
730 MAX ID,MAX NSCC,NCC,CLIQUE

5.55 binary tree

DESCRIPTION LINKS GRAPH

Origin Derived from tree.

Constraint binary tree(NTREES, NODES)

Arguments NTREES : dvar

NODES : collection(index−int, succ−dvar)

Restrictions NTREES ≥ 0
NTREES ≤ |NODES|
required(NODES, [index, succ])
NODES.index ≥ 1
NODES.index ≤ |NODES|
distinct(NODES, index)
NODES.succ ≥ 1
NODES.succ ≤ |NODES|

Purpose

Cover the digraph G described by the NODES collection with NTREES binary trees in such

a way that each vertex of G belongs to exactly one binary tree (i.e., each vertex of G has

at most two children). The edges of the binary trees are directed from their leaves to

their respective root.

Example

2,

〈

index− 1 succ− 1,
index− 2 succ− 3,
index− 3 succ− 5,
index− 4 succ− 7,
index− 5 succ− 1,
index− 6 succ− 1,
index− 7 succ− 7,
index− 8 succ− 5

〉

8,

〈

index− 1 succ− 1,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉

7,

〈

index− 1 succ− 8,
index− 2 succ− 2,
index− 3 succ− 3,
index− 4 succ− 4,
index− 5 succ− 5,
index− 6 succ− 6,
index− 7 succ− 7,
index− 8 succ− 8

〉

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 731

The first binary tree constraint holds since its second argument corresponds to

the 2 (i.e., the first argument of the first binary tree constraint) binary trees depicted by

Figure 5.124.

1|1

5|1

8|5 3|5

2|3

6|1

7|7

4|7

index − 1 succ − 1

index − 2 succ − 3

index − 3 succ − 5

index − 4 succ − 7

index − 5 succ − 1

index − 6 succ − 1

index − 7 succ − 7

index − 8 succ − 5

NODES

Figure 5.124: The two binary trees corresponding to the first example of the Example

slot; each vertex contains the information index|succ where succ is the index of its

father in the tree (by convention the father of the root is the root itself).

All solutions Figure 5.125 gives all solutions to the following non ground instance of the binary tree

constraint: NTREES ∈ {1, 4}, S1 ∈ [1, 2], S2 ∈ [1, 3], S3 ∈ [3, 4], S4 ∈ [3, 4], S5 ∈ [2, 3],
binary tree(NTREES, 〈1 S1, 2 S2, 3 S3, 4 S4, 5 S5〉).

¬ (4, 〈11,22,33,44,25〉)
 (4, 〈11,22,33,44,35〉)
® (1, 〈21,32,33,34,25〉)
¯ (1, 〈21,32,43,44,25〉)
° (1, 〈21,32,43,44,35〉)

Figure 5.125: All solutions corresponding to the non ground example of the

binary tree constraint of the All solutions slot; the index attribute is displayed as

indices of the succ attribute and all vertices of a same tree are coloured by the same

colour.

Typical NTREES > 0
NTREES < |NODES|
|NODES| > 2

Symmetry Items of NODES are permutable.

Arg. properties
Functional dependency: NTREES determined by NODES.

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

732 MAX ID,MAX NSCC,NCC,CLIQUE

Reformulation The binary tree constraint can be expressed in term of (1) a set of |NODES|2 reified

constraints for avoiding circuit between more than one node and of (2) |NODES| reified

constraints and of one sum constraint for counting the trees and of (3) a set of |NODES|2

reified constraints and of |NODES| inequalities constraints for enforcing the fact that each

vertex has at most two children.

1. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we create a

variable Ri that takes its value within interval [1, |NODES|]. This variable represents

the rank of vertex NODES[i] within a solution. It is used to prevent the creation of

circuit involving more than one vertex as explained now. For each pair of vertices

NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES collection we create a reified

constraint of the form NODES[i].succ = NODES[j].index ∧ i 6= j ⇒ Ri < Rj .

The purpose of this constraint is to express the fact that, if there is an arc from vertex

NODES[i] to another vertex NODES[j], then Ri should be strictly less than Rj .

2. For each vertex NODES[i] (i ∈ [1, |NODES|]) of the NODES collection we cre-

ate a 0-1 variable Bi and state the following reified constraint NODES[i].succ =
NODES[i].index ⇔ Bi in order to force variable Bi to be set to value 1 if and

only if there is a loop on vertex NODES[i]. Finally we create a constraint NTREES =
B1 +B2 + · · ·+B|NODES| for stating the fact that the number of trees is equal to the

number of loops of the graph.

3. For each pair of vertices NODES[i], NODES[j] (i, j ∈ [1, |NODES|]) of the NODES

collection we create a 0-1 variable Bij and state the following reified constraint

NODES[i].succ = NODES[j].index ∧ i 6= j ⇔ Bij . Variable Bij is set to value 1 if

and only if there is an arc from NODES[i] to NODES[j]. Then for each vertex NODES[j]
(j ∈ [1, |NODES|]) we create a constraint of the form B1j+B2j+· · ·+B|NODES|j ≤ 2.

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 3 16 121 1191 14461 209098 3510921

Number of solutions for binary tree: domains 0..n

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Counting
Information on the solution density.

20000128 733

2 3 4 5 6 7 8

10−1

10−0.8

10−0.6

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for binary tree

2 3 4 5 6 7 8

0.1

0.15

0.2

0.25

0.3

0.35

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for binary tree

734 MAX ID,MAX NSCC,NCC,CLIQUE

Length (n) 2 3 4 5 6 7 8

Total 3 16 121 1191 14461 209098 3510921

Parameter

value

1 2 9 60 540 6120 83790 1345680

2 1 6 48 480 5850 84420 1411200

3 - 1 12 150 2100 33390 599760

4 - - 1 20 360 6720 135240

5 - - - 1 30 735 17640

6 - - - - 1 42 1344

7 - - - - - 1 56

8 - - - - - - 1

Solution count for binary tree: domains 0..n

0.2 0.4 0.6 0.8 1

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for binary tree

size 6

size 7

size 8

20000128 735

0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

·10−2

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for binary tree

size 6

size 7

size 8

See also generalisation: tree (at most two childrens replaced by no restriction on maximum num-

ber of childrens).

implied by: path.

implies: tree.

implies (items to collection): atleast nvector.

specialisation: path (at most two childrens replaced by at most one child).

Keywords constraint type: graph constraint, graph partitioning constraint.

final graph structure: connected component, tree, one succ.

modelling: functional dependency.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

736 MAX ID,MAX NSCC,NCC,CLIQUE

Arc input(s) NODES

Arc generator CLIQUE 7→collection(nodes1, nodes2)

Arc arity 2

Arc constraint(s) nodes1.succ = nodes2.index

Graph property(ies) • MAX NSCC≤ 1
• NCC= NTREES

• MAX ID≤ 2

Graph class ONE SUCC

Graph model We use the same graph constraint as for the tree constraint, except that we add the graph

property MAX ID ≤ 2, which constraints the maximum in-degree of the final graph to

not exceed 2. MAX ID does not consider loops: This is why we do not have any problem

with the root of each tree.

Parts (A) and (B) of Figure 5.126 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the NCC graph property, we

display the two connected components of the final graph. Each of them corresponds to a

binary tree. Since we use the MAX IN DEGREE graph property, we also show with

a double circle a vertex that has a maximum number of predecessors.

The binary tree constraint holds since all strongly connected components of the final

graph have no more than one vertex, since NTREES = NCC = 2 and since MAX ID =
2.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20000128 737

NODES

1

2

3

4

5

6

7

8
MAX_NSCC=1, NCC=2

MAX_ID=2

CC#1 CC#2

1:1,1

2:2,3

3:3,5

5:5,1 6:6,1

8:8,5

4:4,7

7:7,7

(A) (B)

Figure 5.126: Initial and final graph of the binary tree constraint

