
940 NARC,SELF ;PRODUCT , SUCC

5.98 cumulative product

DESCRIPTION LINKS GRAPH

Origin Derived from cumulative.

Constraint cumulative product(TASKS, LIMIT)

Arguments TASKS : collection









origin−dvar,

duration−dvar,

end−dvar,

height−dvar









LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end

TASKS.height ≥ 1
LIMIT ≥ 0

Purpose

Consider a set T of tasks described by the TASKS collection. The cumulative product

constraint forces that at each point in time, the product of the heights of the set of tasks

that overlap that point, does not exceed a given limit. A task overlaps a point i if and

only if (1) its origin is less than or equal to i, and (2) its end is strictly greater than i. It

also imposes for each task of T the constraint origin+ duration = end.

Example













〈

origin− 1 duration − 3 end− 4 height − 1,
origin− 2 duration − 9 end− 11 height − 2,
origin− 3 duration − 10 end− 13 height − 1,
origin− 6 duration − 6 end− 12 height − 1,
origin− 7 duration − 2 end− 9 height − 3

〉

, 6













Figure 5.220 shows the solution associated with the example. To each task of the

cumulative product constraint corresponds a set of rectangles coloured with the same

colour: the sum of the lengths of the rectangles corresponds to the duration of the task,

while the height of the rectangles (i.e., all the rectangles associated with a task have the

same height) corresponds to the height of the task. The profile corresponding to the

product of the heights of the tasks that overlap a given point is depicted by a thick red

line. The cumulative product constraint holds since at each point in time the product

of the heights of the tasks that overlap that point is not strictly greater than the upper limit

6 enforced by the last argument of the cumulative product constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20030820 941

¬

¬

¬

­

®

®

¯

¯

°

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

≤ 6

time

am
o
u
n
t

o
f

u
se

d
re

so
u
rc

e

product of heights

1
=

1
≤

6

2
×

1
=

2
≤

6

2
×

1
×

1
=

2
≤

6

2
×

1
=

2
≤

6

2
×

1
×

1
=

2
≤

6

2
×

1
×

1
×

3
=

6
≤

6

2
×

1
×

1
=

2
≤

6

1
×

1
=

1
≤

6

1
=

1
≤

6

¬ o− 1 d− 3 e− 4 h− 1

­ o− 2 d− 9 e− 11 h− 2

® o− 3 d− 10 e− 13 h− 1

¯ o− 6 d− 6 e− 12 h− 1

° o− 7 d− 2 e− 9 h− 3

TASKS

(

o for origin, d for duration,

e for end, h for height

)

Figure 5.220: Resource consumption profile in red corresponding to the product of the

heights of the five tasks of the Example slot

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
LIMIT <prod(TASKS.height)

Typical
Typical conditions on the arguments of the constraint.

942 NARC,SELF ;PRODUCT , SUCC

Symmetries • Items of TASKS are permutable.

• TASKS.height can be decreased to any value ≥ 0.

• One and the same constant can be added to the origin and end attributes of all

items of TASKS.

• LIMIT can be increased.

Arg. properties
Contractible wrt. TASKS.

Reformulation The cumulative product constraint can be expressed in term of a set of reified con-

straints and of |TASKS| constraints of the form h1 · h2 · · · · · h|TASKS| ≤ l:

1. For each pair of tasks TASKS[i], TASKS[j] (i, j ∈ [1, |TASKS|]) of the TASKS col-

lection we create a variable Hij which is set to the height of task TASKS[j] if task

TASKS[j] overlaps the origin attribute of task TASKS[i], and to 1 otherwise:

• If i = j:

– Hij = TASKS[i].height.

• If i 6= j:

– Hij = TASKS[j].height ∨Hij = 1.

– ((TASKS[j].origin ≤ TASKS[i].origin ∧
TASKS[j].end > TASKS[i].origin) ∧ (Hij = TASKS[j].height)) ∨

((TASKS[j].origin > TASKS[i].origin ∨
TASKS[j].end ≤ TASKS[i].origin) ∧ (Hij = 1))

2. For each task TASKS[i] (i ∈ [1, |TASKS|]) we impose a constraint of the form Hi1 ·
Hi2 · · · · ·Hi|TASKS| ≤ LIMIT.

See also common keyword: cumulative (resource constraint).

used in graph description: product ctr.

Keywords characteristic of a constraint: product.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: compulsory part.

modelling: zero-duration task.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20030820 943

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin + tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin

• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− ITEMS.height)]

)





Constraint(s) on sets product ctr(variables,≤,LIMIT)

Graph model Parts (A) and (B) of Figure 5.221 respectively show the initial and final graph associ-

ated with the second graph constraint of the Example slot. On the one hand, each source

vertex of the final graph can be interpreted as a time point. On the other hand the suc-

cessors of a source vertex correspond to those tasks that overlap that time point. The

cumulative product constraint holds since for each successor set S of the final graph

the product of the heights of the tasks in S does not exceed the limit LIMIT = 6.

Signature Since TASKS is the maximum number of vertices of the final graph of the first graph con-

straint we can rewrite NARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify

NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

944 NARC,SELF ;PRODUCT , SUCC

(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 5.221: Initial and final graph of the cumulative product constraint

20030820 945

