5.191 increasing_valley

	DESCRIPTION	LINKS	AUTOMATON
Origin	Derived from valley and incr	easing.	
Constraint	increasing_valley(VARIABI	.ES)	
Argument	VARIABLES : collection	n(var-dvar)	
Restrictions	VARIABLES > 0 required(VARIABLES, var)		
Purpose	A variable V_k $(1 < k < m)$ of is a valley if and only if there $V_i = V_{i+1} = \cdots = V_k$ and V_k When considering all the valley all valleys to be increasing, i.e. altitude of its preceding valley	of the sequence of varia e exists an i $(1 < i \le V_{k+1})$, ys of the sequence VARJ the altitude of each val when it exists.	ables VARIABLES = V_1, \ldots, V_m $\leq k$) such that $V_{i-1} > V_i$ and TABLES from left to right enforce ley is greater than or equal to the

Example

 $(\langle 3, 5, 1, 4, 3, 5, 3, 3, 7, 2 \rangle)$

The increasing_valley constraint holds since the sequence 3 5 1 4 3 5 3 3 7 2 contains three valleys, in bold, that are increasing.

Figure 5.424: Illustration of the **Example** slot: a sequence of ten variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , V_{10} respectively fixed to values 3, 5, 1, 4, 3, 5, 3, 3, 7, 2 and its corresponding three valleys, in red, respectively located at altitudes 1, 3 and 3

20130210

Typical

```
\begin{split} |\texttt{VARIABLES}| &\geq 7\\ \texttt{range}(\texttt{VARIABLES.var}) > 1\\ \texttt{valley}(\texttt{VARIABLES.var}) &\geq 3 \end{split}
```

Symmetry

One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Prefix-contractible wrt. VARIABLES.
- Suffix-contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8	
Solutions	9	64	625	7553	105798	1666878	29090469	
Number of solutions for increasing valley: domains 0 n								

Number of solutions for increasing_valley: domains 0..n

Solution density for increasing_valley

20130210

Automaton

Figure 5.425 depicts the automaton associated with the increasing-valley constraint. To each pair of consecutive variables (VAR_i, VAR_{i+1}) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR_i , VAR_{i+1} and S_i : $(VAR_i < VAR_{i+1} \Leftrightarrow S_i = 0) \land (VAR_i = VAR_{i+1} \Leftrightarrow S_i = 1) \land (VAR_i > VAR_{i+1} \Leftrightarrow S_i = 2)$.

Figure 5.425: Automaton for the increasing_valley constraint (note the conditional transition from state w to state v testing that the counter *Altitude* is less than or equal to VAR_i for enforcing that all valleys from left to right are in increasing altitude)

Figure 5.426: Hypergraph of the reformulation corresponding to the automaton of the increasing_valley constraint where A_i stands for the value of the counter *Altitude* (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})