5.17 alldifferent_interval

	DESCRIPTION	LINKS	GRAPH	AUTOMATON		
Origin	Derived from alldiffere	nt.				
Constraint	$\verb+alldifferent_interval(VARIABLES, SIZE_INTERVAL)$					
Synonyms	alldiff_interval, alld	istinct_interval.				
Arguments	VARIABLES : co SIZE_INTERVAL : in	<pre>llection(var-dvar) t</pre>				
Restrictions	$\frac{\texttt{required}(\texttt{VARIABLES},\texttt{v})}{\texttt{SIZE_INTERVAL}} > 0$	var)				
Purpose	Enforce all variables of the intervals are defined by [S2] where k is an integer.					
Example	$(\langle 2, 4, 10 \rangle, 3)$ In the example, the seco family of intervals $[3 \cdot k, 3]$					
All solutions	collection VARIABLES take distinct intervals [0, 2], [3, 5 Figure 5.38 gives all s	values that are respective and [9, 11], the alldif olutions to the follow	ely located within the thre ferent_interval constr ving non ground instan	e following raint holds. nee of the		
	alldifferent_interval(alldifferent_interval)		$V_2 \in [1, 2], V_3 \in [2, 3],$	$V_4 \in [0,9],$		
		$ \begin{array}{c} \textcircled{1} (\langle 6,1,3,9\rangle,3) \\ \textcircled{2} (\langle 6,2,3,9\rangle,3) \\ \textcircled{3} (\langle 7,1,3,9\rangle,3) \\ \textcircled{4} (\langle 7,2,3,9\rangle,3) \end{array} $				

Figure 5.38: All solutions corresponding to the non ground example of the alldifferent_interval0 constraint of the **All solutions** slot

Typical |VARIABLES| > 1 SIZE_INTERVAL > 1 SIZE_INTERVAL <range(VARIABLES.var)

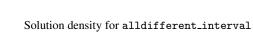
548

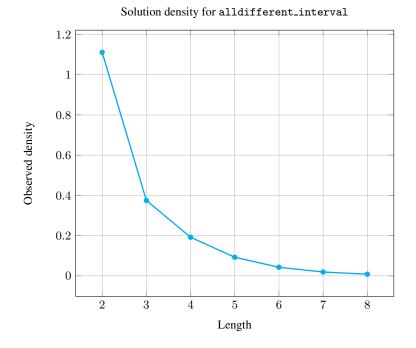
20030820

Symmetries

• Items of VARIABLES are permutable.

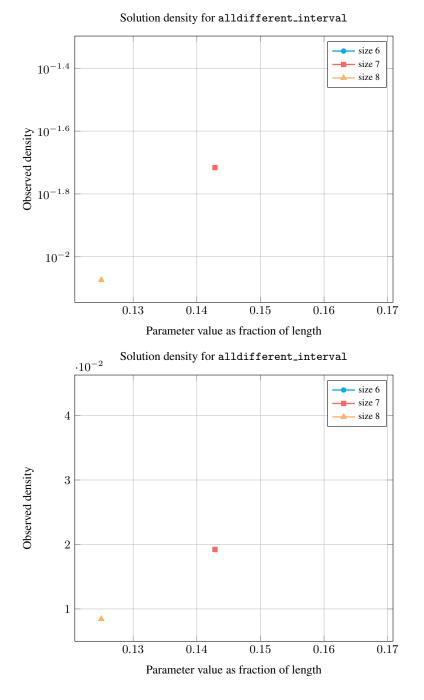
- A value of VARIABLES.var that belongs to the k-th interval, of size SIZE_INTERVAL, can be renamed to any unused value of the same interval.
- Two distinct values of VARIABLES.var that belong to two distinct intervals, of size SIZE_INTERVAL, can be swapped.


Arg. properties


Contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	10	24	120	720	5040	40320	362880
Number of solutions for alldifferent interval: domains 0n							


 10^{0} 10^{-1} 10^{-1} 10^{-2} 2 3 4 5 6 7 8Length

Length (n)		2	3	4	5	6	7	8
Total		10	24	120	720	5040	40320	362880
Parameter	1	6	24	120	720	5040	40320	362880
value	2	4	-	-	-	-	-	-

Solution count for all different interval: domains 0..n

See also implied by: all_min_dist.

specialisation: alldifferent (variable/constant replaced by variable).

Keywords

characteristic of a constraint: all different, sort based reformulation, automaton, automaton with array of counters.
constraint type: value constraint.
filtering: arc-consistency.
final graph structure: one_succ.
modelling: interval.

20030820

Arc input(s)	VARIABLES				
Arc generator	$CLIQUE \mapsto collection(variables1, variables2)$				
Arc arity	2				
Arc constraint(s)	variables1.var/SIZE_INTERVAL = variables2.var/SIZE_INTERVAL				
Graph property(ies)	$\mathbf{MAX_NSCC} \leq 1$				
Graph class	ONE_SUCC				

Graph model

Similar to the **alldifferent** constraint, but we replace the binary *equality* constraint of the **alldifferent** constraint by the fact that two variables are respectively assigned to two values that belong to the same interval. We generate a *clique* with a *belong to the same interval* constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed 1.

Parts (A) and (B) of Figure 5.39 respectively show the initial and final graph associated with the **Example** slot. Since we use the **MAX_NSCC** graph property we show one of the largest strongly connected component of the final graph.

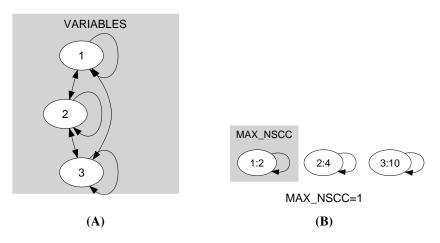


Figure 5.39: Initial and final graph of the alldifferent_interval constraint

Automaton

Figure 5.40 depicts the automaton associated with the alldifferent_interval constraint. To each item of the collection VARIABLES corresponds a signature variable S_i that is equal to 1. For each interval [SIZE_INTERVAL·k, SIZE_INTERVAL·k+SIZE_INTERVAL-1] of values the automaton counts the number of occurrences of its values and finally imposes that the values of an interval are taken at most once.

$$\{C[_] = 0\} \xrightarrow{\qquad } \begin{cases} s \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ arith(C, <, 2) \end{cases} = C[\lfloor \frac{\operatorname{VAR}_i}{\operatorname{SIZE_INTERVAL}} \rfloor] = C[\lfloor \frac{\operatorname{VAR}_i}{\operatorname{SIZE_INTERVAL}} \rfloor] + 1\}$$

Figure 5.40: Automaton of the alldifferent_interval constraint