5.19 alldifferent_on_intersection **DESCRIPTION** LINKS GRAPH **AUTOMATON** Origin Derived from common and alldifferent. Constraint alldifferent_on_intersection(VARIABLES1, VARIABLES2) Synonyms alldiff_on_intersection, alldistinct_on_intersection. VARIABLES1 : collection(var-dvar) Arguments VARIABLES2 : collection(var-dvar) Restrictions required(VARIABLES1, var) required(VARIABLES2, var) The values that both occur in the VARIABLES1 and VARIABLES2 collections have only Purpose one occurrence. Example $(\langle 5, 9, 1, 5 \rangle, \langle 2, 1, 6, 9, 6, 2 \rangle)$ The alldifferent_on_intersection constraint holds since the values $9\ {\rm and}\ 1$ that both occur in (5, 9, 1, 5) as well as in (2, 1, 6, 9, 6, 2) have exactly one occurrence in each collection. Typical |VARIABLES1| > 1|VARIABLES2| > 1**Symmetries** • Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2). • Items of VARIABLES1 are permutable. • Items of VARIABLES2 are permutable. • All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var can be swapped; all occurrences of a value in VARIABLES1.var or VARIABLES2.var can be renamed to any unused value. Arg. properties • Contractible wrt. VARIABLES1. • Contractible wrt. VARIABLES2. See also common keyword: common, nvalue_on_intersection (constraint on the intersection). implied by: disjoint. implies: same_intersection.

root concept: alldifferent.

562

20040530

Keywords

characteristic of a constraint: all different, automaton, automaton with array of counters.
constraint arguments: constraint between two collections of variables.
constraint type: constraint on the intersection, value constraint.
final graph structure: connected component, acyclic, bipartite, no loop.

VARIABLES1 VARIABLES2
$PRODUCT \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
2
variables1.var = variables2.var
MAX_NCC≤2
• ACYCLIC • BIPARTITE • NO_LOOP

Graph model

Parts (A) and (B) of Figure 5.43 respectively show the initial and final graph associated with the **Example** slot. Since we use the **MAX_NCC** graph property we show one of the largest connected components of the final graph. The alldifferent_on_intersection constraint holds since each connected component has at most two vertices. Note that all the vertices corresponding to the variables that take values 5, 2 or 6 were removed from the final graph since there is no arc for which the associated equality constraint holds.

Figure 5.43: Initial and final graph of the <code>alldifferent_on_intersection</code> constraint

564

20040530

Automaton

Figure 5.44 depicts the automaton associated with the alldifferent_on_intersection constraint. To each variable VAR1_i of the collection VARIABLES1 corresponds a signature variable S_i that is equal to 0. To each variable VAR2_i of the collection VARIABLES2 corresponds a signature variable S_{i+|VARIABLES1} that is equal to 1. The automaton first counts the number of occurrences of each value assigned to the variables of the VARIABLES1 collection. It then counts the number of occurrences of each value assigned to the variables of the variables of the VARIABLES2 collection. Finally, the automaton imposes that each value is not taken by two variables of both collections.

$$\left\{\begin{array}{c} C[.] = 0, \\ D[.] = 0 \end{array}\right\} \longrightarrow \left\{\begin{array}{c} s & 0, \\ \{C[\mathtt{VAR}_i] = C[\mathtt{VAR}_i] + 1\} \\ & 1, \\ \{D[\mathtt{VAR}_i] = D[\mathtt{VAR}_i] + 1\} \\ & & 1, \\ \{D[\mathtt{VAR}_i] = D[\mathtt{VAR}_i] + 1\} \\ & & 1, \\ \{D[\mathtt{VAR}_i] = D[\mathtt{VAR}_i] + 1\} \\ & & \\ & & \\ \hline \\ \mathbf{arith_or}(C, D, <, 2) \end{array}\right\}$$

Figure 5.44: Automaton of the alldifferent_on_intersection constraint