5.200 inverse_offset

	DESCRIPTION	LINKS	GRAPH
Origin	Gecode		
Constraint	<pre>inverse_offset(SOFFSET,POFFS</pre>	SET, NODES)	
Synonym	channel.		
Arguments	SOFFSET : int POFFSET : int NODES : collection(inde	ex-int,succ-dvar,p	pred-dvar)
Restrictions	$\label{eq:constraint} \begin{array}{c} \textbf{required}(\texttt{NODES}, [\texttt{index}, \texttt{succ}, \\ \texttt{NODES}.\texttt{index} \geq 1 \\ \texttt{NODES}.\texttt{index} \leq \texttt{NODES} \\ \texttt{distinct}(\texttt{NODES}, \texttt{index}) \\ \texttt{NODES}.\texttt{succ} \geq 1 + \texttt{SOFFSET} \\ \texttt{NODES}.\texttt{succ} \leq \texttt{NODES} + \texttt{SOFFSET} \\ \texttt{NODES}.\texttt{pred} \geq 1 + \texttt{POFFSET} \\ \texttt{NODES}.\texttt{pred} \leq \texttt{NODES} + \texttt{POFFSET} \\ \texttt{NODES}.\texttt{pred} \leq \texttt{NODES} + \texttt{POFFSET} \\ \begin{array}{c} \texttt{NODES}.\texttt{pred} \leq \texttt{order} \\ \texttt{Succ} \leq \texttt{order} \\ \texttt{Forder} \\ \texttt{Succ} \\ \texttt{Succ} \\ \texttt{Succ} \\ \texttt{NODES} \\ \texttt{Succ} \\ \texttt{Succ} \\ \texttt{NODES} \\ \texttt{Succ} \\ \texttt{NODES} \\ \texttt{Succ} \\ Su$	ET ET) have exactly one pred	ecessor and one successor. In
Purpose	addition the following two statement 1. The successor of the i^{th} nod 2. The predecessor of the j^{th} nod I.e., NODES[i].succ - SOFFSET	le minus SOFFSET i node minus POFFSE	\mathbf{T} is equal to i .
Example	$\left(\begin{array}{c} \operatorname{index} -2 & \operatorname{succ} \\ \operatorname{index} -3 & \operatorname{succ} \\ \operatorname{index} -4 & \operatorname{succ} \\ \operatorname{index} -5 & \operatorname{succ} \\ \operatorname{index} -6 & \operatorname{succ} \\ \operatorname{index} -7 & \operatorname{succ} \end{array}\right)$	$ \begin{array}{c c} c-4 & pred - 3, \\ c-2 & pred - 5, \\ c-0 & pred - 2, \\ c-6 & pred - 8, \\ c-1 & pred - 1, \\ c-7 & pred - 7, \\ c-5 & pred - 4, \\ c-3 & pred - 6 \end{array} $	
	The inverse_offset constraint hold	lds since:	
	 NODES[1].succ - (-1) = 5 ∉ NODES[2].succ - (-1) = 3 ∉ NODES[3].succ - (-1) = 1 ∉ 	$\Rightarrow \texttt{NODES}[3].\texttt{pred} = 0$	= 2,

- $\texttt{NODES}[4].\texttt{succ} (-1) = 7 \Leftrightarrow \texttt{NODES}[7].\texttt{pred} 0 = 4,$
- NODES[5].succ $-(-1) = 2 \Leftrightarrow NODES[2]$.pred -0 = 5.

1440

- NODES[6].succ $-(-1) = 8 \Leftrightarrow NODES[8]$.pred -0 = 6.
- NODES[7].succ $-(-1) = 6 \Leftrightarrow NODES[6]$.pred -0 = 7.
- $NODES[8].succ (-1) = 4 \Leftrightarrow NODES[4].pred 0 = 8.$

Figure 5.448 shows the board that can be associated with this example.

	NODES	5		
(A)	1 2 3 4 5 6 7 8	index - 1 $index - 2$ $index - 3$ $index - 4$ $index - 5$ $index - 6$ $index - 7$ $index - 8$	succ - 4 $succ - 2$ $succ - 0$ $succ - 6$ $succ - 1$ $succ - 7$ $succ - 5$ $succ - 3$	$\begin{array}{l} {\rm pred}-3\\ {\rm pred}-5\\ {\rm pred}-2\\ {\rm pred}-8\\ {\rm pred}-1\\ {\rm pred}-7\\ {\rm pred}-4\\ {\rm pred}-6 \end{array}$

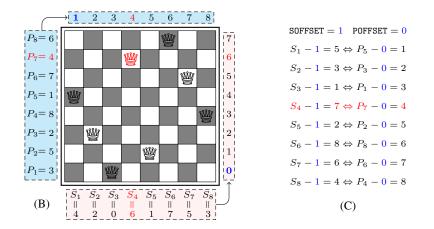


Figure 5.448: **Example** slot where we highlight the fourth item in red showing the relation between S_4 and P_7 , where S_i and P_i (with $1 \le i \le 8$) respectively stands for the successor and predecessor attributes of the *i*th item of the NODES collection (A) Collection of nodes passed to the inverse_offset constraint, (B) Corresponding board, (C) Conditions linking the successor and the predecessor attributes via the offsets SOFFSET = 1 and POFFSET = 0.

1	Ľу	p	iCa	al

SUFFSET ≥ -1
$\texttt{SOFFSET} \leq 1$
$\texttt{POFFSET} \geq -1$
$\texttt{POFFSET} \leq 1$
NODES > 1

aoppapp

Symmetry

Items of NODES are permutable.

NARC.	CLIQUE

Arg. properties	
Aig. properties	• Functional dependency: NODES.succ determined by SOFFSET, POFFSET, NODES.index and NODES.pred.
	• Functional dependency: NODES.pred determined by SOFFSET, POFFSET, NODES.index and NODES.succ.
Remark	The inverse_offset constraint is called channel in Gecode (http://www.gecode. org/). Having two offsets was motivated by the fact that it is possible to declare arrays at any position in the MiniZinc modelling language.
Systems	inverseChanneling in Choco, channel in Gecode.
See also	specialisation: inverse (assume that SOFFSET and POFFSET are both equal to 0).
Keywords	constraint arguments: pure functional dependency.
	constraint type: graph constraint.
	filtering: arc-consistency.
	heuristics: heuristics.
	modelling: channelling constraint, dual model, functional dependency.

1442

20091404

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto collection(nodes1, nodes2)$
Arc arity	2
Arc constraint(s)	 nodes1.succ - SOFFSET = nodes2.index nodes2.pred - POFFSET = nodes1.index
Graph property(ies)	NARC= NODES

Graph model

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the inverse_offset constraint considers objects that have three attributes:

- One fixed attribute index that is the identifier of the vertex,
- One variable attribute succ that is the successor of the vertex,
- One variable attribute pred that is the predecessor of the vertex.

Parts (A) and (B) of Figure 5.449 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

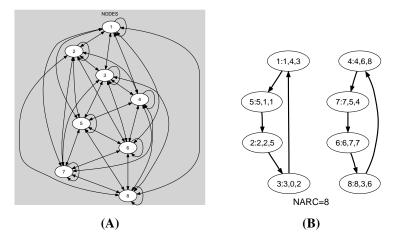


Figure 5.449: Initial and final graph of the inverse_offset constraint