
1130 NARC,PRODUCT ; AUTOMATON

5.139 element

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [418]

Constraint element(INDEX, TABLE, VALUE)

Synonyms nth, element var, array.

Arguments INDEX : dvar

TABLE : collection(value−dvar)
VALUE : dvar

Restrictions INDEX ≥ 1
INDEX ≤ |TABLE|
|TABLE| > 0
required(TABLE, value)

Purpose VALUE is equal to the INDEXth item of TABLE, i.e. VALUE = TABLE[INDEX].

Example (3, 〈6, 9, 2, 9〉 , 2)

The element constraint holds since its third argument VALUE = 2 is equal to the

3th (INDEX = 3) item of the collection 〈6, 9, 2, 9〉.

All solutions Figure 5.301 gives all solutions to the following non ground instance of the element con-

straint: I ∈ [3, 6], V ∈ [1, 9], element(I, 〈4, 8, 1, 0, 3, 3, 4, 3〉, V).

¬ (3, 〈41, 82,13, 04, 34, 36, 77, 38〉,1)
­ (5, 〈41, 82, 13, 04,35, 36, 47, 38〉,3)
® (6, 〈41, 82, 13, 04, 35,36, 47, 38〉,3)

Figure 5.301: All solutions corresponding to the non ground example of the element

constraint of the All solutions slot

Typical |TABLE| > 1
range(TABLE.value) > 1

Symmetry All occurrences of two distinct values in TABLE.value or VALUE can be swapped; all

occurrences of a value in TABLE.value or VALUE can be renamed to any unused value.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

All solutions
Example of all solutions for a non ground instance of the constraint.

Typical
Typical conditions on the arguments of the constraint.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

20000128 1131

Arg. properties
• Functional dependency: VALUE determined by INDEX and TABLE.

• Suffix-extensible wrt. TABLE.

Usage See Usage slot of elem.

Remark In the original element constraint of CHIP the index attribute was not explicitly present

in the table of values. It was implicitly defined as the position of a value in the previous

table.

Within some systems (e.g., Gecode), the index of the first entry of the table TABLE corre-

sponds to 0 rather than to 1.

When the first entry of the table TABLE corresponds to a value p that is different from 1
we can still use the element constraint. We use the reformulation I = J − p + 1 ∧
element(I, TABLE, V), where I and J are domain variables respectively ranging from 1
to |TABLE| and from p to p+ |TABLE| − 1.

The element constraint is called nth in Choco (http://
ho
o.sour
eforge.net/).

It is also sometimes called element var when the second argument corresponds to a table

of variables.

The case constraint [99] is a generalisation of the element constraint, where the table is

replaced by a directed acyclic graph describing the set of solutions: there is a one to one

correspondence between the solutions and the paths from the unique source of the dag to

its leaves.

Systems nth in Choco, element in Gecode, element in JaCoP, element in MiniZinc,element in SICStus.

See also common keyword: elem from to, element greatereq, element lesseq,

element matrix, element product, element sparse (array constraint), elementn,

elements sparse, in relation, stage element, sum (data constraint).

generalisation: cond lex cost (variable replaced by tuple of variables).

implied by: elem.

implies: elem.

related: twin ((pairs linked by an element with the same table)).

system of constraints: elements.

uses in its reformulation: cycle, elements alldifferent, sort permutation,

tree range, tree resource.

Keywords characteristic of a constraint: core, automaton, automaton without counters,

reified automaton constraint, derived collection.

constraint arguments: pure functional dependency.

constraint network structure: centered cyclic(2) constraint network(1).

constraint type: data constraint.

filtering: arc-consistency.

heuristics: labelling by increasing cost, regret based heuristics.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com
http://www.gecode.org/
http://choco.emn.fr/

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc/3.7.0/reference/group__TaskModelIntElement.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Element.html
http://www.jacop.eu/
http://www.g12.cs.mu.oz.au/minizinc/downloads/doc-1.4/mzn-globals.html#element
http://www.g12.cs.mu.oz.au/minizinc/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1132 NARC,PRODUCT ; AUTOMATON

modelling: array constraint, table, functional dependency, variable indexing,

variable subscript, disjunction, assignment to the same set of values,

sequence dependent set-up.

modelling exercises: assignment to the same set of values, sequence dependent set-up,

zebra puzzle.

puzzles: zebra puzzle.

20000128 1133

Derived Collection

col

(

ITEM−collection(index−dvar, value−dvar),
[item(index− INDEX, value− VALUE)]

)

Arc input(s) ITEM TABLE

Arc generator PRODUCT 7→collection(item, table)

Arc arity 2

Arc constraint(s) • item.index = table.key

• item.value = table.value

Graph property(ies) NARC= 1

Graph model The original element constraint with three arguments. We use the derived collection ITEM

for putting together the INDEX and VALUE parameters of the element constraint. Within the

arc constraint we use the implicit attribute key that associates to each item of a collection

its position within the collection.

Parts (A) and (B) of Figure 5.302 respectively show the initial and final graph associated

with the Example slot. Since we use the NARC graph property, the unique arc of the

final graph is stressed in bold.

ITEM

TABLE

1

1234

NARC=1

1:3,2

3:2

(A) (B)

Figure 5.302: Initial and final graph of the element constraint

Signature Because of the first condition of the arc constraint the final graph cannot have more than

one arc. Therefore we can rewrite NARC = 1 to NARC ≥ 1 and simplify NARC to

NARC.

Derived Collection
Declaration of a new collection that is derived from one or several arguments of the constraint.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

1134 NARC,PRODUCT ; AUTOMATON

Automaton Figure 5.303 depicts the automaton associated with the element constraint. Let

VALUEi be the value attribute of item i of the TABLE collection. To each triple

(INDEX, VALUE, VALUEi) corresponds a 0-1 signature variable Si as well as the following

signature constraint: (INDEX = i ∧ VALUE = VALUEi)⇔ Si.

s

t

INDEX 6= TABLE KEYi ∨

VALUE 6= TABLE VALUEi

INDEX = TABLE KEYi ∧

VALUE = TABLE VALUEi

INDEX 6= TABLE KEYi ∨

VALUE 6= TABLE VALUEi

INDEX = TABLE KEYi ∧

VALUE = TABLE VALUEi

Figure 5.303: Automaton of the element(INDEX, TABLE, VALUE) constraint (once one

finds the right index and value in the table, one switches from the initial state s to the

accepting state t)

Q0 = s Q1

S1 S2

Qn = t

Sn

INDEX

VALUE

TABLE VALUE1 TABLE VALUE2 TABLE VALUEn

Figure 5.304: Hypergraph of the reformulation corresponding to the automaton of the

element constraint

Quiz

EXERCISE 1 (checking whether a ground instance holds or not)a

A. Does the constraint element(0, 〈5, 1, 4, 8, 1〉, 5) hold?

B. Does the constraint element(3, 〈8, 2, 4, 3〉, 4) hold?

C. Does the constraint element(5, 〈0, 1, 2, 3, 4, 5〉, 5) hold?

aHint: go back to the definition of element.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

Quiz
A set of small exercises for checking that the meaning of the constraint is well understood.

20000128 1135

EXERCISE 2 (finding all solutions)a

Give all the solutions to the constraint:







I ∈ [2, 6],
V ∈ [0, 5],
element(I, 〈0, 2, 9, 5, 9, 2, 3, 9〉, V).

aHint: follow the order induced by the functional dependency between the

arguments of element, enumerate solutions in lexicographic order.

EXERCISE 3 (finding all solutions)a

Give all the solutions to the constraint:















I ∈ [2, 3],
V1 ∈ [5, 5], V2 ∈ [3, 5], V3 ∈ [0, 3],
V ∈ [1, 2],
element(I, 〈V1, V2, V3〉, V).

aHint: first find the feasible values of the first argument, then enumerate

solutions in lexicographic order.

EXERCISE 4 (identifying infeasible values)a

Identify all variable-value pairs (Vi, val) (0 ≤ i ≤ 3), such that the fol-

lowing constraint has no solution when value val is assigned to variable

Vi:







V0 ∈ [2, 3], V1 ∈ [2, 4],
V2 ∈ [0, 4], V3 ∈ [3, 5],
element(V0, 〈V1, 0, V2, 6〉, V3).

aHint: first find the feasible values of the first argument, then filter the other

variables.

EXERCISE 5 (variable-based degree of violation)a

Compute the variable-based degree of violationb of the following con-

straints:

A. element(0, 〈2, 2, 2, 2〉, 2),

B. element(3, 〈3, 1, 5, 2, 7〉, 4),

C. element(8, 〈5, 5, 8, 5, 5, 0, 7〉, 2).

aHint: take advantage of the functional dependency.
bGiven a constraint for which all variables are fixed, the variable-based de-

gree of violation is the minimum number of variables to assign differently in

order to satisfy the constraint.

1136 NARC,PRODUCT ; AUTOMATON

EXERCISE 6 (using entailment for counting)a

A. Given an element(i, 〈t1, t2, . . . , tn〉, v) constraint where i,

t1, t2, . . . , tn, v are variables, what is the minimum number of

variables to fix in order to achieve entailment.b We assume that

the constraint has at least one solution.

B. Exploit entailment in order to compute the number of solutions to

the constraint i ∈ [1, 3], v1 ∈ [0, 1], v2 ∈ [1, 9], v3 ∈ [3, 5],
v ∈ [2, 7], element(i, 〈v1, v2, v3〉, v).

aHint: take advantage of the functional dependency, use a case analysis on

the first argument.
bA constraint is entailed if and only if it is for sure satisfied even though

some of its variables are not fixed.

EXERCISE 7 (modelling with an unconstrained index)a

What does the element constraint model when its first argument, the

index, is unconstrained?

aHint: how would one define the set of solutions of the third argument?

EXERCISE 8 (modelling an index starting at 0)a

Given a table t whose entries are indexed at [0, n] model the requirement

v = t[i].

aHint: make a shift.

EXERCISE 9 (modelling indirection)a

Given a table t whose entries vary between 1 and 9, model the require-

ment v = t[t[i]] as one or several constraints. What is the implicit as-

sumption we have on the entries of the table?

aHint: use more than one constraint.

SOLUTION TO EXERCISE 1

A. No, since value the first argument starts at index 1.

B. Yes, since the third entry of the table is equal to 4.

C. No, since the fifth entry is equal to 4 (and not to 5).

20000128 1137

SOLUTION TO EXERCISE 2

I, 〈0, 2, 9, 5, 9, 2, 3, 9〉, V

¬ (2, 〈01,22, 93, 54, 95, 26, 37, 98〉,2)
­ (4, 〈01, 22, 93,54, 95, 26, 37, 98〉,5)
® (6, 〈01, 22, 93, 54, 95,26, 37, 98〉,2)

the three solutions

1. The active entries of the table are located between index 2 and 6,

as shown in bold by 〈01,22,93,54,95,26, 37, 98〉.

2. Among these entries we restrict ourselves to those entries for

which the value is located in the domain of variable V , i.e. in

interval [0, 5]. The remaining entries are shown in bold,

i.e. 〈01, 22, 93,54, 95,26, 37, 98〉.

3. This leads to the three solutions I = 2 V = 2, I = 4 V = 5 and

I = 6 V = 2.

SOLUTION TO EXERCISE 3

I, 〈V1, V2, V3〉, V

¬ (3, 〈51, 32,13〉,1)
­ (3, 〈51, 32,23〉,2)
® (3, 〈51, 42,13〉,1)
¯ (3, 〈51, 42,23〉,2)
° (3, 〈51, 52,13〉,1)
± (3, 〈51, 52,23〉,2)

the six solutions

1. Since the domain of V2 which is located at the second entry of the

table does not intersect the domain of V (the third argument), the

index variable I (the first argument) can not be assigned value 2,

and is therefore fixed to 3.

2. Since I is fixed to 3 we have that V = V3. Consequently V and

V3 are assigned a same value that belongs to the intersection of

their respective domains, i.e. [0, 3] ∩ [1, 2] = [1, 2].

1138 NARC,PRODUCT ; AUTOMATON

SOLUTION TO EXERCISE 4

V0 V1 V2 V3

0

1

2

3

4

5

(A)

Initial
domains

Vi

Vi

Vi

vj

vj

vj

vj /∈ dom(Vi)

vj ∈ dom(Vi)

vj pruned

from dom(Vi)

V0 V1 V2 V3

0

1

2

3

4

5

(B)

After filtering

the index

V0 V1 V2 V3

0

1

2

3

4

5

(C)

Final
domains

1. In part (A) we give the initial domains of the index variable (V0),

of the first and third entries of the table (V1, V2), and of the third

argument of the element constraint (V3).

2. In part (B) we prune the index variable V0. On the one hand, it

can not be assigned value 2 since the second entry of the table is

set to 0, and 0 does not belong to the domain of V3, see ×. On

the other hand, it can be assigned value 3 since

dom(V2) ∩ dom(V3) 6= ∅.

3. Finally in part (C) we remove those values that contradict the fact

that V2 = V3, see ×.

20000128 1139

SOLUTION TO EXERCISE 5

A. The degree of violation is equal to 1 since we only need to change

the index from 0 (because 0 is not an allowed value for the index)

to any integer value in [1, 4].

element(

1

0, 〈2, 2, 2, 2〉, 2)

B. The degree of violation is equal to 1 since we only need to change

the third entry of the table to 4 (or to switch the third argument

from 4 to 5).

element(3, 〈3, 1,

4

5, 2, 7〉, 4)

C. The degree of violation is equal to 2 since we need to change both

the index (the table has only 7 entries) and the third argument

(value 2 does not occur in the table). Rather than changing the

third argument, we may change an entry of the table (e.g., if we

set the index to 3 we set the third entry of the table to 2).

element(

1

8, 〈5, 5, 8, 5, 5, 0, 7〉,

5

2)

SOLUTION TO EXERCISE 6

A. We need to fix 3 variables in the following way:

(i) The first argument, the index i, is fixed to a value α

(1 ≤ α ≤ n) such that dom(tα) ∩ dom(v) 6= ∅.

(ii) We fix the third argument v to a value β in

dom(tα) ∩ dom(v).

(iii) We fix tα to β.

B. We have 90 solutions depending on whether i = 1, i = 2, i = 3
(and v = vi):

(i) |dom(v)∩ dom(v1)| · |dom(v2)| · |dom(v3)| = 0 · 9 · 3 = 0,

(ii) |dom(v)∩dom(v2)| · |dom(v1)| · |dom(v3)| = 6 ·2 ·3 = 36,

(iii) |dom(v)∩dom(v3)| · |dom(v1)| · |dom(v2)| = 3 ·2 ·9 = 54.

SOLUTION TO EXERCISE 7

Given a table t of n entries t[1], t[2], . . . , t[n], element models a dis-

junction stating that the third argument v is equal to one of the val-

ues that can be assigned to one of the variables of the table, i.e. v =
t[1] ∨ v = t[2] ∨ · · · ∨ v = t[n].

1140 NARC,PRODUCT ; AUTOMATON

SOLUTION TO EXERCISE 8

The requirement v = t[i] can be modelled as the conjunction of the two

constraints j = i+ 1, element(j, 〈t[0], t[1], . . . , t[n]〉, v).

SOLUTION TO EXERCISE 9

The requirement v = t[t[i]] can be modelled as the conjunction of two

element constraints sharing the same table, namely:

element(i, 〈t[1], t[2], . . . , t[9]〉, j) ← inner indirection t[t[i]]
element(j, 〈t[1], t[2], . . . , t[9]〉, v) ← outer indirection t[t[i]]

The second element constraint assumes that j corresponds to a valid

index of the table, i.e. a value between 1 and 9.

20000128 1141

