
5.113 deepest_valley

	DESCRIPTION	LINKS	AUTOMATON					
Origin	Derived from valley.							
Constraint	deepest_valley(DEPTH, VARIABLES)							
Arguments	DEPTH : dvar VARIABLES : collection(var-dvar)							
Restriction	<pre>required(VARIABLES, var)</pre>							
Purpose	A variable V_k $(1 < k < m)$ of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a valley if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} > V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k < V_{k+1}$. DEPTH is the minimum value of the valley variables. If no such variable exists DEPTH is equal to the default value MAXINT.							
Example	$\begin{array}{c}(2,\langle 5,3,4,8,8,2,7,1\rangle)\\(7,\langle 1,3,4,8,8,8,7,8\rangle)\end{array}$							

The first deepest-valley constraint holds since 2 is the deepest valley of the sequence $5\ 3\ 4\ 8\ 8\ 2\ 7\ 1.$

Typical

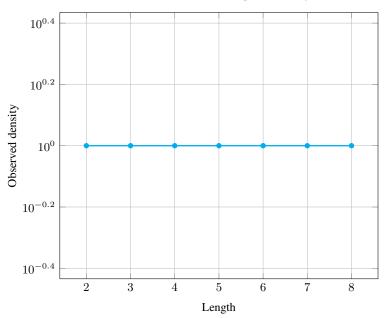
$$\begin{split} |\texttt{VARIABLES}| &> 2\\ \texttt{range}(\texttt{VARIABLES.var}) &> 2\\ \texttt{valley}(\texttt{VARIABLES.var}) &> 0 \end{split}$$

20040530

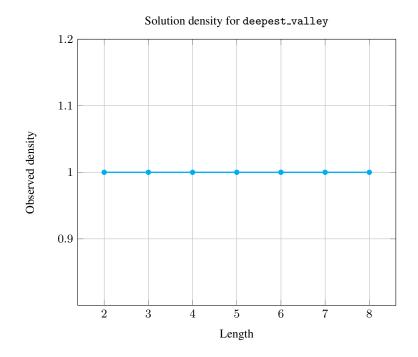
1019

Symmetry

Items of VARIABLES can be reversed.

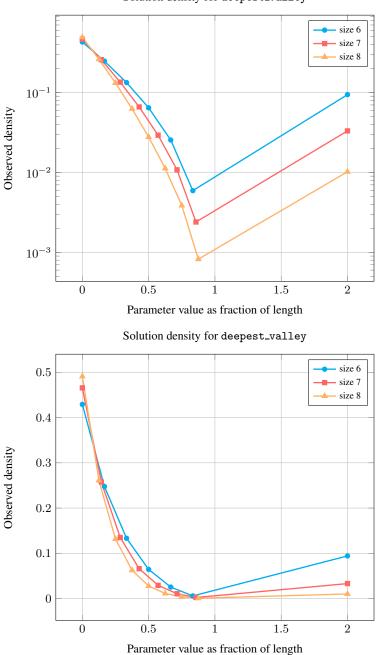

Arg. properties

Functional dependency: DEPTH determined by VARIABLES.


Counting

Length (n)	2	3	4	5	6	7	8
Solutions	9	64	625	7776	117649	2097152	43046721
Number of solutions for deepest valley: domains 0 n							

Number of solutions for deepest_valley: domains 0..n



Solution density for deepest_valley

Length (<i>n</i>)		2	3	4	5	6	7	8
Total		9	64	625	7776	117649	2097152	43046721
Parameter value	0	-	9	176	2900	50472	976227	21133632
	1	-	4	99	1712	29125	540576	11233250
	2	-	1	44	900	15680	283250	5665896
	3	-	-	11	380	7587	138544	2693425
	4	-	-	-	92	3000	61389	1195056
	5	-	-	-	-	697	22632	484020
	6	-	-	-	-	-	5036	166208
	7	-	-	-	-	-	-	35443
	1000000	9	50	295	1792	11088	69498	439791

Solution count for deepest valley: domains 0..n

Solution density for deepest_valley

common keyword: highest_peak, valley (sequence).
implies: between_min_max.

AUTOMATON

Keywordscharacteristic of a constraint:
automaton with same input symbol.
combinatorial object: sequence.
constraint arguments:
reverse of a constraint, pure functional dependency.
constraint network structure:
sliding cyclic(1) constraint network(2).
filtering:
glue matrix.
modelling:
functional dependency.

1022

20040530

Automaton

Figure 5.252 depicts the automaton associated with the deepest_valley constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i, VAR_{i+1} and S_i :

 $\begin{array}{l} \mathrm{VAR}_i \ < \mathrm{VAR}_{i+1} \Leftrightarrow S_i = 0 \ \land \ \mathrm{VAR}_i \ = \mathrm{VAR}_{i+1} \Leftrightarrow S_i = 1 \ \land \ \mathrm{VAR}_i \ > \mathrm{VAR}_{i+1} \Leftrightarrow S_i = 2. \end{array}$

STATES SEMANTICS

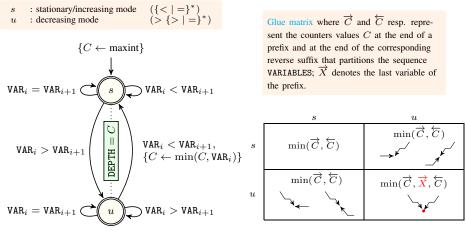


Figure 5.252: Automaton of the deepest_valley constraint and its glue matrix (state s means that we are in *increasing* or *stationary* mode, state u means that we are in *decreasing* mode, a new valley is detected each time we switch from decreasing to increasing mode and the counter C is updated accordingly); maximating the largest integer that can be represented on a machine

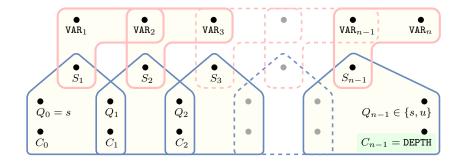


Figure 5.253: Hypergraph of the reformulation corresponding to the automaton of the deepest_valley constraint (C_0 is set to maxim the largest integer that can be represented on a machine)