1098

5.131 distance_change

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	Derived from change.			
Constraint	distance_change(DIST,VAR	IABLES1, VARIABLES2,	CTR)	
Synonym	distance.			
Arguments	DIST : dvar VARIABLES1 : collection VARIABLES2 : collection CTR : atom			
Restrictions	$\begin{array}{l} \texttt{DIST} \geq 0\\ \texttt{DIST} < \texttt{VARIABLES1} \\ \texttt{required}(\texttt{VARIABLES1},\texttt{var}\\ \texttt{required}(\texttt{VARIABLES2},\texttt{var}\\ \texttt{VARIABLES1} = \texttt{VARIABLES2}\\ \texttt{CTR} \in [=, \neq, <, \geq, >, \leq] \end{array}$)		
Purpose	 DIST is equal to the number of i < n): VARIABLES1[i].var CTI VARIABLES2[i].var CTI VARIABLES2[i].var CTI VARIABLES1[i].var CTI 	R VARIABLES1 $[i+1]$.va R VARIABLES2 $[i+1]$.va R VARIABLES2 $[i+1]$.va	ar holds and ar does not hold, ar holds and	ue (1 ≤
Example	$(1, \langle 3, 3, 1, 2, 2 \rangle, \langle 4, 4, 3, 3, \rangle)$ The distance_change constrist verified: $\begin{cases} VARIABLES1[3].v \\ VARIABLES2[3].v \end{cases}$		blowing condition (DIS $[4]$.var = $2 \land$ [4].var = 3	ST = 1)
Typical	$\begin{array}{l} \texttt{DIST} > 0 \\ \texttt{VARIABLES1} > 1 \\ \texttt{CTR} \in [=, \neq] \end{array}$			
Symmetries	 Arguments are p (VARIABLES1, VARIABL One and the same cons VARIABLES1. One and the same cons VARIABLES2. 	stant can be added to t		

20000128

Arg. properties	Functional dependency: DIST determined by VARIABLES1, VARIABLES2 and CTR.
Usage	Measure the distance between two sequences according to the change constraint.
Remark	We measure that distance with respect to a given constraint and not according to the fact that the variables are assigned distinct values.
See also	<pre>common keyword: distance_between (proximity constraint). root concept: change.</pre>
Keywords	 characteristic of a constraint: automaton, automaton with counters. constraint arguments: pure functional dependency. constraint network structure: sliding cyclic(2) constraint network(2). constraint type: proximity constraint. modelling: functional dependency.

1099

Arc input(s)	VARIABLES1/VARIABLES2
Arc generator	$PATH \mapsto \texttt{collection}(\texttt{variables1},\texttt{variables2})$
Arc arity	2
Arc constraint(s)	variables1.var CTR variables2.var
Graph property(ies)	DISTANCE= DIST

Within the **Arc input**(s) slot, the character / indicates that we generate two distinct graphs. The graph property **DISTANCE** measures the distance between two digraphs G_1 and G_2 . This distance is defined as the sum of the following quantities:

- The number of arcs of G_1 that do not belong to G_2 ,
- The number of arcs of G_2 that do not belong to G_1 .

Part (A) of Figure 5.287 gives the final graph associated with the sequence var-3,var-3,var-1,var-2,var-2 (i.e., the second argument of the constraint of the **Example** slot), while part (B) shows the final graph corresponding to var-4,var-4,var-3,var-3,var-3 (i.e., the third argument of the constraint of the **Example** slot). Since arc $3 \rightarrow 4$ belongs to the first final graph but not to the second one, the distance between the two final graphs is equal to 1.

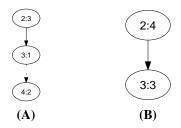


Figure 5.287: Final graphs of the distance_change constraint

1100

Graph model

20000128

Automaton

Figure 5.288 depicts the automaton associated with the distance_change constraint. Let $(VAR1_i, VAR1_{i+1})$ and $(VAR2_i, VAR2_{i+1})$ respectively be the i^{th} pairs of consecutive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple $(VAR1_i, VAR1_{i+1}, VAR2_i, VAR2_{i+1})$ corresponds a 0-1 signature variable S_i . The following signature constraint links these variables:

 $((\texttt{VAR1}_i = \texttt{VAR1}_{i+1}) \land (\texttt{VAR2}_i \neq \texttt{VAR2}_{i+1})) \lor \\ ((\texttt{VAR1}_i \neq \texttt{VAR1}_{i+1}) \land (\texttt{VAR2}_i = \texttt{VAR2}_{i+1})) \Leftrightarrow S_i.$

Figure 5.288: Automaton of the distance_change constraint

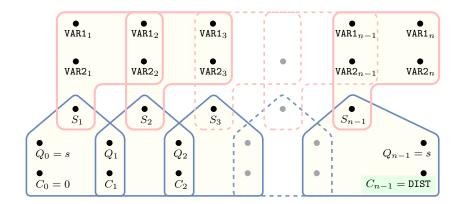


Figure 5.289: Hypergraph of the reformulation corresponding to the automaton of the distance_change constraint