5.8 all_equal_valley

	DESCRIPTION	LINKS	AUTOMATON
Origin	Derived from valley and all.	equal.	
Constraint	all_equal_valley(VARIABLE	ES)	
Argument	VARIABLES : collection	n(var-dvar)	
Restrictions	VARIABLES > 0 required(VARIABLES, var)		
Purpose	A variable V_k $(1 < k < m)$ is a <i>valley</i> if and only if then $V_i = V_{i+1} = \cdots = V_k$ and V_k Enforce all the valleys of the se be located at the same altitude.	of the sequence of w e exists an i (1 < $k < V_{k+1}$. equence VARIABLES	variables VARIABLES = V_1, \ldots, V_m $i \leq k$) such that $V_{i-1} > V_i$ and to be assigned the same value, i.e. to
Example	$(\langle 1, 5, 5, 4, 2, 2, 6, 2, 7 \rangle)$		

The all_equal_valley constraint holds since the two valleys, in bold, of the sequence 155422627 are located at the same altitude 2. Figure 5.14 depicts the solution associated with the example.

Figure 5.14: Illustration of the **Example** slot: a sequence of nine variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 respectively fixed to values 1, 5, 5, 4, 2, 2, 6, 2, 7 and its corresponding two valleys, in red, both located at altitude 2

Note that the all_equal_valley constraint does not enforce that the minimum value of the sequence VARIABLES corresponds to the altitude of its valleys since, as shown by the

20130108

 $|VARIABLES| \ge 5$

range(VARIABLES.var) > 1valley(VARIABLES.var) ≥ 2

example, the sequence can starts with an increasing subsequence that start below the altitude of its valleys. It also does not enforce that the sequence VARIABLES contains at least one valley.

Typical

Symmetries

• Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Prefix-contractible wrt. VARIABLES.
- Suffix-contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8	
Solutions	9	64	625	7330	93947	1267790	17908059	
Number of solutions for all equal valley: domains $0, n$								

20130108

Automaton

Figure 5.15 depicts the automaton associated with the all_equal_valley constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i, VAR_{i+1} and S_i : (VAR_i < VAR_{i+1} \Leftrightarrow $S_i = 0$) \land (VAR_i = VAR_{i+1} \Leftrightarrow $S_i = 1$) \land (VAR_i > VAR_{i+1} \Leftrightarrow $S_i = 2$).

Figure 5.15: Automaton for the all_equal_valley constraint (note the conditional transition from state k to state j testing that the counter *Altitude* is equal to VAR_i for enforcing that all valleys are located at the same altitude)

Figure 5.16: Hypergraph of the reformulation corresponding to the automaton of the all_equal_valley constraint where A_i stands for the value of the counter *Altitude* (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})