5.94 covers_sboxes

DESCRIPTION
LINKS
LOGIC

Origin

Constraint

Synonym

Types
VARIABLES $:$ collection(v-dvar)
INTEGERS $:$ collection(v-int)
POSITIVES $: ~ c o l l e c t i o n(v-i n t) ~$

Arguments
$\begin{array}{ll}\text { Restrictions } & \mid \text { VARIABLES } \mid \geq 1 \\ & \mid \text { INTEGERS } \mid \geq 1\end{array}$
\mid POSITIVES $\mid \geq 1$
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS $\mid=$ K
required(POSITIVES, v)
|POSITIVES| = K
POSITIVES.v > 0
K >0
DIMS ≥ 0
DIMS $<$ K
increasing_seq(OBJECTS, [oid])
required(OBJECTS, [oid, sid, x$]$)
OBJECTS.oid ≥ 1
OBJECTS.oid \leq |OBJECTS \mid
OBJECTS.sid ≥ 1
OBJECTS.sid $\leq \mid$ SBOXES \mid
\mid SBOXES $\mid \geq 1$
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid $\leq \mid$ SBOXES \mid
do_not_overlap(SBOXES)

Purpose

Example

Typical

Symmetries

Arg. properties

Remark

See also

Holds if, for each pair of objects $\left(O_{i}, O_{j}\right), i<j, O_{i}$ covers O_{j} with respect to a set of dimensions depicted by DIMS. O_{i} and O_{j} are objects that take a shape among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K -dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a shifted box is an entity defined by its shape id sid, shift offset t, and sizes 1 . Then, a shape is defined as the union of shifted boxes sharing the same shape id. An object is an entity defined by its unique object identifier oid, shape id sid and origin x.
An object O_{i} covers an object O_{j} with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_{j} of O_{j}, there exists a shifted box s_{i} of O_{i} such that:

- For all dimensions $d \in$ DIMS, (1) the start of s_{i} in dimension d is less than or equal to the start of s_{j} in dimension d, and (2) the end of s_{j} in dimension d is less than or equal to the end of s_{i} in dimension d.
- There exists a dimension d where, (1) the start of s_{i} in dimension d coincide with the start of s_{j} in dimension d, or (2) the end of s_{i} in dimension d coincide with the end of s_{j} in dimension d.

Figure 5.210 shows the objects of the example. Since O_{1} covers both O_{2} and O_{3}, and since O_{2} covers O_{3}, the covers_sboxes constraint holds.

$$
\text { |OBJECTS| > } 1
$$

- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES. 1 are permutable (same permutation used).

Suffix-contractible wrt. OBJECTS.

One of the eight relations of the Region Connection Calculus [338]. The constraint covers_sboxes is a relaxation of the original relation since it requires that each shifted box of an object is covered by one shifted box of the other object.
common keyword: contains_sboxes, coveredby_sboxes, disjoint_sboxes, equal_sboxes, inside_sboxes, meet_sboxes (rcc8), non_overlap_sboxes (geometrical constraint,logic), overlap_sboxes (rcc8).

(D) Three objects O_{1}, O_{2}, O_{3}, where O_{1} covers both O_{2} and O_{3} and where O_{2} covers O_{3}

Figure 5.210: (D) the three objects O_{1}, O_{2}, O_{3} of the Example slot respectively assigned shapes S_{1}, S_{2}, S_{4}; (A), (B), (C) shapes S_{1}, S_{2}, S_{3} and S_{4} are respectively made up from $2,2,2$ and 1 single shifted box.

Keywords constraint type: logic.
geometry: geometrical constraint, rcc8.
miscellaneous: obscure.

Logic

- $\operatorname{origin}(01, S 1, D) \stackrel{\text { def }}{=} 01 \cdot x(D)+S 1 . t(D)$
- end(01, S1, D) $\stackrel{\text { def }}{=} 01 . x(D)+$ S1.t(D) + S1.1 (D)
- covers_sboxes(Dims, 01, S1, 02, S2) $\stackrel{\text { def }}{=}$

- covers_objects(Dims, 01, 02) $\stackrel{\text { def }}{=}$ \forall S2 \in sboxes $([02$. sid $])$ \exists S1 \in sboxes $\left(\left[\begin{array}{l}\text { 01.sid }]\end{array}\right)\right.$
covers_sboxes $\left(\begin{array}{l}\text { Dims, } \\ 01, \\ \text { S1, } \\ 02, \\ \text { S2 }\end{array}\right)$
- all_covers(Dims, OIDS) $\stackrel{\text { def }}{=}$ $\forall 01 \in$ objects(OIDS)
$\forall 02 \in$ objects(0IDS)

$$
\text { 01.oid }<\Rightarrow
$$

02.oid
covers_objects $\left(\begin{array}{l}\text { Dims, } \\ 01, \\ 02\end{array}\right)$

- all_covers(DIMENSIONS, OIDS)

