$\underline{\mathbf{NARC}}, PRODUCT$

5.123 disjoint

1070

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from alldifferen	t.		
Constraint	disjoint(VARIABLES1,VA	RIABLES2)		
Arguments	VARIABLES1 : collect VARIABLES2 : collect			
Restrictions	<pre>required(VARIABLES1, t required(VARIABLES2, t </pre>	/		
Purpose	Each variable of the collect the values assigned to the va			stinct from all
Example	$(\langle 1, 9, 1, 5 \rangle, \langle 2, 7, 7, 0, 6 \rangle)$ In this example, values 1, 5 0, 2, 6, 7, 8 by the variables two previous sets of values the	5,9 are used by the of VARIABLES2. Sin	nce there is no intersection	
All solutions	Figure 5.275 gives all soluti constraint: $U_1 \in [02]$, $U_1 \in [02]$, $U_2 \in [02]$, $V_1 = 0$	$U_2 \in [12], U_3 \in$		
		$ \begin{array}{c} \textcircled{1} (\langle 0,2,2\rangle, \langle 1,1\rangle \\ \textcircled{2} (\langle 1,1,1\rangle, \langle 0,2\rangle \\ \textcircled{3} (\langle 2,2,2\rangle, \langle 0,1\rangle \\ \textcircled{4} (\langle 2,2,2\rangle, \langle 1,1\rangle \\ \end{array}) $	2〉) └〉)	
	Figure 5.275: All solutions corr constraint of the All solutions s		on ground example of t	hedisjoint

Typical

 $\begin{aligned} |\texttt{VARIABLES1}| > 1 \\ |\texttt{VARIABLES2}| > 1 \end{aligned}$

Symmetries	• Arguments are permutable w.r.t. permutation (VARIABLES1, VARIABLES2).		
	• Items of VARIABLES1 are permutable.		
	• Items of VARIABLES2 are permutable.		
	• An occurrence of a value of VARIABLES1.var can be replaced by any value of VARIABLES1.var.		
	• An occurrence of a value of VARIABLES2.var can be replaced by any value of VARIABLES2.var.		
	• All occurrences of two distinct values in VARIABLES1.var or VARIABLES2.var can be swapped; all occurrences of a value in VARIABLES1.var or VARIABLES2.var can be renamed to any unused value.		
Arg. properties	• Contractible wrt. VARIABLES1.		
	Contractible wrt. VARIABLES1: Contractible wrt. VARIABLES2:		
	• Contractione wit. VARIABLES2.		
Remark	Despite the fact that this is not an uncommon constraint, it can not be modelled in a compact way neither with a <i>disequality</i> constraint (i.e., two given variables have to take distinct values) nor with the alldifferent constraint. The disjoint constraint can be seen as a special case of the common(NCOMMON1, NCOMMON2, VARIABLES1, VARIABLES2) constraint where NCOMMON1 and NCOMMON2 are both set to 0.		
	MiniZinc (http://www.minizinc.org/) has a disjoint constraint between two set variables rather than between two collections of variables.		
Algorithm	Let us note:		
Algorithm	 Let us note: n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. 		
Algorithm	• n_1 the minimum number of distinct values taken by the variables of the collection		
Algorithm	 n1 the minimum number of distinct values taken by the variables of the collection VARIABLES1. n2 the minimum number of distinct values taken by the variables of the collection 		
Algorithm	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of 		
Algorithm Used in	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper 		
	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper bound of n₁₂ can be computed by using a bipartite matching algorithm. 		
Used in	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper bound of n₁₂ can be computed by using a bipartite matching algorithm. k_disjoint. 		
Used in	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper bound of n₁₂ can be computed by using a bipartite matching algorithm. k_disjoint. generalisation: disjoint_tasks (variable replaced by task). 		
Used in	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper bound of n₁₂ can be computed by using a bipartite matching algorithm. k_disjoint. generalisation: disjoint_tasks (variable replaced by task). implies: alldifferent_on_intersection, lex_different. 		
Used in See also	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper bound of n₁₂ can be computed by using a bipartite matching algorithm. k_disjoint. generalisation: disjoint_tasks (variable replaced by task). implies: alldifferent_on_intersection, lex_different. system of constraints: k_disjoint. 		
Used in See also	 n₁ the minimum number of distinct values taken by the variables of the collection VARIABLES1. n₂ the minimum number of distinct values taken by the variables of the collection VARIABLES2. n₁₂ the maximum number of distinct values taken by the union of the variables of VARIABLES1 and VARIABLES2. One invariant to maintain for the disjoint constraint is n₁ + n₂ ≤ n₁₂. A lower bound of n₁ and n₂ can be obtained by using the algorithms provided in [27, 40]. An exact upper bound of n₁₂ can be computed by using a bipartite matching algorithm. k_disjoint. generalisation: disjoint_tasks (variable replaced by task). implies: alldifferent_on_intersection, lex_different. system of constraints: k_disjoint. characteristic of a constraint; disequality, automaton, automaton with array of counters. 		

$\underline{\mathbf{NARC}}, PRODUCT$

Arc input(s)	VARIABLES1 VARIABLES2	
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$	
Arc arity	2	
Arc constraint(s)	variables1.var = variables2.var	
Graph property(ies)	$\mathbf{NARC} = 0$	
Graph model	PRODUCT is used in order to generate the arcs of the graph between all variables of	

PRODUCT is used in order to generate the arcs of the graph between all variables of VARIABLES1 and all variables of VARIABLES2. Since we use the graph property NARC = 0 the final graph will be empty. Figure 5.276 shows the initial graph associated with the **Example** slot. Since we use the NARC = 0 graph property the final graph is empty.

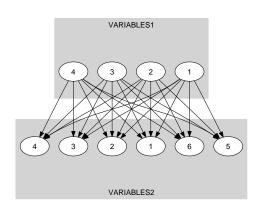


Figure 5.276: Initial graph of the disjoint constraint (the final graph is empty)

SignatureSince 0 is the smallest number of arcs of the final graph we can rewrite NARC = 0 toNARC ≤ 0 . This leads to simplify \overline{NARC} to \overline{NARC} .

1072

20000315

Automaton

Figure 5.277 depicts the automaton associated with the disjoint constraint. To each variable VAR1_i of the collection VARIABLES1 corresponds a signature variable S_i that is equal to 0. To each variable VAR2_i of the collection VARIABLES2 corresponds a signature variable $S_{i+|\text{VARIABLES1}|}$ that is equal to 1.

$$\left\{\begin{array}{c} C[.] \leftarrow 0, \\ D[.] \leftarrow 0 \end{array}\right\} \longrightarrow \left\{\begin{array}{c} s & 0, \\ \{C[\texttt{VAR1}_i] \leftarrow C[\texttt{VAR1}_i] + 1\} \\ 1, \\ \{D[\texttt{VAR2}_i] \leftarrow D[\texttt{VAR2}_i] + 1\} \\ \hline t & 1, \\ \{D[\texttt{VAR2}_i] \leftarrow D[\texttt{VAR2}_i] + 1\} \end{array}\right\}$$

Figure 5.277: Automaton of the disjoint(VARIABLES1, VARIABLES2) constraint, where state s handles variables of the collection VARIABLES1 and state t handles variables of the collection VARIABLES2