
612 AUTOMATON

5.30 and

DESCRIPTION LINKS AUTOMATON

Origin Logic

Constraint and(VAR, VARIABLES)

Synonym rel.

Arguments VAR : dvar

VARIABLES : collection(var−dvar)

Restrictions VAR ≥ 0
VAR ≤ 1
|VARIABLES| ≥ 2
required(VARIABLES, var)
VARIABLES.var ≥ 0
VARIABLES.var ≤ 1

Purpose
Let VARIABLES be a collection of 0-1 variables VAR1, VAR2, . . . , VARn (n ≥ 2). Enforce

VAR = VAR1 ∧ VAR2 ∧ · · · ∧ VARn.

Example (0, 〈0, 0〉)
(0, 〈0, 1〉)
(0, 〈1, 0〉)
(1, 〈1, 1〉)
(0, 〈1, 0, 1〉)

Symmetry Items of VARIABLES are permutable.

Arg. properties
• Functional dependency: VAR determined by VARIABLES.

• Extensible wrt. VARIABLES when VAR = 0.

• Aggregate: VAR(∧), VARIABLES(union).

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 4 8 16 32 64 128 256

Number of solutions for and: domains 0..n

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Counting
Information on the solution density.

20051226 613

2 3 4 5 6 7 8

10−5

10−4

10−3

10−2

10−1

100

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for and

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for and

614 AUTOMATON

Length (n) 2 3 4 5 6 7 8

Total 4 8 16 32 64 128 256

Parameter

value

0 3 7 15 31 63 127 255

1 1 1 1 1 1 1 1

Solution count for and: domains 0..n

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18
10−8

10−7

10−6

10−5

10−4

10−3

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for and

size 6

size 7

size 8

20051226 615

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12 0.14 0.16 0.18

0

1

2

3

4

5

·10−4

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for and

size 6

size 7

size 8

Systems reifiedAnd in Choco, rel in Gecode, andbool in JaCoP, #/\in SICStus.

See also common keyword: clause and, equivalent, imply, nand, nor, or,

xor (Boolean constraint).

implies: atleast nvalue, between min max, minimum, soft all equal min ctr.

Keywords characteristic of a constraint: automaton, automaton without counters,

reified automaton constraint.

constraint arguments: pure functional dependency.

constraint network structure: Berge-acyclic constraint network.

constraint type: Boolean constraint.

filtering: arc-consistency.

modelling: functional dependency.

Cond. implications • and(VAR, VARIABLES)
with |VARIABLES| > 2

implies some equal(VARIABLES).

• and(VAR, VARIABLES)
with VAR = 0

implies nand(VAR, VARIABLES)
when VAR = 1.

• and(VAR, VARIABLES)
with VAR = 1

implies nand(VAR, VARIABLES)
when VAR = 0.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntRelBool.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/AndBool.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Propositional-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

Cond. implications
Conditional implications.

616 AUTOMATON

Automaton Figure 5.68 depicts a first deterministic automaton without counter associated with the and

constraint. To the first argument VAR of the and constraint corresponds the first signature

variable. To each variable VARi of the second argument VARIABLES of the and constraint

corresponds the next signature variable. There is no signature constraint.

s

i

j

k

VAR = 0

VAR = 1

VARi = 1

VARi = 0

VARi = 1

VARi = 1

VARi = 0

Figure 5.68: Counter free automaton of the and(VAR, 〈VAR1, VAR2, . . . , VARn〉) con-

straint (the transition i
VARi=0
−−−−→ k represents the fact that at least one variable VARi

should be set to 0 when VAR = 0, while the transition j
VARi=1
−−−−→ j represents the fact

that all VARi should be set to 1 when VAR = 1)

Q0 = s Q1

VAR VAR1

Qn+1 ∈ {j, k}

VARn

Figure 5.69: Hypergraph of the reformulation corresponding to the automaton of the

and constraint

Figure 5.70 depicts a second deterministic automaton with one counter associated with the

and constraint, where the argument VAR is unified to the final value of the counter.

VAR = C

s{C ← 1} t

VARi = 1

VARi = 0,

{C ← 0}

VARi = 1

VARi = 0

Figure 5.70: Automaton (with one counter) of the and constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20051226 617

C0 = 1

Q0 = s

C1

Q1

VAR1 VAR2

Cn = VAR

Qn

VARn

Figure 5.71: Hypergraph of the reformulation corresponding to the automaton (with

one counter) of the and constraint (since all states of the automaton are accepting there

is no restriction on the last variable Qn)

