
1428 PRODUCT , SUCC

5.198 interval and sum

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from cumulative.

Constraint interval and sum(SIZE INTERVAL, TASKS, LIMIT)

Arguments SIZE INTERVAL : int

TASKS : collection(origin−dvar, height−dvar)
LIMIT : int

Restrictions SIZE INTERVAL > 0
required(TASKS, [origin, height])
TASKS.origin ≥ 0
TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

A maximum resource capacity constraint: We have to fix the origins of a collection of

tasks in such a way that, for all the tasks that are allocated to the same interval, the sum

of the heights does not exceed a given capacity. All the intervals we consider have the

following form: [k ·SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1], where

k is an integer.

Example









5,

〈
origin − 1 height − 2,
origin − 10 height − 2,
origin − 10 height − 3,
origin − 4 height − 1

〉

, 5









Figure 5.443 shows the solution associated with the example. The constraint

interval and sum holds since the sum of the heights of the tasks that are located

in the same interval does not exceed the limit 5. Each task t is depicted by a rectangle r
associated with the interval to which the task t is assigned. The rectangle r is labelled

with the position of t within the items of the TASKS collection. The origin of task t is

represented by a small black square located within its corresponding rectangle r. Finally,

the height of a rectangle r is equal to the height of the task t to which it corresponds.

Typical SIZE INTERVAL > 1
|TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.height) > 1
LIMIT <sum(TASKS.height)

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

Typical
Typical conditions on the arguments of the constraint.

20000128 1429

¬ ­

®

¯

︸ ︷︷ ︸

interval 0
︸ ︷︷ ︸

interval 1
︸ ︷︷ ︸

interval 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 time

≤ 5

¬ o− 1 h− 2 ® o− 10 h− 3
­ o− 10 h− 2 ¯ o− 4 h− 1

TASKS

(
o for origin, h for height

)

Figure 5.443: The interval and sum solution to the Example slot with the use of

each interval

Symmetries • Items of TASKS are permutable.

• One and the same constant can be added to the origin attribute of all items of

TASKS.

• An occurrence of a value of TASKS.origin that belongs to the k-th interval, of

size SIZE INTERVAL, can be replaced by any other value of the same interval.

• TASKS.height can be decreased to any value ≥ 0.

• LIMIT can be increased.

Arg. properties
Contractible wrt. TASKS.

Usage This constraint can be use for timetabling problems. In this context the different intervals

are interpreted as morning and afternoon periods of different consecutive days. We have

a capacity constraint for all tasks that are assigned to the same morning or afternoon of a

given day.

Reformulation Let K denote the index of the last possible interval where the tasks can

be assigned: K = ⌊
maxi∈[1,|TASKS|](TASKS[i].origin)+SIZE INTERVAL−1

SIZE INTERVAL
⌋. The

interval and sum(SIZE INTERVAL, TASKS, LIMIT) constraint can be expressed in

term of a set of reified constraints and of K arithmetic constraints (i.e., scalar product

constraints).

1. For each task TASKS[i] (i ∈ [1, |TASKS|]) and for each interval [k ·
SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−1] (k ∈ [0, K]) we create

a 0-1 variable Bik that will be set to 1 if and only if the origin of task TASKS[i] is as-

signed within interval [k ·SIZE INTERVAL, k ·SIZE INTERVAL+SIZE INTERVAL−
1]:
Bik ⇔ TASKS[i].origin ≥ k · SIZE INTERVAL ∧

TASKS[i].origin ≤ k · SIZE INTERVAL+ SIZE INTERVAL − 1

2. Finally, for each interval [k · SIZE INTERVAL, k · SIZE INTERVAL +
SIZE INTERVAL − 1] (k ∈ [0, K]), we impose the sum TASKS[1].height ·

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Arg. properties
Properties of some arguments of the constraint (e.g. Functional dependency: an argument is determined by some other arguments, Contractibility: can remove items from any position of a collection, Prefix-contractibility: can remove items from first position, Suffix-contractibility: can remove items from last position, Extensibility: can add items at any position of a collection, Prefix-extensibility: can add items before first position, Suffix-extensibility: can add items after last position).

Usage
Typical usage of the constraint.

Reformulation
Reformulation of the constraint in terms of a conjunction of other constraints.

1430 PRODUCT , SUCC

B1k + TASKS[2].height · B2k + · · · + TASKS[|TASKS|].height · B|TASKS|k to not

exceed the maximum allowed capacity LIMIT.

See also assignment dimension removed: sum ctr (assignment dimension corresponding to inter-

vals is removed).

related: interval and count (sum ctr constraint replaced by among low up).

used in graph description: sum ctr.

Keywords application area: assignment.

characteristic of a constraint: automaton, automaton with array of counters.

constraint type: timetabling constraint, resource constraint, temporal constraint.

modelling: assignment dimension, interval.

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

20000128 1431

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) tasks1.origin/SIZE INTERVAL = tasks2.origin/SIZE INTERVAL

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)





Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model We use a bipartite graph where each class of vertices corresponds to the different tasks

of the TASKS collection. There is an arc between two tasks if their origins belong to the

same interval. Finally we enforce a sum ctr constraint on each set S of successors of the

different vertices of the final graph. This put a restriction on the maximum value of the

sum of the height attributes of the tasks of S .

Parts (A) and (B) of Figure 5.444 respectively show the initial and final graph associated

with the Example slot. Each connected component of the final graph corresponds to items

that are all assigned to the same interval.

TASKS

TASKS

1

1234

234

TASKS

TASKS

1:1,2

1:1,24:4,1

2:10,2

2:10,2 3:10,3

3:10,3 4:4,1

(A) (B)

Figure 5.444: Initial and final graph of the interval and sum constraint

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

1432 PRODUCT , SUCC

Automaton Figure 5.445 depicts the automaton associated with the interval and sum constraint. To

each item of the collection TASKS corresponds a signature variable Si that is equal to 1.

arith(C,≤, LIMIT)

s{C[]← 0}
1,
{

C[⌊ ORIGINi
SIZE INTERVAL

⌋]← C[⌊ ORIGINi
SIZE INTERVAL

⌋] + HEIGHTi

}

Figure 5.445: Automaton of the interval and sum constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 1433

