AUTOMATON

## 1400

# 5.193 inflexion

|                 | DESCRIPTION                                                                                                                                                                                                 | LINKS                                                                | AUTOMATON                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|
| Origin          | N. Beldiceanu                                                                                                                                                                                               |                                                                      |                                                                 |
| Constraint      | <pre>inflexion(N, VARIABLES)</pre>                                                                                                                                                                          |                                                                      |                                                                 |
| Arguments       | N : dvar<br>VARIABLES : collection(                                                                                                                                                                         | var-dvar)                                                            |                                                                 |
| Restrictions    | $\begin{split} & \texttt{N} \geq 0 \\ & \texttt{N} \leq \max(0,  \texttt{VARIABLES}  - 2) \\ & \texttt{required}(\texttt{VARIABLES}, \texttt{var}) \end{split}$                                             |                                                                      |                                                                 |
| Purpose         | N is equal to the number of times<br>• $X_i \operatorname{CTR} X_{i+1} \wedge X_i \neq X_i$<br>• $X_{i+1} = X_{i+2} \wedge \cdots \wedge X_j$<br>• $X_{j-1} \neq X_j \wedge X_{j-1} \neg \operatorname{CT}$ | that the following conj<br>+1,<br>$_{j-2} = X_{j-1}$ ,<br>'R $X_j$ . | unctions of constraints hold:                                   |
|                 | where $X_k$ is the $k^{th}$ item of the V<br>CTR is $<$ or $>$ .                                                                                                                                            | VARIABLES collection a                                               | nd $1 \leq i, i+2 \leq j, j \leq n$ and                         |
| Example         | $\begin{array}{c} (3, \langle 1, 1, 4, 8, 8, 2, 7, 1 \rangle) \\ (0, \langle 1, 1, 4, 4, 6, 6, 7, 9 \rangle) \\ (7, \langle 1, 0, 2, 0, 7, 2, 7, 1, 2 \rangle) \end{array}$                                 |                                                                      |                                                                 |
|                 | The first inflexion constraint three inflexions peaks that respect                                                                                                                                          | holds since the sequentively correspond to value                     | nce 1 1 4 8 8 2 7 1 contains<br>es 8, 2 and 7.                  |
| All solutions   | Figure 5.429 gives all solutions to constraint: $\mathbb{N} \in \{0, 2\}, V_1 = $ inflexion( $\mathbb{N}, \langle V_1, V_2, V_3, V_4, V_5$                                                                  | the following non group $V_2 \in [2,3], V_3 \in $                    | bund instance of the inflexion $[1,2], V_4 \in [1,2], V_5 = 3,$ |
| Typical         | $\begin{split} & \texttt{N} > 0 \\ &  \texttt{VARIABLES}  > 2 \\ & \texttt{range}(\texttt{VARIABLES.var}) > 1 \end{split}$                                                                                  |                                                                      |                                                                 |
| Symmetries      | <ul> <li>Items of VARIABLES can be</li> <li>One and the same constant VARIABLES.</li> </ul>                                                                                                                 | be reversed.                                                         | e var attribute of all items of                                 |
| Arg. properties | Functional dependency: N determ                                                                                                                                                                             | ined by VARIABLES.                                                   |                                                                 |
| Usage           | Useful for constraining the numbe                                                                                                                                                                           | r of inflexions of a sequ                                            | ence of domain variables.                                       |



Figure 5.428: Illustration of the first example of the **Example** slot: a sequence of eight variables  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$ ,  $V_5$ ,  $V_6$ ,  $V_7$ ,  $V_8$  respectively fixed to values 1, 1, 4, 8, 8, 2, 7, 1 and its three inflexions in red, two peaks and one valley ( $\mathbb{N} = 3$ )



Figure 5.429: All solutions corresponding to the non ground example of the inflexion constraint of the **All solutions** slot where each inflexion (i.e. peak or valley) is coloured in orange or cyan

Remark Since the arity of the rently described with

Since the arity of the arc constraint is not fixed, the inflexion constraint cannot be currently described with the graph-based representation. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

Counting

| Length $(n)$                                    | 2 | 3  | 4   | 5    | 6      | 7       | 8        |
|-------------------------------------------------|---|----|-----|------|--------|---------|----------|
| Solutions                                       | 9 | 64 | 625 | 7776 | 117649 | 2097152 | 43046721 |
| Number of solutions for inflexion: domains $0n$ |   |    |     |      |        |         |          |





| Length (n)         |   | 2 | 3  | 4   | 5    | 6      | 7       | 8        |
|--------------------|---|---|----|-----|------|--------|---------|----------|
| Total              |   | 9 | 64 | 625 | 7776 | 117649 | 2097152 | 43046721 |
| Parameter<br>value | 0 | 9 | 36 | 135 | 498  | 1841   | 6856    | 25731    |
|                    | 1 | - | 28 | 320 | 2588 | 18494  | 125284  | 828120   |
|                    | 2 | - | -  | 170 | 3348 | 44058  | 492320  | 5069970  |
|                    | 3 | - | -  | -   | 1342 | 40446  | 778936  | 12341184 |
|                    | 4 | - | -  | -   | -    | 12810  | 549152  | 14547186 |
|                    | 5 | - | -  | -   | -    | -      | 144604  | 8354520  |
|                    | 6 | - | -  | -   | -    | -      | -       | 1880010  |

Solution count for inflexion: domains 0..n



#### 



constraint arguments: reverse of a constraint, pure functional dependency.

**constraint network structure:** sliding cyclic(1) constraint network(2).

filtering: glue matrix.

modelling: functional dependency.

- $\label{eq:cond.implications} \begin{array}{ll} \bullet \texttt{inflexion(N,VARIABLES)} \\ & \texttt{with } \texttt{N} > 0 \\ & \texttt{implies atleast_nvalue(NVAL,VARIABLES)} \\ & \texttt{when } \texttt{NVAL} = 2. \end{array}$ 
  - inflexion(N,VARIABLES) with valley(VARIABLES.var) = 0 implies peak(N,VARIABLES).
  - inflexion(N, VARIABLES) with peak(VARIABLES.var) = 0 implies valley(N, VARIABLES).

See also

Keywords

Automaton

Figure 5.430 depicts the automaton associated with the inflexion constraint. To each pair of consecutive variables  $(VAR_i, VAR_{i+1})$  of the collection VARIABLES corresponds a signature variable  $S_i$ . The following signature constraint links  $VAR_i$ ,  $VAR_{i+1}$  and  $S_i$ :  $(VAR_i < VAR_{i+1} \Leftrightarrow S_i = 0) \land (VAR_i = VAR_{i+1} \Leftrightarrow S_i = 1) \land (VAR_i > VAR_{i+1} \Leftrightarrow S_i = 2)$ .



Figure 5.430: Automaton of the inflexion constraint (state *s* means that we are in *stationary* mode, state *i* means that we are in *increasing* mode, state *j* means that we are in *decreasing* mode, a new inflexion is detected each time we switch from increasing to decreasing mode – or conversely from decreasing to increasing mode – and the counter C is incremented accordingly)



Figure 5.431: Hypergraph of the reformulation corresponding to the automaton of the inflexion constraint

|                      | $s (=^*)$ | $i (< \{<   =\}^*)$                          | $j (> \{>   =\}^*)$                            |
|----------------------|-----------|----------------------------------------------|------------------------------------------------|
| $s\left(=^{*} ight)$ | 0<br>—×—  | to the                                       |                                                |
| $i \ (<\{< =\}^*)$   |           | $\overrightarrow{C} + 1 + \overleftarrow{C}$ | $\overrightarrow{C} + \overleftarrow{C}$       |
| $j (> \{> =\}^*)$    |           |                                              | $\overrightarrow{C}$ + 1 + $\overleftarrow{C}$ |

Glue matrix where  $\overrightarrow{C}$  and  $\overleftarrow{C}$  resp. represent the counter value C at the end of a prefix and at the end of the corresponding reverse suffix that partitions the sequence VARIABLES.

Figure 5.432: Glue matrix associated with the automaton of the inflexion constraint



Figure 5.433: Illustrating the use of the state pair (j, j) of the glue matrix for linking N with the counters variables obtained after reading the prefix 1, 1, 4, 8, 8, 2 and corresponding suffix 2, 7, 1 of the sequence 1, 1, 4, 8, 8, 2, 7, 1; note that the suffix 2, 7, 1 (in pink) is proceed in reverse order; the left (resp. right) table shows the initialisation (for i = 0) and the evolution (for i > 0) of the state of the automaton and its counter C upon reading the prefix 1, 1, 4, 8, 8, 2 (resp. the reverse suffix 1, 7, 2).