph(
sort,
[’VARIABLES2’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar=<variables2ˆvar],
[’NARC’=size(’VARIABLES2’)-1],
[]).

ctr_eval(sort,[reformulation(sort_r),checker(sort_c)]).

ctr_pure_functional_dependency(sort,[]).

ctr_functional_dependency(sort,2,[1]).

sort_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
L1=L2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
length(P,L1),
domain(P,1,L1),
sorting(VARS1,P,VARS2),
when(ground(VARS1),once(labeling([],P))).

sort_c(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[int]),
collection(VARIABLES2,[int]),
length(VARIABLES1,L),
length(VARIABLES2,L),
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
create_pairs(VARS1,PVARS1),
create_pairs(VARS2,PVARS2),
keysort(PVARS1,PVARS2).
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B.379 sort permutation

♦ META-DATA:

ctr_date(sort_permutation,[’20030820’,’20060816’,’20111025’]).

ctr_origin(sort_permutation,’\\cite{ZhouCP96}’,[]).

ctr_usual_name(sort_permutation,sort).

ctr_synonyms(
sort_permutation,
[extended_sortedness,sortedness,sorted,sorting]).

ctr_arguments(
sort_permutation,
[’FROM’-collection(var-dvar),
’PERMUTATION’-collection(var-dvar),
’TO’-collection(var-dvar)]).

ctr_restrictions(
sort_permutation,
[size(’PERMUTATION’)=size(’FROM’),
size(’PERMUTATION’)=size(’TO’),
’PERMUTATION’ˆvar>=1,
’PERMUTATION’ˆvar=<size(’PERMUTATION’),
alldifferent(’PERMUTATION’),
required(’FROM’,var),
required(’PERMUTATION’,var),
required(’TO’,var)]).

ctr_example(
sort_permutation,
sort_permutation(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-6],[var-3],[var-5],[var-4],[var-2]],
[[var-1],[var-1],[var-1],[var-2],[var-5],[var-9]])).

ctr_typical(
sort_permutation,
[size(’FROM’)>1,
range(’FROM’ˆvar)>1,
lex_different(’FROM’,’TO’)]).

ctr_exchangeable(
sort_permutation,
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[translate([’FROM’ˆvar,’TO’ˆvar])]).

ctr_derived_collections(
sort_permutation,
[col(’FROM_PERMUTATION’-collection(var-dvar,ind-dvar),

[item(var-’FROM’ˆvar,ind-’PERMUTATION’ˆvar)])]).

ctr_graph(
sort_permutation,
[’FROM_PERMUTATION’,’TO’],
2,
[’PRODUCT’>>collection(from_permutation,to)],
[from_permutationˆvar=toˆvar,from_permutationˆind=toˆkey],
[’NARC’=size(’PERMUTATION’)],
[]).

ctr_graph(
sort_permutation,
[’TO’],
2,
[’PATH’>>collection(to1,to2)],
[to1ˆvar=<to2ˆvar],
[’NARC’=size(’TO’)-1],
[]).

ctr_eval(sort_permutation,[builtin(sort_permutation_b)]).

ctr_functional_dependency(sort_permutation,3,[1]).

sort_permutation_b(FROM,PERMUTATION,TO) :-
length(FROM,F),
length(PERMUTATION,P),
length(TO,T),
F=P,
P=T,
collection(FROM,[dvar]),
collection(PERMUTATION,[dvar(1,P)]),
collection(TO,[dvar]),
get_attr1(FROM,FVARS),
get_attr1(PERMUTATION,PVARS),
get_attr1(TO,TVARS),
sorting(FVARS,PVARS,TVARS).
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B.380 stable compatibility

♦ META-DATA:

ctr_date(stable_compatibility,[’20070601’]).

ctr_origin(
stable_compatibility,
P.˜Flener, \cite{BeldiceanuFlenerLorca06},
[]).

ctr_arguments(
stable_compatibility,
[NODES-
collection(index-int,father-dvar,prec-sint,inc-sint)]).

ctr_restrictions(
stable_compatibility,
[required(’NODES’,[index,father,prec,inc]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆfather>=1,
’NODES’ˆfather=<size(’NODES’),
’NODES’ˆprec>=1,
’NODES’ˆprec=<size(’NODES’),
’NODES’ˆinc>=1,
’NODES’ˆinc=<size(’NODES’),
’NODES’ˆinc>’NODES’ˆindex]).

ctr_example(
stable_compatibility,
stable_compatibility(

[[index-1,father-4,prec-{11,12},inc-{}],
[index-2,father-3,prec-{8,9},inc-{}],
[index-3,father-4,prec-{2,10},inc-{}],
[index-4,father-5,prec-{1,3},inc-{}],
[index-5,father-7,prec-{4,13},inc-{}],
[index-6,father-2,prec-{8,14},inc-{}],
[index-7,father-7,prec-{6,13},inc-{}],
[index-8,father-6,prec-{},inc-{9,10,11,12,13,14}],
[index-9,father-2,prec-{},inc-{10,11,12,13}],
[index-10,father-3,prec-{},inc-{11,12,13}],
[index-11,father-1,prec-{},inc-{12,13}],
[index-12,father-1,prec-{},inc-{13}],
[index-13,father-5,prec-{},inc-{14}],
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[index-14,father-6,prec-{},inc-{}]])).

ctr_typical(
stable_compatibility,
[size(’NODES’)>2,range(’NODES’ˆfather)>1]).

ctr_exchangeable(stable_compatibility,[items(’NODES’,all)]).

ctr_graph(
stable_compatibility,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆfather=nodes2ˆindex],
[’MAX_NSCC’=<1,
’NCC’=1,
’MAX_ID’=<2,
’PATH_FROM_TO’(index,index,prec)=1,
’PATH_FROM_TO’(index,index,inc)=0,
’PATH_FROM_TO’(index,inc,index)=0],
[]).

ctr_application(stable_compatibility,[1]).
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B.381 stage element

♦ META-DATA:

ctr_date(stage_element,[’20040828’,’20060816’]).

ctr_origin(
stage_element,
\index{Choco|indexuse}Choco, derived from %c.,
[element]).

ctr_usual_name(stage_element,stage_elt).

ctr_synonyms(stage_element,[stage_elem]).

ctr_arguments(
stage_element,
[’ITEM’-collection(index-dvar,value-dvar),
’TABLE’-collection(low-int,up-int,value-int)]).

ctr_restrictions(
stage_element,
[required(’ITEM’,[index,value]),
size(’ITEM’)=1,
size(’TABLE’)>0,
required(’TABLE’,[low,up,value]),
’TABLE’ˆlow=<’TABLE’ˆup,
increasing_seq(’TABLE’,[low])]).

ctr_example(
stage_element,
stage_element(

[[index-5,value-6]],
[[low-3,up-7,value-6],
[low-8,up-8,value-8],
[low-9,up-14,value-2],
[low-15,up-19,value-9]])).

ctr_typical(
stage_element,
[size(’TABLE’)>1,
range(’TABLE’ˆvalue)>1,
’TABLE’ˆlow<’TABLE’ˆup]).

ctr_exchangeable(
stage_element,
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[vals([’ITEM’ˆvalue,’TABLE’ˆvalue],int,=\=,all,dontcare)]).

ctr_graph(
stage_element,
[’TABLE’],
2,
[’PATH’>>collection(table1,table2)],
[table1ˆlow=<table1ˆup,
table1ˆup+1=table2ˆlow,
table2ˆlow=<table2ˆup],
[’NARC’=size(’TABLE’)-1],
[]).

ctr_graph(
stage_element,
[’ITEM’,’TABLE’],
2,
[’PRODUCT’>>collection(item,table)],
[itemˆindex>=tableˆlow,
itemˆindex=<tableˆup,
itemˆvalue=tableˆvalue],
[’NARC’=1],
[]).

ctr_eval(stage_element,[automaton(stage_element_a)]).

ctr_pure_functional_dependency(stage_element,[]).

ctr_functional_dependency(stage_element,1-2,[1-1,2]).

ctr_extensible(stage_element,[],’TABLE’,suffix).

stage_element_a(FLAG,ITEM,TABLE) :-
collection(ITEM,[dvar,dvar]),
collection(TABLE,[int,int,int]),
length(TABLE,N),
N>0,
get_attr1(TABLE,LOWS),
get_attr2(TABLE,UPS),
check_lesseq(LOWS,UPS),
collection_increasing_seq(TABLE,[1]),
ITEM=[[index-ITEM_INDEX,value-ITEM_VALUE]],
stage_element_signature(

TABLE,
SIGNATURE,
ITEM_INDEX,
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ITEM_VALUE),
AUTOMATON=
automaton(

SIGNATURE,
_49090,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

stage_element_signature([],[],_46094,_46095).

stage_element_signature(
[[low-TABLE_LOW,up-TABLE_UP,value-TABLE_VALUE]|TABLEs],
[S|Ss],
ITEM_INDEX,
ITEM_VALUE) :-

TABLE_LOW#=<ITEM_INDEX#/\ITEM_INDEX#=<TABLE_UP#/\
ITEM_VALUE#=TABLE_VALUE#<=>
S,
stage_element_signature(

TABLEs,
Ss,
ITEM_INDEX,
ITEM_VALUE).
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B.382 stretch circuit

♦ META-DATA:

ctr_date(stretch_circuit,[’20030820’,’20060817’,’20090716’]).

ctr_origin(stretch_circuit,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_circuit,stretch).

ctr_arguments(
stretch_circuit,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_circuit,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin=<’VALUES’ˆlmax,
’VALUES’ˆlmin=<size(’VARIABLES’),
sum(’VALUES’ˆlmin)=<size(’VARIABLES’)]).

ctr_example(
stretch_circuit,
stretch_circuit(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],
[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-4]])).

ctr_typical(
stretch_circuit,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
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size(’VARIABLES’)>size(’VALUES’),
size(’VALUES’)>1,
’VALUES’ˆlmax=<size(’VARIABLES’)]).

ctr_exchangeable(
stretch_circuit,
[items(’VARIABLES’,shift),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
stretch_circuit,
[’VARIABLES’],
2,
foreach(

VALUES,
[’CIRCUIT’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)]),

[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),
’MAX_NCC’=<’VALUES’ˆlmax],
[]).

ctr_eval(stretch_circuit,[reformulation(stretch_circuit_r)]).

stretch_circuit_r(VARIABLES,VALUES) :-
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int,int]),
length(VARIABLES,N),
stretch_circuit1(VALUES,0,N,DELTA),
prefix_length(VARIABLES,VARS_DELTA,DELTA),
append(VARIABLES,VARS_DELTA,VARS),
ND is N+DELTA,
stretch_circuit2(VALUES,N,ND,VALS),
eval(stretch_path(VARS,VALS)).

stretch_circuit1([],C,N,DELTA) :-
DELTA is min(C,N).

stretch_circuit1([[_52393,_52395,_52400-L]|R],C,N,DELTA) :-
M is max(L,C),
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stretch_circuit1(R,M,N,DELTA).

stretch_circuit2([],_52385,_52386,[]).

stretch_circuit2([[A,B,lmax-L]|R],N,ND,[[A,B,lmax-LL]|S]) :-
( L>=N ->

LL=ND
; LL=L
),
stretch_circuit2(R,N,ND,S).
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B.383 stretch path

♦ META-DATA:

ctr_date(stretch_path,[’20030820’,’20060817’,’20090712’]).

ctr_origin(stretch_path,’\\cite{Pesant01}’,[]).

ctr_usual_name(stretch_path,stretch).

ctr_arguments(
stretch_path,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_path,
[size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,lmin,lmax]),
distinct(’VALUES’,val),
’VALUES’ˆlmin>=0,
’VALUES’ˆlmin=<’VALUES’ˆlmax,
’VALUES’ˆlmin=<size(’VARIABLES’)]).

ctr_example(
stretch_path,
stretch_path(

[[var-6],
[var-6],
[var-3],
[var-1],
[var-1],
[var-1],
[var-6],
[var-6]],

[[val-1,lmin-2,lmax-4],
[val-2,lmin-2,lmax-3],
[val-3,lmin-1,lmax-6],
[val-6,lmin-2,lmax-2]])).

ctr_typical(
stretch_path,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
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size(’VARIABLES’)>size(’VALUES’),
size(’VALUES’)>1,
sum(’VALUES’ˆlmin)=<size(’VARIABLES’),
’VALUES’ˆlmax=<size(’VARIABLES’)]).

ctr_exchangeable(
stretch_path,
[items(’VARIABLES’,reverse),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
stretch_path,
[’VARIABLES’],
2,
foreach(

VALUES,
[’PATH’>>collection(variables1,variables2),
’LOOP’>>collection(variables1,variables2)]),

[variables1ˆvar=’VALUES’ˆval,variables2ˆvar=’VALUES’ˆval],
[not_in(’MIN_NCC’,1,’VALUES’ˆlmin-1),
’MAX_NCC’=<’VALUES’ˆlmax],
[]).

ctr_eval(stretch_path,[automaton(stretch_path_a)]).

stretch_path_a(FLAG,VARIABLES,VALUES) :-
stretch_path_get_a(VARIABLES,VALUES,AUTOMATON,ALPHABET),
automaton_bool(FLAG,ALPHABET,AUTOMATON).

stretch_path_get_a(VARIABLES,VALUES,AUTOMATON,ALPHABET) :-
length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int(0,N),int]),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,LMINS),
get_attr3(VALUES,LMAXS),
length(VALS,M),
M>0,
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all_different(VALS),
check_lesseq(LMINS,LMAXS),
stretch_lmin(LMINS,LMINS1),
stretch_reduce_lmax(LMAXS,N,LMAXSR),
stretch_gen_states(LMINS1,LMAXSR,N,1,STATES),
stretch_gen_transitions(

1,
M,
LMINS1,
LMAXSR,
LMINS1,
LMAXSR,
N,
TRANSITIONS),

get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
sort(VALS,SVALS),
SVALS=[MINVALS|_57481],
last(SVALS,MAXVALS),
VALS_RANGE is MAXVALS-MINVALS+1,
( VALS_RANGE=M,

MINVALS=<MINVARS,
MAXVARS=<MAXVALS ->
stretch_path_simplify_transitions(

TRANSITIONS,
MINVALS,
SIMPLIFIED_TRANSITIONS),

AUTOMATON=
automaton(

VARS,
_63596,
VARS,
STATES,
SIMPLIFIED_TRANSITIONS,
[],
[],
[]),

SIG in MINVALS..MAXVALS
; stretch_path_signature(VARS,VALS,M,SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_65060,
SIGNATURE,
STATES,
TRANSITIONS,
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[],
[],
[]),

SIG in 0..M
),
union_dom_list_int([SIG],ALPHABET).

stretch_path_simplify_transitions([],_57303,[]) :-
!.

stretch_path_simplify_transitions(
[arc(_57308,0,_57310)|R],
MINVALS,
S) :-

!,
stretch_path_simplify_transitions(R,MINVALS,S).

stretch_path_simplify_transitions(
[arc(Si,E,Sj)|R],
MINVALS,
[arc(Si,NE,Sj)|S]) :-

NE is MINVALS+E-1,
stretch_path_simplify_transitions(R,MINVALS,S).

stretch_path_signature([],_57300,_57301,[]).

stretch_path_signature([VAR|VARs],VALS,M,[S|Ss]) :-
S in 0..M,
stretch_path_signature1(VALS,VALS,VAR,1,S),
stretch_path_signature(VARs,VALS,M,Ss).

stretch_path_signature1([],VALS,VAR,_57305,S) :-
stretch_path_signature2(VALS,VAR,DIFF),
call(DIFF#<=>S#=0).

stretch_path_signature1([VAL|VALs],VALS,VAR,I,S) :-
VAR#=VAL#<=>S#=I,
I1 is I+1,
stretch_path_signature1(VALs,VALS,VAR,I1,S).

stretch_path_signature2([],_57300,1).

stretch_path_signature2([VAL|VALs],VAR,VAR#\=VAL#/\R) :-
stretch_path_signature2(VALs,VAR,R).
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B.384 stretch path partition

♦ META-DATA:

ctr_date(stretch_path_partition,[’20091106’]).

ctr_origin(
stretch_path_partition,
Derived from %c.,
[stretch_path]).

ctr_synonyms(stretch_path_partition,[stretch]).

ctr_types(
stretch_path_partition,
[’VALUES’-collection(val-int)]).

ctr_arguments(
stretch_path_partition,
[’VARIABLES’-collection(var-dvar),
’PARTLIMITS’-collection(p-’VALUES’,lmin-int,lmax-int)]).

ctr_restrictions(
stretch_path_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES’)>0,
required(’VARIABLES’,var),
size(’PARTLIMITS’)>0,
required(’PARTLIMITS’,[p,lmin,lmax]),
’PARTLIMITS’ˆlmin>=0,
’PARTLIMITS’ˆlmin=<’PARTLIMITS’ˆlmax,
’PARTLIMITS’ˆlmin=<size(’VARIABLES’)]).

ctr_example(
stretch_path_partition,
stretch_path_partition(

[[var-1],
[var-2],
[var-0],
[var-0],
[var-2],
[var-2],
[var-2],
[var-0]],
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[[p-[[val-1],[val-2]],lmin-2,lmax-4],
[p-[[val-3]],lmin-0,lmax-2]])).

ctr_typical(
stretch_path_partition,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VARIABLES’)>size(’PARTLIMITS’),
size(’PARTLIMITS’)>1,
sum(’PARTLIMITS’ˆlmin)=<size(’VARIABLES’),
’PARTLIMITS’ˆlmax=<size(’VARIABLES’)]).

ctr_exchangeable(
stretch_path_partition,
[items(’VARIABLES’,reverse),
items(’PARTLIMITS’,all),
items(’PARTLIMITS’ˆp,all),
vals(

[’VARIABLES’ˆvar,’PARLIMITS’ˆpˆval],
int,
=\=,
all,
dontcare)]).

ctr_eval(
stretch_path_partition,
[reformulation(stretch_path_partition_r),
automaton(stretch_path_partition_a)]).

stretch_path_partition_r(VARIABLES,PARTLIMITS) :-
length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar]),
collection(

PARTLIMITS,
[col_len_gteq(1,[int]),int(0,N),int]),

get_attr1(VARIABLES,VARS),
get_col_attr1(PARTLIMITS,1,PVALS),
get_attr2(PARTLIMITS,LMINS),
get_attr3(PARTLIMITS,LMAXS),
length(PVALS,M),
M>0,
check_lesseq(LMINS,LMAXS),
flattern(PVALS,VALS),
all_different(VALS),
get_partition_var(VARS,PVALS,PVARS,M),
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gen_collection(PVARS,var,PVARIABLES),
stretch_path_partition_values(PARTLIMITS,1,VALUES),
eval(stretch_path(PVARIABLES,VALUES)).

stretch_path_partition_values([],_31059,[]) :-
!.

stretch_path_partition_values(
[[_31063,lmin-LMIN,lmax-LMAX]|R],
V,
[[val-V,lmin-LMIN,lmax-LMAX]|S]) :-

V1 is V+1,
stretch_path_partition_values(R,V1,S).

stretch_path_partition_a(FLAG,VARIABLES,PARTLIMITS) :-
stretch_path_partition_get_a(

VARIABLES,
PARTLIMITS,
AUTOMATON,
ALPHABET),

automaton_bool(FLAG,ALPHABET,AUTOMATON).

stretch_path_partition_get_a(
VARIABLES,
PARTLIMITS,
AUTOMATON,
ALPHABET) :-

length(VARIABLES,N),
N>0,
collection(VARIABLES,[dvar]),
collection(

PARTLIMITS,
[col_len_gteq(1,[int]),int(0,N),int]),

get_attr1(VARIABLES,VARS),
get_col_attr1(PARTLIMITS,1,PVALS),
get_attr2(PARTLIMITS,LMINS),
get_attr3(PARTLIMITS,LMAXS),
length(PVALS,M),
M>0,
check_lesseq(LMINS,LMAXS),
flattern(PVALS,VALS),
all_different(VALS),
stretch_lmin(LMINS,LMINS1),
stretch_reduce_lmax(LMAXS,N,LMAXSR),
stretch_gen_states(LMINS1,LMAXSR,N,1,STATES),
stretch_gen_transitions(
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1,
M,
LMINS1,
LMAXSR,
LMINS1,
LMAXSR,
N,
TRANSITIONS),

get_minimum(VARS,MINVARS),
get_maximum(VARS,MAXVARS),
sort(VALS,SVALS),
SVALS=[MINVALS|_31251],
last(SVALS,MAXVALS),
VALS_RANGE is MAXVALS-MINVALS+1,
( VALS_RANGE=M,

MINVALS=<MINVARS,
MAXVARS=<MAXVALS ->
COMP_VALS=[]

; stretch_path_partition_complement(
MINVARS,
MAXVARS,
VALS,
COMP_VALS)

),
stretch_path_partition_expand_transitions(

TRANSITIONS,
COMP_VALS,
PVALS,
EXPANDED_TRANSITIONS),

AUTOMATON=
automaton(

VARS,
_38846,
VARS,
STATES,
EXPANDED_TRANSITIONS,
[],
[],
[]),

append(VARS,SVALS,ALL_VALS),
union_dom_list_int(ALL_VALS,ALPHABET).

stretch_path_partition_complement(MIN,MAX,_31060,[]) :-
MIN>MAX,
!.
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stretch_path_partition_complement(MIN,MAX,VALS,C) :-
member(MIN,VALS),
!,
MIN1 is MIN+1,
stretch_path_partition_complement(MIN1,MAX,VALS,C).

stretch_path_partition_complement(MIN,MAX,VALS,[MIN|C]) :-
MIN1 is MIN+1,
stretch_path_partition_complement(MIN1,MAX,VALS,C).

stretch_path_partition_expand_transitions([],_31059,_31060,[]) :-
!.

stretch_path_partition_expand_transitions(
[arc(_31065,0,_31067)|R],
[],
PVALS,
S) :-

!,
stretch_path_partition_expand_transitions(R,[],PVALS,S).

stretch_path_partition_expand_transitions(
[arc(Si,0,Sj)|R],
[CV|CR],
PVALS,
TS) :-

!,
stretch_path_partition_tr([CV|CR],arc(Si,0,Sj),T),
stretch_path_partition_expand_transitions(

R,
[CV|CR],
PVALS,
S),

append(T,S,TS).

stretch_path_partition_expand_transitions(
[arc(Si,E,Sj)|R],
CL,
PVALS,
TS) :-

nth1(E,PVALS,VALS),
stretch_path_partition_tr(VALS,arc(Si,E,Sj),T),
stretch_path_partition_expand_transitions(R,CL,PVALS,S),
append(T,S,TS).

stretch_path_partition_tr([],_31056,[]).
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stretch_path_partition_tr(
[VAL|R],
arc(Si,E,Sj),
[arc(Si,VAL,Sj)|S]) :-

stretch_path_partition_tr(R,arc(Si,E,Sj),S).
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B.385 strict lex2

♦ META-DATA:

ctr_predefined(strict_lex2).

ctr_date(strict_lex2,[’20031016’,’20060817’]).

ctr_origin(
strict_lex2,
\cite{FlenerFrischHnichKiziltanMiguelPearsonWalsh02},
[]).

ctr_types(strict_lex2,[’VECTOR’-collection(var-dvar)]).

ctr_arguments(strict_lex2,[’MATRIX’-collection(vec-’VECTOR’)]).

ctr_restrictions(
strict_lex2,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
required(’MATRIX’,vec),
same_size(’MATRIX’,vec)]).

ctr_example(
strict_lex2,
strict_lex2(

[[vec-[[var-2],[var-2],[var-3]]],
[vec-[[var-2],[var-3],[var-1]]]])).

ctr_typical(strict_lex2,[size(’VECTOR’)>1,size(’MATRIX’)>1]).

ctr_exchangeable(strict_lex2,[translate([’MATRIX’ˆvecˆvar])]).

ctr_eval(
strict_lex2,
[checker(strict_lex2_c),reformulation(strict_lex2_r)]).

strict_lex2_c(MATRIX) :-
collection(MATRIX,[col([int])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
lex_chain_less_c1(MAT),
transpose(MAT,TMAT),
lex_chain_less_c1(TMAT).
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strict_lex2_r(MATRIX) :-
collection(MATRIX,[col([dvar])]),
same_size(MATRIX),
get_attr11(MATRIX,MAT),
lex_chain(MAT,[op(#<)]),
transpose(MAT,TMAT),
lex_chain(TMAT,[op(#<)]).
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B.386 strictly decreasing

♦ META-DATA:

ctr_date(strictly_decreasing,[’20040814’,’20060817’]).

ctr_origin(
strictly_decreasing,
Derived from %c.,
[strictly_increasing]).

ctr_arguments(
strictly_decreasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_decreasing,
[required(’VARIABLES’,var)]).

ctr_example(
strictly_decreasing,
strictly_decreasing([[var-8],[var-4],[var-3],[var-1]])).

ctr_typical(strictly_decreasing,[size(’VARIABLES’)>2]).

ctr_typical_model(
strictly_decreasing,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
strictly_decreasing,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
strictly_decreasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar>variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
strictly_decreasing,
[checker(strictly_decreasing_c),
automaton(strictly_decreasing_a)]).
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ctr_contractible(strictly_decreasing,[],’VARIABLES’,any).

ctr_sol(strictly_decreasing,2,0,2,3,-).

ctr_sol(strictly_decreasing,3,0,3,4,-).

ctr_sol(strictly_decreasing,4,0,4,5,-).

ctr_sol(strictly_decreasing,5,0,5,6,-).

ctr_sol(strictly_decreasing,6,0,6,7,-).

ctr_sol(strictly_decreasing,7,0,7,8,-).

ctr_sol(strictly_decreasing,8,0,8,9,-).

ctr_sol(strictly_decreasing,9,0,9,10,-).

ctr_sol(strictly_decreasing,10,0,10,11,-).

strictly_decreasing_c([[var-X],[var-Y]|_45777]) :-
X=<Y,
!,
fail.

strictly_decreasing_c([]) :-
!.

strictly_decreasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
strictly_decreasing_c1(VARS).

strictly_decreasing_c1([X,Y|R]) :-
!,
X>Y,
strictly_decreasing_c1([Y|R]).

strictly_decreasing_c1([_45767]) :-
!.

strictly_decreasing_c1([]).

strictly_decreasing_a(1,[]) :-
!.



3739

strictly_decreasing_a(0,[]) :-
!,
fail.

strictly_decreasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
strictly_decreasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_46910,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

strictly_decreasing_signature([_45768],[]) :-
!.

strictly_decreasing_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#=<VAR2#<=>S,
strictly_decreasing_signature([[var-VAR2]|VARs],Ss).
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B.387 strictly increasing

♦ META-DATA:

ctr_date(strictly_increasing,[’20040814’,’20060817’]).

ctr_origin(strictly_increasing,’KOALOG’,[]).

ctr_arguments(
strictly_increasing,
[’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
strictly_increasing,
[required(’VARIABLES’,var)]).

ctr_example(
strictly_increasing,
strictly_increasing([[var-1],[var-3],[var-6],[var-8]])).

ctr_typical(strictly_increasing,[size(’VARIABLES’)>2]).

ctr_typical_model(
strictly_increasing,
[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
strictly_increasing,
[translate([’VARIABLES’ˆvar])]).

ctr_graph(
strictly_increasing,
[’VARIABLES’],
2,
[’PATH’>>collection(variables1,variables2)],
[variables1ˆvar<variables2ˆvar],
[’NARC’=size(’VARIABLES’)-1],
[]).

ctr_eval(
strictly_increasing,
[checker(strictly_increasing_c),
automaton(strictly_increasing_a)]).

ctr_contractible(strictly_increasing,[],’VARIABLES’,any).
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ctr_sol(strictly_increasing,2,0,2,3,-).

ctr_sol(strictly_increasing,3,0,3,4,-).

ctr_sol(strictly_increasing,4,0,4,5,-).

ctr_sol(strictly_increasing,5,0,5,6,-).

ctr_sol(strictly_increasing,6,0,6,7,-).

ctr_sol(strictly_increasing,7,0,7,8,-).

ctr_sol(strictly_increasing,8,0,8,9,-).

ctr_sol(strictly_increasing,9,0,9,10,-).

ctr_sol(strictly_increasing,10,0,10,11,-).

strictly_increasing_c([[var-X],[var-Y]|_47069]) :-
X>=Y,
!,
fail.

strictly_increasing_c([]) :-
!.

strictly_increasing_c(VARIABLES) :-
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
strictly_increasing_c1(VARS).

strictly_increasing_c1([X,Y|R]) :-
!,
X<Y,
strictly_increasing_c1([Y|R]).

strictly_increasing_c1([_47059]) :-
!.

strictly_increasing_c1([]).

strictly_increasing_a(1,[]) :-
!.

strictly_increasing_a(0,[]) :-
!,
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fail.

strictly_increasing_a(FLAG,VARIABLES) :-
collection(VARIABLES,[dvar]),
strictly_increasing_signature(VARIABLES,SIGNATURE),
AUTOMATON=
automaton(

SIGNATURE,
_48202,
SIGNATURE,
[source(s),sink(s)],
[arc(s,0,s)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).

strictly_increasing_signature([_47060],[]) :-
!.

strictly_increasing_signature(
[[var-VAR1],[var-VAR2]|VARs],
[S|Ss]) :-

S in 0..1,
VAR1#>=VAR2#<=>S,
strictly_increasing_signature([[var-VAR2]|VARs],Ss).
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B.388 strongly connected
♦ META-DATA:

ctr_date(strongly_connected,[’20030820’,’20040726’,’20060817’]).

ctr_origin(
strongly_connected,
\cite{AlthausBockmayrElfKasperJungerMehlhorn02},
[]).

ctr_arguments(
strongly_connected,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
strongly_connected,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_example(
strongly_connected,
strongly_connected(

[[index-1,succ-{2}],
[index-2,succ-{3}],
[index-3,succ-{2,5}],
[index-4,succ-{1}],
[index-5,succ-{4}]])).

ctr_typical(strongly_connected,[size(’NODES’)>2]).

ctr_exchangeable(strongly_connected,[items(’NODES’,all)]).

ctr_graph(
strongly_connected,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’MIN_NSCC’=size(’NODES’)],
[]).

ctr_application(strongly_connected,[1]).
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B.389 subgraph isomorphism

♦ META-DATA:

ctr_predefined(subgraph_isomorphism).

ctr_date(subgraph_isomorphism,[’20090821’]).

ctr_origin(subgraph_isomorphism,’\\cite{Gregor79}’,[]).

ctr_arguments(
subgraph_isomorphism,
[’NODES_PATTERN’-collection(index-int,succ-sint),
’NODES_TARGET’-collection(index-int,succ-svar),
’FUNCTION’-collection(image-dvar)]).

ctr_restrictions(
subgraph_isomorphism,
[required(’NODES_PATTERN’,[index,succ]),
’NODES_PATTERN’ˆindex>=1,
’NODES_PATTERN’ˆindex=<size(’NODES_PATTERN’),
distinct(’NODES_PATTERN’,index),
’NODES_PATTERN’ˆsucc>=1,
’NODES_PATTERN’ˆsucc=<size(’NODES_PATTERN’),
required(’NODES_TARGET’,[index,succ]),
’NODES_TARGET’ˆindex>=1,
’NODES_TARGET’ˆindex=<size(’NODES_TARGET’),
distinct(’NODES_TARGET’,index),
’NODES_TARGET’ˆsucc>=1,
’NODES_TARGET’ˆsucc=<size(’NODES_TARGET’),
required(’FUNCTION’,[image]),
’FUNCTION’ˆimage>=1,
’FUNCTION’ˆimage=<size(’NODES_TARGET’),
distinct(’FUNCTION’,image),
size(’FUNCTION’)=size(’NODES_PATTERN’)]).

ctr_example(
subgraph_isomorphism,
subgraph_isomorphism(

[[index-1,succ-{2,4}],
[index-2,succ-{1,3,4}],
[index-3,succ-{}],
[index-4,succ-{}]],

[[index-1,succ-{}],
[index-2,succ-{3,4,5}],
[index-3,succ-{}],
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[index-4,succ-{2,5}],
[index-5,succ-{}]],
[[image-4],[image-2],[image-3],[image-5]])).

ctr_typical(
subgraph_isomorphism,
[size(’NODES_PATTERN’)>1,size(’NODES_TARGET’)>1]).

ctr_exchangeable(
subgraph_isomorphism,
[items(’NODES_PATTERN’,all),items(’NODES_TARGET’,all)]).
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B.390 sum

♦ META-DATA:

ctr_date(sum,[’20030820’,’20040726’,’20060817’]).

ctr_origin(sum,’\\cite{Yunes02}.’,[]).

ctr_synonyms(sum,[sum_pred]).

ctr_arguments(
sum,
[’INDEX’-dvar,
’SETS’-collection(ind-int,set-sint),
’CONSTANTS’-collection(cst-int),
’S’-dvar]).

ctr_restrictions(
sum,
[size(’SETS’)>=1,
required(’SETS’,[ind,set]),
distinct(’SETS’,ind),
size(’CONSTANTS’)>=1,
required(’CONSTANTS’,cst)]).

ctr_example(
sum,
sum(8,

[[ind-8,set-{2,3}],
[ind-1,set-{3}],
[ind-3,set-{1,4,5}],
[ind-6,set-{2,4}]],

[[cst-4],[cst-9],[cst-1],[cst-3],[cst-1]],
10)).

ctr_typical(
sum,
[size(’SETS’)>1,
size(’CONSTANTS’)>size(’SETS’),
range(’CONSTANTS’ˆcst)>1]).

ctr_exchangeable(sum,[items(’SETS’,all)]).

ctr_graph(
sum,
[’SETS’,’CONSTANTS’],
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2,
[’PRODUCT’>>collection(sets,constants)],
[’INDEX’=setsˆind,constantsˆkey in_set setsˆset],
[’SUM’(’CONSTANTS’,cst)=’S’],
[]).

ctr_functional_dependency(sum,4,[1,2,3]).
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B.391 sum ctr

♦ META-DATA:

ctr_date(sum_ctr,[’20030820’,’20040807’,’20060817’]).

ctr_origin(sum_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(sum_ctr,[constant_sum,sum,linear,scalar_product]).

ctr_arguments(
sum_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(sum_ctr,sum_ctr([[var-1],[var-1],[var-4]],=,6)).

ctr_typical(
sum_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_ctr,[items(’VARIABLES’,all)]).

ctr_graph(
sum_ctr,
[’VARIABLES’],
1,
[’SELF’>>collection(variables)],
[’TRUE’],
[’CTR’(’SUM’(’VARIABLES’,var),’VAR’)],
[]).

ctr_eval(sum_ctr,[checker(sum_ctr_c),reformulation(sum_ctr_r)]).

ctr_pure_functional_dependency(sum_ctr,[in_list(’CTR’,[=])]).

ctr_contractible(
sum_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,



3749

any).

ctr_contractible(
sum_ctr,
[in_list(’CTR’,[>=,>]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_extensible(
sum_ctr,
[in_list(’CTR’,[>=,>]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_extensible(
sum_ctr,
[in_list(’CTR’,[<,=<]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_aggregate(sum_ctr,[],[union,id,+]).

ctr_cond_imply(
sum_ctr,
sum_squares_ctr,
[’VARIABLES’ˆvar>=0,’VARIABLES’ˆvar=<1],
[’VARIABLES’ˆvar>=0,’VARIABLES’ˆvar=<1],
id).

ctr_cond_imply(
sum_ctr,
sum_cubes_ctr,
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
id).

ctr_cond_imply(
sum_ctr,
sum_powers5_ctr,
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
id).

ctr_cond_imply(
sum_ctr,
increasing_sum,
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[in_list(’CTR’,[=]),increasing(’VARIABLES’)],
[],
[’VARIABLES’,’VAR’]).

sum_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_var(VARS,SUM),
call_term_relop_value(SUM,CTR,VAR).

sum_ctr_c(VARIABLES,=,VAR) :-
!,
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
sumlist(VARS,VAR).

sum_ctr_c(VARIABLES,=\=,VAR) :-
!,
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
sumlist(VARS,SUM),
SUM=\=VAR.

sum_ctr_c(VARIABLES,<,VAR) :-
!,
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
sumlist(VARS,SUM),
SUM<VAR.

sum_ctr_c(VARIABLES,>=,VAR) :-
!,
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
sumlist(VARS,SUM),
SUM>=VAR.

sum_ctr_c(VARIABLES,>,VAR) :-
!,
collection(VARIABLES,[int]),
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check_type(int,VAR),
get_attr1(VARIABLES,VARS),
sumlist(VARS,SUM),
SUM>VAR.

sum_ctr_c(VARIABLES,=<,VAR) :-
collection(VARIABLES,[int]),
check_type(int,VAR),
get_attr1(VARIABLES,VARS),
sumlist(VARS,SUM),
SUM=<VAR.
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B.392 sum cubes ctr

♦ META-DATA:

ctr_predefined(sum_cubes_ctr).

ctr_date(sum_cubes_ctr,[’20111111’]).

ctr_origin(sum_cubes_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(
sum_cubes_ctr,
[sum_cubes,sum_of_cubes,sum_of_cubes_ctr]).

ctr_arguments(
sum_cubes_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_cubes_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_cubes_ctr,
sum_cubes_ctr([[var-1],[var-2],[var-2]],=,17)).

ctr_typical(
sum_cubes_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_cubes_ctr,[items(’VARIABLES’,all)]).

ctr_eval(sum_cubes_ctr,[reformulation(sum_cubes_ctr_r)]).

ctr_pure_functional_dependency(
sum_cubes_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_cubes_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).
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ctr_contractible(
sum_cubes_ctr,
[in_list(’CTR’,[>=,>]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_extensible(
sum_cubes_ctr,
[in_list(’CTR’,[>=,>]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_extensible(
sum_cubes_ctr,
[in_list(’CTR’,[<,=<]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_aggregate(sum_cubes_ctr,[],[union,id,+]).

sum_cubes_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_cubes_var(VARS,SUM_CUBES),
call_term_relop_value(SUM_CUBES,CTR,VAR).
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B.393 sum free
♦ META-DATA:

ctr_predefined(sum_free).

ctr_date(sum_free,[’20061003’]).

ctr_origin(sum_free,’\\cite{HoeveSabharwal07}’,[]).

ctr_arguments(sum_free,[’S’-svar]).

ctr_example(sum_free,sum_free({1,3,5,9})).
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B.394 sum of increments

♦ META-DATA:

ctr_predefined(sum_of_increments).

ctr_date(sum_of_increments,[’20111105’]).

ctr_origin(sum_of_increments,’\\cite{Brand09}’,[]).

ctr_synonyms(
sum_of_increments,
[increments_sum,incr_sum,sum_incr,sum_increments]).

ctr_arguments(
sum_of_increments,
[’VARIABLES’-collection(var-dvar),’LIMIT’-dvar]).

ctr_restrictions(
sum_of_increments,
[required(’VARIABLES’,var),’VARIABLES’ˆvar>=0,’LIMIT’>=0]).

ctr_example(
sum_of_increments,
[sum_of_increments(

[[var-4],[var-4],[var-3],[var-4],[var-6]],
7)]).

ctr_typical(
sum_of_increments,
[size(’VARIABLES’)>2,
range(’VARIABLES’ˆvar)>1,
maxval(’VARIABLES’ˆvar)>0,
’LIMIT’>0,
’LIMIT’=<size(’VARIABLES’)*range(’VARIABLES’ˆvar)/2]).

ctr_exchangeable(
sum_of_increments,
[translate([’VARIABLES’ˆvar,’LIMIT’]),
items(’VARIABLES’,reverse),
vals([’LIMIT’],int,<,dontcare,dontcare)]).

ctr_eval(
sum_of_increments,
[reformulation(sum_of_increments_r)]).
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ctr_contractible(sum_of_increments,[],’VARIABLES’,prefix).

ctr_contractible(sum_of_increments,[],’VARIABLES’,suffix).

ctr_sol(sum_of_increments,2,0,2,14,[0-1,1-4,2-9]).

ctr_sol(sum_of_increments,3,0,3,145,[0-1,1-7,2-23,3-54,4-60]).

ctr_sol(
sum_of_increments,
4,
0,
4,
2875,
[0-1,1-11,2-51,3-156,4-375,5-485,6-563,7-608,8-625]).

ctr_sol(
sum_of_increments,
5,
0,
5,
51415,
[0-1,
1-16,
2-101,
3-396,
4-1167,
5-2848,
6-4263,
7-5568,
8-6616,
9-7314,
10-7650,
11-7720,
12-7755]).

ctr_sol(
sum_of_increments,
6,
0,
6,
1210104,
[0-1,
1-22,
2-183,
3-904,
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4-3235,
5-9318,
6-22981,
7-38836,
8-56703,
9-74658,
10-90639,
11-102875,
12-110425,
13-113827,
14-115857,
15-116942,
16-117437,
17-117612,
18-117649]).

ctr_sol(
sum_of_increments,
7,
0,
7,
28573741,
[0-1,
1-29,
2-309,
3-1891,
4-8135,
5-27483,
6-77947,
7-193742,
8-359880,
9-578511,
10-837441,
11-1115687,
12-1386029,
13-1619993,
14-1795694,
15-1908968,
16-1988222,
17-2039616,
18-2069933,
19-2085763,
20-2092817,
21-2095436,
22-2096360,
23-2096822,
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24-2097032]).

ctr_sol(
sum_of_increments,
8,
0,
8,
801944469,
[0-1,
1-37,
2-493,
3-3679,
4-18835,
5-74143,
6-240751,
7-675244,
8-1688427,
9-3369015,
10-5865915,
11-9220695,
12-13354545,
13-18051195,
14-22965651,
15-27670800,
16-31755573,
17-34989993,
18-37574073,
19-39526569,
20-40912205,
21-41827847,
22-42386387,
23-42700112,
24-42865683,
25-42953199,
26-43002171,
27-43027581,
28-43039551,
29-43044507,
30-43046215,
31-43046656,
32-43046721]).

sum_of_increments_r([],_66971) :-
!.

sum_of_increments_r(VARIABLES,LIMIT) :-
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collection(VARIABLES,[dvar_gteq(0)]),
check_type(dvar_gteq(0),LIMIT),
get_attr1(VARIABLES,VARS),
fd_max(LIMIT,MaxL),
sum_of_increments_r1([0|VARS],MaxL,SUM),
call(SUM#=<LIMIT).

sum_of_increments_r1([_66973],_66971,0) :-
!.

sum_of_increments_r1([V1,V2|R],MaxL,S2+S) :-
S2 in 0..MaxL,
V2-V1#=<S2,
sum_of_increments_r1([V2|R],MaxL,S).
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B.395 sum of weights of distinct values

♦ META-DATA:

ctr_date(
sum_of_weights_of_distinct_values,
[’20030820’,’20040726’,’20060817’]).

ctr_origin(
sum_of_weights_of_distinct_values,
\cite{BeldiceanuCarlssonThiel02},
[]).

ctr_synonyms(sum_of_weights_of_distinct_values,[swdv]).

ctr_arguments(
sum_of_weights_of_distinct_values,
[’VARIABLES’-collection(var-dvar),
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
sum_of_weights_of_distinct_values,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,weight]),
’VALUES’ˆweight>=0,
distinct(’VALUES’,val),
in_attr(’VARIABLES’,var,’VALUES’,val),
’COST’>=0]).

ctr_example(
sum_of_weights_of_distinct_values,
sum_of_weights_of_distinct_values(

[[var-1],[var-6],[var-1]],
[[val-1,weight-5],[val-2,weight-3],[val-6,weight-7]],
12)).

ctr_typical(
sum_of_weights_of_distinct_values,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
size(’VALUES’)>1,
range(’VALUES’ˆweight)>1,
maxval(’VALUES’ˆweight)>0]).
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ctr_exchangeable(
sum_of_weights_of_distinct_values,
[items(’VARIABLES’,all),
vals([’VARIABLES’ˆvar],int,=\=,all,in),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int,
=\=,
all,
dontcare)]).

ctr_graph(
sum_of_weights_of_distinct_values,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=valuesˆval],
[’NSOURCE’=size(’VARIABLES’),
’SUM’(’VALUES’,weight)=’COST’],
[]).

ctr_eval(
sum_of_weights_of_distinct_values,
[checker(sum_of_weights_of_distinct_values_c),
reformulation(sum_of_weights_of_distinct_values_r)]).

ctr_pure_functional_dependency(
sum_of_weights_of_distinct_values,
[]).

ctr_functional_dependency(
sum_of_weights_of_distinct_values,
3,
[1,2]).

sum_of_weights_of_distinct_values_r(VARIABLES,VALUES,COST) :-
collection(VARIABLES,[dvar]),
collection(VALUES,[int,int_gteq(0)]),
check_type(dvar_gteq(0),COST),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,WEIGHTS),
all_different(VALS),
( VARS=[] ->

COST#=0
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; sum_of_weights_of_distinct_values1(VARS,VALS),
sum_of_weights_of_distinct_values3(

VALS,
WEIGHTS,
VARS,
TERM),

call(COST#=TERM)
).

sum_of_weights_of_distinct_values1([],_44987).

sum_of_weights_of_distinct_values1([VAR|RVAR],VALS) :-
sum_of_weights_of_distinct_values2(VALS,VAR,OR_TERM),
call(OR_TERM),
sum_of_weights_of_distinct_values1(RVAR,VALS).

sum_of_weights_of_distinct_values2([],_44987,0).

sum_of_weights_of_distinct_values2(
[VAL|RVAL],
VAR,
VAR#=VAL#\/TERM) :-

sum_of_weights_of_distinct_values2(RVAL,VAR,TERM).

sum_of_weights_of_distinct_values3([],[],_44988,0).

sum_of_weights_of_distinct_values3(
[VAL|RVAL],
[WEIGHT|RWEIGHT],
VARS,
WEIGHT*B+TERM) :-

sum_of_weights_of_distinct_values4(VARS,VAL,OR_TERM),
call(B#<=>OR_TERM),
sum_of_weights_of_distinct_values3(

RVAL,
RWEIGHT,
VARS,
TERM).

sum_of_weights_of_distinct_values4([],_44987,0).

sum_of_weights_of_distinct_values4(
[VAR|RVAR],
VAL,
VAL#=VAR#\/TERM) :-

sum_of_weights_of_distinct_values4(RVAR,VAL,TERM).
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sum_of_weights_of_distinct_values_c(VARIABLES,VALUES,COST) :-
collection(VARIABLES,[int]),
collection(VALUES,[int,int_gteq(0)]),
integer(COST),
COST>=0,
get_attr1(VARIABLES,VARS),
samsort(VARS,SVARS),
get_attr12(VALUES,VAL_WEIGHT),
keysort(VAL_WEIGHT,SVAL_WEIGHT),
sum_of_weights_of_distinct_values_inc(SVAL_WEIGHT),
sum_of_weights_of_distinct_values_check(

SVARS,
SVAL_WEIGHT,
COST).

sum_of_weights_of_distinct_values_inc([]) :-
!.

sum_of_weights_of_distinct_values_inc([_44990]) :-
!.

sum_of_weights_of_distinct_values_inc(
[Val1-_44994,Val2-Weight2|R]) :-

Val1<Val2,
sum_of_weights_of_distinct_values_inc([Val2-Weight2|R]).

sum_of_weights_of_distinct_values_check([],_44990,0) :-
!.

sum_of_weights_of_distinct_values_check(
[Val|R],
[Val-Weight|S],
Cost) :-

!,
Cost1 is Cost-Weight,
sum_of_weights_of_distinct_values_check(

R,
[Val-0|S],
Cost1).

sum_of_weights_of_distinct_values_check(
[Var|R],
[Val-_Weight|S],
Cost) :-

Var>Val,
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sum_of_weights_of_distinct_values_check([Var|R],S,Cost).
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B.396 sum powers4 ctr

♦ META-DATA:

ctr_predefined(sum_powers4_ctr).

ctr_date(sum_powers4_ctr,[’20120403’]).

ctr_origin(sum_powers4_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(
sum_powers4_ctr,
[sum_powers4,sum_of_powers4,sum_of_powers4_ctr]).

ctr_arguments(
sum_powers4_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_powers4_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_powers4_ctr,
sum_powers4_ctr([[var-1],[var-1],[var-2]],=,18)).

ctr_typical(
sum_powers4_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_powers4_ctr,[items(’VARIABLES’,all)]).

ctr_eval(sum_powers4_ctr,[reformulation(sum_powers4_ctr_r)]).

ctr_pure_functional_dependency(
sum_powers4_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_powers4_ctr,
[in_list(’CTR’,[<,=<])],
VARIABLES,
any).
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ctr_extensible(
sum_powers4_ctr,
[in_list(’CTR’,[>=,>])],
VARIABLES,
any).

ctr_aggregate(sum_powers4_ctr,[],[union,id,+]).

sum_powers4_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_powers4_var(VARS,SUM_POWERS4),
call_term_relop_value(SUM_POWERS4,CTR,VAR).
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B.397 sum powers5 ctr

♦ META-DATA:

ctr_predefined(sum_powers5_ctr).

ctr_date(sum_powers5_ctr,[’20120403’]).

ctr_origin(sum_powers5_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(
sum_powers5_ctr,
[sum_powers5,sum_of_powers5,sum_of_powers5_ctr]).

ctr_arguments(
sum_powers5_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_powers5_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_powers5_ctr,
sum_powers5_ctr([[var-1],[var-1],[var-2]],=,34)).

ctr_typical(
sum_powers5_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_powers5_ctr,[items(’VARIABLES’,all)]).

ctr_eval(sum_powers5_ctr,[reformulation(sum_powers5_ctr_r)]).

ctr_pure_functional_dependency(
sum_powers5_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_powers5_ctr,
[in_list(’CTR’,[<,=<]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).
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ctr_contractible(
sum_powers5_ctr,
[in_list(’CTR’,[>=,>]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_extensible(
sum_powers5_ctr,
[in_list(’CTR’,[>=,>]),minval(’VARIABLES’ˆvar)>=0],
VARIABLES,
any).

ctr_extensible(
sum_powers5_ctr,
[in_list(’CTR’,[<,=<]),maxval(’VARIABLES’ˆvar)=<0],
VARIABLES,
any).

ctr_aggregate(sum_powers5_ctr,[],[union,id,+]).

sum_powers5_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_powers5_var(VARS,SUM_POWERS5),
call_term_relop_value(SUM_POWERS5,CTR,VAR).
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B.398 sum powers6 ctr

♦ META-DATA:

ctr_predefined(sum_powers6_ctr).

ctr_date(sum_powers6_ctr,[’20120403’]).

ctr_origin(sum_powers6_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(
sum_powers6_ctr,
[sum_powers6,sum_of_powers6,sum_of_powers6_ctr]).

ctr_arguments(
sum_powers6_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_powers6_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_powers6_ctr,
sum_powers6_ctr([[var-1],[var-1],[var-2]],=,66)).

ctr_typical(
sum_powers6_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_powers6_ctr,[items(’VARIABLES’,all)]).

ctr_eval(sum_powers6_ctr,[reformulation(sum_powers6_ctr_r)]).

ctr_pure_functional_dependency(
sum_powers6_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_powers6_ctr,
[in_list(’CTR’,[<,=<])],
VARIABLES,
any).
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ctr_extensible(
sum_powers6_ctr,
[in_list(’CTR’,[>=,>])],
VARIABLES,
any).

ctr_aggregate(sum_powers6_ctr,[],[union,id,+]).

sum_powers6_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_powers6_var(VARS,SUM_POWERS6),
call_term_relop_value(SUM_POWERS6,CTR,VAR).
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B.399 sum set

♦ META-DATA:

ctr_date(sum_set,[’20031001’,’20060818’]).

ctr_origin(sum_set,’H.˜Cambazard’,[]).

ctr_arguments(
sum_set,
[’SV’-svar,
’VALUES’-collection(val-int,coef-int),
’CTR’-atom,
’VAR’-dvar]).

ctr_restrictions(
sum_set,
[required(’VALUES’,[val,coef]),
distinct(’VALUES’,val),
’VALUES’ˆcoef>=0,
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_set,
sum_set(

{2,3,6},
[[val-2,coef-7],
[val-9,coef-1],
[val-5,coef-7],
[val-6,coef-2]],

=,
9)).

ctr_typical(
sum_set,
[size(’VALUES’)>1,
’VALUES’ˆcoef>0,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_set,[items(’VALUES’,all)]).

ctr_graph(
sum_set,
[’VALUES’],
1,
[’SELF’>>collection(values)],
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[valuesˆval in_set ’SV’],
[’CTR’(’SUM’(’VALUES’,coef),’VAR’)],
[]).
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B.400 sum squares ctr

♦ META-DATA:

ctr_predefined(sum_squares_ctr).

ctr_date(sum_squares_ctr,[’20110612’]).

ctr_origin(sum_squares_ctr,’Arithmetic constraint.’,[]).

ctr_synonyms(
sum_squares_ctr,
[sum_squares,sum_of_squares,sum_of_squares_ctr]).

ctr_arguments(
sum_squares_ctr,
[’VARIABLES’-collection(var-dvar),’CTR’-atom,’VAR’-dvar]).

ctr_restrictions(
sum_squares_ctr,
[required(’VARIABLES’,var),
in_list(’CTR’,[=,=\=,<,>=,>,=<])]).

ctr_example(
sum_squares_ctr,
sum_squares_ctr([[var-1],[var-1],[var-4]],=,18)).

ctr_typical(
sum_squares_ctr,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
in_list(’CTR’,[=,<,>=,>,=<])]).

ctr_exchangeable(sum_squares_ctr,[items(’VARIABLES’,all)]).

ctr_eval(
sum_squares_ctr,
[checker(sum_squares_ctr_c),
reformulation(sum_squares_ctr_r)]).

ctr_pure_functional_dependency(
sum_squares_ctr,
[in_list(’CTR’,[=])]).

ctr_contractible(
sum_squares_ctr,
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[in_list(’CTR’,[<,=<])],
VARIABLES,
any).

ctr_extensible(
sum_squares_ctr,
[in_list(’CTR’,[>=,>])],
VARIABLES,
any).

ctr_aggregate(sum_squares_ctr,[],[union,id,+]).

ctr_cond_imply(
sum_squares_ctr,
sum_powers4_ctr,
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
id).

ctr_cond_imply(
sum_squares_ctr,
sum_powers6_ctr,
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
[’VARIABLES’ˆvar>= -1,’VARIABLES’ˆvar=<1],
id).

sum_squares_ctr_r(VARIABLES,CTR,VAR) :-
collection(VARIABLES,[dvar]),
memberchk(CTR,[=,=\=,<,>=,>,=<]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_var(VARS,SUM_SQUARES),
call_term_relop_value(SUM_SQUARES,CTR,VAR).

sum_squares_ctr_c(VARIABLES,=,VAR) :-
collection(VARIABLES,[int]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_int(VARS,0,VAR).

sum_squares_ctr_c(VARIABLES,=\=,VAR) :-
collection(VARIABLES,[int]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_int(VARS,0,SUM),
SUM=\=VAR.
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sum_squares_ctr_c(VARIABLES,<,VAR) :-
collection(VARIABLES,[int]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_int(VARS,0,SUM),
SUM<VAR.

sum_squares_ctr_c(VARIABLES,>=,VAR) :-
collection(VARIABLES,[int]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_int(VARS,0,SUM),
SUM>=VAR.

sum_squares_ctr_c(VARIABLES,>,VAR) :-
collection(VARIABLES,[int]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_int(VARS,0,SUM),
SUM>VAR.

sum_squares_ctr_c(VARIABLES,=<,VAR) :-
collection(VARIABLES,[int]),
check_type(dvar,VAR),
get_attr1(VARIABLES,VARS),
build_sum_squares_int(VARS,0,SUM),
SUM=<VAR.
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B.401 symmetric
♦ META-DATA:

ctr_date(symmetric,[’20060930’]).

ctr_origin(symmetric,’\\cite{Dooms06}’,[]).

ctr_arguments(
symmetric,
[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
symmetric,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_example(
symmetric,
symmetric(

[[index-1,succ-{1,2,3}],
[index-2,succ-{1,3}],
[index-3,succ-{1,2}],
[index-4,succ-{5,6}],
[index-5,succ-{4}],
[index-6,succ-{4}]])).

ctr_typical(symmetric,[size(’NODES’)>2]).

ctr_exchangeable(symmetric,[items(’NODES’,all)]).

ctr_graph(
symmetric,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[],
[’SYMMETRIC’]).
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B.402 symmetric alldifferent

♦ META-DATA:

ctr_date(
symmetric_alldifferent,
[’20000128’,’20030820’,’20060818’]).

ctr_origin(symmetric_alldifferent,’\\cite{Regin99}’,[]).

ctr_synonyms(
symmetric_alldifferent,
[symmetric_alldiff,
symmetric_alldistinct,
symm_alldifferent,
symm_alldiff,
symm_alldistinct,
one_factor,
two_cycle]).

ctr_arguments(
symmetric_alldifferent,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent,
[size(’NODES’)mod 2=0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
symmetric_alldifferent,
symmetric_alldifferent(

[[index-1,succ-3],
[index-2,succ-4],
[index-3,succ-1],
[index-4,succ-2]])).

ctr_typical(symmetric_alldifferent,[size(’NODES’)>=4]).

ctr_exchangeable(symmetric_alldifferent,[items(’NODES’,all)]).
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ctr_graph(
symmetric_alldifferent,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆsucc=nodes1ˆindex],
[’NARC’=size(’NODES’)],
[]).

ctr_eval(
symmetric_alldifferent,
[reformulation(symmetric_alldifferent_r1),
reformulation(symmetric_alldifferent_r2),
checker(symmetric_alldifferent_c)]).

ctr_cond_imply(
symmetric_alldifferent,
balance_cycle,
[],
[’BALANCE’=0],
[none,’NODES’]).

ctr_cond_imply(
symmetric_alldifferent,
cycle,
[],
[2*’NCYCLE’=size(’NODES’)],
[none,’NODES’]).

ctr_cond_imply(
symmetric_alldifferent,
permutation,
[],
[],
index_to_col).

ctr_sol(symmetric_alldifferent,2,0,2,1,-).

ctr_sol(symmetric_alldifferent,3,0,3,0,[]).

ctr_sol(symmetric_alldifferent,4,0,4,3,-).

ctr_sol(symmetric_alldifferent,5,0,5,0,[]).

ctr_sol(symmetric_alldifferent,6,0,6,15,-).
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ctr_sol(symmetric_alldifferent,7,0,7,0,[]).

ctr_sol(symmetric_alldifferent,8,0,8,105,-).

ctr_sol(symmetric_alldifferent,9,0,9,0,[]).

ctr_sol(symmetric_alldifferent,10,0,10,945,-).

symmetric_alldifferent_r1(NODES) :-
symmetric_alldifferent_r1a(NODES,INODES),
eval(inverse(INODES)).

symmetric_alldifferent_r1a([],[]).

symmetric_alldifferent_r1a(
[[index-INDEX,succ-SUCC]|R],
[[index-INDEX,succ-SUCC,pred-SUCC]|S]) :-

SUCC#\=INDEX,
symmetric_alldifferent_r1a(R,S).

symmetric_alldifferent_r2([]) :-
!.

symmetric_alldifferent_r2(NODES) :-
length(NODES,N),
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),dvar(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
derangement1(SUCCS,INDEXES),
symmetric_alldifferent1(SUCCS,1,SUCCS).

symmetric_alldifferent_c([]) :-
!.

symmetric_alldifferent_c(NODES) :-
length(NODES,N),
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),int(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
sort(INDEXES,SINDEXES),
length(SINDEXES,N),
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sym_pairs(INDEXES,SUCCS,PAIRS),
keysort(PAIRS,SPAIRS),
symmetric_alldifferent_check(SPAIRS).

sym_pairs([],[],[]) :-
!.

sym_pairs([I|R],[J|S],[I-a(J),J-b(I)|T]) :-
sym_pairs(R,S,T).
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B.403 symmetric alldifferent except 0

♦ META-DATA:

ctr_predefined(symmetric_alldifferent_except_0).

ctr_date(symmetric_alldifferent_except_0,[’20120208’]).

ctr_origin(
symmetric_alldifferent_except_0,
Derived from %c,
[symmetric_alldifferent]).

ctr_synonyms(
symmetric_alldifferent_except_0,
[symmetric_alldiff_except_0,
symmetric_alldistinct_except_0,
symm_alldifferent_except_0,
symm_alldiff_except_0,
symm_alldistinct_except_0]).

ctr_arguments(
symmetric_alldifferent_except_0,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent_except_0,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=0,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
symmetric_alldifferent_except_0,
[symmetric_alldifferent_except_0(

[[index-1,succ-3],
[index-2,succ-0],
[index-3,succ-1],
[index-4,succ-0]])]).

ctr_typical(
symmetric_alldifferent_except_0,
[size(’NODES’)>=4,
minval(’NODES’ˆsucc)=0,
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maxval(’NODES’ˆsucc)>0]).

ctr_exchangeable(
symmetric_alldifferent_except_0,
[items(’NODES’,all)]).

ctr_eval(
symmetric_alldifferent_except_0,
[checker(symmetric_alldifferent_except_0_c),
reformulation(symmetric_alldifferent_except_0_r),
density(symmetric_alldifferent_except_0_d)]).

ctr_cond_imply(
symmetric_alldifferent_except_0,
alldifferent_except_0,
[],
[],
index_to_col).

ctr_sol(symmetric_alldifferent_except_0,2,0,2,2,-).

ctr_sol(symmetric_alldifferent_except_0,3,0,3,4,-).

ctr_sol(symmetric_alldifferent_except_0,4,0,4,10,-).

ctr_sol(symmetric_alldifferent_except_0,5,0,5,26,-).

ctr_sol(symmetric_alldifferent_except_0,6,0,6,76,-).

ctr_sol(symmetric_alldifferent_except_0,7,0,7,232,-).

ctr_sol(symmetric_alldifferent_except_0,8,0,8,764,-).

symmetric_alldifferent_except_0_r([]) :-
!.

symmetric_alldifferent_except_0_r(NODES) :-
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),dvar(0,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
derangement1(SUCCS,INDEXES),
symmetric_alldifferent1(SUCCS,1,SUCCS).
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symmetric_alldifferent_except_0_c([]) :-
!.

symmetric_alldifferent_except_0_c(NODES) :-
length(NODES,N),
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),int(0,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
sort(INDEXES,SINDEXES),
length(SINDEXES,N),
sym_pairs_skip_zeros(INDEXES,SUCCS,PAIRS),
keysort(PAIRS,SPAIRS),
symmetric_alldifferent_check(SPAIRS).

sym_pairs_skip_zeros([],[],[]) :-
!.

sym_pairs_skip_zeros([_I|R],[0|S],T) :-
!,
sym_pairs_skip_zeros(R,S,T).

sym_pairs_skip_zeros([I|R],[J|S],[I-a(J),J-b(I)|T]) :-
sym_pairs_skip_zeros(R,S,T).

symmetric_alldifferent_except_0_d(Density,NODES) :-
get_attr2(NODES,SUCCS),
sort(SUCCS,SORTED),
length(SUCCS,N),
length(SORTED,S),
Density is S/N.
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B.404 symmetric alldifferent loop

♦ META-DATA:

ctr_date(symmetric_alldifferent_loop,[’20120221’]).

ctr_origin(
symmetric_alldifferent_loop,
Derived from %c,
[symmetric_alldifferent]).

ctr_synonyms(
symmetric_alldifferent_loop,
[symmetric_alldiff_loop,
symmetric_alldistinct_loop,
symm_alldifferent_loop,
symm_alldiff_loop,
symm_alldistinct_loop]).

ctr_arguments(
symmetric_alldifferent_loop,
[’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
symmetric_alldifferent_loop,
[required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
symmetric_alldifferent_loop,
[symmetric_alldifferent_loop(

[[index-1,succ-1],
[index-2,succ-4],
[index-3,succ-3],
[index-4,succ-2]])]).

ctr_typical(symmetric_alldifferent_loop,[size(’NODES’)>=4]).

ctr_exchangeable(
symmetric_alldifferent_loop,
[items(’NODES’,all)]).
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ctr_graph(
symmetric_alldifferent_loop,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,nodes2ˆsucc=nodes1ˆindex],
[’NARC’=size(’NODES’)],
[]).

ctr_eval(
symmetric_alldifferent_loop,
[checker(symmetric_alldifferent_loop_c),
reformulation(symmetric_alldifferent_loop_r1),
reformulation(symmetric_alldifferent_loop_r2)]).

ctr_cond_imply(
symmetric_alldifferent_loop,
permutation,
[],
[],
index_to_col).

ctr_sol(symmetric_alldifferent_loop,2,0,2,2,-).

ctr_sol(symmetric_alldifferent_loop,3,0,3,4,-).

ctr_sol(symmetric_alldifferent_loop,4,0,4,10,-).

ctr_sol(symmetric_alldifferent_loop,5,0,5,26,-).

ctr_sol(symmetric_alldifferent_loop,6,0,6,76,-).

ctr_sol(symmetric_alldifferent_loop,7,0,7,232,-).

ctr_sol(symmetric_alldifferent_loop,8,0,8,764,-).

ctr_sol(symmetric_alldifferent_loop,9,0,9,2620,-).

ctr_sol(symmetric_alldifferent_loop,10,0,10,9496,-).

symmetric_alldifferent_loop_r1(NODES) :-
symmetric_alldifferent_loop_r1a(NODES,INODES),
eval(inverse(INODES)).

symmetric_alldifferent_loop_r1a([],[]).



3786 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

symmetric_alldifferent_loop_r1a(
[[index-INDEX,succ-SUCC]|R],
[[index-INDEX,succ-SUCC,pred-SUCC]|S]) :-

symmetric_alldifferent_loop_r1a(R,S).

symmetric_alldifferent_loop_r2([]) :-
!.

symmetric_alldifferent_loop_r2(NODES) :-
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),dvar(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
symmetric_alldifferent1(SUCCS,1,SUCCS).

symmetric_alldifferent_loop_c([]) :-
!.

symmetric_alldifferent_loop_c(NODES) :-
length(NODES,N),
symmetric_alldifferent0(NODES,SNODES),
length(SNODES,N),
collection(SNODES,[int(1,N),int(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
sort(INDEXES,SINDEXES),
length(SINDEXES,N),
sym_pairs_skip_loops(INDEXES,SUCCS,PAIRS),
keysort(PAIRS,SPAIRS),
symmetric_alldifferent_check(SPAIRS).

sym_pairs_skip_loops([],[],[]) :-
!.

sym_pairs_skip_loops([I|R],[I|S],T) :-
!,
sym_pairs_skip_loops(R,S,T).

sym_pairs_skip_loops([I|R],[J|S],[I-a(J),J-b(I)|T]) :-
sym_pairs_skip_loops(R,S,T).
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B.405 symmetric cardinality

♦ META-DATA:

ctr_date(symmetric_cardinality,[’20040530’,’20060818’]).

ctr_origin(
symmetric_cardinality,
Derived from %c by W.˜Kocjan.,
[global_cardinality]).

ctr_arguments(
symmetric_cardinality,
[’VARS’-collection(idvar-int,var-svar,l-int,u-int),
’VALS’-collection(idval-int,val-svar,l-int,u-int)]).

ctr_restrictions(
symmetric_cardinality,
[required(’VARS’,[idvar,var,l,u]),
size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆl>=0,
’VARS’ˆl=<’VARS’ˆu,
’VARS’ˆu=<size(’VALS’),
required(’VALS’,[idval,val,l,u]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆl>=0,
’VALS’ˆl=<’VALS’ˆu,
’VALS’ˆu=<size(’VARS’)]).

ctr_example(
symmetric_cardinality,
symmetric_cardinality(

[[idvar-1,var-{3},l-0,u-1],
[idvar-2,var-{1},l-1,u-2],
[idvar-3,var-{1,2},l-1,u-2],
[idvar-4,var-{1,3},l-2,u-3]],
[[idval-1,val-{2,3,4},l-3,u-4],
[idval-2,val-{3},l-1,u-1],
[idval-3,val-{1,4},l-1,u-2],
[idval-4,val-{},l-0,u-1]])).
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ctr_typical(
symmetric_cardinality,
[size(’VARS’)>1,size(’VALS’)>1]).

ctr_exchangeable(
symmetric_cardinality,
[items(’VARS’,all),items(’VALS’,all)]).

ctr_graph(
symmetric_cardinality,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[varsˆidvar in_set valsˆval#<=>valsˆidval in_set varsˆvar,
varsˆl=<card_set(varsˆvar),
varsˆu>=card_set(varsˆvar),
valsˆl=<card_set(valsˆval),
valsˆu>=card_set(valsˆval)],
[’NARC’=size(’VARS’)*size(’VALS’)],
[]).
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B.406 symmetric gcc

♦ META-DATA:

ctr_date(symmetric_gcc,[’20030820’,’20040530’,’20060818’]).

ctr_origin(
symmetric_gcc,
Derived from %c by W.˜Kocjan.,
[global_cardinality]).

ctr_synonyms(symmetric_gcc,[sgcc]).

ctr_arguments(
symmetric_gcc,
[’VARS’-collection(idvar-int,var-svar,nocc-dvar),
’VALS’-collection(idval-int,val-svar,nocc-dvar)]).

ctr_restrictions(
symmetric_gcc,
[required(’VARS’,[idvar,var,nocc]),
size(’VARS’)>=1,
’VARS’ˆidvar>=1,
’VARS’ˆidvar=<size(’VARS’),
distinct(’VARS’,idvar),
’VARS’ˆnocc>=0,
’VARS’ˆnocc=<size(’VALS’),
required(’VALS’,[idval,val,nocc]),
size(’VALS’)>=1,
’VALS’ˆidval>=1,
’VALS’ˆidval=<size(’VALS’),
distinct(’VALS’,idval),
’VALS’ˆnocc>=0,
’VALS’ˆnocc=<size(’VARS’)]).

ctr_example(
symmetric_gcc,
symmetric_gcc(

[[idvar-1,var-{3},nocc-1],
[idvar-2,var-{1},nocc-1],
[idvar-3,var-{1,2},nocc-2],
[idvar-4,var-{1,3},nocc-2]],
[[idval-1,val-{2,3,4},nocc-3],
[idval-2,val-{3},nocc-1],
[idval-3,val-{1,4},nocc-2],
[idval-4,val-{},nocc-0]])).
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ctr_typical(symmetric_gcc,[size(’VARS’)>1,size(’VALS’)>1]).

ctr_exchangeable(
symmetric_gcc,
[items(’VARS’,all),items(’VALS’,all)]).

ctr_graph(
symmetric_gcc,
[’VARS’,’VALS’],
2,
[’PRODUCT’>>collection(vars,vals)],
[varsˆidvar in_set valsˆval#<=>valsˆidval in_set varsˆvar,
varsˆnocc=card_set(varsˆvar),
valsˆnocc=card_set(valsˆval)],
[’NARC’=size(’VARS’)*size(’VALS’)],
[]).
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B.407 tasks intersection

♦ META-DATA:

ctr_predefined(tasks_intersection).

ctr_date(tasks_intersection,[’20140511’]).

ctr_origin(
tasks_intersection,
Inspired by video summarization.,
[]).

ctr_synonyms(
tasks_intersection,
[intersection_between_sequences_of_tasks,
intersection_between_intervals,
intersection_between_tasks_chains]).

ctr_arguments(
tasks_intersection,
[’INTERSECTION’-dvar,
’TASKS1’-collection(origin-dvar,duration-dvar,end-dvar),
’TASKS2’-collection(origin-dvar,duration-dvar,end-dvar)]).

ctr_restrictions(
tasks_intersection,
[’INTERSECTION’>=0,
require_at_least(2,’TASKS1’,[origin,duration,end]),
require_at_least(2,’TASKS2’,[origin,duration,end]),
’TASKS1’ˆduration>=0,
’TASKS2’ˆduration>=0,
’TASKS1’ˆorigin=<’TASKS1’ˆend,
’TASKS2’ˆorigin=<’TASKS2’ˆend,
’INTERSECTION’=<sum(’TASKS1’ˆduration),
’INTERSECTION’=<sum(’TASKS2’ˆduration)]).

ctr_example(
tasks_intersection,
tasks_intersection(

3,
[[origin-2,duration-2,end-4],
[origin-7,duration-2,end-9],
[origin-9,duration-0,end-9]],

[[origin-1,duration-3,end-4],
[origin-5,duration-1,end-6],
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[origin-8,duration-2,end-10]])).

ctr_typical(
tasks_intersection,
[’INTERSECTION’>0,
size(’TASKS1’)>1,
size(’TASKS2’)>1,
range(’TASKS1’ˆduration)>1,
range(’TASKS2’ˆduration)>1]).

ctr_eval(
tasks_intersection,
[reformulation(tasks_intersection_r)]).

ctr_pure_functional_dependency(tasks_intersection,[]).

ctr_functional_dependency(tasks_intersection,1,[2,3]).

tasks_intersection_r(INTERSECTION,TASKS1,TASKS2) :-
check_type(dvar_gteq(0),INTERSECTION),
collection(TASKS1,[dvar,dvar_gteq(0),dvar]),
collection(TASKS2,[dvar,dvar_gteq(0),dvar]),
tasks_intersection1(TASKS1),
tasks_intersection1(TASKS2),
tasks_intersection2(TASKS1,TASKS2,INTER),
call(INTERSECTION#=INTER).

tasks_intersection1([[origin-O,duration-D,end-E]]) :-
!,
E#=O+D.

tasks_intersection1(
[[origin-O1,duration-D1,end-E1],
[origin-O2,duration-D2,end-E2]|
R]) :-

E1#=O1+D1,
E1#=<O2,
tasks_intersection1([[origin-O2,duration-D2,end-E2]|R]).

tasks_intersection2([],_28816,0) :-
!.

tasks_intersection2([TASK|R],TASKS2,I+S) :-
tasks_intersection3(TASKS2,TASK,INTER),
call(I#=INTER),
tasks_intersection2(R,TASKS2,S).
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tasks_intersection3([],_28816,0) :-
!.

tasks_intersection3(
[[origin-O2,duration-_28831,end-E2]|R],
[origin-O1,duration-D1,end-E1],
INTER+S) :-

INTER#=max(min(E1,E2)-max(O1,O2),0),
tasks_intersection3(R,[origin-O1,duration-D1,end-E1],S).
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B.408 temporal path

♦ META-DATA:

ctr_date(
temporal_path,
[’20000128’,’20030820’,’20060818’,’20090511’]).

ctr_origin(temporal_path,’ILOG’,[]).

ctr_arguments(
temporal_path,
[’NPATH’-dvar,
NODES-
collection(index-int,succ-dvar,start-dvar,end-dvar)]).

ctr_restrictions(
temporal_path,
[’NPATH’>=1,
’NPATH’=<size(’NODES’),
required(’NODES’,[index,succ,start,end]),
size(’NODES’)>0,
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’),
’NODES’ˆstart=<’NODES’ˆend]).

ctr_example(
temporal_path,
temporal_path(

2,
[[index-1,succ-2,start-0,end-1],
[index-2,succ-6,start-3,end-5],
[index-3,succ-4,start-0,end-3],
[index-4,succ-5,start-4,end-6],
[index-5,succ-7,start-7,end-8],
[index-6,succ-6,start-7,end-9],
[index-7,succ-7,start-9,end-10]])).

ctr_typical(
temporal_path,
[’NPATH’<size(’NODES’),
size(’NODES’)>1,
’NODES’ˆstart<’NODES’ˆend]).
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ctr_exchangeable(
temporal_path,
[items(’NODES’,all),
translate([’NODES’ˆstart,’NODES’ˆend])]).

ctr_graph(
temporal_path,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex,
nodes1ˆsucc=nodes1ˆindex#\/nodes1ˆend=<nodes2ˆstart,
nodes1ˆstart=<nodes1ˆend,
nodes2ˆstart=<nodes2ˆend],
[’MAX_ID’=<1,’NCC’=’NPATH’,’NVERTEX’=size(’NODES’)],
[]).

ctr_eval(temporal_path,[reformulation(temporal_path_r)]).

ctr_functional_dependency(temporal_path,1,[2]).

ctr_application(temporal_path,[2]).

temporal_path_r(NPATH,NODES) :-
temporal_path0(NODES,SNODES),
length(SNODES,N),
N>0,
check_type(dvar(1,N),NPATH),
collection(SNODES,[int(1,N),dvar(1,N),dvar,dvar]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
get_attr3(SNODES,STARTS),
get_attr4(SNODES,ENDS),
all_different(INDEXES),
ori_end(STARTS,ENDS),
temporal_path1(INDEXES,SUCCS,TNODES),
eval(path(NPATH,TNODES)),
temporal_path2(SUCCS,ENDS,[],STARTS).

temporal_path0(NODES,SNODES) :-
temporal_path0a(NODES,L),
sort(L,S),
temporal_path0a(SNODES,S),
!.
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temporal_path0a([],[]).

temporal_path0a(
[[index-INDEX,succ-SUCC,start-START,end-END]|R],
[INDEX-(SUCC,START,END)|T]) :-

temporal_path0a(R,T).

temporal_path1([],[],[]).

temporal_path1(
[INDEX|RINDEX],
[SUCC|RSUCC],
[[index-INDEX,succ-SUCC]|RNODES]) :-

temporal_path1(RINDEX,RSUCC,RNODES).

temporal_path2([],[],_54121,_54122).

temporal_path2(
[SUCCi|RSUCC],
[ENDi|REND],
PREV_STARTS,
[_STARTi|RSTART]) :-

append(PREV_STARTS,[ENDi],NEW_PREV_STARTS),
append(NEW_PREV_STARTS,RSTART,TABLE),
element(SUCCi,TABLE,START_SUCCi),
ENDi#=<START_SUCCi,
temporal_path2(RSUCC,REND,NEW_PREV_STARTS,RSTART).
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B.409 tour

♦ META-DATA:

ctr_date(tour,[’20030820’,’20060819’]).

ctr_origin(
tour,
\cite{AlthausBockmayrElfKasperJungerMehlhorn02},
[]).

ctr_synonyms(tour,[atour,cycle]).

ctr_arguments(tour,[’NODES’-collection(index-int,succ-svar)]).

ctr_restrictions(
tour,
[size(’NODES’)>=3,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index)]).

ctr_example(
tour,
tour(

[[index-1,succ-{2,4}],
[index-2,succ-{1,3}],
[index-3,succ-{2,4}],
[index-4,succ-{1,3}]])).

ctr_exchangeable(tour,[items(’NODES’,all)]).

ctr_graph(
tour,
[’NODES’],
2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc#<=>
nodes1ˆindex in_set nodes2ˆsucc],
[’NARC’=size(’NODES’)*size(’NODES’)-size(’NODES’)],
[]).

ctr_graph(
tour,
[’NODES’],
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2,
[’CLIQUE’(=\=)>>collection(nodes1,nodes2)],
[nodes2ˆindex in_set nodes1ˆsucc],
[’MIN_NSCC’=size(’NODES’),
’MIN_ID’=2,
’MAX_ID’=2,
’MIN_OD’=2,
’MAX_OD’=2],
[]).

ctr_application(tour,[1]).
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B.410 track

♦ META-DATA:

ctr_date(track,[’20030820’,’20060819’,’20090510’]).

ctr_origin(track,’\\cite{Marte01}’,[]).

ctr_arguments(
track,
[’NTRAIL’-int,
’TASKS’-collection(trail-int,origin-dvar,end-dvar)]).

ctr_restrictions(
track,
[’NTRAIL’>0,
’NTRAIL’=<size(’TASKS’),
size(’TASKS’)>0,
required(’TASKS’,[trail,origin,end]),
’TASKS’ˆorigin=<’TASKS’ˆend]).

ctr_example(
track,
track(

2,
[[trail-1,origin-1,end-2],
[trail-2,origin-1,end-2],
[trail-1,origin-2,end-4],
[trail-2,origin-2,end-3],
[trail-2,origin-3,end-4]])).

ctr_typical(
track,
[’NTRAIL’<size(’TASKS’),
size(’TASKS’)>1,
range(’TASKS’ˆtrail)>1,
’TASKS’ˆorigin<’TASKS’ˆend]).

ctr_exchangeable(
track,
[items(’TASKS’,all),
vals([’TASKS’ˆtrail],int,=\=,all,dontcare),
translate([’TASKS’ˆorigin,’TASKS’ˆend])]).

ctr_derived_collections(
track,
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[col(TIME_POINTS-
collection(origin-dvar,end-dvar,point-dvar),
[item(

origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆorigin),

item(
origin-’TASKS’ˆorigin,
end-’TASKS’ˆend,
point-’TASKS’ˆend-1)])]).

ctr_graph(
track,
[’TASKS’],
1,
[’SELF’>>collection(tasks)],
[tasksˆorigin=<tasksˆend],
[’NARC’=size(’TASKS’)],
[]).

ctr_graph(
track,
[’TIME_POINTS’,’TASKS’],
2,
[’PRODUCT’>>collection(time_points,tasks)],
[time_pointsˆend>time_pointsˆorigin,
tasksˆorigin=<time_pointsˆpoint,
time_pointsˆpoint<tasksˆend],
[],
[],
[SUCC>>
[source,
variables-
col(’VARIABLES’-collection(var-dvar),

[item(var-’TASKS’ˆtrail)])]],
[nvalue(’NTRAIL’,variables)]).

ctr_eval(track,[reformulation(track_r)]).

ctr_application(track,[2]).

track_r(NTRAIL,TASKS) :-
length(TASKS,N),
check_type(dvar(1,N),NTRAIL),
collection(TASKS,[int(1,N),dvar,dvar]),
get_attr1(TASKS,TRAILS),
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get_attr2(TASKS,ORIGINS),
get_attr3(TASKS,ENDS),
ori_end(ORIGINS,ENDS),
track1(

ORIGINS,
ENDS,
TRAILS,
1,
ORIGINS,
ENDS,
TRAILS,
NTRAIL),

track3(
ORIGINS,
ENDS,
TRAILS,
1,
ORIGINS,
ENDS,
TRAILS,
NTRAIL).

track1([],[],[],_60504,_60505,_60506,_60507,_60508).

track1([Oi|RO],[Ei|RE],[Ti|TC],I,ORIGINS,ENDS,TRAILS,NTRAIL) :-
track2(ORIGINS,ENDS,TRAILS,1,I,Oi,Ei,Ti,COLi),
nvalue(NTRAIL,COLi),
I1 is I+1,
track1(RO,RE,TC,I1,ORIGINS,ENDS,TRAILS,NTRAIL).

track2([],[],[],_60504,_60505,_60506,_60507,_60508,[]).

track2([_60513|RO],[_60517|RE],[_60521|RT],J,I,Oi,Ei,Ti,[Ti|R]) :-
I=J,
!,
J1 is J+1,
track2(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

track2([Oj|RO],[Ej|RE],[Tj|RT],J,I,Oi,Ei,Ti,[Tij|R]) :-
I=\=J,
K in 1..2,
Min is min(Ti,Tj),
Max is max(Ti,Tj),
Tij in Min..Max,
element(K,[Ti,Tj],Tij),
Oj#=<Oi#/\Ej#>Oi#/\Tij#=Tj#\/
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(Oj#>Oi#\/Ej#=<Oi)#/\Tij#=Ti,
J1 is J+1,
track2(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

track3([],[],[],_60504,_60505,_60506,_60507,_60508).

track3([Oi|RO],[Ei|RE],[Ti|TC],I,ORIGINS,ENDS,TRAILS,NTRAIL) :-
track4(ORIGINS,ENDS,TRAILS,1,I,Oi,Ei,Ti,COLi),
nvalue(NTRAIL,COLi),
I1 is I+1,
track3(RO,RE,TC,I1,ORIGINS,ENDS,TRAILS,NTRAIL).

track4([],[],[],_60504,_60505,_60506,_60507,_60508,[]).

track4([_60513|RO],[_60517|RE],[_60521|RT],J,I,Oi,Ei,Ti,[Ti|R]) :-
I=J,
!,
J1 is J+1,
track4(RO,RE,RT,J1,I,Oi,Ei,Ti,R).

track4([Oj|RO],[Ej|RE],[Tj|RT],J,I,Oi,Ei,Ti,[Tij|R]) :-
I=\=J,
K in 1..2,
Min is min(Ti,Tj),
Max is max(Ti,Tj),
Tij in Min..Max,
element(K,[Ti,Tj],Tij),
Oj#=<Ei-1#/\Ej#>Ei-1#/\Tij#=Tj#\/
(Oj#>Ei-1#\/Ej#=<Ei-1)#/\Tij#=Ti,
J1 is J+1,
track4(RO,RE,RT,J1,I,Oi,Ei,Ti,R).
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B.411 tree

♦ META-DATA:

ctr_date(tree,[’20000128’,’20030820’,’20060819’]).

ctr_origin(tree,’N.˜Beldiceanu’,[]).

ctr_arguments(
tree,
[’NTREES’-dvar,’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree,
[’NTREES’>=1,
’NTREES’=<size(’NODES’),
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
tree,
[tree(

2,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]]),

tree(
8,
[[index-1,succ-1],
[index-2,succ-2],
[index-3,succ-3],
[index-4,succ-4],
[index-5,succ-5],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-8]]),

tree(
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7,
[[index-1,succ-6],
[index-2,succ-2],
[index-3,succ-3],
[index-4,succ-4],
[index-5,succ-5],
[index-6,succ-6],
[index-7,succ-7],
[index-8,succ-8]])]).

ctr_typical(tree,[’NTREES’<size(’NODES’),size(’NODES’)>2]).

ctr_exchangeable(tree,[items(’NODES’,all)]).

ctr_graph(
tree,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’],
[]).

ctr_eval(tree,[reformulation(tree_r)]).

ctr_functional_dependency(tree,1,[2]).

ctr_application(tree,[2]).

ctr_sol(tree,2,0,2,3,[1-2,2-1]).

ctr_sol(tree,3,0,3,16,[1-9,2-6,3-1]).

ctr_sol(tree,4,0,4,125,[1-64,2-48,3-12,4-1]).

ctr_sol(tree,5,0,5,1296,[1-625,2-500,3-150,4-20,5-1]).

ctr_sol(tree,6,0,6,16807,[1-7776,2-6480,3-2160,4-360,5-30,6-1]).

ctr_sol(
tree,
7,
0,
7,
262144,
[1-117649,2-100842,3-36015,4-6860,5-735,6-42,7-1]).
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ctr_sol(
tree,
8,
0,
8,
4782969,
[1-2097152,
2-1835008,
3-688128,
4-143360,
5-17920,
6-1344,
7-56,
8-1]).

tree_r(NTREES,NODES) :-
length(NODES,N),
check_type(dvar(1,N),NTREES),
collection(NODES,[int(1,N),dvar(1,N)]),
get_attr1(NODES,INDEXES),
get_attr2(NODES,SUCCS),
all_different(INDEXES),
length(RANKS,N),
domain(RANKS,1,N),
tree1(SUCCS,RANKS,INDEXES,RANKS,INDEXES,Term),
call(NTREES#=Term).

tree1([],[],_82590,_82591,_82592,0).

tree1([S|U],[R|P],[I|K],RANKS,INDEXES,B+T) :-
S#=I#<=>B,
tree2(S,R,I,RANKS,INDEXES),
tree1(U,P,K,RANKS,INDEXES,T).

tree2(_82591,_82592,_82593,_82594,[]) :-
!.

tree2(S_I,R_I,I,[R_J|P],[J|K]) :-
S_I#=J#/\I#\=J#=>R_I#>R_J,
tree2(S_I,R_I,I,P,K).
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B.412 tree range

♦ META-DATA:

ctr_date(
tree_range,
[’20030820’,’20040727’,’20060819’,’20090923’]).

ctr_origin(tree_range,’Derived from %c.’,[tree]).

ctr_arguments(
tree_range,
[’NTREES’-dvar,
’R’-dvar,
’NODES’-collection(index-int,succ-dvar)]).

ctr_restrictions(
tree_range,
[’NTREES’>=0,
’R’>=0,
’R’<size(’NODES’),
size(’NODES’)>0,
required(’NODES’,[index,succ]),
’NODES’ˆindex>=1,
’NODES’ˆindex=<size(’NODES’),
distinct(’NODES’,index),
’NODES’ˆsucc>=1,
’NODES’ˆsucc=<size(’NODES’)]).

ctr_example(
tree_range,
tree_range(

2,
1,
[[index-1,succ-1],
[index-2,succ-5],
[index-3,succ-5],
[index-4,succ-7],
[index-5,succ-1],
[index-6,succ-1],
[index-7,succ-7],
[index-8,succ-5]])).

ctr_typical(
tree_range,
[’NTREES’<size(’NODES’),size(’NODES’)>2]).
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ctr_exchangeable(tree_range,[items(’NODES’,all)]).

ctr_graph(
tree_range,
[’NODES’],
2,
[’CLIQUE’>>collection(nodes1,nodes2)],
[nodes1ˆsucc=nodes2ˆindex],
[’MAX_NSCC’=<1,’NCC’=’NTREES’,’RANGE_DRG’=’R’],
[]).

ctr_eval(tree_range,[reformulation(tree_range_r)]).

ctr_functional_dependency(tree_range,1,[3]).

ctr_functional_dependency(tree_range,2,[3]).

ctr_application(tree_range,[3]).

tree_range_r(NTREES,R,NODES) :-
tree_range0(NODES,SNODES),
length(SNODES,N),
N>0,
N1 is N-1,
check_type(dvar(1,N),NTREES),
check_type(dvar(0,N1),R),
collection(SNODES,[int(1,N),dvar(1,N)]),
get_attr1(SNODES,INDEXES),
get_attr2(SNODES,SUCCS),
all_different(INDEXES),
eval(tree(NTREES,SNODES)),
tree_range1(

INDEXES,
SUCCS,
DISTS1,
DISTS2,
OCCS1,
OCCS2,
SUCCS1,
LS,
OLS),

eval(domain(DISTS1,0,N)),
tree_range2(INDEXES,SUCCS,N,[],DISTS2),
eval(domain(OCCS1,0,N)),
eval(global_cardinality(SUCCS1,OCCS2)),
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eval(domain(LS,0,1)),
tree_range3(OLS),
eval(in_interval(MIN,0,N)),
eval(open_minimum(MIN,OLS)),
eval(in_interval(MAX,0,N)),
eval(maximum(MAX,DISTS1)),
eval(

scalar_product(
[[coeff-1,var-MAX],[coeff- -1,var-MIN]],
=,
R)).

tree_range0(NODES,SNODES) :-
tree_range0a(NODES,L),
sort(L,S),
tree_range0a(SNODES,S),
!.

tree_range0a([],[]).

tree_range0a([[index-I,succ-S]|R],[I-S|T]) :-
tree_range0a(R,T).

tree_range1([],[],[],[],[],[],[],[],[]).

tree_range1(
[I|RI],
[S|RS],
[[var-V]|RV1],
[[value-V]|RV2],
[[var-O]|RO],
[[val-I,noccurrence-O]|RIO],
[[var-S]|RSS],
[[var-L]|RL],
[[var-O,bool-L]|ROL]) :-

tree_range1(RI,RS,RV1,RV2,RO,RIO,RSS,RL,ROL).

tree_range2([],[],_54501,_54502,_54503).

tree_range2(
[_IND|RIND],
[SUCC|RSUCC],
N,
DISTS_BEFORE,
DISTS_AFTER) :-

append(DISTS_BEFORE,[[value-0]],TD),
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DISTS_AFTER=[[value-D]|RDISTS_AFTER],
append(TD,RDISTS_AFTER,TABLE),
eval(in_interval(DS,0,N)),
eval(element(SUCC,TABLE,DS)),
eval(

scalar_product(
[[coeff-1,var-D],[coeff- -1,var-DS]],
=,
1)),

append(DISTS_BEFORE,[[value-D]],DISTS_BEFORE1),
tree_range2(RIND,RSUCC,N,DISTS_BEFORE1,RDISTS_AFTER).

tree_range3([]).

tree_range3([[var-O,bool-L]|ROL]) :-
L#<=>O#>0,
tree_range3(ROL).
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B.413 tree resource

♦ META-DATA:

ctr_date(tree_resource,[’20030820’,’20060819’]).

ctr_origin(tree_resource,’Derived from %c.’,[tree]).

ctr_arguments(
tree_resource,
[’RESOURCE’-collection(id-int,nb_task-dvar),
’TASK’-collection(id-int,father-dvar,resource-dvar)]).

ctr_restrictions(
tree_resource,
[size(’RESOURCE’)>0,
required(’RESOURCE’,[id,nb_task]),
’RESOURCE’ˆid>=1,
’RESOURCE’ˆid=<size(’RESOURCE’),
distinct(’RESOURCE’,id),
’RESOURCE’ˆnb_task>=0,
’RESOURCE’ˆnb_task=<size(’TASK’),
required(’TASK’,[id,father,resource]),
’TASK’ˆid>size(’RESOURCE’),
’TASK’ˆid=<size(’RESOURCE’)+size(’TASK’),
distinct(’TASK’,id),
’TASK’ˆfather>=1,
’TASK’ˆfather=<size(’RESOURCE’)+size(’TASK’),
’TASK’ˆresource>=1,
’TASK’ˆresource=<size(’RESOURCE’)]).

ctr_example(
tree_resource,
tree_resource(

[[id-1,nb_task-4],[id-2,nb_task-0],[id-3,nb_task-1]],
[[id-4,father-8,resource-1],
[id-5,father-3,resource-3],
[id-6,father-8,resource-1],
[id-7,father-1,resource-1],
[id-8,father-1,resource-1]])).

ctr_typical(
tree_resource,
[size(’RESOURCE’)>0,size(’TASK’)>size(’RESOURCE’)]).

ctr_exchangeable(
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tree_resource,
[items(’RESOURCE’,all),items(’TASK’,all)]).

ctr_derived_collections(
tree_resource,
[col(RESOURCE_TASK-

collection(index-int,succ-dvar,name-dvar),
[item(

index-’RESOURCE’ˆid,
succ-’RESOURCE’ˆid,
name-’RESOURCE’ˆid),

item(
index-’TASK’ˆid,
succ-’TASK’ˆfather,
name-’TASK’ˆresource)])]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
[’CLIQUE’>>collection(resource_task1,resource_task2)],
[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname],
[’MAX_NSCC’=<1,
’NCC’=size(’RESOURCE’),
’NVERTEX’=size(’RESOURCE’)+size(’TASK’)],
[]).

ctr_graph(
tree_resource,
[’RESOURCE_TASK’],
2,
foreach(

RESOURCE,
[’CLIQUE’>>collection(resource_task1,resource_task2)]),

[resource_task1ˆsucc=resource_task2ˆindex,
resource_task1ˆname=resource_task2ˆname,
resource_task1ˆname=’RESOURCE’ˆid],
[’NVERTEX’=’RESOURCE’ˆnb_task+1],
[]).

ctr_eval(tree_resource,[reformulation(tree_resource_r)]).

ctr_application(tree_resource,[2]).

tree_resource_r(RESOURCE,TASK) :-
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length(RESOURCE,R),
length(TASK,T),
R>0,
collection(RESOURCE,[int(1,R),dvar(0,T)]),
get_attr1(RESOURCE,RIDS),
get_attr2(RESOURCE,RNBTASKS),
all_different(RIDS),
R1 is R+1,
RT is R+T,
collection(TASK,[int(R1,RT),dvar(1,RT),dvar(1,R)]),
get_attr1(TASK,TIDS),
get_attr2(TASK,TFATHERS),
get_attr3(TASK,TRESOURCES),
all_different(TIDS),
tree_resource1(RIDS,CNODES1),
tree_resource2(TIDS,TFATHERS,CNODES2),
append(CNODES1,CNODES2,NODES),
eval(tree(R,NODES)),
tree_resource3(TIDS,TRESOURCES,TIR),
sort(TIR,STIR),
tree_resource4(1,R,INC),
append(INC,STIR,TAB),
tree_resource5(TAB,TABR),
tree_resource6(TFATHERS,TRESOURCES,TABR),
tree_resource7(STIR,GCVARS),
tree_resource8(RIDS,RNBTASKS,GCVALS),
eval(global_cardinality(GCVARS,GCVALS)).

tree_resource1([],[]).

tree_resource1([I|R],[[index-I,succ-I]|S]) :-
tree_resource1(R,S).

tree_resource2([],[],[]).

tree_resource2([I|R],[F|S],[[index-I,succ-F]|T]) :-
tree_resource2(R,S,T).

tree_resource3([],[],[]).

tree_resource3([I|RI],[R|RR],[I-R|S]) :-
tree_resource3(RI,RR,S).

tree_resource4(I,R,[]) :-
I>R,
!.
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tree_resource4(I,R,[I-I|S]) :-
I=<R,
I1 is I+1,
tree_resource4(I1,R,S).

tree_resource5([],[]).

tree_resource5([_60800-R|S],[[value-R]|T]) :-
tree_resource5(S,T).

tree_resource6([],[],_60794).

tree_resource6([Fi|RF],[Ri|RR],TABR) :-
eval(element(Fi,TABR,Ri)),
tree_resource6(RF,RR,TABR).

tree_resource7([],[]).

tree_resource7([_60800-V|R],[[var-V]|S]) :-
tree_resource7(R,S).

tree_resource8([],[],[]).

tree_resource8([V|R],[O|S],[[val-V,noccurrence-O]|T]) :-
tree_resource8(R,S,T).
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B.414 twin

♦ META-DATA:

ctr_predefined(twin).

ctr_date(twin,[’20111129’]).

ctr_origin(
twin,
Pairs of variables related by hiden %c constraints sharing the same table.,
[element]).

ctr_arguments(twin,[’PAIRS’-collection(x-dvar,y-dvar)]).

ctr_restrictions(
twin,
[required(’PAIRS’,x),required(’PAIRS’,y),size(’PAIRS’)>0]).

ctr_example(
twin,
twin(

[[x-1,y-8],
[x-9,y-6],
[x-1,y-8],
[x-5,y-0],
[x-6,y-7],
[x-9,y-6]])).

ctr_typical(
twin,
[size(’PAIRS’)>1,
size(’PAIRS’)>nval(’PAIRS’ˆx),
size(’PAIRS’)>nval(’PAIRS’ˆy),
nval(’PAIRS’ˆx)>1,
nval(’PAIRS’ˆy)>1,
nval(’PAIRS’ˆx)=nval(’PAIRS’ˆy),
nval(’PAIRS’ˆx)<size(’PAIRS’),
nval(’PAIRS’ˆy)<size(’PAIRS’)]).

ctr_eval(twin,[checker(twin_c),reformulation(twin_r)]).

ctr_contractible(twin,[],’PAIRS’,any).

twin_c(PAIRS) :-
collection(PAIRS,[int,int]),
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length(PAIRS,N),
N>0,
get_attr12(PAIRS,P12),
sort(P12,S12),
twin1(S12),
get_attr21(PAIRS,P21),
sort(P21,S21),
twin1(S21).

twin1([]) :-
!.

twin1([_26043]) :-
!.

twin1([X1-_26047,X2-Y|R]) :-
X1\==X2,
twin1([X2-Y|R]).

twin_r(PAIRS) :-
collection(PAIRS,[dvar,dvar]),
length(PAIRS,N),
N>0,
get_attr1(PAIRS,XS),
get_attr2(PAIRS,YS),
get_min_list_dvar(XS,_26090,MinX),
get_min_list_dvar(YS,_26099,MinY),
get_max_list_dvar(YS,_26108,MaxY),
RangeY is MaxY-MinY+1,
twin1(XS,YS,MinX,MinY,RangeY,XYS),
NPAIRS in 1..N,
nvalue(NPAIRS,XS),
nvalue(NPAIRS,YS),
nvalue(NPAIRS,XYS).

twin1([],[],_26044,_26045,_26046,[]) :-
!.

twin1([X|RX],[Y|RY],MinX,MinY,RangeY,[XY|RXY]) :-
XY#=RangeY*(X-MinX)+(Y-MinY),
twin1(RX,RY,MinX,MinY,RangeY,RXY).
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B.415 two layer edge crossing

♦ META-DATA:

ctr_date(two_layer_edge_crossing,[’20030820’,’20060819’]).

ctr_origin(
two_layer_edge_crossing,
Inspired by \cite{HararySchwenk72}.,
[]).

ctr_arguments(
two_layer_edge_crossing,
[’NCROSS’-dvar,
’VERTICES_LAYER1’-collection(id-int,pos-dvar),
’VERTICES_LAYER2’-collection(id-int,pos-dvar),
’EDGES’-collection(id-int,vertex1-int,vertex2-int)]).

ctr_restrictions(
two_layer_edge_crossing,
[’NCROSS’>=0,
required(’VERTICES_LAYER1’,[id,pos]),
’VERTICES_LAYER1’ˆid>=1,
’VERTICES_LAYER1’ˆid=<size(’VERTICES_LAYER1’),
distinct(’VERTICES_LAYER1’,id),
distinct(’VERTICES_LAYER1’,pos),
required(’VERTICES_LAYER2’,[id,pos]),
’VERTICES_LAYER2’ˆid>=1,
’VERTICES_LAYER2’ˆid=<size(’VERTICES_LAYER2’),
distinct(’VERTICES_LAYER2’,id),
distinct(’VERTICES_LAYER2’,pos),
required(’EDGES’,[id,vertex1,vertex2]),
’EDGES’ˆid>=1,
’EDGES’ˆid=<size(’EDGES’),
distinct(’EDGES’,id),
’EDGES’ˆvertex1>=1,
’EDGES’ˆvertex1=<size(’VERTICES_LAYER1’),
’EDGES’ˆvertex2>=1,
’EDGES’ˆvertex2=<size(’VERTICES_LAYER2’)]).

ctr_example(
two_layer_edge_crossing,
two_layer_edge_crossing(

2,
[[id-1,pos-1],[id-2,pos-2]],
[[id-1,pos-3],[id-2,pos-1],[id-3,pos-2]],
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[[id-1,vertex1-2,vertex2-2],
[id-2,vertex1-2,vertex2-3],
[id-3,vertex1-1,vertex2-1]])).

ctr_typical(
two_layer_edge_crossing,
[size(’VERTICES_LAYER1’)>1,
size(’VERTICES_LAYER2’)>1,
size(’EDGES’)>=size(’VERTICES_LAYER1’),
size(’EDGES’)>=size(’VERTICES_LAYER2’)]).

ctr_exchangeable(
two_layer_edge_crossing,
[args(

[[’NCROSS’],
[’VERTICES_LAYER1’,’VERTICES_LAYER2’],
[’EDGES’]]),

items(’VERTICES_LAYER1’,all),
items(’VERTICES_LAYER2’,all)]).

ctr_derived_collections(
two_layer_edge_crossing,
[col(EDGES_EXTREMITIES-

collection(layer1-dvar,layer2-dvar),
[item(

layer1-
’EDGES’ˆvertex1(’VERTICES_LAYER1’,pos,id),
layer2-
’EDGES’ˆvertex2(’VERTICES_LAYER2’,pos,id))])]).

ctr_graph(
two_layer_edge_crossing,
[’EDGES_EXTREMITIES’],
2,
[’CLIQUE’(<)>>
collection(edges_extremities1,edges_extremities2)],
[edges_extremities1ˆlayer1<
edges_extremities2ˆlayer1#/\
edges_extremities1ˆlayer2>edges_extremities2ˆlayer2#\/
edges_extremities1ˆlayer1>edges_extremities2ˆlayer1#/\
edges_extremities1ˆlayer2<edges_extremities2ˆlayer2],
[’NARC’=’NCROSS’],
[]).

ctr_pure_functional_dependency(two_layer_edge_crossing,[]).
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ctr_functional_dependency(two_layer_edge_crossing,1,[2,3,4]).
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B.416 two orth are in contact

♦ META-DATA:

ctr_date(
two_orth_are_in_contact,
[’20030820’,’20040530’,’20060819’]).

ctr_origin(
two_orth_are_in_contact,
\cite{Roach84}, used for defining %c.,
[orths_are_connected]).

ctr_types(
two_orth_are_in_contact,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_are_in_contact,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_are_in_contact,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_example(
two_orth_are_in_contact,
two_orth_are_in_contact(

[[ori-1,siz-3,end-4],[ori-5,siz-2,end-7]],
[[ori-3,siz-2,end-5],[ori-2,siz-3,end-5]])).

ctr_typical(two_orth_are_in_contact,[size(’ORTHOTOPE’)>1]).

ctr_exchangeable(
two_orth_are_in_contact,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’]]),
items_sync(’ORTHOTOPE1’,’ORTHOTOPE2’,all)]).

ctr_graph(
two_orth_are_in_contact,
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[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆend>orthotope2ˆori,
orthotope2ˆend>orthotope1ˆori],
[’NARC’=size(’ORTHOTOPE1’)-1],
[]).

ctr_graph(
two_orth_are_in_contact,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[max(0,

max(orthotope1ˆori,orthotope2ˆori)-
min(orthotope1ˆend,orthotope2ˆend))=

0],
[’NARC’=size(’ORTHOTOPE1’)],
[]).

ctr_eval(
two_orth_are_in_contact,
[automaton(two_orth_are_in_contact_a)]).

two_orth_are_in_contact_a(FLAG,ORTHOTOPE1,ORTHOTOPE2) :-
length(ORTHOTOPE1,D1),
length(ORTHOTOPE2,D2),
D1>0,
D2>0,
D1=D2,
collection(ORTHOTOPE1,[dvar,dvar_gteq(1),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(1),dvar]),
get_attr1(ORTHOTOPE1,ORIS1),
get_attr3(ORTHOTOPE1,ENDS1),
check_lesseq(ORIS1,ENDS1),
get_attr1(ORTHOTOPE2,ORIS2),
get_attr3(ORTHOTOPE2,ENDS2),
check_lesseq(ORIS2,ENDS2),
eval(orth_link_ori_siz_end(ORTHOTOPE1)),
eval(orth_link_ori_siz_end(ORTHOTOPE2)),
two_orth_are_in_contact_signature(

ORTHOTOPE1,
ORTHOTOPE2,
SIGNATURE),

AUTOMATON=
automaton(
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SIGNATURE,
_49040,
SIGNATURE,
[source(s),sink(t)],
[arc(s,0,s),arc(s,1,t),arc(t,0,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1,2],AUTOMATON).

two_orth_are_in_contact_signature([],[],[]).

two_orth_are_in_contact_signature(
[[ori-ORI1,siz-SIZ1,end-END1]|Q1],
[[ori-ORI2,siz-SIZ2,end-END2]|Q2],
[S|Ss]) :-

S in 0..2,
SIZ1#>0#/\SIZ2#>0#/\END1#>ORI2#/\END2#>ORI1#<=>S#=0,
SIZ1#>0#/\SIZ2#>0#/\(END1#=ORI2#\/END2#=ORI1)#<=>S#=1,
two_orth_are_in_contact_signature(Q1,Q2,Ss).
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B.417 two orth column

♦ META-DATA:

ctr_date(two_orth_column,[’20030820’]).

ctr_origin(
two_orth_column,
Used for defining %c.,
[diffn_column]).

ctr_types(
two_orth_column,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_column,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’DIM’-int]).

ctr_restrictions(
two_orth_column,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE1’)]).

ctr_example(
two_orth_column,
two_orth_column(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-4,siz-2,end-6],[ori-1,siz-3,end-4]],
1)).

ctr_typical(two_orth_column,[size(’ORTHOTOPE’)>1]).

ctr_exchangeable(
two_orth_column,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’],[’DIM’]])]).
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ctr_graph(
two_orth_column,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’DIM’#/\
orthotope1ˆori<orthotope2ˆend#/\
orthotope2ˆori<orthotope1ˆend#/\
orthotope1ˆsiz>0#/\
orthotope2ˆsiz>0#=>
min(orthotope1ˆend,orthotope2ˆend)-
max(orthotope1ˆori,orthotope2ˆori)=
orthotope1ˆsiz#/\
orthotope1ˆsiz=orthotope2ˆsiz],
[’NARC’=1],
[]).

ctr_eval(two_orth_column,[reformulation(two_orth_column_r)]).

two_orth_column_r(ORTHOTOPE1,ORTHOTOPE2,DIM) :-
collection(ORTHOTOPE1,[dvar,dvar_gteq(0),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(0),dvar]),
length(ORTHOTOPE1,DIM1),
length(ORTHOTOPE2,DIM2),
DIM1=DIM2,
check_type(int(1,DIM1),DIM),
get_attr1(ORTHOTOPE1,ORIS1),
nth1(DIM,ORIS1,O1),
get_attr2(ORTHOTOPE1,SIZS1),
nth1(DIM,SIZS1,S1),
get_attr3(ORTHOTOPE1,ENDS1),
nth1(DIM,ENDS1,E1),
get_attr1(ORTHOTOPE2,ORIS2),
nth1(DIM,ORIS2,O2),
get_attr2(ORTHOTOPE2,SIZS2),
nth1(DIM,SIZS2,S2),
get_attr3(ORTHOTOPE2,ENDS2),
nth1(DIM,ENDS2,E2),
O1#<E2#/\O2#<E1#/\S1#>0#/\S2#>0#=>
min(E1,E2)-max(O1,O2)#=S1#/\S1#=S2.
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B.418 two orth do not overlap

♦ META-DATA:

ctr_date(
two_orth_do_not_overlap,
[’20030820’,’20040530’,’20060819’]).

ctr_origin(
two_orth_do_not_overlap,
Used for defining %c.,
[diffn]).

ctr_types(
two_orth_do_not_overlap,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_do_not_overlap,
[’ORTHOTOPE1’-’ORTHOTOPE’,’ORTHOTOPE2’-’ORTHOTOPE’]).

ctr_restrictions(
two_orth_do_not_overlap,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’)]).

ctr_example(
two_orth_do_not_overlap,
two_orth_do_not_overlap(

[[ori-2,siz-2,end-4],[ori-1,siz-3,end-4]],
[[ori-4,siz-4,end-8],[ori-3,siz-3,end-6]])).

ctr_typical(two_orth_do_not_overlap,[size(’ORTHOTOPE’)>1]).

ctr_exchangeable(
two_orth_do_not_overlap,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’]]),
items_sync(’ORTHOTOPE1’,’ORTHOTOPE2’,all),
vals([’ORTHOTOPE1’ˆsiz],int(>=(0)),>,dontcare,dontcare),
vals([’ORTHOTOPE2’ˆsiz],int(>=(0)),>,dontcare,dontcare)]).
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ctr_graph(
two_orth_do_not_overlap,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’SYMMETRIC_PRODUCT’(=)>>
collection(orthotope1,orthotope2)],
[orthotope1ˆend=<orthotope2ˆori#\/orthotope1ˆsiz=0],
[’NARC’>=1],
[’BIPARTITE’,’NO_LOOP’]).

ctr_eval(
two_orth_do_not_overlap,
[automaton(two_orth_do_not_overlap_a)]).

two_orth_do_not_overlap_a(FLAG,ORTHOTOPE1,ORTHOTOPE2) :-
length(ORTHOTOPE1,D1),
length(ORTHOTOPE2,D2),
D1>0,
D2>0,
D1=D2,
collection(ORTHOTOPE1,[dvar,dvar_gteq(0),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(0),dvar]),
get_attr1(ORTHOTOPE1,ORIS1),
get_attr3(ORTHOTOPE1,ENDS1),
check_lesseq(ORIS1,ENDS1),
get_attr1(ORTHOTOPE2,ORIS2),
get_attr3(ORTHOTOPE2,ENDS2),
check_lesseq(ORIS2,ENDS2),
eval(orth_link_ori_siz_end(ORTHOTOPE1)),
eval(orth_link_ori_siz_end(ORTHOTOPE2)),
two_orth_do_not_overlap_signature(

ORTHOTOPE1,
ORTHOTOPE2,
SIGNATURE),

AUTOMATON=
automaton(

SIGNATURE,
_46582,
SIGNATURE,
[source(s),sink(t)],
[arc(s,1,s),arc(s,0,t),arc(t,0,t),arc(t,1,t)],
[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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two_orth_do_not_overlap_signature([],[],[]).

two_orth_do_not_overlap_signature(
[[ori-ORI1,siz-SIZ1,end-END1]|Q1],
[[ori-ORI2,siz-SIZ2,end-END2]|Q2],
[S|Ss]) :-

SIZ1#>0#/\SIZ2#>0#/\END1#>ORI2#/\END2#>ORI1#<=>S,
two_orth_do_not_overlap_signature(Q1,Q2,Ss).
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B.419 two orth include

♦ META-DATA:

ctr_date(two_orth_include,[’20030820’,’20090524’]).

ctr_origin(
two_orth_include,
Used for defining %c.,
[diffn_include]).

ctr_types(
two_orth_include,
[’ORTHOTOPE’-collection(ori-dvar,siz-dvar,end-dvar)]).

ctr_arguments(
two_orth_include,
[’ORTHOTOPE1’-’ORTHOTOPE’,
’ORTHOTOPE2’-’ORTHOTOPE’,
’DIM’-int]).

ctr_restrictions(
two_orth_include,
[size(’ORTHOTOPE’)>0,
require_at_least(2,’ORTHOTOPE’,[ori,siz,end]),
’ORTHOTOPE’ˆsiz>=0,
’ORTHOTOPE’ˆori=<’ORTHOTOPE’ˆend,
size(’ORTHOTOPE1’)=size(’ORTHOTOPE2’),
orth_link_ori_siz_end(’ORTHOTOPE1’),
orth_link_ori_siz_end(’ORTHOTOPE2’),
’DIM’>0,
’DIM’=<size(’ORTHOTOPE1’)]).

ctr_example(
two_orth_include,
two_orth_include(

[[ori-1,siz-3,end-4],[ori-1,siz-1,end-2]],
[[ori-1,siz-2,end-3],[ori-2,siz-3,end-5]],
1)).

ctr_typical(two_orth_include,[size(’ORTHOTOPE’)>1]).

ctr_exchangeable(
two_orth_include,
[args([[’ORTHOTOPE1’,’ORTHOTOPE2’],[’DIM’]])]).
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ctr_graph(
two_orth_include,
[’ORTHOTOPE1’,’ORTHOTOPE2’],
2,
[’PRODUCT’(=)>>collection(orthotope1,orthotope2)],
[orthotope1ˆkey=’DIM’#/\
orthotope1ˆori<orthotope2ˆend#/\
orthotope2ˆori<orthotope1ˆend#/\
orthotope1ˆsiz>0#/\
orthotope2ˆsiz>0#=>
min(orthotope1ˆend,orthotope2ˆend)-
max(orthotope1ˆori,orthotope2ˆori)=
min(orthotope1ˆsiz,orthotope2ˆsiz)],
[’NARC’=1],
[]).

ctr_eval(two_orth_include,[reformulation(two_orth_include_r)]).

two_orth_include_r(ORTHOTOPE1,ORTHOTOPE2,DIM) :-
collection(ORTHOTOPE1,[dvar,dvar_gteq(0),dvar]),
collection(ORTHOTOPE2,[dvar,dvar_gteq(0),dvar]),
length(ORTHOTOPE1,DIM1),
length(ORTHOTOPE2,DIM2),
DIM1=DIM2,
check_type(int(1,DIM1),DIM),
get_attr1(ORTHOTOPE1,ORIS1),
nth1(DIM,ORIS1,O1),
get_attr2(ORTHOTOPE1,SIZS1),
nth1(DIM,SIZS1,S1),
get_attr3(ORTHOTOPE1,ENDS1),
nth1(DIM,ENDS1,E1),
get_attr1(ORTHOTOPE2,ORIS2),
nth1(DIM,ORIS2,O2),
get_attr2(ORTHOTOPE2,SIZS2),
nth1(DIM,SIZS2,S2),
get_attr3(ORTHOTOPE2,ENDS2),
nth1(DIM,ENDS2,E2),
O1#<E2#/\O2#<E1#/\S1#>0#/\S2#>0#=>
min(E1,E2)-max(O1,O2)#=min(S1,S2).
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B.420 used by

♦ META-DATA:

ctr_date(used_by,[’20000128’,’20030820’,’20040530’,’20060820’]).

ctr_origin(used_by,’N.˜Beldiceanu’,[]).

ctr_arguments(
used_by,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
used_by,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
used_by,
used_by(

[[var-1],[var-9],[var-1],[var-5],[var-2],[var-1]],
[[var-1],[var-1],[var-2],[var-5]])).

ctr_typical(
used_by,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1]).

ctr_exchangeable(
used_by,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).

ctr_graph(
used_by,
[’VARIABLES1’,’VARIABLES2’],
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2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(used_by,[reformulation(used_by_r)]).

ctr_contractible(used_by,[],’VARIABLES2’,any).

ctr_extensible(used_by,[],’VARIABLES1’,any).

ctr_aggregate(used_by,[],[union,union]).

used_by_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1>=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
used_by_reified(VARS2,VARS1,VARS2).
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B.421 used by interval

♦ META-DATA:

ctr_date(used_by_interval,[’20030820’,’20060820’]).

ctr_origin(used_by_interval,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_interval,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’SIZE_INTERVAL’-int]).

ctr_restrictions(
used_by_interval,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’SIZE_INTERVAL’>0]).

ctr_example(
used_by_interval,
used_by_interval(

[[var-1],[var-9],[var-1],[var-8],[var-6],[var-2]],
[[var-1],[var-0],[var-7],[var-7]],
3)).

ctr_typical(
used_by_interval,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’SIZE_INTERVAL’>1,
’SIZE_INTERVAL’<range(’VARIABLES1’ˆvar),
’SIZE_INTERVAL’<range(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
used_by_interval,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
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dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
intervals(’SIZE_INTERVAL’),
=,
dontcare,
dontcare)]).

ctr_graph(
used_by_interval,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar/’SIZE_INTERVAL’=
variables2ˆvar/’SIZE_INTERVAL’],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(used_by_interval,[reformulation(used_by_interval_r)]).

ctr_contractible(used_by_interval,[],’VARIABLES2’,any).

ctr_extensible(used_by_interval,[],’VARIABLES1’,any).

ctr_aggregate(used_by_interval,[],[union,union,id]).

used_by_interval_r(VARIABLES1,VARIABLES2,SIZE_INTERVAL) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1>=N2,
integer(SIZE_INTERVAL),
SIZE_INTERVAL>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_quotient(VARS1,SIZE_INTERVAL,QUOTVARS1),
gen_quotient(VARS2,SIZE_INTERVAL,QUOTVARS2),
used_by_reified(QUOTVARS2,QUOTVARS1,QUOTVARS2).
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B.422 used by modulo

♦ META-DATA:

ctr_date(used_by_modulo,[’20030820’,’20060820’]).

ctr_origin(used_by_modulo,’Derived from %c.’,[used_by]).

ctr_arguments(
used_by_modulo,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’M’-int]).

ctr_restrictions(
used_by_modulo,
[size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
’M’>0]).

ctr_example(
used_by_modulo,
used_by_modulo(

[[var-1],[var-9],[var-4],[var-5],[var-2],[var-1]],
[[var-7],[var-1],[var-2],[var-5]],
3)).

ctr_typical(
used_by_modulo,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
’M’>1,
’M’<maxval(’VARIABLES1’ˆvar),
’M’<maxval(’VARIABLES2’ˆvar)]).

ctr_exchangeable(
used_by_modulo,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals([’VARIABLES1’ˆvar],mod(’M’),=,dontcare,dontcare),
vals([’VARIABLES2’ˆvar],mod(’M’),=,dontcare,dontcare)]).

ctr_graph(
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used_by_modulo,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar mod ’M’=variables2ˆvar mod ’M’],
[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(used_by_modulo,[reformulation(used_by_modulo_r)]).

ctr_contractible(used_by_modulo,[],’VARIABLES2’,any).

ctr_extensible(used_by_modulo,[],’VARIABLES1’,any).

ctr_aggregate(used_by_modulo,[],[union,union,id]).

used_by_modulo_r(VARIABLES1,VARIABLES2,M) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,N1),
length(VARIABLES2,N2),
N1>=N2,
integer(M),
M>0,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
gen_remainder(VARS1,M,REMVARS1),
gen_remainder(VARS2,M,REMVARS2),
used_by_reified(REMVARS2,REMVARS1,REMVARS2).
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B.423 used by partition

♦ META-DATA:

ctr_date(used_by_partition,[’20030820’,’20060820’]).

ctr_origin(used_by_partition,’Derived from %c.’,[used_by]).

ctr_types(used_by_partition,[’VALUES’-collection(val-int)]).

ctr_arguments(
used_by_partition,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar),
’PARTITIONS’-collection(p-’VALUES’)]).

ctr_restrictions(
used_by_partition,
[size(’VALUES’)>=1,
required(’VALUES’,val),
distinct(’VALUES’,val),
size(’VARIABLES1’)>=size(’VARIABLES2’),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var),
required(’PARTITIONS’,p),
size(’PARTITIONS’)>=2]).

ctr_example(
used_by_partition,
used_by_partition(

[[var-1],[var-9],[var-1],[var-6],[var-2],[var-3]],
[[var-1],[var-3],[var-6],[var-6]],
[[p-[[val-1],[val-3]]],
[p-[[val-4]]],
[p-[[val-2],[val-6]]]])).

ctr_typical(
used_by_partition,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)>size(’PARTITIONS’),
size(’VARIABLES2’)>size(’PARTITIONS’)]).

ctr_exchangeable(
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used_by_partition,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
items(’PARTITIONS’,all),
items(’PARTITIONS’ˆp,all),
vals(

[’VARIABLES1’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare),

vals(
[’VARIABLES2’ˆvar],
part(’PARTITIONS’),
=,
dontcare,
dontcare)]).

ctr_graph(
used_by_partition,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[in_same_partition(

variables1ˆvar,
variables2ˆvar,
PARTITIONS)],

[for_all(’CC’,’NSOURCE’>=’NSINK’),
’NSINK’=size(’VARIABLES2’)],
[]).

ctr_eval(
used_by_partition,
[reformulation(used_by_partition_r)]).

ctr_aggregate(used_by_partition,[],[union,union,id]).

ctr_contractible(used_by_partition,[],’VARIABLES2’,any).

ctr_extensible(used_by_partition,[],’VARIABLES1’,any).

used_by_partition_r(VARIABLES1,VARIABLES2,PARTITIONS) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
collection(PARTITIONS,[col_len_gteq(1,[int])]),
length(VARIABLES1,N1),
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length(VARIABLES2,N2),
N1>=N2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
get_col_attr1(PARTITIONS,1,PVALS),
flattern(PVALS,VALS),
all_different(VALS),
length(PARTITIONS,P),
P>1,
length(PVALS,LPVALS),
LPVALS1 is LPVALS+1,
get_partition_var(VARS1,PVALS,PVARS1,LPVALS1,0),
get_partition_var(VARS2,PVALS,PVARS2,LPVALS1,0),
used_by_reified(PVARS2,PVARS1,PVARS2).
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B.424 uses

♦ META-DATA:

ctr_date(uses,[’20050917’,’20060820’]).

ctr_origin(
uses,
\cite{BessiereHebrardHnichKiziltanWalsh05IJCAI},
[]).

ctr_arguments(
uses,
[’VARIABLES1’-collection(var-dvar),
’VARIABLES2’-collection(var-dvar)]).

ctr_restrictions(
uses,
[min(1,size(’VARIABLES1’))>=min(1,size(’VARIABLES2’)),
required(’VARIABLES1’,var),
required(’VARIABLES2’,var)]).

ctr_example(
uses,
uses(

[[var-3],[var-3],[var-4],[var-6]],
[[var-3],[var-4],[var-4],[var-4],[var-4]])).

ctr_typical(
uses,
[size(’VARIABLES1’)>1,
range(’VARIABLES1’ˆvar)>1,
size(’VARIABLES2’)>1,
range(’VARIABLES2’ˆvar)>1,
size(’VARIABLES1’)=<size(’VARIABLES2’)]).

ctr_exchangeable(
uses,
[items(’VARIABLES1’,all),
items(’VARIABLES2’,all),
vals(

[’VARIABLES1’ˆvar,’VARIABLES2’ˆvar],
int,
=\=,
all,
dontcare)]).
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ctr_graph(
uses,
[’VARIABLES1’,’VARIABLES2’],
2,
[’PRODUCT’>>collection(variables1,variables2)],
[variables1ˆvar=variables2ˆvar],
[’NSINK’=size(’VARIABLES2’)],
[’ACYCLIC’,’BIPARTITE’,’NO_LOOP’]).

ctr_eval(uses,[reformulation(uses_r)]).

ctr_contractible(uses,[],’VARIABLES2’,any).

ctr_extensible(uses,[],’VARIABLES1’,any).

ctr_aggregate(uses,[],[union,union]).

uses_r(VARIABLES1,VARIABLES2) :-
collection(VARIABLES1,[dvar]),
collection(VARIABLES2,[dvar]),
length(VARIABLES1,L1),
length(VARIABLES2,L2),
M1 is min(1,L1),
M2 is min(1,L2),
M1>=M2,
get_attr1(VARIABLES1,VARS1),
get_attr1(VARIABLES2,VARS2),
uses1(VARS2,VARS1).

uses1([],_47176).

uses1([VAR2|R],VARS1) :-
uses2(VARS1,VAR2,TERM),
call(TERM),
uses1(R,VARS1).

uses2([],_47176,0).

uses2([VAR1|R],VAR2,VAR2#=VAR1#\/S) :-
uses2(R,VAR2,S).
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B.425 valley

♦ META-DATA:

ctr_date(valley,[’20040530’]).

ctr_origin(valley,’Derived from %c.’,[inflexion]).

ctr_arguments(
valley,
[’N’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
valley,
[’N’>=0,
2*’N’=<max(size(’VARIABLES’)-1,0),
required(’VARIABLES’,var)]).

ctr_example(
valley,
[valley(

1,
[[var-1],
[var-1],
[var-4],
[var-8],
[var-8],
[var-2],
[var-7],
[var-1]]),

valley(
0,
[[var-1],
[var-1],
[var-4],
[var-5],
[var-8],
[var-8],
[var-4],
[var-1]]),

valley(
4,
[[var-1],
[var-0],
[var-4],
[var-0],
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[var-8],
[var-2],
[var-4],
[var-1],
[var-2]])]).

ctr_typical(
valley,
[size(’VARIABLES’)>2,range(’VARIABLES’ˆvar)>1]).

ctr_typical_model(valley,[nval(’VARIABLES’ˆvar)>2]).

ctr_exchangeable(
valley,
[items(’VARIABLES’,reverse),translate([’VARIABLES’ˆvar])]).

ctr_eval(
valley,
[checker(valley_c),
automaton(valley_a),
automaton_with_signature(valley_a_s)]).

ctr_pure_functional_dependency(valley,[]).

ctr_functional_dependency(valley,1,[2]).

ctr_contractible(valley,[’N’=0],’VARIABLES’,any).

ctr_cond_imply(
valley,
atleast_nvalue,
[’N’>0],
[’NVAL’=2],
[none,’VARIABLES’]).

ctr_cond_imply(
valley,
inflexion,
[],
[’N’=peak(’VARIABLES’ˆvar)+valley(’VARIABLES’ˆvar)],
[none,’VARIABLES’]).

ctr_sol(valley,2,0,2,9,[0-9]).

ctr_sol(valley,3,0,3,64,[0-50,1-14]).
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ctr_sol(valley,4,0,4,625,[0-295,1-330]).

ctr_sol(valley,5,0,5,7776,[0-1792,1-5313,2-671]).

ctr_sol(valley,6,0,6,117649,[0-11088,1-73528,2-33033]).

ctr_sol(
valley,
7,
0,
7,
2097152,
[0-69498,1-944430,2-1010922,3-72302]).

ctr_sol(
valley,
8,
0,
8,
43046721,
[0-439791,1-11654622,2-24895038,3-6057270]).

valley_c(N,VARIABLES) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[int]),
get_attr1(VARIABLES,VARS),
valley_c(VARS,s,0,N).

valley_c([V1,V2|R],s,C,N) :-
V1=<V2,
!,
valley_c([V2|R],s,C,N).

valley_c([_V1,V2|R],s,C,N) :-
!,
valley_c([V2|R],u,C,N).

valley_c([V1,V2|R],u,C,N) :-
V1>=V2,
!,
valley_c([V2|R],u,C,N).

valley_c([_V1,V2|R],u,C,N) :-
!,
C1 is C+1,
valley_c([V2|R],s,C1,N).
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valley_c([_53210],_53207,N,N) :-
!.

valley_c([],_53204,N,N).

valley_counters_check([V1,V2|R],s,C,[C|S]) :-
V1=<V2,
!,
valley_counters_check([V2|R],s,C,S).

valley_counters_check([_V1,V2|R],s,C,[C|S]) :-
!,
valley_counters_check([V2|R],u,C,S).

valley_counters_check([V1,V2|R],u,C,[C|S]) :-
V1>=V2,
!,
valley_counters_check([V2|R],u,C,S).

valley_counters_check([_V1,V2|R],u,C,[C1|S]) :-
!,
C1 is C+1,
valley_counters_check([V2|R],s,C1,S).

valley_counters_check([V|R],init,C,[0|S]) :-
!,
valley_counters_check([V|R],s,C,S).

valley_counters_check([_53207],_53204,_53205,[]).

ctr_automaton_signature(
valley,
valley_a,
pair_signature(2,signature)).

valley_a(FLAG,N,VARIABLES) :-
pair_signature(VARIABLES,SIGNATURE),
valley_a_s(FLAG,N,VARIABLES,SIGNATURE).

valley_a_s(FLAG,N,VARIABLES,SIGNATURE) :-
check_type(dvar_gteq(0),N),
collection(VARIABLES,[dvar]),
length(VARIABLES,L),
MAX is max(L-1,0),
2*N#=<MAX,
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automaton(
SIGNATURE,
_54835,
SIGNATURE,
[source(s),sink(u),sink(s)],
[arc(s,0,s),
arc(s,1,s),
arc(s,2,u),
arc(u,0,s,[C+1]),
arc(u,1,u),
arc(u,2,u)],

[C],
[0],
[COUNT]),

COUNT#=N#<=>FLAG.
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B.426 vec eq tuple

♦ META-DATA:

ctr_date(vec_eq_tuple,[’20030820’,’20060820’]).

ctr_origin(vec_eq_tuple,’Used for defining %c.’,[in_relation]).

ctr_arguments(
vec_eq_tuple,
[’VARIABLES’-collection(var-dvar),
’TUPLE’-collection(val-int)]).

ctr_restrictions(
vec_eq_tuple,
[required(’VARIABLES’,var),
required(’TUPLE’,val),
size(’VARIABLES’)=size(’TUPLE’)]).

ctr_example(
vec_eq_tuple,
vec_eq_tuple(

[[var-5],[var-3],[var-3]],
[[val-5],[val-3],[val-3]])).

ctr_typical(
vec_eq_tuple,
[size(’VARIABLES’)>1,
range(’VARIABLES’ˆvar)>1,
range(’TUPLE’ˆval)>1]).

ctr_exchangeable(
vec_eq_tuple,
[args([[’VARIABLES’,’TUPLE’]]),
items_sync(’VARIABLES’,’TUPLE’,all)]).

ctr_graph(
vec_eq_tuple,
[’VARIABLES’,’TUPLE’],
2,
[’PRODUCT’(=)>>collection(variables,tuple)],
[variablesˆvar=tupleˆval],
[’NARC’=size(’VARIABLES’)],
[]).

ctr_eval(vec_eq_tuple,[reformulation(vec_eq_tuple_r)]).
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ctr_contractible(vec_eq_tuple,[],[’VARIABLES’,’TUPLE’],any).

vec_eq_tuple_r(VARIABLES,TUPLE) :-
collection(VARIABLES,[dvar]),
collection(TUPLE,[int]),
length(VARIABLES,N),
length(TUPLE,M),
N=M,
get_attr1(VARIABLES,VARS),
get_attr1(TUPLE,VALS),
vec_eq_tuple1(VARS,VALS).

vec_eq_tuple1([],[]).

vec_eq_tuple1([VAR|R],[VAL|S]) :-
VAR#=VAL,
vec_eq_tuple1(R,S).
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B.427 visible

♦ META-DATA:

ctr_predefined(visible).

ctr_date(visible,[’20071013’]).

ctr_origin(
visible,
Extension of \emph{accessibility} parameter of %c.,
[diffn]).

ctr_types(
visible,
[’VARIABLES’-collection(v-dvar),
’INTEGERS’-collection(v-int),
’POSITIVES’-collection(v-int),
’DIMDIR’-collection(dim-int,dir-int)]).

ctr_arguments(
visible,
[’K’-int,
’DIMS’-sint,
’FROM’-’DIMDIR’,
OBJECTS-
collection(

oid-int,
sid-dvar,
x-’VARIABLES’,
start-dvar,
duration-dvar,
end-dvar),

SBOXES-
collection(

sid-int,
t-’INTEGERS’,
l-’POSITIVES’,
f-’DIMDIR’)]).

ctr_restrictions(
visible,
[size(’VARIABLES’)>=1,
size(’INTEGERS’)>=1,
size(’POSITIVES’)>=1,
required(’VARIABLES’,v),
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size(’VARIABLES’)=’K’,
required(’INTEGERS’,v),
size(’INTEGERS’)=’K’,
required(’POSITIVES’,v),
size(’POSITIVES’)=’K’,
’POSITIVES’ˆv>0,
required(’DIMDIR’,[dim,dir]),
size(’DIMDIR’)>0,
size(’DIMDIR’)=<’K’+’K’,
distinct(’DIMDIR’,[]),
’DIMDIR’ˆdim>=0,
’DIMDIR’ˆdim<’K’,
’DIMDIR’ˆdir>=0,
’DIMDIR’ˆdir=<1,
’K’>=0,
’DIMS’>=0,
’DIMS’<’K’,
distinct(’OBJECTS’,oid),
required(’OBJECTS’,[oid,sid,x]),
require_at_least(2,’OBJECTS’,[start,duration,end]),
’OBJECTS’ˆoid>=1,
’OBJECTS’ˆoid=<size(’OBJECTS’),
’OBJECTS’ˆsid>=1,
’OBJECTS’ˆsid=<size(’SBOXES’),
’OBJECTS’ˆduration>=0,
size(’SBOXES’)>=1,
required(’SBOXES’,[sid,t,l]),
’SBOXES’ˆsid>=1,
’SBOXES’ˆsid=<size(’SBOXES’),
do_not_overlap(’SBOXES’)]).

ctr_example(
visible,
[visible(

2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-1],[v-2]],
start-8,
duration-8,
end-16],

[oid-2,
sid-2,
x-[[v-4],[v-2]],
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start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-1],[v-2]],
start-1,
duration-8,
end-9],

[oid-2,
sid-2,
x-[[v-4],[v-2]],
start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-1],[v-1]],
start-1,
duration-15,
end-16],

[oid-2,
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sid-2,
x-[[v-2],[v-2]],
start-6,
duration-6,
end-12]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0,1},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-4],[v-1]],
start-1,
duration-8,
end-9],

[oid-2,
sid-2,
x-[[v-1],[v-2]],
start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-3]],
f-[[dim-0,dir-1]]]]),

visible(
2,
{0},
[[dim-0,dir-1]],
[[oid-1,

sid-1,
x-[[v-2],[v-1]],
start-1,
duration-8,
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end-9],
[oid-2,
sid-2,
x-[[v-4],[v-3]],
start-1,
duration-15,
end-16]],

[[sid-1,
t-[[v-0],[v-0]],
l-[[v-1],[v-2]],
f-[[dim-0,dir-1]]],

[sid-2,
t-[[v-0],[v-0]],
l-[[v-2],[v-2]],
f-[[dim-0,dir-1]]]])]).

ctr_typical(visible,[size(’OBJECTS’)>1]).

ctr_exchangeable(
visible,
[items(’OBJECTS’,all),items(’SBOXES’,all)]).

ctr_application(visible,[4]).
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B.428 weighted partial alldiff

♦ META-DATA:

ctr_date(
weighted_partial_alldiff,
[’20040814’,’20060820’,’20090503’]).

ctr_origin(
weighted_partial_alldiff,
\cite[page 71]{Thiel04},
[]).

ctr_synonyms(
weighted_partial_alldiff,
[weighted_partial_alldifferent,
weighted_partial_alldistinct,
wpa]).

ctr_arguments(
weighted_partial_alldiff,
[’VARIABLES’-collection(var-dvar),
’UNDEFINED’-int,
’VALUES’-collection(val-int,weight-int),
’COST’-dvar]).

ctr_restrictions(
weighted_partial_alldiff,
[required(’VARIABLES’,var),
size(’VALUES’)>0,
required(’VALUES’,[val,weight]),
in_attr(’VARIABLES’,var,’VALUES’,val),
distinct(’VALUES’,val)]).

ctr_example(
weighted_partial_alldiff,
weighted_partial_alldiff(

[[var-4],[var-0],[var-1],[var-2],[var-0],[var-0]],
0,
[[val-0,weight-0],
[val-1,weight-2],
[val-2,weight- -1],
[val-4,weight-7],
[val-5,weight- -8],
[val-6,weight-2]],

8)).
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ctr_typical(
weighted_partial_alldiff,
[size(’VARIABLES’)>0,
atleast(1,’VARIABLES’,’UNDEFINED’),
size(’VARIABLES’)=<size(’VALUES’)+2]).

ctr_exchangeable(
weighted_partial_alldiff,
[items(’VARIABLES’,all),
items(’VALUES’,all),
vals(

[’VARIABLES’ˆvar,’VALUES’ˆval],
int(=\=(’UNDEFINED’)),
=\=,
all,
dontcare)]).

ctr_graph(
weighted_partial_alldiff,
[’VARIABLES’,’VALUES’],
2,
[’PRODUCT’>>collection(variables,values)],
[variablesˆvar=\=’UNDEFINED’,variablesˆvar=valuesˆval],
[’MAX_ID’=<1,’SUM’(’VALUES’,weight)=’COST’],
[]).

ctr_eval(
weighted_partial_alldiff,
[reformulation(weighted_partial_alldiff_r)]).

ctr_functional_dependency(weighted_partial_alldiff,4,[1,3]).

weighted_partial_alldiff_r(VARIABLES,UNDEFINED,VALUES,COST) :-
collection(VARIABLES,[dvar]),
integer(UNDEFINED),
collection(VALUES,[int,int]),
length(VALUES,N),
N>0,
check_type(dvar,COST),
get_attr1(VARIABLES,VARS),
get_attr1(VALUES,VALS),
get_attr2(VALUES,WEIGHTS),
all_different(VALS),
get_proj1(VALUES,CVALS),
weighted_partial_alldiff0(VALS,WEIGHTS,UNDEFINED),
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weighted_partial_alldiff1(VARS,CVALS),
weighted_partial_alldiff2(VARS,UNDEFINED),
weighted_partial_alldiff4(VALS,WEIGHTS,VARS,TERM),
call(COST#=TERM).

weighted_partial_alldiff0(
[UNDEFINED|_54795],
[0|_54799],
UNDEFINED) :-

!.

weighted_partial_alldiff0([_V|R],[_W|S],UNDEFINED) :-
weighted_partial_alldiff0(R,S,UNDEFINED).

weighted_partial_alldiff1([],_54789).

weighted_partial_alldiff1([VAR|R],VALUES) :-
eval(VAR in VALUES),
weighted_partial_alldiff1(R,VALUES).

weighted_partial_alldiff2([],_54789).

weighted_partial_alldiff2([_54793],_54792) :-
!.

weighted_partial_alldiff2([VAR|R],UNDEFINED) :-
weighted_partial_alldiff3(R,VAR,UNDEFINED),
weighted_partial_alldiff2(R,UNDEFINED).

weighted_partial_alldiff3([],_54789,_54790).

weighted_partial_alldiff3([UAR|R],VAR,UNDEFINED) :-
UAR#\=VAR#\/UAR#=UNDEFINED,
weighted_partial_alldiff3(R,VAR,UNDEFINED).

weighted_partial_alldiff4([],[],_54790,0).

weighted_partial_alldiff4([VAL|R],[WEIGHT|S],VARS,WEIGHT*B+T) :-
weighted_partial_alldiff5(VARS,VAL,WEIGHT,TERM),
call(B#<=>TERM),
weighted_partial_alldiff4(R,S,VARS,T).

weighted_partial_alldiff5([],_54789,_54790,0).

weighted_partial_alldiff5([VAR|R],VAL,WEIGHT,VAR#=VAL#\/T) :-
weighted_partial_alldiff5(R,VAL,WEIGHT,T).
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B.429 xor

♦ META-DATA:

ctr_date(xor,[’20051226’]).

ctr_origin(xor,’Logic’,[]).

ctr_synonyms(xor,[odd,rel]).

ctr_arguments(
xor,
[’VAR’-dvar,’VARIABLES’-collection(var-dvar)]).

ctr_restrictions(
xor,
[’VAR’>=0,
’VAR’=<1,
size(’VARIABLES’)=2,
required(’VARIABLES’,var),
’VARIABLES’ˆvar>=0,
’VARIABLES’ˆvar=<1]).

ctr_example(
xor,
[xor(0,[[var-0],[var-0]]),
xor(1,[[var-0],[var-1]]),
xor(1,[[var-1],[var-0]]),
xor(0,[[var-1],[var-1]])]).

ctr_exchangeable(xor,[items(’VARIABLES’,all)]).

ctr_eval(xor,[automaton(xor_a)]).

ctr_pure_functional_dependency(xor,[]).

ctr_functional_dependency(xor,1,[2]).

ctr_sol(xor,2,0,2,4,[0-2,1-2]).

ctr_sol(xor,3,0,3,0,[]).

ctr_sol(xor,4,0,4,0,[]).

ctr_sol(xor,5,0,5,0,[]).
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ctr_sol(xor,6,0,6,0,[]).

ctr_sol(xor,7,0,7,0,[]).

ctr_sol(xor,8,0,8,0,[]).

xor_a(FLAG,VAR,VARIABLES) :-
check_type(dvar(0,1),VAR),
collection(VARIABLES,[dvar(0,1)]),
length(VARIABLES,2),
get_attr1(VARIABLES,LIST),
append([VAR],LIST,LIST_VARIABLES),
AUTOMATON=
automaton(

LIST_VARIABLES,
_42654,
LIST_VARIABLES,
[source(s),sink(t)],
[arc(s,0,i),
arc(s,1,j),
arc(i,0,k),
arc(i,1,l),
arc(j,0,l),
arc(j,1,k),
arc(k,0,t),
arc(l,1,t)],

[],
[],
[]),

automaton_bool(FLAG,[0,1],AUTOMATON).
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B.430 zero or not zero
♦ META-DATA:

ctr_predefined(zero_or_not_zero).

ctr_date(zero_or_not_zero,[’20120515’]).

ctr_origin(zero_or_not_zero,’Arithmetic.’,[]).

ctr_synonyms(
zero_or_not_zero,
[zeros_or_not_zeros,not_zero_or_zero,not_zeros_or_zeros]).

ctr_arguments(zero_or_not_zero,[’VAR1’-dvar,’VAR2’-dvar]).

ctr_example(zero_or_not_zero,zero_or_not_zero(1,8)).

ctr_exchangeable(zero_or_not_zero,[args([[’VAR1’,’VAR2’]])]).

ctr_eval(
zero_or_not_zero,
[checker(zero_or_not_zero_c),
reformulation(zero_or_not_zero_r)]).

zero_or_not_zero_c(0,0) :-
!.

zero_or_not_zero_c(VAR1,VAR2) :-
check_type(int,VAR1),
check_type(int,VAR2),
VAR1=\=0,
VAR2=\=0.

zero_or_not_zero_r(VAR1,VAR2) :-
check_type(dvar,VAR1),
check_type(dvar,VAR2),
VAR1#=0#/\VAR2#=0#\/VAR1#\=0#/\VAR2#\=0.
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B.431 zero or not zero vectors

♦ META-DATA:

ctr_predefined(zero_or_not_zero_vectors).

ctr_date(zero_or_not_zero_vectors,[’20120516’]).

ctr_origin(zero_or_not_zero_vectors,’Tournament scheduling’,[]).

ctr_synonyms(
zero_or_not_zero_vectors,
[zeros_or_not_zeros_vectors,
not_zero_or_zero_vectors,
not_zeros_or_zeros_vectors]).

ctr_types(
zero_or_not_zero_vectors,
[’VECTOR’-collection(var-dvar)]).

ctr_arguments(
zero_or_not_zero_vectors,
[’VECTORS’-collection(vec-’VECTOR’)]).

ctr_restrictions(
zero_or_not_zero_vectors,
[size(’VECTOR’)>=1,
required(’VECTOR’,var),
size(’VECTORS’)>=1,
required(’VECTORS’,vec),
same_size(’VECTORS’,vec)]).

ctr_example(
zero_or_not_zero_vectors,
zero_or_not_zero_vectors(

[[vec-[[var-5],[var-6]]],
[vec-[[var-5],[var-6]]],
[vec-[[var-0],[var-0]]],
[vec-[[var-9],[var-3]]],
[vec-[[var-0],[var-0]]]])).

ctr_typical(
zero_or_not_zero_vectors,
[size(’VECTOR’)>1,size(’VECTORS’)>1]).

ctr_eval(
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zero_or_not_zero_vectors,
[checker(zero_or_not_zero_vectors_c),
reformulation(zero_or_not_zero_vectors_r),
density(zero_or_not_zero_vectors_d)]).

ctr_contractible(zero_or_not_zero_vectors,[],’VECTORS’,any).

zero_or_not_zero_vectors_c(VECTORS) :-
VECTORS=[[vec-[[var-_24288]|_24283]]|_24276],
collection(VECTORS,[col([int])]),
same_size(VECTORS),
zero_or_not_zero_vectors_c(VECTORS,1).

zero_or_not_zero_vectors_c([],0) :-
!.

zero_or_not_zero_vectors_c([[vec-V]|R],F) :-
( V=[[var-0]|W] ->

NextF=0,
zero_vector(W)

; NextF=F,
not_zero_vector(W)

),
zero_or_not_zero_vectors_c(R,NextF).

zero_or_not_zero_vectors_r(VECTORS) :-
VECTORS=[[vec-[[var-_24288]|_24283]]|_24276],
collection(VECTORS,[col([dvar])]),
zero_or_not_zero_vectors_r1(VECTORS,AtleastOneZero),
call(AtleastOneZero).

zero_or_not_zero_vectors_r1([],0) :-
!.

zero_or_not_zero_vectors_r1([[vec-V]|R],Zero#\/S) :-
zero_or_not_zero_vectors_r2(V,Zero,NotZero),
call(Zero#\/NotZero),
zero_or_not_zero_vectors_r1(R,S).

zero_or_not_zero_vectors_r2([],1,1) :-
!.

zero_or_not_zero_vectors_r2([[var-V]|R],V#=0#/\S,V#\=0#/\T) :-
zero_or_not_zero_vectors_r2(R,S,T).

zero_or_not_zero_vectors_d(Density,VECTORS) :-
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count_zeros_in_vectors(VECTORS,0,ZEROS),
VECTORS=[[vec-[V|_24295]]|_24288],
length(VECTORS,N),
length(V,M),
A is N*M,
Density is(A-ZEROS)/A.
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B.432 Utilities

:- use_module(library(lists)).
:- use_module(library(ordsets)).
:- use_module(library(clpfd)).
:- use_module(library(plunit)).
:- use_module(library(trees)).
:- use_module(library(samsort)).

%% to use when everything is not necessarly ground
eval(Ctr) :-

Ctr =..[Name|Args],
ctr_eval(Name, Methods),
( member( builtin(Pred), Methods) -> Goal =..[Pred|Args]
; member( automaton(Pred), Methods) -> Goal =..[Pred,1|Args]
; member( automata(Pred), Methods) -> Goal =..[Pred|Args]

% defined by a conjunction of automata, no negation available
; member(reformulation(Pred), Methods) -> Goal =..[Pred|Args]
; member( logic(Pred), Methods) -> Goal =..[Pred|Args]
), !,
call(Goal).

%% to use when everything is not necessarly ground and when
%% want to share similar signature variables between constraints
%% that have an automaton
eval_with_signature(Ctr) :-

Ctr =..[Name|Args],
ctr_eval(Name, Methods),
( member(automaton_with_signature(Pred), Methods) ->

Goal =..[Pred|Args]
; write(no_signature_version(Ctr)),nl,

abort
), !,
call(Goal).

%% to use when everything is ground: call first a checker
%% if it exist (since normally faster), and then builtin, ...
checker(Ctr) :-

Ctr =..[Name|Args],
ctr_eval(Name, Methods),
( member( checker(Pred), Methods) -> Goal =..[Pred|Args]
; member( builtin(Pred), Methods) -> Goal =..[Pred|Args]
; member( automaton(Pred), Methods) -> Goal =..[Pred,1|Args]
; member( automata(Pred), Methods) -> Goal =..[Pred|Args]

% defined by a conjunction of automata, no negation available
; member(reformulation(Pred), Methods) -> Goal =..[Pred|Args]
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; member( logic(Pred), Methods) -> Goal =..[Pred|Args]
), !,
statistics(runtime,[Start|_]),
( call(Goal) ->

statistics(runtime,[End|_]),
Time is End-Start,
increment(Pred,Time)

; statistics(runtime,[End|_]),
Time is End-Start,
increment_fail(Pred,Time),
fail

).

:-dynamic(counter/5).

increment(Pred,Time):-
( retract(counter(Pred,N,Old,Fail,FailTime)) ->

N1 is N+1,
New is Old+Time,
asserta(counter(Pred,N1,New,Fail,FailTime))

; asserta(counter(Pred,1,Time,0,0))
).

increment_fail(Pred,Time):-
( retract(counter(Pred,Succ,SuccTime,N,Old)) ->

N1 is N+1,
New is Old+Time,
asserta(counter(Pred,Succ,SuccTime,N1,New))

; asserta(counter(Pred,0,0,1,Time))
).

counter_reset:-
retract(counter(_,_,_,_,_)),
fail.

counter_reset.

counter_list(L):-
findall(counter(A,B,C,D,E),counter(A,B,C,D,E),L).

%% used in checker.pl to check the examples using the evaluator
%% if it exist
eval_or_check(Ctr) :-

Ctr =..[Name|Args],
ctr_eval(Name, Methods),
( member( builtin(Pred), Methods) -> Goal =..[Pred|Args]
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; member( automaton(Pred), Methods) -> Goal =..[Pred,1|Args]
; member( automata(Pred), Methods) -> Goal =..[Pred|Args]

% defined by a conjunction of automata, no negation available
; member(reformulation(Pred), Methods) -> Goal =..[Pred|Args]
; member( logic(Pred), Methods) -> Goal =..[Pred|Args]
; member( checker(Pred), Methods) -> Goal =..[Pred|Args]
), !,
call(Goal).

%% used to compute the density of a ground satisfied instance
density(Ctr, Density) :-

Ctr =..[Name|Args],
ctr_eval(Name, Methods),
memberchk(density(Pred), Methods),
Goal =..[Pred,Density|Args],
call(Goal).

%% to use to evaluate the negation of a constraint, use:
%% . reified automaton or
%% . reified constraint for pure functional dependency or
%% . existing constraint of the catalog with exactly same arguments
neg_eval(Ctr) :-

Ctr =..[Name|Args],
ctr_pure_functional_dependency(Name), !,
NegCtr =..[Name,0|Args],
reified_ctr_pure_functional_dependency(NegCtr), !.

neg_eval(Ctr) :-
Ctr =..[Name|Args],
ctr_eval(Name, Methods),
(member(automaton(Pred), Methods) -> Goal =..[Pred,0|Args]), !,
call(Goal), !.

neg_eval(Ctr) :-
Ctr =..[Name|Args],
ctr_see_also(Name, Links),
member(link(negation, NegName, _, _), Links), !,
NegCtr =..[NegName|Args],
eval(NegCtr), !.

%% reified version for constraints that can be described
%% in term of pure functional dependency
%% (reified variables put before arguments)
reified_ctr_pure_functional_dependency(Ctr) :-

Ctr =..[Name,Bool|Args],
ctr_pure_functional_dependency(Name),
ctr_arguments(Name, ListArgsCtr),
findall(F, ctr_functional_dependency(Name,F,_), LF),
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sort(LF, SLF),
length(Args, NArgs),
build_args_ctr(1, NArgs, Args, ListArgsCtr, SLF, NewArgs, AndExpr),
NewCtr =..[Name|NewArgs],
eval(NewCtr),
call(AndExpr #<=> Bool).

build_args_ctr(I, N, [], [], [], [], 1) :-
I > N, !.

build_args_ctr(I, N, [Arg|RArg], [ArgType|RArgType],
[F|RF], [Var|R], Var#=Arg #/\ S) :-

I =< N,
I = F,
ArgType = _-dvar, !,
Var in -1000000..1000000,
I1 is I+1,
build_args_ctr(I1, N, RArg, RArgType, RF, R, S).

build_args_ctr(I, N, [Arg|RArg], [_|RArgType], LF, [Arg|R], S) :-
I =< N, !,
I1 is I+1,
build_args_ctr(I1, N, RArg, RArgType, LF, R, S).

%% depending on the flag, call positive automaton,
%% or computes negative automaton and auxiliary constraints
%% and call them
automaton_bool(1, _ALPHABET, POS_AUTOMATON) :- !,

call(POS_AUTOMATON).
automaton_bool(0, ALPHABET, POS_AUTOMATON) :-

negaut(POS_AUTOMATON, ALPHABET, NEG_AUTOMATON, NEG_AUXILIARY),
call(NEG_AUTOMATON),
call(NEG_AUXILIARY).

%%--------------------------------------------------------------
%% An utility for negating an automaton
%% (WARNING: only valid if everything expressed with ONE SINGLE automaton)
%%
%% negaut(+PosAutomaton, +Alphabet, -NegAutomaton, -AuxConstraint)
%% PosAutomaton: automaton/8 constraint
%% Alphabet: list of atom
%% NegAutomaton: automaton/8 constraint
%% AuxConstraint: constraint
%%
%% Semantics:
%% - (NegAutomaton, AuxConstraint) expresses the negation of PosAutomaton.
%%
%% Synopsis:
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%% - If necessary, add a nonsink state ’fail’, and:
%% * for every letter A of the alphabet: add an arc from ’fail’ over
%% A to ’fail’;
%% * for every state S and letter A of the alphabet, if there is no
%% outgoing arc from S over A, add an arc from S over A to ’fail’.
%%
%% - If the automaton is counter-free, compute NegAutomaton by swapping
%% sinks and nonsinks. AuxConstraint is ’true’.
%%
%% - Otherwise with counters [C1,...,Cn]:
%% * Suppose that the final counter values are [V1,...,Vn].
%% * Add a first counter C0 so that C0=0 iff the original automaton
%% stops in a sink state.
%% * Convert arcs as follows:
%% if S2 is sink:
%% arc(S1,A,S2) --> arc(S1,A,S2,[0,C1,...,Cn])
%% if S2 is nonsink:
%% arc(S1,A,S2) --> arc(S1,A,S2,[1,C1,...,Cn])
%% if S2 is sink:
%% arc(S1,A,S2,[Y1,...,Yn]) --> arc(S1,A,S2,[0,Y1,...,Yn])
%% if S2 is nonsink:
%% arc(S1,A,S2,[Y1,...,Yn]) --> arc(S1,A,S2,[1,Y1,...,Yn])
%% * The counters for arcs with conditions are augmented similarly.
%% * For every arc with a condition:
%% arc(S1,A,_,(P1 -> Q1 ; ... ; Pm -> Qm))
%% such that (P1 #\/ ... #\/ Pm) could be false, add an arc:
%% arc(S1,A,fail,((#\P1 #/\ ... #/\ #\Pm) -> [1,C1,...,Cn])
%% * Conpute NegAutomaton by making all states sinks.
%% * Let the final counter values of NegAutomaton be [X0,X1,...,Xn].
%% * AuxConstraint is (X0 #= 1 #\/ X1 #\= V1 #\/ ... #\/ Xn #\= Vn).

negaut(PosAut, Alphabet1, NegAut, Aux) :-
PosAut = automaton(Args, Arg, Signature,

PosSourcesSinks, PosArcs,
Counters, Initial, Final),

NegAut = automaton(Args, Arg, Signature,
NegSourcesSinks, NegArcs,
NegCounters, NegInitial, NegFinal),

( foreach(SS1, PosSourcesSinks),
fromto(Sources1,Sources1b,Sources1c,[]),
fromto(Sinks1,Sinks1b,Sinks1c,[])

do ( SS1 = source(SS2)
-> Sources1b = [SS2|Sources1c], Sinks1b = Sinks1c
; SS1 = sink(SS2)
-> Sinks1b = [SS2|Sinks1c], Sources1b = Sources1c
)
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),
( foreach(Arc,PosArcs),

fromto(States1,[S1,S2|States1c],States1c,[])
do ( Arc = arc(S1,_,S2) -> true

; Arc = arc(S1,_,S2,_)
)

),
sort(Alphabet1, Alphabet2),
sort(Sources1, Sources2),
sort(Sinks1, Sinks2),
sort(States1, States2),
( foreach(P,Final),

foreach(N,NegFinalT),
foreach(N #\= P,NeqsT)

do true
),
( Counters==[] ->

NegCounters = [],
NegInitial = [],
NegFinal = [],
Aux = true,
negaut_simple(PosArcs, NegSourcesSinks, NegArcs,

Sources2, Sinks2, States2, Alphabet2)
; NegCounters = [_|Counters],

NegInitial = [0|Initial],
NegFinal = [FlagT|NegFinalT],
Neqs = [FlagT #= 1|NeqsT],
orify(Neqs, Aux),
negaut_counters(PosArcs, NegSourcesSinks, NegArcs,

Sources2, Sinks2, States2, Alphabet2, Counters)
).

negaut_simple(PosArcs, NegSourcesSinks, NegArcs,
Sources1, Sinks1, States1, Alphabet) :-

ord_subtract(States1, Sinks1, Sinks2),
( foreach(S1,Sources1),

foreach(source(S1),Sources2)
do true
),
( foreach(S2,Sinks2),

foreach(sink(S2),Sinks3)
do true
),
( foreach(arc(S3,K,_),PosArcs),

foreach(S3-K,KL1)
do true
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),
keysort(KL1, KL2),
keyclumped(KL2, KL3),
( foreach(S4-Set1,KL3),

fromto(NegArcs4,NegArcs5,NegArcs7,NegArcs8),
param(Alphabet)

do ord_subtract(Alphabet, Set1, CSet1),
( foreach(C,CSet1),

fromto(NegArcs5,[arc(S4,C,fail)|NegArcs6],NegArcs6,NegArcs7),
param(S4)

do true
)

),
( NegArcs4 == NegArcs8 ->

NegArcs8 = [],
append(Sources2, Sinks3, NegSourcesSinks)

; ( foreach(A,Alphabet),
foreach(arc(fail,A,fail),NegArcs8)

do true
),
append(Sources2, [sink(fail)|Sinks3], NegSourcesSinks)

),
append(NegArcs4, PosArcs, NegArcs).

negaut_counters(PosArcs1, NegSourcesSinks, NegArcs,
Sources1, Sinks1, States1, Alphabet, Counters) :-

( foreach(S1,Sources1),
foreach(source(S1),Sources2)

do true
),
( foreach(S2,States1),

foreach(sink(S2),Sinks3)
do true
),
( foreach(Arc1,PosArcs1),

foreach(Arc2,PosArcs2),
fromto(NegArcs1,NegArcs2,NegArcs3,NegArcs4),
foreach(S3-K,KL1),
param(Sinks1,Counters)

do Arc1 =.. [arc,S3,K|_],
(ord_member(S3, Sinks1) -> F=0 ; F=1),
augment_arc(Arc1, F, Counters, Arc2, NegArcs2, NegArcs3)

),
keysort(KL1, KL2),
keyclumped(KL2, KL3),
( foreach(S4-Set1,KL3),
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fromto(NegArcs4,NegArcs5,NegArcs7,NegArcs8),
param(Alphabet,Counters)

do ord_subtract(Alphabet, Set1, CSet1),
( foreach(C,CSet1),

fromto(NegArcs5,[arc(S4,C,fail,[1|Counters])|NegArcs6],
NegArcs6,NegArcs7),

param(S4,Counters)
do true
)

),
( NegArcs1 == NegArcs8 ->

NegArcs8 = [],
append(Sources2, Sinks3, NegSourcesSinks)

; ( foreach(A,Alphabet),
foreach(arc(fail,A,fail),NegArcs8)

do true
),
append(Sources2, [sink(fail)|Sinks3], NegSourcesSinks)

),
append(NegArcs4, PosArcs2, NegArcs).

augment_arc(arc(S1,K,S2), F, Ctrs, arc(S1,K,S2,[F|Ctrs])) --> [].
augment_arc(arc(S1,K,S2,(P1->Q1 ; P2->Q2)), F, _,

arc(S1,K,S2,(P1->[F|Q1] ; P2->[F|Q2]))) --> !,
[]. % assume (P1;P2) is entailed

augment_arc(arc(S1,K,S2,(P1->Q1)), F, Ctrs,
arc(S1,K,S2,(P1->[F|Q1]))) --> !,

{neg_arith(P1, P2)},
[arc(S1,K,fail,(P2->[1|Ctrs]))].

augment_arc(arc(S1,K,S2,Ctrs), F, _,
arc(S1,K,S2,[F|Ctrs])) --> [].

neg_arith(X #= Y, X #\= Y).
neg_arith(X #\= Y, X #= Y).
neg_arith(X #< Y, X #>= Y).
neg_arith(X #=< Y, X #> Y).
neg_arith(X #> Y, X #=< Y).
neg_arith(X #>= Y, X #< Y).

orify([], true).
orify([X|L], Disj) :- orify(L, X, Disj).

orify([], X, X).
orify([Y|L], X, (X #\/ Disj)) :- orify(L, Y, Disj).
%%--------------------------------------------------------------
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union_dom_list_int(Dvars, Union) :-
( foreach(V,Dvars),

foreach(S,Sets)
do fd_set(V, S)
),
fdset_union(Sets, U),
fdset_to_list(U, Union).

union_dom_set([], []).
union_dom_set([V|R], S) :-

fd_set(V, SetValuesOfV),
union_dom_set(R, Set),
fdset_union(SetValuesOfV, Set, S).

same_size([]).
same_size([[_-L]|R]) :-

length(L, N),
same_size(R, N).

same_size([], _).
same_size([[_-L]|R], N) :-

length(L, N),
same_size(R, N).

create_pairs([], []) :- !.
create_pairs([V|R], [V-V|S]) :-

create_pairs(R,S).

gen_pairs([], []) :- !.
gen_pairs([_], []) :- !.
gen_pairs([V1,V2|R], [V1-V2|S]) :-

gen_pairs([V2|R], S).

sort_collection(COL, ATTR, SORTED_COL) :-
build_key_collection(COL, ATTR, KEY_COL),
keysort(KEY_COL, SORTED_KEY_COL),
remove_key_from_collection(SORTED_KEY_COL, SORTED_COL).

build_key_collection([], _, []).
build_key_collection([ITEM|RCOL], ATTR, [KEY-ITEM|R]) :-

extract_attr_value(ITEM, ATTR, KEY),
build_key_collection(RCOL, ATTR, R).

extract_attr_value([ATTR-VALUE|_], ATTR, VALUE) :- !.
extract_attr_value([_|RITEM], ATTR, VALUE) :-

extract_attr_value(RITEM, ATTR, VALUE).
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remove_key_from_collection([], []).
remove_key_from_collection([_-ITEM|R], [ITEM|S]) :-

remove_key_from_collection(R, S).

remove_key_from_col([], []).
remove_key_from_col([[_-ITEM]|R], [ITEM|S]) :-

remove_key_from_col(R, S).

list_dvar_range([], 0) :- !.
list_dvar_range([X|Y], R) :-

get_minimum([X|Y], Minimum),
get_maximum([X|Y], Maximum),
Min in Minimum..Maximum,
Max in Minimum..Maximum,
minimum(Min, [X|Y]),
maximum(Max, [X|Y]),
R #= Max-Min+1.

collection_distinct([], _).
collection_distinct([ITEM|R], ATTR) :-

nth1(ATTR, ITEM, _-A),
get_attr1(A, L),
all_different(L),
collection_distinct(R, ATTR).

collection_increasing_seq(COL, ATTRS) :-
collection_increasing_seq1(COL, ATTRS, A),
lex_chain(A, [op(#<)]).

collection_increasing_seq1([], _, []).
collection_increasing_seq1([ITEM|R], ATTRS, [ITEM_ATTRS|S]) :-

collection_increasing_seq2(ATTRS, ITEM, ITEM_ATTRS),
collection_increasing_seq1(R, ATTRS, S).

collection_increasing_seq2([], _, []).
collection_increasing_seq2([ATTR|R], ITEM, [A|S]) :-

nth1(ATTR, ITEM, _-A),
collection_increasing_seq2(R, ITEM, S).

collection([], _) :- !.
collection([Item|R], Types) :-

check_item(Types, Item),
collection(R, Types).

create_collection([], _, []).
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create_collection([V|R], ATTR, [[ATTR-V]|S]) :-
create_collection(R, ATTR, S).

create_collection([], [], _, _, []).
create_collection([V1|R1], [V2|R2], ATTR1, ATTR2, [[ATTR1-V1,ATTR2-V2]|S]) :-

create_collection(R1, R2, ATTR1, ATTR2, S).

create_collection([], _, _, []).
create_collection([[_-L]|R], ATTR1, ATTR2, [[ATTR1-C]|S]) :-

get_attr1(L, A),
create_collection(A, ATTR2, C),
create_collection(R, ATTR1, ATTR2, S).

check_item([], []) :- !.
check_item([T|S], [_-V|R]) :-

check_type(T, V),
check_item(S, R).

check_type(atom, V) :-
atom(V), !.

check_type(atom(L), V) :-
atom(V),
member(V, L), !.

check_type(int, V) :-
integer(V), !.

check_type(int_gteq(VAL), V) :-
integer(V),
V >= VAL, !.

check_type(int_diff(VAL), V) :-
integer(V),
V =\= VAL, !.

check_type(dvar, V) :-
integer(V), !.

check_type(dvar, V) :-
fd_var(V), !.

check_type(fdvar, V) :-
var(V), !.

check_type(fdvar, V) :-
integer(V), !.

check_type(fdvar, V) :-
fd_var(V), !.

check_type(dvar_gteq(VAL), V) :-
integer(V),
V >= VAL, !.

check_type(dvar_gteq(VAL), V) :-
fd_var(V),
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V #>= VAL, !.
check_type(int(Low,Up), V) :-

integer(V),
V >= Low,
V =< Up, !.

check_type(dvar(Low,Up), V) :-
integer(V),
V >= Low,
V =< Up, !.

check_type(dvar(Low,Up), V) :-
fd_var(V),
V #>= Low,
V #=< Up, !.

check_type(fdvar(Low,Up), V) :-
integer(V),
V >= Low,
V =< Up, !.

check_type(fdvar(Low,Up), V) :-
fd_var(V),
V #>= Low,
V #=< Up, !.

check_type(fdvar(Low,Up), V) :-
var(V),
V #>= Low,
V #=< Up, !.

check_type(col(Types), C) :-
collection(C, Types), !.

check_type(col(Len,Types), C) :-
length(C, Len),
collection(C, Types), !.

check_type(col_len_gteq(Len,Types), C) :-
length(C, L),
L >= Len,
collection(C, Types), !.

check_type(non_empty_col(Types), C) :-
length(C, L),
L > 0,
collection(C, Types), !.

check_type(sint, _V) :- % TODO
!.

check_type(svar, _V) :- % TODO
!.

get_col_attr1([], _, []).
get_col_attr1([[_-C|_]|R], 1, [D|S]) :- !,
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get_attr1(C, D),
get_col_attr1(R, 1, S).

get_col_attr1([[_-C|_]|R], 2, [D|S]) :- !,
get_attr2(C, D),
get_col_attr1(R, 2, S).

get_col_attr1([[_-C|_]|R], 3, [D|S]) :-
get_attr3(C, D),
get_col_attr1(R, 3, S).

get_col_attr2([], _, []).
get_col_attr2([[_,_-C|_]|R], 1, [D|S]) :- !,

get_attr1(C, D),
get_col_attr2(R, 1, S).

get_col_attr2([[_,_-C|_]|R], 2, [D|S]) :- !,
get_attr2(C, D),
get_col_attr2(R, 2, S).

get_col_attr2([[_,_-C|_]|R], 3, [D|S]) :-
get_attr3(C, D),
get_col_attr2(R, 3, S).

get_col_attr3([], _, []).
get_col_attr3([[_,_,_-C|_]|R], 1, [D|S]) :- !,

get_attr1(C, D),
get_col_attr3(R, 1, S).

get_col_attr3([[_,_,_-C|_]|R], 2, [D|S]) :- !,
get_attr2(C, D),
get_col_attr3(R, 2, S).

get_col_attr3([[_,_,_-C|_]|R], 3, [D|S]) :-
get_attr3(C, D),
get_col_attr3(R, 3, S).

get_attr12([], []).
get_attr12([[_-V1,_-V2|_]|R], [V1-V2|S]) :-

get_attr12(R, S).

get_attr21([], []).
get_attr21([[_-V1,_-V2|_]|R], [V2-V1|S]) :-

get_attr21(R, S).

get_attr12_sum([], []).
get_attr12_sum([[_-V1,_-V2|_]|R], [V|S]) :-

V is V1+V2,
get_attr12_sum(R, S).

get_attr12_diff20([], []).
get_attr12_diff20([[_,_-0|_]|R], S) :- !,
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get_attr12_diff20(R, S).
get_attr12_diff20([[_-V1,_-V2|_]|R], [V1-V2|S]) :-

get_attr12_diff20(R, S).

get_attr12_diff20_end([], []).
get_attr12_diff20_end([[_,_-0|_]|R], S) :- !,

get_attr12_diff20_end(R, S).
get_attr12_diff20_end([[_-V1,_-V2|_]|R], [V12-V|S]) :-

V12 is V1+V2,
V is -V2,
get_attr12_diff20_end(R, S).

get_kattr1([], _, []).
get_kattr1([[_-V|_]|R], K, [V-K|S]) :-

K1 is K+1,
get_kattr1(R, K1, S).

get_attr1([], []).
get_attr1([[_-V|_]|R], [V|S]) :-

get_attr1(R, S).

get_attr2([], []).
get_attr2([[_,_-V|_]|R], [V|S]) :-

get_attr2(R, S).

get_attr3([], []).
get_attr3([[_,_,_-V|_]|R], [V|S]) :-

get_attr3(R, S).

get_attr4([], []).
get_attr4([[_,_,_,_-V|_]|R], [V|S]) :-

get_attr4(R, S).

get_attr5([], []).
get_attr5([[_,_,_,_,_-V|_]|R], [V|S]) :-

get_attr5(R, S).

get_attr6([], []).
get_attr6([[_,_,_,_,_,_-V|_]|R], [V|S]) :-

get_attr6(R, S).

get_attr7([], []).
get_attr7([[_,_,_,_,_,_,_-V|_]|R], [V|S]) :-

get_attr7(R, S).

get_attr8([], []).
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get_attr8([[_,_,_,_,_,_,_,_-V|_]|R], [V|S]) :-
get_attr8(R, S).

get_attr11([], []).
get_attr11([[_-V|_]|R], [U|S]) :-

get_attr1(V, U),
get_attr11(R, S).

get_proj1([], []).
get_proj1([[A-V|_]|R], [[A-V]|S]) :-

get_proj1(R, S).

get_minimum([], 0).
get_minimum([V|R], M) :-

fd_min(V, Min),
get_minimum1(R, Min, M).

get_minimum1([], Min, Min).
get_minimum1([V|R], Min, M) :-

fd_min(V, MinV),
MinV < Min, !,
get_minimum1(R, MinV, M).

get_minimum1([_|R], Min, M) :-
get_minimum1(R, Min, M).

get_maximum([], 0).
get_maximum([V|R], M) :-

fd_max(V, Max),
get_maximum1(R, Max, M).

get_maximum1([], Max, Max).
get_maximum1([V|R], Max, M) :-

fd_max(V, MaxV),
MaxV > Max, !,
get_maximum1(R, MaxV, M).

get_maximum1([_|R], Max, M) :-
get_maximum1(R, Max, M).

gen_collection([], _, []).
gen_collection([V|R], ATTR, [[ATTR-V]|S]) :-

gen_collection(R, ATTR, S).

gen_varcst([], [], []).
gen_varcst([V|R], [C|S], [VC|T]) :-

VC #= V+C,
gen_varcst(R, S, T).
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gen_quotient([], _, []).
gen_quotient([V|R], Size, [Q|T]) :-

Size1 is Size-1,
Remainder in 0.. Size1,
V #= Size*Q+ Remainder,
gen_quotient(R, Size, T).

gen_quotient_fix([], _, []).
gen_quotient_fix([V|R], Size, [Q|T]) :-

( V >= 0 ->
Q is V // Size

; Q is -((-1-V) // Size) - 1
),
gen_quotient_fix(R, Size, T).

gen_remainder([], _, []).
gen_remainder([V|R], M, [Remainder |T]) :-

M1 is M-1,
Remainder in 0.. M1,
V #= M*_+ Remainder,
gen_remainder(R, M, T).

flattern([], []).
flattern([L|R], S) :-

flattern(R, T),
append(L, T, S).

get_partition_var([], _, [], _).
get_partition_var([V|R], PVALS, [P|S], MAX) :-

P in 0..MAX,
gen_part_var(PVALS, 1, V, P),
get_partition_var(R, PVALS, S, MAX).

get_partition_var([], _, [], _, _).
get_partition_var([V|R], PVALS, [P|S], MAX, DIFF) :-

P in 1..MAX,
P #\= DIFF,
gen_part_var(PVALS, 1, V, P),
get_partition_var(R, PVALS, S, MAX, DIFF).

gen_part_var([], _, _, _).
gen_part_var([L|R], N, V, P) :-

gen_part_var1(L, N, V, P, Vdiff),
call(Vdiff #=> P #\= N),
N1 is N+1,
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gen_part_var(R, N1, V, P).

gen_part_var1([], _, _, _, 1).
gen_part_var1([U|R], N, V, P, V #\= U #/\ S) :-

V #= U #=> P #= N,
gen_part_var1(R, N, V, P, S).

set_to_list({}, []).
set_to_list({S}, L) :-

set_to_list(S, L, []).

set_to_list((X,Y)) --> !,
set_to_list(X),
set_to_list(Y).

set_to_list(X) --> [X].

list_to_set([], {}).
list_to_set([H|T], {S}) :-

list_to_set(T, H, S).

list_to_set([], X, X).
list_to_set([H|T], X, (X,S)) :-

list_to_set(T, H, S).

count_var_notin_values([], _, 0) :- !.
count_var_notin_values([VAR|RVAR], SORTED_VALS, NOUT) :-

fd_set(VAR, S),
fdset_to_list(S, L),
(ord_intersect(L, SORTED_VALS) -> I=0 ; I=1),
count_var_notin_values(RVAR, SORTED_VALS, N),
NOUT is N+I.

complete_card(MIN, MAX, _, [], []) :-
MIN > MAX, !.

complete_card(MIN, MAX, L, [[var-OCC]|R], [MIN-OCC|S]) :-
MIN =< MAX,
OCC in 0..L,
MIN1 is MIN+1,
complete_card(MIN1, MAX, L, R, S).

complete_card(MIN, MIN, NVARS, VALS, NOCCS, [V-N]) :- !,
complete_card1(MIN, VALS, NOCCS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N).

complete_card(MIN, MAX, NVARS, VALS, NOCCS, [V-N|R]) :-
MIN < MAX,
complete_card1(MIN, VALS, NOCCS, V_N),
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(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N),
MIN1 is MIN + 1,
complete_card(MIN1, MAX, NVARS, VALS, NOCCS, R).

complete_card1(_, [], [], []) :- !.
complete_card1(MIN, [MIN|_], [NOCC|_], MIN-NOCC) :- !.
complete_card1(MIN, [VAL|R], [_NOCC|S], MN) :-

MIN =\= VAL,
complete_card1(MIN, R, S, MN).

complete_card_low_up(MIN, MIN, NVARS, VALS, OMINS, OMAXS, [V-N]) :- !,
complete_card_low_up1(MIN, VALS, OMINS, OMAXS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N).

complete_card_low_up(MIN, MAX, NVARS, VALS, OMINS, OMAXS, [V-N|R]) :-
MIN < MAX,
complete_card_low_up1(MIN, VALS, OMINS, OMAXS, V_N),
(V_N=[] -> V=MIN, N in 0..NVARS ; V_N=V-N),
MIN1 is MIN + 1,
complete_card_low_up(MIN1, MAX, NVARS, VALS, OMINS, OMAXS, R).

complete_card_low_up1(_, [], [], [], []) :- !.
complete_card_low_up1(MIN, [MIN|_], [OMIN|_], [OMAX|_], MIN-NOCC) :- !,

NOCC in OMIN..OMAX.
complete_card_low_up1(MIN, [VAL|R], [_|S], [_|T], MN) :-

MIN =\= VAL,
complete_card_low_up1(MIN, R, S, T, MN).

complete_card_consec(LOW, UP, ATMOST, NVAR, [LOW-N|R]) :-
LOW < UP, !,
N in 0..ATMOST,
LOW1 is LOW+1,
complete_card_consec(LOW1, UP, ATMOST, NVAR, R).

complete_card_consec(LOW, LOW, _, NVAR, [LOW-N]) :-
N in 0..NVAR.

build_or_var_in_values([], _, true).
build_or_var_in_values([U], V, (V#=U)) :- !.
build_or_var_in_values([U1,U2|R], V, (V#=U1) #\/ S) :-

build_or_var_in_values([U2|R], V, S).

call_term_relop_value(TERM, =, VALUE) :- !,
call(TERM #= VALUE).

call_term_relop_value(TERM, =\=, VALUE) :- !,
call(TERM #\= VALUE).

call_term_relop_value(TERM, <, VALUE) :- !,
call(TERM #< VALUE).
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call_term_relop_value(TERM, >=, VALUE) :- !,
call(TERM #>= VALUE).

call_term_relop_value(TERM, >, VALUE) :- !,
call(TERM #> VALUE).

call_term_relop_value(TERM, =<, VALUE) :-
call(TERM #=< VALUE).

gen_matrix_bool(MINBINS, MAXBINS, _, []) :-
MINBINS > MAXBINS, !.

gen_matrix_bool(MINBINS, MAXBINS, BINS, [LINE|RLINES]) :-
MINBINS =< MAXBINS,
gen_matrix_bool1(BINS, MINBINS, LINE),
MINBINS1 is MINBINS+1,
gen_matrix_bool(MINBINS1, MAXBINS, BINS, RLINES).

gen_matrix_bool1([], _, []).
gen_matrix_bool1([BIN|RBINS], IDBIN, [B|R]) :-

BIN #= IDBIN #<=> B,
gen_matrix_bool1(RBINS, IDBIN, R).

common1([], _, [], 0).
common1([V|R], VARS2, [LINE|S], SB+T) :-

common2(VARS2, V, LINE, SUM),
call(SUM #> 0 #<=> SB),
common1(R, VARS2, S, T).

common2([], _, [], 0).
common2([U|R], V, [B|S], B+T) :-

U #= V #<=> B,
common2(R, V, S, T).

gen_cum_tasks([], [], [], [], _, []).
gen_cum_tasks([O|RO], [D|RD], [E|RE], [H|RH],

T, [task(O,D,E,H,T)|R]) :-
T1 is T+1,
gen_cum_tasks(RO, RD, RE, RH, T1, R).

k_ary_tree([], _, _, _).
k_ary_tree([J|R], INDEXES, SUCCS, K) :-

k_ary_tree1(INDEXES, SUCCS, J, Term),
call(Term #=< K),
k_ary_tree(R, INDEXES, SUCCS, K).

k_ary_tree1([], [], _, 0).
k_ary_tree1([I|S], [S_I|R], J, B_IJ+T) :-

S_I #= J #/\ I #\= J #<=> B_IJ,
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k_ary_tree1(S, R, J, T).

ori_dur_end([], [], []).
ori_dur_end([O|RO], [D|RD], [E|RE]) :-

O + D #= E,
ori_dur_end(RO, RD, RE).

ori_end([], []).
ori_end([O|RO], [E|RE]) :-

O #=< E,
ori_end(RO, RE).

link_index_to_attribute([], [], _, _).
link_index_to_attribute([ID|RID], [ATT|RATT], Vi, Ai) :-

Vi #= ID #<=> Ai #= ATT,
link_index_to_attribute(RID, RATT, Vi, Ai).

get_sliding_prod([], _, []).
get_sliding_prod([V|R], P, [P|S]) :-

Q is V*P,
get_sliding_prod(R, Q, S).

get_min_list_list_dvar([], []).
get_min_list_list_dvar([L|R], [Min|S]) :-

get_min_list_dvar(L, _, Min),
get_min_list_list_dvar(R, S).

get_min_list_dvar([], Min, Min).
get_min_list_dvar([V|R], Cur, Min) :-

fd_min(V, Vmin),
(integer(Cur) -> Next is min(Cur,Vmin) ; Next = Vmin),
get_min_list_dvar(R, Next, Min).

get_max_list_list_dvar([], []).
get_max_list_list_dvar([L|R], [Min|S]) :-

get_max_list_dvar(L, _, Min),
get_max_list_list_dvar(R, S).

get_max_list_dvar([], Max, Max).
get_max_list_dvar([V|R], Cur, Max) :-

fd_max(V, Vmax),
(integer(Cur) -> Next is max(Cur,Vmax) ; Next = Vmax),
get_max_list_dvar(R, Next, Max).

get_ranges([], [], []).
get_ranges([A|R], [B|S], [C|T]) :-
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C is B-A+1,
get_ranges(R, S, T).

create_matrix(N, Inf, Sup, MB) :-
length(MB, N),
create_matrix1(MB, N, Inf, Sup).

create_matrix1([], _, _, _).
create_matrix1([L|R], N, Inf, Sup) :-

length(L, N),
domain(L, Inf, Sup),
create_matrix1(R, N, Inf, Sup).

count_relop(= , NIN, LIMIT, FLAG) :- NIN #= LIMIT #<=> FLAG.
count_relop(=\=, NIN, LIMIT, FLAG) :- NIN #\= LIMIT #<=> FLAG.
count_relop(< , NIN, LIMIT, FLAG) :- NIN #< LIMIT #<=> FLAG.
count_relop(>= , NIN, LIMIT, FLAG) :- NIN #>= LIMIT #<=> FLAG.
count_relop(> , NIN, LIMIT, FLAG) :- NIN #> LIMIT #<=> FLAG.
count_relop(=< , NIN, LIMIT, FLAG) :- NIN #=< LIMIT #<=> FLAG.

used_by_reified([], _, _).
used_by_reified([V|R], VARS1, VARS2) :-

used_by_reified1(VARS1, V, Term1),
used_by_reified1(VARS2, V, Term2),
call(Term1 #>= Term2),
used_by_reified(R, VARS1, VARS2).

used_by_reified1([], _, 0).
used_by_reified1([U|R], V, B+T) :-

U #= V #<=> B,
used_by_reified1(R, V, T).

remove_duplicates([], []).
remove_duplicates([X|R], S) :-

member(X, R), !,
remove_duplicates(R, S).

remove_duplicates([X|R], [X|S]) :-
remove_duplicates(R, S).

gcc_no_loop1([], _, 0).
gcc_no_loop1([VAR|RVAR], J, BJ+S) :-

BJ #<=> VAR #= J,
J1 is J+1,
gcc_no_loop1(RVAR, J1, S).

gcc_no_loop2(J, N, _, [], _, 0) :-
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J > N, !.
gcc_no_loop2(J, N, I, [VAR|RVAR], VAL, BIJ+S) :-

J =< N,
J =\= I, !,
BIJ #<=> VAR #= VAL,
J1 is J+1,
gcc_no_loop2(J1, N, I, RVAR, VAL, S).

gcc_no_loop2(J, N, I, [_|RVAR], VAL, 0+S) :-
J =< N,
J = I,
J1 is J+1,
gcc_no_loop2(J1, N, I, RVAR, VAL, S).

%% cond_lex/5 is used in order to state automata associated to constraints
%% cond_lex_greatereq, cond_lex_greater, cond_lex_lesseq and cond_lex_less.
%% cond_lex/3 is used in order to state the automaton associated to
%% constraint cond_lex_cost.
cond_lex(VECTOR1, VECTOR2, PREFERENCE_TABLE, O1, O2) :-

cond_lex_signature(VECTOR1, VECT1),
cond_lex_signature(VECTOR2, VECT2),

% from each item extract a tuple of values
% and add key at the end

gen_tuples(PREFERENCE_TABLE, 1, T1),
% sort in lexicographic order

sort(T1, T2),
% to each tuple of value add state variables

gen_tuples_var(T2, T3),
% get arity of the tuples

T1 = [T|_], functor(T, _, N),
retractall(num_state(_)),

% initial state number minus 1
assert(num_state(0)),

% fix the states variables
gen_state(1, N, T3),

% get last state
num_state(LastS),

% generate the list of states of the automaton
gen_states(0, LastS, States),

% generate the list of transitions of the automaton
gen_transitions(1, N, T3, Transitions),

% get number of tuples of preference table
length(PREFERENCE_TABLE, NbTuples),

% O1 indicates position of tuple for VECTOR1
% O2 indicates position of tuple for VECTOR2

domain([O1,O2], 1, NbTuples),
% build signature variables for automaton for O1
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append(VECT1,[O1],VECTOR_O1),
% build signature variables for automaton for O2

append(VECT2,[O2],VECTOR_O2),
% state automaton that computes O1

automaton(VECTOR_O1, _,
VECTOR_O1,
States,
Transitions,
[], [], []),

% state automaton that computes O2
automaton(VECTOR_O2, _,

VECTOR_O2,
States,
Transitions,
[], [], []).

cond_lex(VECTOR, PREFERENCE_TABLE, O) :-
cond_lex_signature(VECTOR, VECT),

% from each item extract a tuple of values
% and add key at the end

gen_tuples(PREFERENCE_TABLE, 1, T1),
% sort in lexicographic order

sort(T1, T2),
% to each tuple, add state variables

gen_tuples_var(T2, T3),
% get arity of the tuples

T1 = [T|_], functor(T, _, N),
retractall(num_state(_)),

% initial state number minus 1
assert(num_state(0)),

% fix the states variables
gen_state(1, N, T3),

% get last state
num_state(LastS),

% generate states of the automaton
gen_states(0, LastS, States),

% generate transitions of the automaton
gen_transitions(1, N, T3, Transitions),

% get number of tuples of preference table
length(PREFERENCE_TABLE, NbTuples),

% O is position of tuple for VECTOR
domain([O], 1, NbTuples),

% build signature for automaton computing O
append(VECT,[O],VECTOR_O),

% state automaton that computes O
automaton(VECTOR_O, _,
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VECTOR_O,
States,
Transitions,
[], [], []).

cond_lex_signature([], []).
cond_lex_signature([[var-VAR]|R], [VAR|S]) :-

cond_lex_signature(R, S).

gen_tuples([], _, []).
gen_tuples([[_-X]|Y], I, [U|V]) :-

gen_tuple(X, I, U),
J is I + 1,
gen_tuples(Y, J, V).

gen_tuple(X, I, U) :-
gen_tup(X, Y),
append(Y, [I], Y1),
append([t], Y1, Z),
U =.. Z.

gen_tup([], []).
gen_tup([[_-I]|R], [I|S]) :-

gen_tup(R, S).

gen_tuples_var([], []).
gen_tuples_var([A|B], [C|D]) :-

A =.. LA,
LA = [TA|RA],
add_var_to_list_elem(RA, RC),
LC = [TA|RC],
C =.. LC,
gen_tuples_var(B, D).

add_var_to_list_elem([], []).
add_var_to_list_elem([A|RA], [A-_|R]) :-

add_var_to_list_elem(RA, R).

gen_state(I, N, L) :-
I < N, !,
gen_state1(L, [], I, 1, 1),
J is I + 1,
gen_state(J, N, L).

gen_state(N, N, L) :-
gen_state1(L, [], N, 1, 0).
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gen_state1([], _, _, _, _) :- !.
gen_state1([F|R], [], I, Inc, Inc1) :- !,

arg(I, F, FI),
FI = _-S1,
num_state(S),
S1 is S + Inc,
retract(num_state(S)),
assert(num_state(S1)),
gen_state1(R, F, I, Inc1, Inc1).

gen_state1([F|R], P, I, Inc, Inc1) :-
arg(I, F, FI),
arg(I, P, PI),
FI = VI-SI1,
PI = UI-_,
UI =\= VI, !,
num_state(SI),
SI1 is SI + Inc,
retract(num_state(SI)),
assert(num_state(SI1)),
gen_state1(R, F, I, Inc1, Inc1).

gen_state1([F|R], P, I, Inc, Inc1) :-
I > 1,
J is I - 1,
arg(J, F, FJ),
arg(J, P, PJ),
FJ = _-SJ,
PJ = _-RJ,
SJ =\= RJ, !,
arg(I, F, FI),
FI = _-SI1,
num_state(SI),
SI1 is SI + Inc,
retract(num_state(SI)),
assert(num_state(SI1)),
gen_state1(R, F, I, Inc1, Inc1).

gen_state1([F|R], _, I, _, Inc1) :-
arg(I, F, FI),
FI = _-SI,
num_state(SI),
gen_state1(R, F, I, Inc1, Inc1).

gen_states(0, J, [source(0)|R]) :- !,
gen_states(1, J, R).

gen_states(I, J, R /*[node(I)|R]*/) :-
I > 0,
I < J, !,
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I1 is I + 1,
gen_states(I1, J, R).

gen_states(J, J, [sink(J)]) :-
J > 0.

gen_transitions(I, N, L, T) :-
I =< N, !,
gen_transitions1(L, [], I, T1),
J is I + 1,
gen_transitions(J, N, L, T2),
append(T1, T2, T).

gen_transitions(I, N, _, []) :-
I > N.

gen_transitions1([F|R], [], 1, [arc(0,V1,S1)|Rarc]) :- !,
arg(1, F, F1),
F1 = V1-S1,
gen_transitions1(R, F, 1, Rarc).

gen_transitions1([F|R], [], I, [arc(SJ,VI,SI)|Rarc]) :-
I > 1, !,
J is I - 1,
arg(J, F, FJ),
arg(I, F, FI),
FJ = _-SJ,
FI = VI-SI,
gen_transitions1(R, F, I, Rarc).

gen_transitions1([F|R], P, I, [arc(SJ,VI,SI)|Rarc]) :-
arg(I, F, FI),
arg(I, P, PI),
FI = VI-SI,
PI = UI-RI,
(SI =\= RI -> true ; VI=\=UI), !,
(I=1 -> SJ=0 ; J is I-1, arg(J,F,FJ), FJ=_-SJ),
gen_transitions1(R, F, I, Rarc).

gen_transitions1([F|R], _, I, Rarc) :- !,
gen_transitions1(R, F, I, Rarc).

gen_transitions1([], _, _, []).

sliding_time_window1([], [], _, _, _, _, _).
sliding_time_window1([Oi|RO], [Di|RD], I, ORIGINS, DURATIONS,

WINDOW_SIZE, LIMIT) :-
sliding_time_window2(ORIGINS, DURATIONS, 1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM_INTER),
call(SUM_INTER #=< LIMIT),
I1 is I+1,
sliding_time_window1(RO, RD, I1, ORIGINS, DURATIONS,
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WINDOW_SIZE, LIMIT).

sliding_time_window2([], [], _, _, _, _, _, _, 0) :- !.
sliding_time_window2([_|RO], [_|RD], J, Oi, Di, I,

WINDOW_SIZE, LIMIT, min(Di,WINDOW_SIZE)+SUM) :-
I = J, !,
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).
sliding_time_window2([Oj|RO], [Dj|RD], J, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM) :-
I =\= J,
fd_max(Oj, MaxOj),
fd_max(Dj, MaxDj),
fd_min(Oi, MinOi),
MaxEj is MaxOj+MaxDj,
MaxEj < MinOi, !,
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).
sliding_time_window2([Oj|RO], [_Dj|RD], J, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM) :-
I =\= J,
fd_min(Oj,MinOj),
fd_max(Oi,MaxOi),
E is MaxOi+WINDOW_SIZE-1,
MinOj > E, !,
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).
sliding_time_window2([Oj|RO], [Dj|RD], J, Oi, Di, I, WINDOW_SIZE, LIMIT,

max(0,min(Oi+WINDOW_SIZE,Oj+Dj)-max(Oi,Oj))+SUM) :-
J1 is J+1,
sliding_time_window2(RO, RD, J1, Oi, Di, I,

WINDOW_SIZE, LIMIT, SUM).

gen_automaton_state(ATOM, I, J, STATE) :-
number_codes(I, ICODE), atom_codes(IATOM, ICODE),
number_codes(J, JCODE), atom_codes(JATOM, JCODE),
atom_concat(ATOM, ’_’, SH),
atom_concat(SH, IATOM, SI),
atom_concat(SI, ’_’, SJ),
atom_concat(SJ, JATOM, STATE).

check_lesseq([], []).
check_lesseq([U|R], [V|S]) :-
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U #=< V,
check_lesseq(R, S).

get_sum([], 0).
get_sum([V|R], S) :-

get_sum(R, T),
S is V+T.

build_sum_squares_int([V|R], CUR, RES) :- !,
NEXT is V*V+CUR,
build_sum_squares_int(R, NEXT, RES).

build_sum_squares_int([], RES, RES).

build_sum_var([], 0).
build_sum_var([V|R], V+S) :-

build_sum_var(R, S).

build_sum_squares_var([], 0).
build_sum_squares_var([V|R], V*V+S) :-

build_sum_squares_var(R, S).

build_sum_cubes_var([], 0).
build_sum_cubes_var([V|R], V*V*V+S) :-

build_sum_cubes_var(R, S).

build_sum_powers4_var([], 0).
build_sum_powers4_var([V|R], V*V*V*V+S) :-

build_sum_powers4_var(R, S).

build_sum_powers5_var([], 0).
build_sum_powers5_var([V|R], V*V*V*V*V+S) :-

build_sum_powers5_var(R, S).

build_sum_powers6_var([], 0).
build_sum_powers6_var([V|R], V*V*V*V*V*V+S) :-

build_sum_powers6_var(R, S).

build_prod_var([], 1).
build_prod_var([V|R], V*S) :-

build_prod_var(R, S).

build_sliding_sums([], _, []).
build_sliding_sums([V|R], P, [PV|S]) :-

PV #= P+V,
build_sliding_sums(R, PV, S).
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period1(0, _, []) :- !.
period1(P, L, [R|S]) :-

P > 0,
period2(L, 0, P, R),
P1 is P-1,
period1(P1, L, S).

period2([], _, 0, []) :- !.
period2([], I, P, [[]|R]) :-

P > 0,
P1 is P-1,
period2([], I, P1, R).

period2([X|Y], I, P, R) :-
I1 is (I+1) mod P,
period2(Y, I1, P, S),
period3(X, I, S, R).

period3(X, 0, [U|V], [W|V]) :- !,
append([X], U, W).

period3(X, I, [U|V], [U|W]) :-
I > 0,
I1 is I-1,
period3(X, I1, V, W).

period4([], _, _, []).
period4([L|LL], Z, CTR, [B|S]) :-

period5(L, Z, CTR, R),
call(R #<=> B),
period4(LL, Z, CTR, S).

period5([], _, _, 1).
period5([L|R], Z, CTR, T #/\ S) :-

period6(L, Z, CTR, T),
period5(R, Z, CTR, S).

period6([], _, _, 1) :- !.
period6([_], _, _, 1) :- !.
period6([X,Y|R], 1, =, X#=Y #/\ S) :- !,

period6([Y|R], 1, =, S).
period6([X,Y|R], 1, =\=, X#\=Y #/\ S) :- !,

period6([Y|R], 1, =\=, S).
period6([X,Y|R], 1, <, X#<Y #/\ S) :- !,

period6([Y|R], 1, <, S).
period6([X,Y|R], 1, >=, X#>=Y #/\ S) :- !,

period6([Y|R], 1, >=, S).
period6([X,Y|R], 1, >, X#>Y #/\ S) :- !,
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period6([Y|R], 1, >, S).
period6([X,Y|R], 1, =<, X#=<Y #/\ S) :- !,

period6([Y|R], 1, =<, S).
period6([X,Y|R], 0, =, (X#=0 #\/ Y#=0 #\/ X#=Y) #/\ S) :- !,

period6([Y|R], 0, =, S).
period6([X,Y|R], 0, =\=, (X#=0 #\/ Y#=0 #\/ X#\=Y) #/\ S) :- !,

period6([Y|R], 0, =\=, S).
period6([X,Y|R], 0, <, (X#=0 #\/ Y#=0 #\/ X#<Y) #/\ S) :- !,

period6([Y|R], 0, <, S).
period6([X,Y|R], 0, >=, (X#=0 #\/ Y#=0 #\/ X#>=Y) #/\ S) :- !,

period6([Y|R], 0, >=, S).
period6([X,Y|R], 0, >, (X#=0 #\/ Y#=0 #\/ X#>Y) #/\ S) :- !,

period6([Y|R], 0, >, S).
period6([X,Y|R], 0, =<, (X#=0 #\/ Y#=0 #\/ X#=<Y) #/\ S) :- !,

period6([Y|R], 0, =<, S).
period6([X,Y|R], 2, CTRS, Term #/\ S) :- !,

build_vectors_compare(X, Y, CTRS, Term),
period6([Y|R], 2, CTRS, S).

period7([], _, _, _, 0).
period7([B|R], I, P, N, (N #/\ B #/\ P#=I) #\/ S) :- !,

I1 is I+1,
period7(R, I1, P, N #/\ #\B, S).

build_vectors_compare([], [], [], 1) :- !.
build_vectors_compare([X|RX], [Y|RY], [=|RCTR], X#=Y #/\ R) :-

build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [=\=|RCTR], X#\=Y #/\ R) :-

build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [<|RCTR], X#<Y #/\ R) :-

build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [>=|RCTR], X#>=Y #/\ R) :-

build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [>|RCTR], X#>Y #/\ R) :-

build_vectors_compare(RX, RY, RCTR, R).
build_vectors_compare([X|RX], [Y|RY], [=<|RCTR], X#=<Y #/\ R) :-

build_vectors_compare(RX, RY, RCTR, R).

build_vectors_compare_change([], [], [], 0) :- !.
build_vectors_compare_change([X|RX], [Y|RY], [=|RCTR], X#=Y #\/ R) :- !,

build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [=\=|RCTR], X#\=Y #\/ R) :- !,

build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [<|RCTR], X#<Y #\/ R) :- !,

build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [>=|RCTR], X#>=Y #\/ R) :- !,
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build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [>|RCTR], X#>Y #\/ R) :- !,

build_vectors_compare_change(RX, RY, RCTR, R).
build_vectors_compare_change([X|RX], [Y|RY], [=<|RCTR], X#=<Y #\/ R) :- !,

build_vectors_compare_change(RX, RY, RCTR, R).

geost_dims(D, D, [D]) :- !.
geost_dims(D, K, [D|R]) :-

D < K,
D1 is D+1,
geost_dims(D1, K, R).

geost1([], [], [], []).
geost1([OID|R], [SID|S], [X|T], [object(OID,SID,X)|U]) :-

geost1(R, S, T, U).

geost2([], [], [], []).
geost2([SID|R], [T|S], [L|U], [sbox(SID,T,L)|V]) :-

geost2(R, S, U, V).

bin_packing1([], _, []).
bin_packing1([[_-B,_-W]|R], I, [task(B,1,B1,W,I)|RT]) :-

I1 is I+1,
B1 #= B+1,
bin_packing1(R, I1, RT).

nvector_common(NVEC, VECTORS) :-
vectors_convert_to_vars(VECTORS, VARS),
nvalue(NVEC, VARS).

vectors_convert_to_vars(VECTORS, VARS) :-
get_col_attr1(VECTORS, 1, VECTS),
transpose(VECTS, TVECTS),
get_min_list_list_dvar(TVECTS, MINS),
get_max_list_list_dvar(TVECTS, MAXS),
get_ranges(MINS, MAXS, RANGES),
reverse(RANGES, RRANGES),
get_sliding_prod(RRANGES, 1, PRODS),
reverse(MINS, RMINS),
nvector_common1(VECTS, RMINS, PRODS, VARS).

nvector_common1([], _, _, []).
nvector_common1([VECT|R], RMINS, PRODS, [V|S]) :-

reverse(VECT, RVECT),
nvector_common2(RVECT, RMINS, PRODS, Term),
call(V #= Term),
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nvector_common1(R, RMINS, PRODS, S).

nvector_common2([], _, _, 0).
nvector_common2([V|R], [MIN|S], [PROD|T], PROD*V-Q+E) :-

Q is PROD*MIN,
nvector_common2(R, S, T, E).

stretch_lmin([], []) :- !.
stretch_lmin([0|R], [1|S]) :- !,

stretch_lmin(R, S).
stretch_lmin([L|R], [L|S]) :-

L > 0,
stretch_lmin(R, S).

stretch_reduce_lmax([], _, []).
stretch_reduce_lmax([L|R], N, [M|S]) :-

M is min(L,N),
stretch_reduce_lmax(R, N, S).

stretch_gen_states([], [], _, _, [sink(s),source(s)]).
stretch_gen_states([LMIN|LMINs], [LMAX|LMAXs], NVAR, I, STATES) :-

LMIN =< LMAX,
( LMIN =< 1, LMAX >= NVAR -> STATES1 = []
; stretch_gen_states1(LMIN, LMAX, I, STATES1)
),
I1 is I+1,
stretch_gen_states(LMINs, LMAXs, NVAR, I1, STATES2),
append(STATES1, STATES2, STATES).

stretch_gen_states1(LCUR, LMAX, _, []) :-
LCUR > LMAX, !.

stretch_gen_states1(LCUR, LMAX, I, [sink(S)|R]) :-
LCUR =< LMAX,
gen_automaton_state(’s’,I,LCUR,S),
LCUR1 is LCUR+1,
stretch_gen_states1(LCUR1, LMAX, I, R).

stretch_gen_transitions(I, M, [], [], _, _, _, [arc(s,0,s)]) :-
I > M, !.

stretch_gen_transitions(I, M, [LMIN|LMINs], [LMAX|LMAXs],
LLMIN, LLMAX, NVAR, TRANSITIONS) :-

I =< M,
( LMIN =< 1, LMAX >= NVAR ->

T0 = [arc(s,I,s)],
LT1 = [],
LT2 = []
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; gen_automaton_state(’s’,I,1,S_I_1),
T0 = [arc(s,I,S_I_1)],
stretch_gen_transitions1(1, LMAX, LMIN, I, M, LLMIN, LLMAX, NVAR, LT1),
LMAX1 is LMAX-1,
stretch_gen_transitions2(1, LMAX1, I, M, LT2)

),
I1 is I+1,
stretch_gen_transitions(I1, M, LMINs, LMAXs, LLMIN, LLMAX, NVAR, LT0),
append(T0, LT0, T1),
append(T1, LT1, T2),
append(T2, LT2, TRANSITIONS).

stretch_gen_transitions1(J, LMAX, _, _, _, _, _, _, []) :-
J > LMAX, !.

stretch_gen_transitions1(J, LMAX, LMIN, I, M, LLMIN,
LLMAX, NVAR, TRANSITIONS) :-

J =< LMAX,
gen_automaton_state(’s’,I,J,S_I_J),
( J >= LMIN
-> stretch_gen_transitions11(1, M, I, J, LLMIN, LLMAX, NVAR, LT1)
; LT1 = []
),
J1 is J+1,
stretch_gen_transitions1(J1, LMAX, LMIN, I, M, LLMIN, LLMAX, NVAR, LT0),
(J >= LMIN -> append([arc(S_I_J,0,s)], LT0, T1) ; T1 = LT0),
append(T1, LT1, TRANSITIONS).

stretch_gen_transitions11(K, M, _, _, _, _, _, []) :-
K > M, !.

stretch_gen_transitions11(K, M, I, J, [_|LMINs], [_|LMAXs], NVAR, R) :-
K = I, !,
K1 is K+1,
stretch_gen_transitions11(K1, M, I, J, LMINs, LMAXs, NVAR, R).

stretch_gen_transitions11(K, M, I, J, [LMIN|LMINs], [LMAX|LMAXs], NVAR,
[arc(S_I_J,K,S_K_1)|R]) :-

K =< M,
K =\= I,
gen_automaton_state(’s’,I,J,S_I_J),
( LMIN =< 1, LMAX >= NVAR ->

S_K_1 = ’s’
; gen_automaton_state(’s’,K,1,S_K_1)
),
K1 is K+1,
stretch_gen_transitions11(K1, M, I, J, LMINs, LMAXs, NVAR, R).
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stretch_gen_transitions2(J, LMAX, _, _, []) :-
J > LMAX, !.

stretch_gen_transitions2(J, LMAX, I, M, [arc(S_I_J,I,S_I_J1)|R]) :-
J =< LMAX,
gen_automaton_state(’s’,I,J,S_I_J),
J1 is J+1,
gen_automaton_state(’s’,I,J1,S_I_J1),
stretch_gen_transitions2(J1, LMAX, I, M, R).

symmetric_alldifferent0(NODES, SNODES) :-
symmetric_alldifferent0a(NODES, L),
sort(L, S),
symmetric_alldifferent0a(SNODES, S).

symmetric_alldifferent0a([], []).
symmetric_alldifferent0a([[index-INDEX,succ-SUCC]|R], [INDEX-SUCC|S]) :-

symmetric_alldifferent0a(R, S).

symmetric_alldifferent1([], _, _).
symmetric_alldifferent1([Si|RS], I, SUCCS) :-

symmetric_alldifferent2(SUCCS, 1, Si, I),
I1 is I+1,
symmetric_alldifferent1(RS, I1, SUCCS).

symmetric_alldifferent2([], _, _, _).
symmetric_alldifferent2([Sj|RS], J, Si, I) :-

Si #= J #<=> Sj #= I,
J1 is J+1,
symmetric_alldifferent2(RS, J1, Si, I).

symmetric_alldifferent_check([]) :- !.
symmetric_alldifferent_check([I-a(J),I-b(J)|R]) :- !,

I \== J,
symmetric_alldifferent_check(R).

symmetric_alldifferent_check([I-b(J),I-a(J)|R]) :-
I \== J,
symmetric_alldifferent_check(R).

derangement1([], []).
derangement1([S|R], [I|T]) :-

S #\= I,
derangement1(R, T).

derangement1_fix([], []).
derangement1_fix([S|R], [I|T]) :-

S =\= I,
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derangement1_fix(R, T).

incomparablec(U, V) :-
length(U, N),
length(V, N),
N > 1,
create_pairs(U, PU),
create_pairs(V, PV),
keysort(PU, SU),
keysort(PV, SV),
incomparablec1(SU, SV),
incomparablec1(SV, SU).

incomparablec1([U-_|_], [V-_|_]) :-
U > V, !.

incomparablec1([_|R], [_|S]) :-
incomparablec1(R, S).

differ_from_k_pos([], [], 0) :- !.
differ_from_k_pos([[_-V1]|R1], [[_-V2]|R2], B+R) :-

V1 #\= V2 #<=> B,
differ_from_k_pos(R1, R2, R).

create_vectors_vars([], _, _, _, []) :- !.
create_vectors_vars([VEC|R], MINS, MAXS, MAX_VAL1, [V|S]) :-

create_vector_var(VEC, MINS, MAXS, 1, Term),
V in 0..MAX_VAL1,
call(V #= Term),
create_vectors_vars(R, MINS, MAXS, MAX_VAL1, S).

create_vector_var([], [], [], _, 0) :- !.
create_vector_var([V|R], [Min|RMin], [Max|RMax], P, P*(V-Min)+T) :-

NewP is P*(Max-Min+1),
create_vector_var(R, RMin, RMax, NewP, T).

create_occ_vars(Val, LastVal, _, [], []) :-
Val > LastVal, !.

create_occ_vars(Val, LastVal, MAX, [Val-Occ|R], [Occ|S]) :-
Val =< LastVal,
Occ in 0..MAX,
NextVal is Val+1,
create_occ_vars(NextVal, LastVal, MAX, R, S).

create_nocc_vars(Val, LastVal, _, [], []) :-
Val > LastVal, !.

create_nocc_vars(Val, LastVal, MAX, [[val-Val,noccurrence-Occ]|R], [[var-Occ]|S]) :-
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Val =< LastVal,
Occ in 0..MAX,
NextVal is Val+1,
create_nocc_vars(NextVal, LastVal, MAX, R, S).

get_max_val_vec_vars([], [], M, M) :- !.
get_max_val_vec_vars([Min|RMin], [Max|RMax], C, M) :-

NewC is (Max-Min+1)*C,
get_max_val_vec_vars(RMin, RMax, NewC, M).

get_min_max_vectors([], _, _, MIN, MAX, MIN, MAX) :- !.
get_min_max_vectors([V|R], Flag, K, MIN, MAX, RES_MIN, RES_MAX) :-

get_min_max_vector(V, Flag, MIN, MAX, NEW_MIN, NEW_MAX),
get_min_max_vectors(R, 1, K, NEW_MIN, NEW_MAX, RES_MIN, RES_MAX).

get_min_max_vector([], _, [], [], [], []) :- !.
get_min_max_vector([V|R], Flag, [Min|RMin], [Max|RMax],

[MIN|RMIN], [MAX|RMAX]) :-
fd_min(V, MinV),
fd_max(V, MaxV),
(Flag = 1 -> MIN is min(Min, MinV) ; MIN is MinV),
(Flag = 1 -> MAX is max(Max, MaxV) ; MAX is MaxV),
get_min_max_vector(R, Flag, RMin, RMax, RMIN, RMAX).

get_max_occ_tuples_of_values([], _, M, M) :- !.
get_max_occ_tuples_of_values([T|R], Limit, CurMax, M) :-

get_max_occ_tuples_of_values1(R, T, NewR, 1, Count),
NewCurMax is max(CurMax, Count),
get_max_occ_tuples_of_values(NewR, Limit, NewCurMax, M).

get_max_occ_tuples_of_values1([], _, [], M, M) :- !.
get_max_occ_tuples_of_values1([T|R], T, NewR, CurMax, M) :- !,

NewCurMax is CurMax+1,
get_max_occ_tuples_of_values1(R, T, NewR, NewCurMax, M).

get_max_occ_tuples_of_values1(L, _, L, M, M).

generate_subtuples([], _, _, []) :- !.
generate_subtuples([Tuple|R], K, SortFlag, Result) :-

( SortFlag = 1
-> Tuple=[Atom-T],

sort(T, ST),
length(T, N),
length(ST, N),
STuple=[Atom-ST]

; STuple = Tuple
),
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gen_subtuples(STuple, K, SubTuples1),
generate_subtuples(R, K, SortFlag, SubTuples2),
append(SubTuples1, SubTuples2, Result).

gen_subtuples([_-Tuple], K, Result) :-
length(Tuple, Len),
findall(SubTuples, gen_sub_tuples(Tuple, Len, K, SubTuples), Result).

gen_sub_tuples(_, _, 0, []).
gen_sub_tuples([[_-V]|R], Len, K, [V|S]) :-

K > 0,
Len > K,
K1 is K-1,
Len1 is Len-1,
gen_sub_tuples(R, Len1, K1, S).

gen_sub_tuples([_|R], Len, K, S) :-
K > 0,
Len > K,
Len1 is Len-1,
gen_sub_tuples(R, Len1, K, S).

gen_sub_tuples(L, Len, Len, RES) :-
Len > 0,
remove_key_from_col(L, RES).

lex_chain_lesseq_c1([]) :- !.
lex_chain_lesseq_c1([_]) :- !.
lex_chain_lesseq_c1([VECT1,VECT2|R]) :-

lex_lesseq_c1(VECT1, VECT2),
lex_chain_lesseq_c1([VECT2|R]).

lex_lesseq_c1([], []) :- !.
lex_lesseq_c1([V|R], [V|S]) :- !,

lex_lesseq_c1(R, S).
lex_lesseq_c1([V1|_], [V2|_]) :-

V1 < V2.

lex_chain_less_c1([]) :- !.
lex_chain_less_c1([_]) :- !.
lex_chain_less_c1([VECT1,VECT2|R]) :-

lex_less_c1(VECT1, VECT2),
lex_chain_less_c1([VECT2|R]).

lex_less_c1([V|R], [V|S]) :- !,
lex_less_c1(R, S).

lex_less_c1([V1|_], [V2|_]) :-
V1 < V2.
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lex_alldifferent_density(0, []) :- !.
lex_alldifferent_density(Density, VECTORS) :-

length(VECTORS, Needed),
VECTORS = [[vec-VECTOR]|_],
length(VECTOR, C),
length(LMin, C),
length(LMax, C),
get_min_max_vectors_components(VECTORS, LMin, LMax, Min, Max),
compute_product_availabel(Min, Max, 1, Available),
(all_vectors_sorted(VECTORS) -> Div = 2 ; Div = 1),
Density is Needed/(Available/Div).

get_min_max_vectors_components([], Min, Max, Min, Max) :- !.
get_min_max_vectors_components([[_-V]|R], LMin, LMax, Min, Max) :-

get_min_max_vector_component(V, LMin, LMax, NMin, NMax),
get_min_max_vectors_components(R, NMin, NMax, Min, Max).

get_min_max_vector_component([], [], [], [], []) :- !.
get_min_max_vector_component([[_-I]|R], [Min|S], [Max|T],

[NewMin|U], [NewMax|V]) :-
(var(Min) -> NewMin is I ; NewMin is min(I,Min)),
(var(Max) -> NewMax is I ; NewMax is max(I,Max)),
get_min_max_vector_component(R, S, T, U, V).

compute_product_availabel([], [], A, A) :- !.
compute_product_availabel([Min|R], [Max|S], Cur, Res) :-

NewCur is Cur*(Max-Min+1),
compute_product_availabel(R, S, NewCur, Res).

all_vectors_sorted([]) :- !.
all_vectors_sorted([[vec-V]|R]) :-

vector_sorted(V),
all_vectors_sorted(R).

vector_sorted([]) :- !.
vector_sorted([_]) :- !.
vector_sorted([[var-C],[var-D]|R]) :-

C =< D,
vector_sorted([[var-D]|R]).

zero_vector([]) :- !.
zero_vector([[var-0]|R]) :-

zero_vector(R).

not_zero_vector([]) :- !.
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not_zero_vector([[var-V]|R]) :-
V =\= 0,
not_zero_vector(R).

count_zeros_in_vectors([], Zeros, Zeros) :- !.
count_zeros_in_vectors([[vec-V]|R], Cur, Res) :-

count_zeros_in_vector(V, Cur, Next),
count_zeros_in_vectors(R, Next, Res).

count_zeros_in_vector([], Zeros, Zeros) :- !.
count_zeros_in_vector([[var-V]|R], Cur, Res) :-

(V = 0 -> Next is Cur+1 ; Next is Cur),
count_zeros_in_vector(R, Next, Res).

group_convert([], [], [], _).
group_convert([V|R], [B|S], [NB|T], VALS) :-

( memberchk(V, VALS) ->
B = 1, NB = 0

; B = 0, NB = 1
),
group_convert(R, S, T, VALS).

nvisible_from_start(s, [Vi|R], _, _, N) :- !,
nvisible_from_start(t, R, Vi, 1, N).

nvisible_from_start(t, [Vi|R], M, C, N) :-
M < Vi, !,
C1 is C+1,
nvisible_from_start(t, R, Vi, C1, N).

nvisible_from_start(t, [Vi|R], M, C, N) :-
M >= Vi, !,
nvisible_from_start(t, R, M, C, N).

nvisible_from_start(_, [], _, N, N).

length_first_eq_sequence([V,V|R], C, LEN) :- !,
C1 is C+1,
length_first_eq_sequence([V|R], C1, LEN).

length_first_eq_sequence(_, LEN, LEN).

change_eq_c([V,V|R], C, NCHANGE) :- !,
C1 is C+1,
change_eq_c([V|R], C1, NCHANGE).

change_eq_c([_,V|R], C, NCHANGE) :- !,
change_eq_c([V|R], C, NCHANGE).

change_eq_c(_, NCHANGE, NCHANGE).

change_neq_c([V,V|R], C, NCHANGE) :- !,
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change_neq_c([V|R], C, NCHANGE).
change_neq_c([_,V|R], C, NCHANGE) :- !,

C1 is C+1,
change_neq_c([V|R], C1, NCHANGE).

change_neq_c(_, NCHANGE, NCHANGE).

change_lt_c([V1,V2|R], C, NCHANGE) :-
V1 < V2, !,
C1 is C+1,
change_lt_c([V2|R], C1, NCHANGE).

change_lt_c([_,V|R], C, NCHANGE) :- !,
change_lt_c([V|R], C, NCHANGE).

change_lt_c(_, NCHANGE, NCHANGE).

change_geq_c([V1,V2|R], C, NCHANGE) :-
V1 >= V2, !,
C1 is C+1,
change_geq_c([V2|R], C1, NCHANGE).

change_geq_c([_,V|R], C, NCHANGE) :- !,
change_geq_c([V|R], C, NCHANGE).

change_geq_c(_, NCHANGE, NCHANGE).

change_gt_c([V1,V2|R], C, NCHANGE) :-
V1 > V2, !,
C1 is C+1,
change_gt_c([V2|R], C1, NCHANGE).

change_gt_c([_,V|R], C, NCHANGE) :- !,
change_gt_c([V|R], C, NCHANGE).

change_gt_c(_, NCHANGE, NCHANGE).

change_leq_c([V1,V2|R], C, NCHANGE) :-
V1 =< V2, !,
C1 is C+1,
change_leq_c([V2|R], C1, NCHANGE).

change_leq_c([_,V|R], C, NCHANGE) :- !,
change_leq_c([V|R], C, NCHANGE).

change_leq_c(_, NCHANGE, NCHANGE).

max_nvalue_seq_size([], C, _, Best, Res) :- !,
Res is max(C,Best).

max_nvalue_seq_size([V|R], C, V, Best, Res) :- !,
C1 is C+1,
max_nvalue_seq_size(R, C1, V, Best, Res).

max_nvalue_seq_size([V|R], C, Prev, Best, Res) :-
C > 0,
V =\= Prev,
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NewBest is max(C,Best),
max_nvalue_seq_size(R, 1, V, NewBest, Res).

pair_signature([], []) :- !.
pair_signature([_], []) :- !.
pair_signature([[var-VAR1],[var-VAR2]|VARs], [S|Ss]) :-

S in 0..2,
VAR1 #< VAR2 #<=> S #= 0,
VAR1 #= VAR2 #<=> S #= 1,
VAR1 #> VAR2 #<=> S #= 2,
pair_signature([[var-VAR2]|VARs], Ss).

pair_first_signature([], []) :- !.
pair_first_signature([_], []) :- !.
pair_first_signature([[var-VAR1],[var-VAR2]|VARs], [VAR1|Rs]) :-

pair_first_signature([[var-VAR2]|VARs], Rs).

pair_first_last_signature([[var-LastVAR]], [], LastVAR) :- !.
pair_first_last_signature([[var-VAR1],[var-VAR2]|VARs],

[VAR1|Rs], LastVAR) :-
pair_first_last_signature([[var-VAR2]|VARs], Rs, LastVAR).

pair_index_signature([], _, []) :- !.
pair_index_signature([_], _, []) :- !.
pair_index_signature([[var-_VAR1],[var-VAR2]|VARs], I, [I|Is]) :-

I1 is I+1,
pair_index_signature([[var-VAR2]|VARs], I1, Is).

difference_decreasing_slope_signature([_], []) :- !.
difference_decreasing_slope_signature([[var-VAR1],[var-VAR2]|VARs],

[DIFFERENCE|RD]) :-
VAR1 #= DIFFERENCE + VAR2,
difference_decreasing_slope_signature([[var-VAR2]|VARs], RD).

difference_increasing_slope_signature([_], []) :- !.
difference_increasing_slope_signature([[var-VAR1],[var-VAR2]|VARs],

[DIFFERENCE|RD]) :-
VAR2 #= DIFFERENCE + VAR1,
difference_increasing_slope_signature([[var-VAR2]|VARs], RD).

balance1([], _, [], [], []) :- !.
balance1([I|V], N, [[val-I,noccurrence-O]|R], [[var-O]|T], [[var-O1]|U]) :-

O in 0..N,
O #= 0 #=> O1 #= N,
O #> 0 #=> O1 #= O,
balance1(V, N, R, T, U).
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balance2([], _, _, []) :- !.
balance2([V|R], N, VARS, [[var-O]|S]) :-

balance3(VARS, V, Term),
O in 1..N,
call(O #= Term),
balance2(R, N, VARS, S).

balance3([], _, 0) :- !.
balance3([U|R], V, B+S) :-

U #= V #<=> B,
balance3(R, V, S).

increasing_values([]) :- !.
increasing_values([_]) :- !.
increasing_values([U,V|R]) :-

U < V,
increasing_values([V|R]).

remove_value_from_vars([], _) :- !.
remove_value_from_vars([VAR|R], VAL) :-

VAR #\= VAL,
remove_value_from_vars(R, VAL).



3904 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE



Appendix C

Systems Correspondence Tables

3905



3906 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

C.1 From the Catalog to Choco
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Catalog Choco
ABS VALUE ABS

ALL EQUAL ATMOSTNVALUE

ALLDIFFERENT ALLDIFFERENT

AMONG AMONG

AMONG VAR AMONG

AND REIFIEDAND

ARITH EQ

NEQ

GEQ

GT

LEQ

LT

ATLEAST OCCURENCEMIN

ATMOST OCCURENCEMAX

ATMOST NVALUE ATMOSTNVALUE

BIN PACKING PACK

BIN PACKING CAPA PACK

CLAUSE AND REIFIEDAND

CLAUSE

CLAUSE OR REIFIEDOR

CLAUSE

COUNT OCCURENCE

CUMULATIVE CUMULATIVEMAX

CUMULATIVE TWO D GEOST

DECREASING INCREASINGNVALUE

DIFFN GEOST

DISJOINT TASKS DISJOINT

DISJUNCTIVE DISJUNCTIVE

DISTANCE DISTANCEEQ
DOMAIN MEMBER

DOMAIN CONSTRAINT DOMAINCHANNELING

ELEM NTH

ELEMENT NTH

ELEMENT MATRIX NTH

EQ EQ

EQ SET EQ

EQUIVALENT IFONLYIF

EXACTLY OCCURENCE

GEOST GEOST

GEOST TIME GEOST

GEQ GEQ

GLOBAL CARDINALITY GLOBALCARDINALITY

GLOBAL CARDINALITY LOW UP GLOBALCARDINALITY

GT GT

IMPLY REIFIEDLEFTIMP

IN MEMBER

IN INTERVAL MEMBER
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Catalog Choco
IN RELATION FEASPAIRAC

INFEASPAIRAC
RELATIONPAIRAC
FEASTUPLEAC
INFEASTUPLEAC
RELATIONTUPLEAC

IN SET MEMBER

INCREASING INCREASINGNVALUE

INCREASING NVALUE INCREASINGNVALUE

INVERSE INVERSECHANNELING

INVERSE OFFSET INVERSECHANNELING

INVERSE SET INVERSESET

LEQ LEQ

LEX BETWEEN LEXCHAINEQ

LEX CHAIN LESS LEXCHAIN

LEX CHAIN LESSEQ LEXCHAINEQ

LEX GREATER LEX

LEX GREATEREQ LEXEQ

LEX LESS LEX

LEX LESSEQ LEXEQ

LEX LESSEQ ALLPERM LEXIMIN

LT LT

MAXIMUM MAX

MINIMUM MIN

NAND CLAUSE

NEQ NEQ

NOR REIFIEDXNOR

NOT IN NOTMEMBER

OR REIFIEDOR

PROPER FOREST TREE

SCALAR PRODUCT EQUATION

SORT SORTING

STRETCH PATH STRETCHPATH

STRICTLY DECREASING INCREASINGNVALUE

STRICTLY INCREASING INCREASINGNVALUE

SUM CTR EQUATION

TREE TREE

XOR REIFIEDXOR
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http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
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C.2 From the Catalog to Gecode
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Catalog Gecode
ABS VALUE ABS

ALL EQUAL REL

ALLDIFFERENT LINEAR

ALLDIFFERENT CST LINEAR

AMONG COUNT

AMONG SEQ SEQUENCE

AMONG VAR COUNT

AND REL

ARITH REL

ATLEAST COUNT

ATLEAST

ATMOST COUNT

ATMOST

BIN PACKING BINPACKING

BIN PACKING CAPA BINPACKING

CIRCUIT CIRCUIT

CLAUSE AND CLAUSE

CLAUSE OR CLAUSE

COUNT COUNT

COUNTS COUNT

CUMULATIVE CUMULATIVE

CUMULATIVES CUMULATIVES

DECREASING REL

DIFFN NOOVERLAP

DISJUNCTIVE UNARY

DOMAIN DOM

DOMAIN CONSTRAINT CHANNEL

ELEM ELEMENT

ELEMENT ELEMENT

ELEMENT MATRIX ELEMENT

EQ REL

EQ SET REL

EQUIVALENT REL

EXACTLY COUNT

EXACTLY

GEQ REL

GLOBAL CARDINALITY COUNT

GT REL

IMPLY REL

IN REL

DOM

IN INTERVAL DOM

IN INTERVALS DOM

IN RELATION EXTENSIONAL

IN SET REL

DOM

INCREASING REL

INT VALUE PRECEDE PRECEDE

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
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Catalog Gecode
INT VALUE PRECEDE CHAIN PRECEDE

INVERSE CHANNEL

INVERSE OFFSET CHANNEL

LEQ REL

LEX GREATER REL

LEX GREATEREQ REL

LEX LESS REL

LEX LESSEQ REL

LINK SET TO BOOLEANS CHANNEL

LT REL

MAXIMUM MAX

MINIMUM MIN

NAND CLAUSE

NEQ REL

NOR CLAUSE

NOT ALL EQUAL REL

NOT IN REL

NVALUE NVALUES

NVALUES NVALUES

OR REL

ROOTS ROOTS

SCALAR PRODUCT LINEAR

SET VALUE PRECEDE PRECEDE

SORT SORTED

SORT PERMUTATION SORTED

STRICTLY DECREASING REL

STRICTLY INCREASING REL

SUM CTR LINEAR

SUM SET WEIGHTS

XOR REL

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
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C.3 From the Catalog to JaCoP

Catalog JaCoP
ALLDIFFERENT ALLDIFFERENT

ALLDIFF

ALLDISTINCT

AMONG AMONG

AMONG SEQ SEQUENCE

AMONG VAR AMONGVAR

AND ANDBOOL

ATLEAST COUNT

ATMOST COUNT

CIRCUIT CIRCUIT

COUNT COUNT

CUMULATIVE CUMULATIVE

DIFFN DIFF2
DIFF

DISJOINT

DISJOINTCONDITIONAL

DISTANCE DISTANCE

DISTANCE2
ELEM ELEMENT

ELEMENT ELEMENT

EQ XEQY

EQUIVALENT EQBOOL

EXACTLY COUNT

GEOST GEOST

GEOST TIME GEOST

GEQ XGTEQY

GLOBAL CARDINALITY GCC

GT XGTY

IMPLY IFTHENBOOL

IN IN

IN INTERVAL IN

IN INTERVALS IN

IN RELATION EXTENSIONALSUPPORTVA
EXTENSIONALSUPPORTMDD
EXTENSIONALSUPPORTSTR

LEQ XLTEQY

LT XLTY

MAXIMUM MAX

MINIMUM MIN

OR ORBOOL

POWER XEXPYEQZ

SCALAR PRODUCT SUMWEIGHT

STRETCH PATH STRETCH

XOR XORBOOL

http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
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C.4 From the Catalog to MiniZinc
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Catalog MiniZinc
ALL EQUAL ALL EQUAL

ALLDIFFERENT ALL DIFFERENT

ALLDIFFERENT EXCEPT 0 ALL DIFFERENT

AMONG AMONG

ATLEAST AT LEAST

ATMOST AT MOST

ATMOST1 AT MOST1
BIN PACKING BIN PACKING

BIN PACKING CAPA BIN PACKING CAPA

CIRCUIT CIRCUIT

COUNT COUNT EQ

COUNT GEQ

COUNT GT

COUNT LEQ

COUNT LT

COUNT NEQ

CUMULATIVE CUMULATIVE

DECREASING DECREASING

DIFFN DIFFN

DISJOINT DISJOINT

ELEMENT ELEMENT

EXACTLY EXACTLY

GLOBAL CARDINALITY GLOBAL CARDINALITY

GLOBAL CARDINALITY LOW UP GLOBAL CARDINALITY LOW UP

IN MEMBER

IN RELATION TABLE

INCREASING INCREASING

INT VALUE PRECEDE VALUE PRECEDE

INT VALUE PRECEDE CHAIN VALUE PRECEDE CHAIN

INVERSE INVERSE

INVERSE SET INVERSE SET

LEX2 LEX2
LEX GREATER LEX GREATER

LEX GREATEREQ LEX GREATEREQ

LEX LESS LEX LESS

LEX LESSEQ LEX LESSEQ

LINK SET TO BOOLEANS LINK SET TO BOOLEANS

MAXIMUM MAXIMUM

MINIMUM MINIMUM

NVALUE NVALUE

ROOTS ROOTS

SLIDING SUM SLIDING SUM

SORT SORT

STRICT LEX2 STRICT LEX2
SUM SUM PRED

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#all_equal
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#alldifferent
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#alldifferent_except_0
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#among
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_least
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_most
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_most1
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#bin_packing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#bin_packing_capa
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#circuit
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_eq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_geq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_gt
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_leq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_lt
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_neq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#cumulative
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#decreasing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#diffn
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#disjoint
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#element
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#exactly
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#global_cardinality
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#global_cardinality_low_up
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#member
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#table
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#increasing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#value_precede
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#value_precede_chain
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#inverse
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#inverse_set
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex2
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_greater
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_greatereq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_less
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex_lesseq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#link_set_to_booleans
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#maximum
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#minimum
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#nvalue
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#roots
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#sliding_sum
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#sort
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#strict_lex2
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#sum_pred
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C.5 From the Catalog to SICStus
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Catalog SICStus
ALLDIFFERENT ALL DIFFERENT

ALL DISTINCT

AND #/\
ARITH #<

#=<
#>
#>=
#=
#\=

ATLEAST COUNT

ATMOST COUNT

CIRCUIT CIRCUIT

COUNT COUNT

CUMULATIVE CUMULATIVE

CUMULATIVES CUMULATIVES

DOMAIN DOMAIN

DOMAIN CONSTRAINT IN

IN SET

ELEM ELEMENT

ELEMENT ELEMENT

EQ #=
EQUIVALENT #<=>
EXACTLY COUNT

GEOST GEOST

GEQ #>=
GLOBAL CARDINALITY GLOBAL CARDINALITY

GLOBAL CARDINALITY WITH COSTS GLOBAL CARDINALITY

GT #>
IMPLY #=>
IN IN

IN SET

IN INTERVAL IN

IN INTERVALS IN

IN RELATION CASE

RELATION

TABLE

INVERSE ASSIGNMENT

LEQ #=<
LEX BETWEEN LEX CHAIN

LEX CHAIN LESS LEX CHAIN

LEX CHAIN LESSEQ LEX CHAIN

LEX GREATER LEX CHAIN

LEX GREATEREQ LEX CHAIN

LEX LESS LEX CHAIN

LEX LESSEQ LEX CHAIN

LT #<
MAXIMUM MAXIMUM

MINIMUM MINIMUM

http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Graph-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Scheduling-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Scheduling-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Placement-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Membership-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Extensional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
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Catalog SICStus
MINIMUM WEIGHT ALLDIFFERENT ALL DIFFERENT

ALL DISTINCT

NAND #/\
NEQ #\=
NOR #\/
NVALUE NVALUE

OR #\/
SCALAR PRODUCT SCALAR PRODUCT

SORT SORTING

SORT PERMUTATION SORTING

SUM CTR SCALAR PRODUCT

XOR #\

http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic_002dLogical-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Arithmetic-Constraints.html
http://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
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C.6 From Choco to the Catalog



3919

Choco Catalog
ABS ABS VALUE

ALLDIFFERENT ALLDIFFERENT

AMONG AMONG

AMONG VAR

ATMOSTNVALUE ALL EQUAL

ATMOST NVALUE

CLAUSE CLAUSE AND

CLAUSE OR

NAND

CUMULATIVEMAX CUMULATIVE

DISJOINT DISJOINT TASKS

DISJUNCTIVE DISJUNCTIVE

DISTANCEEQ DISTANCE

DOMAINCHANNELING DOMAIN CONSTRAINT

EQ ARITH

EQ

EQ SET

EQUATION SCALAR PRODUCT

SUM CTR

FEASPAIRAC IN RELATION

FEASTUPLEAC IN RELATION

GEOST CUMULATIVE TWO D

DIFFN

GEOST

GEOST TIME

GEQ ARITH

GEQ

GLOBALCARDINALITY GLOBAL CARDINALITY

GLOBAL CARDINALITY LOW UP

GT ARITH

GT

IFONLYIF EQUIVALENT

INCREASINGNVALUE DECREASING

INCREASING

INCREASING NVALUE

STRICTLY DECREASING

STRICTLY INCREASING

INFEASPAIRAC IN RELATION

INFEASTUPLEAC IN RELATION

INVERSECHANNELING INVERSE

INVERSE OFFSET

INVERSESET INVERSE SET

LEQ ARITH

LEQ

LEX LEX GREATER

LEX LESS

LEXCHAIN LEX CHAIN LESS

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
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Choco Catalog
LEXCHAINEQ LEX BETWEEN

LEX CHAIN LESSEQ

LEXEQ LEX GREATEREQ

LEX LESSEQ

LEXIMIN LEX LESSEQ ALLPERM

LT ARITH

LT

MAX MAXIMUM

MEMBER DOMAIN

IN

IN INTERVAL

IN SET

MIN MINIMUM

NEQ ARITH

NEQ

NOTMEMBER NOT IN

NTH ELEM

ELEMENT

ELEMENT MATRIX

OCCURENCE COUNT

EXACTLY

OCCURENCEMAX ATMOST

OCCURENCEMIN ATLEAST

PACK BIN PACKING

BIN PACKING CAPA

REIFIEDAND AND

CLAUSE AND

REIFIEDLEFTIMP IMPLY

REIFIEDOR CLAUSE OR

OR

REIFIEDXNOR NOR

REIFIEDXOR XOR

RELATIONPAIRAC IN RELATION

RELATIONTUPLEAC IN RELATION

SORTING SORT

STRETCHPATH STRETCH PATH

TREE PROPER FOREST

TREE

http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
http://sourceforge.net/projects/choco/files/choco/2.1.4/choco-2.1.4/choco-doc-2.1.4.pdf
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C.7 From Gecode to the Catalog



3922 APPENDIX B. ELECTRONIC CONSTRAINT CATALOGUE

Gecode Catalog
ABS ABS VALUE

ATLEAST ATLEAST

ATMOST ATMOST

BINPACKING BIN PACKING

BIN PACKING CAPA

CHANNEL DOMAIN CONSTRAINT

INVERSE

INVERSE OFFSET

LINK SET TO BOOLEANS

CIRCUIT CIRCUIT

CLAUSE CLAUSE AND

CLAUSE OR

NAND

NOR

COUNT AMONG

AMONG VAR

ATLEAST

ATMOST

COUNT

COUNTS

EXACTLY

GLOBAL CARDINALITY

CUMULATIVE CUMULATIVE

CUMULATIVES CUMULATIVES

DOM DOMAIN

IN

IN INTERVAL

IN INTERVALS

IN SET

ELEMENT ELEM

ELEMENT

ELEMENT MATRIX

EXACTLY EXACTLY

EXTENSIONAL IN RELATION

LINEAR ALLDIFFERENT

ALLDIFFERENT CST

SCALAR PRODUCT

SUM CTR

MAX MAXIMUM

MIN MINIMUM

NOOVERLAP DIFFN

NVALUES NVALUE

NVALUES

PRECEDE INT VALUE PRECEDE

INT VALUE PRECEDE CHAIN

SET VALUE PRECEDE

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
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Gecode Catalog
REL ALL EQUAL

AND

ARITH

DECREASING

EQ

EQ SET

EQUIVALENT

GEQ

GT

IMPLY

IN

IN SET

INCREASING

LEQ

LEX GREATER

LEX GREATEREQ

LEX LESS

LEX LESSEQ

LT

NEQ

NOT ALL EQUAL

NOT IN

OR

STRICTLY DECREASING

STRICTLY INCREASING

XOR

ROOTS ROOTS

SEQUENCE AMONG SEQ

SORTED SORT

SORT PERMUTATION

UNARY DISJUNCTIVE

WEIGHTS SUM SET

http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
http://www.gecode.org/doc-latest/reference/group__Other.html
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C.8 From JaCoP to the Catalog

JaCoP Catalog
ALLDIFF ALLDIFFERENT

ALLDIFFERENT ALLDIFFERENT

ALLDISTINCT ALLDIFFERENT

AMONG AMONG

AMONGVAR AMONG VAR

ANDBOOL AND

CIRCUIT CIRCUIT

COUNT ATLEAST

ATMOST

COUNT

EXACTLY

CUMULATIVE CUMULATIVE

DIFF DIFFN

DIFF2 DIFFN

DISJOINT DIFFN

DISJOINTCONDITIONAL DIFFN

DISTANCE DISTANCE

DISTANCE2 DISTANCE

ELEMENT ELEM

ELEMENT

EQBOOL EQUIVALENT

EXTENSIONALSUPPORTMDD IN RELATION

EXTENSIONALSUPPORTSTR IN RELATION

EXTENSIONALSUPPORTVA IN RELATION

GCC GLOBAL CARDINALITY

GEOST GEOST

GEOST TIME

IFTHENBOOL IMPLY

IN IN

IN INTERVAL

IN INTERVALS

MAX MAXIMUM

MIN MINIMUM

ORBOOL OR

SEQUENCE AMONG SEQ

STRETCH STRETCH PATH

SUMWEIGHT SCALAR PRODUCT

XEQY EQ

XEXPYEQZ POWER

XGTEQY GEQ

XGTY GT

XLTEQY LEQ

XLTY LT

XORBOOL XOR

http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
http://jacopguide.osolpro.com/guideJaCoP.html
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C.9 From MiniZinc to the Catalog
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MiniZinc Catalog
ALL DIFFERENT ALLDIFFERENT

ALL DIFFERENT ALLDIFFERENT EXCEPT 0
ALL EQUAL ALL EQUAL

AMONG AMONG

AT LEAST ATLEAST

AT MOST ATMOST

AT MOST1 ATMOST1
BIN PACKING BIN PACKING

BIN PACKING CAPA BIN PACKING CAPA

CIRCUIT CIRCUIT

COUNT EQ COUNT

COUNT GEQ COUNT

COUNT GT COUNT

COUNT LEQ COUNT

COUNT LT COUNT

COUNT NEQ COUNT

CUMULATIVE CUMULATIVE

DECREASING DECREASING

DIFFN DIFFN

DISJOINT DISJOINT

ELEMENT ELEMENT

EXACTLY EXACTLY

GLOBAL CARDINALITY GLOBAL CARDINALITY

GLOBAL CARDINALITY LOW UP GLOBAL CARDINALITY LOW UP

INCREASING INCREASING

INVERSE INVERSE

INVERSE SET INVERSE SET

LEX2 LEX2
LEX GREATER LEX GREATER

LEX GREATEREQ LEX GREATEREQ

LEX LESS LEX LESS

LEX LESSEQ LEX LESSEQ

LINK SET TO BOOLEANS LINK SET TO BOOLEANS

MAXIMUM MAXIMUM

MEMBER IN

MINIMUM MINIMUM

NVALUE NVALUE

ROOTS ROOTS

SLIDING SUM SLIDING SUM

SORT SORT

STRICT LEX2 STRICT LEX2
SUM PRED SUM

TABLE IN RELATION

VALUE PRECEDE INT VALUE PRECEDE

VALUE PRECEDE CHAIN INT VALUE PRECEDE CHAIN

http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#alldifferent
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#alldifferent_except_0
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#all_equal
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#among
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_least
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_most
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#at_most1
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#bin_packing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#bin_packing_capa
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#circuit
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_eq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_geq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_gt
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_leq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_lt
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#count_neq
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#cumulative
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#decreasing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#diffn
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#disjoint
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#element
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#exactly
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#global_cardinality
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#global_cardinality_low_up
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#increasing
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#inverse
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#inverse_set
http://www.minizinc.org/downloads/doc-1.6/mzn-globals.html#lex2
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C.10 From SICStus to the Catalog
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[186] T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming, 37(1–3):95–
138, October 1998. 1621, 1627, 1633, 1639
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[315] L. Péridy and D. Rivreau. An O(n log n) Stable Algorithm for Immediate Se-
lections Adjustments. In G. Kendall, E. K. Burke, S. Petrovic, and M. Gen-
dreau, editors, Multidisciplinary Scheduling: Theory and Applications, 1st In-
ternational Conference Selected Papers, pages 205–222. Springer-Verlag, 2005.
1144

[316] G. Pesant. A Filtering Algorithm for the stretch Constraint. In T. Walsh, editor,
Principles and Practice of Constraint Programming (CP’2001), volume 2239
of LNCS, pages 183–195. Springer-Verlag, 2001. 823, 1433, 2191, 2292, 2293,
2296, 2297

[317] G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In M. G. Wallace, editor, Principles and Practice of Constraint Pro-
gramming (CP’2004), volume 3258 of LNCS, pages 482–495. Springer-Verlag,
2004. ii, 110, 192, 827, 2039, 2194

http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf


3958 BIBLIOGRAPHY
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[324] T. Petit, J.-C. Régin, and N. Beldiceanu. A θ(n) Bound-Consistency Algorithm
for the increasing sum Constraint. In J. H.M. Lee, editor, Principles and Practice
of Constraint Programming (CP’2011), volume 6876 of LNCS, pages 721–728,
Perugia, Italy, 2011. Springer-Verlag. 1450, 1451
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In H. Common, C. Marché, and R. Treinen, editors, Constraints in Computa-
tional Logics - Theory and Applications, International Summer School, CCL’99
Gif sur Yvette September 5-8, 1999, France, Revised Lectures, pages 271–309.
Springer-Verlag, 2001. 1523

[395] H. Simonis. Sudoku as a Constraint Problem. In B. Hnich, P. Prosser, and
B. Smith, editors, Modelling and Reformulating Constraint Satisfaction Prob-
lems, Fourth International Workshop, Sitges (Barcelona), Spain, pages 13–27,
2005. 1523

[396] H. Simonis. Personal communication, June 2013. 1306

[397] H. Simonis, A. Aggoun, N. Beldiceanu, and É. Bourreau. Complex
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[438] W.-J. van Hoeve and J.-C. Régin. Open Constraints in a Closed World. In
J. C. Beck and B. Smith, editors, International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’06), volume 3990 of LNCS, pages 244–257, Cork, Ireland,
May/June 2006. Springer-Verlag. 319, 1952, 1964, 1965, 1968, 1969

http://arxiv.org/html/cs/0110012


3968 BIBLIOGRAPHY

[439] W.-J. van Hoeve and A. Sabharwal. Two Set-Constraints for Modeling and
Efficiency. In Sixth International Workshop on Constraint Modelling and Refor-
mulation (ModRef’07), Providence, USA, 2007. 708, 709, 2338

[440] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge
University Press, 1992. 370

[441] A. Vellino. Costas Arrays. Technical Report 90079, Computing Research Lab-
oratory, Bell-Northern Research, 1990. 228

[442] N. R. Vempaty. Solving Constraint Satisfaction Problems using Finite State
Automata. In National Conference on Artificial Intelligence (AAAI-92), pages
453–458. AAAI Press, 1992. ii

[443] P. Vilı́m. O(n log n) Filtering Algorithms for Unary Resource Constraint. In J.-
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Grabisch M., 110, 408
Graf T., 109
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graph constraint, 276, 734, 753, 761, 792, 797, 861, 866, 883, 944, 1023, 1032, 1044, 1047,

1051, 1062, 1086, 1172, 1349, 1353, 1500, 1507, 1510, 1517, 1530, 1669, 2031,
2035, 2078, 2081, 2285, 2322, 2325, 2360, 2365, 2376, 2392, 2396, 2412, 2417,
2422

Graph invariants:
MAX NCC, 418
MAX NSCC, 418
MIN NCC, 418
MIN NSCC, 418
NARC, 418
NCC, 419
NSCC, 419
NSINK, 419
NSOURCE, 419
NVERTEX, 419
MAX NCC, MAX NSCC, 420
MAX NCC, MIN NCC, 420
MAX NCC1, MIN NCC1, 450
MAX NCC2, MIN NCC2, 450
MAX NCC, NARC, 420
MAX NCC1, NCC2, 450
MAX NCC2, NCC1, 450
MAX NCC, NSINK, 421
MAX NCC, NSOURCE, 421
MAX NCC, NVERTEX, 421
MAX NSCC, MIN NSCC, 421
MAX NSCC, NARC, 422
MAX NSCC, NVERTEX, 422
MIN NCC, MIN NSCC, 422
MIN NCC, NARC, 423
MIN NCC, NCC, 423
MIN NCC1, NCC2, 451
MIN NCC2, NCC1, 451
MIN NCC, NVERTEX, 423
MIN NSCC, NARC, 424
MIN NSCC, NVERTEX, 424
NARC1, NARC2, 451
NARC, NCC, 424
NARC, NSCC, 424
NARC, NSINK, 425
NARC, NSOURCE, 425
NARC, NVERTEX, 425
NCC1, NCC2, 451
NCC, NSCC, 426
NCC, NVERTEX, 426
NSCC, NSINK, 427
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NSCC, NSOURCE, 427
NSCC, NVERTEX, 427
NSINK, NVERTEX, 428
NSOURCE, NVERTEX, 428
NVERTEX1, NVERTEX2, 451
MAX NCC1, MIN NCC1, MIN NCC2, 452
MAX NCC2, MIN NCC2, MIN NCC1, 453
MAX NCC, MIN NCC, NARC, 429
MAX NCC, MIN NCC, NCC, 429
MAX NCC, MIN NCC, NVERTEX, 429
MAX NCC1, MIN NCC1, NVERTEX2, 453
MAX NCC2, MIN NCC2, NVERTEX1, 453
MAX NCC, NARC, NCC, 430
MAX NCC, NARC, NVERTEX, 431
MAX NCC, NCC, NSINK, 432
MAX NCC, NCC, NSOURCE, 432
MAX NCC, NCC, NVERTEX, 432
MAX NSCC, MIN NSCC, NARC, 433
MAX NSCC, MIN NSCC, NSCC, 433
MAX NSCC, MIN NSCC, NVERTEX, 433
MAX NSCC, NCC, NVERTEX, 434
MAX NSCC, NSCC, NVERTEX, 434
MIN NCC1, NARC2, NCC1, 454
MIN NCC, NARC, NVERTEX, 434
MIN NCC, NCC, NVERTEX, 436
MIN NSCC, NARC, NVERTEX, 436
MIN NSCC, NCC, NVERTEX, 436
MIN NSCC, NSCC, NVERTEX, 436
NARC, NCC, NVERTEX, 437
NARC, NSCC, NVERTEX, 438
NARC, NSINK, NVERTEX, 440
NARC, NSOURCE, NVERTEX, 441
NSCC, NSINK, NSOURCE, 442
NSINK, NSOURCE, NVERTEX, 442
MAX NCC1, MIN NCC1, MIN NCC2, NCC1, 455
MAX NCC2, MIN NCC2, MIN NCC1, NCC2, 455
MAX NCC1, MIN NCC1, MIN NCC2, NVERTEX2, 456
MAX NCC2, MIN NCC2, MIN NCC1, NVERTEX1, 456
MAX NCC, MIN NCC, NARC, NCC, 443
MAX NCC, MIN NCC, NCC, NVERTEX, 444
MAX NCC, NARC, NSOURCE, NVERTEX, 444
MAX NSCC, MIN NSCC, NARC, NSCC, 444
MAX NSCC, MIN NSCC, NSCC, NVERTEX, 445
MIN NCC, NARC, NCC, NVERTEX, 445
NARC, NCC, NSCC, NVERTEX, 446
NARC, NSINK, NSOURCE, NVERTEX, 448
MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC1, 457
MAX NCC1, MAX NCC2, MIN NCC1, MIN NCC2, NCC2, 460
MAX NCC, MIN NCC, NARC, NCC, NVERTEX, 449
MIN NCC, NARC, NCC, NSCC, NVERTEX, 449
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GREATER, 1620
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Guo Q., 207, 1096
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heuristics and Berge-acyclic constraint network, 279
heuristics and lexicographical ordering, 281, 1597, 1601, 1605, 1609, 1622, 1628, 1634, 1640
heuristics for two-dimensional rectangle placement problems, 281, 1103, 1293
HIGHEST PEAK, 125, 186, 189, 190, 270, 274, 336, 348, 351, 361, 767, 1081, 1257, 1382, 1714,

2046, 2059, 2060
Hnich B., 88, 110, 239, 440, 616, 620, 692, 710, 902, 1584, 1620, 1626, 1632, 1638, 1644, 1904,

2094, 2308, 2466
Hoda S., 5
Hofacker I. L., 2136
Hooker J. N., i, 5, 546, 856, 982, 1206, 1210
Hopcroft J., 856
Hopper E., 375
Hougardy S., iii, 325
Huang C., 1698
Hungarian method for the assignment problem, 283, 1822
hybrid-consistency, 284, 2081, 2095
hyper arc-consistency, 169
hypergraph, 284, 652, 675, 1987, 2089, 2155, 2161, 2169, 2173

I
IF/PROLOG, 109
IFTHEN, 1388
Ilog, 570
Ilog CP Optimizer, 985, 1143
Ilog Solver, 109, 2391
implied by, 97
implies, 97
implies (if swap arguments), 97
implies (items to collection), 97
IMPLY, 125, 169, 186, 192, 194, 200, 270, 336, 342, 661, 695, 1265, 1388, 1837, 1879, 1983,

2219, 2499
IN, 64, 125, 169, 180, 186, 192, 202, 242, 246, 253, 285, 342, 394, 395, 622–624, 644, 682, 767,

813, 817, 819, 820, 969, 1175, 1281–1286, 1359, 1360, 1363–1367, 1372, 1373,
1375, 1376, 1378, 1379, 1394, 1398, 1398, 1406, 1412, 1414–1416, 1490, 1714,
1802, 1888, 1958, 2167

in attr, 18
IN INTERVAL, 134, 169, 186, 192, 194, 242, 246, 286, 342, 344, 394, 395, 477, 1175, 1395,

1398, 1402, 1404, 1406, 1416
IN INTERVAL REIFIED, 143, 169, 197, 332, 344, 395, 551, 554, 1398, 1402
IN INTERVALS, 128, 169, 246, 253, 286, 332, 394, 395, 1398, 1406
in list, 18
IN REIFIED, 1402
IN RELATION, 45, 54, 131, 169, 234, 242, 253, 256, 344, 393, 920, 921, 924, 928, 932, 936,

1195, 1408, 2478
IN SAME PARTITION, 138, 169, 186, 192, 197, 203, 242, 253, 324, 342, 395, 609, 610, 745,

746, 851, 852, 915, 916, 1394, 1395, 1412, 1841, 1842, 2127, 2128, 2242, 2258,
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2463, 2464
IN SET, 124, 212, 285, 332, 395, 797, 798, 883, 884, 944, 945, 1024, 1062, 1063, 1123, 1124,

1127, 1128, 1394, 1395, 1398, 1416, 1513, 1515, 1530, 1531, 1648, 1953, 1954,
1957, 1958, 1960–1963, 1965, 1966, 1969, 1970, 1972, 1974, 2035, 2036, 2082,
2096, 2323, 2329, 2330, 2357, 2360, 2361, 2379, 2380, 2383, 2384, 2396, 2397

included, 285, 1395, 1416
inclusion, 285, 1553, 1557, 1561, 2450, 2455, 2459, 2463, 2467
INCOMPARABLE, 117, 130, 211, 332, 389, 398, 537, 539, 1418, 1612
INCOMPARABLES, 1418
incompatible pairs of values, 285, 609
INCR SUM, 2340
INCREASING, 120, 169, 186, 192, 216, 235, 320, 342, 360, 512, 1064, 1066, 1320, 1420, 1426,

1427, 1429, 1432, 1433, 1436, 1438, 1446, 1450, 1454, 1456, 1827, 1866, 1870,
1910, 2072, 2277, 2278, 2311, 2318, 2333

INCREASING GCC, 1426
INCREASING GCC LOW UP, 1426
INCREASING GLOBAL CARDINALITY, 131, 169, 175, 186, 192, 195, 298, 320, 342, 388, 395,

1320, 1421, 1422, 1426, 2002
INCREASING GLOBAL CARDINALITY LOW UP, 1426
INCREASING NVALUE, 125, 169, 186, 192, 195, 229, 252, 270, 315, 316, 320, 342, 377, 388,

396, 1257, 1346, 1422, 1432, 1436, 1440, 1441, 1910, 1949, 2005
INCREASING NVALUE CHAIN, 128, 229, 316, 320, 1436, 1440, 1910, 2005
INCREASING PEAK, 120, 186, 189, 190, 351, 361, 518, 1072, 1446, 2046
increasing seq, 19
INCREASING SUM, 125, 170, 201, 271, 320, 332, 379, 388, 1422, 1450, 2333
INCREASING SUM CTR, 1450
INCREASING SUM EQ, 1450
INCREASING VALLEY, 120, 186, 189, 190, 351, 361, 528, 1076, 1456, 2474
INCREMENTS SUM, 2340
INDEXED SUM, 132, 175, 397, 779, 785, 1239, 1460, 2333
indexing an array by a decision variable, see array constraint
indicator variable, 344
indistinguishable values, 286, 1477, 1483, 2143
INDOMAIN, 289
INEQUALITY SUM, 110
INFLEXION, 88–91, 93, 125, 186, 189, 190, 271, 274, 336, 348, 351, 361, 463, 468, 1257, 1340,

1464, 1732, 1735, 2042, 2046, 2470, 2474, 2475
INSIDE, 1472
INSIDE SBOXES, 216, 273, 293, 316, 339, 955, 971, 975, 1135, 1253, 1472, 1724, 1874, 2023
INT VALUE PRECEDE, 137, 163, 169, 186, 192, 195, 216, 286, 320, 342, 388, 396, 689, 1476,

1481, 2143
INT VALUE PRECEDE CHAIN, 117, 130, 163, 169, 186, 192, 195, 216, 276, 286, 320, 342, 388,

396, 993, 1419, 1476, 1480, 2317, 2449
INTER DISTANCE, 540
intersection graph, 195, 196, 280
INTERSECTION BETWEEN INTERVALS, 2386
INTERSECTION BETWEEN SEQUENCES OF TASKS, 2386
INTERSECTION BETWEEN TASKS CHAINS, 2386
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Labbé M., 1046, 2390
labelling by increasing cost, 288, 1186, 1195
Labreuche C., 110, 408
Laburthe F., 109, 110, 113, 982
Lagerkvist M. Z., iii, 326, 1170
Lahrichi A., 207, 982, 994, 1006



INDEX 3999

Lal A., 1022
Laporte G., 864, 1046, 2390
Lardeux F., 1522
Larrosa J., 2324
last, 22
Latin square, 290, 1527
Laura L., 376, 377, 2406
Laurière J.-L., ii, 108, 546, 856, 1026
Law Y. C., 286, 1476, 1480, 2142
Le Pape C., 982, 1142
Leconte M., iii, 546
Lecoutre C., iii, 476
Lee J. H. M., 1476, 1480, 2142
Leiserson C. E., 978
LENGTH FIRST SEQUENCE, 125, 186, 189, 229, 271, 274, 336, 348, 361, 395, 463, 468, 469,

555, 575, 1568, 1577, 2058
LENGTH FIRST STRETCH, 1568
LENGTH LAST SEQUENCE, 125, 186, 189, 229, 271, 274, 336, 348, 361, 395, 463, 468, 469,

555, 575, 1571, 1574, 2058
LENGTH LAST STRETCH, 1574
LEQ, 42, 43, 124, 169, 170, 197, 332, 356, 1246, 1300, 1380, 1580, 1582, 1638, 1666, 1844
LEQ CST, 134, 158, 169, 170, 197, 300, 332, 1156, 1248, 1302, 1580, 1582
LESS, 1632
LESSEQ, 1638
Letort A., iii
Levy H., 1022
LEX, 1620, 1632
LEX2, 121, 290, 297, 298, 320, 332, 388, 389, 617, 1584, 1609, 1640, 2309
LEX ALLDIFF, 1586
LEX ALLDIFF EXCEPT 0, 1590
LEX ALLDIFFERENT, 98, 121, 169, 198, 217, 236, 244, 253, 389, 398, 537, 553, 554, 579, 861,

1086, 1102, 1293, 1500, 1586, 1590, 1597, 1605, 1612, 2078, 2136, 2365, 2371,
2376

LEX ALLDIFFERENT EXCEPT 0, 121, 244, 287, 332, 398, 1587, 1590
LEX ALLDISTINCT, 1586
LEX ALLDISTINCT EXCEPT 0, 1590
LEX BETWEEN, 141, 169, 186, 192, 195, 217, 290, 320, 342, 388, 389, 398, 1592, 1597, 1601,

1605, 1609, 1622, 1628, 1634, 1640
LEX CHAIN, 1596, 1600, 1604, 1608, 1620, 1626, 1632, 1638
LEX CHAIN GREATER, 121, 169, 236, 237, 257, 281, 290, 298, 320, 388, 389, 398, 1587, 1593,

1596, 1601, 1622, 1628, 1634, 1640
LEX CHAIN GREATEREQ, 121, 169, 236, 281, 290, 298, 320, 388, 389, 398, 1593, 1597, 1600,

1622, 1628, 1634, 1640
LEX CHAIN LESS, 121, 158, 169, 217, 236, 237, 239, 253, 256–258, 281, 290, 298, 320, 388,

389, 398, 987, 1102, 1293, 1587, 1593, 1596, 1604, 1609, 1622, 1628, 1634, 1640,
2136, 2308, 2309

LEX CHAIN LESSEQ, 121, 169, 217, 221, 236, 281, 290, 298, 320, 388, 389, 398, 506, 507, 617,
987, 1102, 1293, 1427, 1585, 1593, 1600, 1605, 1608, 1622, 1628, 1634, 1640, 1992,
1993, 1996, 1997, 2005, 2072



4000 INDEX

LEX DIFFERENT, 117, 130, 169, 186, 192, 195, 211, 245, 253, 337, 342, 389, 398, 1131, 1418,
1587, 1589, 1612, 1617, 1622, 1628, 1634, 1640, 2277

LEX EQUAL, 117, 130, 162, 169, 186, 192, 195, 198, 211, 217, 311, 342, 398, 701, 702, 719,
720, 1612, 1616, 1628, 1640, 1934, 1935, 1938, 2102, 2478

LEX GEQ, 1626
LEX GREATER, 117, 130, 169, 186, 192, 195, 211, 242, 249, 254, 255, 281, 290, 298, 310, 320,

342, 388, 389, 398, 925, 1593, 1597, 1598, 1601, 1605, 1609, 1612, 1620, 1628,
1634, 1640

LEX GREATEREQ, 97, 117, 130, 169, 186, 192, 195, 211, 217, 221, 242, 249, 281, 290, 298,
310, 320, 342, 388, 389, 398, 929, 1593, 1597, 1601, 1605, 1609, 1612, 1617, 1622,
1626, 1634, 1640, 2270

LEX LEQ, 1638
LEX LESS, 117, 130, 169, 186, 192, 195, 211, 242, 249, 254, 281, 290, 298, 310, 320, 342, 388,

389, 398, 933, 1593, 1597, 1601, 1605, 1606, 1609, 1612, 1622, 1628, 1632, 1640,
1993, 1994, 1997, 1998, 2005, 2006

LEX LESSEQ, 54, 55, 65, 76, 88–90, 97, 117, 130, 169, 186, 192, 195, 211, 217, 242, 249, 281,
290, 298, 310, 320, 342, 388, 389, 398, 617, 937, 1436, 1585, 1592, 1593, 1597,
1601, 1602, 1605, 1609, 1610, 1612, 1617, 1622, 1628, 1634, 1638, 1644, 1993,
1994, 1997, 1998, 2005, 2006, 2309

LEX LESSEQ ALLPERM, 117, 130, 211, 217, 290, 298, 320, 332, 388, 389, 398, 617, 618, 1640,
1644

LEXEQ, 1626, 1638
lexicographic order, 290, 617, 921, 925, 929, 933, 937, 1585, 1593, 1597, 1601, 1605, 1609,

1622, 1628, 1634, 1640, 1644, 1645, 2309
LEXIMIN, 1644
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Lucas É, 506
Lucas E., 5

M
Müller T., 2362
Müller-Hannemann M., 778
Métivier J.-P., 110
Macho-Gonzalez S., 319
Maculet R., 257, 258
magic hexagon, 296, 554, 1334
magic series, 296, 1308
magic square, 297, 554, 1334
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2441, 2467

NO CYCLE, 110
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1876, 1983, 2203, 2499
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NTH, 1182, 1194
NTREE, 74, 735, 867, 1035, 1045, 1048, 1052, 1087, 1670, 1823
number of changes, 315, 823, 824, 845, 851, 855, 870, 871, 1055, 1059, 2191
number of distinct equivalence classes, 315, 696, 701, 714, 719, 1436, 1841, 1849, 1861, 1893,

1910, 1925, 1934, 1937
number of distinct values, 316, 685, 696, 714, 892, 899, 1436, 1441, 1910, 1921, 1925, 1929
NUMBER DIGIT, 137, 170, 272, 332, 337, 1902
nurse scheduling, 280
nval, 23
NVALUE, 2, 12, 37, 49–51, 73, 82, 94, 96, 126, 161, 187, 188, 201, 217, 223, 225–227, 229, 247,
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ORDERED ATMOST NVECTOR, 127, 218, 229, 320, 388, 398, 719, 1609, 1634, 1640, 1934,

1993, 1996, 1997, 2005
ORDERED ATMOST NVECTORS, 1996
ORDERED GCC, 2000
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PERIOD EXCEPT 0, 135, 218, 272, 287, 327, 332, 337, 351, 355, 391, 689, 2051, 2052
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periodic, 327, 2051, 2053, 2055
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PLACE IN PYRAMID, 111, 127, 273, 293, 315, 321, 1102, 2008, 2012, 2014, 2015, 2062
placement problem, iv, 114, 176–178, 207, 281, 345, 382
placement space, 257, 258, 282, 321, 323, 340, 382, 393
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RANGE DRG, 74, 2418



4012 INDEX

RANGE NCC, 74, 735, 754, 762
RANGE NSCC, 75, 728, 738, 742, 746
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rectangle clique partition, 340, 1934
Refalo P., 1176
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regret based heuristics in matrix problems, 341, 1334, 2333
REGULAR, 110, 291, 326, 827, 2194
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2098, 2100, 2101, 2106, 2107, 2110, 2111, 2116, 2118, 2119, 2122, 2123, 2126,
2127, 2245, 2269, 2270, 2449

SAME AND GCC, 268, 2106
SAME AND GLOBAL CARDINALITY, 141, 175, 211, 218, 237, 251, 260, 309, 327, 395, 1307,

1527, 2100, 2102, 2106, 2111
SAME AND GLOBAL CARDINALITY LOW UP, 142, 169, 175, 201, 211, 218, 237, 251, 260,

267, 268, 309, 327, 395, 1320, 1323, 2102, 2107, 2110
SAME END OR DISJUNCTIVE, 1148
SAME END OR NON OVERLAP, 1148
SAME GCC, 2106
SAME INTERSECTION, 117, 130, 211, 213, 605, 903, 1921, 2102, 2116
SAME INTERVAL, 139, 163, 211, 286, 327, 369, 389, 1540–1542, 2101, 2118, 2232, 2233, 2455
SAME MODULO, 139, 163, 211, 307, 327, 369, 389, 1544–1546, 2101, 2122, 2236, 2237, 2459
SAME PARTITION, 141, 163, 211, 324, 327, 369, 389, 1412, 1548–1550, 2101, 2126, 2240,

2241, 2463
SAME REMAINDER, 137, 170, 2130
SAME SIGN, 124, 169, 170, 197, 332, 1168, 1246, 1978, 2132, 2150
same size, 21
SAME START OR DISJUNCTIVE, 1152
SAME START OR NON OVERLAP, 1152
SAME WITH CARDINALITIES, 2106
Samet H., 1006, 1096
Sandholm A., 5
Sanlaville E., 110, 207, 208
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Sanner A. M. W., 498, 1088
Santaroni F., 376, 377, 2406
Saraswat V., 213
SAT, 350, 554, 622, 1103
Saubion F., 1522
Savéant P., 110, 408
Savalle X., iv
Sbihi M., 325, 1290, 1604, 1608
scalar product, 350, 1334
SCALAR PRODUCT, 32, 135, 163, 170, 218, 249, 254, 332, 379, 1461, 1493, 2134, 2332, 2333
Schaus P., iv, 110, 193, 194, 2276
scheduling, 176, 202, 207, 230, 319, 355
scheduling constraint, 307, 354, 355, 544, 809, 892, 899, 987, 997, 1002, 1013, 1019, 1127,

1139, 1144, 1149, 1153, 1831, 2051, 2053, 2146, 2230, 2388
scheduling with machine choice, calendars and preemption, 809, 1019, 1102, 1103, 1293
Scheithauer G., 323
Schepers J., 350
Schiex T., iv
Schimpf J., 109, 2134
Schmitz L., 314
Schulte C., iv, 1170
Schur number, 360, 2338
Schutt A., 982
Schwarz U. M., 358
Schwenk A. J., 2428
Scott J., 982
Sedgewick R., 1668
SELF , 64, 576, 623, 633, 638, 648, 668, 690, 706, 893, 900, 964, 988, 998, 1003, 1014, 1020,

1063, 1104, 1124, 1140, 1270, 1310, 1321, 1324, 1328, 1335, 1428, 1958, 1961,
1963, 1966, 1970, 2003, 2010, 2013, 2020, 2075, 2086, 2108, 2113, 2138, 2147,
2187, 2334, 2357, 2403

Sellmann M., 279, 1820
semantic links, 94
SEQ BIN, 823, 1433, 2191
sequence, 350, 519, 524, 529, 534, 652, 675, 771, 775, 833, 1044, 1072, 1076, 1081, 1082,

1280, 1340, 1359, 1372, 1385, 1386, 1448, 1458, 1468, 1571, 1572, 1577, 1578,
1657, 1658, 1664, 1675, 1681, 1729, 1735, 1736, 1743, 1765, 1766, 1775, 1781,
1782, 1787, 1793, 1794, 1827, 1828, 1866, 1870, 1943, 1949, 2046, 2051, 2053,
2055, 2089, 2137, 2155, 2161, 2165, 2169, 2173, 2298, 2306, 2474

SEQUENCE, 650, 2172
sequence dependent set-up, 351, 1103, 1145, 1186, 1196, 2392
SEQUENCE FOLDING, 122, 187, 192, 197, 236, 273, 342, 351, 2136
sequencing with release times and deadlines, 353, 987, 1019, 1103, 1127, 1144
set channel, 353, 1514, 1647
set packing, 353, 1527
SET VALUE PRECEDE, 137, 212, 218, 286, 320, 332, 388, 396, 1476, 2142
SGCC, 2106, 2382
Shamos M. I., 379
shared table, 359, 1233, 1243
Shaw P., 778
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Shearer J. B., 1344
Shen K., 109
SHIFT, 138, 355, 390, 391, 2085, 2144, 2178
shift of concept, 99
Shikaku, 354, 1103, 1293
Shmoys D. B., 1522
shortest path, 300
Shufet J. A., 856
SICStus, 2, 109, 109, 113, 283, 475, 1098, 1409, 1500, 2277
sign, 59
SIGN, 2150
SIGN OF, 124, 169, 170, 197, 272, 332, 337, 2132, 2150, 2502
signature

AUTOMATON

ALL EQUAL EXCEPT 0, 514
ALL EQUAL PEAK, 516
ALL EQUAL PEAK MAX, 522
ALL EQUAL VALLEY, 526
ALL EQUAL VALLEY MIN, 532
AND, 658
BIG PEAK, 770
BIG VALLEY, 774
CHANGE VECTORS, 854
CLAUSE AND, 874
CLAUSE OR, 878
COND LEX COST, 920
COND LEX GREATER, 924
COND LEX GREATEREQ, 928
COND LEX LESS, 932
COND LEX LESSEQ, 936
CONSECUTIVE GROUPS OF ONES, 946
DECREASING PEAK, 1070
DECREASING VALLEY, 1074
DEEPEST VALLEY, 1078
ELEM FROM TO, 1190
ELEMENTN, 1228
EQUIVALENT, 1262
FIRST VALUE DIFF 0, 1272
FULL GROUP, 1278
HIGHEST PEAK, 1382
IMPLY, 1388
INCREASING PEAK, 1446
INCREASING VALLEY, 1456
INFLEXION, 1464
INT VALUE PRECEDE, 1476
INT VALUE PRECEDE CHAIN, 1480
ITH POS DIFFERENT FROM 0, 1520
LENGTH FIRST SEQUENCE, 1568
LENGTH LAST SEQUENCE, 1574
LEX BETWEEN, 1592
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LONGEST DECREASING SEQUENCE, 1654
LONGEST INCREASING SEQUENCE, 1660
MAX DECREASING SLOPE, 1672
MAX INCREASING SLOPE, 1678
MIN DECREASING SLOPE, 1726
MIN DIST BETWEEN INFLEXION, 1732
MIN INCREASING SLOPE, 1740
MIN SIZE FULL ZERO STRETCH, 1762
MIN SURF PEAK, 1774
MIN WIDTH PEAK, 1778
MIN WIDTH PLATEAU, 1786
MIN WIDTH VALLEY, 1790
NAND, 1834
NO PEAK, 1864
NO VALLEY, 1868
NOR, 1876
NVISIBLE FROM END, 1940
NVISIBLE FROM START, 1946
OPEN MAXIMUM, 1972
OPEN MINIMUM, 1974
OR, 1980
PATTERN, 2038
PEAK, 2042
STRETCH PATH PARTITION, 2304
VALLEY, 2470
XOR, 2496

CC(NSINK,NSOURCE),PRODUCT
SAME INTERSECTION, 2116

CLIQUE
BIPARTITE, 796
SYMMETRIC, 2360

CLIQUE ,SUCC
SLIDING TIME WINDOW, 2176

DISTANCE,CLIQUE( 6=)
DISTANCE BETWEEN, 1158

DISTANCE,PATH ; AUTOMATON
DISTANCE CHANGE, 1162

LOGIC

CONTAINS SBOXES, 954
COVEREDBY SBOXES, 970
COVERS SBOXES, 974
DISJOINT SBOXES, 1134
EQUAL SBOXES, 1252
INSIDE SBOXES, 1472
MEET SBOXES, 1722
NON OVERLAP SBOXES, 1872
OVERLAP SBOXES, 2022

MAX ID,MAX NSCC,NCC,CLIQUE
BINARY TREE, 786
PATH, 2026
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MAX ID,MAX NSCC,NCC,PATH FROM TO,CLIQUE
STABLE COMPATIBILITY, 2282

MAX ID,MAX NSCC,RANGE NCC,CLIQUE
BALANCE PATH, 748

MAX ID,MIN NSCC,CLIQUE
CIRCUIT, 856

MAX ID,NCC,NVERTEX,CLIQUE
TEMPORAL PATH, 2390

MAX ID,PRODUCT
CARDINALITY ATLEAST, 810
CARDINALITY ATMOST, 814
CARDINALITY ATMOST PARTITION, 818

MAX ID,SUM,PRODUCT
WEIGHTED PARTIAL ALLDIFF, 2492

MAX NCC,CIRCUIT ,LOOP , ∀
STRETCH CIRCUIT, 2292

MAX NCC,MIN NCC,NARC,NCC,PATH ; AUTOMATON
CHANGE CONTINUITY, 830

MAX NCC,MIN NCC,NCC,NVERTEX,PATH ,LOOP ;MAX NCC,MIN NCC,PATH ,LOOP ; AUTOMATON
GROUP, 1356

MAX NCC,PATH ; AUTOMATON
LONGEST CHANGE, 1650

MAX NCC,PATH ,LOOP , ∀; AUTOMATON
STRETCH PATH, 2296

MAX NCC,PRODUCT
ALLDIFFERENT ON INTERSECTION, 604

MAX NSCC,CLIQUE
SOFT ALL EQUAL MIN VAR, 2206

MAX NSCC,CLIQUE
ALLDIFFERENT, 546
ALLDIFFERENT BETWEEN SETS, 570
ALLDIFFERENT CST, 578
ALLDIFFERENT EXCEPT 0, 582
ALLDIFFERENT INTERVAL, 588
ALLDIFFERENT MODULO, 596
ALLDIFFERENT PARTITION, 608
GOLOMB, 1344
OPEN ALLDIFFERENT, 1952
PERMUTATION, 2056
SOFT ALL EQUAL MAX VAR, 2196

MAX NSCC,CLIQUE
MAX NVALUE, 1690
MAX SIZE SET OF CONSECUTIVE VAR, 1704

MAX NSCC,CLIQUE , ∀
K ALLDIFFERENT, 1522

MAX NSCC,MIN NSCC,NSCC,NVERTEX,CHAIN ; AUTOMATON
GROUP SKIP ISOLATED ITEM, 1370

MAX NSCC,NARC NO LOOP,PRODUCT (CLIQUE ,LOOP ,=)
ALLDIFFERENT SAME VALUE, 612

MAX NSCC,NCC,CLIQUE
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TREE, 2406
MAX NSCC,NCC,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀

TREE RESOURCE, 2420
MAX NSCC,NCC,RANGE DRG,CLIQUE

TREE RANGE, 2414
MAX NSCC,NVERTEX,CLIQUE

CUTSET, 1022
MAX NSCC,RANGE NCC,CLIQUE

BALANCE TREE, 756
MIN NSCC,CLIQUE

MIN NVALUE, 1754
MIN SIZE SET OF CONSECUTIVE VAR, 1768
STRONGLY CONNECTED, 2322

NARC,CIRCUIT ; AUTOMATON
CIRCULAR CHANGE, 870

NARC,CLIQUE(<)
ALL MIN DIST, 540
DIFFN COLUMN, 1114
DIFFN INCLUDE, 1118
DISJUNCTIVE, 1142
DISJUNCTIVE OR SAME END, 1148
DISJUNCTIVE OR SAME START, 1152
K DISJOINT, 1532
LEX ALLDIFFERENT, 1586
SOME EQUAL, 2264

NARC,CLIQUE( 6=)
ALL DIFFER FROM AT LEAST K POS, 498
ALL DIFFER FROM AT MOST K POS, 502
ALL DIFFER FROM EXACTLY K POS, 506
ALL INCOMPARABLE, 536
DISJ, 1126
SOFT ALL EQUAL MIN CTR, 2202

NARC,CLIQUE(<)
SOFT ALLDIFFERENT CTR, 2214

NARC,CLIQUE
INVERSE, 1498
INVERSE OFFSET, 1508
PLACE IN PYRAMID, 2062
SYMMETRIC ALLDIFFERENT LOOP, 2372

NARC,CLIQUE(<)
ALLPERM, 616
CROSSING, 978
GRAPH CROSSING, 1348
ORCHARD, 1986
TWO LAYER EDGE CROSSING, 2428

NARC,CLIQUE( 6=)
SYMMETRIC ALLDIFFERENT, 2362

NARC,CLIQUE( 6=);MAX ID,MAX OD,MIN ID,MIN NSCC,MIN OD,CLIQUE( 6=
)

TOUR, 2396
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NARC,NVERTEX,CLIQUE(6=)
CLIQUE, 882

NARC,PATH
ALL EQUAL, 510
AMONG SEQ, 650
K SAME, 1536
K SAME INTERVAL, 1540
K SAME MODULO, 1544
K SAME PARTITION, 1548
K USED BY, 1552
K USED BY INTERVAL, 1556
K USED BY MODULO, 1560
K USED BY PARTITION, 1564
LEX CHAIN GREATER, 1596
LEX CHAIN GREATEREQ, 1600
LEX CHAIN LESS, 1604
LEX CHAIN LESSEQ, 1608
PRECEDENCE, 2072
SLIDING DISTRIBUTION, 2168
SLIDING SUM, 2172

NARC,PATH
CHANGE PARTITION, 850
RELAXED SLIDING SUM, 2088

NARC,PATH 1
SIZE MAX STARTING SEQ ALLDIFFERENT, 2158

NARC,PATH 1 ; AUTOMATON
ARITH SLIDING, 674

NARC,PATH N
SIZE MAX SEQ ALLDIFFERENT, 2152

NARC,PATH ; AUTOMATON
DECREASING, 1064
INCREASING, 1420
STRICTLY DECREASING, 2310
STRICTLY INCREASING, 2316

NARC,PATH ; AUTOMATON
CHANGE, 822
CHANGE PAIR, 844
CYCLIC CHANGE, 1054
CYCLIC CHANGE JOKER, 1058
SMOOTH, 2190

NARC,PATH ;NARC,PATH
INCREASING NVALUE CHAIN, 1440

NARC,PATH ;NARC,PRODUCT ; AUTOMATON
STAGE ELEMENT, 2288

NARC,PATH ;NARC,PRODUCT , SUCC
NEXT GREATER ELEMENT, 1856

NARC,PATH ;NCC,PATH
ORDERED ATLEAST NVECTOR, 1992

NARC,PATH ;NCC,PATH
ORDERED ATMOST NVECTOR, 1996
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NARC,PATH ;NCC,PATH
ORDERED NVECTOR, 2004

NARC,PRODUCT
IN RELATION, 1408

NARC,PRODUCT
DISJOINT, 1130

NARC,PRODUCT (=)
DIFFER FROM AT MOST K POS, 1092

NARC,PRODUCT
CORRESPONDENCE, 958
ELEMENT PRODUCT, 1218
ELEMENTS, 1232
INVERSE SET, 1512
LINK SET TO BOOLEANS, 1646
ROOTS, 2094
SYMMETRIC CARDINALITY, 2378
SYMMETRIC GCC, 2382

NARC,PRODUCT (=)
DIFFER FROM EXACTLY K POS, 1094
ORTH ON TOP OF ORTH, 2014
TWO ORTH COLUMN, 2436
TWO ORTH INCLUDE, 2444
VEC EQ TUPLE, 2478

NARC,PRODUCT (=); AUTOMATON
DIFFER FROM AT LEAST K POS, 1088
LEX DIFFERENT, 1612

NARC,PRODUCT ; AUTOMATON
BETWEEN MIN MAX, 764
ELEMENT SPARSE, 1222

NARC,PRODUCT ; AUTOMATON
NOT IN, 1888

NARC,PRODUCT (=); AUTOMATON
ARITH OR, 670
LEX EQUAL, 1616
TWO ORTH ARE IN CONTACT, 2432

NARC,PRODUCT ; AUTOMATON
AMONG LOW UP, 640
COUNTS, 966
DOMAIN CONSTRAINT, 1176
ELEM, 1182
ELEMENT, 1194
ELEMENT GREATEREQ, 1206
ELEMENT LESSEQ, 1210
ELEMENT MATRIX, 1214
IN, 1394
IN INTERVAL, 1398

NARC,PRODUCT ;NARC,PATH
SORT PERMUTATION, 2276

NARC,PRODUCT , SUCC; AUTOMATON
MINIMUM GREATER THAN, 1812
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NEXT ELEMENT, 1852
NARC,SELF

OPEN ATLEAST, 1960
ORTH LINK ORI SIZ END, 2008

NARC,SELF
OPEN ATMOST, 1962

NARC,SELF
DISCREPANCY, 1122
OPEN AMONG, 1956
ORTH ON THE GROUND, 2012

NARC,SELF ; AUTOMATON
ARITH, 666
ATLEAST, 688

NARC,SELF ; AUTOMATON
ATMOST, 704

NARC,SELF ; AUTOMATON
AMONG, 620
AMONG DIFF 0, 628
AMONG INTERVAL, 636
AMONG MODULO, 646
COUNT, 962
EXACTLY, 1268

NARC,SELF ; CLIQUE ,CC
SHIFT, 2144

NARC,SELF ; CLIQUE , SUCC
SLIDING TIME WINDOW SUM, 2184

NARC,SELF ;MAX NSCC,CLIQUE
DAG, 1062

NARC,SELF ;NARC,CLIQUE( 6=)
DIFFN, 1096

NARC,SELF ;NARC,CLIQUE(<); AUTOMATON
SEQUENCE FOLDING, 2136

NARC,SELF ;NARC,PRODUCT
DISJOINT TASKS, 1138

NARC,SELF ;NCC,NVERTEX,CLIQUE( 6=)
ORTHS ARE CONNECTED, 2018

NARC,SELF ; PRODUCT , ∀,SUCC
COLOURED CUMULATIVES, 896
CUMULATIVE WITH LEVEL OF PRIORITY, 1010
CUMULATIVES, 1016

NARC,SELF ; PRODUCT , SUCC
COLOURED CUMULATIVE, 890
CUMULATIVE, 982
CUMULATIVE CONVEX, 994
CUMULATIVE PRODUCT, 1000
TRACK, 2400

NARC,SYMMETRIC PRODUCT (=); AUTOMATON
TWO ORTH DO NOT OVERLAP, 2440

NCC,CLIQUE
K CUT, 1530
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NCC,CLIQUE
CONNECTED, 944

NCC,NTREE,CLIQUE
CYCLE, 1026

NCC,NTREE,CLIQUE
MAP, 1668

NCC,NTREE,CLIQUE ;NVERTEX,CLIQUE ,PRED
CYCLE OR ACCESSIBILITY, 1046

NCC,NTREE,CLIQUE ,PATH LENGTH
CYCLE CARD ON PATH, 1042

NCC,NTREE,NVERTEX,CLIQUE ;NVERTEX,CLIQUE , ∀
CYCLE RESOURCE, 1050

NCC,NVERTEX,CLIQUE(6=)
POLYOMINO, 2066
PROPER FOREST, 2080

NCC,PATH ,LOOP ; AUTOMATON
GLOBAL CONTIGUITY, 1338

NCC,PRODUCT
NVALUE ON INTERSECTION, 1920

NSCC,CLIQUE
ATLEAST NVALUE, 692
ATLEAST NVECTOR, 700
SOFT ALLDIFFERENT VAR, 2222

NSCC,CLIQUE
ATMOST NVALUE, 710
ATMOST NVECTOR, 718

NSCC,CLIQUE
NCLASS, 1840
NEQUIVALENCE, 1848
NINTERVAL, 1860
NPAIR, 1892
NSET OF CONSECUTIVE VALUES, 1896
NVALUE, 1904
NVALUES, 1924
NVALUES EXCEPT 0, 1928
NVECTOR, 1932
NVECTORS, 1936

NSCC,CLIQUE ; AUTOMATON
NOT ALL EQUAL, 1882

NSCC,CLIQUE ; AUTOMATON
INCREASING NVALUE, 1432

NSCC,GRID([SIZE1, SIZE2, SIZE3])
CONNECT POINTS, 940

NSCC,NTREE,CLIQUE ,ALL VERTICES
CIRCUIT CLUSTER, 864

NSINK NSOURCE,PRODUCT
SOFT SAME INTERVAL VAR, 2232
SOFT SAME MODULO VAR, 2236
SOFT SAME PARTITION VAR, 2240
SOFT SAME VAR, 2244
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SOFT USED BY INTERVAL VAR, 2248
SOFT USED BY MODULO VAR, 2252
SOFT USED BY PARTITION VAR, 2256
SOFT USED BY VAR, 2260

NSINK,CC(NSINK,NSOURCE),PRODUCT
USED BY, 2448
USED BY INTERVAL, 2454
USED BY MODULO, 2458
USED BY PARTITION, 2462

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT
SAME, 2098
SAME INTERVAL, 2118
SAME MODULO, 2122
SAME PARTITION, 2126

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NARC,PATH
SORT, 2268

NSINK,NSOURCE,CC(NSINK,NSOURCE),PRODUCT ;NVERTEX,SELF , ∀
SAME AND GLOBAL CARDINALITY, 2106
SAME AND GLOBAL CARDINALITY LOW UP, 2110

NSINK,NSOURCE,PRODUCT
COMMON, 902
COMMON INTERVAL, 906
COMMON MODULO, 910
COMMON PARTITION, 914

NSINK,NSOURCE,PRODUCT ; AUTOMATON
IN SAME PARTITION, 1412

NSINK,PRODUCT
USES, 2466

NSOURCE,PRODUCT
AMONG VAR, 654
ELEMENTS SPARSE, 1242

NSOURCE,SUM,PRODUCT
SUM OF WEIGHTS OF DISTINCT VALUES, 2346

NTREE,CLIQUE
DERANGEMENT, 1084

NTREE,RANGE NCC,CLIQUE
BALANCE CYCLE, 730

NTREE,SUM WEIGHT ARC,CLIQUE
MINIMUM WEIGHT ALLDIFFERENT, 1820

NVERTEX,PRODUCT
ELEMENTS ALLDIFFERENT, 1236

NVERTEX,SELF , ∀
ORDERED GLOBAL CARDINALITY, 2000

NVERTEX,SELF , ∀
GLOBAL CARDINALITY, 1304
GLOBAL CARDINALITY LOW UP, 1318
OPEN GLOBAL CARDINALITY, 1964
OPEN GLOBAL CARDINALITY LOW UP, 1968

NVERTEX,SELF , ∀; AUTOMATON
INCREASING GLOBAL CARDINALITY, 1426
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NVERTEX,SELF , ∀;NARC,SELF
GLOBAL CARDINALITY LOW UP NO LOOP, 1322
GLOBAL CARDINALITY NO LOOP, 1326

NVERTEX,SELF , ∀;SUM WEIGHT ARC,PRODUCT
GLOBAL CARDINALITY WITH COSTS, 1330

ORDER,CLIQUE
MAX INDEX, 1684
MAX N, 1686
MAXIMUM MODULO, 1720
MIN INDEX, 1746
MIN N, 1750
MINIMUM MODULO, 1818

ORDER,CLIQUE ; AUTOMATON
MAXIMUM, 1710
MINIMUM, 1798
MINIMUM EXCEPT 0, 1808

PATH FROM TO,CLIQUE
PATH FROM TO, 2034

PATH FROM TO,PRODUCT (PATH ,VOID); AUTOMATON
LEX GREATER, 1620
LEX GREATEREQ, 1626
LEX LESS, 1632
LEX LESSEQ, 1638

PATH ,LOOP ,CC; AUTOMATON
SLIDING CARD SKIP0, 2164

PREDEFINED

ABS VALUE, 492
ALL BALANCE, 494
ATMOST1, 708
BIN PACKING CAPA, 784
CALENDAR, 800
COLORED MATRIX, 886
COMPARE AND COUNT, 918
CONSECUTIVE VALUES, 950
CUMULATIVE TWO D, 1006
DISTANCE, 1156
DIVISIBLE, 1166
DIVISIBLE OR, 1168
DOM REACHABILITY, 1170
DOMAIN, 1174
EQ, 1246
EQ CST, 1248
EQ SET, 1250
EQUILIBRIUM, 1256
GCD, 1288
GEOST, 1290
GEOST TIME, 1294
GEQ, 1300
GEQ CST, 1302
GRAPH ISOMORPHISM, 1352



INDEX 4025

GT, 1380
IN INTERVAL REIFIED, 1402
IN INTERVALS, 1406
IN SET, 1416
INCOMPARABLE, 1418
INCREASING SUM, 1450
INVERSE EXCEPT LOOP, 1506
LEQ, 1580
LEQ CST, 1582
LEX2, 1584
LEX ALLDIFFERENT EXCEPT 0, 1590
LEX LESSEQ ALLPERM, 1644
LT, 1666
MAX OCC OF CONSECUTIVE TUPLES OF VALUES, 1698
MAX OCC OF SORTED TUPLES OF VALUES, 1700
MAX OCC OF TUPLES OF VALUES, 1702
MULTI GLOBAL CONTIGUITY, 1826
MULTI INTER DISTANCE, 1830
MULTIPLE, 1832
NEQ, 1844
NEQ CST, 1846
NUMBER DIGIT, 1902
OPPOSITE SIGN, 1978
ORDER, 1990
PERIOD, 2050
PERIOD EXCEPT 0, 2052
PERIOD VECTORS, 2054
POWER, 2070
PROPER CIRCUIT, 2076
REMAINDER, 2092
SAME REMAINDER, 2130
SAME SIGN, 2132
SCALAR PRODUCT, 2134
SET VALUE PRECEDE, 2142
SIGN OF, 2150
SOFT CUMULATIVE, 2228
STRICT LEX2, 2308
SUBGRAPH ISOMORPHISM, 2324
SUM CUBES CTR, 2336
SUM FREE, 2338
SUM OF INCREMENTS, 2340
SUM POWERS4 CTR, 2350
SUM POWERS5 CTR, 2352
SUM POWERS6 CTR, 2354
SUM SQUARES CTR, 2358
SYMMETRIC ALLDIFFERENT EXCEPT 0, 2368
TASKS INTERSECTION, 2386
TWIN, 2426
VISIBLE, 2480
ZERO OR NOT ZERO, 2502
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ZERO OR NOT ZERO VECTORS, 2504
PROD,SELF

PRODUCT CTR, 2074
PRODUCT ,∀, SUCC

INDEXED SUM, 1460
PRODUCT ,SUCC

ASSIGN AND COUNTS, 678
ASSIGN AND NVALUES, 684
BIN PACKING, 778
INTERVAL AND COUNT, 1486
INTERVAL AND SUM, 1492

RANGE NSCC,CLIQUE
BALANCE, 722
BALANCE INTERVAL, 736
BALANCE MODULO, 740
BALANCE PARTITION, 744

RANGE,SELF
ALLDIFFERENT CONSECUTIVE VALUES, 572
RANGE CTR, 2084

SUM WEIGHT ARC,PRODUCT
SLIDING TIME WINDOW FROM START, 2180

SUM,PRODUCT
SUM, 2328

SUM,SELF
SUM CTR, 2332
SUM SET, 2356

SYMMETRIC PRODUCT
INVERSE WITHIN RANGE, 1516

SIMILARITY, 822
Simonis H., i, iv, 5, 12, 109, 158, 283, 300, 322, 333, 364, 365, 371, 940, 1010, 1306, 1522,

1582, 1590
Simons B. B., 540
SIZE LONGEST DECREASING SEQUENCE, 1654
SIZE LONGEST INCREASING SEQUENCE, 1660
SIZE MAX SEQ ALLDIFFERENT, 64, 81, 82, 126, 166, 209, 245, 272, 284, 337, 351, 363, 408,

553, 696, 1953, 2152, 2158, 2161
SIZE MAX STARTING SEQ ALLDIFFERENT, 64, 126, 166, 209, 245, 272, 284, 319, 337, 351,

363, 408, 553, 696, 1953, 2155, 2158
SIZE MAXIMAL SEQUENCE ALLDIFF, 2152
SIZE MAXIMAL SEQUENCE ALLDIFFERENT, 2152
SIZE MAXIMAL SEQUENCE ALLDISTINCT, 2152
SIZE MAXIMAL STARTING SEQUENCE ALLDIFF, 2158
SIZE MAXIMAL STARTING SEQUENCE ALLDIFFERENT, 2158
SIZE MAXIMAL STARTING SEQUENCE ALLDISTINCT, 2158
ski assignment problem, 547
Skiena S., 61
SLAM problem, 360, 1934
Slaney J. K., 476
slice encoding, 359
sliding cyclic(1) constraint network(1), 360, 1066, 1422, 1866, 1870, 1884, 2312, 2318
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sliding cyclic(1) constraint network(2), 361, 519, 524, 529, 534, 823, 833, 1055, 1059, 1072,
1076, 1082, 1386, 1448, 1458, 1468, 1572, 1578, 2046, 2191, 2474

sliding cyclic(1) constraint network(3), 362, 833, 1650, 1736
sliding cyclic(2) constraint network(2), 362, 845, 1163
sliding sequence constraint, 363, 652, 675, 1044, 1229, 2039, 2089, 2155, 2161, 2165, 2169,

2173, 2178, 2181, 2186, 2294, 2298, 2306
SLIDING ATMOST, 1830
SLIDING CARD SKIP0, 144, 167, 187, 189, 351, 363, 391, 622, 641, 689, 1307, 2164
SLIDING DISTRIBUTION, 140, 218, 236, 284, 351, 363, 389, 652, 1318–1320, 2039, 2168, 2173,

2294, 2298
SLIDING SUM, 63, 144, 201, 218, 236, 260, 284, 291, 351, 363, 379, 389, 2089, 2169, 2172,

2333
SLIDING TIME WINDOW, 138, 218, 363, 390, 2146, 2176, 2180, 2181, 2184, 2186
SLIDING TIME WINDOW FROM START, 144, 218, 242, 363, 390, 2178, 2179, 2180
SLIDING TIME WINDOW SUM, 138, 218, 363, 379, 390, 392, 2178, 2184, 2333
Sloane N. J. A., 546, 1026, 2406
smallest rectangle area, 365, 1103, 1293
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