5.56 bipartite

	DESCRIPTION	LINKS	GRAPH
Origin	[142]		
Constraint	bipartite(NODES)		
Argument	NODES : collection(inde	ex-int, succ-svar)	
Restrictions	$\begin{array}{l} \textbf{required}(\texttt{NODES}, [\texttt{index}, \texttt{suc}\\ \texttt{NODES}.\texttt{index} \geq 1\\ \texttt{NODES}.\texttt{index} \leq \texttt{NODES} \\ \textbf{distinct}(\texttt{NODES}, \texttt{index})\\ \texttt{NODES}.\texttt{succ} \geq 1\\ \texttt{NODES}.\texttt{succ} \leq \texttt{NODES} \end{array}$:c])	
Purpose	Consider a digraph G described so that the corresponding graph also an arc from j to i) and bipa vertices).	by the NODES collection is symmetric (i.e., if the rtite (i.e., there is no cy	on. Select a subset of arcs of G ere is an arc from i to j , there is ycle involving an odd number of
Example	$\left(\begin{array}{cccc} \mathrm{index} - 1 & \mathrm{succ} - 4 \\ \mathrm{index} - 2 & \mathrm{succ} - 4 \\ \mathrm{index} - 3 & \mathrm{succ} - 4 \\ \mathrm{index} - 4 & \mathrm{succ} - 4 \\ \mathrm{index} - 5 & \mathrm{succ} - 4 \\ \mathrm{index} - 6 & \mathrm{succ} - 4 \end{array}\right)$	$ \begin{array}{c} \{2,3\}, \\ \{1,4\}, \\ \{1,4,5\}, \\ \{2,3,6\}, \\ \{3,6\}, \\ \{4,5\} \end{array} \right) $	
	The bipartite constraint hol graph with no cycle involving an depicted by Figure 5.127.	ds since the NODES n odd number of vertig	collection depicts a symmetric ces. The corresponding graph is
	$2 \longleftrightarrow 4 \longleftrightarrow ($		

Figure 5.127: Two ways of looking at the bipartite graph given in the Example slot

1

4

5

5

Typical

 $|\mathsf{NODES}| > 2$

1

Symmetry

Items of NODES are permutable.

3

20061001

Algorithm	The sketch of a filtering algorithm for the bipartite constraint is given in [142, page 91]. Beside enforcing the fact that the graph is symmetric, it checks that the subset of mandatory vertices and arcs is bipartite and removes all potential arcs that would make the previous graph non-bipartite.
See also	used in graph description: in_set.
Keywords	constraint arguments: constraint involving set variables. constraint type: graph constraint.

filtering: DFS-bottleneck.

final graph structure: bipartite, symmetric.

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto collection(nodes1, nodes2)$
Arc arity	2
Arc constraint(s)	<pre>in_set(nodes2.index,nodes1.succ)</pre>
Graph class	• SYMMETRIC • BIPARTITE

Graph model

Part (A) of Figure 5.128 shows the initial graph from which we start. It is derived from the set associated with each vertex. Each set describes the potential values of the succ attribute of a given vertex. Part (B) of Figure 5.128 gives the final graph associated with the **Example** slot.

Figure 5.128: Initial and final graph of the bipartite set constraint

740