5.48 balance_path

	DESCRIPTION	LINKS	GRAPH
Origin	derived from balance and path		
Constraint	balance_path(BALANCE,NODES	3)	
Arguments	BALANCE : dvar NODES : collection(in	ndex-int, succ-dv	ar)
Restrictions	$\begin{array}{l} \texttt{BALANCE} \geq 0 \\ \texttt{BALANCE} \leq \texttt{max}(0, \texttt{NODES} - \\ \texttt{required}(\texttt{NODES}, [\texttt{index}, \texttt{suc} \\ \texttt{NODES}.\texttt{index} \geq 1 \\ \texttt{NODES}.\texttt{index} \leq \texttt{NODES} \\ \texttt{distinct}(\texttt{NODES}, \texttt{index}) \\ \texttt{NODES}.\texttt{succ} \geq 1 \\ \texttt{NODES}.\texttt{succ} \leq \texttt{NODES} \end{array}$		
Purpose	disjoint paths in such a way that	t each vertex of G bel	on. Partition G into a set of vertex ongs to a single path. BALANCE is of the largest path and the number
Example	$\left(\begin{array}{c} {\rm index} - 1 {\rm succ} \\ {\rm index} - 2 {\rm succ} \\ {\rm index} - 3 {\rm succ} \\ {\rm index} - 3 {\rm succ} \\ {\rm index} - 3 {\rm succ} \\ {\rm index} - 5 {\rm succ} \\ {\rm index} - 5 {\rm succ} \\ {\rm index} - 6 {\rm succ} \\ {\rm index} - 7 {\rm succ} \\ {\rm index} - 8 {\rm succ} \\ {\rm index} - 1 {\rm succ} \\ {\rm index} - 2 {\rm succ} \\ {\rm index} - 2 {\rm succ} \\ {\rm index} - 3 {\rm succ} \\ {\rm index} - 4 {\rm succ} \\ {\rm index} - 6 {\rm succ} \\ {\rm index} - 6 {\rm succ} \\ {\rm index} - 7 {\rm succ} \\ {\rm index} - 8 {\rm succ} \\ {\rm index} - 1 {\rm succ} \\ {\rm index} - 8 {\rm succ} \\ {\rm index} - 1 {\rm succ} \\ {\rm index} - 4 {\rm succ} \\ {\rm index} - 3 {\rm succ} \\ {\rm index} - 4 {\rm succ} \\ {\rm index} - 5 {\rm succ} \\ {\rm index} - 5 {\rm succ} \\ {\rm index} - 5 {\rm succ} \\ {\rm index} - 6 {\rm succ} \\ {\rm index} - 6 {\rm succ} \\ {\rm index} - 7 {\rm succ} \\ {\rm index} - 7 {\rm succ} \\ {\rm index} - 8 {\rm succ} \\ {\rm index} - $	$ \begin{array}{c c} -3, \\ -5, \\ -4, \\ -1, \\ -6, \\ -7, \\ -6, \\ -7, \\ -6, \\ -2, \\ -3, \\ -4, \\ -4, \\ -4, \\ -6, \\ -7, \\ -8, \\ -8 \\ -2, \\ -3, \\ -4, \\ -5, \\ -6, \\ -7, \\ -7, \\ -7, \\ -7, \end{array} \right) $	

698

In the first example we have the following four paths: $2 \rightarrow 3 \rightarrow 5 \rightarrow 1$, $8 \rightarrow 6$, 4, and 7. Since BALANCE = 3 is the difference between the number of vertices of the largest path (i.e., 4) and the number of vertices of the smallest path (i.e., 1) the corresponding balance_path constraint holds.

All solutions

Figure 5.108 gives all solutions to the following non ground instance of the balance_path constraint: BALANCE = 0, $S_1 \in [1, 2], S_2 \in [1, 3], S_3 \in [3, 5], S_4 \in [3, 4], S_5 \in [2, 5], S_6 \in [5, 6], balance_path(BALANCE, <math>\langle 1 S_1, 2 S_2, 3 S_3, 4 S_4, 5 S_5, 6 S_6 \rangle$).

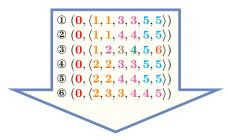
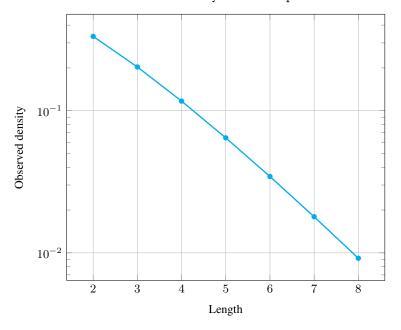
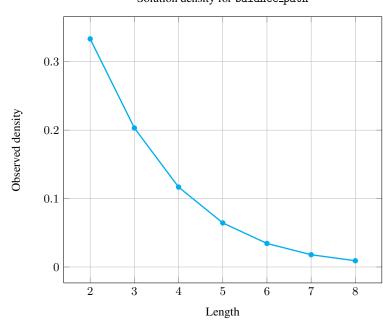



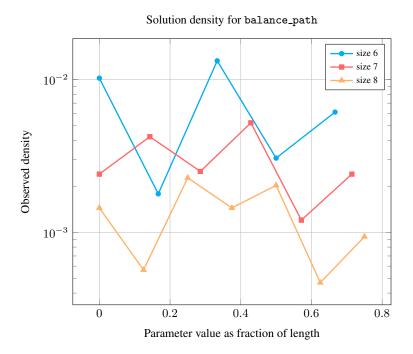
Figure 5.108: All solutions corresponding to the non ground example of the balance_path constraint of the **All solutions** slot; the index attribute is displayed as indices of the succ attribute and all vertices of a same path are coloured by the same colour.


Typical	NODES > 2
Symmetry	Items of NODES are permutable.
Arg. properties	Functional dependency: BALANCE determined by NODES.
Counting	

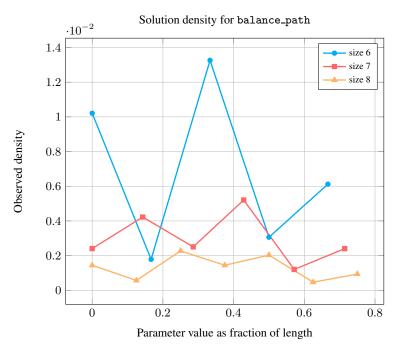
Length (n)	2	3	4	5	6	7	8
Solutions	3	13	73	501	4051	37633	394353
37 1	6						0

Number of solutions for $balance_path$: domains 0..n

Solution density for $balance_path$



Solution density for balance_path



Length (n)		2	3	4	5	6	7	8
Total		3	13	73	501	4051	37633	394353
	0	3	7	37	121	1201	5041	62161
	1	-	6	12	200	210	8862	24416
Donomoton	2	-	-	24	60	1560	5250	97776
Parameter value	3	-	-	-	120	360	10920	62160
value	4	-	-	-	-	720	2520	87360
	5	-	-	-	-	-	5040	20160
	6	-	-		-	-	-	40320

Solution count for balance_path: domains 0..n

See also	implies: balance_tree.
	related: balance (equivalence classes correspond to vertices in same path rather than variables assigned to the same value), path (do not care how many paths but how balanced the paths are).
Keywords	combinatorial object: path.
	constraint type: graph constraint, graph partitioning constraint.
	filtering: DFS-bottleneck.
	final graph structure: connected component, tree, one_succ.
	modelling: functional dependency.

20111226

Graph model

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto collection(nodes1, nodes2)$
Arc arity	2
Arc constraint(s)	<pre>nodes1.succ = nodes2.index</pre>
Graph property(ies)	• MAX_NSCC ≤ 1 • MAX_ID ≤ 1 • RANGE_NCC= BALANCE
Graph class	ONE_SUCC

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the balance_path constraint considers objects that have two attributes:

- One fixed attribute index that is the identifier of the vertex,
- One variable attribute succ that is the successor of the vertex.

We use the graph property $MAX_NSCC \le 1$ in order to specify the fact that the size of the largest strongly connected component should not exceed one. In fact each root of a tree is a strongly connected component with a single vertex. The graph property $MAX_ID \le 1$ constraints the maximum in-degree of the final graph to not exceed 1. MAX_ID does not consider loops: This is why we do not have any problem with the final node of each path.

Parts (A) and (B) of Figure 5.109 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **RANGE_NCC** graph property, we show the connected components of the final graph. The constraint holds since all the vertices belong to a path and since BALANCE = **RANGE_NCC** = 3.

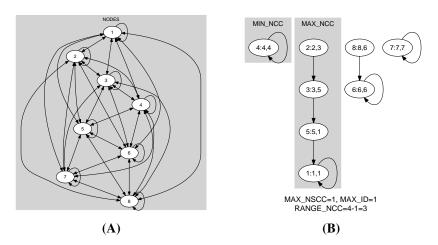


Figure 5.109: Initial and final graph of the balance_path constraint