	5.77 commo	on_modulo		
	DESCRIP	TION	LINKS	GRAPH
Origin	Derived from co	ommon.		
Constraint	common_modulo	o(NCOMMON1, NCO	MON2, VARIABLES	1, VARIABLES2, M)
Arguments	NCOMMON1 NCOMMON2 VARIABLES1 VARIABLES2 M	: dvar : dvar : collection : collection : int	(var-dvar) (var-dvar)	
Restrictions	$\begin{array}{l} \texttt{NCOMMON1} \geq \texttt{NCOMMON1} \leq \texttt{NCOMMON2} \geq \texttt{NCOMMON2} \leq \texttt{required}(\texttt{VA} \\ \texttt{required}(\texttt{VA} \\ \texttt{M} > \texttt{0} \end{array}$	0 VARIABLES1 0 VARIABLES2 RIABLES1,var) RIABLES2,var)		
Purpose	NCOMMON1 is th a value situated from the values NCOMMON2 is th a value situated from the values	e number of varia l in an equivalence assigned to the va e number of varia l in an equivalence assigned to the va	bles of the collecti e class (congruence ariables of VARIAB bles of the collecti e class (congruence ariables of VARIAB	on of variables VARIABLES1 taking e modulo a fixed number M) derived LES2 and from M. on of variables VARIABLES2 taking e modulo a fixed number M) derived LES1 and from M.
Example	(3, 4, $\langle 0, 4, 0 \rangle$ In the example, (mod 5), $a \equiv$ where a is an in correspond to the and $a \equiv 3$ (m correspond to the $a \equiv 4 \pmod{5}$) holds since: • Its first arg with the it associated	$\langle , 8 \rangle$, $\langle 7, 5, 4, 9, 2 \rangle$, the last argume 1 (mod 5), $a \equiv$ tteger. As a conse e equivalence clas nod 5). Similarly e equivalence clas , $a \equiv 2 \pmod{5}$ gument NCOMMON1 ems of collection with $\langle 7, 5, 4, 9, 2 \rangle$	$4\rangle$, 5) nt M = 5 define 2 (mod 5), $a \equiv$ equence the items ses $a \equiv 0 \pmod{5}$ y the items of co ses $a \equiv 2 \pmod{5}$, and $a \equiv 4 \pmod{5}$. = 3 is the numb $\langle 0, 4, 0, 8 \rangle$ that al 4).	es the equivalence classes $a \equiv 0$ $a \equiv 3 \pmod{5}$, and $a \equiv 4 \pmod{5}$ of collection $\langle 0, 4, 0, 8 \rangle$ respectively), $a \equiv 4 \pmod{5}$, $a \equiv 0 \pmod{5}$, llection $\langle 7, 5, 4, 9, 2, 4 \rangle$ respectively), $a \equiv 0 \pmod{5}$, $a \equiv 4 \pmod{5}$, l 5). The common_modulo constraint per of equivalence classes associated so correspond to equivalence classes
	• Its second ated with t classes ass	argument NCOMM the items of collect occiated with $\langle 0, 4 \rangle$	DN2 = 4 is the nutrition $(7, 5, 4, 9, 2, 4)$, $(0, 8)$.	imber of equivalence classes associ- \rangle that also correspond to equivalence

Typical	<pre> VARIABLES1 > 1 range(VARIABLES1.var) > 1 VARIABLES2 > 1 range(VARIABLES2.var) > 1 M > 1 M <maxval(variables1.var) <maxval(variables2.var)<="" m="" pre=""></maxval(variables1.var)></pre>				
Symmetries	 Arguments are permutable w.r.t. permutation (NCOMMON1, NCOMMON2) (VARIABLES1, VARIABLES2) (M). Items of VARIABLES1 are permutable. 				
	• Items of VARIABLES2 are permutable.				
	• An occurrence of a value u of VARIABLES1.var can be replaced by any other value v such that v is congruent to u modulo M.				
	• An occurrence of a value u of VARIABLES2.var can be replaced by any other value v such that v is congruent to u modulo M.				
Arg properties					
ing. properties	• Functional dependency: NCOMMON1 determined by VARIABLES1, VARIABLES2 and M.				
	• Functional dependency: NCOMMON2 determined by VARIABLES1, VARIABLES2 and M.				
See also	specialisation: common(variable mod constant <i>replaced by</i> variable).				
Keywords	characteristic of a constraint: modulo.				
	constraint arguments:constraint between two collections of variables,pure functional dependency.				
	final graph structure: acyclic, bipartite, no loop.				
	modelling: functional dependency.				

Arc input(s)	VARIABLES1 VARIABLES2	
Arc generator	<pre>PRODUCT \collection(variables1, variables2)</pre>	
Arc arity	2	
Arc constraint(s)	$\texttt{variables1.var} \bmod \texttt{M} = \texttt{variables2.var} \bmod \texttt{M}$	
Graph property(ies)	• NSOURCE= NCOMMON1 • NSINK= NCOMMON2	
Graph class	• ACYCLIC • BIPARTITE • NO_LOOP	

Graph model

Parts (A) and (B) of Figure 5.183 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NSOURCE** and **NSINK** graph properties, the source and sink vertices of the final graph are stressed with a double circle. Since the graph has only 3 sources and 4 sinks the variables NCOMMON1 and NCOMMON2 are respectively equal to 3 and 4. Note that the vertices corresponding to the variables that take values 8, 7 or 2 were removed from the final graph since there is no arc for which the associated arc constraint holds.

Figure 5.183: Initial and final graph of the common_modulo constraint