5.142 element_matrix

	DESCRIPTION	LINKS	GRAPH	AUTOMATON
Origin	CHIP			
Constraint	<pre>element_matrix(MAX_I, MAX_J, IN</pre>	IDEX_I, INDEX_J, MATR	IX, VALUE)	
Synonyms	elem_matrix, matrix.			
Arguments	MAX_I : int MAX_J : int INDEX_I : dvar INDEX_J : dvar MATRIX : collection(i-in VALUE : dvar	nt,j-int,v-int)		
Restrictions	$\begin{array}{l} \text{MAX_I} \geq 1 \\ \text{MAX_J} \geq 1 \\ \text{INDEX_I} \geq 1 \\ \text{INDEX_I} \leq \text{MAX_I} \\ \text{INDEX_J} \geq 1 \\ \text{INDEX_J} \leq \text{MAX_J} \\ \textbf{required}(\text{MATRIX}, [\texttt{i}, \texttt{j}, \texttt{v}]) \\ \textbf{increasing_seq}(\text{MATRIX}, [\texttt{i}, \texttt{j}]) \\ \text{MATRIX.i} \geq 1 \\ \text{MATRIX.i} \leq \text{MAX_I} \\ \text{MATRIX.j} \geq 1 \\ \text{MATRIX.j} \geq 1 \\ \text{MATRIX.j} \leq \text{MAX_J} \\ \text{MATRIX.j} = \text{MAX_J} \\ \text{MATRIX} = \text{MAX_I} * \text{MAX_J} \end{array}$			
Purpose	The MATRIX collection con MATRIX[1MAX_I, 1MAX_J]. VALUE the previous matrix.	rresponds to the E is equal to the entry M	two-dimensional m ATRIX[INDEX_I, INDEX_	atrix J] of
Example	$\left(\begin{array}{cccccc} i-1 & j-1 \\ i-1 & j-2 \\ i-1 & j-3 \\ i-2 & j-1 \\ i-2 & j-2 \\ i-3 & j-1 \\ i-3 & j-2 \\ i-3 & j-1 \\ i-3 & j-2 \\ i-3 & j-3 \\ i-4 & j-1 \\ i-4 & j-2 \\ i-4 & j-3 \end{array}\right)$	$ \begin{array}{c} \mathbf{v} - 4, \\ \mathbf{v} - 1, \\ \mathbf{v} - 7, \\ \mathbf{v} - 1, \\ \mathbf{v} - 0, \\ \mathbf{v} - 8, \\ \mathbf{v} - 3, \\ \mathbf{v} - 2, \\ \mathbf{v} - 1, \\ \mathbf{v} - 0, \\ \mathbf{v} - 1, \\ \mathbf{v} - 0, \\ \mathbf{v} - 0, \\ \mathbf{v} - 0, \\ \mathbf{v} - 6 \end{array} \right), $		

1150

	The element_matrix constraint holds since its last argument VALUE = 7 is equal to the v attribute of the k^{th} item of the MATRIX collection such that MATRIX $[k].i = INDEX_I = 1$ and MATRIX $[k].j = INDEX_J = 3$.			
Typical	$\begin{array}{l} \texttt{MAX_I} > 1 \\ \texttt{MAX_J} > 1 \\ \texttt{MATRIX} > 3 \\ \texttt{maxval}(\texttt{MATRIX.i}) > 1 \\ \texttt{maxval}(\texttt{MATRIX.j}) > 1 \\ \texttt{range}(\texttt{MATRIX.v}) > 1 \end{array}$			
Symmetry	All occurrences of two distinct values in MATRIX.v or VALUE can be swapped; all occur- rences of a value in MATRIX.v or VALUE can be renamed to any unused value.			
Reformulation	The element_matrix(MAX_I, MAX_J, INDEX_I, INDEX_J, MATRIX, VALUE) constraint can be expressed in term of MAX_I element(INDEX_J, LINE _i , VAR _i) ($i \in [1, MAX_I]$), where LINE _i corresponds to the <i>i</i> -th line of the matrix MATRIX and of one element(INDEX_I, (VAR ₁ , VAR ₂ ,, VAR _{MAX_I}), VALUE) constraint.			
	If we consider the Example slot we get the following element constraints:			
	• $element(3, \langle 4, 1, 7 \rangle, 7),$			
	• $\texttt{element}(3,\langle 1,0,8\rangle,8),$			
	• $element(3, \langle 3, 2, 1 \rangle, 1),$			
	• $\texttt{element}(3, \langle 0, 0, 6 \rangle, 6),$			
	• $element(1, (7, 8, 1, 6), 7).$			
Systems	nth in Choco, element in Gecode.			
See also	<pre>common keyword: elem, element (array constraint).</pre>			
Keywords	characteristic of a constraint: automaton, automaton without counters, reified automaton constraint, derived collection.			
	constraint arguments: ternary constraint.			
	constraint network structure: centered cyclic(3) constraint network(1).			
	constraint type: data constraint.			
	filtering: arc-consistency.			
	modelling: array constraint, matrix.			

Derived Collection	$\texttt{col} \left(\begin{array}{c} \texttt{ITEM-collection(index_i-dvar, index_j-dvar, value-dvar),} \\ [\texttt{item(index_i-INDEX_I, index_j-INDEX_J, value-VALUE)]} \end{array} \right)$
Arc input(s)	ITEM MATRIX
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{item}, \texttt{matrix})$
Arc arity	2
Arc constraint(s)	 item.index_i = matrix.i item.index_j = matrix.j item.value = matrix.v
Graph property(ies)	NARC=1

Similar to the element constraint except that the arc constraint is updated according to the fact that we have a two-dimensional matrix.

Parts (A) and (B) of Figure 5.311 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the unique arc of the final graph is stressed in bold.

SignatureBecause of the first condition of the arc constraint the final graph cannot have more than
one arc. Therefore we can rewrite NARC = 1 to $NARC \ge 1$ and simplify \overline{NARC} to
 \overline{NARC} .

Graph model

20031101

Automaton

Figure 5.312 depicts the automaton associated with the element_matrix constraint. Let I_k , J_k and V_k respectively be the i, the j and the v k^{th} attributes of the MATRIX collection. To each sextuple (INDEX_I, INDEX_J, VALUE, I_k , J_k , V_k) corresponds a 0-1 signature variable S_k as well as the following signature constraint: $((INDEX_I = I_k) \land (INDEX_J = J_k) \land (VALUE = V_k)) \Leftrightarrow S_k$.

Figure 5.312: Automaton of the element_matrix constraint

Figure 5.313: Hypergraph of the reformulation corresponding to the automaton of the element_matrix constraint where n and m respectively stands for MAX_I and MAX_J