$\underline{MAX_NCC}, \underline{MIN_NCC}, \underline{NARC}, \underline{NCC}, PATH; AUTOMATON$

5.62 change_continuity

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	N. Beldiceanu			
Constraint	change_continuity	NB_PERIOD_CHANGE, NB_PERIOD_CONTINUITY, MIN_SIZE_CHANGE, MAX_SIZE_CHANGE, MIN_SIZE_CONTINUITY, MAX_SIZE_CONTINUITY, NB_CHANGE, NB_CONTINUITY, VARIABLES, CTR		
Arguments	NB_PERIOD_CHANGE NB_PERIOD_CONTINUITY MIN_SIZE_CHANGE MAX_SIZE_CHANGE MIN_SIZE_CONTINUITY MAX_SIZE_CONTINUITY NB_CHANGE NB_CONTINUITY VARIABLES CTR	: dvar : dvar : dvar : dvar : dvar : dvar : dvar : dvar : dvar : atom)	
Restrictions	$\begin{split} & \text{NB_PERIOD_CHANGE} \geq 0 \\ & \text{NB_PERIOD_CONTINUITY} \\ & \text{MIN_SIZE_CHANGE} \geq 0 \\ & \text{MAX_SIZE_CHANGE} \geq MI \\ & \text{MIN_SIZE_CONTINUITY} \\ & \text{MAX_SIZE_CONTINUITY} \\ & \text{NB_CHANGE} \geq 0 \\ & \text{NB_CONTINUITY} \geq 0 \\ & \text{required}(\text{VARIABLES}, \text{`CTR} \in [=, \neq, <, \geq, >, \leq) \end{split}$	$X \ge 0$ N_SIZE_CHANGE ≥ 0 $\ge MIN_SIZE_CONTINUITY$ var) [S]		

772

one hand a *change* is defined by constraint On the the fact that VARIABLES[i].var CTR VARIABLES[i + 1].var holds. On the other hand a continuity is defined by the fact that constraint VARIABLES[i].var CTR VARIABLES[i + 1].var does not hold. A period of change on variables VARIABLES[i].var, VARIABLES[i+1].var, ..., VARIABLES[j].var (i < j)is defined by the fact that all constraints VARIABLES [k].var CTR VARIABLES [k+1].var hold for $k \in [i, j - 1]$. A period of continuity on variables VARIABLES[i].var, VARIABLES[i+1].var, ..., VARIABLES[j].var (i < j)is defined by the fact that all constraints VARIABLES [k].var CTR VARIABLES [k+1].var do not hold for $k \in [i, j - 1]$. The constraint change_continuity holds if and only if: • NB_PERIOD_CHANGE is equal to the number of periods of change, • NB_PERIOD_CONTINUITY is equal to the number of periods of continuity, • MIN_SIZE_CHANGE is equal to the number of variables of the smallest period of change, • MAX_SIZE_CHANGE is equal to the number of variables of the largest period of change, • MIN_SIZE_CONTINUITY is equal to the number of variables of the smallest period of continuity,

- MAX_SIZE_CONTINUITY is equal to the number of variables of the largest period of continuity,
- NB_CHANGE is equal to the total number of changes,
- NB_CONTINUITY is equal to the total number of continuities.

Example

$(3,2,2,4,2,4,6,4,\langle 1,3,1,8,8,4,7,7,7,7,2\rangle\,,\neq)$

Figure 5.141 makes clear the different parameters that are associated with the given example for the collection VARIABLES = $\langle 1, 3, 1, 8, 8, 4, 7, 7, 7, 2 \rangle$. We place character — for representing a change and a blank for a continuity. On top of the solution we represent the different periods of change, while below we show the different periods of continuity. The change_continuity constraint holds since:

- Its number of periods of change NB_PERIOD_CHANGE is equal to 3 (i.e., the 3 periods depicted on top of Figure 5.141),
- Its number of periods of continuity NB_PERIOD_CONTINUITY is equal to 2 (i.e., the 2 periods depicted below Figure 5.141),
- The number of variables of its smallest period of change MIN_SIZE_CHANGE is equal to 2 (i.e., the number of variables involved in the third period of change 7 2 depicted on top of Figure 5.141),

Purpose

- The number of variables of the largest period of change MAX_SIZE_CHANGE is equal to 4 (i.e., the number of variables involved in the first period of change 1 3 1 8 depicted on top of Figure 5.141),
- The number of variables of the smallest period of continuity MIN_SIZE_CONTINUITY is equal to 2 (i.e., the number of variables involved in the first period 8 8 depicted below Figure 5.141),
- The number of variables of the largest period of continuity MAX_SIZE_CONTINUITY is equal to 4 (i.e., the number of variables involved in the second period 7 7 7 7 depicted below Figure 5.141),
- The total number of changes NB_CHANGE is equal to 6 (i.e., the number of occurrences of character in Figure 5.141),
- The total number of continuities NB_CONTINUITY is equal to 4.

Figure 5.141: Illustration of the **Example** slot: periods of changes and periods of continuities wrt the constraint CTR equal to \neq

Typical

$$\begin{split} \texttt{NB_PERIOD_CHANGE} &> 0 \\ \texttt{NB_PERIOD_CONTINUITY} &> 0 \\ \texttt{MIN_SIZE_CHANGE} &> 0 \\ \texttt{MIN_SIZE_CONTINUITY} &> 0 \\ \texttt{NB_CHANGE} &> 0 \\ \texttt{NB_CONTINUITY} &> 0 \\ \texttt{|VARIABLES|} &> 1 \\ \texttt{range}(\texttt{VARIABLES}.\texttt{var}) &> 1 \\ \texttt{CTR} &\in [\neq] \end{split}$$

Symmetry

One and the same constant can be added to the var attribute of all items of VARIABLES.

20000128

A

Arg. properties										
	• Functional dependency: NB_PERIOD_CHANGE determined by VARIABLES and CTR.									
	• Functional dependency: NB_PERIOD_CONTINUITY determined by VARIABLES and CTR.									
	 Functional dependency: MIN_SIZE_CHANGE determined by VARIABLES and CTR. Functional dependency: MAX_SIZE_CHANGE determined by VARIABLES and CTR. Functional dependency: MIN_SIZE_CONTINUITY determined by VARIABLES and CTR. Functional dependency: MAX_SIZE_CONTINUITY determined by VARIABLES and CTR. Functional dependency: NB_CHANGE determined by VARIABLES and CTR. 									
						• Functional dependency: NB_CONTINUITY determined by VARIABLES and CTR.				
							total number of variables, we have what is called a permutation. In this case, if we choose the binary constraint <, then MAX_SIZE_CHANGE gives the size of the longest run of the permutation; A <i>run</i> is a maximal increasing contiguous subsequence in a permutation.			
						See also	common keyword:group,group_skip_isolated_item,stretch_path(timetabling constraint).			
						Keywords	characteristic of a constraint:automaton,automaton with counters,automaton with same input symbol.			
		combinatorial object: sequence, run of a permutation, permutation.								
	constraint arguments: reverse of a constraint.									
	constraint network structure:sliding cyclic(1) constraint network(2),sliding cyclic(1) constraint network(3).									
	constraint type: timetabling constraint.									
	filtering: glue matrix.									
	final graph structure: connected component, apartition, acyclic, bipartite, no loop.									
	modelling: functional dependency.									

Arc input(s)	VARIABLES		
Arc generator	$PATH \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$		
Arc arity	2		
Arc constraint(s)	variables1.var CTR variables2.var		
Graph property(ies)	 NCC= NB_PERIOD_CHANGE MIN_NCC= MIN_SIZE_CHANGE MAX_NCC= MAX_SIZE_CHANGE NARC= NB_CHANGE 		
Graph class	• ACYCLIC • BIPARTITE • NO_LOOP		
Arc input(s)	VARIABLES		
Arc generator	$PATH \mapsto collection(variables1, variables2)$		
Arc arity	2		
Arc constraint(s)	variables1.var¬CTR variables2.var		
Graph property(ies)	 NCC= NB_PERIOD_CONTINUITY MIN_NCC= MIN_SIZE_CONTINUITY MAX_NCC= MAX_SIZE_CONTINUITY NARC= NB_CONTINUITY 		
Graph class	• ACYCLIC • BIPARTITE • NO_LOOP		

Graph model We use two graph constraints to respectively catch the constraints on the period of changes and of the period of continuities. In both case each period corresponds to a connected component of the final graph.

Parts (A) and (B) of Figure 5.142 respectively show the initial and final graph associated with the first graph constraint of the **Example** slot.

776

Figure 5.142: Initial and final graph of the change_continuity constraint

Automaton

Figures 5.143, 5.144, 5.147, 5.148, 5.151, 5.152 and 5.155 depict the automata associated with the different graph parameters of the change_continuity constraint. For the automata that respectively compute NB_PERIOD_CHANGE, NB_PERIOD_CONTINUITY MIN_SIZE_CHANGE, MIN_SIZE_CONTINUITY MAX_SIZE_CHANGE, MAX_SIZE_CONTINUITY NB_CHANGE and NB_CONTINUITY we have a 0-1 signature variable S_i for each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES. The following signature constraint links VAR_i, VAR_{i+1} and S_i : VAR_i CTR VAR_{i+1} $\Leftrightarrow S_i$.

Figure 5.143: Automaton for the NB_PERIOD_CHANGE argument of the change_continuity constraint and its glue matrix; note that the reverse of change_continuity with CTR $\in \{=, \neq\}$ is the same constraint, while the reverse with CTR $\in \{<\}$ (resp. CTR $\in \{\le\}$) is CTR $\in \{>\}$ (resp. CTR $\in \{\ge\}$).

Figure 5.144: Automaton for the NB_PERIOD_CONTINUITY argument of the change_continuity constraint and its glue matrix; note that the reverse of change_continuity with $CTR \in \{=, \neq\}$ is the same constraint, while the reverse with $CTR \in \{<\}$ (resp. $CTR \in \{\leq\}$) is $CTR \in \{>\}$ (resp. $CTR \in \{\geq\}$).

Figure 5.145: Hypergraph of the reformulation corresponding to the automaton of the NB_PERIOD_CHANGE argument of the change_continuity constraint

Figure 5.146: Hypergraph of the reformulation corresponding to the automaton of the NB_PERIOD_CONTINUITY argument of the change_continuity constraint

Figure 5.147: Automaton for the MIN_SIZE_CHANGE argument of the change_continuity constraint; its glue matrix when $CTR \in \{=, \neq\}$.

Glue matrix where \overrightarrow{C} , \overrightarrow{D} and \overleftarrow{C} , \overleftarrow{D} resp. represent the counters values C, D at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES.

	S	i
s	$\min(\overrightarrow{C}, \overrightarrow{D} + \overleftarrow{D}, \overleftarrow{C})$	$\min(\overrightarrow{C}, \overleftarrow{D}, \overleftarrow{C})$
i	$\min(\overrightarrow{C}, \overrightarrow{D}, \overleftarrow{C})$	$\min(\overrightarrow{C},\overrightarrow{D}+\overleftarrow{D}-1,\overleftarrow{C})$

Figure 5.148: Automaton for the MIN_SIZE_CONTINUITY argument of the change_continuity constraint; its glue matrix when $CTR \in \{=, \neq\}$.

Figure 5.149: Hypergraph of the reformulation corresponding to the automaton of the MIN_SIZE_CHANGE argument of the change_continuity constraint where N stands for |VARIABLES| (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

Figure 5.150: Hypergraph of the reformulation corresponding to the automaton of the MIN_SIZE_CONTINUITY argument of the change_continuity constraint where N stands for |VARIABLES| (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

Figure 5.151: Automaton for the MAX_SIZE_CHANGE argument of the change_continuity constraint; its glue matrix when $CTR \in \{=, \neq\}$.

Figure 5.152: Automaton for the MAX_SIZE_CONTINUITY argument of the change_continuity constraint; its glue matrix when $CTR \in \{=, \neq\}$.

Figure 5.153: Hypergraph of the reformulation corresponding to the automaton of the MAX_SIZE_CHANGE argument of the change_continuity constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

Figure 5.154: Hypergraph of the reformulation corresponding to the automaton of the MAX_SIZE_CONTINUITY argument of the change_continuity constraint (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

Figure 5.155: Automata for the NB_CHANGE and NB_CONTINUITY arguments of the change_continuity constraint; their common glue matrix when $\arg CTR \in \{=, \neq\}$.

Figure 5.156: Hypergraph of the reformulation corresponding to the automaton of the NB_CHANGE argument of the change_continuity constraint

Figure 5.157: Hypergraph of the reformulation corresponding to the automaton of the NB_CONTINUITY argument of the change_continuity constraint