5.18 alldifferent_modulo

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from alldifferent.			
Constraint	alldifferent_modulo(VARIA	BLES,M)		
Synonyms	alldiff_modulo, alldistinc	t_modulo.		
Arguments	VARIABLES : collection M : int	(var-dvar)		
Restrictions	$\begin{array}{l} \textbf{required}(\texttt{VARIABLES},\texttt{var})\\ \texttt{M} > 0\\ \texttt{M} \geq \texttt{VARIABLES} \end{array}$			
Purpose	Enforce all variables of the coll by M.	ection VARIABLES to I	nave a distinct rest when	divided
Example	$(\langle 25, 1, 14, 3 \rangle, 5)$ The equivalence classes associ equal to 25 mod 5 = 0, 1 mod 3 distinct the alldifferent_modu	ated with values 25, $5 = 1, 14 \mod 5 = 4$ the constraint holds.	1, 14 and 3 are read and $3 \mod 5 = 3$. Since	spectively e they are
Typical	$\begin{split} \texttt{VARIABLES} > 2 \\ \texttt{M} > 1 \end{split}$			
Symmetries	 Items of VARIABLES are p A value u of VARIABLES gruent to u modulo M. Two distinct values u and be swapped. 	permutable. .var can be renamed t v of VARIABLES.var s	o any value v such that v such that $u \mod \mathtt{M} \neq v$ m	v is con- od M can
Arg. properties	Contractible wrt. VARIABLES.			
Counting				

Length (n)	2	3	4	5	6	7	8
Solutions	4	12	48	240	1440	10080	80640
Number of colutions for all different modules domains 0 m							

Number of solutions for all different_modulo: domains 0..n

556

$\underline{\mathbf{MAX_NSCC}}, \mathit{CLIQUE}$

Length (n)		2	3	4	5	6	7	8
Total		4	12	48	240	1440	10080	80640
	2	4	-	-	-	-	-	-
	3	-	12	-	-	-	-	-
Parameter	4	-	-	48	-	-	-	-
	5	-	-	-	240	-	-	-
value	6	-	-	-	-	1440	-	-
	7	-	-	-	-	-	10080	-
	8	-	-	-	-	-	-	80640
Solution count for all different module: domains 0 n								

Solution count for all different_modulo: domains 0..n

Parameter value as fraction of length

Solution density for alldifferent_modulo

See also	<pre>implies: soft_alldifferent_var.</pre>						
	specialisation: all different (variable mod constant <i>replaced by</i> variable).						
Keywords	characteristic of a constraint: modulo, all different, sort based reformulation, automaton, automaton with array of counters.						
	constraint type: value constraint.						
	filtering: arc-consistency.						
	final graph structure: one_succ.						

Arc input(s)	VARIABLES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
Arc arity	2
Arc constraint(s)	$\texttt{variables1.var} \bmod \texttt{M} = \texttt{variables2.var} \bmod \texttt{M}$
Graph property(ies)	MAX_NSCC≤1
Graph class	ONE_SUCC

Exploit the same model used for the **alldifferent** constraint. We replace the binary *equality* constraint by another equivalence relation depicted by the arc constraint. We generate a *clique* with a binary *equality modulo* M constraint between each pair of vertices (including a vertex and itself) and state that the size of the largest strongly connected component should not exceed 1.

Parts (A) and (B) of Figure 5.41 respectively show the initial and final graph associated with the **Example** slot. Since we use the **MAX_NSCC** graph property we show one of the largest strongly connected components of the final graph.

Figure 5.41: Initial and final graph of the alldifferent_modulo constraint

560

Graph model

20030820

Automaton

Figure 5.42 depicts the automaton associated with the alldifferent_modulo constraint. To each item of the collection VARIABLES corresponds a signature variable S_i that is equal to 1. The automaton counts for each equivalence class the number of used values and finally imposes that each equivalence class is used at most one time.

Figure 5.42: Automaton of the alldifferent_modulo constraint