5.170 graph_crossing

	DESCRIPTION	LINKS	GRAPH
Origin	N. Beldiceanu		
Constraint	${\tt graph_crossing}({\tt NCROSS}, {\tt NODES})$		
Synonyms	crossing, ncross.		
Arguments	NCROSS : dvar NODES : collection(succ-	-dvar,x-int,y-int)
Restrictions	$\begin{array}{l} \texttt{NCROSS} \geq 0 \\ \textbf{required}(\texttt{NODES}, [\texttt{succ}, \texttt{x}, \texttt{y}]) \\ \texttt{NODES.succ} \geq 1 \\ \texttt{NODES.succ} \leq \texttt{NODES} \end{array}$		
Purpose	NCROSS is the number of proper in segment is an arc of the directed gr successor.		
Example	$\left(\begin{array}{ccccccc} succ-1 & x-4\\ succ-1 & x-2\\ succ-1 & x-7\\ succ-2 & x-1\\ 2, \left<\begin{array}{ccccc} succ-3 & x-2\\ succ-2 & x-5\\ succ-3 & x-8\\ succ-9 & x-6\\ succ-10 & x-10\\ succ-8 & x-10\end{array}\right)$	$ \begin{array}{c} y = 5, \\ y = 6, \\ y = 2, \\ y = 2, \\ y = 3, \\ y = 2, \\ y = 2, \\ y = 2, \\ y = 6, \end{array} \right) $	
	 Figure 5.366 shows the line segments Arcs 8 → 9 and 7 → 3 cross, 		the NODES collection. One
	 Arcs 5 → 9 and 7 → 5 cross, Arcs 5 → 3 and 6 → 2 cross a 	ılso.	
	Consequently, the graph_crossing to 2.	constraint holds since	its first argument NCROSS is set
Typical	$\begin{split} \texttt{NODES} > 1 \\ \texttt{range}(\texttt{NODES.succ}) > 1 \\ \texttt{range}(\texttt{NODES.x}) > 1 \\ \texttt{range}(\texttt{NODES.y}) > 1 \end{split}$		

1284

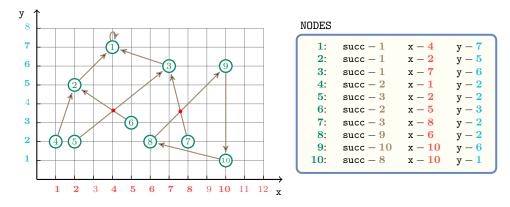


Figure 5.366: Illustration of the **Example** slot: a graph covering with 2 line segments intersections in red (NCROSS = 2)

Symmetries	• Attributes of NODES are permutable w.r.t. permutation (succ) (x, y) (<i>permutation applied to all items</i>).	
	• One and the same constant can be added to the x attribute of all items of NODES.	
	• One and the same constant can be added to the y attribute of all items of NODES.	
Arg. properties		
	Functional dependency: NCROSS determined by NODES.	
Usage	This is a general crossing constraint that can be used in conjunction with one graph covering constraint such as cycle, tree or map. In many practical problems ones want not only to cover a graph with specific patterns but also to avoid too much crossing between the arcs of the final graph.	
Remark	We did not give a specific crossing constraint for each graph covering constraint. We feel that it is better to start first with a more general constraint before going in the specificity of the pattern that is used for covering the graph.	
See also	common keyword: crossing (line segments intersection),cycle,map,tree (graph constraint, graph partitioning constraint),two_layer_edge_crossing (line segments intersection).	
Keywords	constraint arguments: pure functional dependency. constraint type: graph constraint, graph partitioning constraint.	
	geometry: geometrical constraint, line segments intersection.	
	modelling: functional dependency.	

1286

Arc input(s)	NODES	
Arc generator	$CLIQUE(<) \mapsto collection(n1, n2)$	
Arc arity	2	
Arc constraint(s)	• $ \begin{array}{l} \max(n1.x, \text{NODES}[n1.\text{succ}].x) \geq \\ \min(n2.x, \text{NODES}[n2.\text{succ}].x) \\ \hline \max(n2.x, \text{NODES}[n2.\text{succ}].x) \geq \\ \min(n1.x, \text{NODES}[n1.\text{succ}].y) \geq \\ \min(n2.y, \text{NODES}[n2.\text{succ}].y) \\ \hline \max(n2.y, \text{NODES}[n1.\text{succ}].y) \geq \\ \min(n1.y, \text{NODES}[n1.\text{succ}].x) * \left(\begin{array}{c} \text{NODES}[n1.\text{succ}].y^{-} \\ n1.y \end{array} \right) - \\ (\text{NODES}[n1.\text{succ}].x - n1.x) * \left(\begin{array}{c} n2.y^{-} \\ \text{NODES}[n1.\text{succ}].y \end{array} \right) \\ (\text{NODES}[n2.\text{succ}].x - \text{NODES}[n1.\text{succ}].x) * \left(\begin{array}{c} n2.y^{-} \\ n1.y \end{array} \right) - \\ (\text{NODES}[n2.\text{succ}].x - \text{NODES}[n1.\text{succ}].x) * \left(\begin{array}{c} n2.y^{-} \\ n1.y \end{array} \right) - \\ (\text{n2.x} - n1.x) * \left(\begin{array}{c} \text{NODES}[n1.\text{succ}].y^{-} \\ \text{NODES}[n1.\text{succ}].y \end{array} \right) \\ \hline (\text{n2.x} - n1.x) * \left(\begin{array}{c} \text{NODES}[n1.\text{succ}].y \\ \text{NODES}[n1.\text{succ}].y \end{array} \right) \\ \hline (\text{n2.x} - n1.x) * \left(\begin{array}{c} \text{NODES}[n1.\text{succ}].x \\ \text{NODES}[n1.\text{succ}].y \end{array} \right) \\ \hline (\text{n2.x} - n1.x) * \left(\begin{array}{c} \text{NODES}[n1.\text{succ}].x \\ \text{NODES}[n1.\text{succ}].x \end{array} \right) \\ \hline (\text{n2.x} - n1.x) * \left(\begin{array}{c} \text{NODES}[n1.\text{succ}].x \\ \text{NODES}[n1.\text{succ}].x \\ \text{NODES}[n1.\text{succ}].x \\ n2.y - \text{NODES}[n1.\text{succ}].x \end{array} \right) \\ \hline (\text{n2.x} - n1.x) & (\begin{array}{c} \text{NODES}[n1.\text{succ}].x \\ n2.y - n1.y \\ \Pi \left(\begin{array}{c} n2.x - n1.x, \\ n2.y - n1.y \\ n2.x - n1.x, \\ \text{NODES}[n2.\text{succ}].y \end{array} \right) \\ \end{array} \right) \end{array}$	
	$\left(\begin{array}{c} 11 \\ \text{NODES[n2.succ].y} - \text{NODES[n1.succ].y} \end{array} \right)$	
Graph property(ies)	NARC= NCROSS	
Graph model	Each node is described by its coordinates x and y, and by its successor succ in the final cov-	

Each node is described by its coordinates x and y, and by its successor succ in the final covering. Note that the co-ordinates are initially fixed. We use the arc generator CLIQUE(<) in order to avoid counting twice the same line segment crossing.

Parts (A) and (B) of Figure 5.367 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold. Each arc of the final graph corresponds to a proper intersection between two line segments.

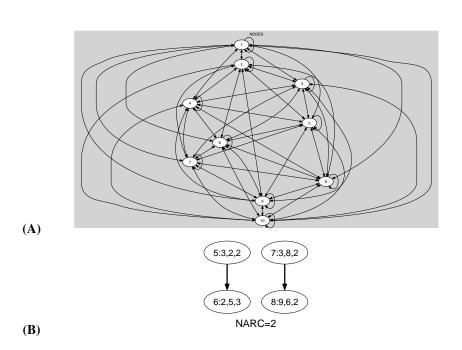


Figure 5.367: Initial and final graph of the graph_crossing constraint