912 LOGIC

5.93 coveredby_sboxes

DESCRIPTION LINKS LOGIC

Origin Geometry, derived from [338]

Constraint coveredby_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym coveredby.

Types VARIABLES : collection(v-dvar)

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

 $\begin{array}{lll} \text{OBJECTS} & : & \text{collection}(\text{oid-int}, \text{sid-dvar}, \text{x} - \text{VARIABLES}) \\ \text{SBOXES} & : & \text{collection}(\text{sid-int}, \text{t} - \text{INTEGERS}, \text{1} - \text{POSITIVES}) \end{array}$

Restrictions

```
|VARIABLES| \ge 1
|\mathtt{INTEGERS}| \geq 1
|\mathtt{POSITIVES}| \geq 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS,[oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} \geq 1
OBJECTS.oid \leq |OBJECTS|
\mathtt{OBJECTS.sid} > 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
required(SBOXES,[sid,t,1])
|\mathtt{SBOXES}| \geq 1
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
do_not_overlap(SBOXES)
```

Holds if, for each pair of objects (O_i,O_j) , i < j, O_i is covered by O_j with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each *shape* is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a *shifted box* is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An *object* is an entity defined by its unique object identifier oid, shape id sid and origin x.

An object O_i is covered by an object O_j with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_i of O_i , there exists a shifted box s_j of O_j such that:

- For all dimensions $d \in \text{DIMS}$, (1) the start of s_j in dimension d is less than or equal to the start of s_i in dimension d, and (2) the end of s_i in dimension d is less than or equal to the end of s_j in dimension d.
- There exists a dimension d where, (1) the start of s_j in dimension d coincide with the start of s_i in dimension d, or (2) the end of s_j in dimension d coincide with the end of s_i in dimension d.

```
 \left( \begin{array}{c} 2, \{0,1\}, \\ \text{oid} - 1 \quad \text{sid} - 4 \quad \text{x} - \langle 2,3\rangle \,, \\ \text{oid} - 2 \quad \text{sid} - 2 \quad \text{x} - \langle 2,2\rangle \,, \\ \text{oid} - 3 \quad \text{sid} - 1 \quad \text{x} - \langle 1,1\rangle \\ \text{sid} - 1 \quad \text{t} - \langle 0,0\rangle \quad 1 - \langle 3,3\rangle \,, \\ \text{sid} - 1 \quad \text{t} - \langle 3,0\rangle \quad 1 - \langle 2,2\rangle \,, \\ \text{sid} - 2 \quad \text{t} - \langle 0,0\rangle \quad 1 - \langle 2,2\rangle \,, \\ \text{sid} - 2 \quad \text{t} - \langle 2,0\rangle \quad 1 - \langle 1,1\rangle \,, \\ \text{sid} - 3 \quad \text{t} - \langle 0,0\rangle \quad 1 - \langle 2,2\rangle \,, \\ \text{sid} - 3 \quad \text{t} - \langle 2,1\rangle \quad 1 - \langle 1,1\rangle \,, \\ \text{sid} - 4 \quad \text{t} - \langle 0,0\rangle \quad 1 - \langle 1,1\rangle \,, \end{array} \right)
```

Figure 5.209 shows the objects of the example. Since O_1 is covered by both O_2 and O_3 , and since O_2 is covered by O_3 , the coveredby_sboxes constraint holds.

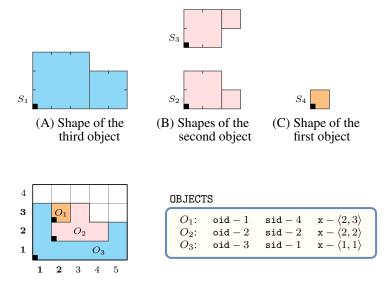
```
Typical
```

$|\mathtt{OBJECTS}| > 1$

Symmetries

- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutation used).

Remark


One of the eight relations of the *Region Connection Calculus* [338]. The constraint coveredby_sboxes is a restriction of the original relation since it requires that each shifted box of an object is covered by one shifted box of the other object.

See also

Purpose

Example

914 LOGIC

(D) Three objects O_1 , O_2 , O_3 , where O_1 is covered by both O_2 and O_3 and where O_2 is covered by O_3

Figure 5.209: (D) the three objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_4 , S_2 , S_1 ; (A), (B), (C) shapes S_1 , S_2 , S_3 and S_4 are respectively made up from 2, 2, 2 and 1 single shifted box.

Keywords

constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.

Logic

```
 \bullet \ \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1.x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D}) 
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
 \bullet \  \  \, \mathtt{coveredby\_sboxes}(\mathtt{Dims}, \mathtt{O1}, \mathtt{S1}, \mathtt{O2}, \mathtt{S2}) \overset{\mathrm{def}}{=} \\
                   \forall \mathtt{D} \in \mathtt{Dims}
                                origin
                                                     01,
                                                     S1,
                                                     D
                                \mathtt{end}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \leq
                                end(02, S2, D)
     \land
                   \exists \mathtt{D} \in \mathtt{Dims}
                                                     S2,
                                                     D
                                                     01,
                                                     S1.
                                end(01,S1,D) =
                                end(02, S2, D)
• coveredby_objects(Dims, 01, 02) \stackrel{\text{def}}{=}
        \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
          \exists \mathtt{S2} \in \mathtt{sboxes} ( \ [ \ \mathtt{02.sid} \ ]
                                                     Dims,
                                                      01,
          coveredby_sboxes
                                                     S1,
                                                     02,
                                                     S2
• all_coveredby(Dims,OIDS) \stackrel{\text{def}}{=}
        \forall 01 \in \text{objects}(\text{OIDS})
          \forall \texttt{O2} \in \texttt{objects}(\texttt{OIDS})
               {\tt O1.oid} < \ \Rightarrow
               02.oid
• all_coveredby(DIMENSIONS, OIDS)
```