
1362 NVERTEX,SELF ,∀; AUTOMATON

5.186 increasing global cardinality

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Conjoin global cardinality low up and increasing.

Constraint increasing global cardinality(VARIABLES, VALUES)

Synonyms increasing global cardinality low up, increasing gcc,

increasing gcc low up.

Arguments VARIABLES : collection(var−dvar)
VALUES : collection(val−int, omin−int, omax−int)

Restrictions required(VARIABLES, var)
increasing(VARIABLES)
|VALUES| > 0
required(VALUES, [val, omin, omax])
distinct(VALUES, val)
VALUES.omin ≥ 0
VALUES.omax ≤ |VARIABLES|
VALUES.omin ≤ VALUES.omax

Purpose

The variables of the collection VARIABLES are increasing. In addition, each value

VALUES[i].val (1 ≤ i ≤ |VALUES|) should be taken by at least VALUES[i].omin and

at most VALUES[i].omax variables of the VARIABLES collection.

Example









〈3, 3, 6, 8〉 ,
〈

val− 3 omin− 2 omax− 3,
val− 5 omin− 0 omax− 1,
val− 6 omin− 1 omax− 2

〉









The increasing global cardinality constraint holds since:

• The values of the collection 〈3, 3, 6, 8〉 are sorted in increasing order.

• Values 3, 5 and 6 are respectively used 2 (2 ≤ 2 ≤ 3), 0 (0 ≤ 0 ≤ 1) and 1
(1 ≤ 1 ≤ 2) times within the collection 〈3, 3, 6, 8〉 and since no constraint was

specified for value 8.

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1
|VALUES| > 1
VALUES.omin ≤ |VARIABLES|
VALUES.omax > 0
VALUES.omax ≤ |VARIABLES|
|VARIABLES| > |VALUES|

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonyms
List of synonyms for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20091015 1363

Symmetry Items of VALUES are permutable.

Usage This constraint can be used in order to break symmetry in the context of the follow-

ing pattern. We have a matrix M of variables with the same constraint on each row

and a global cardinality low up constraint on each column. Beside lexicographi-

cally ordering the rows of M with a lex chain lesseq constraint, one can also state a

increasing global cardinality on the first column of M in order to improve propa-

gation on the corresponding variables.

Reformulation The increasing global cardinality constraint can be expressed in term of a con-

junction of a global cardinality low up and an increasing constraints. Even if we

achieve arc-consistency on these two constraints this hinders propagation as shown by the

following small example.

We have two variables X and Y (X ≤ Y), which both take their values in the set {2, 3}.

In addition, assume that the minimum number of occurrences of values 0, 1 and 2 are re-

spectively equal to 0, 1 and 1. Similarly assume that, the maximum number of occurrences

of values 0, 1 and 2 are respectively equal to 1, 1 and 2. The reformulation does not reduce

the domain of variables X , Y in any way, while the automaton described in the Automaton

slot fixes X to 2 and Y to 3.

See also implies: global cardinality low up, increasing.

related: ordered global cardinality.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton without counters,

reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: value constraint, order constraint.

filtering: arc-consistency.

symmetry: symmetry, matrix symmetry.

Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

1364 NVERTEX,SELF ,∀; AUTOMATON

For all items of VALUES:

Arc input(s) VARIABLES

Arc generator SELF 7→collection(variables)

Arc arity 1

Arc constraint(s) variables.var = VALUES.val

Graph property(ies) • NVERTEX≥ VALUES.omin
• NVERTEX≤ VALUES.omax

Graph model Since we want to express one unary constraint for each value we use the “For all items of

VALUES” iterator. Part (A) of Figure 5.413 shows the initial graphs associated with each

value 3, 5 and 6 of the VALUES collection of the Example slot. Part (B) of Figure 5.413

shows the two corresponding final graphs respectively associated with values 3 and 6 that

are both assigned to the variables of the VARIABLES collection (since value 5 is not assigned

to any variable of the VARIABLES collection the final graph associated with value 5 is

empty). Since we use the NVERTEX graph property, the vertices of the final graphs are

stressed in bold.

VARIABLES

1234

3:NVERTEX=2, 5:NVERTEX=0, 6:NVERTEX=1

VALUES:3 VALUES:6

1:32:3 3:6

(A) (B)

Figure 5.413: Initial and final graph of the increasing global cardinality con-

straint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

20091015 1365

Automaton A first systematic approach for creating an automaton that only recognises the solutions to

the increasing global cardinality constraint could be to:

• First, create an automaton that recognises the solutions to the increasing con-

straint.

• Second, create an automaton that recognises the solutions to the

global cardinality low up constraint.

• Third, make the product of the two previous automata and minimise the resulting

automaton.

However this approach is not going to scale well in practice since the automaton associated

with the global cardinality low up constraint may have a too big size. Therefore we

propose an approach where we directly construct in a single step the automaton that only

recognises the solutions to the increasing global cardinality constraint. Note that

we do not have any formal proof that the resulting automaton is always minimum.

Without loss of generality, we assume that:

• All items of the VALUES collection are sorted in increasing value on the attribute val.

• All the potential values of the variables of the VARIABLES collection are included

within the set of values of the collection VALUES (i.e., the val attribute).8

• All values of the VALUES collection for which the attribute omax is set to 0 cannot be

assigned to the variables of the VARIABLES collection.9

Before defining the states of the automaton, we first need to introduce the following notion.

A value VALUES[v].val is constrained by its maximum number of occurrences if and only if

VALUES[v].omax ≤ 1∨VALUES[v].omax < |VARIABLES|−
∑|VALUES|

u=1,u 6=v VALUES[u].omin.10

Let V denote the set of constrained values (i.e., their indexes within the collection VALUES)

by their respective maximum number of occurrences.

After determining the set V , the omax attribute of each potential value is normalised in the

following way:

• For an unconstrained value VALUES[v].val we reset VALUES[v].omax to

max(1, VALUES[v].omin).

• For a constrained value VALUES[v].val we reset VALUES[v].omax to 1 if its current

value is smaller than 1.

We are now in position to introduce the states of the automaton.

The 1 +
∑|VALUES|

v=1,v∈V VALUES[v].omax +
∑|VALUES|

v=1,v/∈V VALUES[v].omin states of the automa-

ton that only accepts solutions to the increasing global cardinality constraint are

defined in the following way:

• For the vth item of the collection VALUES we have:

– If v ∈ V , VALUES[v].omax states labelled by svo (1 ≤ o ≤ VALUES[v].omax).

8If this is not the case, we can include these values within the VALUES collection and set their minimum

and maximum number of occurrences to 0 and |VARIABLES| −
∑|VALUES|

v=1
VALUES[v].omin.

9We initially remove such values from all variables of the VARIABLES collection.
10When VALUES[v].omax ≤ 1 we cannot reduce the number of states related to value VALUES[v].val and

we therefore consider that we are in the constrained case.

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

1366 NVERTEX,SELF ,∀; AUTOMATON

– If v /∈ V , VALUES[v].omin states labelled by svo (1 ≤ o ≤ VALUES[v].omin).

• We have an initial state labelled by s00.

Terminal states correspond to those states svo such that, both (1) o is greater than or

equal to VALUES[v].omin, and (2) there is no value item VALUES[w] (w > v) such that

VALUES[w].omin > 0. Transitions are defined in the following way:

• There is an arc, labelled by VALUES[v].val, from the initial state s00 to every state

sv1 where VALUES[v] is an item for which all values VALUES[u].val strictly less than

VALUES[v].val verify the condition VALUES[u].omin = 0.

• For each value VALUES[v].val constrained by its maximum number of occurrences

(i.e., v ∈ V), there is an arc, labelled by VALUES[v].val, from the state svk to the

state svk+1 for all k in [1, VALUES[v].omax − 1].

• For each value VALUES[v].val unconstrained by its maximum number of occurrences

(i.e., v /∈ V), there is an arc, labelled by VALUES[v].val, from the state svk to the

state svk+1 for all k in [1, VALUES[v].omin − 1]. There is also a loop, labelled by

VALUES[v].val, from state svk to the state svk for k = VALUES[v].omin.

• For each value VALUES[v].val constrained by its maximum number of occurrences

(i.e., v ∈ V), there is an arc, labelled by VALUES[w].val, from state svk to state

sw1 (v < w) for all k in [VALUES[v].omin, VALUES[v].omax] and for all w such that

∀u ∈ [v + 1, w − 1] : VALUES[u].omin = 0.

• For each value VALUES[v].val unconstrained by its maximum number of occurrences

(i.e., v /∈ V), there is an arc, labelled by VALUES[w].val, from state svk to state sw1

(v < w) for k = VALUES[v].omin and for all w such that ∀u ∈ [v + 1, w − 1] :
VALUES[u].omin = 0.

Figure 5.414 depicts the automaton associated with the

increasing global cardinality constraint of the Example slot. For this pur-

pose we assume without loss of generality that we have four decision variables that all

take their potential values within interval [3, 8]. Consequently, values 4, 7 and 8 are

first added to the items of the VALUES collection. Both values 3 and 6 are unconstrained

by their respective maximum number of occurrences. Therefore their omax attributes

are respectively reduced to 2 and 1. All other values, namely values 4, 5, 7 and 8, are

constrained values. The increasing global cardinality constraint holds since the

corresponding sequence of visited states, s00 s11 s12 s41 s61, ends up in an accepting state

(i.e., accepting states are denoted graphically by a double circle in the figure). Note that

non initial states are first indexed by the position of an item within the VALUES collection,

and not by the value itself (e.g., within s12 the 1 designates value 3). For instance state

s11 depicts the fact that the automaton has already recognised a single occurrence of

value 3, while s12 corresponds to the fact that the automaton has already seen at least two

occurrences of value 3.11

11The at least comes from the loop on state s12.

20091015 1367

s00 s11 s12

s21

s31

s41s51s61

3 3

3

4

5
65

6

6

6
7

8

8

Figure 5.414: Automaton of the increasing global cardinality constraint of the

Example slot: the path corresponding to the solution 〈3,3,6,8〉 is depicted by thick

orange arcs

