5.38 atleast_nvector

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from nvector		
Constraint	atleast_nvector(NVEC,VECTO)	RS)	
Туре	VECTOR : collection(var	-dvar)	
Arguments	NVEC : dvar VECTORS : collection(vec	c - VECTOR)	
Restrictions	$\begin{split} \texttt{VECTOR} &\geq 1 \\ \texttt{NVEC} &\geq 0 \\ \texttt{NVEC} &\leq \texttt{VECTORS} \\ \texttt{required}(\texttt{VECTORS},\texttt{vec}) \\ \texttt{same_size}(\texttt{VECTORS},\texttt{vec}) \end{split}$		
Purpose	The number of distinct tuples of is greater than or equal to NV $\langle B_1, B_2, \dots, B_m \rangle$ are <i>distinct</i> if $A_i \neq B_i$.	EC. Two tuples of	values $\langle A_1, A_2, \ldots, A_m \rangle$ and
Example	$\left(\begin{array}{c} \operatorname{vec} - \langle 5, 6 \rangle , \\ \operatorname{vec} - \langle 5, 6 \rangle , \\ 2, \left\langle \begin{array}{c} \operatorname{vec} - \langle 5, 6 \rangle , \\ \operatorname{vec} - \langle 9, 3 \rangle , \\ \operatorname{vec} - \langle 5, 6 \rangle , \\ \operatorname{vec} - \langle 9, 4 \rangle \end{array} \right)$		
	The atleast_nvector constrai least 2 distinct tuples of values (i.e		
Typical	$\begin{split} \texttt{VECTOR} &> 1 \\ \texttt{NVEC} &> 1 \\ \texttt{NVEC} &< \texttt{VECTORS} \\ \texttt{VECTORS} &> 1 \end{split}$		
Symmetries		nutable. permutable (<i>same perr</i> tinct tuples of values of	<i>nutation used</i>). f VECTORS.vec can be swapped; ec can be renamed to any unused
Arg. properties	Extensible wrt. VECTORS.		

20081226

Reformulation	By introducing an extra variable NV $\in [0, VECTORS]$, the atleast_nvector(NV, VECTORS) constraint can be expressed in term of an nvector(NV, VECTORS) constraint and of an inequality constraint NV \geq NVEC.
See also	<pre>comparison swapped: atmost_nvector. implied by: nvector (> NVEC replaced by = NVEC), ordered_atleast_nvector. used in graph description: lex_equal.</pre>
Keywords	 characteristic of a constraint: vector. constraint type: counting constraint, value partitioning constraint. final graph structure: strongly connected component, equivalence. modelling: number of distinct equivalence classes. problems: domination.

Arc input(s)	VECTORS
Arc generator	$CLIQUE \mapsto collection(vectors1, vectors2)$
Arc arity	2
Arc constraint(s)	<pre>lex_equal(vectors1.vec, vectors2.vec)</pre>
Graph property(ies)	$\mathbf{NSCC} \geq NVEC$
Graph class	EQUIVALENCE

Graph model

Parts (A) and (B) of Figure 5.90 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NSCC** graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to a tuple of values that is assigned to some vectors of the VECTORS collection. The 3 following tuple of values $\langle 5, 6 \rangle$, $\langle 9, 3 \rangle$ and $\langle 9, 4 \rangle$ are used by the vectors of the VECTORS collection.

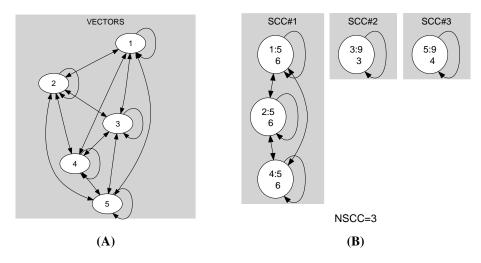


Figure 5.90: Initial and final graph of the atleast_nvector constraint

652