$\underline{MAX_NSCC}, \underline{NARC_NO_LOOP}, PRODUCT(CLIQUE, LOOP, =)$

5.21 alldifferent_same_value

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from alldifferent.			
Constraint	alldifferent_same_value(NSAME, VARIABLES1, VA	RIABLES2)	
Synonyms	alldiff_same_value, alldi	stinct_same_value.		
Arguments	NSAME : dvar VARIABLES1 : collecti VARIABLES2 : collecti	· · · · · · · · · · · · · · · · · · ·		
Restrictions	$\begin{split} & \texttt{NSAME} \geq 0 \\ & \texttt{NSAME} \leq \texttt{VARIABLES1} \\ & \texttt{VARIABLES1} = \texttt{VARIABLES1} \\ & \texttt{required}(\texttt{VARIABLES1},\texttt{var}) \\ & \texttt{required}(\texttt{VARIABLES2},\texttt{var}) \end{split}$	c)		
Purpose	All the values assigned to the distinct. NSAME is equal to mean VARIABLES2[i].var $(1 \le i \le $	umber of constraints of	the form VARIABLES1 $[i]$.	
Example	 (2, (7, 3, 1, 5), (1, 3, 1, 7)) The alldifferent_same_value constraint holds since: All the values 7, 3, 1 and 5 are distinct, 			
	• Among the four expression hold.	ons $7 = 1, 3 = 3, 1 =$	1 and $5 = 7$ exactly 2 co	onditions
Typical	$\begin{array}{l} \texttt{NSAME} < \texttt{VARIABLES1} \\ \texttt{VARIABLES1} > 2 \end{array}$			
Symmetries		distinct values in VARIA	BLES1.var or VARIABLE value in VARIABLES1.v	S2.var
Arg. properties	Functional dependency: NSAM	E determined by VARIABI	ES1 and VARIABLES2.	
Usage	When all variables of the sec alldifferent_same_value co			lues the
	• We interpret the variables lem where all variables h		as the previous solution to	o a prob-

20000128	

	• We interpret the variables of the fi all variables should again be pairw		ı to find, where
	The variable NSAME measures the distance of the current solution from the previous solu- tion. This corresponds to the number of variables of VARIABLES2 that are assigned to the same previous value.		
See also	<pre>root concept: alldifferent.</pre>		
Keywords	characteristic of a constraint: automaton with array of counters.	sort based reformulation,	automaton,
	constraint type: proximity constraint.		
	modelling: functional dependency.		
Cond. implications	<pre>alldifferent_same_value(NSAME, VARIABLES1, VARIABLES2) with 2 * NSAME = VARIABLES1 implies differ_from_exactly_k_pos(K, VECTOR1, VECTOR2).</pre>		

Arc input(s)	VARIABLES1 VARIABLES2	
Arc generator	$PRODUCT(CLIQUE, LOOP, =) \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$	
Arc arity	2	
Arc constraint(s)	variables1.var = variables2.var	
Graph property(ies)	• MAX_NSCC ≤ 1	
	• NARC_NO_LOOP= NSAME	

The arc generator *PRODUCT*(*CLIQUE*,*LOOP*, =) is used in order to generate all the arcs of the initial graph:

- The arc generator *CLIQUE* creates all links between the items of the first collection VARIABLES1,
- The arc generator *LOOP* creates a loop for each item of the second collection VARIABLES2,
- Finally the arc generator *PRODUCT*(=) creates an arc between items located at the same position in the collections VARIABLES1 and VARIABLES2.

Part (A) of Figure 5.46 gives the initial graph associated with the **Example** slot. Variables of collection VARIABLES1 are coloured, while variables of collection VARIABLES2 are kept in white. Part (B) represents the final graph associated with the **Example** slot. In this graph each vertex constitutes a strongly connected component and the number of arcs that do not correspond to a loop is equal to 2 (i.e., NSAME).

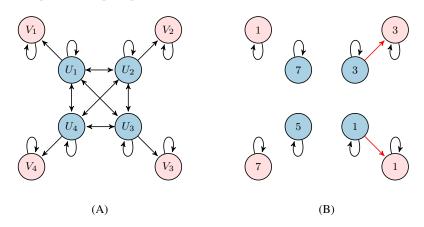


Figure 5.46: (A) Initial and (B) final graph of the alldifferent_same_value $(2, \langle U_1, U_2, U_3, U_4 \rangle, \langle V_1, V_2, V_3, V_4 \rangle)$ constraint with $U_1 = 7, U_2 = 3, U_3 = 1, U_4 = 5$ and $V_1 = 1, V_2 = 3, V_3 = 1, V_4 = 7$ (in Part (B) arcs in red correspond to the arcs counted by the argument NSAME)

Graph model

572

20000128

Automaton

Figure 5.47 depicts the automaton associated with the alldifferent_same_value constraint. Let VAR1_i and VAR2_i respectively denote the i^{th} variables of the VARIABLES1 and VARIABLES2 collections. To each pair of variables (VAR1_i, VAR2_i) corresponds a signature variable S_i. The following signature constraint links VAR1_i, VAR2_i and S_i: VAR1_i = VAR2_i \Leftrightarrow S_i.

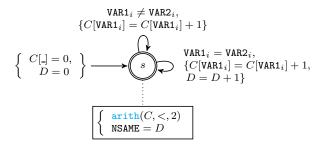


Figure 5.47: Automaton of the alldifferent_same_value constraint