5.108 cyclic_change_joker

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from cyclic_change	ge.		
Constraint	cyclic_change_joker(NCF	HANGE, CYCLE_LENGTH, V	VARIABLES, CTR)	
Arguments	NCHANGE : dvar CYCLE_LENGTH : int VARIABLES : collo CTR : atom	ection(var-dvar)		
Restrictions	$\begin{array}{l} \text{NCHANGE} \geq 0 \\ \text{NCHANGE} < \text{VARIABLES} \\ \text{CYCLE_LENGTH} > 0 \\ \textbf{required}(\text{VARIABLES}, \text{var} \\ \text{VARIABLES.var} \geq 0 \\ \text{CTR} \in [=, \neq, <, \geq, >, \leq] \end{array}$	r)		
Purpose	NCHANGE is the number of ti $((X + 1) \mod \text{CYCLE_LENO})$ X and Y correspond to con	GTH) CTR $Y \wedge X <$ CYC	$\texttt{LE_LENGTH} \land Y < \texttt{CYCLE}$	LENGTH
Example	(2, 4, $\langle 3, 0, 2, 4, 4, 4, 3, 1, 0 \rangle$ Since CTR is set to \neq and consecutive items X and Y the condition ((X + 1) most the cyclic_change_joker (i.e., NCHANGE = 2) within $\langle 3 \rangle$ • A first change between • A second change between But when the joker value 4 is between values 2 and 4, betw	since CYCLE_LENGTH is of the VARIABLES col od 4) $\neq Y \land X < 4$ constraint holds since v 3, 0, 2, 4, 4, 4, 3, 1, 4: 0 and 2, een 3 and 1.	lection corresponds to th $4 \wedge Y < 4$ holds. Conve have the two following age. This is why no change	e fact that nsequently, ng changes
Typical	$\begin{aligned} & \text{NCHANGE} > 0 \\ & \text{CYCLE_LENGTH} > 1 \\ & \text{VARIABLES} > 1 \\ & \text{range}(\text{VARIABLES.var}) > \\ & \text{maxval}(\text{VARIABLES.var}) \\ & \text{CTR} \in [\neq] \end{aligned}$	> 1	1 1 anu 4.	
Symmetry	Items of VARIABLES can be	shifted.		

998

	20000128 999
Arg. properties	Functional dependency: NCHANGE determined by CYCLE_LENGTH, VARIABLES and CTR.
Usage	The cyclic_change_joker constraint can be used in the same context as the cyclic_change constraint with the additional feature: in our example codes 0 to 3 correspond to different type of activities (i.e., working the morning, the afternoon or the night) and code 4 represents a holiday. We want to express the fact that we do not count any change for two consecutive days d_1 , d_2 such that d_1 or d_2 is a holiday.
See also	common keyword: change, cyclic_change(number of changes).
	implied by: cyclic_change.
Keywords	characteristic of a constraint: cyclic, joker value, automaton, automaton with counters.
	constraint arguments: pure functional dependency.
	constraint network structure: sliding cyclic(1) constraint network(2).
	constraint type: timetabling constraint.
	final graph structure: acyclic, bipartite, no loop.
	modelling: number of changes, functional dependency.

Arc input(s) Arc generator	VARIABLES <u>PATH</u> →collection(variables1, variables2)		
Arc arity Arc constraint(s)	2 • (variables1.var + 1) mod CYCLE_LENGTH CTR variables2.var • variables1.var < CYCLE_LENGTH • variables2.var < CYCLE_LENGTH		
Graph property(ies)	NARC= NCHANGE		
Graph class	• ACYCLIC • BIPARTITE • NO_LOOP		

Graph model

The *joker values* are those values that are greater than or equal to CYCLE_LENGTH. We do not count any change for those arc constraints involving at least one variable taking a joker value.

Parts (A) and (B) of Figure 5.238 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

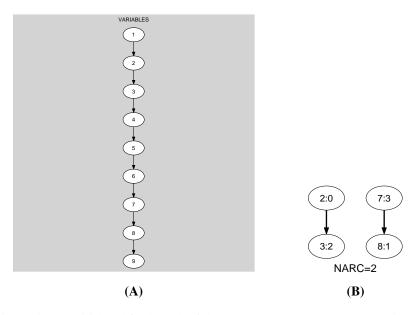


Figure 5.238: Initial and final graph of the cyclic_change_joker constraint

1000

20000128

Automaton

Figure 5.239 depicts the automaton associated with the cyclic_change_joker constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a 0-1 signature variable S_i . The following signature constraint links VAR_i, VAR_{i+1} and S_i :

 $\begin{array}{l} (((\texttt{VAR}_{i}+1) \bmod \texttt{CYCLE_LENGTH}) \texttt{CTR VAR}_{i+1} \land \\ (\texttt{VAR}_{i} < \texttt{CYCLE_LENGTH}) \land (\texttt{VAR}_{i+1} < \texttt{CYCLE_LENGTH})) \Leftrightarrow S_{i}. \end{array}$

 $((VAR_i + 1) \mod CYCLE_LENGTH) \neg CTR VAR_{i+1} \lor VAR_i \ge CYCLE_LENGTH \lor VAR_{i+1} \ge CYCLE_LENGTH$

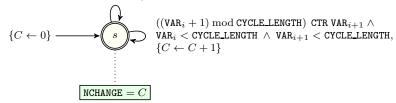


Figure 5.239: Automaton of the cyclic_change_joker constraint

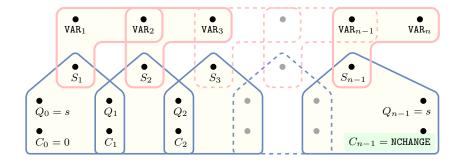


Figure 5.240: Hypergraph of the reformulation corresponding to the automaton of the cyclic_change_joker constraint