$\overline{\mathbf{NARC}}$, PRODUCT; AUTOMATON

5.92 counts

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from count.			
Constraint	counts(VALUES, VARIABLE	S,RELOP,LIMIT)		
Arguments	VALUES : collect: VARIABLES : collect: RELOP : atom LIMIT : dvar	ion(val-int) ion(var-dvar)		
Restrictions	$\begin{array}{l} \textbf{required}(\texttt{VALUES},\texttt{val})\\ \textbf{distinct}(\texttt{VALUES},\texttt{val})\\ \textbf{required}(\texttt{VARIABLES},\texttt{val})\\ \textbf{RELOP} \in [=, \neq, <, \geq, >, \leq] \end{array}$	r) ≤]		
Purpose	Let N be the number of variation values collection. Enforce	ables of the VARIABLE condition N RELOP L	S collection assigned to a IMIT to hold.	value of the
Example	$(\langle 1, 3, 4, 9 \rangle, \langle 4, 5, 5, 4, 1, \rangle$ Values 1, 3, 4 and 9 of VARIABLES = $\langle 4, 5, 5, 4, 1 \rangle$	$5\rangle$, =, 3) the VALUES collection. The	on are assigned to 3 i	tems of the ls since this
	number is in fact equal (RELO	P is set to $=$) to the last	st argument of the counts	s constraint.
Typical	$\begin{split} \texttt{VALUES} &> 1 \\ \texttt{VARIABLES} &> 1 \\ \texttt{range}(\texttt{VARIABLES}.\texttt{var}) &> \\ \texttt{VARIABLES} &> \texttt{VALUES} \\ \texttt{RELOP} \in [=, <, \ge, >, \le] \\ \texttt{LIMIT} &> 0 \\ \texttt{LIMIT} &< \texttt{VARIABLES} \end{split}$	> 1		
Symmetries	• Items of VALUES are	permutable.		
	• Items of VARIABLES a	are permutable.		
	• An occurrence of a v does not belong to VAI (resp. not in VALUES.	alue of VARIABLES.va LUES.val) can be repla val).	ar that belongs to VALUE: aced by any other value in V	S.val (resp. /ALUES.val
Arg. properties				
	• Contractible wrt. VAR	IABLES when RELOP	$\in [<, \leq].$	
	• Extensible wrt. VARIA	ABLES when RELOP \in	$[\geq, >].$	
	• Aggregate: VALUES(s RELOP $\in [<, \leq, \geq, >$	sunion), VARIABLES(].	union), RELOP(id), LIMI	T(+) when

908

20030820

Usage	Used in the Constraint(s) on sets slot for defining some constraints like assign_and_counts.		
Reformulation	The count(VALUES, VARIABLES, RELOP, LIMIT) constraint can be expressed in term of the conjunction $\operatorname{among}(N, \operatorname{VARIABLES}, \operatorname{VALUES}) \land N$ RELOP LIMIT.		
Systems	count in Gecode.		
Used in	assign_and_counts.		
See also	<pre>assignment dimension added: assign_and_counts (assignment dimension introduced). common keyword: among (value constraint, counting constraint). specialisation: count (variable ∈ VALUES replaced by variable=VALUE).</pre>		
Keywords	 characteristic of a constraint: automaton, automaton with counters. constraint network structure: alpha-acyclic constraint network(2). constraint type: value constraint, counting constraint. filtering: arc-consistency. final graph structures acyclic bioaction acyclic page. 		

909

Arc input(s)	VARIABLES VALUES	
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{variables}, \texttt{values})$	
Arc arity	2	
Arc constraint(s)	variables.var = values.val	
Graph property(ies)	NARC RELOP LIMIT	
Graph class	• ACYCLIC • BIPARTITE • NO_LOOP	

Graph model

Because of the arc constraint variables.var = values.val and since each domain variable can take at most one value, \mathbf{NARC} is the number of variables taking a value in the VALUES collection.

Parts (A) and (B) of Figure 5.206 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

Figure 5.206: Initial and final graph of the counts constraint

910

20030820

Automaton

Figure 5.207 depicts the automaton associated with the counts constraint. To each variable VAR_i of the collection VARIABLES corresponds a 0-1 signature variable S_i . The following signature constraint links VAR_i and S_i : VAR_i \in VALUES \Leftrightarrow S_i .

Figure 5.207: Automaton of the counts constraint

Figure 5.208: Hypergraph of the reformulation corresponding to the automaton (with one counter) of the counts constraint: since all states variables Q_0, Q_1, \ldots, Q_n are fixed to the unique state s of the automaton, the transitions constraints share only the counter variable C and the constraint network is Berge-acyclic