### 5.175 highest_peak

## DESCRIPTION

LINKS

## AUTOMATON

## Origin

## Constraint

Arguments

## Restriction

Purpose

## Example

Derived from peak.
highest_peak(HEIGHT, VARIABLES)

HEIGHT : dvar
VARIABLES : collection(var-dvar)
required(VARIABLES, var)

A variable $V_{k}(1<k<m)$ of the sequence of variables VARIABLES $=V_{1}, \ldots, V_{m}$ is a peak if and only if there exists an $i(1<i \leq k)$ such that $V_{i-1}<V_{i}$ and $V_{i}=V_{i+1}=$ $\cdots=V_{k}$ and $V_{k}>V_{k+1}$. HEIGHT is the maximum value of the peak variables. If no such variable exists HEIGHT is equal to MININT.

$$
\begin{aligned}
& (8,\langle 1,1,4,8,6,2,7,1\rangle) \\
& (1,\langle 0,1,1,0,0,1,0,1\rangle)
\end{aligned}
$$

The first highest_peak constraint holds since 8 is the maximum peak of the sequence 11486271 .


Figure 5.393: Illustration of the first constraint of the Example slot: a sequence of eight variables $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}, V_{7}, V_{8}$ respectively fixed to values $1,1,4,8,6$, 2, 7,1 and its corresponding highest peak 8

## Typical

```
|VARIABLES| > 2
range(VARIABLES.var) > 2
peak(VARIABLES.var) >0
```

Symmetry Items of VARIABLES can be reversed.

## Arg. properties

Functional dependency: HEIGHT determined by VARIABLES.

## Counting

| Length $(n)$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Solutions | 9 | 64 | 625 | 7776 | 117649 | 2097152 | 43046721 |
| Number of solutions for highest_peak: domains 0..n |  |  |  |  |  |  |  |




| Length $(n)$ |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total |  | 9 | 64 | 625 | 7776 | 117649 | 2097152 | 43046721 |
|  | -1000000 | 9 | 50 | 295 | 1792 | 11088 | 69498 | 439791 |
|  | 1 | - | 1 | 11 | 92 | 697 | 5036 | 35443 |
|  | 2 | - | 4 | 44 | 380 | 3000 | 22632 | 166208 |
| Parameter | 3 | - | 9 | 99 | 900 | 7587 | 61389 | 484020 |
| value | 4 | - | - | 176 | 1712 | 15680 | 138544 | 1195056 |
|  | 5 | - | - | - | 2900 | 29125 | 283250 | 2693425 |
|  | 6 | - | - | - | - | 50472 | 540576 | 5665896 |
|  | 7 | - | - | - | - | - | 976227 | 11233250 |
|  | 8 | - | - | - | - | - | - | 21133632 |

Solution count for highest_peak: domains $0 . . n$


See also common keyword: deepest_valley, peak(sequence).
implies: between_min_max.

Keywords
characteristic of a constraint: automaton with same input symbol.
combinatorial object: sequence.
constraint arguments: reverse of a constraint, pure functional dependency.
constraint network structure: sliding cyclic(1) constraint network(2).
filtering: glue matrix.
modelling: functional dependency.

Automaton

Figure 5.394 depicts the automaton associated with the highest_peak constraint. To each pair of consecutive variables $\left(\operatorname{VAR}_{i}, \mathrm{VAR}_{i+1}\right)$ of the collection VARIABLES corresponds a signature variable $S_{i}$. The following signature constraint links $\mathrm{VAR}_{i}, \mathrm{VAR}_{i+1}$ and $S_{i}$ :
$\operatorname{VAR}_{i}<\operatorname{VAR}_{i+1} \Leftrightarrow S_{i}=0 \wedge \operatorname{VAR}_{i}=\operatorname{VAR}_{i+1} \Leftrightarrow S_{i}=1 \wedge \operatorname{VAR}_{i}>\operatorname{VAR}_{i+1} \Leftrightarrow S_{i}=2$.

## STATES SEMANTICS



Figure 5.394: Automaton of the highest_peak constraint and its glue matrix (state $s$ means that we are in decreasing or stationary mode, state $u$ means that we are in increasing mode, a new peak is detected each time we switch from increasing to decreasing mode and the counter $C$ is updated accordingly); minint is the smallest integer that can be represented on a machine


Figure 5.395: Hypergraph of the reformulation corresponding to the automaton of the highest_peak constraint ( $C_{0}$ is set to minint the largest integer that can be represented on a machine)

