1074 LOGIC

5.124 disjoint_sboxes

DESCRIPTION	LINKS	LOGIC

Origin Geometry, derived from [338]

Constraint disjoint_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym disjoint.

Types VARIABLES : collection(v-dvar)

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid-int, sid-dvar, x - VARIABLES)
SBOXES : collection(sid-int, t - INTEGERS, 1 - POSITIVES)

Restrictions

```
|VARIABLES| \ge 1
|\mathtt{INTEGERS}| \geq 1
|\mathtt{POSITIVES}| \geq 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS,[oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} \geq 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
|\mathtt{SBOXES}| \geq 1
required(SBOXES, [sid, t, 1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
do_not_overlap(SBOXES)
```

20070622 1075

Holds if, for each pair of objects (O_i, O_j) , $i \neq j$, O_i and O_j are disjoint with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a *shifted box* is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An object is an entity defined by its unique object identifier oid, shape id sid and origin x.

Two objects O_i and object O_j are disjoint with respect to a set of dimensions depicted by DIMS if and only if for all shifted box s_i associated with O_i and for all shifted box s_j associated with O_j there exists at least one dimension $d \in DIMS$ such that (1) the origin of s_i in dimension d is strictly greater than the end of s_j in dimension d, or (2) the origin of s_i in dimension d is strictly greater than the end of s_i in dimension d.

```
2, \{0, 1\},
                                    \operatorname{sid} - 4 \quad \operatorname{x} - \langle 2, 4 \rangle
        \operatorname{sid} - 1 \quad \operatorname{t} - \langle 0, 0 \rangle
                                                                 1 - \langle 1, 2 \rangle
        \operatorname{sid} - 2 \quad \operatorname{t} - \langle 0, 0 \rangle
                                                                     1 - \langle 1, 1 \rangle,
                                    t - \langle 2, 1 \rangle
                                                                     1 - \langle 1, 1 \rangle,
                                    t - \langle 0, 0 \rangle
                                                                     1 - \langle 1, 1 \rangle
        \operatorname{sid} - 4
```

Figure 5.278 shows the objects of the example. Since these objects are pairwise disjoint the disjoint_sboxes constraint holds.

Typical

|OBJECTS| > 1

Symmetries

- Items of OBJECTS are permutable.
- Items of SBOXES are permutable.
- SBOXES.1.v can be decreased to any value ≥ 1 .

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

One of the eight relations of the Region Connection Calculus [338]. non_overlap_sboxes constraint, which just prevents objects from overlapping, the disjoint_sboxes constraint in addition enforces that borders and corners of objects are not directly in contact.

common keyword: contains_sboxes, coveredby_sboxes, covers_sboxes, equal_sboxes, inside_sboxes, meet_sboxes(rcc8), non_overlap_sboxes (geometrical constraint, logic), overlap_sboxes (rcc8).

implies: non_overlap_sboxes.

Example

Purpose

See also

1076 LOGIC

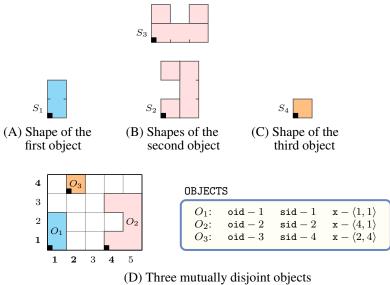


Figure 5.278: (D) the three mutually disjoint objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_1 , S_2 , S_4 ; (A), (B), (C) shapes S_1 , S_2 , S_3 and S_4 are respectively made up from 1, 3, 3 and 1 disjoint shifted box.

Keywords

constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.

Logic

```
\bullet \; \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D})
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
• disjoint_sboxes(Dims, 01, S1, 02, S2) \stackrel{\text{def}}{=}
        \exists \mathtt{D} \in \mathtt{Dims}
                     \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) >
                     end(02, S2, D)
origin(02, S2, D) >
end(01, S1, D)
• disjoint_objects(Dims, 01, 02) \stackrel{\text{def}}{=}
        \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
          \forall \mathtt{S2} \in \mathtt{sboxes} \left( \ \left[ \ \mathtt{02.sid} \ \right] \right)
                                                   Dims,
                                                   01,
           disjoint_sboxes
                                                   S1,
                                                   02,
• all_disjoint(Dims, OIDS) \stackrel{\text{def}}{=}
        \forall \texttt{O1} \in \texttt{objects}(\texttt{OIDS})
          \forall \texttt{O2} \in \texttt{objects}(\texttt{OIDS})
                {\tt O1.oid} < \ \Rightarrow
                02.oid
             disjoint_objects
• all_disjoint(DIMENSIONS, OIDS)
```