
1230 PREDEFINED

5.160 geost time

DESCRIPTION LINKS

Origin Generalisation of diffn.

Constraint geost time(K, DIMS, OBJECTS, SBOXES)

Types VARIABLES : collection(v−dvar)
INTEGERS : collection(v−int)
POSITIVES : collection(v−int)

Arguments K : int

DIMS : sint

OBJECTS : collection

oid−int,

sid−dvar,

x− VARIABLES,

start−dvar,

duration−dvar,

end−dvar

SBOXES : collection(sid−int, t− INTEGERS, l− POSITIVES)

Restrictions |VARIABLES| ≥ 1
|INTEGERS| ≥ 1
|POSITIVES| ≥ 1
required(VARIABLES, v)
|VARIABLES| = K

required(INTEGERS, v)
|INTEGERS| = K

required(POSITIVES, v)
|POSITIVES| = K

POSITIVES.v > 0
K ≥ 0
DIMS ≥ 0
DIMS < K

distinct(OBJECTS, oid)
required(OBJECTS, [oid, sid, x])
require at least(2, OBJECTS, [start, duration, end])
OBJECTS.oid ≥ 1
OBJECTS.oid ≤ |OBJECTS|
OBJECTS.sid ≥ 1
OBJECTS.sid ≤ |SBOXES|
OBJECTS.duration ≥ 0
|SBOXES| ≥ 1
required(SBOXES, [sid, t, l])
SBOXES.sid ≥ 1
SBOXES.sid ≤ |SBOXES|
do not overlap(SBOXES)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Types
Declarations of new compound data types that will be used for defining the type of one or several arguments of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

20060919 1231

Purpose

Holds if (1) the difference between the end in time and the start in time of each object

is equal to its duration in time, and if (2) for each pair of objects (Oi, Oj), i < j, Oi

and Oj do not overlap with respect to a set of dimensions depicted by DIMS as well

as to the time axis. Note that an object with duration zero can never overlap any other

object. Oi and Oj are objects that take a shape among a set of shapes. Each shape is

defined as a finite set of shifted boxes, where each shifted box is described by a box in

a K-dimensional space at a given offset (from the origin of the shape) with given sizes

that are all strictly greater than 0. More precisely, a shifted box is an entity defined by its

shape id sid, shift offset t, and sizes l. Then, a shape is defined as the union of shifted

boxes sharing the same shape id. An object is an entity defined by its unique object

identifier oid, shape id sid and origin x.

An object Oi does not overlap an object Oj with respect to a set of dimensions depicted

by DIMS as well as to the time axis if and only if:

• The start in time of Oi is greater than or equal to the end in time of Oj .

• The start in time of Oj is greater than or equal to the end in time of Oi.

• For all shifted box si associated with Oi and for all shifted box sj associated

with Oj there exists a dimension d ∈ DIMS such that the start of si in dimension

d is greater than or equal to the end of sj in dimension d, or the start of sj in

dimension d is greater than or equal to the end of si in dimension d.

Example

2, {0, 1},
〈

oid− 1 sid− 1 x− 〈1, 2〉 start− 0 duration − 1 end− 1,
oid− 2 sid− 5 x− 〈2, 1〉 start− 0 duration − 1 end− 1,
oid− 3 sid− 8 x− 〈4, 1〉 start− 0 duration − 1 end− 1

〉

,

〈

sid− 1 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 1 t− 〈0, 1〉 l− 〈1, 2〉 ,
sid− 1 t− 〈1, 2〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 2 t− 〈0, 1〉 l− 〈1, 3〉 ,
sid− 2 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 3 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 3 t− 〈1, 1〉 l− 〈1, 2〉 ,
sid− 3 t− 〈−2, 2〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 4 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 4 t− 〈2, 1〉 l− 〈1, 3〉 ,
sid− 5 t− 〈0, 0〉 l− 〈2, 1〉 ,
sid− 5 t− 〈1, 1〉 l− 〈1, 1〉 ,
sid− 5 t− 〈0, 2〉 l− 〈2, 1〉 ,
sid− 6 t− 〈0, 0〉 l− 〈3, 1〉 ,
sid− 6 t− 〈0, 1〉 l− 〈1, 1〉 ,
sid− 6 t− 〈2, 1〉 l− 〈1, 1〉 ,
sid− 7 t− 〈0, 0〉 l− 〈3, 2〉 ,
sid− 8 t− 〈0, 0〉 l− 〈2, 3〉

〉

Parts (A), (B) and (C) of Figure 5.350 respectively represent the potential shapes

associated with the three objects of the example. Part (D) shows the position of the three

objects of the example, where the first, second and third objects were respectively assigned

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

1232 PREDEFINED

shapes 1, 5 and 8. The coordinates of the leftmost lowest corner of each object are

stressed in bold. The geost time constraint holds since the three objects do not overlap:

even though the time intervals associated with each object overlap (i.e., they are in fact

identical), their corresponding shapes do not overlap (i.e., see part (D) if Figure 5.350).

S1

P
o
te

n
ti

al
sh

ap
es

fo
r

o
b
je

ct
O

1

(A)

S2

S3

S4

S5

P
o
te

n
ti

al
sh

ap
es

fo
r

o
b
je

ct
O

2

(B)

S6

S7

P
o
te

n
ti

al
sh

ap
es

fo
r

o
b
je

ct
O

3

(C)

S8

3 51 2 4

3

4

1

2

O1

O2

O3

(D)

O1: oid − 1 sid − 1 x− 〈1, 2〉
O2: oid − 2 sid − 5 x− 〈2, 1〉
O3: oid − 3 sid − 8 x− 〈4, 1〉

OBJECTS

Figure 5.350: (D) The three non-overlapping objects O1, O2, O3 of the Example slot

respectively assigned shapes S1, S5, S8; (A), (B), (C) shapes S1, S2, S3, S4, S5, S6,

S7 and S8 are respectively made up from 3, 3, 3, 3, 3, 3, 1 and 1 disjoint shifted box.

Typical |OBJECTS| > 1

Symmetries • Items of OBJECTS are permutable.

• Items of SBOXES are permutable.

• Items of OBJECTS.x, SBOXES.t and SBOXES.l are permutable (same permutation

used).

• SBOXES.l.v can be decreased to any value ≥ 1.

• One and the same constant can be added to the start and end attributes of all

items of OBJECTS.

Usage The geost time constraint allows to model directly a large number of placement prob-

lems. Figure 5.351 sketches ten typical use of the geost time constraint:

• The first case (A) corresponds to a non-overlapping constraint among three segments

(or three tasks in disjunction).

Typical
Typical condition on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Usage
Typical usage of the constraint.

20060919 1233

• The second, third and fourth cases (B,C,D) correspond to a non-overlapping con-

straint between rectangles where (B) and (C) are special cases where the sizes of all

rectangles in the second dimension are equal to 1; this can be interpreted as a ma-

chine assignment problem where each rectangle corresponds to a non-pre-emptive

task that has to be placed in time and assigned to a specific machine so that no two

tasks assigned to the same machine overlap in time. In Part (B) the duration of each

task is fixed, while in Part (C) the duration depends on the machine to which the task

is actually assigned. This dependence can be expressed by the element constraint,

which specifies the dependence between the shape variable and the assignment vari-

able of each task.

• The fifth case (E) corresponds to a non-overlapping constraint between rectangles

where each rectangle can have two orientations. This is achieved by associating with

each rectangle two shapes of respective sizes l · h and h · l. Since their orientation is

not initially fixed, an element lesseq constraint can be used for enforcing the three

rectangles to be included within the bounding box defined by the origin’s coordinates

1, 1 and sizes 8, 3.

• The sixth case (F) corresponds to a non-overlapping constraint between more com-

plex objects where each object is described by a given set of rectangles.

• The seventh case (G) describes a rectangle placement problem where one has to first

assign each rectangle to a strip so that all rectangles that are assigned to the same

strip do not overlap.

• The eighth case (H) corresponds to a non-overlapping constraint between paral-

lelepipeds.

• The ninth case (I) can be interpreted as a non-overlapping constraint between paral-

lelepipeds that are assigned to the same container. The first dimension corresponds

to the identifier of the container, while the next three dimensions are associated with

the position of a parallelepiped inside a container.

• Finally the tenth case (J) describes a rectangle placement problem over three consec-

utive time-slots: rectangles assigned to the same time-slot should not overlap in time.

We initially start with the three rectangles 1, 2 and 3. Rectangle 3 is no more present

at instant 2 (the arrow ↓ within rectangle 3 at time 1 indicates that rectangle 3 will

disappear at the next time-point), while rectangle 4 appears at instant 2 (the arrow ↑
within rectangle 4 at time 2 denotes the fact that the rectangle 4 appears at instant 2).

Finally rectangle 2 disappears at instant 3 and is replaced by rectangle 5.

Algorithm A sweep-based filtering algorithm for this constraint is described in [38]. Unlike previous

sweep filtering algorithms which move a line for finding a feasible position for the origin of

an object, this algorithm performs a recursive traversal of the multidimensional placement

space. It explores all points of the domain of the origin of the object under focus, one by

one, in increasing lexicographic order, until a point is found that is not infeasible for any

non-overlapping constraints. To make the search efficient, instead of moving each time

to the successor point, the search is arranged so that it skips points that are known to be

infeasible for some non-overlapping constraint.

Systems geost in Choco, geost in JaCoP.

See also common keyword: diffn, non overlap sboxes (geometrical constraint,non-overlapping),

visible (geometrical constraint,sweep).

specialisation: geost (temporal dimension removed).

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://jacopapi.osolpro.com/JaCoP/constraints/geost/Geost.html
http://www.jacop.eu/

See also
Related constraints grouped by semantics links.

1234 PREDEFINED

Keywords constraint type: decomposition, timetabling constraint, predefined constraint.

filtering: sweep.

geometry: geometrical constraint, non-overlapping.

modelling: assignment dimension, assignment to the same set of values,

assigning and scheduling tasks that run in parallel, disjunction.

modelling exercises: assignment to the same set of values,

assigning and scheduling tasks that run in parallel.

Keywords
Related keywords grouped by meta-keywords.

20060919 1235

¬ ®

1 2 3 4 5 6 7 8

(A)

tasks in disjunction

¬

®

1 2 3 4 5 6 7 8

1

2

3

(B)

tasks assigned to the same

machine are in disjunction

(fixed duration)

¬

®

1 2 3 4 5 6 7 8

1

2

3

(C)

tasks assigned to the same

machine are in disjunction

(machine dependent duration)

¬

®

1 2 3 4 5 6 7 8

1

2

3

(D)

non-overlapping rectangles

(fixed orientation)

¬

®

®

1 2 3 4 5 6 7 8

1

2

3

(E)

non-overlapping rectangles

(90◦ rotation)

¬

®

1 2 3 4 5 6 7 8

1

2

3

(F)

non-overlapping compound

objects

¬

®

1 2 3 4 5 6 7 8

1

2

3

1

1

2

3

2

(G)

non-overlapping rectangles that

are assigned to the same plate

¬

 ®

1 2 3 4 5

1

2

3

4

5

1
2
3
4
5

(H)

non-overlapping

parallelepipeds

1 2 3 1 2 3
1
2
31

2

3

1 2

¬

®

(I)

non-overlapping paralle-

lepipeds that are assigned

to the same container

¬

®out

instant 1

¬

out
¯

in

instant 2

¬

¯
°in

instant 3

1 2 3 1 2 3 1 2 3

1

2

3

4

(J)

moving rectangles on a plate:

• rectangle ® gets out at instant 1

• rectangle gets out at instant 2

• rectangle ¯ gets in at instant 2

• rectangle ° gets in at instant 3

Figure 5.351: Ten typical examples of use of the geost time constraint (ground in-

stances)

