
1078 NARC,SELF ;NARC,PRODUCT

5.125 disjoint tasks

DESCRIPTION LINKS GRAPH

Origin Derived from disjoint.

Constraint disjoint tasks(TASKS1, TASKS2)

Arguments TASKS1 : collection(origin−dvar, duration−dvar, end−dvar)
TASKS2 : collection(origin−dvar, duration−dvar, end−dvar)

Restrictions require at least(2, TASKS1, [origin, duration, end])
TASKS1.duration ≥ 0
TASKS1.origin ≤ TASKS1.end

require at least(2, TASKS2, [origin, duration, end])
TASKS2.duration ≥ 0
TASKS2.origin ≤ TASKS2.end

Purpose
Each task of the collection TASKS1 should not overlap any task of the collection TASKS2.

Two tasks overlap if they have an intersection that is strictly greater than zero.

Example

〈

origin − 6 duration − 5 end− 11,
origin − 8 duration − 2 end− 10

〉

,

〈

origin− 2 duration − 2 end− 4,
origin− 3 duration − 3 end− 6,
origin− 12 duration − 1 end− 13

〉

Figure 5.279 displays the two groups of tasks (i.e., the tasks of TASKS1 and the

tasks of TASKS2). Since no task of the first group overlaps any task of the second group,

the disjoint tasks constraint holds.

Typical |TASKS1| > 1
TASKS1.duration > 0
|TASKS2| > 1
TASKS2.duration > 0

Symmetries • Arguments are permutable w.r.t. permutation (TASKS1, TASKS2).

• Items of TASKS1 are permutable.

• Items of TASKS2 are permutable.

• One and the same constant can be added to the origin and end attributes of all

items of TASKS1 and TASKS2.

Arg. properties
• Contractible wrt. TASKS1.

• Contractible wrt. TASKS2.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

20030820 1079

¬

®

¯

°

1 2 3 4 5 6 7 8 9 10 11 12 time

ta
sk

s

 o− 8 d− 2 e− 10

¬ o− 6 d− 5 e− 11

TASKS1

o for origin,

d for duration,

e for end

° o− 12 d− 1 e− 13

¯ o− 3 d− 3 e− 6

® o− 2 d− 2 e− 4

TASKS2

1 2 3 4 5 6 7 8 9 10 11 12

≤ 1

time

#
co

lo
u
rs

Figure 5.279: The disjoint tasks solution to the Example slot with at most one

distinct colour in parallel (tasks in TASKS1 have the pink colour, while tasks in TASKS2

have the blue colour)

Remark Despite the fact that this is not an uncommon constraint, it cannot be modelled in a com-

pact way with a single cumulative constraint. But it can be expressed by using the

coloured cumulative constraint: We assign a first colour to the tasks of TASKS1 as

well as a second distinct colour to the tasks of TASKS2. Finally we set up a limit of 1 for

the maximum number of distinct colours allowed at each time point.

Reformulation The disjoint tasks constraint can be expressed in term of |TASKS1| · |TASKS2| reified

constraints. For each task TASKS1[i] (i ∈ [1, |TASKS1|]) and for each task TASKS2[j]
(j ∈ [1, |TASKS2|]) we generate a reified constraint of the form TASKS1[i].end ≤
TASKS2[j].origin ∨ TASKS2[j].end ≤ TASKS1[i].origin. In addition we also state for

each task an arithmetic constraint that states that the end of a task is equal to the sum of its

origin and its duration.

Systems disjoint in Choco.

See also generalisation: coloured cumulative (tasks colours and limit on maximum number of

colours in parallel are explicitly given).

specialisation: disjoint (task replaced by variable).

Keywords constraint type: scheduling constraint, temporal constraint.

geometry: non-overlapping.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1080 NARC,SELF ;NARC,PRODUCT

Arc input(s) TASKS1

Arc generator SELF 7→collection(tasks1)

Arc arity 1

Arc constraint(s) tasks1.origin + tasks1.duration = tasks1.end

Graph property(ies) NARC= |TASKS1|

Arc input(s) TASKS2

Arc generator SELF 7→collection(tasks2)

Arc arity 1

Arc constraint(s) tasks2.origin + tasks2.duration = tasks2.end

Graph property(ies) NARC= |TASKS2|

Arc input(s) TASKS1 TASKS2

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.duration > 0
• tasks1.origin < tasks2.end

• tasks2.origin < tasks1.end

Graph property(ies) NARC= 0

Graph model PRODUCT is used in order to generate the arcs of the graph between all the tasks of the

collection TASKS1 and all tasks of the collection TASKS2. The first two graph constraints

respectively enforce for each task of TASKS1 and TASKS2 the fact that the end of a task

is equal to the sum of its origin and its duration. The arc constraint of the third graph

constraint depicts the fact that two tasks overlap. Therefore, since we use the graph property

NARC = 0 the final graph associated with the third graph constraint will be empty and

no task of TASKS1 will overlap any task of TASKS2. Figure 5.280 shows the initial graph of

the third graph constraint associated with the Example slot. Because of the graph property

NARC = 0 the corresponding final graph is empty.

Signature Since TASKS1 is the maximum number of arcs of the final graph associated with the first

graph constraint we can rewrite NARC = |TASKS1|. This leads to simplify NARC to

NARC.

We can apply a similar remark for the second graph constraint.

Finally, since 0 is the smallest number of arcs of the final graph we can rewrite NARC=
0 to NARC ≤ 0. This leads to simplify NARC to NARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20030820 1081

TASKS1

TASKS2

1

1 23

2

Figure 5.280: Initial graph of the disjoint tasks constraint (the final graph is empty)

