916

LOGIC

5.94 covers_sboxes

	DESCRIPTION	LINKS	LOGIC	
Origin	Geometry, derived from [338]			
Constraint	<pre>covers_sboxes(K, DIMS, OBJECTS, SBOXES)</pre>			
Synonym	covers.			
Types	VARIABLES : collection(v INTEGERS : collection(v POSITIVES : collection(v	-int)		
Arguments	K : int DIMS : sint OBJECTS : collection(oid SBOXES : collection(sid			
Restrictions	$\begin{array}{l} \texttt{VARIABLES} \geq 1 \\ \texttt{INTEGERS} \geq 1 \\ \texttt{POSITIVES} \geq 1 \\ \texttt{required}(\texttt{VARIABLES}, \texttt{v}) \\ \texttt{VARIABLES} = \texttt{K} \\ \texttt{required}(\texttt{INTEGERS}, \texttt{v}) \\ \texttt{INTEGERS} = \texttt{K} \\ \texttt{required}(\texttt{POSITIVES}, \texttt{v}) \\ \texttt{POSITIVES} = \texttt{K} \\ \texttt{POSITIVES} = \texttt{K} \\ \texttt{POSITIVES}, \texttt{v} > 0 \\ \texttt{K} > 0 \\ \texttt{DIMS} \geq 0 \\ \texttt{DIMS} \leq \texttt{K} \\ \texttt{increasing_seq}(\texttt{OBJECTS}, \texttt{[oid]}) \\ \texttt{required}(\texttt{OBJECTS}, \texttt{[oid, sid, x]}) \\ \texttt{OBJECTS.oid} \geq 1 \\ \texttt{OBJECTS.sid} \geq 1 \\ \texttt{OBJECTS.sid} \leq \texttt{SBOXES} \\ \texttt{SBOXES} \geq 1 \\ \texttt{required}(\texttt{SBOXES}, \texttt{[sid, t, 1]}) \\ \texttt{SBOXES.sid} \geq 1 \\ \texttt{SBOXES.sid} \geq 1 \\ \texttt{SBOXES.sid} \leq \texttt{SBOXES} \\ \texttt{do_not_overlap}(\texttt{SBOXES}) \\ \end{array}$			

Holds if, for each pair of objects (O_i, O_j) , i < j, O_i covers O_j with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each *shape* is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a *shifted box* is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An *object* is an entity defined by its unique object identifier oid, shape id sid and origin x.

An object O_i covers an object O_j with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_j of O_j , there exists a shifted box s_i of O_i such that:

- For all dimensions $d \in \text{DIMS}$, (1) the start of s_i in dimension d is less than or equal to the start of s_j in dimension d, and (2) the end of s_j in dimension d is less than or equal to the end of s_i in dimension d.
- There exists a dimension d where, (1) the start of s_i in dimension d coincide with the start of s_j in dimension d, or (2) the end of s_i in dimension d coincide with the end of s_j in dimension d.

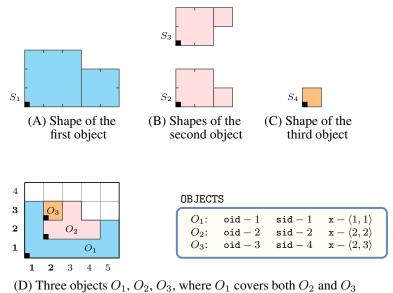
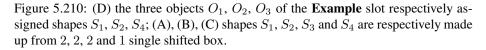

($2, \{0, 1\},$)
	/ oid -1	$\mathtt{sid}-1$	$\mathbf{x} - \langle 1, 1 \rangle, \mathbf{n}$
	$\langle \text{oid} - 2 \rangle$	$\operatorname{sid} - 2$	$\mathbf{x} - \langle 2, 2 \rangle, \rangle, \rangle,$
	\setminus oid -3	$\mathtt{sid}-4$	$\mathbf{x} - \langle 2, 3 \rangle$ /
	$\mathtt{sid}-1$	$t - \langle 0, 0 \rangle$	$1 - \langle 3, 3 \rangle$,
	$\mathtt{sid}-1$	$t - \langle 3, 0 \rangle$	$1-\langle 2,2\rangle$,
	/ sid -2	$t - \langle 0, 0 \rangle$	$1 - \langle 2, 2 \rangle$, χ
	\langle sid -2	$t - \langle 2, 0 \rangle$	$1 - \langle 1, 1 \rangle$, \rangle
	\setminus sid -3	$t - \langle 0, 0 \rangle$	$1 - \langle 2, 2 \rangle$, /
	$\mathtt{sid}-3$	$t - \langle 2, 1 \rangle$	$1 - \langle 1, 1 \rangle$,
	$\mathtt{sid}-4$	$t - \langle 0, 0 \rangle$	$1 - \langle 1, 1 \rangle$

Figure 5.210 shows the objects of the example. Since O_1 covers both O_2 and O_3 , and since O_2 covers O_3 , the covers_sboxes constraint holds.


Typical	OBJECTS > 1			
Symmetries	 Items of SBOXES are permutable. Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutable (same permutation used). 			
Arg. properties	Suffix-contractible wrt. OBJECTS.			
Remark	One of the eight relations of the <i>Region Connection Calculus</i> [338]. The constraint covers_sboxes is a relaxation of the original relation since it requires that each shifted box of an object is covered by one shifted box of the other object.			
See also	common keyword:contains_sboxes,coveredby_sboxes,disjoint_sboxes,equal_sboxes,inside_sboxes,meet_sboxes(rcc8),non_overlap_sboxes(geometrical constraint,logic),overlap_sboxes(rcc8).			

Example

Purpose

and where O_2 covers O_3

Keywords

constraint type: logic.
geometry: geometrical constraint, rcc8.
miscellaneous: obscure.

• origin(01, S1, D)
$$\stackrel{\text{def}}{=}$$
 01.x(D) + S1.t(D)
• end(01, S1, D) $\stackrel{\text{def}}{=}$ 01.x(D) + S1.t(D) + S1.1(D)
• covers_sboxes(Dims, 01, S1, 02, S2) $\stackrel{\text{def}}{=}$

$$\begin{pmatrix} \forall D \in \text{Dims} \\ & \begin{pmatrix} \text{origin}(01, S1, D) \leq \\ & \text{origin}(02, S2, D) \leq \\ & \text{end}(01, S1, D) = \\ & \text{end}(01, S1, D) = \\ & \text{origin}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{origin}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{origin}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) = \\ & \text{end}(02, S2, D) & , \\ & \text{end}(01, S1, D) & , \\ & \text{end}(0$$