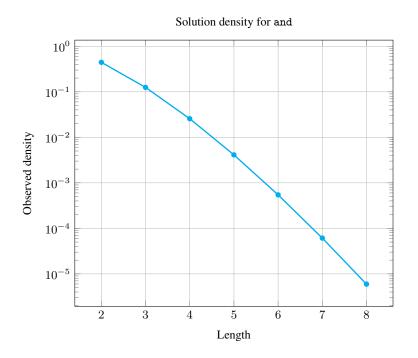
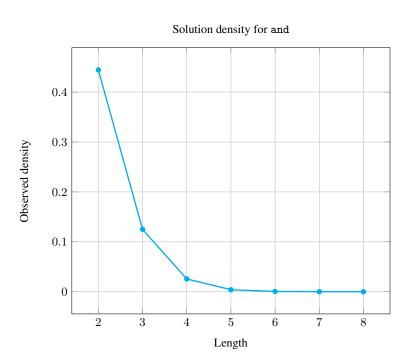
AUTOMATON

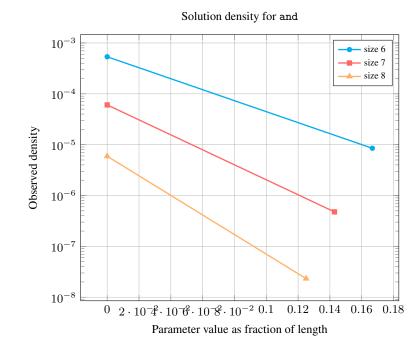

5.30 and

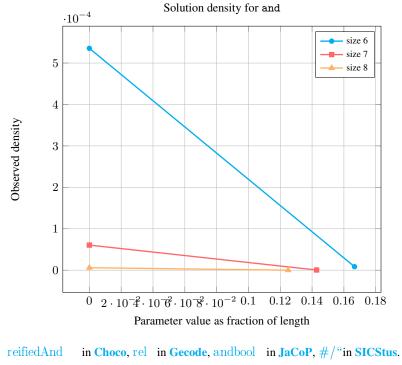

	DESCRIPTION	LINKS	AUTOMATON
Origin	Logic		
Constraint	${\tt and}({\tt VAR}, {\tt VARIABLES})$		
Synonym	rel.		
Arguments	VAR : dvar VARIABLES : collection	(var-dvar)	
Restrictions	$\begin{array}{l} \text{VAR} \geq 0 \\ \text{VAR} \leq 1 \\ \text{VARIABLES} \geq 2 \\ \textbf{required}(\text{VARIABLES}, \text{var}) \\ \text{VARIABLES.var} \geq 0 \\ \text{VARIABLES.var} \leq 1 \end{array}$		
Purpose	Let VARIABLES be a collection of VAR = VAR $_1 \land$ VAR $_2 \land \cdots \land$ VA		$AR_2, \ldots, VAR_n \ (n \ge 2).$ Enforce
Example	$ \begin{array}{c} (0, \langle 0, 0 \rangle) \\ (0, \langle 0, 1 \rangle) \\ (0, \langle 1, 0 \rangle) \\ (1, \langle 1, 1 \rangle) \\ (0, \langle 1, 0, 1 \rangle) \end{array} $		
Symmetry	Items of VARIABLES are permut	able.	
Arg. properties	 Functional dependency: ' Extensible wrt. VARIABL Aggregate: VAR(\), VARIABL 	ES when $VAR = 0$.	IABLES.
Counting			

Length (n)	2	3	4	5	6	7	8
Solutions	4	8	16	32	64	128	256
1 1	ĉ		ĉ		1		

Number of solutions for and: domains 0..n

612




AUTOMATON

Length (n)		2	3	4	5	6	7	8
Total		4	8	16	32	64	128	256
Parameter	0	3	7	15	31	63	127	255
value	1	1	1	1	1	1	1	1

Solution count for and: domains 0..n

Systems

common keyword: clause_and, xor (<i>Boolean constraint</i>).	, equivalent,	imply,	nand,	nor,	or,			
implies: atleast_nvalue, betwee	n_min_max, minimu	um, soft_a	ll_equal	_min_ct	r.			
characteristic of a constraint: reified automaton constraint.	automaton without counters,							
constraint arguments: pure functional dependency.								
constraint network structure: Berg	ge-acyclic constrain	t network.						
constraint type: Boolean constraint	•							
filtering: arc-consistency.								
modelling: functional dependency.								
 and(VAR, VARIABLES) with VARIABLES > 2 implies some_equal(VARIABLES)).							
• and(VAR, VARIABLES) with VAR = 0 implies nand(VAR, VARIABLES) when VAR = 1.								
• and(VAR, VARIABLES) with VAR = 1 implies nand(VAR, VARIABLES) when VAR = 0.								
	<pre>xor (Boolean constraint). implies: atleast_nvalue, betwee characteristic of a constraint: reified automaton constraint. constraint arguments: pure function constraint network structure: Berg constraint type: Boolean constraint filtering: arc-consistency. modelling: functional dependency. • and(VAR, VARIABLES) with VARIABLES] vith VAR = 0 implies some_equal(VARIABLES) with VAR = 0 implies nand(VAR, VARIABLES) when VAR = 1. • and(VAR, VARIABLES) with VAR = 1</pre>	<pre>xor (Boolean constraint). implies: atleast_nvalue, between_min_max, minimu characteristic of a constraint: automaton, reified automaton constraint. constraint arguments: pure functional dependency. constraint network structure: Berge-acyclic constraint constraint type: Boolean constraint. filtering: arc-consistency. modelling: functional dependency. • and(VAR, VARIABLES) with VARIABLES] with VAR = 0 implies some_equal(VARIABLES) with VAR = 1. • and(VAR, VARIABLES) with VAR = 1</pre>	<pre>xor (Boolean constraint). implies: atleast_nvalue, between_min_max, minimum, soft_ai characteristic of a constraint: automaton, autor reified automaton constraint. constraint arguments: pure functional dependency. constraint network structure: Berge-acyclic constraint network. constraint type: Boolean constraint. filtering: arc-consistency. modelling: functional dependency. • and(VAR, VARIABLES) with VARIABLES] with VARIABLES] with VAR = 0 implies nand(VAR, VARIABLES) when VAR = 1. • and(VAR, VARIABLES) with VAR = 1</pre>	<pre>xor (Boolean constraint). implies: atleast_nvalue, between_min_max, minimum, soft_all_equal characteristic of a constraint: automaton, automaton wit reified automaton constraint. constraint arguments: pure functional dependency. constraint network structure: Berge-acyclic constraint network. constraint type: Boolean constraint. filtering: arc-consistency. modelling: functional dependency. • and(VAR, VARIABLES) with VARIABLES > 2 implies some_equal(VARIABLES). • and(VAR, VARIABLES) with VAR = 0 implies nand(VAR, VARIABLES) when VAR = 1. • and(VAR, VARIABLES) with VAR = 1</pre>	<pre>implies: atleast_nvalue, between_min_max, minimum, soft_all_equal_min_ct characteristic of a constraint: automaton, automaton without courreified automaton constraint. constraint arguments: pure functional dependency. constraint network structure: Berge-acyclic constraint network. constraint type: Boolean constraint. filtering: arc-consistency. modelling: functional dependency. • and(VAR, VARIABLES) with VARIABLES] > 2 implies some_equal(VARIABLES). • and(VAR, VARIABLES) with VAR = 0 implies nand(VAR, VARIABLES) when VAR = 1. • and(VAR, VARIABLES) with VAR = 1</pre>			

Automaton

Figure 5.68 depicts a first deterministic automaton without counter associated with the and constraint. To the first argument VAR of the and constraint corresponds the first signature variable. To each variable VAR_i of the second argument VARIABLES of the and constraint corresponds the next signature variable. There is no signature constraint.

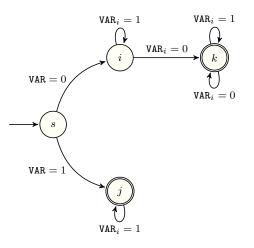


Figure 5.68: Counter free automaton of the and (VAR, $\langle VAR_1, VAR_2, \dots, VAR_n \rangle$) constraint (the transition $i \xrightarrow{VAR_i=0} k$ represents the fact that at least one variable VAR_i should be set to 0 when VAR = 0, while the transition $j \xrightarrow{VAR_i=1} j$ represents the fact that all VAR_i should be set to 1 when VAR = 1)

Figure 5.69: Hypergraph of the reformulation corresponding to the automaton of the and constraint

Figure 5.70 depicts a second deterministic automaton with one counter associated with the and constraint, where the argument VAR is unified to the final value of the counter.

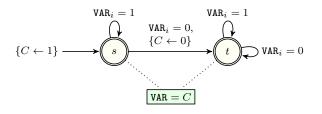


Figure 5.70: Automaton (with one counter) of the and constraint

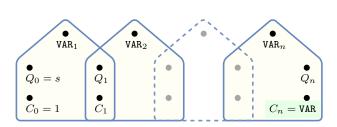


Figure 5.71: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the and constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_n)