
1368 NSCC,CLIQUE ; AUTOMATON

5.187 increasing nvalue

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Conjoin nvalue and increasing.

Constraint increasing nvalue(NVAL, VARIABLES)

Arguments NVAL : dvar

VARIABLES : collection(var−dvar)

Restrictions NVAL ≥ min(1, |VARIABLES|)
NVAL ≤ |VARIABLES|
required(VARIABLES, var)
increasing(VARIABLES)

Purpose
The variables of the collection VARIABLES are increasing. In addition, NVAL is the num-

ber of distinct values taken by the variables of the collection VARIABLES.

Example (2, 〈6, 6, 8, 8, 8〉)
(1, 〈6, 6, 6, 6, 6〉)
(5, 〈0, 2, 3, 6, 7〉)

The first increasing nvalue constraint (see Figure 5.415 for a graphical representation)

holds since:

• The values of the collection 〈6, 6, 8, 8, 8〉 are sorted in increasing order.

• NVAL = 2 is set to the number of distinct values occurring within the collection

〈6, 6, 8, 8, 8〉.

first
value

second
value

V1 V2 V3 V4 V5

4

5

7

9

6

8

6 6

8 8 8

variables

v
al

u
es

Figure 5.415: Illustration of the first example of the Example slot: five variables V1,

V2, V3, V4, V5 respectively fixed to values 6, 6, 8, 8 and 8, and the corresponding

number of distinct values NVAL = 2


Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.



20091104 1369

Typical |VARIABLES| > 1
range(VARIABLES.var) > 1

Symmetry One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties
Functional dependency: NVAL determined by VARIABLES.

Algorithm A complete filtering algorithm in a linear time complexity over the sum of the domain sizes

is described in [45].

Reformulation The increasing nvalue constraint can be expressed in term of a conjunction of a nvalue

and an increasing constraints (i.e., a chain of non strict inequality constraints on adjacent

variables of the collection VARIABLES). But as shown by the following example, V1 ∈
[1, 2], V2 ∈ [1, 2], V1 ≤ V2, nvalue(2, 〈V1, V2〉), this hinders propagation (i.e., the unique

solution V1 = 1, V2 = 2 is not directly obtained after stating all the previous constraints).

A better reformulation achieving arc-consistency uses the seq bin constraint [310] that

we now introduce. Given N a domain variable, X a sequence of domain variables, and

C and B two binary constraints, seq bin(N, X, C, B) holds if (1) N is equal to the number

of C-stretches in the sequence X, and (2) B holds on any pair of consecutive variables in

X. A C-stretch is a generalisation of the notion of stretch introduced by G. Pesant [305],

where the equality constraint is made explicit by replacing it by a binary constraint C, i.e., a

C-stretch is a maximal length subsequence of X for which the binary constraint C is satisfied

on consecutive variables. increasing nvalue(NVAL, VARIABLES) can be reformulated

as seq bin(NVAL, VARIABLES,=,≤).

Counting

Length (n) 2 3 4 5 6 7 8

Solutions 6 20 70 252 924 3432 12870

Number of solutions for increasing nvalue: domains 0..n


Typical
Typical conditions on the arguments of the constraint.


Symmetry
A mapping (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserves the solutions of the constraint.


Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.


Counting
Information on the solution density.



1370 NSCC,CLIQUE ; AUTOMATON

2 3 4 5 6 7 8

10−3

10−2

10−1

100

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for increasing nvalue

2 3 4 5 6 7 8

0

0.2

0.4

0.6

Length

O
b
se

rv
ed

d
en

si
ty

Solution density for increasing nvalue



20091104 1371

Length (n) 2 3 4 5 6 7 8

Total 6 20 70 252 924 3432 12870

Parameter

value

1 3 4 5 6 7 8 9

2 3 12 30 60 105 168 252

3 - 4 30 120 350 840 1764

4 - - 5 60 350 1400 4410

5 - - - 6 105 840 4410

6 - - - - 7 168 1764

7 - - - - - 8 252

8 - - - - - - 9

Solution count for increasing nvalue: domains 0..n

0.2 0.4 0.6 0.8 1
10−7

10−6

10−5

10−4

10−3

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for increasing nvalue

size 6

size 7

size 8



1372 NSCC,CLIQUE ; AUTOMATON

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

·10−3

Parameter value as fraction of length

O
b
se

rv
ed

d
en

si
ty

Solution density for increasing nvalue

size 6

size 7

size 8

Systems inreasingNValue in Choco.

See also implies: increasing (remove NVAL parameter from increasing nvalue), nvalue,

nvisible from start.

related: increasing nvalue chain.

shift of concept: ordered nvector (variable replaced by vector and ≤ replaced by

lex lesseq).

Keywords characteristic of a constraint: automaton, automaton without counters,

reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: counting constraint, value partitioning constraint, order constraint.

filtering: arc-consistency.

final graph structure: strongly connected component, equivalence.

modelling: number of distinct equivalence classes, number of distinct values,

functional dependency.

symmetry: symmetry.


Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/

See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.



20091104 1373

Arc input(s) VARIABLES

Arc generator CLIQUE 7→collection(variables1, variables2)

Arc arity 2

Arc constraint(s) variables1.var = variables2.var

Graph property(ies) NSCC= NVAL

Graph class EQUIVALENCE

Graph model Parts (A) and (B) of Figure 5.416 respectively show the initial and final graph associated

with the first example of the Example slot. Since we use the NSCC graph property

we show the different strongly connected components of the final graph. Each strongly

connected component corresponds to a value that is assigned to some variables of the

VARIABLES collection. The 2 following values 6 and 8 are used by the variables of the

VARIABLES collection.

VARIABLES

1

2

3

4

5

NSCC=2

SCC#1 SCC#2

1:6

2:6

3:8

4:8

5:8

(A) (B)

Figure 5.416: Initial and final graph of the increasing nvalue constraint


Graph model
Explicit description in terms of graph property of the meaning of the constraint.



1374 NSCC,CLIQUE ; AUTOMATON

Automaton A first systematic approach for creating an automaton that only recognises the solutions to

the increasing nvalue constraint could be to:

• First, create an automaton that recognises the solutions to the increasing con-

straint.

• Second, create an automaton that recognises the solutions to the nvalue constraint.

• Third, make the product of the two previous automata and minimise the resulting

automaton.

However this approach is not going to scale well in practice since the automaton associated

with the nvalue constraint has a too big size. Therefore we propose an approach where

we directly construct in a single step the automaton that only recognises the solutions to

the increasing nvalue constraint. Note that we do not have any formal proof that the

resulting automaton is always minimum.

Without loss of generality, assume that the collection of variables VARIABLES contains at

least one variable (i.e., |VARIABLES| ≥ 1). Let l, m, n, min and max respectively de-

note the minimum and maximum possible value of variable NVAL, the number of variables

of the collection VARIABLES, the smallest value that can be assigned to the variables of

VARIABLES, and the largest value that can be assigned to the variables of VARIABLES. Let

s = max − min + 1 denote the total number of potential values. Clearly, the maximum

number of distinct values that can be assigned to the variables of the collection VARIABLES

cannot exceed the quantity d = min(m,n, s). The
s·(s+1)

2
− (s−d)·(s−d+1)

2
+ 1 states

of the automaton that only accepts solutions to the increasing nvalue constraint can be

defined in the following way:

• We have an initial state labelled by s00.

• We have
s·(s+1)

2
− (s−d)·(s−d+1)

2
states labelled by sij (1 ≤ i ≤ d, i ≤ j ≤ s). The

first index i of a state sij corresponds to the number of distinct values already en-

countered, while the second index j denotes the the current value (i.e., more precisely

the index of the current value, where the minimum value has index 1).

Terminal states depend on the possible values of variable NVAL and correspond to those

states sij such that i is a possible value for variable NVAL. Note that we assume no further

restriction on the domain of NVAL (otherwise the set of accepting states needs to be reduced

in order to reflect the current set of possible values of NVAL). Three classes of transitions

are respectively defined in the following way:

1. There is a transition, labelled by min + j − 1, from the initial state s00 to the state

s1j (1 ≤ j ≤ s).

2. There is a loop, labelled by min + j − 1 for every state sij (1 ≤ i ≤ d, i ≤ j ≤ s).

3. ∀i ∈ [1, d−1],∀j ∈ [i, s],∀k ∈ [j+1, s] there is a transition labelled by min+k−1
from sij to si+1k.

We respectively have s transitions of class 1,
s·(s+1)

2
− (s−d)·(s−d+1)

2
transitions of class

2, and
(s−1)·s·(s+1)

6
− (s−d)·(s−d+1)·(s−d+2)

6
transitions of class 3.

Note that all states sij such that i+ s − j < l can be discarded since they do not allow to

reach the minimum number of distinct values required l.


Automaton
Explicit description in terms of automaton of the meaning of the constraint.



20091104 1375

Part (A) of Figure 5.417 depicts the automaton associated with the increasing nvalue

constraint of the first example of the Example slot. For this purpose, we assume that vari-

able NVAL is fixed to value 2 and that variables of the collection VARIABLES take their

values within interval [6, 8]. Part (B) of Figure 5.417 represents the simplified automaton

where all states that do not allow to reach an accepting state were removed. The cor-

responding increasing global cardinality constraint holds since the corresponding

sequence of visited states, s00 s11 s11 s23 s23 s23, ends up in an accepting state (i.e., ac-

cepting states are denoted graphically by a double circle).

s00 s11

s12 s22

s13 s23

6

8

6

7

8

7

8

7

8

8

7

(A)

s00 s11

s12 s22

s23

6

8

6

7 7

8

7

8

7

(B)

Figure 5.417: Automaton – Part (A) – and simplified automaton – Part (B) – of the

increasing nvalue(2, 〈6, 6, 8, 8, 8〉) constraint of the first example of the Example

slot: the path corresponding to the second argument 〈6,6,8,8,8〉 is depicted by thick

orange arcs, where the self-loop on state s23 is applied twice

Figure 5.418 depicts a second deterministic automaton with one counter associated with

the increasing nvalue constraint, where the argument NVAL is unified to the final value

of the counter.

NVAL = Cs{C ← 1}

VARi = VARi+1

VARi < VARi+1,

{C ← C + 1}

Figure 5.418: Automaton (with one counter) of the increasing value constraint for

a non-empty collection of variables


