	5.49 balance_tree
	DESCRIPTION LINKS GRAPH
Origin	derived from balance and tree
Constraint	balance_tree(BALANCE, NODES)
Arguments	BALANCE : dvar NODES : collection(index-int, succ-dvar)
Restrictions	$\begin{array}{l} \texttt{BALANCE} \geq 0 \\ \texttt{BALANCE} \leq \texttt{max}(0, \texttt{NODES} - 2) \\ \texttt{required}(\texttt{NODES}, [\texttt{index}, \texttt{succ}]) \\ \texttt{NODES.index} \geq 1 \\ \texttt{NODES.index} \leq \texttt{NODES} \\ \texttt{distinct}(\texttt{NODES}, \texttt{index}) \\ \texttt{NODES.succ} \geq 1 \\ \texttt{NODES.succ} \leq \texttt{NODES} \end{array}$
Purpose	Consider a digraph G described by the NODES collection. Partition G into a set of vertex disjoint trees in such a way that each vertex of G belongs to a single tree. BALANCE is equal to the difference between the number of vertices of the largest tree and the number of vertices of the smallest tree.
Example	$\left(\begin{array}{c} \operatorname{index} -1 & \operatorname{succ} -1, \\ \operatorname{index} -2 & \operatorname{succ} -5, \\ \operatorname{index} -3 & \operatorname{succ} -5, \\ \operatorname{index} -4 & \operatorname{succ} -7, \\ \operatorname{index} -5 & \operatorname{succ} -1, \\ \operatorname{index} -6 & \operatorname{succ} -1, \\ \operatorname{index} -7 & \operatorname{succ} -7, \\ \operatorname{index} -8 & \operatorname{succ} -5 \end{array}\right)$ $\left(\begin{array}{c} \operatorname{index} -1 & \operatorname{succ} -1, \\ \operatorname{index} -2 & \operatorname{succ} -1, \\ \operatorname{index} -3 & \operatorname{succ} -1, \\ \operatorname{index} -3 & \operatorname{succ} -1, \\ \operatorname{index} -4 & \operatorname{succ} -2, \\ \operatorname{index} -5 & \operatorname{succ} -6, \\ \operatorname{index} -6 & \operatorname{succ} -6 \end{array}\right)$
	In the first example we have two trees involving respectively the set of vertices $\{1, 2, 3, 5, 6, 8\}$ and the set $\{4, 7\}$. They are depicted by Figure 5.110. Since BALANCE = $6 - 2 = 4$ is the difference between the number of vertices of the largest tree (i.e., 6) and the number of vertices of the smallest tree (i.e., 2) the corresponding balance_tree constraint holds.
All solutions	Figure 5 111 gives all solutions to the following non-ground instance of the balance tree

All solutions Figure 5.111 gives all solutions to the following non ground instance of the balance_tree constraint: BALANCE = 0, $S_1 \in [1, 2], S_2 \in [1, 2], S_3 \in [4, 5], S_4 \in [2, 4], S_5 \in [4, 5], S_6 \in [5, 6], balance_tree(BALANCE, <math>\langle 1 S_1, 2 S_2, 3 S_3, 4 S_4, 5 S_5, 6 S_6 \rangle$).

704

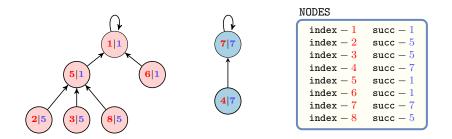


Figure 5.110: The two trees associated with the first example of the **Example** slot, respectively containing 6 and 2 vertices, therefore BALANCE = 6 - 2 = 4; each vertex contains the information index|succ where succ is the index of its father in the tree (by convention the father of the root is the root itself).

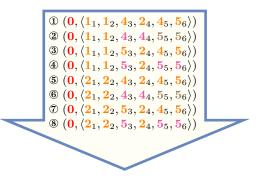
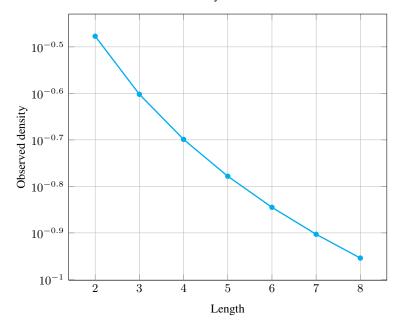
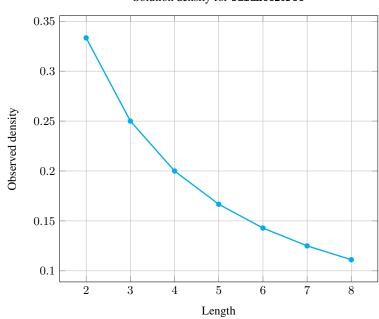



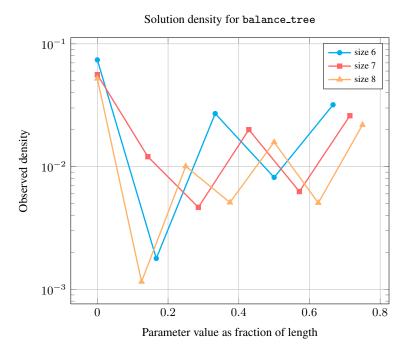
Figure 5.111: All solutions corresponding to the non ground example of the balance_tree constraint of the **All solutions** slot; the index attribute is displayed as indices of the succ attribute and all vertices of a same tree are coloured by the same colour.


Typical	NODES > 2
Symmetry	Items of NODES are permutable.
Arg. properties	Functional dependency: BALANCE determined by NODES.
Counting	

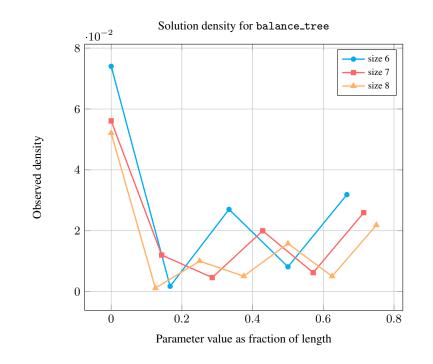
Solutions 3 16 125 1296 16807 262144 4782	5 6 7	6	5	4	3	2	Length (n)
Solutions 5 10 125 1290 10807 202144 4782	296 16807 262144 478	16807	1296	125	16	3	Solutions

Number of solutions for $balance_tree:$ domains 0..n

Solution density for $\texttt{balance_tree}$



Solution density for balance_tree



Length (n)		2	3	4	5	6	7	8
Total		3	16	125	1296	16807	262144	4782969
	0	3	10	77	626	8707	117650	2242193
Parameter value	1	-	6	12	260	210	25242	49616
	2	-	-	36	90	3180	9765	432264
	3	-	-	-	320	960	41930	219520
	4	-	-	-	-	3750	13125	680456
	5	-	-	-	-	-	54432	217728
	6	-	-	-	-	-	-	941192

Solution count for balance_tree: domains 0..n

See also	implied by: balance_path.						
	related: balance (equivalence classes correspond to vertices in same tree rather than variables assigned to the same value), tree (do not care how many trees but how balanced the trees are).						
Keywords	constraint type: graph constraint, graph partitioning constraint.						
	filtering: DFS-bottleneck.						
	final graph structure: connected component, tree, one_succ.						
	modelling: functional dependency.						
Cond. implications	<pre>balance_tree(BALANCE, NODES) with BALANCE > 0 and BALANCE ≤ NODES implies ordered_atleast_nvector(NVEC : BALANCE, VECTORS : NODES).</pre>						

20111226

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$
Arc arity	2
Arc constraint(s)	nodes1.succ = nodes2.index
Graph property(ies)	• MAX_NSCC ≤ 1
	• RANGE_NCC= BALANCE

Graph model

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the balance_tree constraint considers objects that have two attributes:

- One fixed attribute index that is the identifier of the vertex,
- One variable attribute succ that is the successor of the vertex.

We use the graph property $MAX_NSCC \le 1$ in order to specify the fact that the size of the largest strongly connected component should not exceed one. In fact each root of a tree is a strongly connected component with a single vertex.

Parts (A) and (B) of Figure 5.112 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **RANGE_NCC** graph property, we show the connected components of the final graph. The constraint holds since all the vertices belong to a tree and since BALANCE = **RANGE_NCC6** - 2 = 4.

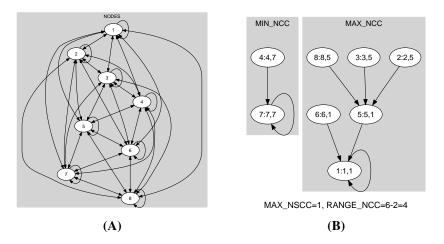


Figure 5.112: Initial and final graph of the balance_tree constraint