5.55 binary_tree

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from tree.		
Constraint	<pre>binary_tree(NTREES, NODES)</pre>		
Arguments	NTREES : dvar NODES : collection(index	x-int, succ-dvar)	
Restrictions	$\begin{array}{l} \texttt{NTREES} \geq 0 \\ \texttt{NTREES} \leq \texttt{NODES} \\ \texttt{required}(\texttt{NODES}, [\texttt{index}, \texttt{succ}] \\ \texttt{NODES.index} \geq 1 \\ \texttt{NODES.index} \leq \texttt{NODES} \\ \texttt{distinct}(\texttt{NODES}, \texttt{index}) \\ \texttt{NODES.succ} \geq 1 \\ \texttt{NODES.succ} \leq \texttt{NODES} \\ \end{array}$)	
Purpose	Cover the digraph G described by t a way that each vertex of G belong at most two children). The edges their respective root.	the NODES collection was s to exactly one binary of the binary trees are	ith NTREES binary trees in such tree (i.e., each vertex of G has e directed from their leaves to
Example	$\left(\begin{array}{c} {\rm index} - 1 & {\rm succ} - 3 \\ {\rm index} - 2 & {\rm succ} - 3 \\ {\rm index} - 3 & {\rm succ} - 4 \\ {\rm index} - 3 & {\rm succ} - 4 \\ {\rm index} - 4 & {\rm succ} - 7 \\ {\rm index} - 5 & {\rm succ} - 3 \\ {\rm index} - 6 & {\rm succ} - 4 \\ {\rm index} - 7 & {\rm succ} - 7 \\ {\rm index} - 8 & {\rm succ} - 4 \\ {\rm index} - 8 & {\rm succ} - 4 \\ {\rm index} - 1 & {\rm succ} - 3 \\ {\rm index} - 2 & {\rm succ} - 4 \\ {\rm index} - 2 & {\rm succ} - 4 \\ {\rm index} - 3 & {\rm succ} - 4 \\ {\rm index} - 5 & {\rm succ} - 4 \\ {\rm index} - 5 & {\rm succ} - 4 \\ {\rm index} - 7 & {\rm succ} - 4 \\ {\rm index} - 8 & {\rm succ} - 4 \\ {\rm index} - 8 & {\rm succ} - 4 \\ {\rm index} - 8 & {\rm succ} - 4 \\ {\rm index} - 3 & {\rm succ} - 4 \\ {\rm index} - 3 & {\rm succ} - 4 \\ {\rm index} - 4 & {\rm succ} - 4 \\ {\rm index} - 5 & {\rm succ} - 4 \\ {\rm index} - 5 & {\rm succ} - 4 \\ {\rm index} - 6 & {\rm succ} - 4 \\ {\rm index} - 6 & {\rm succ} - 4 \\ {\rm index} - 7 & {\rm succ} - 4 \\ {\rm index} - 7 & {\rm succ} - 4 \\ {\rm index} - 8 & {\rm succ} - 8 \\ {\rm index} - 8 & {\rm succ} - 8 \\ {\rm index} - 8 & {\rm succ} - 8 \\ {\rm index} - 8 & {\rm succ} - 8 \\ {\rm index} - 8 & {\rm succ} - 8 \\ {\rm index} - 8 & {\rm succ} - 8 \\ {\rm index} - 8 & {\rm index} - 8 \\ {\rm index} - 8 & {\rm index} - 8 \\ {\rm index} - 8 & {\rm i$	$ \begin{array}{c} 1, \\ 3, \\ 5, \\ 7, \\ 1, \\ 1, \\ 7, \\ 5 \\ 1, \\ 2, \\ 3, \\ 4, \\ 5, \\ 8 \\ 8, \\ 2, \\ 3, \\ 4, \\ 5, \\ 8 \\ 8, \\ 2, \\ 3, \\ 4, \\ 5, \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$	

730

The first binary_tree constraint holds since its second argument corresponds to the 2 (i.e., the first argument of the first binary_tree constraint) binary trees depicted by Figure 5.124.

Figure 5.124: The two binary trees corresponding to the first example of the **Example** slot; each vertex contains the information index|succ where succ is the index of its father in the tree (by convention the father of the root is the root itself).

All solutions Figure 5.125 gives all solutions to the following non ground instance of the binary_tree constraint: NTREES $\in \{1, 4\}, S_1 \in [1, 2], S_2 \in [1, 3], S_3 \in [3, 4], S_4 \in [3, 4], S_5 \in [2, 3],$ binary_tree(NTREES, $\langle 1 S_1, 2 S_2, 3 S_3, 4 S_4, 5 S_5 \rangle$).

Figure 5.125: All solutions corresponding to the non ground example of the binary_tree constraint of the **All solutions** slot; the index attribute is displayed as indices of the succ attribute and all vertices of a same tree are coloured by the same colour.

Typical	$\begin{array}{l} \texttt{NTREES} > 0 \\ \texttt{NTREES} < \texttt{NODES} \\ \texttt{NODES} > 2 \end{array}$
Symmetry	Items of NODES are permutable.
Arg. properties	Functional dependency: NTREES determined by NODES.

Reformulation The binary_tree constraint can be expressed in term of (1) a set of |NODES|² reified constraints for avoiding circuit between more than one node and of (2) |NODES| reified constraints and of one sum constraint for counting the trees and of (3) a set of |NODES|² reified constraints and of |NODES| inequalities constraints for enforcing the fact that each vertex has at most two children.

- 1. For each vertex NODES[i] ($i \in [1, |\text{NODES}|]$) of the NODES collection we create a variable R_i that takes its value within interval [1, |NODES|]. This variable represents the *rank* of vertex NODES[i] within a solution. It is used to prevent the creation of circuit involving more than one vertex as explained now. For each pair of vertices NODES[i], NODES[j] ($i, j \in [1, |\text{NODES}|]$) of the NODES collection we create a reified constraint of the form NODES[i].succ = NODES[j].index $\land i \neq j \Rightarrow R_i < R_j$. The purpose of this constraint is to express the fact that, if there is an arc from vertex NODES[i] to another vertex NODES[j], then R_i should be strictly less than R_j .
- 2. For each vertex NODES[i] ($i \in [1, |\text{NODES}|]$) of the NODES collection we create a 0-1 variable B_i and state the following reified constraint NODES[i].succ = NODES[i].index $\Leftrightarrow B_i$ in order to force variable B_i to be set to value 1 if and only if there is a loop on vertex NODES[i]. Finally we create a constraint NTREES = $B_1 + B_2 + \cdots + B_{|\text{NODES}|}$ for stating the fact that the number of trees is equal to the number of loops of the graph.
- 3. For each pair of vertices NODES[i], NODES[j] $(i, j \in [1, |\text{NODES}|])$ of the NODES collection we create a 0-1 variable B_{ij} and state the following reified constraint NODES[i].succ = NODES[j].index $\land i \neq j \Leftrightarrow B_{ij}$. Variable B_{ij} is set to value 1 if and only if there is an arc from NODES[i] to NODES[j]. Then for each vertex NODES[j] $(j \in [1, |\text{NODES}|])$ we create a constraint of the form $B_{1j} + B_{2j} + \cdots + B_{|\text{NODES}|j} \leq 2$.

Counting

Length (n)	2	3	4	5	6	7	8
Solutions	3	16	121	1191	14461	209098	3510921

Number of solutions for binary_tree: domains 0..n

732

Length (n)		2	3	4	5	6	7	8
Total		3	16	121	1191	14461	209098	3510921
	1	2	9	60	540	6120	83790	1345680
	2	1	6	48	480	5850	84420	1411200
	3	-	1	12	150	2100	33390	599760
Parameter	4	-	-	1	20	360	6720	135240
value	5	-	-	-	1	30	735	17640
	6	-	-	-	-	1	42	1344
	7	-	-	-	-	-	1	56
	8	-	-	-	-	-	-	1

Solution count for binary_tree: domains 0..n

See also	generalisation: tree (at most two childrens replaced by no restriction on maximum number of childrens).					
	implied by: path.					
	implies: tree.					
	<pre>implies (items to collection): atleast_nvector.</pre>					
	specialisation: path (at most two childrens replaced by at most one child).					
Keywords	constraint type: graph constraint, graph partitioning constraint.					
	final graph structure: connected component, tree, one_succ.					
	modelling: functional dependency.					

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$
Arc arity	2
Arc constraint(s)	nodes1.succ = nodes2.index
Graph property(ies)	• MAX_NSCC ≤ 1 • NCC= NTREES • MAX_ID ≤ 2
Graph class	ONE_SUCC
Graph model	We use the same graph constraint as for the tree constraint, except that we add the graph property MAX_ID ≤ 2 , which constraints the maximum in-degree of the final graph to not exceed 2. MAX_ID does not consider loops: This is why we do not have any problem with the root of each tree.

Parts (A) and (B) of Figure 5.126 respectively show the initial and final graph associated with the first example of the **Example** slot. Since we use the **NCC** graph property, we display the two connected components of the final graph. Each of them corresponds to a binary tree. Since we use the **MAX_IN_DEGREE** graph property, we also show with a double circle a vertex that has a maximum number of predecessors.

The binary_tree constraint holds since all strongly connected components of the final graph have no more than one vertex, since NTREES = NCC = 2 and since MAX_ID = 2.

Figure 5.126: Initial and final graph of the binary_tree constraint