5.195 int_value_precede

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LINKS</th>
<th>AUTOMATON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>[258]</td>
<td></td>
</tr>
</tbody>
</table>

Constraint

int_value_precede(S, T, VARIABLES)

Synonyms

precede, precedence, value_precede.

Arguments

S	: int
T	: int
VARIABLES	: collection(var−dvar)

Restrictions

\[S \neq T \]

required(VARIABLES, var)

Purpose

If value T occurs in the collection of variables VARIABLES then its first occurrence should be preceded by an occurrence of value S.

Example

\((0, 1, (4, 0, 6, 1, 0)) \)

The int_value_precede constraint holds since the first occurrence of value 0 precedes the first occurrence of value 1.

Typical

\[S < T \]

\[|\text{VARIABLES}| > 1 \]

\[\text{atleast}(1, \text{VARIABLES}, S) \]

\[\text{atleast}(1, \text{VARIABLES}, T) \]

Symmetries

- An occurrence of a value of VARIABLES.var that is different from S and T can be replaced by any other value that is also different from S and T.
- All occurrences of values S and T can be swapped in S, T and VARIABLES.var.

Arg. properties

- Suffix-contractible wrt. VARIABLES.
- Aggregate: S(id), T(id), VARIABLES(union).

Algorithm

A filtering algorithm for maintaining value precedence is presented in [258]. Its complexity is linear to the number of variables of the collection VARIABLES.

Systems

precede in Gecode, value_precede in MiniZinc.

See also

generalisation: int_value_precede_chain (sequence of 2 values replaced by sequence of at least 2 values), set_value_precede (sequence of domain variables replaced by sequence of set variables).
Keywords

characteristic of a constraint: automaton, automaton without counters, reified automaton constraint.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency.

symmetry: symmetry, indistinguishable values, value precedence.
Automaton

Figure 5.435 depicts the automaton associated with the `int_value_precede` constraint. Let \(\text{VAR}_i \) be the \(i^{th} \) variable of the \(\text{VARIABLES} \) collection. To each triple \((S, T, \text{VAR}_i) \) corresponds a signature variable \(S_i \) as well as the following signature constraint:

\[
\begin{align*}
\text{VAR}_i = S & \iff S_i = 1 \\
\text{VAR}_i = T & \iff S_i = 2 \\
\text{VAR}_i \neq S \land \text{VAR}_i \neq T & \iff S_i = 3
\end{align*}
\]

Figure 5.435: Automaton of the `int_value_precede` constraint (state \(s \) means that value \(S \) was not yet encountered, while state \(t \) means that value \(S \) was already encountered)

Figure 5.436: Hypergraph of the reformulation corresponding to the automaton of the `int_value_precede` constraint